Higgins, Ayden and Jochmans, KoenIdRef (2025) Learning Markov Processes with Latent Variables. Econometric Theory. (In Press)

[thumbnail of wp_tse_1366.pdf]
Preview
Text
Download (380kB) | Preview

Abstract

We present a constructive proof of (nonparametric) identication of the parameters of a bivariate Markov chain when only one of the two random variables is observable. This setup generalizes the hidden Markov model in various useful directions, allowing for state dependence in the observables and allowing the transition kernel of the hidden Markov chain to depend on past observables. We give conditions under which the transition kernel and the distribution of the initial condition are both identied (up to a permutation of the latent states) from the joint distribution of four (or more) time-series observations.

Item Type: Article
Language: English
Date: 2025
Refereed: Yes
Place of Publication: Cambridge
Uncontrolled Keywords: dynamic discrete choice, finite mixture, Markov process, regime switching, state dependence
JEL Classification: C32 - Time-Series Models
C33 - Models with Panel Data
Subjects: B- ECONOMIE ET FINANCE
Divisions: TSE-R (Toulouse)
Site: UT1
Date Deposited: 31 Jan 2025 10:06
Last Modified: 06 May 2025 08:54
OAI Identifier: oai:tse-fr.eu:130200
URI: https://publications.ut-capitole.fr/id/eprint/50299
View Item

Downloads

Downloads per month over past year