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Abstract. We construct weak global in time solutions to the classical Keller-Segel system
describing cell movement by chemotaxis in two dimensions when the total mass is below
the established critical value. Our construction takes advantage of the fact that the Keller-
Segel system can be realized as a gradient flow in a suitable functional product space.
This allows us to employ a hybrid variational principle which is a generalisation of the
minimizing implicit scheme for Wasserstein distances introduced by Jordan, Kinderlehrer
and Otto (1998).
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1. Introduction

1.1. The model. The parabolic-parabolic Keller-Segel model [25, 26] is a drift-diffusion
system given by











∂tu = ∆u− χ0div [u∇v] ,
τ0∂tv = D0∆v − α0 v + β0 u ,

u0 ∈ L1
+(R

2) , v0 ∈ H1(R2),

(t, x) ∈ (0,∞) × R
2 , (1.1)

where χ0, τ0, D0, α0, and β0 are given positive parameters and L1
+(R

2) denotes the positive

cone of L1(R2). The system (1.1) is a widely accepted model of chemotaxis, a phenomenon
in which organisms, most notably dictyostelium discoideum, with density u, are attracted
by a chemo-attractant v, produced by them. This feedback mechanism may lead to an
aggregation phenomena expressed by the concentration of the distribution function u at
some points and it may even grow without bounds as time progresses leading to blow-
up in density. The Keller-Segel model, which looks simple at first sight, is a very rich
mathematical system and it has been an object of very extensive investigation for the last
forty years. By introducing the new unknown functions

ρ(t, x) :=
u(t, x)

‖u0‖L1(R2)
, φ(t, x) :=

D0

β0‖u0‖L1(R2)
v(t, x) ,

and the two initial conditions

ρ0 :=
u0

‖u0‖L1(R2)
, φ0 :=

D0

β0‖u0‖L1(R2)
v0,

where ‖ · ‖L1(R2) denotes the L1-norm, we obtain the equivalent system










∂tρ = ∆ρ− χdiv [ρ∇φ] ,
τ∂tφ = ∆φ− αφ+ ρ ,

ρ0 ∈ L1
+(R

2) , φ0 ∈ H1(R2) ,

(t, x) ∈ (0,∞) × R
2 , (1.2)

with

τ :=
τ0
D0

, α :=
α0

D0
, and χ :=

β0 χ0‖u0‖L1(R2)

D0
.

Note that with this rescaling ρ0 is a probability density. Notice that the total mass of ρ is
formally preserved along the flow,

∫

R2

ρ(t, x) dx =

∫

R2

ρ0(x) dx = 1, t ≥ 0

and that ρ(t, ·) ≥ 0 if ρ0 ≥ 0. Thus we may restrict our attention to the construction
of solutions such that ρ(t, ·) is a probability density for every t > 0. We stress that the
solutions obtained with our technique automatically enjoy this property.

Taking τ = 0 we obtain the so called parabolic-elliptic Keller-Segel model. Although
our focus here is the case τ > 0, it is instructive to revise some basic facts about this
“simplified” system. Taking the initial condition ρ0 with finite second moment

∫

R2

|x|2ρ0(x) dx <∞,

and calculating formally the time derivative of the second momentM2(t) =
∫

R2 |x|2ρ(t, x) dx
we obtain dM2(t)/ dt < 0 provided that χ > 8π. This means that at some finite time
T > 0, M2(T ) = 0, which would imply total concentration of the mass. The conclusion is
that, for χ > 8π, there is finite time blow-up of classical solutions for the parabolic-elliptic
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Keller-Segel model [7]. It turns out that when χ < 8π solutions exist and are bounded
for all times [11]. The borderline case χ = 8π was considered in [10] where it was shown
that solutions for initial data with finite second moment exist globally but they become un-
bounded and converge to a Dirac delta function as t→ ∞. In all these references, solutions
were constructed by approximation methods leading to free energy solutions.

However, one can use the gradient flow approach introduced in [24, 34] for diffusions
and in [17] for nonlocal interactions to the parabolic-elliptic Keller-Segel model as in [8, 9].
In particular, the gradient flow interpretation leads to a nice understanding of the energy
landscape in the critical mass case χ = 8π. There are infinitely many stationary solutions,
all of them locally asymptotically stable, for which a second Liapunov functional was found
in [9]. The key property of the gradient flow interpretation is that all stationary solutions
are infinitely apart from each other in the optimal transport euclidean distance, and each
of them has its own basin of attraction.

Returning to the parabolic-parabolic model, it is known that under the condition χ < 8π
and with reasonable assumptions on the initial condition, solutions to (1.2) exist for all
times [14, 32]. Our objective is to give another proof of the global in time existence. This
proof, which is based on the so called hybrid variational principle, does not give strictly
speaking any new existence result. Our objective is to emphasize an important, and not
immediately apparent, property: the variational character of the Keller-Segel model. It
also sheds some light on why when χ > 8π the issue of global existence versus blow up
is so delicate in the parabolic-parabolic case. We note that it is proven in [4] that when
χ > 8π and τ is sufficiently large then there exist global self-similar solutions. It has also
been shown recently in [5] that for any initial condition and χ > 8π there exists τ such
that the Keller-Segel model has a global solution with this initial condition (the Cauchy
problem being understood in some weak sense, and solutions are not necessarily unique).
It is also proven recently in [35, 36] that blow-up solutions exist for supercritical mass close
to critical and the blow-up profile has been characterised, see also [19] for a formal analysis
and [22] for related results in a bounded domain. This variational interpretation of the
Keller-Segel model suggests that there might be a path in the function space along which
the free energy functional becomes unbounded leading possibly to blow-up “along” this
path. For numerical simulations inspired from this scheme, see [20, 21].

Finally, let us mention that the solutions are proven to be unique and the functional has
some convexity over the set of solutions as soon as the cell density becomes bounded [16].

1.2. The formal gradient flow interpretation. We denote by P(R2) the set of Borel
probability measures on R

2 with finite second moment, and by

K := {ρ ∈ P(R2) : ρ≪ dx and

∫

R2

ρ log ρ dx <∞}.

Let us define the free energy of the Keller-Segel system (1.2) as E : P(R2) × L2(R2) →
(−∞,+∞] by

E [ρ, φ] =
∫

R2

{

1

χ
ρ(x) log ρ(x)− ρ(x)φ(x) +

1

2
|∇φ(x)|2 + α

2
φ(x)2

}

dx , (1.3)

if (ρ, φ) ∈ K × H1(R2) and E [ρ, φ] = +∞ otherwise. We will see in Lemma 2.2 that if
χ < 8π then E cannot reach the value −∞. The domain of E coincides with K ×H1(R2).
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We observe that, at least formally, the system (1.2) has the following “gradient flow”
structure



















∂tρ = χ∇ ·
(

ρ∇δE
δρ

)

,

τ∂tφ = −δE
δφ
,

(1.4)

where δE/δρ and δE/δφ denote the first variation of the functional E with respect to
the variables ρ and φ respectively. Indeed, the right hand side in the first equation of
(1.4) is, up to a factor χ, the “gradient” of E along the curve t 7→ ρ(t, ·) with respect to
the Kantorovich-Rubinstein-Wasserstein distance, referred to hereafter as the Wasserstein
distance and denoted by dW . The term δE/δφ in the right hand side of the second equation
is the “gradient” of E along the curve t 7→ φ(t, ·) with respect to the L2(R2) distance. We
can formally compute the dissipation of E [ρ, φ] in (1.3) along a solution of (1.4) as

d

dt
E [ρ(t), φ(t)] =

∫

R2

[

δE
δρ
∂tρ+

δE
δφ
∂tφ

]

dx

= −χ
∫

R2

∣

∣

∣

∣

∇δE
δρ

∣

∣

∣

∣

2

ρ dx− 1

τ

∫

R2

(

δE
δφ

)2

dx .

We recall here that the variational scheme introduced by Jordan, Kinderlehrer and Otto
in [24] is based, generally speaking, on a gradient flow of some free energy in the Wasserstein
topology. Here, we work in a product space topology P(R2)×L2(R2) and this justifies the
name hybrid variational principle for the implicit scheme that we will introduce in what
follows, and which makes the notion of the gradient flow in this context rigorous.

We should point out that hybrid variational principles have been already used to show
existence of solutions for a model of the Janossy effect in a dye doped liquid crystal [27], for
the Keller-Segel model with critical diffusion in R

N , N ≥ 3 [12] and some of its variants [38,
39, 31, 28], and for the thin film Muskat problem [29].

1.3. Main results. When a problem has a gradient flow structure, then its trajectories
follow the steepest descent path, one way to prove existence of solutions is by employing
some implicit discrete in time approximation scheme. Suitable time interpolation and
compactness arguments should finally give the convergence towards a solution as the time
step goes to zero.

The main result of this work is the construction of solutions to (1.2) using an adapted
version of the implicit variational schemes introduced in [24] for the case of the Wasserstein
distance. The general setting in metric spaces was also developed by De Giorgi school
with the name of minimizing movement approximation scheme (see [2] and the references
therein). The minimizing scheme is defined as follows: given an initial condition (ρ0, φ0) ∈
K ×H1(R2) and a time step h > 0, we define a sequence (ρnh, φ

n
h)n≥0 in K ×H1(R2) by

{

(ρ0h, φ
0
h) = (ρ0, φ0) ,

(ρn+1
h , φn+1

h ) ∈ Argmin(ρ,φ)∈K×H1(R2)Fh,n[ρ, φ] , n ≥ 0 ,
(1.5)

where

Fh,n[ρ, φ] :=
1

2h

[

1

χ
d2W (ρ, ρnh) + τ ‖φ− φnh‖2L2(R2)

]

+ E [ρ, φ] .

and dW denotes the Wasserstein distance which is defined in Section 2.2.

Theorem 1.1 (Convergence of the scheme). Assume that the constants in the Keller-Segel
system satisfy 0 < χ < 8π, τ > 0 and α > 0. Given (ρ0, φ0) ∈ K × H1(R2) there exists
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a sequence (ρnh, φ
n
h) ∈ K × H1(R2) satisfying the variational principle (1.5). Defining the

piecewise constant function

(ρh(t), φh(t)) = (ρnh, φ
n
h), if t ∈ ((n − 1)h, nh],

there exists a decreasing sequence (hj)j going to 0 as j goes to ∞ and a continuous curve
(ρ, φ) : [0,∞) → P(R2)× L2(R2) such that

ρhj (t)⇀ ρ(t) weakly in L1(R2), t > 0,

φhj (t)⇀ φ(t) weakly in L2(R2) and strongly in Lploc(R
2), t > 0, p ∈ [1,+∞).

Moreover, (ρ, φ) satisfies the following regularity properties:

(i) ρ ∈ C1/2([0, T ];P(R2)) and φ ∈ C1/2([0, T ]; L2(R2)), for every T > 0.
(ii) For all T > 0, we have the estimate

sup
t∈[0,T ]

{
∫

R2

[

|x|2ρ(t, x) + ρ(t, x)| log ρ(t, x)|
]

dx+ ‖φ(t)‖H1(R2)

}

<∞ . (1.6)

(iii) For all T > 0, ρ ∈ L2(0, T ;R2) ∩ L1((0, T );W 1,1(R2)), φ ∈ L2((0, T ); H2(R2)) ∩
H1((0, T ); L2(R2)), and the Fisher information bound holds

∫ T

0

∫

R2

∣

∣

∣

∣

∇ρ
ρ

∣

∣

∣

∣

2

ρ dx dt < +∞ . (1.7)

(iv) The pair (ρ, φ) is a weak solution of the Keller-Segel system (1.2) in the sense that
∫ +∞

0

∫

R2

[∂tξρ−∇ξ · (∇ρ− χρ∇φ)] dx dt = 0, for all ξ ∈ C∞
0 ((0,∞) × R

2),

τ∂tφ = ∆φ− αφ+ ρ, a.e. in (0,∞) × R
2.

(1.8)

Theorem 1.2 (Dissipation inequality). Under the same assumptions as Theorem 1.1,
the solution (ρ, φ) constructed in Theorem 1.1 furthermore satisfies the energy dissipation
inequality: for all T > 0

1

χ

∫ T

0

∫

R2

∣

∣

∣

∣

∇ρ
ρ

− χ∇φ
∣

∣

∣

∣

2

ρ dx dt+
1

τ

∫ T

0
‖∆φ− αφ+ ρ‖2L2(R2) dt

+ E [ρ(T ), φ(T )] ≤ E [ρ0, φ0].
(1.9)

Obviously the interval (0, T ) can be replaced by any (T1, T2) in (0,∞). Since we do not
know whether the non-negative function ρ is positive in R

2 the meaning in (1.7) is that the

integrand is equal to |∇ log ρ|2 ρ if ρ is positive and zero elsewhere. Owing to the energy
dissipation an alternative formulation for the equation on ρ is ∂tρ + ∇ · (ρJ) = 0 with
J := ∇ log ρ− χ∇φ where ρ is positive and J(t) ∈ L2(R2, ρ(t) dx) for almost every t.

Several difficulties arise in the proof of the well-posedness and convergence of the mini-
mizing scheme. First of all, since the energy E is not displacement convex, standard results
from [2, 37] do not apply and even the existence of a minimizer is not clear. This is primar-
ily because we choose to work in the whole space R

2 rather than in a bounded domain, a
choice made to replicate the optimal known results. Section 3 is devoted to this minimiza-
tion problem. Let us mention that this functional has some convexity properties but only
when restricted to bounded densities as proven in [16]. However, we cannot take advantage
of this convexity for the construction of weak solutions with the regularity stated on the
initial data.

The second issue has to do with the regularity of the minimizers obtained in each step
without which we cannot show convergence of the discrete scheme to a solution of (1.8). To
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derive the Euler-Lagrange equation satisfied by a minimizer (ρ, φ) of Fh,n in K × H1(R2),
the parameters h and n being fixed, we consider an “optimal transport” perturbation for
ρ and a L2-perturbation for φ defined for δ ∈ (0, 1) by

ρδ = (id + δ ζ)#ρ , φδ := φ+ δ η ,

where ζ ∈ C∞
0 (R2;R2) and η ∈ C∞

0 (R2). We note that ρδ is the push forward of ρ by the
map id+δζ. Identifying the Euler-Lagrange equation requires passage to the limit as δ → 0
in

d2W (ρδ, ρ0)− d2W (ρ, ρ0)

2δ
and

1

δ

∫

R2

(ρδ log ρδ − ρ log ρ) dx,

which can be done by standard arguments, and also in

1

δ

∫

R2

(ρφ− ρδ φδ)(x) dx =

∫

R2

ρ(x)

[

φ(x)− φ(x+ δζ(x))

δ
− η(x+ δζ(x))

]

dx .

This is where the main difficulty lies: indeed, since φ ∈ H1(R2), we only have

φ◦(id + δζ)− φ

δ
⇀ ζ · ∇φ in L2(R2),

while ρ is only in K. Consequently the product ρζ ·∇φ which is the candidate for the limit
may not be well defined and the regularity of (ρ, φ) has to be improved. We also remark
that the dissipation of the functional involves ∆φ, and therefore we need to show additional
regularity on the potential φ to have a well-defined dissipation of (1.3). A general strategy
to overcome this regularity issue is explained in subsection 3.2.1 using an adaptation of the
arguments in [12, 30].

We finally point out that it is plausible to prove the propagation of Lp(R2) norms of the
density ρ by using the techniques in [9]. However, it is not clear how to adapt the arguments
based on truncated Lp(R2) norms as in [13], and thus they do not lead to uniform in time
L∞(R2) bounds of the density as one can expect for the subcritical/critical cases and proven
for the system by classical PDE methods, see [3, 15] for instance. Finding uniform in time
L∞(R2) bounds via the variational scheme is not an easy task even in easier situations as
Fokker-Planck equations with linear/nonlinear diffusions, see [18].

2. Preliminaries

2.1. Lower semicontinuity of functional defined on measures. The following lower
semicontinuity result is very useful. For the proof we refer to [1, Theorem 2.34 & Exam-
ple 2.36].

Proposition 2.1. Let (µn)n≥0, (γn)n≥0 be two sequences of Borel positive measures in R
d,

d ≥ 1, such that µn is absolutely continuous with respect to γn for each n ≥ 1. Consider
f : R → [0,∞] a convex function with superlinear growth at infinity. Assume that (µn)n≥0,
(γn)n≥0 weakly-* converge (in duality with Cc(R

d)) to µ and γ respectively and

sup
n≥1

∫

Rd

f
( dµn

dγn

)

dγn <∞.

Then µ is absolutely continuous with respect to γ and

lim inf
n→+∞

∫

Rd

f
( dµn

dγn

)

dγn ≥
∫

Rd

f
( dµ

dγ

)

dγ.
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2.2. Wasserstein distance and transport map. We recall that the Wasserstein dis-
tance in P(R2), is defined by

d2W (µ, ν) := min
γ∈P(R2×R2)

{
∫

R2×R2

|x− y|2 dγ : (π1)#γ = µ, (π2)#γ = ν

}

(2.1)

where πi, i = 1, 2, denote the canonical projections on the factors. When µ is absolutely
continuous with respect to the Lebesgue measure, the minimum problem (2.1) has a unique
solution γ induced by a transport map T νµ , γ = (id, T νµ )#µ. In particular, T νµ is the unique
solution of the Monge optimal transport problem

min
S:R2−→R2

{
∫

R2

|S − id|2 dµ : S#µ = ν

}

,

of which (2.1) is the Kantorovich relaxed version. Finally, we recall that if also ν is abso-
lutely continuous with respect to Lebesgue measure, then

T µν ◦ T νµ = id µ-a.e. and T νµ ◦ T µν = id ν-a.e. (2.2)

Since in this paper we deal only with absolutely continuous measures, we identify the
measures with their densities with respect to the Lebesgue measure.

2.3. Boundedness from below of the functional E. The following result is due to [14,
Lemma 3.1] and is a consequence of the Onofri inequality on the sphere [33]:

Lemma 2.1 (Onofri Inequality). Let H : R2 → R be defined by

H(x) :=
1

π(1 + |x|2)2 .

Then the following inequality holds:
∫

R2

eψH dx ≤ exp
(

∫

R2

ψH dx+
1

16π

∫

R2

|∇ψ|2 dx
)

∀ψ ∈ H1(R2). (2.3)

We can now make use of this inequality to obtain the lower bound of the functional in
(1.3).

Lemma 2.2 (Lower bound on E). Let 0 < χ < 8π and α > 0. Then there exist constants
ν > 0 and C1 > 0 such that ν is independent of α and

E [ρ, φ] ≥ 8π − χ

16πχ

∫

R2

ρ| log ρ| dx+ ν
[

‖∇φ‖2L2(R2) + α‖φ‖2L2(R2)

]

+
3

2χ

∫

R2

ρ logH dx− C1 , ∀ (ρ, φ) ∈ P(R2)×H1(R2).

(2.4)

Proof. The proof follows the lines of [14, Theorem 3.2]. Let δ ∈ (0, 1) be a constant to be
chosen later. By Jensen’s inequality, for all ψ : R2 → R

∫

R2

[

1− δ

χ
ρ log ρ− ψρ

]

dx = −1− δ

χ

∫

R2

log

(

eχψ/(1−δ)

ρ

)

ρ dx

≥ −1− δ

χ
log

(
∫

R2

eχψ/(1−δ) dx

)

.
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Applying this inequality to ψ = φ+ (1− δ)(logH)/χ we obtain
∫

R2

[

1− δ

χ
ρ log ρ− φρ

]

dx =

∫

R2

[

1− δ

χ
ρ log ρ− ψρ

]

dx+

∫

R2

ρ(ψ − φ) dx

≥ − 1− δ

χ
log

(
∫

R2

Heχφ/(1−δ) dx

)

+
1− δ

χ

∫

R2

ρ logH dx.

By Onofri’s inequality (2.3) we obtain, for any ε > 0,

∫

R2

[

1− δ

χ
ρ log ρ− φρ

]

dx ≥ − 1− δ

χ

(

∫

R2

χφ

1− δ
H dx+

χ2‖∇φ‖2L2(R2)

16π(1 − δ)2

)

+
1− δ

χ

∫

R2

ρ logH dx

≥ −
∫

R2

φH dx−
χ‖∇φ‖2L2(R2)

16π(1 − δ)

+
1− δ

χ

∫

R2

ρ logH dx

≥ − ε

2
‖φ‖2L2(R2) −

1

2ε
‖H‖2L2(R2) −

χ‖∇φ‖2L2(R2)

16π(1 − δ)

+
1− δ

χ

∫

R2

ρ logH dx.

Choosing ε = αχ/(8π(1 − δ)) > 0, we obtain

E [ρ, φ] ≥ δ

χ

∫

R2

ρ log ρ dx− 1

2ε
‖H‖2L2(R2) + ν

[

‖∇φ‖2L2(R2) + α‖φ‖2L2(R2)

]

+
1− δ

χ

∫

R2

ρ logH dx

with ν := 1/2− χ/(16π(1 − δ)). By Carleman’s estimate (B.1)

E [ρ, φ] ≥ δ

χ

∫

R2

ρ| log ρ| dx+
2δ

χ

∫

R2

ρ logH dx− 2δ

eχ
− 4π(1 − δ)

αχ
‖H‖2L2(R2)

+ ν
[

‖∇φ‖2L2(R2) + α‖φ‖2L2(R2)

]

+
1− δ

χ

∫

R2

ρ logH dx

=
δ

χ

∫

R2

ρ| log ρ| dx+ ν
[

‖∇φ‖2L2(R2) + α‖φ‖2L2(R2)

]

+
1 + δ

χ

∫

R2

ρ logH dx

− 2δ

eχ
− 4π(1− δ)

αχ
‖H‖2L2(R2).

Since χ < 8π we can take δ = (8π − χ)/(16π). Observing that δ < 1/2, (2.4) follows with
ν = (8π − χ)/(16π + 2χ) > 0 and C1 = 8π − χ/(8πeχ) + 8π + χ/(4αχ) ‖H‖2L2(R2). �

3. One step variational problem

3.1. Existence of minimizers.
8



Proposition 3.1 (Existence of minimizers). If 0 < χ < 8π and α > 0, then for any
(ρ̄, φ̄) ∈ K ×H1(R2) and h > 0 the functional

F [ρ, φ] :=
1

2h

[

1

χ
d2W (ρ, ρ̄) + τ ‖φ− φ̄‖2L2(R2)

]

+ E [ρ, φ]

is bounded from below in P(R2)×H1(R2) and sequentially lower semicontinuous with respect
to the narrow topology in P(R2) and the weak topology in L2(R2). Moreover the sub-levels
of F are sequentially compact with respect to those same topologies. In particular, the
functional F admits a minimizer in P(R2)×H1(R2).

Proof. • Lower bound for F : By the Young Inequality and the definition of the distance
dW , we have that

d2W (ρ, ρ̄) ≥ 1

2

∫

R2

|x|2ρ(x) dx−
∫

R2

|x|2ρ̄(x) dx.

Since logH(x) = − log π − 2 log(1 + |x|2), we deduce

3

2χ

∫

R2

ρ logH dx+
1

2h
d2W (ρ, ρ̄) ≥

∫

R2

( 1

4h
|x|2 − 3

χ
log(1 + |x|2)

)

ρ(x) dx

− 3

2χ
log π − 1

2h

∫

R2

|x|2ρ̄(x) dx .

This quantity is bounded from below because the function s ∈ [0,∞) 7→ s/(4h)− 3
χ log(1+s)

is bounded from below. Using Lemma 2.2, we have thus obtained that there exist C2 =
νmin{1, α} > 0, C3 = C3(h) ∈ R such that for all (ρ, φ) ∈ P(R2)×H1(R2), we get

F [ρ, φ] ≥ 8π − χ

16πχ

∫

R2

ρ| log ρ|+ C2 ‖φ‖2H1(R2) + C3 . (3.1)

• Lower semicontinuity of F : we take a sequence (ρn)n≥1 ∈ P(R2) narrowly convergent to
ρ and φn ∈ H1(R2) such that (φn)n≥1 weakly converges to φ with respect to the L2(R2)-
topology. Using the notation

dγn = eχφnH dx, dγ = eχφH dx, dµn = ρn dx, dµ = ρ dx,

the functional F can be rewritten in the form

F [ρn, φn] =
1

χ

∫

R2

[

dµn
dγn

log

(

dµn
dγn

)

+
1

e

]

dγn −
1

eχ

∫

R2

eχφnH dx (3.2)

+
1

χ

∫

R2

ρn logH dx+
1

2

(

‖∇φn‖2L2(R2) + α‖φn‖2L2(R2)

)

(3.3)

+
1

2h

(

d2W (ρn, ρ̄)

χ
+ τ

∥

∥φn − φ̄
∥

∥

2

L2(R2)

)

. (3.4)

∗ Lower semicontinuity of (3.2): By (3.1) the sequence (φn)n≥1 is bounded in H1(R2), and,
after possibly extracting a sub-sequence, we may assume that

(φn(x))n≥1 → φ(x) for a.e. x ∈ R
2. (3.5)

We prove that (γn)n≥1 narrowly converges to γ, i.e. for all ϕ ∈ Cb(R2),

lim
n→∞

∫

R2

eχφn(x)H(x)ϕ(x) dx =

∫

R2

eχφ(x)H(x)ϕ(x) dx. (3.6)

9



Indeed, H dx is a finite measure in R
2 and, by Onofri’s inequality (2.3) and the boundedness

of the (φn)n≥1 in H1(R2), we deduce that
∫

R2

(

eχφnϕ
)2
H dx ≤ ‖ϕ‖2L∞(R2)

∫

R2

e2χφnH dx

≤ ‖ϕ‖2L∞(R2) exp

[

2χ

∫

R2

φnH dx+
χ2

4π
‖∇φn‖2L2(R2)

]

≤ ‖ϕ‖2L∞(R2) exp

[

2χ‖φn‖L2(R2)‖H‖L2(R2) +
χ2

4π
‖∇φn‖2L2(R2)

]

≤ C.

Therefore, (eχφnϕ)n≥1 is bounded in L2(R2;H dx), and thus it is uniformly integrable with
respect to the measureH dx. Recalling (3.5) we may apply Vitali’s Dominated Convergence
Theorem and obtain (3.6). By Proposition 2.1 applied to the non-negative convex function
f(s) = s log s+ 1/e we obtain the lower semicontinuity of the right hand side of (3.2).
∗ Lower semicontinuity of (3.3): Since the lower semicontinuity property of F is obvious
if lim supn→∞F [ρn, φn] = +∞, it is not restrictive to assume that there exists a constant
C such that F [ρn, φn] ≤ C. Combining the upper bound F [ρn, φn] ≤ C with the lower
bound (2.4) on E we deduce that (d2W (ρn, ρ̄))n≥1 is bounded so that (ρn)n≥1 is bounded
in P(R2). Since logH = o(|x|2) as |x| → ∞, this last bound and the narrow convergence
imply the convergence

lim
n→∞

∫

R2

ρn logH dx =

∫

R2

ρ logH dx .

By (3.1) the sequence (φn)n≥1 is bounded in H1(R2), and after possibly extracting a
sub-sequence, we may assume that it converges weakly to φ in H1(R2). Thus, the lower
semicontinuity of the last two terms in (3.3) are obvious.
∗ Lower semicontinuity of (3.4): it follows from the lower semicontinuity of the Wasserstein
distance and the lower semicontinuity of the L2 norm. �

3.2. Improved regularity of the minimizers.

3.2.1. Matthes-McCann-Savaré flow interchange technique. We will use a variation of a
powerful method developed by Matthes-McCann-Savaré in [30].

We denote by X the metric space P(R2)× L2(R2) endowed with the metric

d2(u1, u2) =
1

χ
d2W (ρ1, ρ2) + τ ‖φ1 − φ2‖2L2(R2), (3.7)

where ui = (ρi, φi), i = 1, 2.
The scheme (1.5) can be rephrased as

(ρnh, φ
n
h) = unh minimizes in X the functional u 7→ 1

2h
d2(u, un−1

h ) + E [u] , (3.8)

for all n ≥ 1 and h > 0 starting from u0h = (ρ0, φ0).
Assume that V : X → (−∞,+∞] is a proper lower semicontinuous functional that admits

a continuous semigroup (SV
t )t≥0 in Dom(V) satisfying the following Evolution Variational

Inequality (EVI)

1

2

d2(SV
t (u), ū)− d2(u, ū)

t
+ V[SV

t (u)] ≤ V[ū], u, ū ∈ Dom(V), t > 0. (3.9)
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The dissipation of E along the flow (SV
t )t≥0 associated to V is defined by

DVE [u] := lim sup
t↓0

E [u]− E [SV
t (u)]

t
.

By the minimizing scheme (3.8), for any u ∈ Dom(V) we have

1

2h
d2(unh, u

n−1
h ) + E [unh] ≤

1

2h
d2(u, un−1

h ) + E [u] .

Choosing u = SV
t (u

n
h) for t > 0, and dividing by t we obtain

E [unh]− E [SV
t (u

n
h)]

t
≤ 1

2h

[

d2(SV
t (u

n
h), u

n−1
h )− d2(unh, u

n−1
h )

t

]

.

As V satisfies (3.9) we have

E [unh]− E [SV
t (u

n
h)]

t
≤ V[un−1

h ]− V[SV
t (u

n
h)]

h
. (3.10)

Since V is lower semicontinuous, passing to the limit t→ 0 we obtain

DVE [unh] ≤
V[un−1

h ]− V[unh]
h

. (3.11)

So that the differential estimate (3.10) is converted into the discrete estimate (3.11) for the
approximation scheme (3.8), which could provide additional information on unh according

to the properties of DVE . In particular when DVE ≥ 0 we can expect to control unh by the

prior state un−1
h if V[un−1

h ] < +∞, which is the situation dealt with in [30]. In our case

we do not have the nice property DVE ≥ 0 but we can decompose DVE into a positive
contribution and a controlled remainder (see Lemma 3.1).

3.2.2. Regularity of minimizers. As already mentioned in the introduction we turn to ad-
ditional regularity properties of ρ and φ using the method introduced above. We define the
functional V : P2(R

2)× L2(R2) → (−∞,+∞] by

V[ρ, φ] = 1

χ

∫

R2

ρ(x) log ρ(x) dx+
τ

2

∫

R2

[

|∇φ(x)|2 + αφ(x)2
]

dx ,

if (ρ, φ) ∈ K ×H1(R2) and V[ρ, φ] = +∞ otherwise.
It is well known that V is lower semicontinuous with respect to the narrow topology

for ρ and the L2 weak topology for φ. Moreover, V generates a continuous semigroup in
Dom(V) = K ×H1(R2) satisfying the EVI (3.9) (see [2]).

Lemma 3.1 (Improved regularity of minimizers). Consider the sequence of minimizers
(ρnh, φ

n
h) and let Λ satisfy

Λ ≥
∫

R2

ρnh log ρ
n
h dx+ 4

∫

R2

ρnh log(1 + |x|2) dx+ 2

e
+ 2 log π + 16.

Then ρnh ∈ W 1,1(R2), ∇ρnh/ρnh ∈ L2(ρnh), φ
n
h ∈ H2(R2), ρnh ∈ L2(R2), and there exists a

constant C(Λ) > 0 such that

1

2χ

∫

R2

∣

∣

∣

∣

∇ρnh
ρnh

∣

∣

∣

∣

2

ρnh dx+
1

2
‖∆φnh + ρnh − αφnh‖22 ≤

1

h

(

V(ρn−1
h , φn−1

h )− V(ρnh, φnh)
)

+ C(Λ) +
α

2
‖φnh‖22 . (3.12)
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Proof. We use the notation unh = (ρnh, φ
n
h) and u(t) = (σ(t),Φ(t)) = SV

t (ρ
n
h, φ

n
h) = SV

t (u
n
h)

for t ≥ 0. The functions σ, Φ solve the equations

∂tσ = ∆σ in (0,∞) × R
2, σ(0) = ρnh,

∂tΦ = ∆Φ− αΦ in (0,∞) × R
2, Φ(0) = φnh,

(3.13)

and satisfy the following identities:

d

dt

∫

R2

σ(t) log σ(t) dx = −
∫

R2

∣

∣

∣

∣

∇σ(t)
σ(t)

∣

∣

∣

∣

2

σ(t) dx > −∞, ∀t > 0,

1

2

d

dt

∫

R2

|∇Φ(t)|2 + αΦ(t)2 dx = −
∫

R2

|∆Φ(t)− αΦ(t)|2 dx > −∞, ∀t > 0.

Step 1 - We give an estimate of ‖σ(t)‖22. From the inequality (A.2)

‖σ(t)‖22 ≤ ε

∥

∥

∥

∥

∇σ(t)
σ(t)

∥

∥

∥

∥

2

L2(σ(t))

‖σ(t) log σ(t)‖L1(R2) + Lε.

From Carleman’s estimate (B.1), we deduce

‖σ(t) log σ(t)‖1 ≤
∫

R2

σ(t) log σ(t) dx+
2

e
+ 2 log π + 4

∫

R2

σ(t) log(1 + |x|2) dx.

Since t 7→
∫

R2 σ(t) log σ(t) dx is decreasing in [0,+∞) and

d

dt

∫

R2

σ(t) log(1 + |x|2) dx =

∫

R2

σ(t)∆(log(1 + |x|2)) dx

=

∫

R2

σ(t)
4

(1 + |x|2)2 dx ≤ 4 ,

we infer that
∫

R2

σ(t)| log σ(t)| dx ≤
∫

R2

σ(t) log σ(t) dx+
2

e
+ 2 log π + 4

∫

R2

σ(t) log(1 + |x|2) dx

≤
∫

R2

ρnh log ρ
n
h dx+

2

e
+ 2 log π + 4

∫

R2

ρnh log(1 + |x|2) dx+ 16t

≤ Λ

for t ∈ (0, 1]. We thus obtain that

‖σ(t)‖2L2(R2) ≤ εΛ

∥

∥

∥

∥

∇σ(t)
σ(t)

∥

∥

∥

∥

2

L2(σ(t))

+ Lε. (3.14)

Step 2 - Instead of computing DVE [unh] we use the regularity properties for the solutions

of the equations (3.13) and we compute DVE [u(t)] for t > 0. In this case we claim that

DVE [u(t)] = D[u(t)]−ℜ[u(t)], t > 0 (3.15)

where

D[u(t)] :=
1

χ

∫

R2

∣

∣

∣

∣

∇σ(t)
σ(t)

∣

∣

∣

∣

2

σ(t) dx+ ‖∆Φ(t) + σ(t)− αΦ(t)‖2L2(R2)

and

ℜ[u(t)] := ‖σ(t)‖2L2(R2) − α

∫

R2

σ(t)Φ(t) dx.
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Indeed, owing to the smoothness of the solutions of (3.13), we have that for t > 0

−DVE [u(t)] = d

dt
E [σ, φ] = − 1

χ

∫

R2

|∇σ|2
σ

dx−
∫

R2

Φ ∂tσ dx

−
∫

R2

σ ∂tΦ dx− ‖∆Φ− αΦ‖2L2(R2)

= − 1

χ

∫

R2

|∇σ|2
σ

dx−
∫

R2

Φ∆σ dx

−
∫

R2

σ(∆Φ− αΦ) dx− ‖∆Φ− αΦ‖2L2(R2)

= − 1

χ

∫

R2

|∇σ|2
σ

dx− 2

∫

R2

σ(∆Φ− αΦ) dx− α

∫

R2

σΦ dx

−‖σ‖2L2(R2) + ‖σ‖2L2(R2) − ‖∆Φ− αΦ‖2L2(R2)

= − 1

χ

∫

R2

|∇σ|2
σ

dx− ‖∆Φ+ σ − αΦ‖2L2(R2) + ‖σ‖2L2(R2)

−α
∫

R2

σΦ dx ,

hence (3.15).
Taking into account that t 7→ ‖Φ(t)‖22 is decreasing in [0,∞), we deduce from (3.14) and

the definition of D(u(t)), the following estimate for ℜ[u(t)]

ℜ[u(t)] ≤
(

1 +
α

2

)

‖σ(t)‖2L2(R2) +
α

2
‖Φ(t)‖2L2(R2)

≤ ε
α+ 2

2
Λ

∥

∥

∥

∥

∇σ(t)
σ(t)

∥

∥

∥

∥

2

L2(σ(t))

+ Lε +
α

2
‖φnh‖2L2(R2)

≤ ε
α+ 2

2
ΛχD[u(t)] + Lε +

α

2
‖φnh‖2L2(R2).

Choosing ε = 1/(χΛ(α + 2)) we obtain that

ℜ[u(t)] ≤ 1

2
D[u(t)] + C(Λ) +

α

2
‖φnh‖2L2(R2),

where C(Λ) = Lε with the choice of ε above. Then we have

D[u(t)] = DVE [u(t)] +ℜ[u(t)] ≤ DVE [u(t)] + 1

2
D[u(t)] + C(Λ) +

α

2
‖φnh‖2L2(R2). (3.16)

Step 3 - The function t 7→ E [u(t)] is continuous in [0,+∞). This property is clear for t > 0
owing to the smoothness of u(t). We only have to prove the continuity at t = 0. Recalling
that as t→ 0

∫

R2

σ(t) log σ(t) dx→
∫

R2

ρnh log ρ
n
h dx,

1

2

∫

R2

[

|∇Φ(t)|2 + αΦ(t)2
]

dx→ 1

2

∫

R2

[

|∇φnh|2 + α |φnh|2
]

dx,

(3.17)

we have to prove that
∫

R2 Φ(t)σ(t) dx→
∫

R2 φ
n
h ρ

n
h dx.

Introducing A(s) = (s+1) log(s+1)− s and its convex conjugate A∗(s) = es − s− 1 we
recall Young’s inequality s s′ ≤ A(s) + A∗(s′) for s, s′ ∈ [0,∞). We also recall a variant of
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the Moser-Trudinger inequality, see [23]:
∫

R2

(

e2πu
2 − 1

)

dx ≤ C‖u‖2L2(R2) for u ∈ H1(R2) such that ‖∇u‖L2(R2) ≤ 1 . (3.18)

Let ε ∈ (0, 1) be such that

ε sup
t∈[0,1]

‖Φ(t)‖H1(R2) ≤ 1 . (3.19)

Since Φ(t) converges to φnh in H1(R2) as t→ 0, there is tε ∈ (0, 1) such that

‖Φ(t)− φnh‖H1(R2) ≤ 1 for t ∈ [0, tε]. (3.20)

Let t ∈ [0, tε]. On the one hand, it follows from Young’s inequality, (3.18), and (3.19) that
∫

R2

|Φ(t)||σ(t) − ρnh| dx ≤
∫

R2

A

( |σ(t) − ρnh|
ε

)

dx+

∫

R2

A∗(ε|Φ(t)|) dx

≤
∫

R2

A

( |σ(t) − ρnh|
ε

)

dx+ Cε2 sup
s∈[0,1]

‖Φ(s)‖2L2(R2) . (3.21)

On the other hand Young’s inequality, (3.18), and (3.20) give
∫

R2

|ρnh||Φ(t)− φnh| dx ≤
∫

R2

A(ε ρnh) dx+

∫

R2

A∗

( |Φ(t)− φnh|
ε

)

dx

≤
∫

R2

A(ε ρnh) dx+
C

ε2
‖Φ(t)− φnh‖2L2(R2) . (3.22)

Since σ(t) log σ(t) → ρnh log ρ
n
h in L1(R2) and Φ(t) → φnh in L2(R2), we let t → 0 in (3.21)

and (3.22) and obtain

lim sup
t→0

∣

∣

∣

∣

∫

R2

(Φ(t)σ(t)− φnh ρ
n
h) dx

∣

∣

∣

∣

≤ Cε2 sup
s∈[0,1]

‖Φ(s)‖2L2(R2) +

∫

R2

A(ε ρnh) dx .

We finally use the integrability of ρnh log ρ
n
h to pass to the limit as ε → 0 in the above

inequality and conclude that

lim
t→0

∣

∣

∣

∣

∫

R2

(Φ(t)σ(t)− φnh ρ
n
h) dx

∣

∣

∣

∣

= 0 ,

thereby completing the proof of the continuity of t 7→ E [u(t)].
Step 4 - By the Lagrange theorem, since t 7→ E [u(t)] is continuous at t = 0 and differen-
tiable at t > 0, for every t > 0 there exists θ(t) ∈ (0, t) such that

E [unh]− E [u(t)]
t

= DVE [u(θ(t))].

From (3.10), we obtain DVE [u(θ(t))] ≤ 1
h

(

V(un−1
h )− V(SV

t (u
n
h))
)

, and finally by (3.16)

1

2
D[u(θ(t))] ≤ 1

h

(

V(un−1)− V(SV
t (u

n
h))
)

+ C(Λ) +
α

2
‖φnh‖2L2(R2). (3.23)

Then lim supt→0 D[u(θ(t))] < +∞ due to (3.17).
Consequently there is a sequence (tk)k≥1 with tk → 0 as k → ∞ such that the sequences

σk := σ(θ(tk)) and Φk := Φ(θ(tk)) satisfy

lim sup
k→+∞

∫

R2

∣

∣

∣

∣

∇σk
σk

∣

∣

∣

∣

2

σk dx < +∞ (3.24)

and
lim sup
k→+∞

‖∆Φk + σk − αΦk‖2L2(R2) < +∞.
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Moreover, by (3.14) and (3.24) we obtain

lim sup
k→+∞

‖σk‖2L2(R2) < +∞.

By weak compactness in L2(R2), taking into account that σk → ρnh narrowly and Φk → φnh
strongly in H1(R2), we pass to the limit by lower semicontinuity and we obtain that ρnh ∈
L2(R2), ∆φnh ∈ L2(R2), φnh ∈ H2(R2) and

‖∆φnh + ρnh − αφnh‖2L2(R2) ≤ lim inf
k→+∞

‖∆Φk + σk − αΦk‖2L2(R2). (3.25)

Finally, by Proposition C.1, defining vk := ∇σk/σk there exists v ∈ L2(R2, ρnh;R
2) such

that, up to a subsequence,
∫

R2

ϕ · vkσk dx dt→
∫

R2

ϕ · vρnh dx dt, (3.26)

for every ϕ ∈ C∞
0 (R2,R2). Since vρnh ∈ L1(R2) and

∫

R2

ϕ · vkσk dx =

∫

R2

ϕ · ∇σk dx = −
∫

R2

(∇ · ϕ)σk dx→ −
∫

R2

(∇ · ϕ)ρnh dx,

we deduce from (3.26) that vρnh = ∇ρnh and ρnh ∈ W 1,1(R2). Finally, the lower semiconti-
nuity property (C.1) yields that

∫

R2

∣

∣

∣

∣

∇ρnh
ρnh

∣

∣

∣

∣

2

ρnh dx ≤ lim inf
k→+∞

∫

R2

∣

∣

∣

∣

∇σk
σk

∣

∣

∣

∣

2

σk dx. (3.27)

The final inequality (3.12) follows from (3.17), (3.23), (3.25), (3.27), and the definition of
the dissipation D. �

3.3. The Euler-Lagrange equation.

Lemma 3.2 (Euler-Lagrange equation). Let 0 < χ < 8π, (ρ0, φ0) ∈ K×H1(R2) and h > 0.
If (ρnh, φ

n
h) is the sequence of the scheme (1.5), then

∫

R2

ζ · (∇ρnh − χρnh∇φnh) dx =
1

h

∫

R2

[

(T
ρn−1

h

ρn
h

− id) · ζ
]

ρnh dx (3.28)

for every ζ ∈ C∞
0 (R2;R2), and

∫

R2

(−∆φnh + αφnh − ρnh) η dx = τ

∫

R2

φn−1
h − φnh

h
η dx, (3.29)

for every η ∈ C∞
0 (R2). Moreover, the following identities are satisfied:

∫

R2

∣

∣

∣

∣

∇ρnh
ρnh

− χ∇φnh
∣

∣

∣

∣

2

ρnh dx =
d2W (ρnh, ρ

n−1
h )

h2
, (3.30)

and

‖∆φnh − αφnh + ρnh‖22 = τ2
‖φnh − φn−1

h ‖2L2(R2)

h2
. (3.31)

Finally, the approximative weak solution estimate
∣

∣

∣

∣

∫

R2

[

ξ(ρnh − ρn−1
h ) + h ∇ξ · (∇ρnh − χ ρ ∇φnh)

]

dx

∣

∣

∣

∣

≤ ‖ξ‖W2,∞

d2W (ρnh, ρ
n−1
h )

2
(3.32)

holds for any ξ ∈ C∞
0 (R2).
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Proof. In order to simplify the notation, in this proof we use the notation ρ = ρnh, ρ̄ = ρn−1
h ,

φ = φnh, φ̄ = φn−1
h , and F = Fh,n.

Let ζ ∈ C∞
0 (R2;R2) and η ∈ C∞

0 (R2) be two smooth functions. Define Tδ := id + δ ζ and
for δ ∈ (0, 1),

ρδ := Tδ #ρ , φδ := φ+ δ η .

• It is standard, see [37, Theorem 5.30] for instance, that

lim
δ→0

1

δ

∫

R2

(ρδ log ρδ − ρ log ρ) dx = −
∫

R2

tr(∇ζ) ρ dx . (3.33)

• It is also classical, see [37, Theorem 8.13] for instance, that

lim
δ→0

d2W (ρδ , ρ̄)− d2W (ρ, ρ̄)

2δ
= −

∫

R2

[

(id− T ρρ̄ ) · (ζ◦T ρρ̄ )
]

ρ̄ dx , (3.34)

where T ρρ̄ is the optimal map pushing ρ̄ onto ρ.
• A standard computation gives

lim
δ→0

1

2δ

[

‖∇φδ‖2L2(R2) + α ‖φδ‖2L2(R2) − ‖∇φ‖2L2(R2) − α ‖φ‖2L2(R2)

]

=

∫

R2

(∇φ · ∇η + αφη) dx =

∫

R2

(−∆φ+ αφ) η dx . (3.35)

• Since φ ∈ H1(R2), we have

φ◦Tδ − φ

δ
⇀ ζ · ∇φ in L2(R2), η◦Tδ → η in L2(R2),

and recalling that ρ ∈ L2(R2) by Lemma 3.1, we conclude that

1

δ

∫

R2

[ρφ− ρδ φδ] dx =
1

δ

∫

R2

ρ [(φ− φ◦Tδ)− δ η◦Tδ] dx

−→
δ→0

−
∫

R2

(ζ · ∇φ+ η) ρ dx .

(3.36)

• We then infer from (3.33), (3.34), (3.35), and (3.36) that

0 ≤ lim
δ→0

1

δ
(F [ρδ , φδ]−F [ρ, φ])

= − 1

hχ

∫

R2

(id− T ρρ̄ ) · (ζ◦T ρρ̄ ) ρ̄ dx+
τ

h

∫

R2

η (φ− φ̄) dx

− 1

χ

∫

R2

tr(∇ζ) ρ dx−
∫

R2

ρ ζ · ∇φ dx

−
∫

R2

ρ η dx+

∫

R2

[−∆φ+ αφ] η dx .

The above inequality being valid for arbitrary (ζ, η) ∈ C∞
0 (R2;R2)×C∞

0 (R2), it is also valid
for (−ζ,−η) so that we end up with

1

χ

∫

R2

ζ · (∇ρ− χρ∇φ) dx+

∫

R2

(

τ
φ− φ̄

h
−∆φ+ αφ− ρ

)

η dx (3.37)

=
1

hχ

∫

R2

(id− T ρρ̄ ) · (ζ◦T ρρ̄ ) ρ̄ dx .
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Taking ζ = 0 in (3.37) we obtain (3.29). While choosing η = 0 in (3.37) gives, for all
ζ ∈ C∞

0 (R2;R2)
∫

R2

ζ · (∇ρ− χρ∇φ) dx =
1

h

∫

R2

(id− T ρρ̄ ) · (ζ◦T ρρ̄ ) ρ̄ dx , (3.38)

and (3.28) follows from (2.2) and the fact that T ρρ̄ pushes ρ̄ onto ρ.

In order to obtain (3.30), we observe that ∇φ ∈ L4(R2) as a consequence of the regularity
φ ∈ H2(R2) established in Lemma 3.1 and the continuous embedding of H2(R2) inW 1,4(R2).
Since ρ ∈ L2(R2) we conclude that ∇φ ∈ L2(ρ). From (3.28) it follows that

∇ρ
ρ

− χ∇φ =
1

h
(T ρ̄ρ − id), in L2(ρ) .

The equality of the L2(ρ) norms yields (3.30) after using the properties and the definition

of the optimal transport T ρ̄ρ . The identity (3.31) follows immediately by (3.29).
Finally consider ξ ∈ C∞

0 (R2). By the Taylor expansion, we have, for x ∈ R
2

∣

∣ξ(x)− ξ(T ρρ̄ (x))− (∇ξ ◦ T ρρ̄ )(x) · (x− T ρρ̄ (x))
∣

∣ ≤ ‖D2ξ‖L∞(R2)

|x− T ρρ̄ (x)|2
2

.

Multiplying by ρ̄ and integrating over R2 gives
∣

∣

∣

∣

∫

R2

[

ξ ρ̄− ξ ρ− (∇ξ ◦ T ρρ̄ ) · (id − T ρρ̄ ) ρ̄
]

dx

∣

∣

∣

∣

≤ ‖D2ξ‖L∞(R2)
d2W (ρ, ρ̄)

2
.

Combining the above inequality with (3.38) (with ζ = ∇ξ) leads us to (3.32). �

4. Convergence

4.1. One-step estimates.

Lemma 4.1 (Uniform estimates). There exists a constant C4 > 0 such that, for all h, T > 0
and N ≥ 1 satisfying Nh ≤ T ,

1

16χT

∫

R2

|x|2ρNh dx+
1

4χh

N−1
∑

n=0

d2W (ρn+1
h , ρnh) +

τ

2h

N−1
∑

n=0

‖φn+1
h − φnh‖2L2(R2)

+
8π − χ

16πχ

∫

R2

ρNh | log ρNh | dx+ ν
[

‖∇φNh ‖2L2(R2) + α‖φNh ‖2L2(R2)

]

≤ C4

(

1 +
1

T
+ (log T )+

)

,

where ν is defined in the proof of Lemma 2.2.

Proof. For n ≥ 0, Fh,n[ρn+1
h , φn+1

h ] ≤ Fh,n[ρnh, φnh], so that

1

2χh
d2W (ρn+1

h , ρnh) +
τ

2h
‖φn+1

h − φnh‖2L2(R2) + E [ρn+1
h , φn+1

h ] ≤ E [ρnh, φnh] .

Summing over n ∈ {0, · · · , N − 1}, we find that

1

2χh

N−1
∑

n=0

d2W (ρn+1
h , ρnh) +

τ

2h

N−1
∑

n=0

‖φn+1
h − φnh‖2L2(R2) + E [ρNh , φNh ] ≤ E [ρ0, φ0] . (4.1)

By Cauchy-Schwarz’ inequality, we deduce that

d2W (ρNh , ρ
0
h) ≤

[

N−1
∑

n=0

dW (ρn+1
h , ρnh)

]2

≤ T

h

N−1
∑

n=0

d2W (ρn+1
h , ρnh) . (4.2)
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We thus infer from (4.1), (4.2), and the lower bound (2.4) for E that

E [ρ0, φ0] ≥
1

4χT
d2W (ρNh , ρ

0
h) +

1

4χh

N−1
∑

n=0

d2W (ρn+1
h , ρnh) +

τ

2h

N−1
∑

n=0

‖φn+1
h − φnh‖22

+
8π − χ

16πχ

∫

R2

ρNh | log ρNh | dx+ ν
[

‖∇φNh ‖2L2(R2) + α‖φNh ‖2L2(R2)

]

+
3

2χ

∫

R2

ρNh logH dx− C1 . (4.3)

Since the triangle inequality implies that
∫

R2

|x|2ρNh dx = d2W (ρNh , δ0) ≤ 2d2W (ρNh , ρ
0
h) + 2d2W (ρ0h, δ0)

= 2d2W (ρNh , ρ
0
h) + 2

∫

R2

|x|2ρ0 dx ,

it follows that Equation (4.3) results in

3

χ

∫

R2

ρNh log(1 + |x|2) dx ≥ − C̄4

(

1 +
1

T

)

+
1

8χT

∫

R2

|x|2ρNh dx

+
1

4χh

N−1
∑

n=0

d2W (ρn+1
h , ρnh) +

τ

2h

N−1
∑

n=0

‖φn+1
h − φnh‖2L2(R2)

+
8π − χ

16πχ

∫

R2

ρNh | log ρNh | dx+ ν
[

‖∇φNh ‖2L2(R2) + α‖φNh ‖2L2(R2)

]

where

C̄4 := E [ρ0, φ0] + C1 +
3 log π

2χ
− 1

4χ

∫

R2

|x|2ρ0 dx .

Since log(1 + |x|2) ≤ ε|x|2 + (− log ε)+ for all ε > 0 and x ∈ R
2, we obtain

C̄4 +
3ε

χ

∫

R2

|x|2ρNh dx+
3

χ
(− log ε)+ ≥ 1

8χT

∫

R2

|x|2ρNh dx+
1

4χh

N−1
∑

n=0

d2W (ρn+1
h , ρnh)

+
τ

2h

N−1
∑

n=0

‖φn+1
h − φnh‖2L2(R2) +

8π − χ

16πχ

∫

R2

ρNh | log ρNh | dx

+ ν
[

‖∇φNh ‖2L2(R2) + α‖φNh ‖2L2(R2)

]

.

Taking ε := 1/(48T ) and C4 = C̄4 +
3
χ log 48 we obtain the desired bound. �

4.2. Estimates on the interpolant. We consider the piecewise constant time dependent
pair of functions (ρh, φh) defined by

(ρh(t), φh(t)) := (ρnh, φ
n
h) , t ∈ ((n− 1)h, nh] , n ≥ 0 .

Lemma 4.2 (Time integrated estimates). Let T > 0. There exists a constant C5(T ) > 0
such that, for all h > 0 and N ≥ 1 satisfying Nh ≤ T it holds

∫ Nh

0

(

∫

R2

∣

∣

∣

∣

∇ρh(s)
ρh(s)

∣

∣

∣

∣

2

ρh(s) dx+ ‖∆φh(s) + ρh(s)− αφh(s)‖2L2(R2)

)

ds ≤ C5(T ) .
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Proof. Fix N ≥ 1 such that Nh ≤ T . We set

Λ(T ) = 16 + 2 log π +
2

e
+C4

(

16πχ

8π − χ
+ 16χT

)(

1 +
1

T
+ (log T )+

)

.

By Lemma 4.1, for n ∈ {1, · · · , N} we obtain
∫

R2

ρnh log ρ
n
h dx+ 4

∫

R2

ρnh log(1 + |x|2) dx ≤
∫

R2

ρnh| log ρnh| dx+ 4

∫

R2

|x|2ρnh dx

≤
(

16πχ

8π − χ
+ 16χT

)

C4

(

1 +
1

T
+ (log T )+

)

= Λ(T )− 16 − 2

e
− 2 log π . (4.4)

We then infer from Lemma 3.1 that, for n ∈ {0, · · · , N − 1}

1

χ

∫

R2

∣

∣

∣

∣

∣

∇ρn+1
h

ρn+1
h

∣

∣

∣

∣

∣

2

ρn+1
h dx+ ‖∆φn+1

h + ρn+1
h − αφn+1

h ‖2L2(R2)

≤ 2

χh

[
∫

R2

ρnh log ρ
n
h dx−

∫

R2

ρn+1
h log ρn+1

h dx

]

+
τ

h

[

‖∇φnh‖2L2(R2) + α‖φnh‖2L2(R2) − ‖∇φn+1
h ‖2L2(R2) − α‖φn+1

h ‖2L2(R2)

]

+ C(Λ(T )) + α‖φn+1
h ‖2L2(R2) .

Summing over n ∈ {0, · · · , N − 1} gives

1

χ

N−1
∑

n=0

∫

R2

∣

∣

∣

∣

∣

∇ρn+1
h

ρn+1
h

∣

∣

∣

∣

∣

2

ρn+1
h dx+

N−1
∑

n=0

‖∆φn+1
h + ρn+1

h − αφn+1
h ‖2L2(R2)

≤ 2

χh

[
∫

R2

ρ0 log ρ0 dx−
∫

R2

ρNh log ρNh dx

]

+
τ

h

[

‖∇φ0‖2L2(R2) + α‖φ0‖2L2(R2) − ‖∇φNh ‖2L2(R2) − α‖φNh ‖2L2(R2)

]

+NC(Λ(T )) + α

N−1
∑

n=0

‖φn+1
h ‖2L2(R2) .

Therefore, using once more Lemma 4.1 together with (4.4), we conclude that

1

χ

∫ Nh

0

∫

R2

∣

∣

∣

∣

∇ρh(s)
ρh(s)

∣

∣

∣

∣

2

ρh(s) dx ds+

∫ Nh

0
‖∆φh(s) + ρh(s)− αφh(s)‖2L2(R2) ds

≤ 2

χ

[
∫

R2

ρ0 log ρ0 dx+ Λ(T )

]

+ αNh sup
n∈[1,N ]

‖φnh‖2L2(R2)

+ τ
[

‖∇φ0‖2L2(R2) + α‖φ0‖2L2(R2)

]

+NhC(Λ(T ))

≤C(T ) + αT
C4 (1 + 1/T + (log T )+)

αν
≤ C5(T ) ,

which completes the proof. �

4.3. De Giorgi interpolant and discrete energy dissipation. In order to obtain an
energy dissipation estimate we introduce the so called De Giorgi variational interpolant
(see for instance [2, Section 3.2]). We define the De Giorgi interpolant as follows

ũh(t) ∈ Argminu∈X

{

1

2(t− (n− 1)h)
d2(u, un−1

h ) + E [u]
}

, t ∈ ((n− 1)h, nh].
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We can also assume that ũh(nh) = unh for any n ∈ N. We use the notation (ρ̃h(t), φ̃h(t)) =
ũh(t).

Proposition 4.1. For every t > 0, (ρ̃h(t), φ̃h(t)) enjoys the same regularity properties as
(ρnh, φ

n
h) given by Lemma 3.1 and the following discrete energy identity holds for all N ∈ N

and h > 0

1

2χ

∫ Nh

0

∫

R2

∣

∣

∣

∣

∇ρh
ρh

− χ∇φh
∣

∣

∣

∣

2

ρh dx dt+
1

2τ

∫ Nh

0
‖∆φh − αφh + ρh‖2L2(R2) dt

+
1

2χ

∫ Nh

0

∫

R2

∣

∣

∣

∣

∇ρ̃h
ρ̃h

− χ∇φ̃h
∣

∣

∣

∣

2

ρ̃h dx dt+
1

2τ

∫ Nh

0
‖∆φ̃h − αφ̃h + ρ̃h‖2L2(R2) dt

+ E [ρh(Nh), φh(Nh)] = E [ρ0, φ0].

(4.5)

Moreover for every T > 0 there exists a constant C(T ) such that

d2(ũh(t), uh(t)) ≤ C(T )h, ∀t ∈ [0, T ]. (4.6)

Proof. From [2, Lemma 3.2.2] we have the one step energy identity

1

2

d2(unh, u
n−1
h )

h
+

1

2

∫ nh

(n−1)h

d2(ũ(t), un−1
h )

(t− (n− 1)h)2
dt+ E [unh] = E [un−1

h ].

Defining the function

Gh(t) =
d(ũ(t), un−1

h )

t− (n− 1)h
, t ∈ ((n − 1)h, nh],

and summing from n = 1 to N , we obtain

1

2

N
∑

n=1

h
d2(unh, u

n−1
h )

h2
+

1

2

∫ Nh

0
G2
h(t) dt+ E [uNh ] = E [u0]. (4.7)

The same argument of Lemma 3.1 shows that (ρ̃h(t), φ̃h(t)) enjoys the same regularity

properties as (ρnh, φ
n
h) and we can obtain the Euler-Lagrange equation for (ρ̃h(t), φ̃h(t)):

1

χ

∫

R2

ζ ·
(

∇ρ̃h(t)− χρ̃h(t)∇φ̃h(t)
)

dx+

∫

R2

(

−∆φ̃h(t) + αφ̃h(t)− ρ̃h(t)
)

η dx

=
1

χ

1

t− (n− 1)h

∫

R2

(T
ρn−1

h

ρ̃h(t)
− Id) · ζρ̃h(t) dx + τ

∫

R2

φn−1
h − φ̃h(t)

t− (n− 1)h
η dx,

for every ζ ∈ C∞
0 (R2;R2) and η ∈ C∞

0 (R2). As in Lemma 3.2 it follows that

∫

R2

∣

∣

∣

∣

∇ρ̃h(t)
ρ̃h(t)

− χ∇φ̃h(t)
∣

∣

∣

∣

2

ρ̃h(t) dx =
d2W (ρ̃h(t), ρ

n−1
h )

(t− (n− 1)h)2
(4.8)

and

‖∆φ̃h(t)− αφ̃h(t) + ρ̃h(t)‖2L2(R2) = τ2
‖φ̃h(t)− φn−1

h ‖2L2(R2)

(t− (n − 1)h)2
(4.9)

for t ∈ ((n−1)h, nh]. Recalling the definition of d and using the identities (4.8), (4.9), (3.30),
and (3.31) in (4.7) we obtain (4.5).

Finally, the estimate (4.6) follows from Lemma 4.1 using the same argument of [2,
Lemma 3.2.2]. �
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Lemma 4.3 (Time equicontinuity). Let T > 0. There exist C6 and C7 such that for all
(t, s) ∈ [0, T ]2 and h ∈ (0, 1), we have that

dW (ρh(t), ρh(s)) ≤ C6(T )(
√

|t− s|+
√
h) ,

‖φh(t)− φh(s)‖L2(R2) ≤ C7(T )(
√

|t− s|+
√
h) .

Proof. Let 0 ≤ s < t and set N := ⌈t/h⌉ and P := ⌈s/h⌉, where ⌈a⌉ denotes the superior
integer part of the real number a. By Lemma 4.1, we deduce that

d(uh(t), uh(s)) = d(uNh , u
P
h ) ≤

N−1
∑

n=P

d(unh, u
n+1
h ) ≤

√
N − P

√

√

√

√

N−1
∑

n=P

d2(unh, u
n+1
h )

≤
√
N − P

√

2hC4 (1 + T−1 + (log T )+) ,

which gives the time equicontinuity for ρh and φh recalling the definition (3.7) of the
distance d. �

4.4. Proof of Theorems 1.1 and 1.2.

Proof. Let T > 0.
• Convergence of (ρh)h and (φh)h: By Lemma 4.1, we obtain

sup
t∈[0,T ],h∈(0,1)

‖φh(t)‖H1(R2) < +∞. (4.10)

Thus {φh(t) : (t, h) ∈ [0, T ] × (0, 1)} is in a weakly compact subset of H1(R2). Also,
Lemma 4.1 implies that

sup
t∈[0,T ],h∈(0,1)

[
∫

R2

|x|2ρh(t) dx+
∫

R2

ρh(t)| log ρh(t)| dx
]

< +∞. (4.11)

Hence, the set {ρh(t) : (t, h) ∈ [0, T ] × (0, 1)} is tight and uniformly integrable. Thus, by
the Dunford-Pettis theorem, this set is weakly compact in L1(R2).

In addition, the equicontinuity stated in Lemma 4.3 guarantees that, for all 0 ≤ s ≤ t ≤
T ,

lim sup
h→0

‖φh(t)− φh(s)‖2L2(R2) ≤ C7(T )
√
t− s ,

and

lim sup
h→0

dW (ρh(t), ρh(s)) ≤ C6(T )
√
t− s .

We then infer from a variant of the Ascoli-Arzelà theorem [2, Proposition 3.3.1] that there
exist a monotone sequence (hj)j of positive numbers, hj → 0, and curves

φ ∈ C1/2([0, T ]; L2(R2)), ρ ∈ C1/2([0, T ];P2(R
2)),

such that

φhj (t)⇀ φ(t) weakly in H1(R2) for all t ∈ [0, T ]

and

ρhj(t)⇀ ρ(t) weakly in L1(R2) for all t ∈ [0, T ].

Passing to the limit as hj → 0 in (4.11) and in (4.10), by semicontinuity we obtain the
bounds in (1.6).
• Moreover, Lemma 4.2 implies that (φh)h is bounded in L2(0, T ; H2(R2)). We may then
assume without loss of generality that

φhj ⇀ φ weakly in L2(0, T ; H2(R2)) (4.12)
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and

φhj −→ φ in L2(0, T ; L2
loc(R

2)).

By standard interpolation results we obtain that

φhj −→ φ in L2(0, T ; H1
loc(R

2)). (4.13)

• Lemma 4.2 also implies that (‖∇ρhj/ρhj‖L2(ρhj )
)j is bounded in L2(0, T ). Then, from

the inequality (A.2) and the second bound in (4.11), we obtain that (ρhj)j is bounded in

L2((0, T )× R
2). We deduce that, after extracting a subsequence,

ρhj ⇀ ρ weakly in L2((0, T ) × R
2). (4.14)

In order to pass to the limit in ∇ρhj , we use Proposition C.1 with the measures dµj =

ρhj dxdt/T in the space (0, T ) × R
2 and the vector fields vj = ∇ρhj/ρhj . By Lemma 4.2,

we have

sup
j

∫ T

0

∫

R2

|vj |2ρhj dx dt < +∞ .

Setting dµ = ρ dx dt/T , there exists v ∈ L2((0, T ) × R
2, µ;R2) (consequently vρ ∈

L1((0, T )× R
2)) such that, up to a subsequence,

∫ T

0

∫

R2

ϕ · vj ρhj dx dt→
∫ T

0

∫

R2

ϕ · v ρ dx dt,

for every ϕ ∈ C∞
0 ((0, T ) × R

2). Since vρ ∈ L1((0, T ) × R
2), we can deduce

∫ T

0

∫

R2

ϕ · vj ρhj dx dt =

∫ T

0

∫

R2

ϕ · ∇ρhj dx dt

= −
∫ T

0

∫

R2

(∇ · ϕ) ρhj dx dt→ −
∫ T

0

∫

R2

(∇ · ϕ) ρ dx dt .

Consequently, vρ = ∇ρ and ρ ∈ L1(0, T ;W 1,1(R2)). Finally, the lower semicontinuity
property (C.1) yields (1.7).
• Identifying the limit: Writing the Euler-Lagrange equation, see Lemma 3.2, with a time
dependent test function, we obtain a time discrete formulation of the system (1.2). Thanks
to the convergences (4.12)-(4.13) for (φh)h, the convergence (4.14) for (ρh)h and the previous
step for (∇ρh)h, we can pass to the limit in this time discrete formulation and conclude
that (ρ, φ) is a weak solution to the Keller-Segel system (1.2).
• Energy inequality: We first recall that the De Giorgi interpolant converges to the same
limit as the piecewise constant interpolant, see (4.6). Combining this fact together with
the above compactness properties, Proposition C.1, and the lower semicontinuity of E , we
can pass to the limit in the discrete energy identity (4.5), thereby obtaining the energy
inequality (1.9). �

Appendix A. Biler-Hebisch-Nadzieja inequality

A similar inequality is proved in [6].

Lemma A.1 (Biler-Hebisch-Nadzieja inequality). Given ε > 0, there is Lε > 0 such that
for all non-negative f ∈ H1(R2) satisfying f2 log f ∈ L1(R2)

‖f‖4L4(R2) ≤ ε‖∇f‖2L2(R2)‖f2 log f‖L1(R2) + Lε‖f‖2L2(R2) . (A.1)
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Proof. For N > 1 define

ΘN (s) :=







0 if s < N
2(s −N) if N ≤ s ≤ 2N
s if s > N

By Gagliardo-Nirenberg’s inequality

‖f‖4L4(R2) = ‖f −ΘN (f) + ΘN (f)‖4L4(R2) ≤ C‖ΘN(f)‖4L4(R2) + C‖f −ΘN (f)‖4L4(R2)

≤ C‖∇ΘN(f)‖2L2(R2)‖ΘN (f)‖2L2(R2) + C

∫

{f<2N}
f4 dx

≤ C‖∇f‖2L2(R2)

∫

{f≥N}
f2 dx+ 4CN2

∫

{f<2N}
f2 dx

≤ C

logN
‖∇f‖2L2(R2)‖f2 log f‖L1(R2) + CN2‖f‖2L2(R2) ,

hence (A.1) by choosing appropriately N in terms of ε. �

Corollary A.1. For any ε > 0, there exists Lε > 0 such that

‖ρ‖2L2(R2) ≤ ε

∥

∥

∥

∥

∇ρ
ρ

∥

∥

∥

∥

2

L2(ρ)

‖ρ log ρ‖L1(R2) + Lε‖ρ‖L1(R2) (A.2)

for all ρ ∈ L1
+(R

2) such that ρ log ρ ∈ L1(R2) and ∇ρ/ρ ∈ L2(R2, ρ;R2).

Appendix B. A Carleman type estimate

Lemma B.1 (Carleman Estimate). Let ρ ∈ P(R2) be such that
∫

R2 ρ| log ρ| dx and
∫

R2 ρ logH dx are finite then

∫

R2

ρ| log ρ| dx ≤
∫

R2

ρ log ρ dx+
2

e
− 2

∫

R2

ρ logH dx . (B.1)

Proof. Set ρ̄ = ρ1l(0,1)(ρ),

∫

R2

ρ| log ρ| dx = −
∫

R2

ρ̄ log ρ̄ dx+

∫

{ρ>1}
ρ log ρ dx

=

∫

R2

ρ log ρ dx− 2

∫

R2

ρ̄ logH dx− 2

∫

R2

ρ̄

H
log
( ρ̄

H

)

H dx

Since ‖H‖L1(R2) = 1 it follows from Jensen’s inequality that

∫

R2

ρ| log ρ| dx ≤
∫

R2

ρ log ρ dx+ 2 log π + 4

∫

R2

ρ̄ log(1 + |x|2) dx

− 2

(
∫

R2

ρ̄

H
H dx

)

log

(
∫

R2

ρ̄

H
H dx

)

≤
∫

R2

ρ log ρ dx+ 2 log π +
2

e
+ 4

∫

R2

ρ̄ log(1 + |x|2) dx .

The desired result comes directly from the definition of H since ρ̄ ≤ ρ. �
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Appendix C. Compactness of vector fields

We recall the following result, see [2, Theorem 5.4.4].

Proposition C.1. Let U be an open set of RK . If (µn)n is a sequence of probability mea-
sures in U narrowly converging to µ and (vn)n is a sequence of vector fields in L2(U , µn;RK)
satisfying

sup
n

‖vn‖L2(U ,µn;RK) < +∞,

then there exists a vector field v ∈ L2(U , µ;RK) such that

lim
n→∞

∫

U
ϕ · vn dµn =

∫

U
ϕ · v dµ , ϕ ∈ C∞

0 (U ,RK)

and

lim inf
n→∞

‖vn‖L2(U ,µn;RK) ≥ ‖v‖L2(U ,µ;RK). (C.1)
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