Blanchet, Adrien, Carrillo, José, Kinderlehrer, David, Kowalczyk, Michal, Laurençot, Philippe and Lisini, Stefano (2015) A hybrid variational principle for the Keller–Segel system in R2. ESAIM: Mathematical Modelling and Numerical Analysis, vol. 49 (n° 6). pp. 1553-1576.

[thumbnail of hybrid_variation.pdf]
Preview
Text
Download (263kB) | Preview
Identification Number : 10.1051/m2an/2015021

Abstract

We construct weak global in time solutions to the classical Keller–Segel system describing cell movement by chemotaxis in two dimensions when the total mass is below the established critical value. Our construction takes advantage of the fact that the Keller–Segel system can be realized as a gradient flow in a suitable functional product space. This allows us to employ a hybrid variational principle which is a generalisation of the minimizing implicit scheme for Wasserstein distances introduced by [R. Jordan, D. Kinderlehrer and F. Otto, SIAM J. Math. Anal. 29 (1998) 1–17].

Item Type: Article
Language: English
Date: 12 November 2015
Refereed: Yes
Uncontrolled Keywords: Chemotaxis, Keller–Segel model, minimizing scheme, Kantorovich–Rubinstein–Wasserstein distance
Subjects: B- ECONOMIE ET FINANCE
Divisions: TSE-R (Toulouse)
Site: UT1
Date Deposited: 18 Apr 2016 09:57
Last Modified: 17 Apr 2024 06:15
OAI Identifier: oai:tse-fr.eu:29909
URI: https://publications.ut-capitole.fr/id/eprint/18725
View Item

Downloads

Downloads per month over past year