Thomas-Agnan, Christine and Morais, Joanna (2019) Covariates impacts in compositional models and simplicial derivatives. TSE Working Paper, n. 19-1057, Toulouse

[thumbnail of wp_tse_1057.pdf]
Download (385kB) | Preview


In the framework of Compositional Data Analysis, vectors carrying relative information, also called compositional vectors, can appear in regression models either as dependent or as explanatory variables. In some situations, they can be on both sides of the regression equation. Measuring the marginal impacts of covariates in these types of models is not straightforward since a change in one component of a closed composition automatically affects the rest of the composition. J. Morais, C. Thomas-Agnan and M. Simioni [Austrian Journal of Statistics, 47(5), 1-25, 2018] have shown how to measure, compute and interpret these marginal impacts in the case of linear regression models with compositions on both sides of the equation. The resulting natural interpretation is in terms of an elasticity, a quantity commonly used in econometrics and marketing applications. They also demonstrate the link between these elasticities and simplicial derivatives. The aim of this contribution is to extend these results to other situations, namely when the compositional vector is on a single side of the regression equation. In these cases, the marginal impact is related to a semi-elasticity and also linked to some simplicial derivative. Moreover we consider the possibility that a total variable is used as an explanatory variable, with several possible interpretations of this total and we derive the elasticity formulas in that case.

Item Type: Monograph (Working Paper)
Language: English
Date: December 2019
Place of Publication: Toulouse
Uncontrolled Keywords: compositional regression model, marginal effects, simplicial derivative, elasticity, semi-elasticity.
JEL Classification: C10 - General
C25 - Discrete Regression and Qualitative Choice Models; Discrete Regressors
C35 - Discrete Regression and Qualitative Choice Models; Discrete Regressors
C46 - Specific Distributions; Specific Statistics
D12 - Consumer Economics - Empirical Analysis
M31 - Marketing
Divisions: TSE-R (Toulouse)
Institution: Université Toulouse 1 Capitole
Site: UT1
Date Deposited: 06 Dec 2019 13:31
Last Modified: 27 Oct 2021 13:37
OAI Identifier:
View Item


Downloads per month over past year