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Abstract

We study the Black-Scholes equations for pricing options on stocks by splitting

it into two simpler PDEs that can be solved by analytically simpler and numerically

faster methods than the original Black-Scholes PDE. We first use a deflator process

β to arrive at a numeraire S∗ (interest-neutral stock price) computed from the first

equation and then obtain a simple Black-Scholes equation for the interest-neutral

call option price P ∗ with no explicit dependence on the (instantaneous short) interest

rate r. We also formulate two theorems on the solvability of these PDEs.

2000 Mathematics Subject Classification: Primary 35B65, 35K10;

Secondary 91B28, 91B70;

Key words: Black-Scholes equation; European call option;

terminal value problem; drift term; numeraire; deflator process
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1 Introduction

There have been a number of attemps to obtain and further investigate the solutions to

various kinds of the Black-Scholes equations for pricing options on stocks (F. Black

and M. Scholes [4]). These attempts are typically based on probabilistic, analytic, and

numerical techniques, some of them including even explicit formulas, cf. Y. Achdou and

O. Pironneau [1, Chapt. 2]. In our present work we study such a model of option

pricing for stocks with dividends by rather abstract analytic methods from partial dif-

ferential equations (PDEs, for short) and functional analysis. Our strategy is to “split”

the Black-Scholes partial differential equation into two simpler PDEs that can be solved

by analytically simpler and numerically faster methods than the original Black-Scholes

PDE. In our approach we wish to use some arguments that are meaningful in Financial

Mathematics. When using multiple integrals in probabilistic techniques, the introduction

of numeraire typically reduces the dimension of the integration domain by one; see, e.g.,

T. Björk [2, Chapt. 24, pp. 348–367] and S. Benninga, T. Björk, and Z. Wiener [3].

We have decided to follow a similar idea with a numeraire, S∗, chosen in such a way that,

relative to this numeraire, the option price P ∗ of a stock with dividend does not explicitly

depend on the (instantaneous short) interest rate r. The dependence of P ∗ on the interest

rate will be hidden in the dependence of the numeraire S∗. Also most of the difficulties

in determining S∗ will be concentrated in the Black-Scholes PDE for S∗. This makes the

numeraire S∗ into a kind of reliable, interest-neutral monetary unit. The Black-Scholes

PDE for P ∗ = P ∗(S∗, t) as a function of S∗ and time t will be considerably simpler, thus

allowing fast numerical simulations among other advantages. Mathematically, this means

that we need to eliminate the drift term from the Black-Scholes PDE for the option price

P = P (S, t) as a function of stock price S and time t; see eq. (1) in Section 2. Namely,

the interest rate appears in the Black-Scholes PDE for the option price P solely in the

drift term.

More specifically, we denote by

• S = S(t) – the stock price at time t

• S∗ = S∗(S, t) – the interest-neutral stock price at time t, given the stock price S

(Here, S∗ should play the role of a numeraire .)

• P = P (S, t) – the (call) option price at time t, given the stock price S

• P ∗ = P ∗(S∗, t) – the interest-neutral (call) option price at time t, given the interest-

neutral stock price S∗

The motivation for creating an interest-neutral stock price S∗ is to work with a

kind of terminalized stock price that is at any time t ∈ [0, T ] comparable with the

strike price S(T ) at the exercise date T , regardless what the interest rate during the time

interval [0, T ] is.

The terminal condition (at time t = T ) imposed on S∗(S, t), namely, S∗(S, T ) = S for

all S > 0, is natural. Indeed, we have S∗(S, t) − S → 0 as t ր T , due to the vanishing

effect of the deterministic factors, such as interest, dividend etc.
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We replace the unknown function S∗ = S∗(S, t) of S and t by ϕ = ϕ(S, t)
def
= ln(S∗/S)

for all S > 0 and all t ∈ [0, T ]; hence, we have S∗ = S eϕ(S,t). Thus, the terminal condition

reads ϕ(S, T ) = 0 for all S > 0. If we need to vary also the exercise date T , we add the

subscript (index) T to the function ϕ(S, t), that is, we write ϕ(S, t) ≡ ϕT (S, t) for t ≤ T .

We have ϕ(S, t) > 0, meaning a discount: The interest-neutral stock price S∗ is discounted

to S = S∗ e−ϕ(S,t), as the stock price S is terminalized (surcharged) to S∗ = S eϕ(S,t). A

nonnegative (positive) interest rate typically guarantees ϕ(S, t) ≥ 0 for 0 ≤ t ≤ T

(ϕ(S, t) > 0 for 0 ≤ t < T , respectively), for each S > 0.

Naturally, we wish to use the same numeraire S∗ also for calculating the ratio between

the interest-neutral (call) option price P ∗ and the (call) option price P , i.e., P ∗ = P eϕ(S,t)

for all S > 0 and all t ∈ [0, T ]. But then β = β(S, t) = e−ϕ(S,t) is called a “deflator

process” which measures the inflation from the present time t through the exercise date

T , with β(S, T ) = 1 for all S > 0; cf. T. Björk [2, Lemma 24.1, p. 350]. As the deflator

process β works well for both, the stock and option prices, viz. S∗ = S/β and P ∗ = P/β,

respectively, it is more advantageous to use β as a numeraire (T. Björk [2, p. 350]).

Our present work is organized as follows. In the next section (Section 2) we construct

the mappings

(S, t) 7−→ (S∗(S, t), t) 7−→ P ∗(S∗, t)

as already indicated above, by “splitting” the Black-Scholes PDE for the option price

P = P (S, t) into two simpler PDEs. In Section 3 we reformulate these two PDEs for

the logarithmic stock prices x = ln S and x∗ = ln S∗ related by x∗ = x + ϕ(ex, t). The

option price is then obtained from P = SP ∗/S∗. These two parabolic PDEs are solved in

Section 4.

2 Splitting the Black-Scholes equation

We further consider the usual Black-Scholes equation for the pricing of a (call) option on

a given stock with a dividend as described in the Introduction (Section 1). We denote by

• r = r(S, t) – the (instantaneous short) interest rate at time t, given the stock price S

• δ = δ(S, t) – the dividend rate (dividend , for short) paid at time t, given the stock

price S

• σ = σ(S, t) – the volatility at time t, given the stock price S

• K ≡ const > 0 – the strike price (exercise price) of a European (call) option at

exercise date T

For brevity, we call the dividend rate simply dividend .

The (instantaneous short) interest rate is typically taken to be a positive con-

stant r(S, t) ≡ r > 0.
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The Black-Scholes equation for the unknown option price P = P (S, t) takes the

following form; see T. Björk [2, Prop. 16.7, p. 234]:

(1)























∂P

∂t
− (r − δ)

(

P − S
∂P

∂S

)

− δP +
1

2
σ2S2 ∂2P

∂S2
= 0

for S > 0 and t ∈ (0, T );

P (S, T ) = (S − K)+ for S > 0.

We “split” this terminal-value problem into two simpler problems by constructing the

mappings

(S, t) 7−→ (S∗(S, t), t) 7−→ P ∗(S∗, t)

as already indicated in the Introduction (Section 1). To this end we need to calculate a

few partial derivatives below:

Differentiating ϕ(S, t) = ln(S∗/S) (partially) with respect to S, we arrive at

(2)
∂ϕ

∂S
=

1

S∗

∂S∗

∂S
−

1

S
=

1

S

(

S

S∗

∂S∗

∂S
− 1

)

which yields

(3)
∂S∗

∂S
=

S∗

S

(

1 + S
∂ϕ

∂S

)

and
∂ϕ

∂(ln S)
=

∂(ln S∗)

∂(ln S)
− 1 .

In contrast, differentiating S = S∗ e−ϕ(S,t) (partially) with respect to S∗, we get

(4)
∂S

∂S∗
= e−ϕ(S,t)

(

1 − S∗ ∂ϕ

∂S

∂S

∂S∗

)

=
S

S∗
− S

∂ϕ

∂S

∂S

∂S∗

which yields

(5)

(

1 + S
∂ϕ

∂S

)

∂S

∂S∗
=

S

S∗
, i.e.,

∂S

∂S∗
=

S

S∗

(

1 + S
∂ϕ

∂S

)−1

.

We combine (3) and (5) to get

(6)
∂S∗

∂S
·

∂S

∂S∗
= 1 .

Next, differentiating the expression

S∗ − S
∂S∗

∂S
= − S∗S

∂ϕ

∂S
= − S2 eϕ(S,t) ∂ϕ

∂S

(partially) with respect to S, we obtain

−
∂

∂S

(

S∗S
∂ϕ

∂S

)

=
∂

∂S

(

S∗ − S
∂S∗

∂S

)

= − S
∂2S∗

∂S2
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which can be calculated further as follows,

(7)

S
∂2S∗

∂S2
=

∂

∂S

(

S∗S
∂ϕ

∂S

)

=
∂

∂S

(

S2 eϕ(S,t) ∂ϕ

∂S

)

= eϕ(S,t)

[

2S
∂ϕ

∂S
+ S2

(

∂ϕ

∂S

)2

+ S2 ∂2ϕ

∂S2

]

=
S∗

S

[

(

1 + S
∂ϕ

∂S

)2

− 1 + S2 ∂2ϕ

∂S2

]

.

As an easy consequence, we derive

(8)
1

S∗

(

S∗ + S2 ∂2S∗

∂S2

)

=

(

1 + S
∂ϕ

∂S

)2

+ S2 ∂2ϕ

∂S2
.

In contrast, recall that eq. (3) is equivalent with

(9)
1

S∗

(

S∗ − S
∂S∗

∂S

)

= − S
∂ϕ

∂S
.

Next, we recall that

(10) P ∗ = P (S, t) eϕ(S,t) =
S∗

S
P .

Similarly as above, we differentiate the logarithm lnP (S, t) = ln P ∗(S∗, t) − ϕ(S, t) (par-

tially) with respect to S, thus arriving at

(11)
1

P

∂P

∂S
=

1

P ∗

∂P ∗

∂S∗

∂S∗

∂S
−

∂ϕ

∂S

which yields

S
∂P

∂S
=

P

P ∗

∂P ∗

∂S∗
S

∂S∗

∂S
− PS

∂ϕ

∂S
=

S

S∗

∂P ∗

∂S∗
S

∂S∗

∂S
− PS

∂ϕ

∂S

and therefore, with a help from (3),

(12)

P − S
∂P

∂S
= P

(

1 + S
∂ϕ

∂S

)

−
∂P ∗

∂S∗
S

(

1 + S
∂ϕ

∂S

)

=

(

P − S
∂P ∗

∂S∗

)(

1 + S
∂ϕ

∂S

)

=

(

P ∗ − S∗ ∂P ∗

∂S∗

)

e−ϕ(S,t)

(

1 + S
∂ϕ

∂S

)

.

Next, differentiating the expression P − S ∂P
∂S

(partially) with respect to S, we obtain

∂

∂S

(

P − S
∂P

∂S

)

= − S
∂2P

∂S2

and similarly
∂

∂S∗

(

P ∗ − S∗ ∂P ∗

∂S∗

)

= − S∗ ∂2P ∗

(∂S∗)2
.
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It will be of importance below to notice that the expression P ∗−S∗ ∂P ∗

∂S∗
is a function of S∗

and t only; moreover, only S∗ depends on S, whereas t does not. Consequently, making

use of eq. (12), we derive

S
∂2P

∂S2
= −

∂

∂S

(

P ∗ − S∗ ∂P ∗

∂S∗

)

· e−ϕ(S,t)

(

1 + S
∂ϕ

∂S

)

−

(

P ∗ − S∗ ∂P ∗

∂S∗

)

·
∂

∂S

[

e−ϕ(S,t)

(

1 + S
∂ϕ

∂S

)]

= S∗ ∂2P ∗

(∂S∗)2

∂S∗

∂S
· e−ϕ(S,t)

(

1 + S
∂ϕ

∂S

)

−

(

P ∗ − S∗ ∂P ∗

∂S∗

)

·
∂

∂S

[

e−ϕ(S,t)

(

1 + S
∂ϕ

∂S

)]

= S∗ ∂2P ∗

(∂S∗)2

(

1 + S
∂ϕ

∂S

)2

−

(

P ∗ − S∗ ∂P ∗

∂S∗

)

e−ϕ(S,t)

[

−
∂ϕ

∂S

(

1 + S
∂ϕ

∂S

)

+
∂ϕ

∂S
+ S

∂2ϕ

∂S2

]

which yields, with a help from eq. (12) again,

(13)

S
∂2P

∂S2
= S∗ ∂2P ∗

(∂S∗)2

(

1 + S
∂ϕ

∂S

)2

−

(

P − S
∂P

∂S

)(

1 + S
∂ϕ

∂S

)−1

S

[

∂2ϕ

∂S2
−

(

∂ϕ

∂S

)2
]

.

The (partial) time derivative of P is computed as follows, in analogy with eq. (11),

1

P

∂P

∂t
=

1

P ∗

∂P ∗

∂t
+

1

P ∗

∂P ∗

∂S∗

∂S∗

∂t
−

∂ϕ

∂t

=
1

P ∗

∂P ∗

∂t
+

1

P ∗

∂P ∗

∂S∗
S eϕ(S,t) ∂ϕ

∂t
−

∂ϕ

∂t

=
1

P ∗

[

∂P ∗

∂t
−

(

P ∗ − S∗ ∂P ∗

∂S∗

)

∂ϕ

∂t

]

which yields, using eq. (12),

(14)

∂P

∂t
=

S

S∗

[

∂P ∗

∂t
−

(

P − S
∂P

∂S

)

S∗

S

(

1 + S
∂ϕ

∂S

)−1
∂ϕ

∂t

]

=
S

S∗

∂P ∗

∂t
−

(

P − S
∂P

∂S

)(

1 + S
∂ϕ

∂S

)−1
∂ϕ

∂t
.
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The Black-Scholes equation (1) for the price of a (call) option on a stock with a

dividend δ = δ(S, t) (which is assumed to be paid continuously in time) thus reads

(15)

0 =
∂P

∂t
− (r − δ)

(

P − S
∂P

∂S

)

− δP +
1

2
σ2S2 ∂2P

∂S2

=
S

S∗

∂P ∗

∂t
−

(

P − S
∂P

∂S

)(

1 + S
∂ϕ

∂S

)−1
∂ϕ

∂t

− (r − δ)

(

P − S
∂P

∂S

)

− δP +
1

2
σ2SS∗ ∂2P ∗

(∂S∗)2

(

1 + S
∂ϕ

∂S

)2

−
1

2
σ2S2

(

P − S
∂P

∂S

)(

1 + S
∂ϕ

∂S

)−1
[

∂2ϕ

∂S2
−

(

∂ϕ

∂S

)2
]

=
S

S∗

{

∂P ∗

∂t
− δP ∗ +

1

2

[

σ

(

1 + S
∂ϕ

∂S

)]2

(S∗)2 ∂2P ∗

(∂S∗)2

}

−

(

P − S
∂P

∂S

)(

1 + S
∂ϕ

∂S

)−1

×

{

∂ϕ

∂t
+ (r − δ)

(

1 + S
∂ϕ

∂S

)

+
1

2
σ2S2

[

∂2ϕ

∂S2
−

(

∂ϕ

∂S

)2
]}

,

where we have employed eqs. (12), (13), and (14). The Black-Scholes equation (15), now

taking the form

(16)

0 =
∂P

∂t
− (r − δ)

(

P − S
∂P

∂S

)

− δP +
1

2
σ2S2 ∂2P

∂S2

=
S

S∗

{

∂P ∗

∂t
− δP ∗ +

1

2

[

σ

(

1 + S
∂ϕ

∂S

)]2

(S∗)2 ∂2P ∗

(∂S∗)2

}

−
S

S∗

(

P ∗ − S∗ ∂P ∗

∂S∗

)

×

{

∂ϕ

∂t
+ (r − δ)

(

1 + S
∂ϕ

∂S

)

+
1

2
σ2S2

[

∂2ϕ

∂S2
−

(

∂ϕ

∂S

)2
]}

for S > 0 and t ∈ (0, T ), is supplemented by the terminal condition

(16T ) P (S, T ) = (S − K)+ for S > 0.

This terminal-value problem possesses the following natural “splitting” into two indepen-

dent problems as follows:

The new interest-neutral Black-Scholes equation for the price of a (call) option

on a stock with a dividend δ = δ(S, t) (paid continuously in time) reads

(17)
∂P ∗

∂t
− δP ∗ +

1

2

[

σ

(

1 − S
∂ϕ

∂S

)]2

(S∗)2 ∂2P ∗

(∂S∗)2
= 0

with the terminal condition

(17T ) P ∗(S∗, T ) = (S∗ − K)+ for S∗ > 0,
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thanks to ϕ(S, T ) = 0 for all S > 0. Here, S = S(S∗, t) is an implicit solution to the

equation S eϕ(S,t) = S∗ for each t ∈ [0, T ], and ϕ = ϕ(S, t) satisfies the nonlinear partial

differential equation

(18)
∂ϕ

∂t
+ (r − δ)

(

1 + S
∂ϕ

∂S

)

+
1

2
σ2S2

[

∂2ϕ

∂S2
−

(

∂ϕ

∂S

)2
]

= 0

for all S > 0 and all t ∈ [0, T ), with the terminal condition

(18T ) ϕ(S, T ) = 0 for S > 0,

thanks to ϕ(S, T ) = 0 for all S > 0. This is a backward diffusion equation. Notice

that S(S∗, T ) = S∗ for all S∗ > 0.

In conclusion, we have thus constructed the desired mappings

(S, t) 7−→ (S∗(S, t), t) 7−→ P ∗(S∗, t)

by taking S∗(S, t) = S eϕ(S,t) with ϕ = ϕ(S, t) from problem (18), (18T ) and P ∗ = P ∗(S∗, t)

from problem (17), (17T ). The (call) option price P = P ∗ e−ϕ(S,t) for all S > 0 and all

t ∈ [0, T ] follows from eq. (10).

In order to solve the nonlinear terminal value problem (18), (18T ), we transform

it into the following equivalent linear terminal value problem for the deflator process

β = e−ϕ(S,t) > 0. The linear PDE for the unknown deflator process β = β(S, t) takes the

following simple form which is analogous to the standard linear Black-Scholes equa-

tion ; see T. Björk [2, Theorem 7.7, p. 97]:

(19)























∂β

∂t
− (r − δ)

(

β − S
∂β

∂S

)

+
1

2
σ2S2 ∂2β

∂S2
= 0

for S > 0 and t ∈ (0, T );

β(S, T ) = 1 for S > 0.

Notice that the difference r − δ has replaced the interest rate r in the standard linear

Black-Scholes equation. Eq. (19) follows from (18), (18T ) with a help from the following

calculations:

∂β

∂t
= − e−ϕ(S,t) ∂ϕ

∂t
,

∂β

∂S
= − e−ϕ(S,t) ∂ϕ

∂S
, and

∂2β

∂S2
= − e−ϕ(S,t)

[

∂2ϕ

∂S2
−

(

∂ϕ

∂S

)2
]

.

3 Reformulation of the Black-Scholes equations

This section is devoted to reformulating the two linear parabolic terminal value problems

from the previous section: eqs. (17), (17T ) and eq. (19). We perform this reformulation

in a standard way, cf. Y. Achdou and O. Pironneau [1], Chapt. 2, §2.2.3, p. 26.
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First, we remove the singularities in the diffusion coefficients in eqs. (17) and (19). We

begin with the latter, eq. (19).

Upon the logarithmic substitution x = ln S ∈ R we get

∂β

∂S
=

1

S

∂β

∂x
and

∂2β

∂S2
=

1

S2

(

∂2β

∂x2
−

∂β

∂x

)

and, thus, eq. (19) becomes

(20)
∂β

∂t
− (r − δ)

(

β −
∂β

∂x

)

+
1

2
σ2

(

∂2β

∂x2
−

∂β

∂x

)

= 0

for all x ∈ R and all t ∈ [0, T ), with the terminal condition

(20T ) β(x, T ) = 1 for all x ∈ R.

Of course, here we mean r = r(S, t) = r(ex, t) and δ = δ(S, t) = δ(ex, t) as functions of

x ∈ R and t ∈ (0, T ). Now we substitute β̃(x, t) = β(x, t) − 1 above, thus arriving at the

terminal value problem

∂β̃

∂t
− (r − δ)

(

β̃ −
∂β̃

∂x

)

+
1

2
σ2

(

∂2β̃

∂x2
−

∂β̃

∂x

)

= r − δ

for all x ∈ R and all t ∈ [0, T );

(21)

β̃(x, T ) = 0 for all x ∈ R.(21T )

Analogously, upon the substitution x∗ = ln S∗ ∈ R we get

∂P ∗

∂S∗
=

1

S∗

∂P ∗

∂x∗
and

∂2P ∗

(∂S∗)2
=

1

(S∗)2

(

∂2P ∗

(∂x∗)2
−

∂P ∗

∂x∗

)

and, thus, eq. (17) becomes

(22)
∂P ∗

∂t
− δP ∗ +

1

2
(σ∗)2

(

∂2P ∗

(∂x∗)2
−

∂P ∗

∂x∗

)

= 0

for all x∗ ∈ R and all t ∈ [0, T ), with the terminal condition (cf. (17T ))

(22T ) P ∗(x∗, T ) = (exp(x∗) − K)+ for all x∗ ∈ R,

where

(23) σ∗(S∗, t)
def
= σ(S, t)

(

1 − S
∂ϕ

∂S

)

is the new interest-neutral volatility , i.e.,

σ∗(exp(x∗), t) = σ(ex, t)

(

1 −
∂ϕ

∂x

)

.

Finally, we substitute

P̃ ∗(x∗, t) = P ∗(x∗, t) · exp(−αx∗) ,
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where α > 1 is a suitable constant, thus arriving at the terminal value problem for P̃ ∗,

∂P̃ ∗

∂t
− δP̃ ∗ +

1

2
(σ∗)2

(

∂2P̃ ∗

(∂x∗)2
+ (2α − 1)

∂P̃ ∗

∂x∗
+ (α2 − 1)P̃ ∗

)

= 0

for all x∗ ∈ R and all t ∈ [0, T );

(24)

P̃ ∗(x∗, T ) = [1 − K · exp(−x∗)]+ · exp(−(α − 1)x∗) for all x∗ ∈ R.(24T )

Clearly, the terminal values satisfy P̃ ∗( · , T ) ∈ Lp(R), 1 ≤ p ≤ ∞, by virtue of

P̃ ∗(x∗, T ) = 0 for all x∗ ≤ ln K, and

0 ≤ P̃ ∗(x∗, T ) ≤ exp(−(α − 1)x∗) for all x∗ ≥ ln K,

where α − 1 > 0.

Notice that x = x(x∗, t) is an implicit solution to the equation x + ϕ(x, t) = x∗ for

each t ∈ [0, T ], where ϕ = − ln β, and β = β(x, t) satisfies the linear partial differential

equation (20) with the terminal condition (20T ).

4 Main results: solutions in L∞(R) and L2(R)

This section is devoted to solving the two linear parabolic terminal value problems from

the previous section: the former, (21), (21T ), in the Hölder space C2+α,1(R × [0, T ]),

0 < α < 1, the latter, (24), (24T ), in the abstract Hölder space Cθ ([0, T ] → L2(R)),

0 < θ < 1. The interpolation-type Hölder spaces Cα,θ(R × [0, T ]), for 0 ≤ α < ∞ and

θ = 0, 1 or α/2 are defined in A. Lunardi [9], §5.1, pp. 175–177.

Our first solvability result, for problem (21), (21T ), reads as follows.

Theorem 4.1 Let all r, δ, σ : (0,∞)× [0, T ] → R be continuous functions, such that both

functions

(r − δ) ◦ (exp, id) : R × [0, T ] → R : (x, t) 7→ r(ex, t) − δ(ex, t) and

σ ◦ (exp, id) : R × [0, T ] → R : (x, t) 7→ σ(ex, t)

are bounded and belong to Cα,0(R × [0, T ]), for some α ∈ (0, 1), and

σ0
def
= inf

S>0
0≤t≤T

σ(S, t) > 0 .

The the terminal value problem (21), (21T ) possesses a unique classical solution β̃ ∈

Cα+2,1(R × [0, T ]). In particular, eq. (21) holds in the classical sense with β̃ and all

partial derivatives ∂β̃/∂t, ∂β̃/∂x, and ∂2β̃/∂x2 being continuous in all of R × [0, T ].

In A. Lunardi [9], §4.1, Definition 4.1.1, pp. 123–124, such a solution is called a

strict solution ; her strong or classical solutions are somewhat weaker.
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Proof. This theorem follows immediately from A. Lunardi [9], §5.1.1, Theorem 5.1.9,

p. 189.

Before turning towards our second theorem, we need to study the implicit function

equation

S (1 + β̃(ln S, t))−1 ≡ S β(ln S, t)−1 = S∗ ∈ (0,∞)

for the unknown function S = S(S∗, t) ∈ (0,∞) of S∗ ∈ (0,∞), at every fixed time

t ∈ [0, T ]. Equivalently, setting x = ln S and x∗ = ln S∗, at every fixed time t ∈ [0, T ] we

need to determine the unknown function x = x(x∗, t) ∈ R of x∗ ∈ R from the equation

ex (1 + β̃(x, t))−1 ≡ ex β(x, t)−1 = ex∗

or, equivalently,

x − ln(1 + β̃(x, t)) = x∗ .

The left-hand side has the partial derivative

∂

∂x

(

x − ln(1 + β̃(x, t))
)

= 1 − (1 + β̃(x, t))−1 ∂β̃

∂x

which, for β(x, t) ≡ 1 + β̃(x, t) > 0, is positive if and only if

(25)
∂β̃

∂x
< 1 + β̃(x, t) .

Thanks to β̃(x, T ) = 0 for all x ∈ R in (21T ), condition (25) holds for every t ∈ [0, T ] close

to T , by β̃ ∈ Cα+2,1(R × [0, T ]). If this is the case, we may apply the implicit function

theorem to conclude that the mapping (x∗, t) 7→ x(x∗, t) : R × [T − η, T ] → R is of class

C1, for some η ∈ (0, T ] small enough.

In the formulation of our second theorem we will assume that η = T above, that is

to say, the mapping (x∗, t) 7→ x(x∗, t) : R × [0, T ] → R exists and is of class C1.

We now consider δ ≡ δ(S∗, t) = δ(ex∗

, t) and σ∗ ≡ σ∗(S∗, t) = σ∗(ex∗

, t) to be functions

of (S∗, t) ∈ (0,∞) × [0, T ]. Our second solvability result, for problem (24), (24T ), is as

follows.

Theorem 4.2 Let δ, σ∗ : (0,∞)× [0, T ] → R be bounded continuous functions, such that

both functions

δ ◦ (exp, id) : R × [0, T ] → R : (x∗, t) 7→ δ(ex∗

, t) and

σ∗ ◦ (exp, id) : R × [0, T ] → R : (x∗, t) 7→ σ(ex∗

, t)

belong to C0,θ(R × [0, T ]), for some θ ∈ (0, 1), and

σ0
def
= inf

S∗>0
0≤t≤T

σ(S∗, t) > 0 .

Then the terminal value problem (24), (24T ) possesses a unique classical solution

P̃ ∗ ∈ Cθ
(

[0, T ] → L2(R)
)

∩ C1+θ
(

(0, T ] → L2(R)
)

∩ Cθ
(

(0, T ] → W 2,2(R)
)

.

In particular, eq. (24) holds in the L2
loc-sense in R× (0, T ) with P̃ ∗ ∈ Cθ ([0, T ] → L2(R))

and all weak partial derivatives ∂P̃ ∗/∂t, ∂P̃ ∗/∂x∗, and ∂2P̃ ∗/(∂x∗)2 belonging to

Cθ ((0, T ] → L2(R)).
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Also in A. Lunardi [9], §4.1, Definition 4.1.1, pp. 123–124, such a solution is indeed

called a classical solution .

Proof. This theorem follows immediately from A. Lunardi [9], §6.1, Theorem 6.1.4,

p. 216.

5 Discussion of main results

Our initial objective was to split the Black-Scholes PDE (1) into two simpler PDEs, eqs.

(17) (with the terminal condition (17T )) and (19). The advantage of the latter, eq. (19),

relative to the original problem (1), is that in (19) one is left with the difference r−δ only,

which has replaced the interest rate r in the standard linear Black-Scholes equation (1).

Moreover, in the former, eq. (17), the dependence on the interest rate r is only implicit

through the interest-neutral volatility σ∗ = σ∗(S∗, t) defined in (23). An unpleasant

consequence of this transformation, after the introduction of the logarithmic stock prices

x = ln S and x∗ = ln S∗ in Section 3, is that the drift terms

(

r − δ − 1
2
σ2
) ∂β̃

∂x
and − 1

2
(σ∗)2 ∂P ∗

∂x∗

appear in eqs. (21) and (22), respectively.

The drift term can hardly be eliminated from eq. (21), but from eq. (22) and, anal-

ogously, from eq. (24) it can be eliminated by a suitable choice of function β̂ = P/P̃ ∗

satisfying an equation analogous to (21) in place of β̃. We leave the computational details

to an interested reader.
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