Miclo, Laurent
(2024)
On the Helmholtz decomposition for finite Markov processes.
TSE Working Paper, n. 24-1504, Toulouse
Preview |
Text
Download (568kB) | Preview |
Official URL : http://tse-fr.eu/pub/129122
Abstract
Helmholtz decompositions break down any vector field into a sum of a gradient field and a divergence-free vector field. Such a result is extended to finite irreducible and reversible Markov processes, where vector fields cor-respond to anti-symmetric functions on the oriented edges of the underlying graph.
Item Type: | Monograph (Working Paper) |
---|---|
Language: | English |
Date: | February 2024 |
Place of Publication: | Toulouse |
Uncontrolled Keywords: | Helmholtz decompositions, compact Riemannian manifolds, vector fields, gradient fields, Poisson equation, optimal transpor, finite Markov processes, finite weighted graphs |
Subjects: | B- ECONOMIE ET FINANCE |
Divisions: | TSE-R (Toulouse) |
Institution: | Université Toulouse Capitole |
Site: | UT1 |
Date Deposited: | 22 Feb 2024 09:36 |
Last Modified: | 24 Feb 2025 14:06 |
OAI Identifier: | oai:tse-fr.eu:129122 |
URI: | https://publications.ut-capitole.fr/id/eprint/48676 |