Lavergne, Pascal and Antoine, Bertille (2023) Identification-Robust Nonparametric Inference in a Linear IV Model. Journal of Econometrics, vol. 235 (n°1). pp. 1-24.

This is the latest version of this item.

[thumbnail of wp_tse_1004.pdf]
Preview
Text
Download (892kB) | Preview
Identification Number : 10.1016/j.jeconom.2022.01.011

Abstract

For a linear IV regression, we propose two new inference procedures on parameters of endogenous variables that are robust to any identification pattern, do not rely on a linear first-stage equation, and account for heteroskedasticity of unknown form. Building on Bierens (1982), we first propose an Integrated Conditional Moment (ICM) type statistic constructed by setting the parameters to the value under the null hypothesis. The ICM procedure tests at the same time the value of the coefficient and the specification of the model. We then adopt a conditionality principle to condition on a set of ICM statistics that informs on identification strength. Our two procedures uniformly control size irrespective of identification strength. They are powerful irrespective of the nonlinear form of the link between instruments and endogenous variables and are competitive with existing procedures in simulations and application.

Item Type: Article
Language: English
Date: July 2023
Refereed: Yes
Place of Publication: Amsterdam
Uncontrolled Keywords: Weak Instruments, Hypothesis Testing, Semiparametric Model
Subjects: B- ECONOMIE ET FINANCE
Divisions: TSE-R (Toulouse)
Site: UT1
Date Deposited: 31 Jan 2022 10:02
Last Modified: 26 Jun 2023 09:51
OAI Identifier: oai:tse-fr.eu:126555
URI: https://publications.ut-capitole.fr/id/eprint/44281

Available Versions of this Item

View Item

Downloads

Downloads per month over past year