Article
Bégout, Pascal
ORCID: https://orcid.org/0000-0002-9172-3057 and Diaz, Jesus Ildefonso
(2025)
On the compactness of the support of solitary waves of the complex saturated nonlinear Schrödinger equation and related problems.
Physica D. Nonlinear Phenomena, vol. 472 (n° 134516).
Bégout, Pascal
ORCID: https://orcid.org/0000-0002-9172-3057 and Diaz, Jesus Ildefonso
ORCID: https://orcid.org/0000-0003-1730-9509
(2024)
Strong stabilization of damped nonlinear Schrödinger equation with saturation on unbounded domains.
Journal of Mathematical Analysis and Applications, Vol. 1 (N° 538).
Bégout, Pascal
and Diaz, Jesus Ildefonso
(2023)
Finite time extinction for a critically damped Schrödinger equation with a sublinear nonlinearity.
Advances in Differential Equations, Vol. 3/4 (N° 28).
pp. 311-340.
Bégout, Pascal
and Ildefonso Diaz, Jesus
(2023)
Finite time extinction for a critically damped Schrödinger equation with a sublinear nonlinearity.
Advances in Differential Equations, vol. 28 (N° 3-4).
pp. 311-340.
(In Press)
Bégout, Pascal
ORCID: https://orcid.org/0000-0002-9172-3057 and Diaz, Jesus Ildefonso
(2022)
Finite time extinction for a class of damped Schrödinger equations with a singular saturated nonlinearity.
Journal of Differential Equations, Vol. 308.
pp. 252-285.
Bégout, Pascal
and Diaz, Jesus Ildefonso
(2022)
Finite time extinction for a class of damped Schrödinger equations with a singular saturated nonlinearity.
Journal of Differential Equations, 308.
pp. 252-285.
Bégout, Pascal
and Diaz, Jesus Ildefonso
(2020)
Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains.
Journal of Differential Equations, vol.268 (n°7).
pp. 4029-4058.
Bégout, Pascal
ORCID: https://orcid.org/0000-0002-9172-3057 and Diaz, Jesus Ildefonso
(2020)
Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains.
Journal of Differential Equations, Vol. 268 (N° 7).
pp. 4029-4058.
Bégout, Pascal
and Diaz, Jesus Ildefonso
(2015)
Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity.
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 109 (1).
pp. 43-63.
Bégout, Pascal
and Diaz, Jesus Ildefonso
(2014)
Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations.
Electronic Journal of Differential Equations, 2014 (90).
pp. 1-15.
Bégout, Pascal
ORCID: https://orcid.org/0000-0002-9172-3057 and Diaz, Jesus Ildefonso
ORCID: https://orcid.org/0000-0003-1730-9509
(2014)
A sharper energy method for the localization of the support to some stationary Schrodinger equations with a singular nonlinearity.
Discrete and Continuous Dynamical Systems, vol. 34 (n° 9).
pp. 3371-3382.
Bégout, Pascal
ORCID: https://orcid.org/0000-0002-9172-3057 and Diaz, Jesus Ildefonso
ORCID: https://orcid.org/0000-0003-1730-9509
(2014)
Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations.
Electronic Journal of Differential Equations, vol. 90.
pp. 1-15.
Bégout, Pascal
and Diaz, Jesus Ildefonso
(2014)
A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity.
Discrete and Continuous Dynamical Systems. Series A, 34 (9).
pp. 3371-3382.
Bégout, Pascal
ORCID: https://orcid.org/0000-0002-9172-3057 and Diaz, Jesus Ildefonso
ORCID: https://orcid.org/0000-0003-1730-9509
(2012)
Localizing Estimates of the Support of Solutions of some Nonlinear Schrödinger Equations - The Stationary Case.
Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire Open Archive, vol. 29 (n° 1).
pp. 35-58.
Bégout, Pascal
ORCID: https://orcid.org/0000-0002-9172-3057 and Diaz, Jesus Ildefonso
ORCID: https://orcid.org/0000-0003-1730-9509
(2006)
On a nonlinear Schrödinger equation with a localizing effect.
Comptes Rendus. Mathématique, vol. 342.
pp. 459-463.
Bégout, Pascal
and Diaz, Jesus Ildefonso
(2006)
On a nonlinear Schrödinger equation with a localizing effect.
Comptes rendus. Mathematique, 342 (7).
pp. 459-463.

Up a level