Les méthodes d'interpolation pour données sur zones

Do, Van Huyen (2015) Les méthodes d'interpolation pour données sur zones. École doctorale Mathématiques, Informatique et Télécommunications (Toulouse).

[img]
Preview
Text
Download (1MB) | Preview
Official URL: http://www.theses.fr/2015TOU10019

Abstract

Le résumé en français n'a pas été communiqué par l'auteur.

,

The combination of several socio-economic data bases originating from different administrative sources collected on several different partitions of a geographic zone of interest into administrative units induces the so called areal interpolation problem. This problem is that of allocating the data from a set of source spatial units to a set of target spatial units. At the European level for example, the EU directive ’INSPIRE’, or INfrastructure for Spatial InfoRmation, encourages the states to provide socio-economic data on a common grid to facilitate economic studies across states. In the literature, there are three main types of such techniques: proportional weighting schemes, smoothing techniques and regression based interpolation. We propose a theoretical evaluation of these statistical techniques for the case of count related data. We find extensions of some of these methods to new cases : for example, we extend the ordinary dasymetric weightingmethod to the case of an intensive target variable Y and an extensive auxiliary quantitative variable X and we introduce a scaled version of the Poisson regression method which satisfies the pycnophylactic property. We present an empirical study on an American database as well as an R-package for implementing these methods.

Item Type: Thesis (UNSPECIFIED)
Other titles: Areal interpolation methods
Language: English
Date: 15 June 2015
Keywords (French): Espaces d'interpolation - Thèses et écrits académiques
Subjects: G- MATHEMATIQUES
Divisions: TSE-R (Toulouse)
Ecole doctorale: École doctorale Mathématiques, Informatique et Télécommunications (Toulouse)
Site: UT1
Date Deposited: 20 Nov 2015 09:48
Last Modified: 29 Oct 2018 13:18
OAI ID: 2015TOU10019
URI: http://publications.ut-capitole.fr/id/eprint/18749

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year