Bégout, Pascal (2004) Maximum Decay Rate for the Nonlinear Schrödinger Equation. NoDEA : Nonlinear Differential Equations and Applications, 11 (4). pp. 451-467.
Preview |
Text
Download (360kB) | Preview |
Abstract
In this paper, we consider global solutions for the following nonlinear Schrödinger equation $iu_t+\Delta u+\lambda|u|^\alpha u=0,$ in $\R^N,$ with
$\lambda\in\R$ and $0\le\alpha<\frac{4}{N-2}$ $(0\le\alpha<\infty$ if $N=1).$ We show that no nontrivial solution can decay faster than the solutions of the free Schrödinger equation, provided that $u(0)$ lies in the weighted Sobolev space $H^1(\R^N)\cap L^2(|x|^2;dx),$ in the energy space, namely $H^1(\R^N),$ or in $L^2(\R^N),$ according to the different cases.
Item Type: | Article |
---|---|
Language: | English |
Date: | 2004 |
Refereed: | Yes |
Subjects: | G- MATHEMATIQUES |
Divisions: | Institut de mathématiques de Toulouse |
Site: | UT1 |
Date Deposited: | 19 May 2020 12:00 |
Last Modified: | 27 Oct 2021 13:38 |
URI: | https://publications.ut-capitole.fr/id/eprint/34889 |