Gadat, Sébastien, Gerchinovitz, Sebastien and Marteau, Clément (2020) Optimal functional supervised classification with separation condition. Bernoulli journal, vol. 26 (n°3). pp. 1797-1831.
This is the latest version of this item.
Preview |
Text
Download (804kB) | Preview |
Abstract
We consider the binary supervised classification problem with the Gaussian functional model introduced in [7]. Taking advantage of the Gaussian structure, we design a natural plug-in classifier and derive a family of upper bounds on its worst-case excess risk over Sobolev spaces. These bounds are parametrized by a separation distance quantifying the difficulty of the problem, and are proved to be optimal (up to logarithmic factors) through matching minimax lower bounds. Using the recent works of [9] and [14] we also derive a logarithmic lower bound showing that the popular k-nearest neighbors classifier is far from optimality in this specific functional setting.
Item Type: | Article |
---|---|
Language: | English |
Date: | 2020 |
Refereed: | Yes |
Place of Publication: | Londres |
Subjects: | B- ECONOMIE ET FINANCE |
Divisions: | TSE-R (Toulouse) |
Site: | UT1 |
Date Deposited: | 01 Oct 2019 13:59 |
Last Modified: | 27 Oct 2021 13:37 |
OAI Identifier: | oai:tse-fr.eu:123580 |
URI: | https://publications.ut-capitole.fr/id/eprint/32803 |
Available Versions of this Item
-
Optimal functional supervised classification with separation condition. (deposited 24 Apr 2018 11:23)
- Optimal functional supervised classification with separation condition. (deposited 01 Oct 2019 13:59) [Currently Displayed]