Cabarrou, Bastien (2019) Prise en compte de l'hétérogénéité de la population âgée dans le schéma des essais cliniques de phase II en oncogériatrie. École doctorale Mathématiques, Informatique et Télécommunications (Toulouse).

[thumbnail of CabarrouBastien2019.pdf] Text
Restricted Registered users only

Download (7MB)

Abstract

Le cancer du sujet âgé est un réel problème de santé publique. L’incidence du cancer augmentant avec l’âge couplée au vieillissement général de la population font que plus de la moitié des tumeurs diagnostiquées aujourd’hui le sont chez des patients de plus de 65 ans. Cependant, cette population hétérogène a longtemps été exclue des essais cliniques et le manque de données prospectives rend difficile la prise en charge de ces patients. Plusieurs publications soulignent l’importance et la complexité de réaliser des essais cliniques dans cette population. Les schémas classiques ne prenant pas en compte l’hétérogénéité, les essais de phase II spécifiques aux sujets âgés sont rares et généralement stratifiés en sous-groupes définis selon un critère gériatrique ce qui augmente le nombre de patients à inclure et donc diminue la faisabilité. L’objectif de cette thèse est de présenter, comparer et développer des schémas de phase II adaptatifs stratifiés permettant de prendre en compte l’hétérogénéité de la population âgée. L’utilisation de ce type d’approche permet de réduire le nombre de patients à inclure tout en maintenant la puissance statistique et en contrôlant le risque d’erreur de type I. Ce qui implique une diminution du coût et de la durée de l’étude et donc une augmentation de la faisabilité. Afin d’améliorer l’efficacité de la recherche clinique en oncogériatrie, il est donc primordial d’utiliser des schémas adaptatifs stratifiés prenant en compte l’hétérogénéité de la population et permettant d’identifier un sous-groupe d’intérêt susceptible de pouvoir bénéficier (ou non) de la nouvelle thérapeutique.

,

Elderly cancer is a real public health problem. With the overall aging population and the increased incidence of cancer, more than half of all tumors diagnosed today are in patients aged 65 years or older. However, this heterogeneous population has long been excluded from clinical trials and the lack from prospective data makes it difficult managing these patients. Many publications highlight the importance and the complexity of conducting clinical trials in this population. As classical phase II designs do not take into account the heterogeneity, elderly specific phase II clinical trials are very uncommon and generally conducted in specific subgroups defined by geriatric criteria which increases the number of patients to be included and thus reduces the feasibility. The objective of this thesis is to present, compare and develop stratified adaptive designs that address the heterogeneity of the elderly population. The use of this methodology can minimize the number of patients to be included while maintaining statistical power and controlling the type I error risk. This implies a reduction in the cost and duration of the study and thus increases the feasibility. In order to improve the efficiency of clinical research in geriatric oncology, it is essential to use stratified adaptive designs that take into account the heterogeneity of the population and make it possible to identify a subgroup of interest that might benefit (or not) from the new therapeutic.

Item Type: Thesis (UNSPECIFIED)
Other titles: Taking into account the heterogeneity of the elderly population in the design of phase II clinical trials in geriatric oncologye
Language: French
Date: 17 April 2019
Uncontrolled Keywords: Geriatric oncology, Phase II clinical trials, Stratified adaptive design
Keywords (French): Cancérologie gériatrique - Thèses et écrits académiques, Essais cliniques des médicaments - Thèses et écrits académiques
Subjects: G- MATHEMATIQUES
Divisions: TSE-R (Toulouse)
Ecole doctorale: École doctorale Mathématiques, Informatique et Télécommunications (Toulouse)
Site: UT1
Date Deposited: 24 May 2019 09:33
Last Modified: 02 Apr 2021 16:01
OAI Identifier: 2019TOU10004
URI: https://publications.ut-capitole.fr/id/eprint/32493
View Item

Downloads

Downloads per month over past year