Bayer, Peter, Brown, Joel Steven, Dubbeldam, Johan and Broom, Mark (2022) A Markovian decision model of adaptive cancer treatment and quality of life. Journal of Theoretical Biology, vol551-552 (111237).

This is the latest version of this item.

Full text not available from this repository.
Identification Number : 10.1016/j.jtbi.2022.111237


This paper develops and analyzes a Markov chain model for the treatment of cancer. Cancer therapy is modeled as the patient’s Markov Decision Problem, with the objective of maximizing the patient’s discounted expected quality of life years. Patients make decisions on the duration of therapy based on the progression of the disease as well as their own preferences. We obtain a powerful analytic decision tool through which patients may select their preferred treatment strategy. We illustrate the tradeoffs patients in a numerical example and calculate the value lost to a cohort in suboptimal strategies. In a second model patients may make choices to include drug holidays. By delaying therapy, the patient temporarily forgoes the gains of therapy in order to delay its side effects. We obtain an analytic tool that allows numerical approximations of the optimal times of delay.

Item Type: Article
Language: English
Date: November 2022
Refereed: Yes
Place of Publication: Oxford
Uncontrolled Keywords: Markov decision processes, Cancer therapy: Dynamic optimization, Quality of life
Divisions: TSE-R (Toulouse)
Site: UT1
Date Deposited: 01 Sep 2022 13:31
Last Modified: 18 Apr 2024 11:33
OAI Identifier:

Available Versions of this Item

View Item