Nguyen, Manh-Hung and Nguyen-Van, Phu (2016) Optimal endogenous growth with natural resources: Theory and evidence. Macroeconomic Dynamics. pp. 2173-2209.

This is the latest version of this item.

Full text not available from this repository.
Identification Number : 10.1017/S1365100515000061

Abstract

This paper considers an optimal endogenous growth model where production function is assumed to exhibit increasing returns to scale and two types of resource (renewable and nonrenewable) are imperfect substitutes. Natural resources, labors and physical capital are used in the final goods sector and in the accumulation of knowledge. Based on results in calculus of variations, a direct proof of existence of optimal solution is provided. Analytical solutions for the planner case, balanced growth paths and steady states are found for a specific CRRA utility and Cobb-Douglas production function. It is possible to have a long-run growth where both energy resources are used simultaneously along the equilibrium path. As the law of motion of the technological change is not concave reflecting the increasing return of scale so that the Arrow-Mangasarian sufficiency conditions do not apply, we provide directly a sufficient condition. Transitional dynamics to the steady state from the theoretical model are used to derive three convergence equations of output intensity growth rate, exhaustible resource growth rate and renewable resource growth rate, which are tested based on OECD data on production and energy consumption.

Item Type: Article
Language: English
Date: December 2016
Refereed: Yes
Uncontrolled Keywords: Endogenous optimal growth, transitional dynamics, renewable resource, nonrenewable resource
JEL Classification: C61 - Optimization Techniques; Programming Models; Dynamic Analysis
D51 - Exchange and Production Economies
E13 - Neoclassical
Subjects: B- ECONOMIE ET FINANCE
Divisions: TSE-R (Toulouse)
Site: UT1
Date Deposited: 16 Mar 2015 14:52
Last Modified: 07 Jun 2024 08:06
OAI Identifier: oai:tse-fr.eu:28787
URI: https://publications.ut-capitole.fr/id/eprint/16633

Available Versions of this Item

View Item