Beyhum, Jad, Lapenta, Elia and Lavergne, Pascal (2024) One-step smoothing splines instrumental regression. The Econometrics Journal.

This is the latest version of this item.

Full text not available from this repository.
Identification Number : 10.1093/ectj/utae024

Abstract

We extend nonparametric regression smoothing splines to a context where there is endogeneity and instrumental variables are available. Unlike popular existing estimators, the resulting estimator is one-step and relies on a unique regularization parameter. We derive rates of the convergence for the estimator and its first derivative, which are uniform in the support of the endogenous variable. We also address the issue of imposing monotonicity in estimation and extend the approach to a partly linear model. Simulations confirm the good performances of our estimator compared to two-step procedures. Our method yields economically sensible results when used to estimate Engel curves.

Item Type: Article
Language: English
Date: 2024
Refereed: Yes
Place of Publication: Amsterdam
Subjects: B- ECONOMIE ET FINANCE
Divisions: TSE-R (Toulouse)
Site: UT1
Date Deposited: 07 Feb 2025 13:36
Last Modified: 07 Feb 2025 16:31
OAI Identifier: oai:tse-fr.eu:130306
URI: https://publications.ut-capitole.fr/id/eprint/50406

Available Versions of this Item

View Item