Higgins, Ayden and Jochmans, Koen (2022) Learning Markov Processes with Latent Variables From Longitudinal Data. TSE Working Paper, n. 22-1366, Toulouse
Preview |
Text
Download (378kB) | Preview |
Abstract
We present a constructive proof of (nonparametric) identication of the parameters of a bivariate Markov chain when only one of the two random variables is observable. This setup generalizes the hidden Markov model in various useful directions, allowing for state dependence in the observables and allowing the transition kernel of the hidden Markov chain to depend on past observables. We give conditions under which the transition kernel and the distribution of the initial condition are both identied (up to a permutation of the latent states) from the joint distribution of four (or more) time-series observations.
Item Type: | Monograph (Working Paper) |
---|---|
Language: | English |
Date: | 27 September 2022 |
Place of Publication: | Toulouse |
Uncontrolled Keywords: | Dynamic discrete choice, finite mixture, Markov process, regime switching, state dependence |
JEL Classification: | C14 - Semiparametric and Nonparametric Methods C23 - Models with Panel Data |
Subjects: | B- ECONOMIE ET FINANCE |
Divisions: | TSE-R (Toulouse) |
Institution: | Université Toulouse Capitole |
Site: | UT1 |
Date Deposited: | 05 Oct 2022 11:50 |
Last Modified: | 04 Nov 2024 08:57 |
OAI Identifier: | oai:tse-fr.eu:127401 |
URI: | https://publications.ut-capitole.fr/id/eprint/46335 |