Menkveld, Albert J., Dreber, Anna, Holzmeister, Felix, Huber, Juergen, Johannesson, Magnus, Kirchler, Michael, Razen, Michael, Weitzel, Utz, Declerck, Fany and Moinas, Sophie (2024) Non-standard errors. Journal of Finance, 79 (3). pp. 2339-2390.

This is the latest version of this item.

Full text not available from this repository.
Identification Number : 10.1111/jofi.13337

Abstract

In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty—nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.

Item Type: Article
Language: English
Date: June 2024
Refereed: Yes
Place of Publication: Malden, MA
Subjects: B- ECONOMIE ET FINANCE
Divisions: TSE-R (Toulouse)
Site: UT1
Date Deposited: 06 Jan 2025 08:19
Last Modified: 06 Jan 2025 08:19
OAI Identifier: oai:tse-fr.eu:128196
URI: https://publications.ut-capitole.fr/id/eprint/48075

Available Versions of this Item

View Item