Article
Bolte, Jérôme
, Combettes, Cyrille
and Pauwels, Edouard
(2024)
The iterates of the Frank–Wolfe algorithm may not converge.
Mathematics of Operations Research, Vol. 49 (N° 4).
pp. 2049-2802.
Bolte, Jérôme
ORCID: https://orcid.org/0000-0002-1676-8407, Pauwels, Edouard
ORCID: https://orcid.org/0000-0002-8180-075X and Silveti Falls, Antonio
ORCID: https://orcid.org/0000-0002-8165-6348
(2024)
Differentiating nonsmooth solutions to parametric monotone inclusion problems.
SIAM Journal on Optimization, Vol. 34 (N° 1).
pp. 71-97.
Bolte, Jérôme
, Chen, Zheng and Pauwels, Edouard
(2020)
The multiproximal linearization method for convex composite problems.
Mathematical Programming, vol. 182.
pp. 1-36.
Bolte, Jérôme
and Pauwels, Edouard
(2019)
Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning.
Mathematical Programming.
pp. 1-33.
(In Press)
Bolte, Jérôme
and Pauwels, Edouard
(2016)
Majorization-minimization procedures and convergence of SQP methods for semi-algebraic and tame programs.
Mathematics of Operations Research, vol. 41 (n° 2).
pp. 442-465.
Book Section
Bolte, Jérôme
and Pauwels, Edouard
(2020)
A mathematical model for automatic differentiation in machine learning.
In: Advances in Neural Information Processing Systems 33 (NeurIPS 2020)
Larochelle, Hugo, Ranzato, M., Hadsell, R., Balcan, M.F. and Lin, H. (eds.)
MIT Press.
ISBN 9781713829546
(In Press)
Monograph
Bolte, Jérôme
, Le, Tam and Pauwels, Edouard
(2022)
Subgradient sampling for nonsmooth nonconvex minimization.
TSE Working Paper, n. 22-1310, Toulouse
Bolte, Jérôme
, Glaudin, Lilian, Pauwels, Edouard
and Serrurier, Matthieu
(2021)
A Hölderian backtracking method for min-max and min-min problems.
TSE Working Paper, n. 21-1243, Toulouse
Bolte, Jérôme
, Pauwels, Edouard
and Rios-Zertuche, Rodolfo
(2020)
Long term dynamics of the subgradient method for Lipschitz path differentiable functions.
TSE Working Paper, n. 20-1110, Toulouse
Bolte, Jérôme
and Pauwels, Edouard
(2020)
Curiosities and counterexamples in smooth convex optimization.
TSE Working Paper, n. 20-1080, Toulouse
Bolte, Jérôme
, Castera, Camille, Pauwels, Edouard
and Févotte, Cédric
(2019)
An Inertial Newton Algorithm for Deep Learning.
TSE Working Paper, n. 19-1043, Toulouse
Conference or Workshop Item
Bolte, Jérôme
, Le, Tam
, Pauwels, Edouard
and Silveti Falls, Antonio
ORCID: https://orcid.org/0000-0002-8165-6348
(2022)
Nonsmooth implicit differentiation for machine learning and optimization.
In: NIPS'21: 35th International Conference on Neural Information Processing Systems, 6-14 décembre 2021, En ligne.

Up a level