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Simulation et prédiction des dynamiques de foules denses

Encadrants Benoit Gaudou, Professeur, Université Toulouse Capitole
Nicolas Verstaevel, Maître de Conférences, Université Toulouse Capitole

L’augmentation significative des événements de rassemblement de masse ces dernières
années pose le besoin essentiel de simulations et de prédictions réalistes des mouvements de

foules denses avant de mettre en œuvre d’autres applications telles que le contrôle de la sécurité
ou la gestion des risques. Cependant, différents phénomènes de foule émergent généralement à
certains niveaux de densité alors que chaque approche de modélisation est couramment utilisée
pour simuler un ou plusieurs phénomènes de foule spécifiques. Cette thèse étudie l’utilisation
de facteurs liés à la densité dans des approches hybrides pour améliorer la simulation et la
prédiction des mouvements de piétons dans des situations de forte densité. Elle s’articule autour
de deux axes principaux : améliorer la simulation des piétons dans divers scénarios de foule et
améliorer le réalisme des prédictions (provenant d’algorithmes d’apprentissage profond)à de
trajectoire des piétons dans des scénarios de foules denses.

La première amélioration se concentre sur le développement d’un framework à base d’agents
qui permet aux agents piétons de changer dynamiquement de modèle de comportement en
réponse aux changements de densité locale. La capacité de basculer entre les modèles est
illustrée par le couplage hybride d’un modèle mésoscopique et d’un modèle microscopique
pour simuler un scénario d’évacuation d’une foule dense et de grande taille lors de la Fête des
Lumières à Lyon, en France. Le modèle hybride est ensuite calibré à l’aide d’un algorithme
génétique qui utilise des données réelles sur le flux de piétons extraites d’enregistrements vidéo
réalisés durant le festival de 2022. De plus, une analyse de sensibilité locale est effectuée pour
évaluer l’impact de chaque paramètre sur les résultats des simulations. Les résultats simulés
par le modèle hybride montrent qu’il peut capturer qualitativement les tendances générales
des données réelles sur le flux de sortie. De plus, une comparaison des performances entre le
modèle hybride et différentes combinaisons de modèles est proposée, montrant que le modèle
hybride peut simuler efficacement les piétons dans des scénarios de densité variable tout en des
meilleures performances en termes de temps de calcul quand le nombre d’agents devient grand.

La deuxième amélioration consiste à proposer un modèle de réseau de neurone (Social-LSTM)
étendu en intégrant un terme de gestions des collisions dans la loss fonction d’entraînement pour
résoudre le problème de l’apparition de collisions irréalistes dans la prédiction des trajectoires



des piétons. Le terme de gestion des collisions est basé sur l’énergie d’interaction du temps de
collision avec les piétons voisins, un concept appliqué avec succès pour modéliser les interactions
entre les piétons dans des recherches antérieures. Un facteur de pondération λ ≥ 0 est utilisé
pour ajuster l’influence du terme de diminution de collisions. Les expériences menées sur divers
jeux de données empiriques indiquent que l’augmentation de λ réduit considérablement les
collisions et les chevauchements de piétons dans les trajectoires prédites tout en maintenant une
erreur basée sur la distance relativement stable. Ces résultats préliminaires suggèrent que notre
modèle représente une approche hybride prometteuse pour la prédiction réaliste des trajectoires
des piétons, en particulier dans les scénarios de foule.
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The significant increase in mass-gathering events in recent years poses the essential need for
realistic simulation and prediction of dense crowd movements before implementing further

applications such as safety control or risk management. However, different crowd phenomena
typically emerge at certain density levels while each modeling approach is commonly used
to simulate only one or several specific crowd phenomena. This thesis investigates the use
of density-related factors in hybrid approaches to improve the simulation and prediction of
pedestrian movements in high-density situations. The investigation is divided into two primary
focuses: improving the simulation of pedestrians across various crowd scenarios and enhancing
the realism of pedestrian trajectory predictions using the deep learning approach in crowded
scenarios.

The first improvement focuses on developing a comprehensive agent-based framework that
allows pedestrian agents to dynamically switch between models in response to changes in local
density. The ability to switch between models is demonstrated through the hybrid coupling of
a mesoscopic model and a microscopic model to simulate a large, dense crowd exit scenario
in the Festival of Lights in Lyon, France. The hybrid model is then calibrated using a genetic
algorithm that utilizes real-world pedestrian outflow data extracted from video recordings of
existing crowds at the festival. Furthermore, a local sensitivity analysis is performed to evaluate
the impact of each parameter on the simulation outputs. The results simulated by the hybrid
model can qualitatively capture the general trends of the actual outflow data. Additionally,
a performance comparison between the hybrid model and different model combinations is
provided, showing that the hybrid model can effectively simulate pedestrians in varying density
scenarios while maintaining computational efficiency.

The second improvement involves proposing an extended Social-LSTM neural network
model by integrating a collision loss term into the training loss function to address the issue of
unrealistic collision behavior in pedestrian trajectory prediction. The collision loss term is based
on time-to-collision interaction energy with neighboring pedestrians, a concept successfully
applied to model interactions between pedestrians in previous research. A weight factor λ ≥ 0
is used to adjust the influence of the collision loss term. Experiments on various empirical



pedestrian datasets indicate that adding λ significantly reduces collisions and pedestrian overlaps
in predicted trajectories. However, the effectiveness of λ varies across various datasets, showing
different trends of evaluation metrics. Therefore, the optimal λ value must be determined for
each specific dataset. In general, the best value λ is chosen to balance distance-based accuracy
and collision reduction. These preliminary results suggest that our proposed model represents a
promising hybrid approach for realistic pedestrian trajectory prediction, particularly in crowded
scenarios.
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General Introduction

The frequency of large-scale events has increased globally over the years, with many reaching
high-density levels of crowds. At these levels, the locomotion of most pedestrians in the

crowds is significantly restricted due to limited walking space, leading to an increase in complex
interactions among pedestrians. For instance, at mass-gathering festivals or crowded peak-hour
metro stations, pedestrians tend to move slowly and physically interact with their neighbors.
Therefore, the dynamics of pedestrian flow vary dramatically depending on crowd density. This
poses an essential task of investigating the role of crowd density in simulating and predicting
how pedestrians move and interact with each other in these situations before implementing
other measurements, such as safety control or risk assessments. Computer modeling is an
effective tool for this task, especially with recent advancements in computational power that
allows modellers to simulate and predict crowd dynamics at a large scale. Through the computer
modeling approach, researchers can test various scenarios of crowd dynamics under different
environmental conditions and model parameters.

Numerous approaches for crowd simulation and prediction exist in the literature, each
exhibiting its own advantages and limitations. Specific models are typically recognized for their
efficacy in addressing particular characteristics of crowds. Consequently, it is still questionable
whether a single model can effectively capture various kinds of crowd dynamics in heterogeneous
environments where crowd density changes both temporally and spatially or whether using a
hybrid approach may be necessary to have more comprehensive simulations and predictions.
This question motivates this thesis to investigate how to incorporate density-related factors into
two categories of models, the prediction model and simulation model, to simulate and predict
dense crowd dynamics.

1
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Contributions

The novel contributions of this thesis are as follows:

• The first contribution is a comprehensive review of state-of-the-art techniques used in the
simulation and prediction of dense crowds. A thorough examination and comparative
assessment of modeling techniques for pedestrian behavior across different decision-
making levels are conducted using evaluation criteria specifically tailored to high-density
scenarios. Through this analysis, the advantages and disadvantages of existing approaches
for high-density situations are highlighted together with potential research directions.

• The next contribution is a public release of a high-density pedestrian dataset, with a
maximum density of 2.6 ped/m2, obtained from mass-gathering events during the Festival
of Lights 2022 in Lyon, France. This data collection was conducted in collaboration with
members of the Franco-German MADRAS project team. The dataset addresses the current
lack of publicly available data in high-density real-world scenarios, as most existing dense
crowd data originates from controlled laboratory experiments. Subsequently, this dataset
is used to improve two types of models: simulation models and prediction models.

• The third contribution relates to the simulation model, which is a novel agent-based
framework for coupling models to simulate dense crowd dynamics. First, we propose
a generic architecture to couple models that enables agents to dynamically switch their
models based on local crowd density. This architecture is designed to accommodate any
model as long as it satisfies specific input-output conditions. Next, the ability to combine
different models is demonstrated by an example of coupling microscopic and mesoscopic
models for a case study of a mass-gathering event – the Festival of Lights in Lyon, France.
We design a genetic algorithm to calibrate and validate the framework using empirical data
collected from the festival. Simulation and prediction results are analyzed and evaluated
to highlight the advantages and drawbacks of the framework.

• The final contribution involves improving prediction models, which are neural network
models for predicting pedestrian trajectories in dense crowds. Neural network models
have newly emerged in the last decade, and it is identified in the aforementioned systematic
review that these models exhibit unrealistic predictions with many collisions in high-
density scenarios. To address this, the Social-LSTM [11] model is extended by integrating
a collision loss component into the training function. The collision loss is derived



CONTENTS 3

from interaction energy that quantifies the local density based on time-to-collision with
neighboring pedestrians.

Manuscript Organization

The manuscript is organized as follows:

• Chapter 1 provides the context for this study. Firstly, it introduces the common concepts
and terminologies used in pedestrian simulation and prediction, especially in crowded
environments. Next, the chapter addresses the problem state and the motivation of this
study, followed by the research question and the objectives of the thesis.

• Chapter 2 presents a systematic review that analyzes modeling techniques for simulating
and predicting dense crowds. The chapter starts with the methodology used to collect a
huge number of articles related to the modeling of multi-level decision-making pedestrian
behavior in high-density scenarios. Subsequently, the models developed in these articles
are analyzed and evaluated to highlight their advantages and disadvantages, using various
evaluation criteria suitable for high-density situations. Finally, the chapter concludes by
proposing future research directions in dense crowd simulation and prediction.

• Chapter 3 describes the high-density data collection conducted during the Festival of
Lights 2022 in Lyon, France. This chapter first outlines the experimental design and the
data collection methodology. It then presents data records obtained and analyzes these
data, as well as the technical validation of the data.

• Chapter 4 proposes an agent-based framework for coupling simulation models. The
chapter begins with the design of a generic architecture for the framework aimed at
integrating various simulation models. This architecture is designed to allow pedestrian
agents to dynamically modify their model based on local crowd density. Next, the ability
to couple models of the framework is demonstrated through a real-world case study
involving the simulation of large, dense crowds exiting during the Festival of Lights. In
the last section, the performance of the framework is evaluated, and the validation and
sensitivity analysis are conducted using empirical high-density data.

• Chapter 5 proposes the extended Social-LSTM model [11] to predict more accurately
pedestrian trajectories in densely populated environments. This extension integrates a
collision loss term into the training function. The collision loss component is based on
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interaction energy using time-to-collision of neighboring pedestrians. In the experiment,
the proposed model is trained and tested on both low-density and high-density datasets.
Finally, the prediction results are evaluated using not only distance-based accuracy metrics
but also newly proposed collision metrics.

• Finally, conclusions of results and discussion on limitations and perspectives are presented
in Chapter 6.

Declaration of Generative AI and AI-assisted technologies in the writing process: During the preparation of this
manuscript, the author(s) used GPT-4 in order to improve readability and language. After using this tool/service, the
author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the manuscript.
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6 CHAPTER 1. CONTEXT

This chapter provides the context for the study by first introducing the problem that motivates
this research. It then presents the common concepts and terminologies used in crowd simulation
and prediction. Finally, it outlines the research questions and objectives of the thesis.

1.1 Introduction

The early 2000s witnessed the emergence of several influential models [12, 13, 14, 15] for
simulating pedestrian behavior. Since then, this field has grown significantly over more than two
decades with considerable effort dedicated to developing new techniques as well as variations of
these models to simulate and predict pedestrian behavior in more complex situations. Pedestrian
simulation and prediction in high-density scenarios is one of the typical cases. However, realistic
simulation and prediction of large dense crowds (with a density greater than 2 ped/m2)
remains a challenging task for several reasons.

The first reason is that pedestrian behavior varies with crowd density [16, 17]. For example,
pedestrians can walk freely and sometimes avoid collisions with others in low-density settings.
However, in high-density situations, they may have to follow people in front of them to navigate
through dense crowds. This difference in pedestrian behavior is because personal space plays a
vital role in shaping pedestrian behavior, and it is significantly reduced in crowded environments
due to numerous surrounding neighbors. Consequently, pedestrians must adapt their behavior to
the new situation. Furthermore, complex interactions, such as physical interactions, are more
likely to occur in crowded situations. Therefore, many models exhibit known limitations when
applied in different high-density scenarios. For example, the Social Force Model generates
abnormal oscillations [18], the Velocity Obstacle Model causes congestion in high-density
bidirectional flow [19], the data-driven models yield unrealistic collisions in predictions [7, 9].

In addition, the validation of simulation and prediction models for dense crowds remains
an open question. While most models have been calibrated for low-density situations [20],
there exists a notable research gap in obtaining empirical data in high-density conditions. The
acquisition of empirical data in densely populated real-world events is particularly challenging
due to the difficulties in accurately extracting pedestrian data from recordings [21]. On the other
hand, laboratory data from controlled experiments has often been found to be expensive and
lacks realism in several contexts, such as evacuations, because of ethical constraints and the
balance between realism and potential risks to participants [17].

These aforementioned challenges in dense crowd simulation motivate this research, which is
a part of MADRAS (Multi-Agent modelling of Dense cRowd dynAmicS: Predict & Understand)
[1]. It is a French-German project funded by Agence Nationale de la Recherche (ANR) and
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Deutsche Forschungsgemeinschaft (DFG) for a 3-year grant. This project aims to develop
accurate and reliable agent-based models to predict and understand dense crowd dynamics
(densities from 2 to 8 ped/m2). Two modeling approaches are primarily pursued, including
neural network models and physics-based models. The novelty of the project lies in the focus
on the high-density regimes of crowds, an aspect often underrepresented in current research
literature.

Partners from four universities with different backgrounds participate in the project, with
two from the French side, Toulouse Capitole University, Claude Bernard University Lyon 1,
and the other two from the German side, University of Wuppertal and University of Cologne.
Each PhD candidate has a three-month cross-institute research visit to collaborate with teams
from the other side. The author spends this period at the University of Wuppertal working with
Antoine Tordeux and Raphael Korbmacher. The collaboration focuses on developing a deep
learning approach to predict pedestrian trajectories in crowded situations.

1.2 Background

Crowd simulation and prediction is an interdisciplinary research field that aims to understand,
simulate, and predict pedestrian behaviors in various environments. This field has been applied
in numerous domains, such as urban planning [22], computer graphics [22, 23], evacuation [24],
safety science [25], etc. This section presents the primary concepts and terminologies used in
crowd simulation. A glossary of similar terminologies can also be found in [20, 26, 27].

1.2.1 General concepts

From the perspective of crowd simulation, a pedestrian is defined as a person moving on foot
in a publicly accessible area [27]. The velocity of a pedestrian refers to its walking speed in
the direction of movement. When each pedestrian moves, they create a trajectory which is a
sequence of pedestrian positions over time [28].

Pedestrian behaviors can be classified into different decisional levels based on their objectives
and environment. This thesis relies on the classification criteria proposed by Hoogendoorn and
Bovy [29] to define multi-level behaviors of pedestrians:

• Strategic level: at this level, pedestrians formulate a list of desired activities (or
destinations, in other words) and establish a timeline for each task that they intend to
accomplish during their journey.
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• Tactical level: pedestrians compute a route to reach their predetermined targets based on
their knowledge of the environment. This route can be global or local, depending on their
understanding and familiarity with the environment.

• Operational level: pedestrians actualize decisions made at the strategic and tactical levels
through physical movement while managing local interactions, such as navigating among
neighbors or avoiding collision with obstacles.

The classification of these three hierarchical levels provides a holistic perspective of pedestrian
behaviors by considering both long-term and short-term decision-making behaviors rather than
solely focusing on local movements of pedestrians.

Situations containing a large number of pedestrians can form a crowd. There are many
definitions of a crowd in the literature. In this study, we use the definition provided in the review
conducted by Duives et al. [20]:

“A crowd is a large group of individuals (N ≥ 100P ) within the same space at
the same time whose movements are for a prolonged period of time (t ≥ 60s)
dependent on predominantly local interactions (k ≥ 1 ped/m2).”

The most fundamental aspects of a crowd are often captured by the fundamental diagram,
which plots the functional relationships between three quantities: density, speed, and flow.

The density of a crowd is calculated as the average number of pedestrians per space unit at a
given time. Although the definition of high density may vary across domains and applications,
this thesis defines the high-density level using the condition of pedestrian movement in the
crowd. Accordingly, the density level is considered high if it is greater than 2.0 ped/m2.
This threshold is chosen because densities at or above this level typically restrict all pedestrian
movements [30]. The density of crowds in some real-world case studies [31] can reach extremely
high values up to 9 ped/m2.

On the other hand, the flow of a crowd is the rate of pedestrians passing a specific location
or area per time unit. Previous studies have shown that crowd flow starts to decrease at densities
exceeding 2.8 ped/m2 [32].

A common way to model pedestrians’ behaviors is using multi-agent systems. From this
perspective, pedestrians are considered as agents that are simulated in computer systems. There
are also various definitions of an agent, this study uses the one that is commonly accepted:

“An agent is a computer system that is situated in some environment, and that
is capable of autonomous action in this environment in order to meet its design
objectives” [33].
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An agent can interact with other agents as well as with the environment. The environment
represents the spatial settings in which agents are situated and perform actions at each simulation
step. It is characterized by various elements such as obstacles, buildings, walkable spaces,
facilities, etc. Depending on the experiments, the environment can vary from simple corridors
to complex shapes represented by shapefiles.

1.2.2 Phenomena

Several emergent pedestrian behaviors and collective phenomena have been observed in high-
density situations. The following describes the main pedestrian behaviors and crowd phenomena
used in this study.

Group behavior. When walking in social groups, such as friends or family, pedestrians
exhibit group behavior to stay close to one another. This socially coordinated behavior is
influenced by the movements of other group members and aims to maintain a certain level of
cohesion within the group. The group’s structure depends on the number of members and the
density of the surrounding area. In low-density environments, people in groups typically walk
side by side, but in crowded areas, they tend to form a V-like shape [34]. Modeling group
behavior of pedestrians in real-world scenarios is important as many pedestrians in crowds are
part of social groups [34, 35].

Lane formation. Lane formation is a phenomenon in which groups of pedestrians
walking in the same direction self-organize into lanes. This self-organization minimizes conflicts
and interactions with other pedestrians moving in opposing streams, especially in crowded areas.
The lane formation phenomenon is typically observed in the continuous bidirectional or crossing
flow of pedestrians, such as in long, narrow corridors.

Following behavior. The following behavior, also called leader-follower behavior, occurs
when pedestrians follow predecessors who are moving in the same direction. This behavior is
likely to emerge in situations where personal space is limited and the route ahead is not clearly
visible. As a result, pedestrians tend to follow the movement of leaders to reduce potential
interactions and to navigate through dense crowds [36]. From a macroscopic perspective, the
localized following behavior of individuals leads to the formation of lanes in crowds.

Physical interaction. Physical interactions usually occur in crowded scenarios where
pedestrians lack sufficient space for free movement and tend to interact physically with their
neighbors. These interactions are, for example, physical contact, collisions, or pushing. The
impact of physical interactions on pedestrian behavior and the dynamics of crowds becomes
particularly significant in extremely high-density scenarios, as they are the primary reason for
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crowd turbulence [31].
Replan behavior. Replan behavior refers to how pedestrians modify their strategic or

tactical plans to adapt to the dynamic state of their surroundings. This behavior is predominantly
psychological and reflects the decision-making processes of individuals prior to translating into
physical actions. For instance, pedestrians may initially possess a predetermined route to their
destination but may choose to replan their planned route or even alter their destination to move
away from congested areas.

Shockwaves. Shockwaves in crowd dynamics are wave-like propagation caused by sudden
and discontinuous changes in the flow, density, or speed of pedestrians. Shockwaves typically
occur in unidirectional crowds at densities above 4.3 ped/m2 [37] and usually are observed
before crowd turbulence happens [31].

Crowd turbulence. At critical density, the crowd becomes extremely compressed with
pedestrians experiencing pushing forces from multiple directions [16, 37]. This leads to panic and
turbulent behavior of pedestrians, which are the primary causes of falls, stampedes, and related
incidents. Crowd turbulence is typically observed when densities exceeding 8.5 ped/m2 [37].

In summary, different crowd behaviors and phenomena have been observed at certain
high-density levels. Crowd flow starts to decrease [32] when density exceeds 2.8 ped/m2.
Stop-and-go waves usually occur [37] at densities higher than 4.3 ped/m2. Crowd turbulence
arises when density is above 8.5 ped/m2. In some exceptional cases, densities can reach up
to 9 ped/m2 [31]. Therefore, modeling high-density crowds must take into account emergent
phenomena corresponding to each density interval to ensure the realism of simulations.

1.3 Research questions

Given the crucial role that crowd density plays in modeling dense crowds, this thesis aims to
investigate the use of density-related factors to improve two types of models: prediction models
and simulation models. Specifically, this thesis seeks answers to the following research questions
related to hybrid approaches taking density factor into account to simulate and predict dense
crowd dynamics:

• How to integrate density-related factors into prediction and simulation models to address
high-density scenarios?

• How to couple simulation models in a single framework to have more comprehensive
simulations of crowd dynamics across various densities?
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• How can we combine or switch simulation models in a generic manner? Is a general
architecture needed for this purpose? Furthermore, can this general architecture also be
adapted to simulate a variety of dynamics, not limited to crowd dynamics?

• For prediction models, is it necessary to develop a new neural network architecture that
specifically incorporates density factors to predict pedestrian trajectories in high-density
situations or can density factors be integrated into existing neural network models?

• Given density factor integrated into prediction and simulation models, how to calibrate
and validate these models based on empirical data in high-density situations?

1.4 The objectives of this thesis

This thesis aims to pursue these key objectives:

• O1: The first objective is to review and understand the strengths and limitations of existing
prediction models and simulation models for dense crowds. From that, we identify the
current research gaps in the literature and propose directions to improve these models.

• O2: The next objective is to collect high-density data from real-world case studies and
use it to calibrate and validate these above models.

• O3: The third objective focuses on simulation models. We aim to design an agent-based
framework for coupling different simulation models using the crowd density factor to
simulate various crowd phenomena. This framework must be generic enough to allow
numerous models to be integrated. Furthermore, the architecture of the framework should
be extensible to other dynamics like traffic simulation.

• O4: The final objective aims to improve prediction models by integrating density factors
into neural network models to tackle the problem of unrealistic prediction generated in
crowded scenarios. Concurrently, the design of novel evaluation metrics is also targeted
with the aim of providing more accurate quantification of predictions in high-density
conditions rather than only using distance-based metrics.
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The previous chapter outlined the context, motivation, and objective of this study, along with
related concepts, terminologies, and phenomena commonly used in pedestrian modeling and
simulation. It highlighted our goal to investigate the role of density-related factors in developing
models for simulating and predicting pedestrian dynamics in crowded situations. Before
presenting my own contributions in the following chapters, this chapter presents a systematic
review of state-of-the-art techniques for modeling pedestrian behaviors with a primary focus on
high-density scenarios. This work has been published in [6] where the author was the primary
contributor.

2.1 Introduction

Pedestrian modeling and simulation have been an active research area for several decades,
particularly since the early 2000s with the advent of various well-known models ranging from
microscopic models [12, 13, 38] such as Social Force Model to macroscopic models [14, 15].
These models can be used to analyze the capacity of infrastructure, for example, in Hajj religious
events.

Among all the works about pedestrian modeling and simulation, interest for high-density
situations is still new and these situations are less explored. As a consequence, there is only a
small ratio among existing reviews on approaches for modeling pedestrian behaviors that focus
on this issue. A detailed discussion of these reviews is presented in the next section. In contrast,
our systematic review offers the following novel contributions:

• A thorough investigation of various approaches for modeling pedestrian behaviors at
different decision-making levels, with investigation starting from the classical model of
each approach to its variations to simulate pedestrian behavior in high-density scenarios.

• A comprehensive evaluation and comparison of these approaches using various criteria
appropriate for high-density conditions, such as simulated density level and model’s ability
to simulate pedestrian emergent behavior in crowded situations, among other factors.

• An assessment of the strengths and limitations of these approaches in handling dense
crowd characteristics.

• A proposal of potential research directions for future development of pedestrian modeling
in high-density conditions.

Given the advent of many well-known models in the last two decades, our review focuses on
studies published from January 1, 2000, to December 31, 2023.
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This chapter is organized as follows. Section 2.2 provides an overview of existing reviews
on pedestrian modeling and discusses the limitations of these reviews in summarizing modeling
approaches for high-density scenarios. Section 2.3 details the methodology for selecting the
corpus of relevant articles and provides a first quantitative analysis of these articles to highlight
emerging trends. Next, Section 2.4 examines, evaluates, and compares the advantages and
disadvantages of state-of-the-art approaches for modeling pedestrian behaviors across different
decision-making levels in high-density environments using a selected set of criteria. Section 2.5
proposes potential research directions in the future development of dense crowd modeling and
simulation. Lastly, the chapter concludes with a summary and discussion in Section 2.6.

2.2 Related work

Numerous surveys and reviews have been conducted to summarize existing modeling approaches
for pedestrian simulation. For instance, Helbing and Johansson [26] provided a short overview
of the development history of the field of pedestrian modeling and simulation. Furthermore, this
study explored the challenges of modeling the self-organized and panic behavior of pedestrians
during evacuations and highlighted the effectiveness of social force-based models in addressing
these phenomena. Zhou et al. [39] proposed qualitative criteria to evaluate pedestrian modeling
approaches based on model capability and performance. Yang et al. [40] carried out a survey to
review methods for modeling pedestrian behaviors developed over the last decade. Musse et
al. [41] provided an overview of the evolution of pedestrian modeling techniques through different
time periods through an extensive collection of articles over the last three decades. Likewise,
van Toll and Pettre [42] reviewed the main techniques that have emerged or been improved to
simulate pedestrian behavior in the past decade, with the primary focus on microscopic models.
Bellomo and Christian [43] provided a comprehensive examination of mathematical models for
simulating macroscopic characteristics of crowd dynamics.

Besides these general reviews, some other papers attempt to specific characteristics or
phenomena modeled in crowd simulations, such as group dynamics, and hybrid modeling...
Cheng et al. [35] carried out a review to examine microscopic techniques capable of modeling
pedestrian group dynamics. Lately, Alexandre and Fadratul [44] analyzed the effect of social
groups on the overall crowd movement and summarized different approaches to model these
social groups. Ijaz et al. [45] conducted a review to investigate hybrid approaches that combine
different pedestrian modeling paradigms. Papadimitriou et al. [46] examined models for route
choice and crossing behavior in urban settings, highlighting the lack of models capable of
simulating complete pedestrian trips. A thorough review was performed by Basu et al. [47]
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to investigate various factors affecting the route choice behavior of pedestrians. These factors
were then classified into three classes, including pedestrian socio-demographic characteristics,
environmental characteristics, and trip characteristics.

In parallel to these surveys mainly focused on models, another set of papers discussed
empirical studies and the use of data in pedestrian simulations. Surveys reviewing experimental
pedestrian data and empirical approaches can be found in [17, 48]. The studies noted that most
empirical datasets were collected under normal conditions, with only a few datasets obtained
in emergency and panic scenarios. Almoaid et al. [49] reviewed modeling approaches that
have been specifically applied to simulate the Hajj-Tawaf pilgrimage - the world’s largest mass
gathering. Their findings indicated that microscopic models were commonly used to simulate
dense crowds in this case study; however, the highest number of pilgrims simulated in these
studies was significantly lower than the actual number of attendees at the event. Feng et al [21]
conducted a thorough examination of approaches for collecting pedestrian data. Zhong et
al. [50] reviewed various methods for calibrating and validating pedestrian simulation models
using empirical data. Korbmacher and Tordeux [28] conducted a comprehensive comparison
of the accuracy of neural network algorithms and classical pedestrian simulation models in
predicting human trajectories. Their result indicated that neural network algorithms performed
more accurate predictions compared to classical pedestrian simulation models.

While there have been many reviews and surveys on pedestrian modeling and simulation,
the majority have focused primarily on regular circumstances rather than high-density
situations. Recent systematic reviews, particularly since 2021, have notably lacked focus on
modeling methods that simulate pedestrian behavior in high-density scenarios. More specifically,
Musse et al. [41] provided a historical overview of emerging techniques from each time period
but did not analyze in detail their technical aspects. van Toll et al. [42] presented a thorough and
insightful analysis of prevalent microscopic models for simulating pedestrian behavior; however,
their survey lacks further quantitative metrics to evaluate and compare model performance.
Korbmacher and Tordeux [28] primarily focused on comparing classical pedestrian simulation
models and neural network models in terms of application domains, technical aspects, and
distance-based prediction accuracy between in low-density situations. Zhong et al. [50] focused
only on examining calibration and validation methods for pedestrian simulation models. Basu et
al. [47] mainly investigated approaches for modeling the route choice behavior of pedestrians
while not considering local movement and interactions. While Nicolas and Hassan [44] explored
methods for modeling social groups across various densities, social groups represent only
one facet in the broader spectrum of modeling crowd dynamics in high-density scenarios.
The comprehensive review carried out by Dorine et al. [20] in 2013 remains the only study
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investigating pedestrian modeling techniques at both low-density and high-density conditions;
however, there is a pressing need for covering more recent studies addressing high-density
crowds. To address this gap, we conducted a systematic review with a main focus on examining
modeling techniques for simulating pedestrian behavior in high-density scenarios.

2.3 Methodology

2.3.1 Articles collection

A large number of relevant articles were collected from two databases: Web of Science and
Science Direct. Suitable keywords have been prepared, which address the primary focus on
simulating pedestrian behavior in high-density scenarios, to query the databases:

“TS = ((crowd OR pedestrian) simulation model AND (dense OR high-density))”

Here, the phrase “crowd OR pedestrian” ensures the inclusion of all research related to pedestrian
crowds, whereas the phrase “simulation model” focuses on the development of models to simulate
pedestrian behaviors. Next, the phrase “dense OR high density” highlights the specific interest
in high-density contexts, which is the focus of this study. Finally, the “AND” operator connects
the key search terms to retrieve relevant articles.

Figure 2.1 presents the flow diagram for collecting articles relevant to the modeling of
pedestrian behavior in high-density situations. A systematic search using the aforementioned
search keywords was conducted in January 2023 in the two databases. The search was limited
to titles and abstracts of journal articles and conference proceedings published between 2000
and 2022. The search resulted in 458 papers in Web of Science and 445 papers in Science
Direct, respectively. Furthermore, an additional 152 relevant articles were collected through a
thorough check of the reference lists of the initially collected articles. This process involved
manually examining the citations within these articles to find studies that align with our focus on
high-density pedestrian behavior. Additionally, recent studies published in 2023 were included.
Following the exclusion of 249 duplicates, the screening process was applied to a total of 806
articles.

In the screening process, papers are selected when they satisfy the following inclusion
criteria:

• The article must present new techniques for modeling pedestrian behaviors in at least one
of three decisional levels of pedestrian behavior [29], with a specific focus on high-density
contexts.
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Figure 2.1: Flow diagram for collecting articles relevant to the modeling of pedestrian behavior
in high-density situations.

• The simulated situations must contain and/or exhibit the typical high-density crowd
characteristics like high-density levels and emergent behavior in crowded situations.

A total of 116 articles finally matched the inclusion criteria, and are analyzed in the next sections.
Table 2.3 compares all these models based on the chosen evaluation criteria.

2.3.2 Results

After having collected the corpus of relevant articles, each one is classified into one of the
three modeling levels of pedestrian behavior [29]. Note that while one article can exhibit
more than one level, it is classified based on its primary focus or main contribution to one
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specific level. The main classually es of models within each level of behavior are described in
Table 2.1. Tactical-level models include graph-based [51, 52, 53, 54, 55], navigation mesh [56]
and potential field [57, 58, 59, 60], while operational-level models consist of Social Force
model (SFM) [13, 61], Cellular Automaton (CA) model [12, 38], Velocity Obstacle (VO)
model [62, 63], Agent-based model (ABM) [64, 65], data-driven model [11, 66], macroscopic
model [14, 15, 67], and hybrid model [68, 69, 70].

Table 2.1: Main classes of models at different levels of pedestrian behavior.

Levels of behavior Modeling techniques

Strategic −

Tactical
Graph-based [51, 52, 53, 54, 55]
Navigation mesh [56]
Potential field [57, 58, 59, 60]

Operational

Forced-based models [13, 61]
Velocity Obstacle models [62, 63]
Cellular Automata models [12, 38]
Agent-based models [64, 65]
Data-driven models [11, 66]
Macroscopic models [14, 15, 67]
Hybrid models [68, 69, 70]

Figure 2.2 presents the percentage of articles contributing to each of the three decisional
levels and experiment types, respectively. It is worth noting that although a study may show
simulations of pedestrian behavior at different levels, its main contribution is often at one level.
The results indicate that most articles develop new techniques that aim to model operational-level
behavior, while significantly fewer studies focus on strategic-level modeling. This focus on the
operational level is understandable since modeling collision avoidance, the most fundamental
challenge in modeling pedestrian behavior, is at the operational level. In addition, experiments in
these studies are categorized into several classes, including evacuation [27], bottleneck [20, 27],
bidirectional [20], Hajj-Tawaf [25], and crossing [20]. As illustrated in Figure 2.2b, simulations
of pedestrian dynamics during emergency evacuations and at bottlenecks are the most popular
experiments. Finally, among real-world applications of extremely high density, the Hajj-Tawaf
religious event is the main case study.
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(a) Distribution of articles contributing to model-
ing each of the three decisional levels [29].

(b) Distribution of articles according to experiment
types.

Figure 2.2: Analysis results on the collected articles.

Figure 2.3 presents the number of yearly publications for dense crowd simulations from 2000
to 2023. The result indicates a notable increasing trend over more than two decades, particularly
in the second half of the period. A key factor driving this growth is the recent emergence (around
year 2016) of various prominent neural network models for predicting pedestrian trajectories
that demonstrate more accurate results compared to classical pedestrian simulation models [71].

Figure 2.3: Number of publications per year for dense crowd simulations.

Figure 2.4 presents the word cloud extracted from the abstract and authors’ keywords
of collected articles. The words “pedestrian”, “crowd OR pedestrian”, and “dynamic” are
commonly used in conjunction with “high density” and “evacuation”. This suggests that the
collection of relevant articles has effectively focused on dense crowd simulation.

Finally, an analysis of the usage of modeling techniques over time is conducted for two
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Figure 2.4: Word cloud extracted from the abstract and authors’ keywords of collected articles.

distinct periods: 2000 to 2011 and 2012 to 2023. Figure 2.5 presents the variations in the
number of studies in the two periods across the three decisional levels and the various modeling
approaches at the operational level. The result indicates a general increasing trend at all three
levels in the second half period. Nevertheless, a closer look at operational-level models reveals
that VO models exhibit only a minor increase in the number of studies in the second half
period. On the other hand, the other operational-level models, including SFM, CA model, ABM,
macroscopic model, and hybrid model, show a consistent increasing trend. Remarkably, the
advent of neural network data-driven models for predicting pedestrian trajectory is relatively
new, as supported by recent advancements in computational capacity and available datasets of
pedestrian trajectories.

2.4 Analysis of pedestrian simulation models

Modeling pedestrian behaviors in complex environments at three levels, including strategic,
tactical, and operational, can comprehensively capture different aspects of pedestrian decision-
making and actions [29]. Figure 2.6 presents the classical Perception-Decision-Action schema
across these levels. At the strategic level, people determine their desired destination, such as
choosing a specific store to visit in a shopping mall. The destination determined at this level
serves as the input for the tactical level, where pedestrians incorporate their environmental
knowledge with their chosen target to formulate a global or local route that guides them toward
their destination. Path planning algorithms are typically used to compute the best route in this
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(a) Three decisional levels. (b) Operational-level models.

Figure 2.5: Variations in the number of studies over the two periods: 2000 – 2011 and 2012 –
2023.

step. Next, the selected route is implemented at the operational level as a series of waypoints
or preferred velocities for pedestrian simulation models to simulate the local movement and
interactions of pedestrians. Furthermore, pedestrians may also adjust their initial plans, including
their destination or tactical route, in response to dynamic changes in the surrounding environment.
In the following subsections, strategic, tactical, and operational-level models are thoroughly
examined and compared to identify their strengths and limitations in simulating pedestrian
behavior in high-density conditions.

Figure 2.6: The classical Perception-Decision-Action schema.
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2.4.1 Strategic-level modeling

Strategic level modeling, often referred to as goal selection [72], is a crucial aspect of pedestrian
behavior modeling that focuses on how pedestrians select their destinations or targets. This
selection process is primarily driven by psychological interests and individual motivations.
Although pedestrian modeling has been broadly studied and applied in numerous applications,
modeling pedestrian behaviors at the strategic level has received relatively less attention in the
literature compared to strategic and tactical levels, as presented in Figure 2.2. This limited focus
on strategic-level modeling can be attributed to several reasons. Primarily, researchers have
concentrated on modeling pedestrian behaviors at the tactical and operational levels, which
include most pedestrian activities. Next, the shortage of empirical datasets for strategic-level
decision-making poses a significant challenge to calibrate and validate strategic-level models [73].
Finally, strategic-level models are more related to modeling human interests, which requires
insights from psychology, and has often been investigated separately from the field of pedestrian
modeling.

Strategic-level models simulate the goal selection behavior of pedestrians, which generates
a target for each pedestrian. These models are predominantly investigated in emergency
scenarios, where pedestrians typically identify an exit to escape quickly and safely. Among
these models are logit-based discrete choice models [74, 75], genetic-algorithm models [76],
exit choice models [73, 77], interest function models [78], and game theory-based models [79],
leader-follower exit-choice models [80].

2.4.2 Tactical-level modeling

Tactical-level models, also known as path planning [72], simulate pedestrian behavior to prepare
navigation strategies to move from current positions to intended destinations using environmental
insights. While simulations in simple scenarios like long corridors or bottlenecks can be
sufficiently represented using only operational-level models, tactical-level modeling is essential
in large, complex environments with numerous obstacles. Without tactical considerations,
simulated pedestrians may get trapped in local areas within such environments. Furthermore,
a fundamental assumption is that pedestrians own a cognitive map of their environment [81],
which they can use to plan routes to their destinations.

Path planning algorithms have been effectively used in robotic navigation [82] as well as
agent navigation in virtual environments. It can primarily be classified into two main approaches:
global path planning and local path planning:

• Global path planning algorithms use the entire environmental map to compute global
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paths from the origin to the target. Graph-based models [83, 84] and navigation mesh
models [85] are the two main models of this approach. Graph-based models [83, 84]
abstract the environment into a graph network of interconnected nodes and edges, where
nodes signify critical locations or points, and edges denote the feasible routes between
these nodes. Conversely, navigation mesh models [85] partition the environment into
polygonal zones representing walkable areas. In general, path search algorithms are
typically applied in these models to compute the shortest or fastest path for each individual.

• Local path planning algorithms like potential fields [86] compute local routes based on
perceptual information from pedestrians’ surrounding environment without requiring a
full environmental map.

While tactical-level models traditionally rely on using static environmental data, such as
obstacles and walkable areas, to compute guiding paths in low-density scenarios, this approach
works well in simple environments but is inadequate in densely populated environments where
the movement of other agents significantly impacts navigation. This limitation of static path
planning in crowded scenarios can be exemplified by the “faster-is-slower” effect [26, 87], where
a large number of pedestrians choosing the same shortest path based on static information, leading
to increased travel time and potential congestion. To tackle this issue, dynamic crowd-related
information such as crowd density or estimated space availability must be taken into account
dynamically for more effective and adaptable path planning[29]. Similar techniques [88, 89, 90]
are being applied to robotic navigation in high-density scenarios.

Global path planning commonly incorporates dynamic crowd-related data to dynamically
adjust graph weights. This allows path search algorithms to return adaptive routes that reflect
current crowd state information. Various studies have been proposed to improve global path
planning with dynamic information updates. For instance, Stubenschrott et al. [54] have
introduced local crowd density to estimate perceived travel time along graph edges, whereas Sud
et al. [53] have incorporated crowd density factors for continuous updates to roadmap weights.
The Principle of Least Effort, proposed by Guy et al. [91], computes the best energy-efficient
paths for pedestrian navigation by updating graph weights according to average pedestrian flow
speeds. Stüvel et al. [92] have integrated a clearance factor to Voronoi edges (as presented
in Figure 2.7a) to enable pedestrians to choose the best path for navigating through densely
populated environments. To model crowd movement in emergency scenarios, Liu et al. [55] have
proposed incorporating emotional factors and perilous field concepts into Delaunay triangulation
representations. Van Toll et al. [56] have proposed partitioning the environment into navigation
meshes using the medial axis and Explicit Corridor Map (as illustrated in Figure 2.7b), in which
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(a) Graph network in [92] (b) Navigation mesh in [56] (c) Navigation field in [59]

Figure 2.7: Different tactical-level models for pedestrian navigation: (a) Graph network
generated based on Voronoi edges (white lines); (b) Navigation mesh constructed using the
medial axis (blue lines) and orange lines connecting the medial axis vertices to proximal
obstacles; (c) Navigation field describing preferred moving directions of crowds across different
local areas.

crowd density in each mesh is updated when pedestrians move between meshes. However,
in large-scale environments like cities, using the global path-planning approach can lead to
computational challenges, especially during path searching. To address this issue, hierarchical
graph structures [52, 51] have been proposed to decrease the computation costs of path planning.
Given dynamic information integrated into graph networks, Stubenschrott et al. [54] have
enabled pedestrians to search for a better path as soon as they reach a node with multiple path
options. In contrast, Van et al. [56] have implemented regular updates of paths for pedestrians
after a specific time interval.

In contrast, local path planning considers the assumption that pedestrians have limited
visibility and memory constraints, leading them to make tactical decisions based on their
intermediate surroundings rather than having full knowledge of the entire environment. Zhang
et al. [57] have introduced a perceived potential field, which is extended from earlier potential
field [86], to simulate pedestrian tactical behavior with restricted visibility. Jiang et al. [59]
have developed a local dynamic navigation field (as illustrated in Figure 2.7c) by solving an
Eikonal-type equation on rectangular cells. Sun and Liu [60] have suggested a model that
combines a local density navigation field with an equipotential field to simulate pedestrian
evacuation in emergency scenarios. Hoogendoorn et al. [58] have incorporated density-gradient
dependent terms into the local path selection behavior of pedestrians, which leads to the
pedestrian tendency to avoid congested regions.

Table 2.2 shows a comparison of the characteristics of tactical-level models for simulating
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pedestrian navigation behavior in densely populated environments. In general, the effectiveness
of these models is influenced by various aspects, including environmental complexity, the number
of agents, and the algorithms themselves. Global path planning models are particularly beneficial
for computing complete routes in large-scale environments where the full environmental map
is known. These models are typically applied to initialize paths for a large number of agents
using static environmental information. Nevertheless, their computational demands can increase
substantially when simulating the replan behavior of pedestrians, particularly for large crowds.

Conversely, local path planning models are typically employed in situations where pedestrians
do not perceive full information about the environment or when the crowd dynamics are highly
volatile. The benefit of these models is their capacity to calculate short-term, adaptable routes
that reflect local changes in crowd characteristics. However, they incur greater computational
costs due to frequent updates needed to address the latest changes in crowd characteristics. In
conclusion, selecting between global and local path-planning models for simulating pedestrian
tactical behavior in high-density situations requires careful consideration of various factors
such as environmental complexity, computational resource availability, and the desired level of
realism in simulations of pedestrian tactical behavior.

2.4.3 Operational level modeling

Pedestrian simulation models at the operational level aim to simulate the local movement of
pedestrians by calculating their velocities for the next simulation steps. These models can
communicate with strategic- and tactical-level models through preferred targets and velocities,
respectively. Various operational-level models have been proposed to simulate pedestrian
behavior across diverse scenarios. They can be broadly classified into three main categories
based on the modeling scale:

• Microscopic models: these models focus on simulating the local behavior of individual
pedestrians and individual-level interactions among pedestrians. Microscopic models
are further categorized into theory-driven models and data-driven models. Theory-
driven models, including Social Force Models (SFMs), Velocity Obstacle (VO) models,
Cellular Automata (CA) models, and Agent-Based Models (ABMs), are grounded
on fundamental principles and hypotheses. They are typically built for a large range of
case studies and aim to be as generic as possible. The application to a specific situation
requires the calibration of parameters for realistic simulations. Conversely, data-driven
models learn pedestrian behaviors implicitly from empirical pedestrian datasets through
neural network architectures. As a consequence, they are built for a single application.
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Table 2.2: Comparison of the characteristics of tactical level models for simulating pedestrian
tactical behavior in high-density scenarios (CT: Construction time, MUT: Map update time, PST:
Path search time, NA: Number of agents, RT: Run time).

Articles Class Environment CT
(ms)

MUT
(ms)

PST
(ms)

NA RT
(fps)

Lamarche et al.
(2004) [51]

Graph City:
1.3km × 1.3km,
2600 obstacles

− − 25(2000)1 2000 10

Paris et al.
(2006) [52]

Graph Lazare train
station, France

− 11 − 2000 7

Sud et al.
(2008) [53]

Graph Tradeshow: 511
booths

− 5.5 7(1000) 1000 22

Stubenschrott et
al. (2014) [54]

Graph U2 subway
station, Austria

− − − − −

Stuvel et al.
(2017) [92]

Graph Small room − − − 20-30 −

Liu et al.
(2018) [55]

Graph Big maze 150 − − 2000 ≈
17

Van Toll et al.
(2012) [56]

Nav mesh City 500m x
500m

403 2 0.3(1) 20K 342

Zhang et al.
(2012) [86]

Potential
field

Room 16m x 10m − − − 600 −

Jian et al.
(2014) [57]

Potential
field

Corridor with
90◦ corner

− − − 100-
200

−

Hoogendoorn et
al. (2015) [58]

Potential
field

Room 30m x 30m − − − 100-
300

−

Jiang et al.
(2020) [59]

Potential
field

Room 18m x
18m, 1 obstacle
3m x 3m

− − − 100-
500

−

Sun et al.
(2021) [60]

Potential
field

Complex office
25m x 30m

− − − 100-
500

−

• Macroscopic models: aim to represent macroscopic characteristics of crowds, such as
density, flow, and overall collective dynamics.

• Hybrid models: typically couple both microscopic and macroscopic models into one
framework to leverage the strengths of each approach.

125 ms on 2000 agents.
2without path search.
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Figure 2.8: Hierarchical classification of operational-level models.

Applying operational-level models for simulating high-density crowds introduces significant
questions compared to low-density scenarios:

• One open question regarding whether the performance of these operational-level models,
which have proven to be effective in low-density scenarios, can be maintained in high-
density contexts.

• The next challenge is how to adapt these operational-level models to capture more
realistically emergent pedestrian behaviors and dense crowd phenomena and characteristics
in such conditions.

• Finally, a critical concern of how these models are calibrated and validated using
high-density crowd datasets to ensure the reliability of their simulation results.

This section seeks answers to these aforementioned questions by first examining the classical
model of each approach. It then investigates the applications of these models to highlight key
issues likely to arise when applying these models for simulating high-density scenarios. Lastly,
the section explores how the classical models have been adapted to better simulate pedestrian
behaviors in high-density situations.

Force-based models

The Social Force Model (SFM), proposed by Helbing et al. [13, 61], is one of the most influential
models used to simulate pedestrian dynamics. The model is based on the assumption that
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pedestrian movement is governed by a set of “social forces”. These forces are derived from
both intrinsic motivations, such as an individual’s destination, and extrinsic factors, including
attractive and repulsive effects exerted by neighboring pedestrians and obstacles. The SFM has
been proven to replicate realistically well-known crowd phenomena such as lane formation [61]
or semi-circle at the bottlenecks [93]. Mathematically, the SFM is grounded in Newton’s second
law of motion:

mi
dvi

dt
= mi

v0
i (t)e0

i (t) − vi(t)
τi

+
∑
j ̸=i

fij(t) +
∑
W

fiW (t) (2.1)

where mi represents the mass, v0
i (t), e0

i (t), and vi(t) denote the preferred speed, desired
direction vector, and velocity vector of pedestrian i at time t, respectively. In Equation 2.1, the
first component characterizes the motivation of pedestrians to move towards their destination at
a preferred speed through the acceleration from their current velocity to the preferred velocity
over a reaction time of τi. The second and third terms, fij(t) and fiW (t), describe the interaction
forces with neighboring pedestrians and obstacles (in a given radius), respectively, with the
primary focus on addressing collision avoidance behavior.

The emergent behavior of pedestrians in high-density scenarios can be modeled by incorpo-
rating additional types of forces into Equation 2.1. For instance, Hebling et al. [13] introduced
sliding friction and counteracting body compression forces to address physical interactions
between pedestrians in crowded situations. Nuria et al. [18] suggested a pushing force to
simulate the pushing behavior of individuals in a panic state. Yu and Johansson [37] proposed
an improvement to the repulsion force to more accurately simulate the intense reactions of
pedestrians under critical density conditions. The modified repulsion force was specifically
designed to exhibit the sudden and rapidly varying changes in forces, thereby generating crowd
turbulence phenomena by spreading localized force changes to a larger area. Mohamed et al. [94]
developed new forms of forces for the interaction of pedestrians during the mass-gathering
Hajj-Tawaf pilgrimage. Karamouzas et al. [95] proposed an anticipatory force based on an
implicit integration of a velocity-based energy function. Xu et al. [96] combined a forced-based
model and an emotional contagion model to simulate emotional spreading in high-density crowds.
Subramanian et al. [97] suggested a modified SFM to model the dynamics of pedestrian groups
in a chain-like formulation when navigating in densely populated environments. Likewise, Song
et al. [98] proposed an improved SFM that integrates a forward-learning force to address the
domino-like phenomenon when pedestrians have physical interactions with each other in a
queue.
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However, the original SFM exhibits several limitations when applied in high-density
scenarios. One major issue is that the repulsion force amplifies significantly as the interpersonal
distances between pedestrians decrease. In extremely dense conditions, when these distances
become minimal, the repulsion forces can reach very high magnitudes. This leads to abrupt and
significant changes in displacement, causing unrealistic oscillatory behaviors [99]. Moreover,
the conventional values assigned to the parameters of these forces typically result in pedestrians
maintaining a specific distance from other pedestrians and obstacles, thus making it difficult
to achieve an extremely high crowd density. Therefore, the parameters of SFM need to be
calibrated for the simulation of high-density scenarios. Numerous works have been conducted
to calibrate the parameters of SFM for more realistic simulations of dense crowds. Moonsoo et
al. [100] employed a maximum likelihood estimation method to calibrate the SFM’s parameters
using aggregated crowd video data of different density scenarios. Their findings indicated that
the influence of forces driving individuals toward their destination decreases significantly as
the density increases. In similar research proposed by Haghani and Sarvi [101], the parameters
of SFM were calibrated by a multi-directional search algorithm for realistic simulation of
pedestrian flows at narrow exits. Their study pointed out that the relaxation time and friction
force parameters are the most significant factors in generating accurate pedestrian outflows.
Shuaib [102] introduced a 6-order polynomial function of local density to estimate the value of
anisotropic angular parameter in [13]. Similarly, Narang et al. [103] suggested density-dependent
filters to compute the desired speed in Equation 2.1, with the aim of fitting the simulated velocity
with the empirical fundamental diagram [104, 105, 31, 106, 107, 108, 109]. Sticco et al. [110]
adjusted the friction coefficient in [13] to regulate the pedestrian flow in extremely congested
areas.

Several other improvements have been made to enhance the realism of SFM for dense-crowd
simulations. One such improvement was the introduction of a field of vision for pedestrians [18,
94, 111] to gather information about neighboring individuals that they predominantly interact
with. Nuria et al. [18] mitigated the unrealistic oscillatory behavior exhibited by the SFM by
introducing stopping rules. These rules apply when pedestrians are not in a panic state and are
experiencing significant repulsion forces from neighbors moving in the opposite direction in
their intended path. Additionally, more accurate representations of the human body have been
introduced, such as spheropolygons [112], three-circle shape [113], and elliptical shape [114], to
represent better heterogeneous characteristics of individuals in the crowds and the high-density
situations.
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Velocity Obstacle models

The Velocity Obstacle (VO) model was introduced by Paolo Fiorini and Zvi Shiller in 1993
[115] for the avoidance maneuver strategy of robots in dynamic environments. The VO model
constructs a geometric space, denoted as VOA

B , which represents the set of velocities that would
result in a collision with an obstacle (B that can be another robot or an obstacle from the
environment) [116]:

VOA
B(vB) = {v | λ(pA, v − vB) ∩ B ⊕ −A ̸= ∅} (2.2)

where pA, pB and vA and vB represent the positions and velocities of two disc-shaped agents
A and B, respectively. In addition, λ(p, v) is a ray that originates from point p and extends in
the direction of v:

λ(p, v) = {p + tv | t ≥ 0} (2.3)

Furthermore, A ⊕ B represents the Minkowski sum of geometric shapes of agents A and B,
whereas −A denotes the reflection of agent A’s geometry:

A ⊕ B = {a + b | a ∈ A, b ∈ B} (2.4)

− A = {−a | a ∈ A} (2.5)

Agent A is predicted to collide with agent B at a future time if a ray originating from agent A’s
position pA in the direction vA − vB (the relative velocities of agents A and B) intersects the
Minkowski sum of B and −A located at pB . As illustrated in Figure 2.9a, V OA

B(vB), called
velocity obstacle of A induced by B, is the set of velocities that, if adopted by agent A, would
lead to a collision between agents A and B. The collision-free velocity is chosen from the set
of feasible velocities such that it lies outside of the union of all velocity obstacles induced by
neighboring agents and obstacles.

Nevertheless, this avoidance maneuver does not consider the possibility that other agents
would adopt new velocities as well; this leads to unrealistic oscillations in the trajectories coming
from the reevaluation of other pedestrians’ unexpected trajectories (for an in-depth description,
refer to Section III. C in [62]). To address this problem, Van den Berg et al. proposed Reciprocal
Velocity Obstacle (RVO) [62] (as illustrated Figure 2.9b), which assumes that all moving agents
will reciprocally attempt to avoid collision through similar reasoning:

RVOA
B(vB, vA) = {v | 2v − vA ∈ VOA

B(vB)} (2.6)
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The RVO has demonstrated its effectiveness in producing collision-free and non-oscillatory
trajectories for each agent [62]. Building upon the achievement of RVO, Van den Berg et al.
proposed a further improvement called Optimal Reciprocal Collision Avoidance (ORCA) [63]
(as illustrated in Figure 2.9c) for choosing an optimal velocity that avoids collisions from multiple
agents simultaneously:

ORCAτ
A|B = {v | (v − (vA + 1

2u)) · n ≥ 0} (2.7)

where u is defined as the vector extending from vA − vB to the closest point on the boundary
of velocity obstacle (as depicted in Figure 2.9c). Here, n denotes the unit vector in the direction
u. Geometrically, u quantifies the minimum necessary adjustment in relative velocity between
agents A and B to guarantee collision-free movement over τ seconds.

(a) VO [116] (b) RVO [62] (c) ORCA [63]

Figure 2.9: Velocity obstacle models [116, 62, 63].

In densely populated environments, the significantly growing number of neighboring
agents can result in velocity obstacles encompassing the entire range of feasible velocities.
Consequently, identifying a collision-free velocity outside these velocity obstacles requires
relaxing some constraints. In such scenarios, RVO [62, 81] enables choosing new velocities
within the reciprocal velocity obstacles by employing a penalty function that maximizes the
time-to-collision with nearby agents while minimizing the difference with the preferred velocity.
Likewise, ORCA [63] determines a velocity that lies in the optimal reciprocal collision avoidance
set induced by as many neighbors as possible. Additionally, numerous modifications of velocity
obstacle formulations have been proposed for dense crowd simulations, such as truncated velocity
obstacle cone [117], hybrid coupling of RVO and VO for oscillation-free navigation [118], or
velocity obstacle constructing for agents with elliptical shapes.

Nevertheless, the choice of a new velocity from the feasible velocity set is performed
in a way that minimizes its difference from the preferred velocity. As a result, agents still
tend to choose velocities with high magnitudes in high-density situations. This leads to an
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inconsistency between the simulated and the empirical fundamental diagram (i.e. the relationship
between velocity and density) [104, 105, 31, 106, 107, 108, 109]. To handle this issue, a more
accurate determination of agent’s preferred speeds is performed by incorporating physiological
and psychological constraints like density filter [119, 103] or the relationship between the
stride-walking speed and the personal space [120].

The velocity obstacle methods predominantly focus on simulating collision avoidance
behavior; however, different emergent behaviors of pedestrians are observed in high-density
situations mainly due to physical interactions. To integrate fine representation of physical
interactions into VO-based methods, Kim et al. [121, 122] integrated force-related constraints
into the formulation of velocity obstacles. The details of this method are as follows:

vf
A = vA + fA

mA
∆t (2.8)

FCA = {v | (v − vf
A) · f̂A ≥ 0} (2.9)

PVA = FCA ∩
⋂

B ̸=A

ORCAA|B (2.10)

where ∆t denotes the simulation time step, mA and fA represent the mass and aggregate force
applied to agent A, respectively. The force constraint FCA is induced by fA. Geometrically, FCA

defines a half-plane bounded by a line that intersects vf
A and is perpendicular to the normalized

force f̂A of fA. This half-plane includes velocities whose differences from the current velocity
vA are greater than or equal to the minimum changes in velocity caused by the aggregate force
fA. A new velocity for agent A is selected from the permitted velocity set PVA, which is the
intersection of FCA and ORCAA.

Furthermore, several works have been developed to integrate different models with VO-
based models for a more diverse representation of pedestrian behavior levels. For instance,
[122, 123] proposed a combination of Finite State Machine (FSM) with RVO to simulate
high-level decision-making pedestrian behaviors at the Hajj-Tawaf pilgrimage mass-gathering
event. The FSM includes states that represent different behaviors, and each state is activated
based on temporal and spatial conditions as well as the agent’s state. Initially, the FSM evaluates
and adjusts parameters associated with each behavior for the agents before performing local
collision avoidance behavior using RVO (as shown in Figure 2.10). Similarly, Sudkhot et
al. [124] introduced a framework for faster and smoother navigation of agents by combining
the Belief-Desire-Intention (BDI) [125, 126] model for modeling the high-level path planning
behavior and the RVO for low-level collision avoidance behavior. Golas et al. [127] modeled the
density-sensitive behavior of pedestrians by incorporating long-range collision anticipation. As a
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result, agents are capable of predicting congested areas in advance and adjusting their trajectories
accordingly. By steering away from these congested areas earlier, agents can maintain smoother
trajectories and avoid abrupt changes in direction.

Figure 2.10: Combination of FSM and RVO in [123].

Cellular Automaton models

Initial applications of Cellular Automaton (CA) models for simulating pedestrians were proposed
by Burstedde et al. [12] in 2001 and Kirchner and Andreas [38] in 2002. These models consider
the environment as a grid divided into cells. Each cell typically has a size of 40cm × 40cm,
with the aim that each cell can hold a maximum of one pedestrian. The movement of pedestrians
at each simulation step is determined by the transition probability computed using the concept
of floor field. This floor field can be understood as an implicit additional grid of cells beneath
the pedestrian-occupied grid [12]. It consists of two elements: static floor field and dynamic
floor field. The static floor field, which is determined by the distance between cells and the
destination, provides a directional guide for pedestrian toward their targets. In contrast, the
dynamic floor field, inspired by the concept of chemotaxis, describes the virtual trail left behind
by pedestrians as they move and how it impacts other pedestrians move. This virtual footprint
can diffuse or decay over time. Both static and dynamic floor fields contribute to the calculation
of the transition matrix, which defines the probability of moving to adjacent, unoccupied cells
(using a Moore neighbor, i.e. with 8 neighbors cell). The CA models have been demonstrated to
produce well-known crowd phenomena such as lane formation in the bidirectional corridor or a
semi-circle at the bottleneck [12, 38].

However, the standard cell size of 40cm × 40cm used in the CA models limits the maximum
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density to 6.25 ped/m2, making it challenging to represent extremely high densities of 8–9
ped/m2 observed in real-world scenarios [31]. Furthermore, while simplifying a pedestrian to
an individual cell can avoid local collisions due to its nature, it restricts the direction and speed
to limited discrete values at any given time. The traditional CA models [12, 38] employed either
the Moore or the Von Neumann neighborhood, which constrains pedestrian movements to four
or eight possible directions. To address these limitations, finer discretizations of the environment
have been proposed to allow the simulation of higher densities and more flexible pedestrian
movement. In these cases, smaller cell sizes are applied, and consequently, the pedestrian shape
covers multiple cells, such as triangular cell [128], group of 3 × 3 cells [129, 130], group of
4 × 4 cells [131], group of 20 cells [132], group of 39 cells [133] (as shown in Figure 2.11).

(a) Jingwei et al. [128] (b) Bandini et al. [129] (c) Guo and Huang [130]

(d) Zhijian et al. [131] (e) Bazior et al. [132] (f) Sarmady et al. [133]

Figure 2.11: Finer representations for pedestrian shape.

In addition, representing pedestrian shapes by multiple smaller cells leads to a broader range
of movement possibilities. Several studies have expanded the directional choices to facilitate
smoother pedestrian movements. For example, Jingwei et al. [128] implemented triangular cells
for the representation of pedestrian shapes and enabled pedestrian movement in each cell to
14 possible directions corresponding to its 14 neighboring cells. Claudio et al. [134] added
a position at the center of each cell edge and allowed pedestrians to move to the midpoint of
the next cell edge if pedestrians counted in that cell less than a certain threshold. An extended
Moore neighborhood was suggested by Huo et al. [135] to simulate the stampede behavior of
pedestrians during evacuation scenarios in which pedestrians were enabled to walk two cells in
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one simulation step. Zhang et al. [136] addressed the ability of CA models to simulate group
behavior by developing transition rules for pedestrian movement to simulate pedestrians walking
in pairs with different decision-making capabilities at the metro station.

In the CA models, the emergent behavior of pedestrians in crowded situations can be
modeled by modifying the floor fields to address physical interactions [137, 130], group
behaviors [138], or by introducing new types of floor field such as force floor field [139, 140]
for physical interactions, local view floor field [141] for replanning behavior, anticipation floor
field [142, 134] for predicting future collisions, interplay floor field [143] for maintaining social
distance among agents, and environmental floor fields such as wall floor field [134, 143] or
water flood field [144]. These various floor fields influence the calculation of the transition
matrix, which in turn specifies the probability of choosing neighboring cells for movement in
the next simulation step.

Agent-based models

Agent-based modeling (ABM) is a bottom-up approach in which agents are considered unique
and independent entities capable of interacting locally with other individuals and their envi-
ronment [145]. In crowd simulation, an agent is a rule-based entity representing an individual
pedestrian. The agent-based approach provides the ability to simulate heterogeneous crowds and
can be combined with various other models [146]. Despite the flexibility in modeling pedestrian
behavior, this method requires careful consideration of the trade-off between model complexity
and computational costs.

It is worth acknowledging that the definitions of agent-based methods can sometimes be
ambiguous in the literature. Therefore, methods such as SFM, CA, and VO can occasionally
be categorized as part of the agent-based approach due to their consideration of pedestrians
as discrete individual entities rather than aggregated flows. In this manuscript, I limit the
agent-based models to models in which pedestrian agents exhibit autonomous decision-making
capabilities. Specifically, agents in ABMs typically possess advanced cognitive processes that
allow them to sense and evaluate their environment. Their actions then adapt based on these
perceptions, rather than following strictly predetermined rules. For example, in the scenario
of people evacuating from a building, pedestrians might choose the nearest exit in low-density
situations, but in high-density cases, they might opt for the quickest exit or follow a leader.

Shao and Terzopoulos [64] developed a comprehensive framework that integrates perceptual,
behavioral, and cognitive components to simulate complex decision-making behaviors of
pedestrians in various environments. Zhou et al. [147] embedded three different fuzzy inference
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systems into the decision-making behaviors of pedestrians, each inference system corresponding
to a specific level of pedestrian behavior [29]. These systems utilized information extracted
from agents’ perceptions, prior experience, and knowledge as inputs. The outputs from these
inferences were then combined to compute the turning angle and speed for pedestrian movement
in the next simulation step. Sharma et al. [148] trained a neural network to predict the adaptive
behavior of pedestrians during emergency evacuation. Their study also incorporated a fuzzy
logic system to infer pedestrians’ speed based on their emotional state and stress levels.

Moreover, agents have the capability to gather information from their neighboring areas,
which can greatly influence their immediate decisions and actions, especially in high-density
conditions. Research by Zheng et al. [108] has demonstrated that in densely populated areas, the
impact of neighbors ahead on pedestrian speed and acceleration is much stronger than that from
lateral neighbors. The traditional approaches [13, 62, 63] consider all neighboring pedestrians
within a predefined distance for local interactions. While this method is advantageous for its
simplicity and computational efficiency, more realistic simulations can be achieved in crowded
conditions by disregarding non-interacting neighbors. Several works have been proposed to
filter only neighbors that pedestrians actually interact with, by developing visual fields such as a
rectangle [18] or a cone shape [64, 147, 149, 150].

In high-density environments, pedestrians often cannot maintain their preferred walking
speed due to limited personal space. This space restriction can lead to psychological discomfort,
which in turn can affect decision-making processes and result in different emergent behaviors in
crowded environments [26]. Leader-follower behavior is one of the typical emergent behaviors
in these scenarios. This behavior involves the tendency of pedestrians to follow nearby people
ahead who are moving in similar directions to reduce the effort during navigation through dense
crowds [151]. Samuel et al. [65] carried out an experiment in one-dimensional pedestrian traffic
to investigate and model the following behavior of pedestrians. In their model, agents accelerate
their speed based on the relative movement characteristics of the agent in front of them. Godoy
et al. [151] computed the next velocity of the following behavior based on data collected from
the most similar and most constrained agents. Liang et al. [152] classified pedestrian crowds
into different groups based on their similarity of targets and velocities. The leader of each
group is selected based on proximity to the target and inability to follow another member.
The remaining members follow the leader while maintaining collision-free interactions with
inter-group members. Similarly, Liu et al. [153] suggested different criteria for leader selection
during emergency evacuations, including environmental familiarity, distance to exits, and
navigation knowledge. Mingbi et al. [19] proposed a role-dependent model identifying leaders
as those with current speeds much higher than the group average speed. A double-layer decision
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model was suggested by Li et al. [154] to address pedestrian decisions in choosing a detour
when perceiving a congested area in front. Xie et al. [155] developed an information-theoretic
method to model the spontaneous leader-follower behavior of evacuees during crowd emergency
scenarios.

Data-driven models

Over the last decades, the exponential growth in data availability coupled with significant
improvements in computational capabilities have made neural network methods a powerful tool
for investigating hidden patterns in large datasets. These approaches take inspiration from the
interconnected neural network structures found in the human brain. Neural network models have
been proven effective in solving complex problems and are employed in various applications
such as computer vision, autonomous vehicles, and business analytics.

Neural network methods for predicting human trajectories present a different approach,
with different objectives, compared to knowledge-based models for pedestrian simulation.
Knowledge-based models are established on predetermined rules predominantly designed to
model pedestrian behaviors, with trajectory predictions generated as the secondary outcome [28].
On the other hand, neural network methods employ data-driven learning mechanisms to learn
underlying patterns from pedestrian datasets and primarily focus on predicting pedestrian
trajectories based on these learned representations.

The neural network models employ historical positions of pedestrians for a given number of
time steps as inputs3, in conjunction with supplementary neighboring information about the
environment and nearby pedestrians, to predict the future trajectory of a target individual for a
prediction time horizon. One of the most well-known contributions to this field is the Social-
LSTM (Long Short-Term Memory) developed by Alahi et al. [11]. The Social-LSTM incorporates
the social pooling mechanism to aggregate hidden states of neighboring individuals in a scene,
thereby taking local interactions into consideration during prediction. Another influential
data-driven model for predicting human trajectory is the Social-GAN (Generative Adversarial
Networks) suggested by Agrim et al. [66]. This Social-GAN architecture comprises an RNN
(Recurrent Neural Network) Encoder-Decoder generator coupled with an RNN-based encoder
discriminator that considers the influence of all pedestrians within the scene. Various adaptations
of LSTM-based and GAN-based models have been proposed to enhance prediction accuracy in
diverse environments, such as DESIRE framework [157], Social Attention model [158], Sophie

3Trajectory prediction is thus very similar to the problem of prediction using time series, for which LSTM model
has been developed [156].
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model [159], DH-SARL model [160]. Neural network models have demonstrated significant
effectiveness in predicting pedestrian trajectories in low-density scenarios, with predictions
showing better distance accuracy than knowledge-based models in such conditions [10].

Nevertheless, these models still encounter difficulties when applied in high-density conditions.
The primary goal of neural network models is to minimize the distance error compared to
actual trajectories, which explains why distance-based metrics such as average displacement
error (ADE) and final displacement error (FDE) are frequently used as training functions and
evaluation criteria. When it comes to higher densities, studies have shown that training and
evaluation should not rely only on distance errors [10] [161]: a training function only focusing
on the distance-based error may still generate unrealistic phenomena such as a high number
of collisions in predicted trajectories [7]. To tackle this problem, different solutions have been
proposed to design better training functions for high-density situations. These include integrating
additional loss components for collisions into the training function, such as time-to-collision
loss [9] or interaction energy loss [7], alongside traditional distance loss terms. Another
consideration for improving neural network models in crowded scenarios is the prediction time
horizon. Current models typically predict pedestrian trajectories for 3.0 – 5.0 seconds in the
future [28]. However, this time frame may need to be re-evaluated for high-density scenarios, as
the number of interactions increases significantly in these situations. Lastly, neural networks
are typically trained on low-density datasets due to the limited availability of high-quality,
high-density datasets.

Macroscopic models

Macroscopic models are a category of models that consider the system from a macroscopic
point of view, attempting to model the evolution of macroscopic numbers such as average speed,
and density..., instead of considering individual pedestrians. Classical modeling approaches
include partial differential equations to simulate crowd dynamics. These models consider crowd
movement as a continuous flow and focus on addressing overall crowd behavior and movement
while disregarding the modeling of detailed individual-level interactions.

One widely used technique for simulating crowd flow is treating it as analogous to fluid
dynamics. This approach applies the principle of conservation of flow through the continuity
equation [162]:

∂ρ

∂t
+ ∇ · (ρv) = 0 (2.11)

where ρ and v represent the density and velocity vector of the crowd flow, respectively. This
fundamental equation has been found in numerous macroscopic models for simulating crowd
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dynamics [67, 163, 164]. Building upon this foundation, Hughes introduced a comprehensive
continuum theory for pedestrian flows [14, 165] that integrates both physical and psychological
characteristics of individuals into the modeling framework:

∂ρ

∂t
− ∇ · (ρg(ρ)f2(ρ)∇ϕ) = 0 (2.12)

where f(ρ), g(ρ) denote density-dependent coefficients that affect pedestrian walking speed and
level of discomfort, respectively, whereas ∇ϕ represents the principal direction of pedestrian
movement at any given point in the environment. To cap the density in simulations, Narain et
al. [67] proposed a unilateral incompressibility condition for the density variable in Equation 2.11.
This condition ensures that the density cannot exceed a certain threshold, thus preventing further
compression when maximum density is reached:

ρ ≤ ρmax = 2α√
3d2

min
(2.13)

where ρmax denotes the maximum possible density, which is determined by two key parameters: a
constant factor α and the minimum interpersonal distance dmin between individuals in the crowd.
Furthermore, additional components can also be incorporated to account for complex dynamics
observed in crowd movements. For instance, Jiang et al. [163, 164] proposed supplementary
equations that introduce relaxation and anticipation terms to simulate the traffic instability
phenomenon emerging in dense crowds:

∂v
∂t

+ (v · ∇)v + c2(ρ)∇ρ

ρ
= Ue(ρ)⃗v − v

τ
(2.14)

where c, τ, Ue, v⃗ represent the sonic speed, relaxation time, equilibrium value, and desired
direction, respectively.

In contrast, Treuille et al. [15] introduced a continuum model where global navigation is
governed through a dynamic potential field derived from the eikonal equation (Equation 2.15):

∥∇ϕ(x)∥ = C (2.15)

v = −f(x, θ) ∇ϕ(x)
∥∇ϕ(x)∥ (2.16)

where ϕ denote the potential, and C function and unit cost associated with the direction ∇ϕ. The
cost of reaching the destinations is estimated based on various factors, including distance, time,
and discomfort. Pedestrian movement is characterized by a velocity vector that points opposite
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to the gradient of the function in Equation 2.15. The magnitude of this velocity is determined by
evaluating the speed field f(x, θ) at the location x with moving direction θ. A similar study by
Jiang et al. [163] aimed to minimize the total instantaneous walking cost from start to target
points by considering both instantaneous equilibrium travel cost and discomfort field.

In recent developments, crowd simulation models [166, 167, 168] inspired by Smoothed
Particle Hydrodynamics [169] have been proposed to model crowd dynamics at extremely high-
density conditions. Additionally, macroscopic models are frequently used to simulate pedestrian
crowds in high-density scenarios because these models assume crowd flows as a continuum flow,
which is particularly valid when density is high. Macroscopic models have demonstrated their
efficiency in simulating macroscopic crowd phenomena under extremely high-density conditions
like shockwave propagation [170, 166, 168, 171, 172], panic propagation [173, 174, 175, 176],
crowding force [170, 174]. Moreover, by focusing on aggregate behaviors, these models can also
effectively simulate dense crowds at a large scale with reduced computational cost compared to
microscopic models.

Hybrid models

Hybrid models typically combine microscopic models and macroscopic models into a single
framework to leverage the advantages of both approaches [177]. This class of modeling
incorporates the detailed resolution of microscopic models and takes the computational efficiency
of macroscopic models, thus offering a balance between the two. Hybrid models are particularly
advantageous in contexts requiring an in-depth analysis of the crowd-level phenomena alongside
specific individual behaviors and interactions. A fundamental challenge of these approaches is
the need for effective communication and consistent transition between macro and micro scales.
This involves aggregating individual-level data into a continuous framework for macro-level
simulations, as well as disaggregating macro-level data (like density distribution) back into
micro-level simulations.

Hybrid models can be classified into two main types: region-based models and auto-switch
models. Region-based models [3, 69, 68, 178, 70, 179, 180] partition the environment into
separate regions. Each region is simulated using either a microscopic or macroscopic model
and all regions are simulated concurrently. The selection of a suitable simulation model for
each region depends on expert knowledge and the current state of the simulation. For instance,
regions expected to be crowded can be simulated by macroscopic models, whereas microscopic
models are used for regions predicted to have a lower density. Furthermore, the dynamic nature
of crowd movement leads to changes in crowd states over time. Thus, there is the need for
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the ability to adjust simulation accordingly. This can be achieved by dynamically switching
simulation models for each area using specific conditions like density levels [179, 180]. In
these cases, the criteria for transition and data synchronization mechanisms are triggered when
agents move from one area to a new region. Moreover, boundary cells [68, 179, 180], which
are additional cells positioned between microscopic and macroscopic simulation regions, are
normally applied to enhance the consistency of data conversion and synchronization.

Conversely, auto-switch models [181, 182] combine microscopic and macroscopic models
in a way that these models can be switched at runtime. In these frameworks, only one model is
executed at a time during the simulation. The switch between models is defined by predetermined
rules, typically based on specific events or crowd characteristics observed in the simulated
environment.

2.4.4 Comparison of operational level models

This section proposes a set of critical criteria for evaluating and comparing different operational-
level models in high-density scenarios. The first criterion investigates the models’ ability to
model emergent behaviors and phenomena typically observed in densely populated environments.
This includes the capacity to simulate physical interactions, group behavior, following behavior,
and replan behavior. The second criterion focuses on quantitative performance metrics, including
time step duration, maximum simulated density, number of simulated agents, and computational
efficiency. The third criterion assesses the validation of operational-level models against the
empirical Fundamental Diagram [104, 105, 31, 106, 107, 108, 109] and real-world crowd data.
Finally, the fourth criterion examines multi-level modeling capabilities, which specifically
evaluate how effectively the operational-level model can integrate behaviors at strategic and
tactical levels.

Table 2.3 presents the specifications of all the operational-level models from the selected
corpus based on the aforementioned criteria. The following syntax is used to indicate the ability
to simulate each characteristic:

• !: The model is able to address the specified characteristic.

• ×: The model is unable to simulate the specified characteristic.

• −: Unknown.

Data from Table 2.3 is analyzed in the next sections to compare and evaluate the operational-level
models.
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Behavior capability

Realistic simulations of dense crowds necessitate the accurate modeling of emergent behaviors
and phenomena. In these scenarios, individuals display a broader range of behaviors compared to
low-density situations, which include physical interactions, group behavior, following behavior,
and replan behavior in response to the surrounding environment. Such emergent behaviors
contribute a significant impact on overall crowd dynamics as well as potentially increase risks in
high-density settings.

The data presented in Table 2.3 reveals that the SFMs have been widely selected to model
diverse emergent behaviors of pedestrians. Additionally, the classical SFM is the only model
that shows the capacity to model emergent behaviors in high-density situations such as physical
interactions, whereas other classical models need necessary modifications to represent these
behaviors.

In crowded scenarios, simulation models are modified to represent the emergent behaviors
of pedestrians. In SFMs, modifications take the form of incorporating additional terms into
Equation 2.1 that describe new forces. However, extreme densities can induce strong and
rapidly varying forces, which can lead to unrealistic behavior such as oscillatory movement [99].
Therefore, calibrating and validating parameters using real-world data is a crucial next step to
ensure the realism of these models and their applicability to specific scenarios.

In CA models, the cell size must be decreased to address physical interactions among
pedestrians in dense situations. This is because the traditional cell size of 40cm x 40 cm [12] was
chosen based on an approximation of space occupied by a single pedestrian, which inadvertently
prevents physical contact between pedestrians in the model. Furthermore, when introducing
new floor fields to represent new behavior, it is crucial to concurrently modify the transition
matrix to account for the impact of these fields on pedestrian movement. However, integrating
new floor fields may increase model complexity and require substantial alterations in algorithm
implementation.

In ABMs, modeling emergent behaviors in high-density environments relates to introducing
variables that represent decision-making behaviors. This method requires a prior determination
of emergent behaviors to be modeled and can lead to significant computational demands when
dealing with a large number of agents with complex decision-making behaviors.

Contrarily, VO models and macroscopic approaches have limited capabilities in simulating
emergent behaviors of pedestrians in densely populated scenarios. VO models require the
establishment of a new velocity obstacle space that takes into account velocity constraints for new
behaviors. Macroscopic models primarily focus on addressing the macroscopic characteristics
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of crowds rather than individual behaviors. In contrast, the capacity of hybrid models to simulate
emergent behaviors is heavily dependent on specific submodels integrated into the hybrid
framework.

Current data-driven models show significant limitations in modeling emergent behaviors of
pedestrians in crowded environments. Existing deep learning architectures are predominantly
trained based on low-density datasets using distance-based loss functions, which is not sufficient
in high-density situations. Thus, there is a need for further improvements to make these models
applicable in high-density scenarios. These improvements may involve developing new neural
network architectures or modifying existing ones to better accommodate high-density scenarios.
Furthermore, data-driven models encounter several challenges regarding the interpretability of
predictions and the need for more availability of high-density pedestrian datasets.

Model performance

Various quantitative metrics are used to evaluate the performance of operational-level models,
including the ability to simulate with different time step values, maximum simulated density,
number of simulated agents, and computational efficiency. Models exhibiting minor sensitivity
to variations in simulation time steps tend to generate more reliable and stable simulation
outcomes. Furthermore, smaller simulation time steps can result in smoother trajectories, but can
also increase computational costs. Next, the maximum simulated density serves as a criterion
to evaluate the model’s capacity to simulate high-density crowds. Lastly, the computational
efficiency and scalability of the operational-level models are assessed by analyzing the correlation
between computational time and the number of simulated agents.

As shown in Table 2.3, SFMs, ABMs, and macroscopic models typically employ small
simulation time steps, ranging from 0.01s to 0.1s, to maintain stability. Conversely, VO models
can accommodate a wider range of simulation time steps (0.01 - 0.25s). With CA and data-driven
models, the simulation time steps are primarily influenced by the cell size and the frame rate of
training datasets to ensure an accurate representation of pedestrian speed, generally around 0.3s

and 0.4s, respectively. With hybrid models, the primary and still open challenge is synchronizing
simulation time steps between different submodels within the hybrid framework.

Regarding simulated crowd density, as presented in Table 2.3, SFMs, VO models, and ABMs
have commonly been utilized to address densities ranging from 2 to 6 ped/m2. Under extremely
high-density scenarios, these models may exhibit unrealistic phenomena like vibrations in
trajectories [18] or stuck phenomena [19]. Therefore, the parameters of these models must
be carefully calibrated to simulate realistic pedestrian behaviors accurately in such extreme
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conditions. Conversely, CA models and macroscopic models demonstrate the capacity to
simulate extreme densities of 6 - 8 ped/m2. The ability of CA models to handle such densities
is based on their intrinsic attributes, which allow more effective spatial utilization through the
discretization of the environment into small cells. Furthermore, CA approaches disregard the
concept of personal space as well as inter-agent repulsion in their models. As a result, these
models can simulate density up to the theoretical maximum, provided that every cell is occupied
by pedestrians.

In terms of computational efficiency and scalability, SFMs, CA models, and ABMs are
generally used for small-scale simulations of 100 - 500 agents and medium-scale simulations
of 500 - 5K agents. In contrast, VO, macroscopic, and hybrid models exhibit the capacity to
simulate large-scale crowds of 5K - 100K agents at reasonable computational costs. Currently,
the prediction of data-driven models is predominantly focused on the trajectory of a single
primary pedestrian.

Validation

Validating operational-level models is crucial for verifying the reliability and accuracy of
simulation results. The validation step includes a comparative analysis of simulation outcomes
with empirical fundamental diagrams [104, 105, 31, 106, 107, 108, 109] and other data obtained
from real-world observations. Fundamental diagrams serve as theoretical benchmarks for
comparing general crowd movement patterns, as they provide fundamental relationships among
average density, speed, and flow of crowds. On the other hand, validating operational-level
models using other real-world data, such as trajectory or contact forces, enables more targeted
validation for scenarios with specific behavior and phenomena.

Table 2.3 indicates that ABMs and data-driven models are validated more often than other
models due to their regular integration of empirical data for calibrating model parameters. On
the other hand, macroscopic models and hybrid models exhibit a notable lack of validation in
the literature. The classical models of SFMs, VO models, and CA models have historically
been under-validated against empirical fundamental diagrams and additional real-world data.
However, recent research has started to handle this shortfall to enhance the realism and reliability
of high-density crowd simulation. This trend highlights the increasing significance of the
validation step in verifying the accuracy of operational-level models for high-density contexts.
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Multi-level modeling

The integration of operational-level models with higher-level modeling at strategic and tactical
levels plays an essential role in developing a comprehensive framework that captures holistically
pedestrian behaviors. This integration improves the adaptability of operational-level models for
effectively simulating various environmental contexts and situations.

CA models and macroscopic models intrinsically include tactical-level modeling in their
models via navigation mechanisms like floor fields or potential fields. Therefore, these models are
less adaptable for integrating novel tactical-level models, such as graph networks or navigation
mesh. In contrast, SFMs, VO models, ABMs, and hybrid models demonstrate greater flexibility
in incorporating strategic and tactical models due to the communication between these levels
through preferred targets and preferred velocities, which are then directly used as parameters
of operational-level models. Finally, existing data-driven models encounter difficulties in
integrating higher-level modeling due to their primary focus on predicting short-term future
trajectories.

Table 2.3: Comparison results of operational level models based on various evaluation criteria
(PI: physical interaction, GB: group behavior, FB: following behavior, RB: replan behavior,
TS: time step (s), MD: max density (ped/m2), NA: number of agents, RT: run time (fps), S:
strategic, T: tactical, O: operational).

Articles Class
Behavior capability Model performance Validation Multi-level

PI GB FB RB TS MD NA RT Fit
FD

Real
data

S T O

Helbing et al.
(2000) [13]

SFM ! ! × × − − 200 − − − × × !

Lakoba and Kaup
(2005) [99]

SFM ! ! × × <0.0625 − 100 − − − × × !

Yu and Johansson
(2007) [37]

SFM ! ! × × − 9 − − − − × × !

Nuria et al.
(2007) [18]

SFM ! ! ! ! − − 1800 25 − − × ! !

Guy et al.
(2010) [91]

SFM × × × ! − 4.0 10K 15.1 − ! × ! !

Moonsoo et al.
(2013) [100]

SFM × × ! × − − − − − ! × × !

Shuaib
(2014) [102]

SFM ! ! × × 0.001 4.5 100-
400

− ! − × × !

Best et al.
(2014) [119]

SFM × × × × 0.0625 3.96 − − ! ! × ! !

Mohamed et
al.(2015) [94]

SFM ! ! ! × − 8 − − ! − × ! !

Karamouzas et al.
(2017) [95]

SFM × ! × × 0.01-
0.4

− 5K 4.2 − − × ! !



46 CHAPTER 2. LITERATURE REVIEW

Jingni et al.
(2019) [113]

SFM ! × × × − 8.6 − − ! ! × × !

Haghani and Sarvi
(2019) [101]

SFM ! ! × × − 3 200 − − ! × × !

Sticco et al.
(2020) [110]

SFM ! × × × 0.05 9 50-
400

− ! − × × !

Xu et al.
(2020) [96]

SFM ! × × × − − 60-
250

− − − × × !

Kolivand et al.
(2021) [183]

SFM ! ! ! × − − 4500 − − ! × × !

Wang et al.
(2022) [111]

SFM ! ! × ! − ≈ 5.3 − − ! − × ! !

Subramanian et al.
(2022) [97]

SFM ! ! ! × − − − − ! − × × !

Zanlungo et al.
(2023) [114]

SFM ! ! × × 0.05 3 − − − ! × × !

Song et al.
(2023) [98]

SFM ! × × × 0.01 9 − − − ! × × !

Van den Berg et al.
(2008) [62]

VO × × × × 0.25 − 1000 12.5 − − × × !

Van den Berg et al.
(2008) [81]

VO × × × × 0.25 − 20K 2(6)4 − − × ! !

Guy et al.
(2009) [117]

VO × × × × − − 10K 302(32) − − × ! !

Van den Berg et al.
(2011) [63]

VO × × × × 0.25 − 5K 42.4(8) − − × × !

Cutis et al.
(2011) [123]

VO × × × × 0.1 7.3 35K 26 − − × ! !

Kim et al.
(2013) [121]

VO ! × × × − − 1600 229.6 − − × ! !

Golas et al.
(2013) [127]

VO × ! × ! 0.01 3.5(5.5)5 1000 192.3 ! − × × !

Kim et al.
(2015) [122]

VO ! × × × 0.01-
0.2

7.4 35K 5.7 − − × ! !

Narang et al.
(2015) [103]

VO × × × × − ≈6.2 980 111.49 ! ! × ! !

Narang et al.
(2017) [184]

VO × × × × − 2.5 200 185.2 − ! × ! !

Sudkhot et al.
(2023) [124]

VO × × × ! 0.25 − 40K 0.16 − − × ! !

Burstedde et al.
(2001) [12]

CA × × × × 0.3 (6.25) − − − − × ! !

Kirchner and
Andreas
(2002) [38]

CA × × × × 0.3 (6.25) 1116 − − − × ! !

Kirchner et al.
(2003) [137]

CA ! × × × 0.3 (6.25) − − − − × ! !

Henein et al.
(2004) [139]

CA ! × × × 0.3 (6.25) − − − − × ! !



2.4. ANALYSIS OF PEDESTRIAN SIMULATION MODELS 47

Henein and White
(2007) [140]

CA ! × × × 0.3 (6.25) − − − − × ! !

Guo et al.
(2008) [130]

CA ! × × × 0.1 (6.25) 240 − − − × ! !

Ma et al.
(2010) [185]

CA × × ! × 0.3 5.5(6.25) − − ! − × ! !

Zeng et al.
(2011) [141]

CA × × × ! 0.3 (6.25) 200-
300

− − − × ! !

Suma et al.
(2012) [142]

CA ! × × ! 0.3 (6.25) − − − − × ! !

Bandini et al.
(2014) [129]

CA ! × × × 0.33 7(12.5) 100-
300

− ! − × ! !

Claudio et al.
(2016) [134]

CA ! × × ! − 6(10) − − ! ! × ! !

Lu et al.
(2017) [138]

CA × ! ! × 0.3 (6.25) 750 − − ! × ! !

Jingwei et al.
(2018) [128]

CA × × × × − 8(8) 943 − − − × ! !

Fu et al.
(2018) [131]

CA ! × × × 0.05-
0.2

6(6.25) 1000 − ! ! × ! !

Zheng et al.
(2019) [144]

CA ! × × × 1.0 (4.0) 300-
800

− − − × ! !

Bazior et al.
(2020) [132]

CA ! × × × 0.06-
0.1

5.28(10.4) − − − − × ! !

Zhang et al.
(2021) [186]

CA × × × ! 0.3 6.25(6.25) − − ! − × ! !

Huo et al.
(2022) [135]

CA ! × × × 0.4 4.0(6.25) 180-
600

− − − × ! !

Sarmady et al.
(2022) [133]

CA × × × × 0.025 ≈5.8(8) − − ! − × ! !

Zhang et al.
(2023) [136]

CA × ! × × 0.33 1.77(6.25) 100 − − ! × ! !

Porzycki and Wąs
(2023) [143]

CA ! × ! × 0.025 -
0.2

5 100-
200

169.49 − ! × ! !

Shao and
Terzopoulos
(2007) [64]

ABM × ! ! ! − − 1400 30 − ! ! ! !

Robin et al.
(2009) [149]

ABM × × ! × − − − − − ! × × !

Ondvrej et al.
(2010) [150]

ABM × × ! × − − 200 25 − − × × !

Samuel et al.
(2012) [65]

ABM × × ! × 0.1 1.9 − − ! ! × × !

Zhou et al.
(2016) [147]

ABM × × × × − 3 50-
200

− ! − ! ! !

Godoy et al.
(2016) [151]

ABM × × ! × 0.025 − 300 − − − × × !

Liang et al.
(2016) [152]

ABM × ! ! × − − 100 161.3 − − × × !
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Liu et al.
(2018) [153]

ABM × ! ! × − − 100-
500

− − − × ! !

Mingbi et al.
(2018) [19]

ABM × × ! × − − − − ! ! × × !

Sharma et al.
(2018) [148]

ABM × ! × × − − 35-
75

− ! − ! ! !

Li et al.
(2021) [154]

ABM ! ! × ! − ≈ 1.1 8-64 − − ! × ! !

Xie et al.
(2022) [155]

ABM ! ! ! × − − 200 − − ! × × !

Alahi et al.
(2016) [11]

Data-
driven

× × × × 0.4 − − − − ! × × !

Lee et al.
(2017) [157]

Data-
driven

× × × × 0.4 − − − − ! × × !

Agrim et al.
(2018) [66]

Data-
driven

× × × × 0.4 − − − − ! × × !

Anirudh et al.
(2018) [158]

Data-
driven

× × × × 0.4 − − − − ! × × !

Amir et al.
(2019) [159]

Data-
driven

× × × × 0.4 − − − − ! × × !

Zhu et al.
(2022) [160]

Data-
driven

× × × × 0.4 − − − − ! × × !

Korbmacher et al.
(2023) [9]

Data-
driven

× × × × 0.4 − − − − ! × × !

Dang et al.
(2023) [7]

Data-
driven

× × × × 0.4 − − − − ! × × !

Hughes
(2002) [14]

Macro × × × ! − 5.0 − − − − × ! !

Treuille et al.
(2006) [15]

Macro × × × ! − − 10K 12 − − × ! !

Narain et al.
(2009) [67]

Macro × × × × − − 25K 11.35 − − × ! !

Jiang et al.
(2010) [163]

Macro × × × ! − 5.0(10) − − − − × ! !

Jiang et al.
(2015) [164]

Macro × × × ! − 1.8(10) − − − − × ! !

Zhao et al.
(2019) [173]

Macro × × × × − > 7 2000 − − − × × !

Jebrane et al.
(2019) [170]

Macro ! × × × 0.01 7(8.5) − − − − × × !

van Toll et al.
(2020) [166]

Macro ! × × × 0.02 > 8.0 30K 51.9 − − × ! !

Yuan et al.
(2020) [167]

Macro × × × × 0.0001 4 − − − − × ! !

van Toll et al.
(2021) [168]

Macro ! × × × 0.02 7.23(8) 30K 53.85 − − × ! !

Liang et al.
(2021) [174]

Macro ! × × ! − ≈
6.0(7)

− − ! − × ! !

Chen et al.
(2021) [171]

Macro ! × × × − − 2688 24.2 − − × ! !
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Zhou et al.
(2022) [172]

Macro × × × × − − − − − − × ! !

Jiang et al.
(2022) [187]

Macro × × × × − 8(10) 3600 − − − × ! !

Li et al.
(2023) [175]

Macro × × × × − 4(7) − − − ! × ! !

Zhu et al.
(2023) [176]

Macro × × × × − ≈ 10 2000 − − ! × ! !

Xiong et al.
(2009) [181]

Hybrid × × ! ! − ≈ 4 4000 − − − × ! !

Xiong et al.
(2010) [68]

Hybrid × × × × − ≈ 2 − − − − × × !

Anh et al.
(2012) [69]

Hybrid × × × × − − − − − − × ! !

Xiong et al.
(2013) [178]

Hybrid × × × × 0.5 ≈ 6 1000 ≈
5.7

− − × ! !

Rabiaa et al.
(2016) [179]

Hybrid × × × × − − − − − − × ! !

Göttlich et al.
(2018) [182]

Hybrid ! ! × × 0.0025 − 200 − − ! × × !

Yang et al.
(2019) [70]

Hybrid ! ! × × − ≈
5(5.4)

− − − − × × !

Biedermann et al.
(2021) [180]

Hybrid × × × × 0.01 − 1000 − − − × × !

Dang et al.
(2023) [3]

Hybrid ! ! × × 0.1 8 15000 ≈
1.4

− − × ! !

Given the above comparison of operational-level model characteristics against various
proposed criteria, assessments of the advantages and disadvantages of these models are
summarized in Table 2.4 using the following rankings for each characteristic:

• ++: The method can simulate the specified characteristic with minor or no changes.

• +: The method can simulate the specified characteristic but necessitates some modifica-
tions.

• −: The method can only simulate the specified characteristic through significant adapta-
tions.

• −−: The method cannot simulate the specified characteristic without substantial redesign.

42 fps on 6 cores.
5Max simulated and theoretical density: 3.5 and 5.5 ped/m2.
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Table 2.4: Assessments of the advantages and disadvantages of operational-level models for
simulating high-density crowds (PI: physical interaction, GB: group behavior, FB: following
behavior, RB: replan behavior, TSA: time step adaptivity, D: density, SS: simulation speed, S:
scalability, IHM: integration of high-level modeling, AHM: ability of high-level modeling).

Models
Behavior Capability Model performance Multi-level

PI GB FB RB TSA D SS S IHM AHM
SFMs ++ ++ ++ + − + + − −− ++
Advantages Easy to integrate addi-

tional forces represent-
ing new pedestrian behav-
ior into Newton’s second
equation 2.1

Stable with simulation time
steps of 0.01 – 0.1s
Simulating crowd densities of
2 – 6 ped/m2

Capable of simulating crowds
at small scale (100 – 500
agents) and medium scale
(500 – 5K agents)

Easy to be incorpo-
rated with strategic-
and tactical-level
models

Disadvantages Requiring careful calibra-
tion of parameters to avoid
unrealistic behavior, par-
ticularly at extreme densi-
ties of 6 – 8 ped/m2

Sensitive to large simulation
time steps of 0.2 – 0.4s

High computational costs
when simulating large-scale
crowds

VO models − + + + + + ++ ++ −− ++
Advantages New pedestrian behavior

can be addressed by es-
tablishing new velocity
constraints and designing
a new velocity obstacle
space

Capable of adapting to a wide
range of simulation time steps
from 0.01 to 0.25s

Simulating crowd densities of
2 – 6 ped/m2

Capable of simulating large-
scale crowds (5K – 100K
agents)

Easy to be incorpo-
rated with strategic-
and tactical-level
models

Disadvantages Stuck phenomena due to no
collision-free velocities in ex-
tremely high-density condi-
tions

CA models − − − − −− ++ − − ++ −
Advantages New pedestrian behavior

can be addressed by incor-
porating new floor fields

Capable of simulating crowd
densities up to 8 ped/m2

Simulating crowds at small
and medium scales
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Disadvantages Addressing new pedes-
trian behavior increases
the complexity of the
model considerably

Simulation time step depen-
dent on cell size
High computational cost
when simulating large-scale
crowds

Strategic- and tactical-
level models must be
integrated in the form
of floor field

ABMs + + + ++ + + − − − ++
Advantages Behavior-oriented model-

ing
Simulating crowds at small
and medium scales

Easy to be incorpo-
rated with strategic-
and tactical-level
models

Disadvantages Increasing complexity
when simulating agents
with complex decision-
making capabilities

Simulation time step depen-
dent on modeling technique
High computational costs
when simulating large-scale
crowds

Data-driven
models

−− −− −− −− −− −− − − −− −

Advantages
Disadvantages Current lack of the avail-

ability of high-density
pedestrian datasets

Short-term prediction of tra-
jectory, typically 3 – 5s

Prediction focusing only on
one primary pedestrian
Prediction time step depen-
dent on the frame rate of train-
ing data

Cannot incorporate
strategic- and tactical-
level models

Macroscopic
models

− − − + − ++ ++ ++ ++ −−

Advantages Simulating smooth pedestrian
movements due to small sim-
ulation time step
Capable of simulating large-
scale crowds

Disadvantages Focusing only on macro-
scopic crowd characteris-
tics and phenomena

Sensitive to large simulation
time steps

Strategic- and tactical-
level models must be
incorporated in the
form of potential field
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Hybrid
models

+ + + + − + + + + +

Advantages Capacity to model new
pedestrian behavior de-
pendent on microscopic
operational-level models
integrated into the hybrid
framework

Ability to incorporate
strategic- and tactical-
level models depen-
dent on operational-
level models inte-
grated into the hybrid
framework

Disadvantages Synchronization of simulation
time step between submodels

In conclusion, certain operational-level models are commonly selected to address specific
pedestrian behaviors and crowd phenomena in high-density scenarios. SFMs are widely used to
model emergent behaviors of pedestrians in high-density situations and are capable of simulating
medium-high density ranging from 2 to 6 ped/m2. Upon proper calibration, these models
can realistically simulate crowd density up to 8 ped/m2. Next, CA models demonstrate the
ability to simulate crowd densities from 2 to 8 ped/m2, with extreme densities requiring finer
discretization of the environment, whereas ABMs are primarily built to represent decision-
making behavior such as following behavior. These three types of models are commonly used
to simulate small- and medium-scale simulations with 100 to 5K agents. On the other hand,
VO models demonstrate adaptability across different simulation time steps from 0.01 to 0.25s

and are capable of simulating large-scale simulations with 5K - 100K agents. Data-driven
models have limited capacity to simulate pedestrian behaviors in high-density situations, while
macroscopic models are normally applied to crowded large-scale simulations. Finally, hybrid
models are frequently employed for scenarios needing to investigate both crowd-level dynamics
and individual-level interactions.

2.5 Future directions

Based on the previous evaluations of modeling approaches for pedestrian behaviors in crowded
situations at different levels, this section proposes and discusses several potential research
directions for the future development of dense crowd simulation. They include high-density data
collection, deep learning perspectives, integration of different modeling levels, and multi-scale
simulation.
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High-density data collection

Most available datasets used for calibration and validation predominantly represent low-density
situations. The ETH [188] and UCY [189] datasets, although widely used in this field, focus on
low-density scenarios and do not adequately capture high-density situations. Conversely, only a
limited number of high-density datasets have been collected through controlled experiments in
Jülich [190], yet their laboratory setting imposes inherent limitations on their generalizability to
real-world conditions. Thus, there is a need to collect more high-density datasets, particularly
from real-world events to improve training and calibration of the models.

Deep learning perspectives

Data-driven models have received considerable attention and shown significant progresses in
predicting pedestrian trajectories [28]. However, their deployment in high-density contexts
remains a challenge. A major issue is the lack of high-density crowd datasets for training and
testing neural network models under crowded situations. One promising solution to tackle this
issue is using pedestrian simulation models to generate simulated data in high-density conditions,
which can augment real datasets in training neural networks. Using both simulated data and
real datasets together can increase the accuracy and generalizability of neural network models
in various scenarios. Another promising direction is enhancing neural networks’ predictive
capacity by designing new neural network architectures or more effective training functions
suited for high-density contexts. Additionally, novel evaluation metrics designed specifically
for high-density scenarios must be proposed, together with classical distance-based accuracy
metrics such as ADE and FDE, to accurately evaluate the performance of data-driven models in
these situations.

Integration of different modeling levels

In complex environments with many obstacles, implementing only operational-level models
may cause pedestrians to often get trapped in certain local areas. Thus, integrating multi-level
modeling is required for such environments. One notable study integrates different techniques
for modeling pedestrian behaviors at different levels into one framework, called the Menge
framework [72]. However, despite its many strengths, this framework allows only one single
modeling algorithm to be executed at each level during simulation.

In addition, most simulation models are developed to mimic one single behavior of
pedestrians, which constrains the ability to represent the full range of pedestrian behaviors
across various scenarios. Furthermore, pedestrian behavior also differs considerably between
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low-density and high-density situations. Consequently, models that are effective and/or accurate
for low-density environments may not effectively and/or accurately represent pedestrian behavior
in crowded scenarios, and vice versa. Addressing this issue necessitates a general framework
that integrates various models for pedestrian behaviors at different decisional levels. Such a
framework needs the ability to switch dynamically between models and suitable transitioning
rules for consistent and accurate simulations.

Multi-scale simulation

In large-scale real-world scenarios, it is common for participants to travel in social groups,
often with friends and family members. The proportion of pedestrians moving in groups can
vary between 40% and 70% [35, 34]. Furthermore, pedestrian flows tend to form naturally in
densely populated areas where a large number of individuals share similar moving directions
and velocities. Consequently, crowd simulation in these environments requires multi-scale
entity representations, including the microscopic level for individuals, the mesoscopic level for
groups, and the macroscopic level for flows, to manage the balance between detailed resolution
and computational efficiency. Finally, the choice of simulation models, as well as when and
where to apply these models, should be defined based on environmental information and crowd
characteristics.

In addition, multi-scale simulations necessitate robust mechanisms for aggregation and
disaggregation of entities to have a seamless transition between different scales. Entities
in crowds, including individuals, groups, and flows, can merge or separate, as illustrated in
Figure 2.12. Criteria to aggregate individuals into a group or a flow can be determined based
on similarities in locations and velocities. Conversely, individuals may disaggregate from a
group or a flow due to differences in targets, velocities, and objectives. Lastly, the formation of
collective entities like groups and flows must be dynamically identified to apply appropriate
models.

2.6 Summary and discussion

This chapter has given a comprehensive review of various approaches for modeling pedestrian
behaviors with a primary focus on high-density scenarios. The systematic review investigated a
total of 116 relevant articles published from 2000 to 2023. Different modeling techniques have
been categorized into three classes corresponding to three decision-making levels: strategic,
tactical, and operational. The analysis of collected articles has indicated that most studies focus
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Figure 2.12: Multi-scale simulation.

on the operational level, which simulates the local pedestrian movement and interactions with
other neighboring pedestrians and environments. These methods have been thoroughly examined,
evaluated, and compared based on various criteria appropriate to high-density situations, such
as model performance in simulating high-density levels, computational efficiency, extensibility,
and ability to simulate emergent behavior in crowded conditions. Moreover, the advantages
and disadvantages of these methods for high-density crowd simulation have been highlighted,
providing researchers and modelers with critical insights to consider appropriate models for
their study.

In addition, the systematic review has identified several existing research gaps in dense
crowd simulations:

• The lack of high-density crowd datasets, especially in real-world conditions, currently
restricts the accurate calibration and validation needed to enhance the realism of crowd
simulations in high-density situations.

• Neural network data-driven approaches for predicting pedestrian trajectories have recently
emerged in the last decade and have demonstrated accurate predictions. However, they
mainly focus on low-density scenarios, characterized by their training functions that
primarily address only distance-based loss, along with the lack of high-density crowd
datasets.

• Specific models are frequently used to simulate particular aspects of crowd dynamics.
However, there is a need for a comprehensive framework that combines these models
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to cover a broader range of crowd characteristics across multiple scales, especially to
address the dynamic variation of pedestrian behavior and movement in different density
conditions.
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The previous chapter reviewed state-of-the-art techniques for modeling pedestrian behaviors,
with a primary focus on high-density situations. It also highlighted existing research gaps for
these situations, notably the need for more high-density datasets of pedestrian movements in
real-world conditions. This chapter aims to address this gap by introducing a new high-density
dataset collected during a mass-gathering event. The experiment to collect this dataset was
conducted under real-world conditions together with members of the MADRAS project, and the
associated research paper is currently in submission [8].

The chapter is organized as follows. Section 3.1 introduces an overview of the history of the
Festival of Lights. Section 3.2 describes the experimental setup of various cameras to capture
crowd movements during the festival. Section 3.3 presents tools and methods for extracting
trajectory and pedestrian outflow data from numerous recorded videos. Section 3.4 showcases a
dataset collected during the festival, along with basic statistics and analyses of this dataset. Next,
Section 3.5 discusses the validation of the collected data, and Section 3.6 provides information
about its availability for public use. Finally, the chapter concludes in Section 3.7.

3.1 Festival of Lights

The Festival of Lights [191], also known as la Fête des Lumières in French, is a spectacular
annual festival held in Lyon, France. It takes place around the 8th of December and lasts over
four nights. The festival was originally rooted in tradition and faith when the inhabitants of
Lyon erected a statue of the Virgin Mary for protection against recurrent floods and social unrest.
Although the inauguration was initially scheduled for September 8, 1852, flooding caused it to
be postponed to December 8 of that year. On the rescheduled date, the citizens illuminated their
windows and balconies with candles to display unity and solidarity. This tradition continues
today and has become an international festival attracting millions of visitors yearly.

Nowadays, the Festival of Lights is not merely a tribute to the Virgin Mary but also a vibrant
showcase of light arts. During the festival, the city is transformed into an open-air gallery of light
arts with animations projected onto the facades of ancient buildings and historical monuments.
The festival typically spans four nights (from December 8th to 11th in 2022), with light displays
active usually from 7 PM to midnight.

In 2022, the Festival of Lights attracted approximately two million participants over a total
of 30 artworks displayed across the festival area (as shown in Figure 3.1a) in the metropolis
of Lyon. The focal point of attraction was Place des Terreaux – the city’s central plaza with
an area of around 7000 square meters. As the festival’s largest and most crowded place, it
welcomed about 150000 people each night. Figure 3.1b describes the main circulation of crowd
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movements in Place des Terreaux. Crowd flows are pre-configured by the festival organizer to
be unidirectional on a macroscopic scale to ensure safety and prevent congestion. Pedestrians
are only permitted to enter the plaza through a single entrance (President Edouard Herriot
road) from the southeast. Exiting the plaza is possible via three roads: Algeria road from the
northwest, and Chenavard road and Constantine road as the primary outflow from the southwest.
The remaining roads adjacent to the plaza are blocked by barriers to prevent entry or exit and
maintain the intended unidirectional flow. Gatekeepers are assigned at the entrance to monitor
and control the number of people entering the plaza, ensuring it does not exceed approximately
two-thirds of the plaza’s capacity by closing a barrier to restrict further access before the start of
each light show. Figure 3.1c shows a light show in Place des Terreaux with thousands of people
gathering to watch the show.

(a) Festival area6. (b) Main circulation of the crowd flow at Place des Terreaux.

(c) A screenshot of pedestrians gathering at Place des Terreaux to watch a
light show7.

Figure 3.1: Festival of Lights in 2022.

6https://www.fetedeslumieres.lyon.fr/en/map/2022-map (accessed on 31 May 2024).
7https://www.fetedeslumieres.lyon.fr/fr/oeuvre/grand-mix-au-musee-des-bea

ux-arts-de-lyon (accessed on 31 May 2024).

https://www.fetedeslumieres.lyon.fr/en/map/2022-map
https://www.fetedeslumieres.lyon.fr/fr/oeuvre/grand-mix-au-musee-des-beaux-arts-de-lyon
https://www.fetedeslumieres.lyon.fr/fr/oeuvre/grand-mix-au-musee-des-beaux-arts-de-lyon
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Given that Place des Terreaux is the central and most crowded location of the Festival of
Lights, our data collection experiment focuses particularly on this area. The description of the
experiment is presented in the following sections.

3.2 Experimental design

The objective of our experiment is to capture the dynamics of dense crowds during the Festival
of Lights from various perspectives. Therefore, different cameras are installed to record crowd
movement at both microscopic and macroscopic scales. Figure 3.2 illustrates the experimental
design at Place des Terreaux, detailed as follows:

• Camera 1 (CCTV camera) is set atop the city hall (east side) to provide the overall
large-scale view of crowd movement in Place des Terreaux.

• Cameras 2 and 3 (SJCAM A10 cameras) on the northeast side are mounted on the balcony
of an apartment on the second floor to capture the top-down views of the street below.
The purpose of these cameras is to focus on a small area with high resolution for tracking
pedestrian trajectories from the videos.

• Cameras 4 and 5 (SJCAM A10 cameras) are set to record the outflows on Chenavard road
and Constantine road, respectively.

• All cameras are configured to operate in night vision mode to ensure video quality during
nighttime recording sessions.

Figure 3.3 shows screenshots of all cameras. Approximately 200 GB of videos were recorded
from the 8th to the 10th of December 2022. In addition to video data, other information types
are collected, including collision counts, GPS data, and surveys. However, these additional data
are out of the scope of this study and will not be discussed in the manuscript. The primary focus
of this study is to present two specific types of pedestrian data extracted from video footage:
pedestrian trajectories and pedestrian outflow. The pedestrian outflow data is used to calibrate
and validate a hybrid framework for crowd simulation developed in Chapter 4, whereas the
trajectory dataset is used to train a neural network developed in Chapter 5.
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Figure 3.2: Experimental design.

3.3 Methodology

3.3.1 Trajectory extraction method

This section presents the process for extracting pedestrian trajectories from video footage,
including the choice of an appropriate tool, camera calibration, and a step-by-step trajectory
tracking procedure.

Tool

Compared to controlled experiments conducted under laboratory conditions [192], our experiment
inevitably encounters the following difficulties:

• Manual measurements in real-world conditions may not be as precise as those in laboratory
settings due to weather conditions.

• The experiment is conducted in an outdoor setting at night time, resulting in uneven
lighting across the recording area. This inconsistency in the lighting sometimes made it
difficult to distinguish pedestrian features, such as pedestrian heads, from the background.

• Sudden changes in illumination during the festival, such as transitions from dark to bright
and vice versa, can cause false detections of pedestrians.

• High-density levels of crowds led to significant occlusion and overlapping of pedestrian
shapes, causing pedestrians to block each other from view, making it challenging to
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Figure 3.3: Screenshots of all cameras.

identify each person separately.

• Complex behaviors of pedestrians in outdoor and natural environments such as running
pedestrians and temporarily standing people/groups.

• People with additional objects such as umbrellas, balloons, umbrellas, chairs for babies,
etc.

Because of these aforementioned challenges, the performance of algorithms for fully
automated pedestrian detection and tracking in this situation is significantly reduced. Therefore,
we decided to use PeTrack [193, 194], a software that provides semi-automated tracking
of pedestrian trajectories from video footage, to facilitate the task of extracting pedestrian
trajectories. This software offers the following main functionalities:
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• Camera calibration: PeTrack provides intrinsic and extrinsic camera calibration functions
to map 2-dimensional image coordinates to real-world 3-dimensional coordinates.

• Pedestrian detection: PeTrack can automatically detect pedestrians using special markers
(e.g., colorful hats that are easy to recognize). This function generally works best in
controlled laboratory experiments with ideal settings, where participants are asked to wear
such colorful markers. However, in real-world experiments, these conditions are usually
not met. Therefore, manual detection methods for pedestrian detection are typically used
in real-world conditions.

• Automatic tracking: PeTrack employs the pyramidal iterative Lucas-Kanade feature tracker
[195] for automatically tracking detected pedestrians. This method remains effective even
for experiments conducted in real-world outdoor settings where weather and lighting
conditions are usually not ideal.

• Manual correction: Users can manually correct any errors in tracked trajectories to ensure
data quality.

Details on the trajectory extraction process using PeTrack are presented in the next sections.

Camera calibration

Camera calibration is an essential preprocessing step in computer vision applications that
estimates camera parameters to accurately map two-dimensional image coordinates to three-
dimensional (3D) real-world coordinates. This process consists of two main tasks: intrinsic
calibration and extrinsic calibration. Intrinsic calibration determines the internal parameters of
the camera (focal length, geometric distortion, optical center, skew coefficient) by using images
of a calibration pattern such as a chessboard. On the other hand, extrinsic calibration calculates
the camera’s position and orientation in the 3D scene. It determines external parameters (rotation
matrix and translation vector) that transform points from the real-world 3D coordinates to the
3D camera coordinates.

The camera calibration for our data collection experiment is performed using PeTrack
software, which provides an automatic tool for this task based on Zhang’s method [196]. The
camera’s internal parameters are obtained by importing multiple images of a chessboard (with
the chessboard covering most of the image area) captured from various angles into PeTrack
software for automatic calculation. For extrinsic calibration, a human wearing a white hat
served as the reference pattern. The human stands at six positions within the recording area,
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forming a total of 11 reference points (5 points for the head and 6 midpoints between two feet),
as illustrated in Figure 3.4. Once both intrinsic and extrinsic parameters are calculated, they are
input into the tracking step.

Figure 3.4: Image from camera 3 including reference points for extrinsic calibration.

Trajectory tracking

Video footage from cameras 2 and 3 is used to extract pedestrian trajectories. Chunks of videos
corresponding to different density levels (from medium to high) are selected for data extraction.
The following steps outline the workflow to track pedestrian trajectories from our videos using
PeTrack software:

• Define a region of interest for tracking pedestrian trajectories. An area of approximately
10m x 6m is designated by drawing yellow lines into the videos, as shown in Figure 3.5.
The region of interest is selected to be consistent in videos recorded by both cameras 2
and 3. Only pedestrian trajectories appearing inside this region would be tracked.

• Manually detect by clicking pedestrian heads when they enter the region of interest.

• Automatic tracking is applied for each detected pedestrian using the pyramidal iterative
Lucas-Kanade feature tracker [195] integrated into PeTrack.
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Figure 3.5: Region of interest defined by a yellow rectangle for videos recorded by camera 3.

• Visually monitor the tracking of pedestrian trajectories and manually recalibrate the
trackers to align with corresponding pedestrian heads whenever the trackers are lost
or produce distance errors. This particularly happens when the illumination suddenly
changes, or pedestrians transition between uneven lighting areas.

• Save trajectories as soon as pedestrian heads move out of the region of interest.

Once the tracking process is completed, PeTrack generates a .txt file as output, which can be
re-imported back to PeTrack. This file begins with a header of comments providing relevant
information such as fps, explanations of column variables, etc. Following the header is the data
section where each row represents coordinate data for each pedestrian at each time frame.

3.3.2 Outflow calculation method

Given the aforementioned difficulties in data collection and extraction, the manual counting
method is used to ensure accuracy. This method quantifies the pedestrian outflow on Chenavard
and Constantine roads, corresponding to videos recorded by cameras 4 and 5, respectively. Due
to the labor-intensive nature of this method, the calculation focuses only on a short recording
time frame from 9:38 PM to 9:45 PM on December 12, 2022. This time frame corresponds to the
exit of crowds from the plaza after the end of a show at Place des Terreaux. To ensure accurate
counting, a reference line is drawn across each road in the recorded videos (as illustrated in
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Figure 3.6), and the pedestrian count is incremented each time a pedestrian’s head crosses this
reference line. The outflow data is then used to simulate the crowd exit scenario at the Festival
of Lights in Chapter 4.

(a) Chenavard road. (b) Constantine road.

Figure 3.6: Reference lines to count pedestrian heads.

3.4 Dataset

This section presents the trajectory and outflow data extracted from pedestrian recordings as
well as the analysis of these data.

3.4.1 Trajectory data

Basic statistics

A total of 9 video segments recorded on December 8, 2022, are selected for extraction, with 3
of them recorded by camera 2 and 6 recorded by camera 3. Data corresponding to each video
segment is labeled according to the camera and time (e.g., three data records from camera 2 are
named TopView_1A, TopView_1B, and TopView_1C, where “TopView” denotes the top-view
scene captured by cameras 2 and 3). Furthermore, these data are categorized into 3 classes
based on the type of pedestrian movements observed:

• Unidirectional flow: TopView_1A, TopView_2A, and TopView_2B.

• Unidirectional flow with standing groups as obstacles: TopView_1B and TopView_2C.
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• Bidirectional flow: TopView_1C, TopView_2D, TopView_2E, and TopView_2F.

Table 3.1 presents the basic statistics of the TopView dataset, including timestamps, trajectory
counts, mean density, maximum density, mean speed, and mean trajectory duration. The data
records cover the time range from 9:26 PM to 9:56 PM. A total of 5269 trajectories have been
extracted from 9 video segments, with average densities ranging from 0.37 to 1.58 ped/m2.
Based on the above classification and the information from Table 3.1, it can be clearly seen that
unidirectional flow scenarios generally achieve higher density levels compared to bidirectional
flow scenarios. Additionally, Table 3.1 indicates clear correlations between mean density and
both mean speed and mean trajectory duration, with higher density associated with lower speed
and longer trajectory duration.

File Start
[UTC+1]

End
[UTC+1] Traj

Mean
density
[ped/m2]

Max
density
[ped/m2]

Mean
speed
[m/s]

Mean
trajectory

duration [s]
TopView_1A 22:40:45 22:44:15 965 1.13 1.54 0.57 12.27
TopView_1B 22:55:06 22:57:46 685 1.07 1.44 0.52 12.64
TopView_1C 23:10:33 23:13:58 673 0.65 1.07 0.78 9.03
TopView_2A 21:26:27 21:29:07 711 1.58 2.29 0.41 18.11
TopView_2B 21:40:39 21:43:25 612 1.11 2.58 0.58 13.18
TopView_2C 22:55:18 22:58:20 693 1.06 1.32 0.54 12.94
TopView_2D 23:10:16 23:12:57 529 0.64 1.04 0.75 8.96
TopView_2E 23:24:59 23:26:11 218 0.57 1.00 0.75 8.63
TopView_2F 23:54:59 23:56:30 183 0.37 0.65 0.95 6.92

Total 5269 0.96 1.44 0.63 12.22

Table 3.1: File tracking, timestamps, trajectory counts, and main statistics for the TopView
dataset.

More detailed analysis of bidirectional flow data

This study particularly focuses on bidirectional flow data as they represent more interactions and
collision avoidance behavior between pedestrians in crowded situations and will be used in the
next chapters. Given this, the TopView_2D data is particularly selected for detailed analysis.

A total of 529 trajectories are collected for TopView_2D, with 396 moving to the left, 109
moving to the right, and 13 upward and 11 downward, as illustrated in blue, red, black, and
green, respectively, in Figure 3.7a. The average speed ranges from 0.43 to 0.95 m/s and the
average density fluctuates between 0.3 and 1.0 ped/m2, as shown in Figure 3.7b and 3.7c.
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(a) Trajectories in blue: moving left, red: moving right, black: moving
upward, and green: moving downward.

(b) Average speed over time. (c) Average density over time.

Figure 3.7: TopView_2D

3.4.2 Outflow data

There are 3833 pedestrians counted in the videos, with 2030 pedestrians on Paul Chenavard
road and 1803 pedestrians on Constantine road, respectively. The instant pedestrian outflow is
computed by dividing the number of pedestrians crossing the reference line in a given duration
by the corresponding time interval. The black dots in Figure 3.8 represent the instant outflows,
which peak at nearly 10 ped/s on Chenavard road and over 11 ped/s on Constantine road. Crowd
flows last approximately 6.5 minutes until very few passes of pedestrians are counted. However,
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not all pedestrians leave immediately after a projection show ends, as some remain in the plaza
to watch subsequent shows.

Additionally, to improve the accuracy of the data and mitigate noises, the instant outflow is
smoothed using the Gaussian filter method [197] with a standard deviation of 2.0 for the kernel
and is presented by the solid black lines in Figure 3.8.

(a) Chenavard road. (b) Constantine road.

Figure 3.8: Time-series outflow of pedestrians on Chenavard road and Constantine road.

3.5 Validation

The extracted trajectory dataset is validated through the manual cross-checking process, with
independent verification (visual inspection and corrections when necessary) by a project member
who is not involved in tracking the corresponding data. Furthermore, given that the regions of
interest for extracting pedestrian trajectories are designated to be similar in videos recorded by
cameras 2 and 3, and time is synchronized across all cameras, two series of the same scene
are selected for further comparison. Specifically, two pairs of videos, including TopView_1B
versus TopView_2C and TopView_1C versus TopView_2D, are chosen as they have partially
overlapping timestamps (as indicated in Table 3.1). Figure 3.9 illustrates an example of the same
scene in TopView_1B and TopView_2C videos, both at 22:55:25.

An additional step for validating the measurement is implemented by comparing the similarity
of trajectory data extracted from these two pairs of videos. Figure 3.10 presents the superposition
of average speed and density sequences over time. The root mean square error (RMSE) is used
to evaluate the differences between the mean speed and density time series in the overlapping
sequences. The RMSE results, as shown in Table 3.2, indicate relatively small differences,
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Figure 3.9: Similar regions of interest in the TopView_1B and TopView_2C camera videos,
which capture the same scene but from different locations and angles.

ranging from 5 and 10% of the estimated average speed and density. A systematic error occurs
in the measurements but in opposite directions for the TopView_1B/TopView_2C recordings
and the TopView_1C/TopView_2D recordings. Specifically, the average density over time of
TopView 1B is slightly higher than that of TopView 2C, while the average density of TopView
1C is lower than that of TopView 2D.

RMSE mean speed [m/s] RMSE density [ped/m2]
TopView_1B / TopView_2C 0.02 0.05
TopView_1C / TopView_2D 0.05 0.07

Table 3.2: Root mean square errors (RMSE) between the pedestrian mean speed and density
time series for the TopView_1B/TopView_2C and TopView_1C/TopView_2D video recordings.

3.6 Data availability

The data is publicly available on https://madras-data-app.streamlit.app - an
online platform developed for providing the visualization, analysis, and interactive exploration
of the datasets. The source code of this application is hosted on GitHub [198] and is distributed
under the MIT license.

https://madras-data-app.streamlit.app
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(a) TopView_1B/TopView_2C.

(b) TopView_1C/TopView_2D.

Figure 3.10: Partial overlap of the average speed and density sequences over time for two pairs
of video recordings: TopView_1B/TopView_2C and TopView_1C/TopView_2D, which capture
the same scene from different positions and perspectives.

3.7 Conclusion

This chapter presents the experiment conducted at the Festival of Lights 2022 to collect high-
density pedestrian data. This data collection was conducted in collaboration with members
of the Franco-German MADRAS project team. The author made the following contributions:
participating in the experimental setup, calibrating cameras, tracking two trajectory sub-data:
TopView_2A and TopView_2E, extracting pedestrian outflow, and writing a part of the article
manuscript. The data covers both macroscopic and microscopic scales, including outflow and
trajectories of pedestrians. This contribution addresses the current lack of publicly available
data in high-density real-world scenarios, as most existing dense crowd data originates from
controlled laboratory experiments. The dataset is released publicly online through an online
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application. Subsequently, this dataset is used to improve two types of models: simulation
models and prediction models, which are described in the next chapters.
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The previous chapter has introduced the Festival of Lights, an annual mass gathering event,
and has presented the data collected during this event. This dataset addresses the lack of
high-density pedestrian data in real-world conditions. In this chapter, we aim to investigate
the use of density-related factors in hybrid approaches to develop a comprehensive pedestrian
simulation framework capable of simulating various crowd scenarios. Moreover, we explore
how the high-density empirical data presented in Chapter 3 is used to calibrate this framework.
The work in this chapter has been presented in PED23 [1] and PAAMS 2023 conferences and
published in [3, 4] where the author was the primary contributor.

4.1 Introduction

Pedestrian modeling and simulation is an active research field that models and predicts how
pedestrians move and behave in different environments. Generally, pedestrian simulation models
are categorized into three levels [29]: strategic-level models (also known as goal selection
models) [73, 78], tactical-level models (or path planning models) [56, 59], and operational-level
models [13, 63]. Definitions and detailed reviews of these models were presented in Chapter 1
and Chapter 2. However, studies in the literature primarily focus on the operational level because
this level refers to immediate, physical actions and reactions of pedestrians, which are the most
fundamental aspects in modeling pedestrian behaviors [6]. This study aims to investigate the
use of density-related factors to develop a comprehensive simulation framework for pedestrian
behavior, with a primary focus also on the operational level.

Various operational-level models have been developed in the literature, each designed to
simulate and mimic specific phenomena [46]. Microscopic models, which focus on simulating
individual behavior and interactions, are commonly used in low- to medium-density situations.
These models have been known to exhibit specific limitations in high-density scenarios and thus
require careful calibration to be applicable in such situations. For example, several drawbacks of
microscopic models in high-density scenarios have been reported, such as abnormal oscillation
in trajectories with the Social Force Model [18], congestion in dense bidirectional flow with
the Velocity Obstacle Model [19], and predicted trajectories with many collisions with the
data-driven models [7, 9]. Conversely, macroscopic models [199, 15], which simulate crowds
as a whole, are typically used for high-density scenarios due to the assumption that pedestrians
in crowded scenarios tend to move in a continuous and collective manner.

In order to provide a generic framework able to model a wide range of situations in terms of
density, it thus appears necessary to combine several approaches. I thus follow and propose a
hybrid modeling approach. Hybrid modeling typically combines macroscopic or mesoscopic
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models with microscopic models into one framework to exploit the strengths of both approaches.
This achieves a balance between simulating the overall crowd movement and behaviors with
reasonable computational cost while maintaining detailed representations of individual behaviors
and interactions. A review of related works on hybrid modeling approaches for pedestrian
simulation was presented in Chapter 2. Although Curtis et al. [72] proposed the Menge
framework, a crowd simulator that aggregates different modeling algorithms at each pedestrian
behavioral level, it can only execute one modeling technique at the operational level during a
simulation. Currently, a notable research gap is the lack of a comprehensive framework capable
of dynamically switching between models to adapt to various crowd situations.

This chapter proposes and evaluates an agent-based framework for pedestrian simulation
that allows agents to dynamically switch their operational-level models in response to changes
in local density states to adapt to different crowd scenarios in the environment, hence the name
HyPedSim framework. The agent-based approach is chosen to design the architecture of the
framework due to the complex architecture that captures various models with the flexibility to
switch. The ability of the framework to switch between operational-level models is illustrated
through an application of dense crowd simulation at the Festival of Lights in Lyon, France.
Moreover, the proposed framework also demonstrates that dynamic switching can be extended
to higher levels of modeling pedestrian behaviors, such as strategic and tactical levels. The
simulation environment is divided into predetermined areas, with the local density of each
area estimated based on expert knowledge rather than explicit computation, making it more
intuitive and easier to implement. Based on the descriptions of hybrid models in Chapter 2,
our framework can be classified as a region-based model. Compared to region-based models
presented in Chapter 2, our framework introduces the following novel features:

• Flexibility to create various combinations of models for different areas of the environment.

• Extensibility of dynamic switching among models to higher-level modeling of pedestrian
behaviors, such as the strategic and tactical levels.

The chapter is structured as follows: Section 4.2 proposes a framework that provides the
ability to capture various models at different behavioral levels of pedestrians and allows for
dynamic switching of these models. The framework’s ability to couple different models is
presented in Section 4.3 through an application simulating pedestrian dynamics at the Festival
of Lights in Lyon, France. Section 4.4 evaluates and compares the performance of the coupled
model. Finally, Section 4.5 provides a conclusion and a discussion of the study.
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4.2 HyPedSim Framework

This section proposes HyPedSim, a framework for simulating pedestrian dynamics that provides
the ability to integrate various models and allows for dynamic switching between them to
simulate different crowd situations. It begins with a general overview of the framework, followed
by detailed descriptions of the architecture design and the agent’s activity diagram. What should
be noted is that while our primary focus is on the operational level, the tactical level is also
incorporated into the framework’s architecture to demonstrate its extensibility in modeling the
higher level of pedestrian behavior.

4.2.1 General Overview

The environment is discretized into separate zones, each containing walkable space for pedestrians
and potential obstacles. This partitioning can be informed by expert knowledge or based on
specific conditions such as crowd characteristics and environmental data. Figure 4.1 illustrates
an example of the environment divided into four different zones, while Section 4.3 presents
a concrete example of environment partitioning for a case study. Pedestrian crowds in each
zone are simulated by an appropriate simulation model, which can be selected depending on the
crowd density in this zone.

Each zone is associated with a specific transition function. The transition function, activated
when pedestrians enter or exit the zone, aggregates or disaggregates the information of these
pedestrians to ensure a smooth transition between zones.

Pedestrians are modeled at the individual level. They can move from one zone to another.
At each behavioral level, each pedestrian is simulated using a specific model that depends on
the zone they belong to. When pedestrians enter a new zone, they dynamically update their
attributes to align with models used in the new zone.

The next section proposes a generic and extensible method for this update process. Specifi-
cally, an agent-based architecture is designed to capture various models and enable pedestrian
agents to dynamically change their operational-level model based on zone-specific informa-
tion. While the agent-based architecture is primarily designed for dynamic switching between
operational-level models, the strategic and tactical levels are also integrated to demonstrate its
extensibility to higher levels of modeling pedestrian behaviors.
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Figure 4.1: General overview.

4.2.2 Agent-Based Model for Multi-Level Behaviour

Firstly, the problem is formulated as a mathematical abstraction and divided into three sub-
problems: strategic, tactical, and operational subproblem. Similar formulations for crowd
simulation problems can be found in previous works [72].

Let S = {E, A} represent the simulation state, including the environment E and the set of
agents A. The strategic subproblem is formulated as follows:

S : S × t → R2 (4.1)

For each agent, the function S maps the simulation state S and time t to a point representing a
goal in R2.

The tactical subproblem can be defined as follows:

T : S × t × R2 → R2 (4.2)

The function T maps the simulation state, time, and the agent’s goal to a preferred velocity in
R2. This preferred velocity represents the direction extracted from either a global or local path
that pedestrians use to move toward their goal.

The operational subproblem can be represented as follows:

O : S × t × R2 → R2. (4.3)

The function O maps the simulation state S, time, and the agent’s preferred velocity to a feasible
velocity in R2. The feasible velocity is then used as the agent’s next velocity and applied to
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update the agent’s position in the next simulation step.
The three subproblems can be generally incorporated into the following mathematical

formulation:

vi(t) = Oi(S, t, Ti(S, t, Si(S, t))) (4.4)

pi(t + 1) = pi(t) + vi(t)∆t (4.5)

where vi(t) and pi(t) represent the velocity and the position of agent i in the xy-coordinate
system at time t, respectively, while ∆t is the duration of a simulation step.

Based on the above mathematical formulation, an agent-based model is designed to capture
various models and provide agents with a generic way to switch between these models. Figure 4.2
presents the architecture of the agent-based model. In the architecture, pedestrian agents are
represented by the Pedestrian class. Note that “class” in this context refers to the classical
definition in the Object Oriented Programming paradigm. The Pedestrian class has three key
attributes, strategic_level, tactical_level, and operational_level, along with and three main
methods: define goal, define preferred velocity, and move.

Furthermore, each subproblem is represented by an interface, hence the names Strategic
level, Tactical level, and Operational level for these interfaces. Each interface is responsible
for capturing different inheriting subclasses, with each subclass corresponding to a specific
model that simulates pedestrian behavior at the same level as the interface (strategy design
pattern [200]). The Strategic level and Tactical level include abstract methods for computing a
goal and a preferred velocity for each pedestrian, respectively, whereas the Operational level
interface has an abstract method for calculating their next velocity. Any model inheriting from
an interface must implement the methods specified in that interface. For example, the Social
Force Model [13] can be a subclass inheriting from the Operational level interface, and thus it
must implement a method for calculating the next velocity for pedestrian movement in the next
simulation step.

The three methods in the Pedestrian class, define goal, define preferred velocity, and move,
use the three attributes strategic_level, tactical_level, and operational_level, respectively, to
communicate with subclasses of Strategic level, Tactical level, and Operational level interfaces.
Pedestrian agents can only use one model at any given time for each behavioral level; however,
they can switch models based on environmental conditions and crowd characteristics. Switching
between models is made by simply updating their corresponding attributes. For example, if an
agent wants to switch their operational-level model from “model 1” to “model N”, it sets the
operational_level attribute to the new value “model N”. Consequently, when the method move
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invokes the operational_level attribute with the updated value, the “model N” is then executed.

Figure 4.2: Architecture of the HyPedSim framework.

In addition, Zone class represents different areas in the environment. Each zone has a
transition function responsible for monitoring when a pedestrian enters or exits the zone. When
this occurs, it aggregates or disaggregates pedestrian data to update the zone. Furthermore,
each zone contains information about models used to simulate pedestrian behaviors in that
zone. Pedestrians update their attributes based on this information when entering a new zone to
synchronize with the models used in the new zone.

Finally, it is important to note that while numerous instances of Pedestrian and Zone classes
can be created in simulations, only one instance of the other classes is created (singleton design
pattern). Therefore, this agent-based architecture design does not increase the complexity but
enhances the flexibility in simulations by providing agents with a dynamic mechanism for
switching their models at each behavioral level.
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4.2.3 Pedestrian Activity Diagram

Figure 4.3 presents the activity diagram for pedestrian agents in each simulation step. Firstly,
pedestrian agents perceive their surroundings to collect information about nearby agents. They
then check whether they currently have a goal. If they do not, they perform define goal behavior,
which invokes a strategic-level model inheriting from the Strategic level interface to establish
a goal. After that, they determine whether they have a preferred velocity. If so, they perform
define preferred velocity behavior which invokes a tactical-level model inheriting from Tactical
level interface to compute a new preferred velocity.

Next, given a preferred velocity, pedestrian agents perform the move behavior, which invokes
the corresponding model from the Operational level class to compute their next velocity. This
velocity is then used to update the position of the pedestrian agents.

After updating their position, pedestrians determine whether they have reached their intended
goal. If they have, their movement concludes. Otherwise, they check if they have entered a new
zone. If so, they must update their models to align with those used in the new zone. The process
involves sending a request to the new zone entity to obtain information about strategic-level,
tactical-level, and operational-level models used to simulate crowd dynamics in that zone.
The query returns strategic_levelnew, tactical_levelnew, and operational_levelnew, which
represent the models used in the new zone. Pedestrians then update their attributes accordingly
by setting the value of the strategic_level attribute to strategic_levelnew, tactical_level
attribute to tactical_levelnew, and operational_level attribute to operational_levelnew.

The process of perceiving the surrounding environment, defining a goal and preferred
velocity, moving, and updating attributes when entering a new zone, allows pedestrian agents
the ability to adapt to varying scenarios and navigate effectively in complex environments.

4.3 Application to the Festival of Lights

This section examines the HyPedSim framework’s capability to model pedestrians that dynami-
cally switch operational-level models through a case study of simulating the movement of large,
dense crowds at the Festival of Lights in Lyon, France. The simulation scenario is initially
described, followed by a description of how different operational-level models are combined to
simulate this scenario. Next, the model combination is calibrated using a genetic algorithm that
uses the real-world pedestrian outflow data collected during the festival. Finally, the results of
the simulation are presented, along with a sensitivity analysis for each parameter.
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Figure 4.3: Pedestrian activity diagram at each simulation step.
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4.3.1 Simulation scenario

In the previous chapter, we provided a detailed description of the Festival of Lights and of the
collected empirical data during the event. The HyPedSim framework is applied to simulate
large, dense crowd dynamics at Place des Terreaux, which is the main and busiest area of the
festival. Figure 4.4 shows a screenshot of pedestrians gathering at Place des Terreaux to watch
a projection show during the festival. Once the show ends, pedestrians move towards the two
exit roads, Constantine Road and Chenavard Road, to explore other parts of the festival. We
have observed from videos and on site that this creates high-density flows inside the plaza while
lower-density flows form along the exit roads. We want to investigate whether the HyPedSim
framework can effectively model such crowd exit scenarios where crowd density varies by
location and over time. Details of the implementation are described in the next section.

Figure 4.4: A screenshot of pedestrians watching the show at Place des Terreaux in 20228 and
main circulation of the exiting crowd.

8https://www.fetedeslumieres.lyon.fr/fr/oeuvre/grand-mix-au-musee-des-beaux-arts-d
e-lyon (accessed on 30 January 2024)

https://www.fetedeslumieres.lyon.fr/fr/oeuvre/grand-mix-au-musee-des-beaux-arts-de-lyon
https://www.fetedeslumieres.lyon.fr/fr/oeuvre/grand-mix-au-musee-des-beaux-arts-de-lyon
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4.3.2 Pedestrian Simulation Models

Two operational-level models are integrated into the framework: the Social Force Model [13] for
simulating low-density crowds and the Continuum Crowd model [15] for simulating high-density
crowds. The description of the models and their coupling to simulate a crowd exit case study at
the Festival of Lights in Lyon, France, is provided in the following sections.

Social Force Model

This section describes the simplified Social Force Model (SFM) [13] integrated into the
HyPedSim framework. The SFM simulates pedestrian behavior based on the assumption that
pedestrian movement is influenced by social forces. These forces arise from both internal factors
and external factors. The internal factors include pedestrians’ intentions and motivations to
reach predetermined targets, while external factors include repulsion from other pedestrians
in the surrounding environment. The mathematical foundation of the SFM is based on the
Newton’s second law:

ai(t) = vpref
i (t) − vi(t)

τ
+

∑
j∈N(i)

nij(t)A exp−
dij (t)

B +
∑
w

niw(t)Aw exp− diw(t)
Bw (4.6)

where ai(t) and vi(t) represent the acceleration vector and velocity vector at time t, respectively.
The preferred velocity and preferred speed of pedestrian i are denoted as vpref

i and V pref =
∥vpref ∥, respectively. In this study, the same value of V pref is applied to all pedestrians
simulated by the SFM. In Equation 4.6, the first term describes the acceleration of pedestrian
i from its current velocity to its preferred velocity within the reaction time τ . The second
term represents the distance-based repulsion forces with respect to other pedestrians in the
neighboring set N(i), with A and B denoting the scale and interaction range of the repulsion
forces, respectively, and:

dij(t) = ∥xi(t) − xj(t)∥ − (ri + rj) and nij(t) = xi(t) − xj(t)
∥xi(t) − xj(t)∥ (4.7)

where xi(t) and ri represent the position and radius of pedestrian i at time t, respectively.
The separation distance between pedestrian i and j at time t is denoted as dij(t), while nij(t)
represents the unit vector directed from xj(t) toward xi(t). Figure 4.5 provides a geometric
illustration of the repulsion force fij acting on pedestrian i due to the presence of pedestrian j.

Similarly, the third term in Equation 4.6 describes the repulsion forces to nearby walls, with
niw(t) representing the normalized vector perpendicular to wall W and diw(t) representing the
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Figure 4.5: Description of repulsion force fij between pedestrian i and j.

distance to it at time t. Additionally, Aw and Bw denote the strength and interaction range of
these repulsion forces.

The SFM has demonstrated effectiveness in realistically simulating well-known self-
organization phenomena in pedestrian dynamics, such as lane formation in bidirectional
flows and arc-shaped congestion at bottlenecks [13]. The SFM is then applied to the crowd
exit case study in the Festival of Lights to simulate unidirectional pedestrian flows on long,
large roads. In this scenario, the influence of the repulsion forces from walls on pedestrian
movement is less significant compared to other forces acting on pedestrians, as the majority of
the crowd is walking far away from walls. Furthermore, unidirectional flows create less push
toward walls compared to bidirectional and multimodal flows. Hence, for simplification, the
calibration mainly focuses on the first and second terms in Equation 4.6, with the parameters for
repulsion forces from walls set at Aw = 3.0 and Bw = 0.1, based on calibrated values from
previous studies [201, 202]. Based on the model description above, we aim to calibrate four
parameters in the SFM, including A, B, V pref , and τ .

Continuum Crowds Model

In contrast, the Continuum Crowds (CC) model, introduced by Treuille et al. [15], simulates
crowd movement similarly as a continuous flow while disregarding individual-level interactions
and differences. This model employs a dynamic potential field for global navigation through the
eikonal equation as follows:

∥∇ϕ(x)∥ = C (4.8)

v = −f(x, θ) ∇ϕ(x)
∥∇ϕ(x)∥ (4.9)
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where ϕ is the potential function and C represents the estimated unit cost along the gradient
direction ∇ϕ. The model calculates the cost to reach the goal by considering multiple factors
including spatial distance, time, and potential discomfort. Pedestrian velocity is computed so
that its direction is opposite to the gradient, and its magnitude is set equal to the speed field
f(x, θ) evaluated at position x with the moving direction θ.

The CC model is typically used for simulating high-density crowds on a large scale while
maintaining computational efficiency and individual agents. In this model, the environment is
divided into discrete cells. Pedestrians within the same cell, who share a common target, move
at the same velocity. The velocity magnitude in each cell, assuming a flat environment without
slope influence, is determined based on local density according to the following equation:

f(x, θ) = fmax − ρ(x + rnθ) − ρmin
ρmax − ρmin

(fmax − fflow(x, θ)) (4.10)

where ρmax and ρmin correspond to the maximum and minimum density thresholds influencing
the speed value, respectively. Additionally, fflow(x, θ) denotes the average flow speed in the
direction θ at the position x. Similarly, ρ(x + rnθ) signifies the local density evaluated at the
location x + rnθ, which is at a distance r from x in the direction θ.

Figure 4.6 illustrates the relationship between density and pedestrian speed presented in
Equation 4.10. Pedestrian speed reaches the maximum value of fmax when the density is below
ρmin. Conversely, when the density is higher than ρmax, pedestrian speed is set to the average
speed of the crowd flow. The lower bound for the average speed of the crowd flow is denoted as
fmin. Within these density thresholds, pedestrian speed decreases linearly from the maximum
to the minimum value as the density increases from ρmin to ρmax. For the CC model, the
parameters that require calibration are fmin, fmax, ρmin, and ρmax.

Hybrid model

In general, pedestrian agents adhere to the activity diagram described in Figure 4.3, with
additional details applied to simulate a specific case study such as the exit at the Festival of Lights
in Lyon, France. These details include the implementation of specific operational-level models
in appropriate areas in the environment and their coupling, the switch between operational-level
models, and the scenario-specific behavior of pedestrians.

Usage of operational-level models: The crowd exit scenario at Place des Terreaux is
characterized by varying densities in different areas, with high-density flows in the plaza and
lower densities along the exit roads. To simulate this scenario, the environment is divided into
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Figure 4.6: Parameters of CC model.

three separate zones as shown in Figure 4.7:

• The plaza is defined as a high-density zone and illustrated by the red rectangle.

• The two exit roads are defined as low-density zones and illustrated by the blue rectangles.

Figure 4.7: Discretization of the environment into three zones.

A specific operational-level model is executed in each zone to simulate pedestrian dynamics
within that zone. The specifications of the operational-level models for these zones are as
follows:
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• The CC model [15] is used to simulate crowd movement in the high-density zone. In this
zone, the crowd moves to a single target which is the corner leading to the two exit roads.
Consequently, the CC model is applied to a single pedestrian group with a common target.
The high-density zone is further divided into discrete cells, each storing information about
the local average density and local average pedestrian velocity of the crowd within that
cell.

• The SFM [13] is used in the low-density zones to simulate pedestrians who have left the
plaza to one of the two exit roads.

Note on aggregation/disaggregation: It is crucial to recognize that combining macroscopic
models and microscopic models typically requires an additional step of aggregating or disag-
gregating individual data for a smooth transition between these models. However, our hybrid
framework integrates a mesoscopic model (CC model [15]) and a microscopic model (SFM
model [13]), both of them retain individual-level representation. Therefore, our framework
skips this step because individual data, including location and velocity, are conserved when an
individual moves to a new zone.

Switch of operational-level models: Pedestrians switch their operational-level models when
they exit the high-density zone and enter one of the low-density zones. This transition of models
is achieved by updating the attribute operational_level = SFM . In addition, a variable tdelay

is introduced to control the outflow of pedestrians moving from the high-density zone to the two
low-density zones. This variable simulates a brief stationary behavior during the transition of
operational-level models. However, a high value of tdelay can cause an unnaturally long pause in
pedestrian movement. To prevent this, tdelay is capped at a maximum of 1 second. Furthermore,
the tdelay variable must be calibrated using empirical outflow data to ensure realistic simulation
results.

Exit choice behavior: After leaving the high-density zone, pedestrians probabilistically
choose between the two low-density zones that correspond to the exit roads: Constantine Road
and Chenavard Road. The probability of selecting an exit road is based on pedestrian proximity
to each exit road:

• If their location is closer to Constantine Road, there is an α probability of selecting
Constantine Road and 1 − α probability of choosing Chenavard Road.

• On the other hand, if their location is closer to Chenavard Road, there is a β probability of
selecting Chenavard Road and 1 − β probability of choosing Constantine Road.
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Given the description of the hybrid model above, three parameters for hybrid coupling,
including tdelay, α, and β, must be calibrated using empirical data collected at the Festival of
Lights.

4.3.3 Simulation Details

The experimental simulation of the crowd exit case study at the Festival of Lights is configured
as follows:

• The simulation runs with a time step of ∆t = 0.1 s and includes a total of 3883 pedestrian
agents.

• Pedestrian agents are initially distributed uniformly in the high-density zone.

• The simulation stops when all pedestrians reach the end of one of the two exit roads.

• Buildings and obstacles in the simulation environment are represented using a shapefile.

• The simulations are implemented on the GAMA platform [203] and run on a M1 MacBook
Pro with 32 GB of memory.

4.3.4 Model Calibration

Calibration is an essential step in fine-tuning the parameters to have realistic simulations of
crowd dynamics in real-world scenarios. This section presents the calibration process of the
HyPedSim framework for simulating high-density crowd exit during the Festival of Lights using
the real pedestrian outflow data collected in the festival (as described in details in Chapter 3).
The calibration process involves adjusting three types of parameters with value ranges of these
parameters presented in Table 4.1:

• Hybridization:

– tdelay: the delay time applied to pedestrian agents transitioning from the high-density
zone to the low-density zones before switching their operational-level model.

– α: the probability that an agent, when moving out of the high-density zone and
closer to Constantine, chooses Constantine road as the exit road.

– β: the probability that an agent, when moving out of the high-density zone and
closer to Chenavard road, chooses Chenavard road as the exit road.

• Parameters of SFM:
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– A: the strength of repulsion forces between pedestrians.

– B: the interaction range of repulsion forces between pedestrians.

– V pref : the preferred speed of pedestrians.

– τ : the reaction time of pedestrians.

• Parameters of CC model:

– fmin: the minimum speed of pedestrian flows.

– fmax: the maximum speed of pedestrian flows.

– ρmin: the minimum density threshold below which pedestrian flows reach their
maximum value.

– ρmax: the maximum density threshold above which pedestrian flows reach their
minimum value.

A Genetic Algorithm (GA) method is designed to calibrate the eleven parameters of the
framework. Compared to statistical methods for parameter estimation, such as maximum
likelihood estimation [204] or Bayesian inference [205], the GA method offers an intuitive
understanding and an easy implementation. This method is particularly useful for a large
and continuous search space [206], which is the case of this calibration task. Furthermore,
the actual data used for calibration is pedestrian outflow. This macroscopic data cannot be
easily and directly used with statistical methods to estimate the parameters related to individual
characteristics such as preferred speed.

Each solution is evaluated based on a fitness function that measures the similarity between
the simulated outflow and actual outflow. The fitness function is defined as follows:

fitness = 1
N

N∑
i=1

( |fobs
i − fsim

i |
fobs

i

)Constantine + ( |fobs
i − fsim

i |
fobs

i

)Chenavard (4.11)

where fobs and f sim represent the observed and simulated pedestrian outflow, respectively.
The fitness function quantifies the mean normalized absolute error between the observed and
simulated pedestrian outflow over N time points. The lower value of the fitness function
indicates a better match to the real outflow. The GA is performed via the following steps:

• Initialization: A population of 128 individuals (or chromosomes) is initialized in which
each individual represents a string of eleven genes corresponding to the eleven parameters
of the framework that need to be calibrated. The value of each gene is randomly assigned
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within a predefined range of values for its corresponding parameter. These ranges are
determined based on commonly used settings in the relevant literature [13, 15]. Denote
ϕi as the ith gene in a chromosome, and ϕmin

i and ϕmax
i are the minimum and maximum

possible values for ϕi, respectively. Table 4.1 presents the range of values for each
parameter.

Table 4.1: List of parameters for calibration and their ranges of values.

Type Parameter ϕi ϕmin
i ϕmax

i

Hybrid
tdelay 0.0 1.0

α 0.0 1.0
β 0.0 1.0

SFM

A 0.5 5.0
B 0.1 0.5

V pref 0.8 1.5
τ 0.4 0.6

CC

fmin 0.05 0.25
fmax 0.8 1.6
ρmin 0.05 0.5
ρmax 6.0 8.0

• Fitness evaluation: The fitness function calculates the mean normalized absolute error
between observed and simulated pedestrian outflows, as defined in Equation 4.11. An
individual’s fitness value is evaluated after running a simulation using its corresponding
parameter inputs. The simulation is implemented on the GAMA platform [203], with
the configuration details presented in the next section. A total of N = 20 time points
are selected systematically at a regular interval of 20 seconds throughout the crowd exit
process to compare observed and simulated results.

• Selection: This step involves selecting superior individuals with the best fitness values
from the current population to be parents for reproducing the next generation. This study
applies a selection rate of 50% to choose individuals with the lowest fitness in each
generation for offspring creation through genetic crossover. Furthermore, these superior
individuals are preserved in the next generation to maintain high-quality solutions.

• Crossover: Parents chosen from the previous step are combined to generate offspring
which constitute 50% of the next population. The genetic material of the parents is merged
using uniform crossover, where each gene in the offspring’s chromosome has a 50%
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probability of coming from either parent. Figure 4.8 illustrates the uniform crossover
process between two parental chromosomes, where each gene of the offspring is derived
from the corresponding genes (with selected one colored in red) of either the parental
chromosomes.

Figure 4.8: Illustration of uniform crossover process between two parental chromosomes.

• Mutation: Mutation is the step of making small random changes to the genes of
chromosomes to maintain genetic diversity within the population. This step prevents
the GA algorithm from getting stuck in a local optimum by increasing the chance of
exploring new potential solutions. A mutation rate of 1% is applied to each gene in a
chromosome. If a mutation occurs for a specific gene ϕi, the new value ϕi is calculated
using the following formula:

ϕi = ϕmin
i + γ(ϕmax

i − ϕmin
i ), 0 ≤ γ ≤ 1. (4.12)

where γ is a random value between 0 and 1.

Figure 4.9 summarizes the step-by-step calibration process presented in this study. Each
iteration of the GA algorithm generates a new generation, which is then used as inputs for
simulation on the GAMA platform [203]. The simulated results are compared with observed
results to calculate the fitness values of each individual in this new generation. The calibration
process continues until the number of generations exceeds 150.
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Figure 4.9: Flow of the calibration process.

4.3.5 Calibration Results

Figure 4.10 presents the average and best fitness value of the population over 150 generations.
The average fitness value decreases exponentially during the first 10 generations, then more
gradually over the next 25 generations, before stabilizing and remaining constant for the rest of
the generations. Likewise, the best fitness value decreases rapidly in the first 30 generations and
then remains stable in the remaining generations.

Table 4.2 shows the best solution obtained through calibration using the GA method over
150 generations. For hybrid parameters, the calibrated values for tdelay, α, and β are 0.9, 0.91,
and 0.76, respectively. These values for α and β reflect the higher probability of pedestrians
selecting the closest exit road. Notably, the calibrated value for α is higher than that for β, which
can be attributed to the fact that more pedestrians are situated closer to Chenavard Road than
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Figure 4.10: Average and best fitness values over 150 generations.

Constantine Road when they perform the exit choice behavior. Therefore, β must be lower than
α to balance the outflow between the two exit roads and match the observed pedestrian outflow.

For the SFM, the parameters obtain reasonable values compared to those found in previous
studies. Specifically, the calibrated values of the parameters V pref and τ are 1.25 m/s and
0.57s, respectively, which align well with the mean values of the preferred speed and reaction
time estimated from empirical experiments: 1.29 m/s and 0.54 s [202]. Similarly, the parameter
A, with a value of 1.83, also falls within the range of 0.3 to 2.1 reported in [207]. However, B is
0.45, which is higher than the range of 0.18 to 0.3 found in [207].

For the CC model, the calibrates values for fmin, fmax, ρmin, and ρmax are 0.15, 1.35, 0.11
and 6.36, respectively. The relationships between the calibrated values fmin and ρmax, as well
as fmax and ρmin are qualitatively consistent with the empirical Fundamental Diagram observed
in the Hajj-Tawaf mass-gathering event [208].

Table 4.2: Best solution obtained through the calibration process using the GA method.

Parameter ϕi tdelay α β A B V pref τ fmin fmax ρmin ρmax

Best value 0.9 0.91 0.76 1.83 0.45 1.25 0.57 0.15 1.35 0.11 6.36
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4.3.6 Model Validation

The best-calibrated parameters obtained from calibration are then used as inputs to reproduce
pedestrian outflow in the crowd exit case study at the Festival of Lights. A total of 90 simulations
are run, and the average simulated pedestrian outflow is calculated with a 95% confidence
interval. Figure 4.11 shows the comparison between the average simulated pedestrian outflow
and observed pedestrian outflow for the two exit roads. Overall, the observed outflows exhibit
sharper peaks, while the simulated outflows are smoother, yet still capture the general trends of
the actual outflows. For Constantine road, the simulated outflow qualitatively captures two peaks
in the actual outflow, as shown in Figure 4.11a. Conversely, for Chenevard road, the simulated
outflow tends to smooth out rapid variations in the actual outflow, resulting in a more averaged
representation, as displayed in Figure 4.11b.

(a) (b)

Figure 4.11: Comparison of observed and simulated outflow for the two exit roads. (a)
Constantine road. (b) Chenavard road.

4.3.7 Sensitivity Analysis

While the best values for these parameters have been determined through calibration, it is
essential to understand their influence on simulation outputs. Therefore, a local sensitivity
analysis is performed to determine how changes in parameter values affect the simulation outputs.
In this analysis, the value of each parameter varies around its calibrated values while keeping all
other parameters constant at their calibrated values. The variation range is from −25% to 25%
of its calibrated value, with 5% increments for each variation, as long as it remains within its
corresponding minimum and maximum allowable values. This applies to almost all parameters,
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except for tdelay, as its variation must depend on the simulation time step ∆t. Specifically, tdelay

varies from 0.5 s to 1.0 s with a step of 0.1 s. For each combination of parameter values, a
total of 40 simulations are conducted and the average fitness value is calculated with a 95%
confidence interval.

Figure 4.12 presents the changes in the fitness function corresponding to the variation of
each parameter. For three hybridization parameters, the fitness function generally reaches the
best value when the variation for each parameter stops at its calibrated value. Notably, the
parameter β has the most significant impact on the simulation results, with the fitness value
increasing rapidly when β deviates from 0.75, as shown in Figure 4.12c. Conversely, as seen in
Figures 4.12a and 4.12b, variations in both tdelay and α also affect the fitness values, but their
impact is not as strong as that of β.

On the other hand, the sensitivity analysis for the parameters of the operational-level models
shows different trends between the SFM and CC model. For the SFM parameters, variations do
not significantly affect the fitness value, as presented in Figures 4.12d to 4.12g. The reason for
the insensitivity is related to the locations at which the outflow results are computed. Specifically,
the outflow results are computed at the beginning part of each exit road, while SFM simulates
pedestrian movement along these roads. Therefore, the initial pedestrian flow is less sensitive to
these parameter changes.

For the CC parameters, only those related to pedestrian speed, including fmin and fmax, show
strong sensitivity to the fitness value, as seen in Figures 4.12h and 4.12i. These speed-related
parameters cause a sharp increase in the fitness value when they deviate from their calibrated
values. Conversely, the density-related parameters, including ρmin and ρmax, exhibit negligible
influence on the fitness value, as indicated in Figures 4.12j and 4.12k. The difference between the
impacts of speed-related and density-related parameters on the fitness value is because changes
in fmin and fmax cause significant changes in pedestrian speed and thus directly influence how
quickly pedestrians move and reach the exit roads. In contrast, changes in ρmin and ρmax only
cause minor adjustments in pedestrian speed, leading to a negligible impact on the fitness value.

In summary, this local sensitivity analysis provides a deep understanding of the impacts
of the framework’s parameters on pedestrian outflow results. Key parameters with significant
impacts include three hybridization parameters: tdelay, α, and β, as well as two parameters in
the CC model: fmin and fmax. Furthermore, the analysis reconfirms that the fitness function
achieves the best value when the parameters are set at their calibrated values and tends to worsen
if any key parameter deviates from its calibrated value. The next section presents a further
demonstration of the HyPedSim framework’s capabilities.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Cont.
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(g) (h)

(i) (j)

(k)

Figure 4.12: Local sensitivity analysis for different parameters. (a) tdelay, (b) α, (c) β, (d) A,
(e) B, (f) V pref , (g) τ , (h) fmin, (i) fmax, (j) ρmin, (k) ρmax.
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4.4 Performance Analysis

This section demonstrates the capability of the HyPedSim framework to produce various
simulations through different combinations of operational-level models. It also compares the
performance of the hybrid model with these various combinations in simulating large crowds at
the Festival of Lights. The flexibility of the HyPedSim framework in dynamically switching
different models in each zone allows for easy implementation of these combinations. Three
additional models are introduced for comparison with the proposed hybrid model:

• SFM-only model: This model uses only SFM to simulate pedestrian dynamics in all
three zones of the environment.

• 3-CC-1 model: This model includes three separate CC models, each simulating pedestrian
dynamics in one zone. Since pedestrians in each zone move in similar directions, each CC
model is designed with a single target cell. Thus, the model is named the 3-CC-1 model.

• 1-CC-2 model: This model uses only one CC model to simulate pedestrian dynamics in
the entire environment as a single zone. The CC model is designed with two different
target cells to simulate two pedestrian groups heading towards the two exit roads, hence
the name 1-CC-2 model. It is important to note that the complexity of the CC model
increases with the number of target cells.

Each model is executed 15 times using the calibrated values for parameters to calculate the
average values of the following metrics:

• Density map (measured in ped/m2): the spatial distribution of pedestrian density over
the simulated environment.

• Computation time (measured in seconds (s)): the duration required to execute one
simulation step.

Figure 4.13 displays the density maps of different models simulating 6000 pedestrian
agents at three specific simulation time points: t = 60 s, 150 s, and 240 s. The SFM-only model
exhibits a peak density of approximately 3.5 ped/m2 at t = 150 s observed in both the plaza
and the two exit roads. Likewise, the 3-CC-1 and 1-CC-2 models show extremely high densities
ranging from 6 to 8 ped/m2, also in both the plaza and the two exit roads. In contrast, the
hybrid model shows a noticeable difference in density levels between the plaza and the two exit
roads. A detailed visualization of the simulation of the hybrid model is shown in Figure 4.14,
where pedestrians in the plaza are simulated using the CC model and represented in red while
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Figure 4.13: Density maps among different models with 6000 simulated agents.
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pedestrians in the two exit roads are simulated using the SFM and illustrated in blue. These
results suggest that the HyPedSim framework can be used to simulate various crowd scenarios by
combining different zones and models. For example, the hybrid model is particularly effective
in simulating pedestrian movement in environments characterized by both low and high-density
areas.

Figure 4.14: A snapshot of simulation of the hybrid model with 6000 agents.

Furthermore, each model is executed with varying numbers of agents, ranging from 3 K to 15
K, to evaluate their performance. The average duration required to perform one simulation step
is computed and compared in Figure 4.15. The results indicate that the SFM-only and 3-CC-1
models take the longest time to complete each simulation step, with the duration increasing
significantly as the number of agents increases. The 1-CC-2 model exhibits similar durations
compared to the SFM-only and 3-CC-1 models when simulating less than 9 K agents, but it
becomes faster as the number of agents exceeds 9 K. Conversely, the hybrid model demonstrates
the shortest duration over different numbers of simulated agents, with a clear difference in speed
compared to the other models. These results suggest that incorporating different models at
each level of pedestrian behavior not only increases the ability to simulate diverse behaviors in
various situations but also improves simulation performance by using appropriate models for
specific areas.
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Figure 4.15: Comparison of the performance of different models.

4.5 Conclusions and Discussion

This chapter proposes an agent-based framework that allows agents to dynamically switch their
operational-level models in response to changes in local density. The ability to switch between
operational-level models is demonstrated through the hybrid coupling of SFM and CC model
to simulate the large, dense crowd exit scenario in the Festival of Lights in Lyon, France. The
simulation environment is divided into predefined zones, with the local density of each zone
estimated in advance based on expert knowledge for specifying an appropriate operational-level
model for each zone. The hybrid model is calibrated using a genetic algorithm that utilizes
real-world pedestrian outflow data extracted from video recordings of exiting crowds at the
festival. After calibration, the simulations are run with the calibrated parameters to compute the
simulated outflow data. The outflow results simulated by the hybrid model can qualitatively
capture the general trends of the actual outflow data. Furthermore, a local sensitivity analysis is
performed to evaluate the impact of each parameter on these outflow results. The analysis shows
five key parameters with significant impacts, including three hybridization parameters (tdelay, α,
and β) and two parameters in the CC model (fmin and fmax). It also reconfirms that the fitness
function achieves the best value when the parameters are set at their calibrated values and tends
to worsen if any of the key parameters deviates from its calibrated value.
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In addition, the HyPedSim framework provides the flexibility to create various combinations
of operational-level models, enabling the simulation of diverse crowd scenarios by combining
different zones and operational-level models. The performance of the hybrid model is then
compared to different combinations of operational-level models in terms of density map and
computational time. The comparison results indicate that the hybrid model can effectively
simulate pedestrians in varied density scenarios while maintaining computational efficiency
compared to other model combinations. This suggests that incorporating appropriate models
for specific areas not only increases the ability to simulate diverse crowd scenarios but also
improves simulation performance. Moreover, the proposed agent-based architecture design
is not only generic in the domain of pedestrian modeling but also extensible to other related
domains, such as traffic simulation and social simulation.

However, our framework has several limitations. The first limitation is that it uses predefined,
fixed zones for the simulation environment. While this approach simplifies implementation, it
restricts the framework’s flexibility to adapt to dynamic environments. The current approach
for creating zones relies heavily on expert knowledge and specific environmental information,
with no general approach applicable to any environment. Consequently, new environments may
require a custom approach to zone creation, which can be time-consuming.

The second limitation is that the framework assigns models to zones based on initial density
estimations, and this assignment does not change dynamically during the simulation. While it
allows individual agents to dynamically switch their operational-level model when moving from
one zone to another, the zones themselves cannot change their model based on real-time changes
in crowd density. This means that once a zone is designated as high-density and is assigned a
simulation model suitable for high-density situations, it will always use this simulation model
regardless of any subsequent changes in the actual crowd density within that zone.

Future works aim to address these above limitations and enhance the adaptability of the
HyPedSim framework across various scenarios. To do so, several perspectives are proposed.
The first direction is to integrate a wider range of models at each behavioral level into the
framework to cover a more diverse range of crowd phenomena.

In addition, dynamic zones can be used instead to address the limitations of using fixed,
predetermined zones for the environment. These dynamic zones are created by clustering
pedestrian coordinates using density-based clustering algorithms such as DBSCAN [209]. Each
cluster then corresponds to one zone, with its boundary encompassing all pedestrians in that
cluster.

Another direction is to enable each zone to change models in response to real-time changes in
crowd density. To achieve this, each zone must be associated with specific triggering rules. These
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rules, activated when the crowd density in the corresponding zone meets certain conditions,
select an appropriate model at each behavioral level for simulating crowd dynamics within
that zone. Furthermore, changes in models require an additional step for aggregating and
disaggregating pedestrian data when changing from one model to another within one zone.

In the next chapter, we investigate the use of another density-related factor in hybrid
approaches to improve deep learning algorithms for predicting pedestrian trajectories.
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In the previous chapter, we proposed HyPedSim – a hybrid framework for pedestrian
simulation that allows pedestrian agents to dynamically switch their operational-level models
based on density-related factors such as density-based zones. This simulation framework
normally incorporates traditional operational-level models, which are typically knowledge-based
and grounded in theoretical foundations. In the last decade, a new approach has emerged
for predicting pedestrian movements using deep learning neural networks. Unlike traditional
knowledge-based models, neural network models are data-driven, meaning they learn patterns
directly from data without relying on predefined rules. This data-driven approach has gained
significant attention and is showing promising results [28]. Therefore, particular interest is placed
on this approach with concern about whether improvements can be made to neural network
models for crowded situations using a hybrid method. This chapter investigates how other
density-related factors can be integrated to improve recently emerged deep learning approaches
for pedestrian trajectory prediction. This work has been presented at KSE 2023 conference
and published in [7, 9, 10] where the author was the primary contributor as well as the second
contributor.

5.1 Introduction

The last decade has witnessed the rapid emergence of data-driven deep learning approaches for
predicting pedestrian trajectories [161, 28]. Empirical studies have shown that deep learning
models, specifically long short-term memory (LSTM) and generative adversarial networks
(GAN), outperform traditional physics-based models in terms of distance-based prediction
accuracy [28]. Among these, LSTM networks are widely applied to pedestrian trajectory
prediction due to their capability to handle time-series data. LSTM is dedicated to prediction
from a time series, which corresponds to one trajectory and thus often omits the interaction
with other agents. To tackle such issues, Alahi et al. have introduced Social-LSTM [11],
which incorporates a pooling layer called social pooling. This layer aggregates hidden states of
neighboring pedestrians to model the interactions between pedestrians. Further improvements
have integrated contextual factors such as scene information [210], attention mechanisms [211],
graph neural networks [212, 213], and heterogeneity among pedestrians [214]. Besides LSTM
neural networks, generative adversarial networks such as Social-GAN [66] represent another type
of neural network architecture. These neural networks contain a generator and a discriminator,
allowing for the prediction of a distribution of potential future trajectories.

Neural network models like Social-LSTM and Social-GAN demonstrate superior perfor-
mance in terms of distance-based accuracy compared to traditional physics-based models [71].
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This superior performance is achieved because neural network models are trained using loss
functions that primarily focus on optimizing the distance error between predicted and ground
trajectories. However, recent studies indicate that predictions made by these models often result
in many collisions, especially in high-density situations [10, 161].

In this chapter, we introduce an extended Social-LSTM (SLSTM) model by integrating a
collision loss term into the training loss function to address the issue of unrealistic collision
behavior in pedestrian trajectory prediction. The collision loss term is based on time-to-collision
(TTC) interaction energy with neighboring pedestrians (therefore, we call our model TTC-
SLSTM), a concept successfully applied to model interactions between pedestrians in previous
research [215]. A weight factor λ ≥ 0 is used to adjust the influence of the collision loss term.
Our findings indicate that adding λ significantly reduces collisions and pedestrian overlaps in
predicted trajectories. However, the effectiveness of λ varies across various datasets, showing
different trends of evaluation metrics. Therefore, the optimal λ value must be determined for
each specific dataset. In general, the best value λ is chosen to balance distance-based accuracy
and collision reduction. These preliminary results suggest that the proposed TTC-SLSTM
represents a promising hybrid approach for realistic pedestrian trajectory prediction, particularly
in crowded scenarios.

The remainder of this chapter is organized as follows. Section 5.2 presents the mathematical
formulation of the pedestrian trajectory prediction problem. Section 5.3 describes essential
concepts and proposes a new methodology to improve the realism of neural network model
predictions, especially in high-density scenarios. Next, Section 5.4 details the experiments and
evaluations of the proposed methodology across various pedestrian datasets. Finally, Section 5.5
summarizes the results and provides a conclusion.

5.2 Problem formulation

The goal of neural network algorithms is to accurately predict the future trajectory of one or
multiple target pedestrians over a specified time horizon, typically ranging from 3.6 to 4.8s [28].
This task can be characterized as a sequence-to-sequence prediction problem, wherein the
input includes a sequence of observed positions of both the target pedestrian and neighboring
individuals, while the output consists of a sequence of predicted positions for the target pedestrian.
Mathematically, this task is formulated as follows:

• Let N represent the total number of pedestrians in a given scene.

• Tobs is the total number of observation time steps.
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• Tpred is the total number of prediction time steps.

• The positions of N pedestrians in time step t are denoted as p(t) = {pt
1, pt

2, ..., pt
N },

where pt
i = (xt

i, yt
i) represents the xy-coordinate of the ith pedestrian at time step t.

• Let p̂t
i = (x̂t

i, ŷt
i) represents the predicted position of the ith pedestrian at time step t.

• Input: p(t) with 1 ≤ t ≤ Tobs.

• Output: p̂t
i with Tobs + 1 ≤ t ≤ Tobs + Tpred.

The LSTM neural network [216] is a kind of recurrent neural network designed to handle
the problem of long-term dependencies in sequence data. In the context of pedestrian trajectory
prediction, LSTMs are used to predict the future positions of pedestrians based on their past
movements. Specifically, given the past positions pt

i with 1 ≤ t ≤ Tobs of pedestrian i as input,
an LSTM outputs the predicted future positions p̂t

i with Tobs + 1 ≤ t ≤ Tobs + Tpred. The loss
function in LSTM models typically minimizes the distance-based error between predicted and
groundtruth trajectories. However, LSTMs do not account for interactions and dependencies
among pedestrian movements in a shared space.

5.3 Methodology

This section proposes TTC-SLSTM, a neural network model that predicts pedestrian trajectories
by incorporating local density factors through time-to-collision interaction energy. It starts
by introducing key concepts used to develop TTC-SLSTM, including time-to-collision and
interaction energy, followed by Social-LSTM neural work architecture. Finally, the section
presents the TTC-SLSTM neural network, which is the extension of Social-LSTM by integrating
these concepts.

5.3.1 Time-to-collision

The time-to-collision (TTC) is a crucial quantitative measure used in pedestrian dynamics that
estimates the remaining time before two moving pedestrians collide if they keep moving with
their current velocities [215]. Suppose that:

• Pedestrians are represented as disk-shaped agents, with ri represents the radius of
pedestrian i.

• vi = (vxi , vyi) represents the velocity of pedestrian i.
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• The relative position and relative velocity of pedestrian i with respect to pedestrian j are
denoted as pij = (xi − xj , yi − yj) and vij = (vxi − vxj , vyi − vyj ), respectively.

• τij represents the estimated time to a potential future collision between pedestrians i and
j.

If a collision between pedestrian i and j occurs at some time in the future, their estimated TTC
is then computed as follows:

τij =
− pij · vij −

√
(pij · vij)2 − ∥vij∥2(∥pij∥2 − (ri + rj)2)

∥vij∥2 (5.1)

where ∥.∥ denotes Euclidean norm.

Proof. A collision between pedestrian i and pedestrian j occurs if a ray, starting from the point
pi and extending in the direction of the relative velocity vij , intersects the circle C(pj , ri + rj)
centered at the point pj with a radius of ri + rj at some time τij in the future (see Figure 5.1 for
a geometric illustration):

∃t > 0 | pi + t.vij ∈ C(pj , ri + rj)
⇔ ∃t > 0 | pij + t.vij ∈ C(0, ri + rj)
⇔ ∃t > 0 | ∥pij + t.vij∥2 ≤ (ri + rj)2

Figure 5.1: Geometric illustration of TTC calculation.
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Now we need to solve this quadratic inequality by t:

t2∥vij∥2 + 2tpij · vij + ∥pij∥2 − (ri + rj)2 ≤ 0 (⋆)

Set a = ∥vij∥2, b = pij · vij , c = ∥pij∥2 − (ri + rj)2, and d = b2 − ac.
Case 1: d < 0. In this case, no such t exists that satisfies the condition (⋆). Thus, no collision
will happen in the future.

Case 2: d = 0. Then, only t =
− b

a
satisfies the condition (⋆).

Case 3: d > 0.

• If
− b −

√
d

a
≤ 0 ≤

− b +
√

d

a
: pedestrians i and j are colliding.

• If 0 <
− b −

√
d

a
≤

− b +
√

d

a
: pedestrian i and j are going to collide in τij =

− b −
√

d

a
seconds.

For example, consider two circular objects, A and B, each having a radius of 0.2m, located
(1, 0) and (5, 0) respectively in the 2D plane. They are moving toward each other at the velocities
(1, 0) and (-1, 0), respectively, as illustrated in Figure 5.2.

Figure 5.2: Example of computing TTC.

Then, the TTC between agents A and B is computed as follows:

pA = (1, 0), pB = (5, 0)
vA = (1, 0), vB = (−1, 0)
pAB = pA − pB = (−4, 0)
vAB = vA − vB = (2, 0)
pAB · vAB = (−4, 0) · (2, 0) = −8

τAB =
8 −

√
64 − 4(16 − 0.42)

4 = 1.8(s)
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The TTC metric is particularly useful for understanding and modeling pedestrian collision
avoidance behavior. Notably, Karamouzas et al. [215] have applied this metric to investigate
interactions among pedestrians. Specifically, these interactions are described by a time-to-
collision interaction energy, where “interaction energy” is defined as the measure of mutual
repulsion that prevents approaching pedestrians from collisions [215]. The interaction energy
between pedestrians is described in the next section.

5.3.2 Interaction energy

Karamouzas et al. [215] have investigated various human motion datasets [188, 189, 217],
discovering that the interaction energy of any two pedestrians is best described through a
power-law function of their estimated time-to-collision, rather than just their physical distance.
The interaction energy between two pedestrians, i and j, is mathematically described as:

Eij = E(τij) =
k

τ2
ij

e−τij/τ0 (5.2)

where k is a normalization constant, while τ0 describes the time threshold representing that
pedestrians tend to ignore potential collisions that happen in the distant future. The power-law
interaction has been shown to effectively simulate various well-known crowd phenomena, such
as lane formation and semi-circle shape of crowds at bottlenecks.

Figure 5.3 plots the graph of interaction energy as a function of time-to-collision, with
parameter values k = 1.5 and τ0 = 3.0 estimated from various empirical datasets. The graph
shows that the energy reaches extremely high values when τ is less than 0.5 seconds and
decreases exponentially to near 0 as τ increases to 3 seconds. When τ exceeds 3 seconds, the
energy is almost 0, indicating the negligible effect of potential collisions occurring in more than
3 seconds (i.e., τ0).

5.3.3 Social-LSTM

LSTM neural networks have proven to be highly effective in learning sequence-to-sequence
tasks; however, applying these neural networks for predicting pedestrian trajectories becomes
more complex due to the dynamic influence of neighboring pedestrians. Unlike traditional
sequence prediction tasks, pedestrian movements are significantly affected by the presence
and behavior of nearby pedestrians, with the number and positions of neighboring pedestrians
changing rapidly. To address this challenge, Alahi et al. [11] proposed the Social-LSTM model
which incorporates a “social” pooling layer to capture the interactions between pedestrians.
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Figure 5.3: Interaction energy with k = 1.5 and τ0 = 3.0.

Each pedestrian trajectory in the scene is represented by an LSTM that generates a hidden
state at each time step. Denote hi

t as the hidden state of the LSTM corresponding to the ith

pedestrian, which captures their latent representation at time t. The social hidden-state tensor
Ht

i is created with size N0 × N0 × D through grid-based pooling for the trajectory of the ith

pedestrian:
Ht

i (m, n, :) =
∑

j∈Ni

1mn[xt
j − xt

i, yt
j − yt

i ]ht−1
j (5.3)

where D and N0 represent the hidden-state dimension and neighborhood size, respectively. In
Equation 5.3, the term 1mn[x, y] serves as the binary indicator determining whether a point (x, y)
is in the (m, n) cell of the grid. Additionally, Ni represents the set of neighboring pedestrians
within a specific radius for pedestrian i. This social pooling layer captures interactions between
pedestrians by aggregating the spatial and temporal information of nearby pedestrian dynamics
and sharing this information between neighboring LSTMs (as depicted in Figure 5.4).

The negative log-likelihood loss (NLL) is used to train the original SLSTM model. This loss
calculates the negative logarithm of the probability that the model assigns to the true trajectory.
By minimizing this loss in the training process, the model learns to assign higher probabilities to
the true trajectories and lower probabilities to incorrect ones, resulting in predicted trajectories
with high distance accuracy.
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Figure 5.4: SLSTM architecture developed in [11].

5.3.4 TTC-SLSTM

Although the Social-LSTM (SLSTM) has demonstrated accurate predictions with low distance
errors, the model may potentially produce trajectories that fail to reflect realistic pedestrian
behaviors. More specifically, predicted trajectories can violate real-world physical constraints,
resulting in physically implausible trajectories with high collision rates, especially in crowded
scenarios [10]. An example illustrating this problem is presented in Figure 5.5, where two
pedestrians, A and B, are moving toward each other. The groundtruth trajectories indicate that
both pedestrians tend to turn to the left to avoid a collision. Figure 5.5a shows a prediction with
high distance accuracy but low realism as predicted trajectories will result in a future collision.
On the other hand, Figure 5.5b shows a prediction with lower distance accuracy but higher
realism, where both pedestrians turn right to avoid a collision.
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Figure 5.5: Example illustrating limitation in predictions.

This issue arises because the training loss function primarily focuses on minimizing distance
error without explicitly considering the physical plausibility of predicted trajectories. While
the focus on distance accuracy has proven effective in low-density situations, this often results
in predicted trajectories with unrealistic collisions and overlaps in crowded scenarios where
there is a significant increase in interactions within the prediction time horizon [10]. To address
this limitation, we propose TTC-SLSTM, a hybrid model extended from the SLSTM neural
network, which incorporates physical constraints into the training loss function to improve
the realism of predictions, especially in crowded situations. Specifically, the loss function is
supplemented with an additional term describing a collision loss through the interaction energy
with neighboring pedestrians:

Li = NLLi + λ
1

Tpred

Tpred∑
t=1

∑
j ̸=i

tanh(Eij) (5.4)

where Li and NLLi represent the new proposed loss and the negative log-likelihood loss resulting
from the ith trajectory, respectively, whereas λ is a weight added to adjust the influence of the
collision loss term on the total loss. If λ = 0, the model then becomes the original Social-LSTM.
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The impact of different λ values on the model’s prediction performance is explored in the
experiments presented in the next section.

The interaction energy is chosen to represent the collision loss as it has proven to be a
sufficient indicator for describing the interaction between pedestrians [215]. However, instead of
directly incorporating the interaction energy function into the loss function, the tanh function, a
non-linear function that has been widely used in deep learning to learn complex tasks, is applied
to normalize excessively large values of interaction energy when τ is small. Figure 5.6 shows
the graph of tanh function of interaction energy, with calibrated parameters k = 1.5, τ0 = 3.

Figure 5.6: tanh function of the interaction energy E(τ) with k = 1.5 and τ0 = 3.0.

The second term in the new loss function (Equation 5.4) represents the total sum of the
tanh function applied to the energy generated when interacting with neighboring pedestrians. A
penalty for collision is added to the training loss for predicted trajectories while maintaining the
negative log-likelihood loss for distance error. Consequently, the neural network then learns to
minimize both the negative log-likelihood loss and collision loss through the proposed training
loss function.

5.4 Experiments

This presents experiments conducted to train the TTC-SLSTM on various public pedestrian
datasets with different values of λ. The predictions of TTC-SLSTMs are evaluated using
different metrics, including distance-based metrics (ADE and FDE) and collision metrics (Col-I,
Col-II, and AE). Finally, the prediction results of TTC-SLSTMs are compared with those of the
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SLSTM.

5.4.1 Datasets

Two widely-used public pedestrian datasets, including ETH [188] and UCY [189]), together
with the MADRAS dataset collected during the Festival of Lights, are selected to train the neural
networks. These datasets can be categorized into two classes: low-density or high-density, based
on their corresponding density level. Both low-density and high-density datasets were collected
in outdoor experiments and exhibit various pedestrian traffic with unidirectional, bidirectional,
and multidirectional flows. Table 5.1 summarizes the characteristics of these datasets.

Dataset Source Data Setting No. Traj Avg. Max.
Density Density
(1/m2) (1/m2)

Low density ETH [188] ETH Outdoor 361 0.15 0.52
HOTEL Outdoor 389 0.13 0.32

UCY [189] ZARA01 Outdoor 148 0.21 0.51
ZARA02 Outdoor 204 0.27 0.48
UNIV Outdoor 434 0.38 0.52

High density MADRAS TopView_2D Outdoor 529 0.64 1.04
TopView_2E Outdoor 218 0.57 1.00
TopView_2F Outdoor 183 0.37 0.65

Table 5.1: Fundamental characteristics of different datasets.

For low-density datasets, the ETH dataset contains 750 trajectories and is divided into two
subsets: ETH and HOTEL. Similarly, the UCY dataset includes 786 trajectories and is split into
three subsets: ZARA01, ZARA02, and UCY. The average density of these low-density datasets
ranges from 0.13 to 0.38 ped/m2, with a framerate of 2.5 fps.

For the high-density datasets, only data focusing on bidirectional flow is selected as they
address more interaction between pedestrians, including TopView_2D, TopView_2E, and
TopView_2F. Details about the collection and analysis of this data was presented in Chapter 3.
The average density of these high-density datasets ranges from 0.37 to 0.64 ped/m2, with
maximum density exceeding 1 ped/m2, with a framerate of 3.0 fps. Figure 5.7 visualizes some
examples of trajectories in the UCY, ETH, and MADRAS datasets.
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(a) ETH (b) UCY

(c) MADRAS.

Figure 5.7: Trajectory examples from the datasets.

5.4.2 Evaluation metrics

Two types of metrics are used to evaluate prediction results: distance-based metrics and collision
metrics. Both types are typically applied to a specific pedestrian in each prediction scene, known
as the primary pedestrian.

For distance-based metrics, the Average Displacement Error (ADE) and Final Displace-
ment Error (FDE) are used to evaluate prediction accuracy in terms of spatial similarity. ADE
calculates the average Euclidean distance between the ground truth and the prediction of the
primary pedestrian across all prediction time steps, providing an overall measure of how closely
the predicted trajectory follows the actual trajectory throughout the entire prediction period.
Conversely, FDE computes the Euclidean distance between the predicted and actual positions of
the primary pedestrian at the final prediction time step. Lower values of ADE and FDE indicate
higher prediction accuracy. The average ADE and FDE values for a total of M prediction scenes
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are calculated as follows:

ADE = 1
MTpred

M∑
i=1

Tpred∑
t=1

√
(x̂t

i − xt
i)2 + (ŷt

i − yt
i)2

FDE = 1
M

M∑
i=1

√
(x̂Tpred

i − x
Tpred

i )2 + (ŷTpred

i − y
Tpred

i )2

(5.5)

For collision metrics, recent studies have highlighted the increasing importance of using
collision metrics to evaluate the predictions of deep learning models, especially in high-density
scenarios [10, 161]. Two commonly used collision metrics are Prediction Collision (Col-I)
and Groundtruth Collision (Col-II) [161]. Col-I measures the percentage of prediction scenes
where collisions occur between the primary pedestrian’s predicted trajectories and its neighbors’
predicted trajectories, indicating how often the model’s predictions result in potential collisions.
Similarly, Col-II calculates the proportion of prediction scenes where collisions occur between
the primary pedestrian’s predicted trajectories and its neighbors’ actual trajectories, indicating
how often the predicted trajectories collide with the actual movements of other pedestrians.
These metrics provide a deeper evaluation of the realism of the predicted trajectories, particularly
in high-density scenarios where there is a significant increase in collisions in predictions [9, 10].
The mathematical formulations of Col-I and Col-II are as follows:

Col-I = 1
M

M∑
i=1

min(1,
∑
j ̸=i

Tpred∑
t=1

[∥p̂t
i, p̂t

j∥ < ri + rj ])

Col-II = 1
M

M∑
i=1

min(1,
∑
j ̸=i

Tpred∑
t=1

[∥p̂t
i, pt

j∥ < ri + rj ])

(5.6)

where [·] represents the Iverson bracket, with
[
P

]
equaling 1 if the statement P is true and

0 otherwise. Additionally, ∥p̂t
i, p̂t

j∥ denotes the Euclidean distance between the predicted
positions of pedestrians i and j at time step t.

Col-I and Col-II values vary significantly with the pedestrian radius. While recent studies
often use a radius of 0.1 m [161], this value may not sufficiently represent the actual pedestrian
body. In this study, we chose a radius of 0.2 m for pedestrian representation based on the
heuristic estimation of pedestrian size proposed by Moussaïd et al. [218].

Furthermore, we propose a novel collision metric for evaluating collisions in predicted
pedestrian trajectories, which calculates the average energy (AE) consumed by the primary
pedestrian i when interacting with other pedestrians in the corresponding prediction scene across
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all prediction time steps. The average AE of M prediction scenes is computed as follows:

Ê(τ) = k

τ2 + ϵ
e−τ/τ0

AE = 1
MTpred

M∑
i=1

Tpred∑
t=1

∑
j ̸=i

Êt(τij)
(5.7)

where ϵ = 0.01 is a constant added to prevent extreme values of the interaction energy Ê(τ)
when TTC approaches zero. While other metrics like Col-I and Col-II also measure collisions,
they cannot indicate the severity of collisions in a scene, as Col-I and Col-II only provide binary
values: 1 for collisions and 0 for no collisions. For example, two predicted scenes with one
collision and twenty collisions would both have Col-I values of 1. Conversely, the AE metric
returns a continuous value of average energy that increases with the increasing number of
collisions. Thus, a predicted scene with twenty collisions would result in a higher AE value
compared to a predicted scene with one collision.

5.4.3 Implementation details

The implementation follows the widely accepted settings for pedestrian trajectory prediction
using neural networks, with 9 frames for observations and 12 frames for predictions [28],
corresponding Tobs = 9 and Tpred = 12, respectively. For low-density datasets with fps = 2.5, it
predicts a future period of 4.8 s based on observations from the past 3.6 s. For the high-density
dataset with fps = 3.0, it predicts a future period of 4.0 s based on observations from the past
3.0 s.

The model is trained for 8 epochs with a batch size of 8, using the ADAM optimizer with
a learning rate of 0.001. A hold-out validation strategy is applied, with 70% of the data used
for training and 15% each for validation and testing. All calculations are performed on a M1
MacBook Pro with 32 GB of memory using PyTorch framework9.

5.4.4 Results

The impact of the proposed collision loss term on prediction results is investigated by training
the model with different values of λ ranging from 0.1 to 2.0 on the low-density and high-density
datasets. This range is chosen to cover both minor and major scales of the collision loss
contributing to the total loss. The training is conducted separately for each dataset type, but all

9http://pytorch.org

http://pytorch.org
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sub-data within each type are trained together. The prediction results of TTC-SLSTM models
are analyzed and compared with those of the original SLSTM model (corresponding to λ = 0.0).
For each λ, the model is trained 12 times, and the average values of various evaluation metrics,
including ADE, FDE, Col-I, Col-II, and AE, are computed with a confidence interval of 95%.
The results of these metrics on the low-density and high-density datasets are shown in Table 5.2
and 5.3, respectively.

ADE and FDE

For the low-density datasets, the average ADE and FDE values over the different values of λ

are presented in Figures 5.8a and 5.8b, respectively. Generally, both ADE and FDE exhibit
similar trends as λ increases. Slightly better ADE and FDE results compared to the baseline
SLSTM model are observed when λ varies between 0.25 and 1.0. The best ADE and FDE
values are achieved at λ = 0.5, with the ADE of 0.555 and the FDE of 1.135, corresponding to
improvements of approximately 0.9% and 1.0%, respectively, compared to the baseline SLSTM
model. However, as λ exceeds 1.0, both ADE and FDE values increase.

Likewise, the high-density datasets also exhibit continuous upward trends in average ADE
and FDE results as λ increases, as displayed in Figures 5.9a and 5.9b. However, these results
indicate a significantly stronger increase in ADE and FDE. The average ADE results show an
increase of approximately 26.2%, from 0.416 at λ = 0.0 to 0.525 at λ = 2.0. Similarly, the
average FDE results also increase around 14.2%, from 0.843 at λ = 0.0 to 0.963 at λ = 2.0.

Col-I, Col-II, and AE

For the low-density datasets, TTC-SLSTM models overperform the baseline SLSTM model
for all three evaluation metrics: Col-I, Col-II, and AE, at any value of λ > 0. The average
Col-I, Col-II, and AE results exhibit consistent downward trends as λ increases, with Col-I and
AE results decreasing exponentially, as displayed in Figures 5.8c, 5.8d, and 5.8e, respectively.
Generally, the TTC-SLSTM model with λ = 2.0 achieves the best Col-I, Col-II, and AE values
across almost sub-data in the low-density datasets, as presented in Table 5.2. For Col-I, the
TTC-SLSTM exhibits an exponential decline from 19.888 at λ = 0.0 to 11.689 at λ = 2.0,
corresponding to an improvement of approximately 41.2%. Similarly, the average AE results
show an improvement of approximately 41.7%, decreasing from 16.448 at λ = 0.0 to 9.581 at
λ = 2.0. For Col-II, the average results also demonstrate a significant improvement of roughly
16.4% % from 23.619 at λ = 0.0 to 19.752 at λ = 2.0. These results suggest that a higher value
of λ enhances performance for these collision metrics. However, there is always a trade-off
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between the optimization of distance-error metrics (ADE, FDE) and collision metrics (Col-I,
Col-II, AE). Here, the best value for λ is determined as 1.0, which results in improved ADE and
Col-I metrics (see Figure 5.8f).

On the other hand, the high-density datasets only show better average Col-I, Col-II, and
AE results only at small values of λ, as presented in Table 5.3. Specifically, the average Col-I
and AE results decrease significantly until λ = 0.5, as displayed in Figures 5.9c and 5.9e. The
average Col-I results improve by approximately 18.86% from 30.649 at λ = 0.0 to 24.868 at
λ = 0.5, whereas the average AE results show an improvement of around 19.49%, from 22.686
at λ = 0.0 to 18.265 at λ = 0.5. For Col-II, the average results slightly decrease until λ = 0.5,
showing an improvement of roughly 3.52%, from 45.860 at λ = 0.0 to 44.244 at λ = 0.5.
However, when λ exceeds 0.5, the average values of all three collision metrics start to increase
rapidly. At λ = 2.0, the average Col-I, Col-II, and AE results increase by 49.45%, 20.85%, and
30.85%, respectively, compared to their corresponding values at λ = 0.0. This may arise from
the fact that high-density situations result in a significant increase in the number of pedestrians
and interactions. Consequently, the total interaction energy induced by neighboring pedestrians
increases substantially. Therefore, high values of λ can overly penalize the model, leading to a
significantly negative impact on collision metrics. Therefore, a one-size-fits-all λ is not feasible
across all datasets, and the best λ value must be defined based on each dataset’s characteristics,
particularly the density level. For these high-density datasets, the best λ is 0.5, as this value
significantly improves collision metrics while maintaining acceptable distance-based accuracy,
as seen from Figure 5.9f.

In summary, the TTC-SLSTM models show better performance than SLSTM, with a
significant reduction of collisions in predicted trajectories. However, the same range of λ value
affects low-density datasets and high-density datasets differently. For low-density datasets, there
is a consistent decrease in collision metrics as λ increases from 0.0 to 2.0. Conversely, for
high-density datasets, collision metrics decrease consistently until λ = 0.5, after which these
values start to increase rapidly when λ is greater than 0.5. Therefore, the effective range for λ

value must be carefully defined for each dataset.
The TTC-SLSTM models can be incorporated into the HyPedSim framework at the

operational level. A suitable TTC-SLSTM model can then be selected to predict pedestrian
movements based on local crowd density in each zone. A TTC-SLSTM trained for low-density
situations should be used in low-density zones where interactions between pedestrians are less
frequent. Conversely, for high-density zones, a TTC-SLSTM model trained for high-density
situations must be chosen to predict realistic pedestrian trajectories in terms of physics-based
constraints.
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Table 5.2: Prediction results of different models on low-density datasets.

Metric Data SLSTM TTC-SLSTM

λ=0.1 λ=0.25 λ=0.5 λ=1.0 λ=2.0

ADE ETH[188] 0.677 0.681 0.676 0.678 0.689 0.706
HOTEL[188] 0.484 0.484 0.477 0.473 0.473 0.461
ZARA01[189] 0.500 0.505 0.493 0.486 0.481 0.491
ZARA02[189] 0.438 0.438 0.440 0.439 0.439 0.469
UCY[189] 0.699 0.702 0.697 0.698 0.704 0.728
Average 0.560 0.562 0.557 0.555 0.557 0.571

FDE ETH[188] 1.302 1.309 1.296 1.299 1.323 1.371
HOTEL[188] 0.882 0.890 0.878 0.865 0.875 0.862
ZARA01[189] 1.049 1.065 1.042 1.017 1.001 1.007
ZARA02[189] 0.949 0.952 0.956 0.948 0.948 1.004
UCY[189] 1.555 1.558 1.543 1.548 1.562 1.605
Average 1.147 1.155 1.143 1.135 1.142 1.170

Col-I ETH[188] 24.568 22.828 21.661 20.218 19.855 15.505
HOTEL[188] 12.145 11.430 10.130 7.379 4.048 4.522
ZARA01[189] 17.381 9.285 5.972 5.476 4.998 3.811
ZARA02[189] 17.978 16.822 16.752 16.126 16.281 14.814
UCY[189] 27.367 26.327 25.206 23.957 21.779 19.791
Average 19.888 17.338 15.944 14.631 13.392 11.689

Col-II ETH[188] 28.555 29.999 29.566 28.914 28.914 26.525
HOTEL[188] 17.857 16.668 14.287 13.336 11.667 11.668
ZARA01[189] 30.237 29.763 28.311 25.713 21.666 17.143
ZARA02[189] 19.290 19.289 19.612 20.060 20.678 19.752
UCY[189] 22.158 21.970 20.555 22.442 22.159 23.673
Average 23.619 23.538 22.466 22.093 21.017 19.752

AE ETH[188] 20.605 17.509 17.544 13.631 13.081 9.377
HOTEL[188] 11.357 11.168 9.954 9.543 6.035 3.640
ZARA01[189] 10.164 6.387 3.925 3.496 3.496 6.502
ZARA02[189] 23.186 23.456 23.036 24.387 23.943 16.307
UCY[189] 17.126 16.177 14.492 12.982 13.768 12.077
Average 16.488 14.939 13.790 12.808 12.065 9.581
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Table 5.3: Prediction results of different models on high-density datasets.

Metric Data SLSTM TTC-SLSTM

λ=0.1 λ=0.25 λ=0.5 λ=1.0 λ=1.5 λ=2.0

ADE TopView_2D 0.440 0.442 0.438 0.449 0.451 0.487 0.545
TopView_2E 0.419 0.434 0.426 0.440 0.455 0.481 0.549
TopView_2F 0.389 0.392 0.391 0.400 0.42 0.434 0.482
Average 0.416 0.423 0.418 0.430 0.442 0.467 0.525

FDE TopView_2D 0.897 0.900 0.892 0.910 0.894 0.920 0.977
TopView_2E 0.874 0.900 0.893 0.904 0.940 0.972 1.045
TopView_2F 0.758 0.758 0.762 0.781 0.816 0.823 0.867
Average 0.843 0.853 0.849 0.865 0.883 0.905 0.963

Col-I TopView_2D 42.134 41.252 38.139 35.512 37.448 45.833 55.082
TopView_2E 30.474 31.095 27.240 22.512 29.602 34.203 52.612
TopView_2F 19.339 17.295 16.349 16.035 16.822 18.709 29.718
Average 30.649 29.881 27.243 24.686 27.957 32.915 45.804

Col-II TopView_2D 55.066 54.668 53.786 53.008 52.801 56.827 62.898
TopView_2E 50.125 50.373 48.011 47.017 49.128 53.857 63.432
TopView_2F 32.390 33.334 30.976 32.706 30.819 32.705 39.938
Average 45.860 46.125 44.258 44.244 44.249 47.796 55.423

AE TopView_2D 26.000 25.751 23.824 23.136 23.954 30.297 31.893
TopView_2E 22.539 21.731 19.749 18.185 18.505 21.899 29.613
TopView_2F 19.520 16.282 16.196 13.473 12.404 16.252 27.548
Average 22.686 21.255 19.923 18.265 18.288 22.816 29.685
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(a) ADE. (b) FDE.

(c) Col-I. (d) Col-II.

(e) AE. (f) ADE vs Col-I.

Figure 5.8: Average evaluation results over different values of λ on the low-density datasets.
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(a) ADE. (b) FDE.

(c) Col-I. (d) Col-II.

(e) AE. (f) ADE vs Col-I.

Figure 5.9: Average evaluation results over different values of λ on the high-density datasets.



5.5. CONCLUSION 125

Qualitative evaluation

Given the quantitative comparison between SLSTM and TTC-SLSTMs above, further illustrations
are presented for qualitative evaluation. Figure 5.10 visually shows predictions of SLSTM and
TTC-SLSTM (λ = 1.0) models for a prediction scene in the low-density datasets. There is a
total of eight pedestrians in that scene, with four moving while the others are standing still. The
prediction of the SLSTM model shows collisions in predicted trajectories, as highlighted by red
dashed circles in Figure 5.10a. Conversely, the TTC-SLSTM model successfully handles this
collision problem by generating predicted collision-free trajectories, as shown in Figure 5.10b.
Furthermore, by avoiding collisions, the TTC-SLSTM model’s predicted trajectories show
improved distance-based accuracy compared to those generated by the SLSTM model.

(a) SLSTM. (b) TTC-SLSTM λ = 1.0.

Figure 5.10: Prediction examples of SLSTM and TTC-SLSTM.

5.5 Conclusion

This chapter proposes the TTC-SLSTM, an extended Social-LSTM model for pedestrian
trajectory prediction that integrates a collision loss term into the training loss function to address
the issue of predicted trajectories having too many collisions. The collision loss term is based on
time-to-collision interaction energy with neighboring pedestrians. The impact of the collision
loss term on prediction performance is investigated using various values of collision weights
λ ≥ 0.

The performance of the model on both low-density and high-density pedestrian datasets is
evaluated using distance-based metrics (ADE and FDE) and collision metrics (Col-I, Col-II, and
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AE). The prediction results indicate that adding the proposed collision loss term significantly
improves the collision metrics. However, different trends in evaluation metrics are observed
across these datasets. For the low-density datasets, the Col-I, Col-II, and AE results decrease
exponentially while distance-based accuracy remains relatively stable. Conversely, for the
high-density datasets, small λ values significantly improve the collision metrics, but high λ

values overly penalize the model, leading to a negative impact with a significant increase in
both distance-based and collision metrics. Therefore, the best λ value must be defined based on
each dataset’s characteristics, particularly the density level. These preliminary results make the
proposed hybrid algorithm a promising approach for physically plausible and realistic pedestrian
trajectory prediction, particularly in crowded situations.

Future work aims to achieve the following objectives for a deeper understanding of the
collision loss term:

• Evaluate whether adding the collision loss term can consistently improve the realism of
predictions across various neural network models beyond Social-LSTM, such as GANs
and LSTM variants.

• Develop a general approach for determining the optimal λ value for each dataset based on
its characteristics.

• Identify which avoidance mechanisms (e.g., steering, acceleration, and deceleration) the
TTC-SLSTM learns through the use of the collision loss term.

Another promising direction to reduce collisions in predictions of neural network models is
to integrate more features that aggregate contextual information into their input. Current neural
network models typically use only pedestrian trajectories as inputs. These models automatically
extract and learn patterns from raw trajectories provided in the input. However, several studies
have shown that adding new features to the input, such as time-to-collision [5] and mean distance
[219], can improve the prediction accuracy for pedestrian speed, even for simple neural networks
like Multi-Layer Perceptron. To do this, the architectures of current models must be modified
accordingly to accommodate additional input features.
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In this final chapter, we summarize the results achieved in this thesis, highlighting the
scientific contributions to different research areas. We then discuss the current limitations of
this study and perspectives for future work to close the thesis.

6.1 Conclusions

This thesis investigated the use of density-related factors in hybrid approaches to model and
predict pedestrian movement. The investigation primarily focused on high-density situations.
Based on this, four main objectives have been proposed for this study in Section 1.4, Chapter 1
summarized as follows:

• O1: review and analyze the advantages and disadvantages of modeling approaches for
dense crowds. From this analysis, we identify existing gaps and propose directions to
address them.

• O2: collect pedestrian data from high-density real-world experiments to calibrate and
validate models for these situations.

• O3: develop an agent-based framework that combines different pedestrian simulation
models to cover a broad spectrum of crowd behavior and phenomena.

• O4: improve deep learning models to predict physically realistic trajectories (i.e., no
collisions) in crowded situations.

Chapter 2 addressed objective O1 by conducting a systematic review of modeling approaches
for pedestrian simulation, with a particular focus on high-density situations. The review has
collected a wide range of relevant articles that model pedestrian behaviors at three decisional
levels: strategic, tactical, and operational. A comparative analysis was proposed to evaluate
these approaches using various metrics specifically designed for high-density situations. The
analysis highlighted the strengths and drawbacks of each approach and identified the following
research gaps in the modeling of dense crowds:

• There is currently a lack of pedestrian datasets specifically focused on high-density
scenarios in real-world settings. As a consequence, calibration and validation of models
using empirical data are restricted in these situations.

• Pedestrian behaviors and crowd dynamics vary significantly with different densities.
While specific models are typically used for certain scenarios, no single model can capture
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the full range of pedestrian behaviors and crowd dynamics across different environments
and conditions. Therefore, there is a need to integrate different models to simulate a
broader spectrum of crowd phenomena.

• In recent years, deep learning neural network models have emerged and become a popular
approach for predicting pedestrian trajectories. These models have shown promising
results in terms of distance-based accuracy but often make unrealistic predictions with
many collisions in crowded situations.

Chapter 3 presented MADRAS, a novel dataset capturing dense crowd movement. The
experiment to collect this dataset was conducted in an outdoor environment during the Festival
of Lights 2022 in Lyon, France, in collaboration with members of the MADRAS project. The
dataset includes both macroscopic (pedestrian outflows) and microscopic (pedestrian trajectories)
scales, with density up to 2.6 ped/m2. This chapter addressed the gap in public pedestrian
datasets for high-density real-world situations and thus achieved objective O2.

Chapter 4 tackled objective O3 by proposing the HyPedSim framework, a hybrid framework
for pedestrian simulation. The framework allows agents to dynamically switch between different
operational-level models based on predefined zones in the environment. These zones are defined
according to the estimated crowd density in each area. The dynamic switching between models
is demonstrated through a case study simulating dense crowds at the Festival of Lights in Lyon,
France. In this case study, a hybrid coupling of the SFM and CC model is used to simulate
pedestrian dynamics in different zones with varying densities. Furthermore, pedestrian outflows
presented in Chapter 3 were used to calibrate the parameters of the hybrid model using a genetic
algorithm. The simulated outflows of the hybrid model using calibrated parameters show that
it can qualitatively capture the general trends of the actual outflow data. Additionally, a local
sensitivity analysis for each parameter is conducted to provide an understanding of the impact of
each parameter on the simulated outflow results.

Chapter 5 addressed objective O4 by introducing TTC-SLSTM, a novel extension of the
Social-LSTM model for predicting pedestrian trajectories. This model incorporates a collision
loss term in its training loss function to reduce the number of collisions in predicted trajectories.
The collision loss term is derived from time-to-collision interaction energy with neighboring
pedestrians. We explored the influence of the collision loss term on prediction performance
using different values of collision weight λ ≥ 0 across different pedestrian trajectory datasets,
including both low-density (ETH [188] and UCY [189]) and high-density (MADRAS [8]).
Prediction results are evaluated using distance-based metrics (ADE and FDE) and collision
metrics (Col-I, Col-II, and AE). Findings reveal that the inclusion of the collision loss term



130 CHAPTER 6. CONCLUSIONS AND DISCUSSIONS

significantly reduces collisions in predicted trajectories. However, we observed different trends
in evaluation metrics in these datasets. For the low-density datasets, collision metrics decrease
exponentially while distance-based accuracy remains relatively stable. Conversely, for the
high-density datasets, small λ values significantly improve the collision metrics, but high λ

values tend to overly penalize the model, leading to a negative impact with a significant increase
in both distance-based and collision metrics. These results suggest that the optimal λ should be
tailored to each dataset’s characteristics, particularly its density level. These preliminary results
make the proposed hybrid algorithm a promising approach for physically plausible and realistic
pedestrian trajectory prediction, particularly in crowded situations.

All source codes used in this study are currently being cleaned and will be shared with the
public as soon as possible.

6.2 Scientific contributions

Knowledge from various research areas has been used to investigate the use of density-related
factors to model and predict pedestrian movements, especially in crowded situations. In turn,
the contributions of this thesis extend back to these areas, which includes three different areas:
pedestrian modeling and simulation, deep learning, and agent-based modeling.

Contributions to Pedestrian modeling and simulation

This thesis makes the following three main contributions to the field of pedestrian modeling and
simulation:

▶ A systematic review of modeling techniques for pedestrian simulation with a particular
focus on high-density situations. While many reviews on pedestrian modeling and simula-
tion are available in the literature, they specifically lack a focus on high-density situations.
In comparison, our systematic review provides in-depth analyses and assessments of the
strengths and drawbacks of current modeling approaches for these situations.

▶ A novel dataset capturing real-world high-density crowd dynamics, which is often missing
in publicly available datasets. Other high-density empirical datasets are usually collected
in controlled laboratory experiments where conditions are idealized, and participants
know they are being observed. These factors can influence pedestrian natural behaviors,
and therefore, may make the data significantly different from reality. Unlike those datasets,
this new dataset was collected during the Festival of Lights in Lyon, France – a real-life
mass gathering event.
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▶ The HyPedSim framework, a hybrid framework for pedestrian simulation that allows
pedestrians to dynamically switch models when moving into new zones. It offers the
flexibility to create various simulations by combining different operational-level models
for zones. This framework can be a valuable tool for organizers of large-scale events to
test different scenarios for safety plans or evacuations.

Contributions to Deep learning

In particular, this thesis contributes TTC-SLSTM, an extended version of Social-LSTM [11], to
deep learning approaches for predicting pedestrian trajectories. This contribution addresses the
issue of collision-prone trajectories in neural network predictions by incorporating a collision
loss term into the loss function. The prediction results of TTC-SLSTM demonstrate significant
collision reduction in predicted trajectories across different pedestrian trajectory datasets.
Additionally, this study proposes AE, a new collision metric that provides a continuous value to
evaluate collisions, compared to discrete ones existing in the literature (i.e., Col-I and Col-II).

In general, this study contributes to deep learning by successfully demonstrating how
integrating interdisciplinary knowledge improves the prediction performance of neural networks.
The idea of integrating specific terms into the loss function presented in this study can be applied
to other applications beyond pedestrian trajectory prediction.

Contributions to Agent-based modeling

For agent-based modeling, this thesis contributes a general agent-based architecture that allows
agents to dynamically switch models based on specific conditions. In this study, agents represent
pedestrians, whereas models are pedestrian simulation models. However, this architecture is not
restricted to modeling pedestrian dynamics and can be extended to a wider range of applications,
such as traffic simulation and emergency evacuation, to simulate environments with different
kinds of dynamics.

6.3 Discussions

This study can be viewed as an initial attempt to illustrate the entire process, including reviewing
modeling techniques and identifying research gaps in dense crowd simulation, collecting
empirical data in high-density real-world conditions, developing models for using hybrid
approaches, and validating models based on these empirical data. Although it shows significant
contributions to various research domains, there exist several limitations.
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For the HyPedSim framework, one of the main limitations lies in the use of predefined
static zones for the environment. Although this design choice facilitates easy configuration
and implementation, it restricts the ability to adapt to real-time changes in crowd density.
Furthermore, this approach can create additional work when applied to a new environment,
as new zones would then have to be defined. Another limitation is that once a model is
assigned to a zone, it remains unchanged regardless of any variations in crowd density during
the simulation. Zones cannot change their assigned operational-level models to adapt to changes
in the environment. This may result in inaccurate simulations in dynamic environments. For
instance, if a zone is initially expected to be high-density and is assigned a model appropriate for
such situations, it will continue using this model throughout the simulation, even if the crowd in
that zone disperses and the density significantly decreases.

The simulation capacity of the HyPedSim framework could be enhanced by integrating
a wider range of models at each behavioral level, thereby covering a more diverse range of
crowd phenomena. Furthermore, using density-based clustering algorithms like DBSCAN
[209] for clustering pedestrian positions to create dynamic zones would allow for more flexible
and adaptive simulations in various environments. These zones, each corresponding to one
cluster, can reflect real-time changes in crowd density. Furthermore, each zone should have
defined specific triggers that determine when to switch to models based on these density
changes. Consequently, proper aggregation and disaggregation of pedestrian data is needed
when transitioning between models to ensure the simulation accuracy.

For the TTC-SLSTM model, a deeper investigation of the impact of the loss term on
prediction performance should be conducted. Firstly, the collision loss term should be tested on
various neural network architectures, such as GANs or other LSTM-based models, to confirm its
universal effectiveness. Next, predicted trajectories should be analyzed to understand avoidance
strategies that the model learns through the collision loss term. Finally, given different trends in
evaluation metrics between low-density and high-density datasets within the same range of λ, a
general approach must be developed for determining the optimal value for each dataset based on
its specific characteristics.

In addition, deep learning models like TTC-SLSTM can be integrated into the HyPedSim
framework as operational-level models. A zone can then choose an appropriate TTC-SLSTM
model based on its local density to predict pedestrian trajectories. For example, a TTC-SLSTM
model trained on low-density datasets is more suitable for predicting pedestrian movement
in low-density zones, where fewer interactions among pedestrians occur, and distance-based
accuracy is the highest priority. In contrast, crowded situations with significant increases in
pedestrian interactions require more realistic predictions that adhere to physics-based constraints.
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Thus, a TTC-SLSTM model trained on high-density datasets is more appropriate for these
situations.

During this thesis, I have always questioned how to combine knowledge-based simulation
models and deep learning models to boost the performance of each other. Now, this has become
clearer for me. Simulation models, which are built from rules and knowledge derived from
domain experts, can enrich training data for deep learning models by generating synthetic data.
It is particularly valuable in scenarios where real-world data is difficult or expensive to collect.
Conversely, in simulations involving interactive agents, predictions of deep learning can be used
to model the intelligent behaviors of these agents. Furthermore, it can be scaled up for a large
number of agents through plugins allowing fast data transfer from these predictions to agents
like GamPy [2]. The integration of knowledge-based and deep learning models represents a
promising avenue for future research in various fields.



Glossary

• ABM – Agent-based Model

• ADE – Average Displacement Error

• AE – Average Energy

• CA – Cellular Automaton

• CC – Continuum Crowds

• FD – Fundamental Diagram

• FDE – Final Displacement Error

• GA – Genetic Algorithm

• GAMA – Gis & Agent-based Modelling Architecture

• GAN – Generative Adversarial Network

• LSTM – Long Short-Term Memory

• MADRAS – Multi-Agent modelling of dense crowd dynamics: Predict & Understand

• NLL – Log-likelihood Loss
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• ORCA – Optimal Reciprocal Collision Avoidance

• RMSE – Root Mean Square Error

• SFM – Social Force Model

• SLSTM – Social LSTM

• RVO – Reciprocal Velocity Obstacle

• TTC-SLSTM – Time-to-Collision SLSTM

• VO – Velocity Obstacle
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