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Abstract

The aim of this thesis is to study a class of McKean-Vlasov stochastic differential equations
(MV-SDEs) whose drift depends pointwisely on marginal density of the process. In existing
literature, the space of probability measures is endowed with total variation metric. In the thesis,
we go in a different direction where we use Wasserstein metric for distributions. The structure
and main results of the thesis are summarized below.

In Chapter 1, we give motivation for the research problem. After that, we briefly survey related
literature.

In Chapter 2, we recall related definitions and results that will be used in subsequent chapters.
The first part of the chapter is about gradient flows in Wasserstein space. The second part is
about regularity of marginal density for classical SDEs.

In Chapter 3, we carefully apply the framework in [AGS08] to study Langevin dynamic for a
function whose gradient is not necessarily locally Lipschitz. First, we prove well-posedness of the
associated Fokker-Planck equation. If, in addition, a log-Sobolev inequality is assumed, then we
obtain exponential rate of convergence to the stationary distribution.

In Chapter 4, we study well-posedness of MV-SDEs whose drift is density-dependent and locally
integrable in space-time. Our approach is by mollifying argument. First, we prove existence of a
strong solution. If some more technical conditions are assumed, we obtain strong uniqueness of a
solution.

In Chapter 5, we study Euler–Maruyama scheme for a special case of SDE in Chapter 4 where
the noise is constant and the drift is bounded. First, we obtain Hölder regularity of the scheme.
Second, we derive convergence rate in weighted total variation distance.

The thesis is based on the two preprints:

1. Anh-Dung Le. Well-posedness of McKean-Vlasov SDEs with density-dependent drift. 2024.
under review.

2. Anh-Dung Le. Convergence rate of Euler scheme for McKean-Vlasov SDEs with density-
dependent drift. 2024. under review.
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Notations

We adopt the following conventions:

Generic elements and operations
⇀ weak convergence on P(Rd)
∗
⇀ weak-∗ convergence on P(Rd)
∞ plus infinity
xy matrix product of x ∈ Rd ⊗ Rm and y ∈ Rm ⊗ Rn
⟨x, y⟩ Frobenius inner product of x, y ∈ Rd ⊗ Rm
|x| Frobenius norm of x ∈ Rd ⊗ Rm
x ∨ y maximum between x, y ∈ R
x ∧ y minimum between x, y ∈ R
x+ maximum between x ∈ R and 0
x∗ Hölder conjugate of x ∈ [1,∞], i.e., 1 = 1

x + 1
x∗

⌈x⌉ the smallest integer greater than or equal to x ∈ R
[[m,n]] {m,m+ 1, . . . , n− 1, n} for integers m ≤ n
id identity function on Rd
Id identity matrix in Rd ⊗ Rd
f♯µ push-forward of measure µ through function f
πi projection of Rd × Rd onto i-th coordinate
dx Lebesgue measure on Rd
∇ gradient operator
∇2 Hessian matrix
∆ Laplacian operator
div divergence operator
∂xi derivative in spatial xi direction
∂t derivative in time
x⊤ transpose of x ∈ Rd ⊗ Rm
trx trace of x ∈ Rd ⊗ Rd
Mp(µ) p-th moment of probability measure µ
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8 Contents

Sets and spaces
R+ set of non-negative real numbers including 0
N set of natural numbers excluding 0
Rd ⊗ Rm space of real matrices of size d×m
B(Rd) Borel σ-algebra on Rd
P(Rd) space of Borel probability measures on Rd
L0(Rd) space of real-valued measurable functions on Rd
L0

+(Rd) subset of L0(Rd) that consists of non-negative functions
L0
b(Rd) subset of L0(Rd) that consists of bounded functions

Lp(Rd) Lebesgue space of real-valued p-integrable functions on Rd
∥ · ∥Lp norm of Lp(Rd)
Cb(Rd) space of real-valued continuous bounded functions on Rd
Cαb (Rd) space of real-valued α-Hölder bounded functions on Rd
Cc(Rd) space of real-valued continuous functions on Rd with compact support
C∞
c (Rd) subspace Cc(Rd) that consists of smooth functions

Abbreviation
w.r.t with respect to
i.f.f if and only if
e.g. for example
a.e. almost everywhere
a.s. almost surely
PDE partial differential equation
SDE stochastic differential equation
PoC propagation of chaos
MV-SDE McKean-Vlasov SDE
MP martingale problem
MCT monotone convergence theorem
DCT dominated convergence theorem
WLOG without loss of generality
m-BM m-dimensional Brownian motion
AF admissible filtration
PS probability space



Chapter 1

Introduction

1.1 Motivation

1.1.1 Three perspectives on simulated annealing

A fundamental question in optimization is how to minimize a differentiable function V : Rd → R
that is bounded from below. This becomes challenging when V is non-convex and possibly has
many local minimizers. One approach to find a global minimizer of V is simulated annealing, a
technique rooted in the seminal work [Met+53]. The authors in [Met+53] attempted to calculate
properties of a substance composed of interacting molecules. The guiding principle is that
the system of molecules will move to a configuration resulting in lower potential energy. For
mathematical studies of simulated annealing, we refer to [HKS89; GM91; Mic92; RRT17; Xu+18;
GGZ22], the monographs [Van+87; AK89] and references therein.

In time-continuous formulation, simulated annealing is described by a solution (Xt) of the
stochastic differential equation (SDE)

dXt = −γt∇V (Xt) dt+
√

2 dBt. (1.1)

Above, (Bt) is a Brownian motion and (γt) ⊂ R+ is a sequence such that γt → ∞ as t → ∞.
We assume that V has a unique global minimizer x̄. Under appropriate assumptions on V and
(γt), (Xt) converges to x̄ in some suitable sense. Let µt be the distribution of Xt. By Itô’s lemma,
(µt) satisfies the following Fokker-Planck equation in distributional sense

∂tµt = γt div(µt∇V ) + ∆µt. (1.2)

We assume that each µt admits a density denoted by ρt. Let M be the space of densities on
Rd with finite second moment. We endow M with the Wasserstein metric W2. For γ > 0, we
define V,H,Uγ : M → (−∞,∞] by

V(ϱ) :=
∫
Rd
V ϱ dx, (1.3)

H(ϱ) :=
∫
Rd

{ϱ ln ϱ+ 1 − ϱ} dx, (1.4)

Uγ(ϱ) := γV(ϱ) + H(ϱ).

The maps V,H are called potential energy and internal energy respectively. Otto’s formalism
[Ott96; JKO98; Ott01] allows one to interpret M as a Riemannian manifold and (1.2) as a
gradient flow in M, i.e.,

“∂tρt = − gradUγt [ρt]”. (1.5)

Each of above three forms provides distinct advantages, depending on the question of study.
First, (1.1) provides practitioners with operational algorithms through time discretization, such as

9



10 Chapter 1. Introduction

Euler–Maruyama scheme. Second, (1.2) entitles researchers to partial differential equation (PDE)
techniques, particularly for exploring questions related to the regularity of (µt). Third, (1.5)
opens a fresh perspective on gradient flows in the space of probability measures. In particular,
different forms of Uγ likely lead to different PDEs.

1.1.2 Otto calculus

Next we follow [FG21, Section 4.2] to motivate Otto’s formal interpretation, and there will
be no attempt at rigorous justification. Given a curve (ρt)t∈[0,1] ⊂ M and a vector field
v : [0, 1] × Rd → Rd (we set vt(x) := v(t, x)) such that vt ∈ L2(ρt). We say that (ρt, vt) satisfies
the continuity equation

∂tρt + div(vtρt) = 0 (1.6)

in distributional sense if it holds for (f, g) ∈ C∞
c (0, 1) × C∞

c (Rd) that∫ 1

0

∫
Rd
f ′(t)g(x)ρt(x) dx dt+

∫ 1

0

∫
Rd
f(t)⟨∇g(x), vt(x)⟩ρt(x) dx dt = 0,

or equivalently, if it holds for g ∈ C∞
c (Rd) that

d
dt

∫
Rd
gρt dx =

∫
Rd

⟨∇g, vt⟩ρt dx for a.e. t ≥ 0.

By Benamou–Brenier formula [BB00, Proposition 1.1],

W 2
2 (ϱ0, ϱ1)

= min
{∫ 1

0
∥vt∥2

L2(ρt) dt : (ρt, vt) satisfies (1.6) and (ρ0, ρ1) = (ϱ0, ϱ1)
}

= min
ρt

{∫ 1

0
min
vt

{∫
Rd

|vt|2ρt dx : (ρt, vt) satisfies (1.6)
}

dt : (ρ0, ρ1) = (ϱ0, ϱ1)
}
. (1.7)

Given a Riemannian manifold (M, g), its Riemannian metric dM between two points x, y ∈ M
can be defined as

d2
M (x, y) = inf

{∫ 1

0
∥γ̇t∥2

γt
dt : (γt)t∈[0,1] ⊂ M such that (γ0, γ1) = (x, y)

}
. (1.8)

Comparing (1.7) and (1.8), it is natural to define Wasserstein norm of the derivative ∂tρt at
ρt as

∥∂tρt∥2
ρt

:= min
vt

{∫
Rd

|vt|2ρt dx : (ρt, vt) satisfies (1.6)
}
. (1.9)

It turns out that the minimizer v̄t of (1.9) is of the form v̄t = ∇ψt for some ψt : Rd → R.
If the density ρt is regular enough (say, positive and smooth), then ψt is the unique (up to a
constant) solution to ∂tρt + div(ρt∇ψt) = 0. So we can define

∥∂tρt∥2
ρt

:=
∫
Rd

|∇ψt|2ρt dx.

If the curve (ρt)t∈[0,1] is regular enough, then
∫
Rd ∂tρt dx = d

dt
∫
Rd ρt dx = 0. As such, it is

natural to define the Wasserstein tangent space TϱM at ϱ ∈ M by

TϱM :=
{
h : Rd → R

∣∣∣∣ ∫
Rd
hdx = 0

}
/ ∼ .

Above, the equivalence relation ∼ is defined via the equation h+ div(ϱ∇ψ) = 0. Accordingly,
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the Wasserstein inner product on TϱM is defined as

⟨h1, h2⟩ϱ :=
∫
Rd

⟨∇ψ1,∇ψ2⟩ϱdx where hi + div(ϱ∇ψi) = 0.

We have just given a meaning to the LHS of (1.5). Next we do so for the RHS of (1.5). For a
functional U : M → R, its Wasserstein gradient at ϱ ∈ M, denoted by gradU[ϱ], is the unique
element in TϱM (if it exists) such that〈

gradU[ϱ], ∂ρt
∂t

∣∣∣
t=0

〉
ϱ

= ∂U[ρt]
∂t

∣∣∣
t=0

for any smooth curve ρ : (−t0, t0) → M with ρ0 = ϱ.
To obtain a more explicit formula for gradU[ϱ], we introduce the first variation of U at

ϱ ∈ M, which is denoted by varU[ϱ] and defined as the function in L2(Rd) such that

∂U[ρt]
∂t

∣∣∣
t=0

=
∫
Rd

varU[ϱ] × ∂ρt
∂t

∣∣∣
t=0

dx (1.10)

for any smooth curve ρ : (−t0, t0) → M with ρ0 = ϱ. Let ψ be the solution to ∂ρt

∂t

∣∣
t=0+div(ϱ∇ψ) =

0. Then 〈
gradU[ϱ], ∂ρt

∂t

∣∣∣
t=0

〉
ϱ

= −
∫
Rd

varU[ϱ] × div(ϱ∇ψ) dx

=
∫
Rd

⟨∇(varU[ϱ]),∇ψ⟩ϱdx.

By definition of ⟨·, ·⟩ϱ, we deduce that

gradU[ϱ] = − div(ϱ∇(varU[ϱ])). (1.11)

Example 1.1. Consider a smooth curve (ρt)t∈[0,1] ⊂ M. First,

∂V[ρt]
∂t

∣∣∣
t=0

= d
dt

∣∣∣
t=0

∫
Rd
V ρt dx by (1.3)

=
∫
Rd
V × ∂ρt

∂t

∣∣∣
t=0

dx.

Second,

∂H[ρt]
∂t

∣∣∣
t=0

= d
dt

∣∣∣
t=0

∫
Rd

{ρt ln ρt + 1 − ρt} dx by (1.4)

=
∫
Rd

ln ρt × ∂ρt
∂t

∣∣∣
t=0

dx.

By (1.10), varV[ϱ] = V and varH[ϱ] = ln ϱ. By (1.11),

gradUγ [ϱ] = − div(ϱ∇(γV + ln ϱ))
= −γ div(ϱ∇V ) − ∆ϱ.

Then we recover (1.2) from (1.5).
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1.1.3 A new class of density-dependent SDEs

We consider a more general internal energy H : M → (−∞,∞] defined as H(ϱ) :=
∫
φ ◦ ϱ dx for

some twice differentiable function φ : R+ → R+. Then varH[ϱ] = φ′ ◦ ϱ and thus

gradUγ [ϱ] = − div(ϱ∇(γV + φ′ ◦ ϱ)).

The corresponding version of (1.5) is

∂tρt = div(ρt{γt∇V + ∇(φ′ ◦ ρt)}). (1.12)

Next we follow [BMV24, Section 2.2] to find an SDE whose associated Fokker-Planck equation
is (1.12). We define a function α : (0,∞) → R+ by

α(r) := 1
r

∫ r

0
sφ′′(s) ds.

By formal integration by parts, it holds for ϱ ∈ M and g ∈ C∞
c (Rd) that∫

Rd
⟨∇g,∇(φ′ ◦ ϱ)⟩ϱ dx =

∫
Rd

⟨∇g, ϱφ′′(ϱ)∇ϱ⟩ dx

=
∫
Rd

⟨∇g,∇(ϱα(ϱ))⟩ dx

= −
∫
Rd
α(ϱ){∆g}ϱdx.

Then (1.12) is equivalent to

∂tρt = ∂xi{γt(∇V )iρt} + ∂xi∂xi{α(ρt)ρt}.

Above, we adapt Einstein summation convention. Also, (∇V )i is the i-th coordinate of ∇V .
This suggests that the SDE for which we are looking is of the form

dXt = −γt∇V (Xt) dt+
√

2α(ρt) dBt. (1.13)

SDE (1.13) is interesting due to its pointwise dependence on marginal density. Our initial
goal is to study the existence of a solution to (1.13) when φ is one of the power-like functions
{φm : m ∈ (0, 1

2)} introduced in [BMV24, Section 3.1]. For m ∈ (0, 1
2), the function φm : R+ →

R+ is defined as

φm(r) :=


rm−1+m(1−r)

m(m−1) if r ∈ [0, 1],
(r−1)2

2 if r ∈ (1,∞).

Then

φ′′
m(r) =

{
rm−2 if r ∈ (0, 1],
1 if r ∈ (1,∞),

and thus αm(r) =
{
rm−1

m if r ∈ (0, 1],
mr2+2−m

2mr if r ∈ (1,∞).

We define βm : R+ → R+ by

βm(r) := rαm(r) =
{
rm

m if r ∈ [0, 1],
mr2+2−m

2m if r ∈ (1,∞).
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Then αm and βm are continuously differentiable on (0,∞) with

α′
m(r) =

{
m−1
m rm−2 if r ∈ (0, 1],

1
2 + m−2

2mr2 if r ∈ (1,∞),
and β′

m(r) =
{
rm−1 if r ∈ [0, 1],
r if r ∈ (1,∞).

Our focus is on αm, so we assume that V and ρ0 are regular enough. By [BR21b, Theorem
4.1], (1.13) has weak uniqueness. Unfortunately, we could not make progress on the existence of
a solution. The subjective reason is because papers on (1.13) rely heavily on PDE techniques for
which we were unable to get into. Let σm := √

αm. One objective reason is the possible blow-up
αm(ϱ(x)) → ∞ as |x| → ∞ for a density ϱ. This makes it hard to establish stability estimates
for fixed-point and compactness arguments. In below example, the fact that limr↓0 α(r) < ∞ is
crucial.

Example 1.2. The following reasoning is used in the proof of [BJ19, Lemma 2.4]. For v ∈
L2((0, T );H1(Rd)), it holds for a.e. t ∈ (0, T ) that

(u1, u2) 7→ Lt(u1, u2) := 1
2

∫
Rd
α(v(t, x))⟨∇u1(x),∇u2(x)⟩ dx

is continuous on H1(Rd) ×H1(Rd) because

Lt(u1, u2) ≤ 1
2 sup{α(r) : 0 ≤ r ≤ ∥v∥∞}∥∇u1∥L2(Rd)∥∇u2∥L2(Rd).

First, σm is neither bounded nor Lipschitz. Second, σm is not twice differentiable at 1. Let
us elaborate on why existing literature does not cover the case of our αm. The relationship
between (α, β, σ) in the the general setting is the same as that between (αm, βm, σm). In [JM98],
σ is Lipschitz. In [BR20; Gru23], α is bounded. In [BR23a], β is bounded. In [Gru24], α is
locally Lipschitz at 0. In [BRR10; BRR11; BCR13; BR18; BR21a], there exists a constant η ≥ 1
such that β(r) ≲ rη and thus lim supr↓0 α(r) < ∞. As such, we turn our attention to a more
manageable case where the density-dependence is on the drift. Even in this simpler setting, we
only consider the situation where b(t, x, r) is locally integrable in (t, x) uniformly in r.

1.2 Literature review

An SDE is a differential equation that incorporates noise into classical ordinary differential
equation (ODE), and gives rise to a solution which is itself a stochastic process. The basic form
of an SDE is

dXt = b(t,Xt) dt+ σ(t,Xt) dBt, (1.14)

where

b : R+ × Rd → Rd,
σ : R+ × Rd → Rd ⊗ Rd,

are measurable and (Bt, t ≥ 0) is a Brownian motion. An extension of (1.14) is to take into
account the marginal distribution of the process, i.e.,{

dXt = b(t,Xt, µt) dt+ σ(t,Xt, µt) dBt,
µt is the distribution of Xt,

(1.15)
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where

b : R+ × Rd × P(Rd) → Rd,
σ : R+ × Rd × P(Rd) → Rd ⊗ Rd.

SDE (1.15) is called MV-SDE or distribution-dependent SDE. The study of (1.15) started
with Kac’s seminal paper [Kac56] in which he gave the first rigorous definitions of chaos and
propagation of chaos (PoC ). A decade later, McKean introduced in [McK66] a class of Markov
processes that satisfy this property. Recently, (1.15) has drawn great attention from research
community because it appears as the limit of various interacting particle systems in biology
[NPT10; MT14; Deg18], mean-field games [CD18; Car19], and data science [MMN18; SS20b;
RV22] where the notion of chaos plays a central role. We refer to [CD22a; CD22b] for a more
comprehensive review of this aspect. By Itô’s lemma, the curve (µt) of probability measures in
(1.15) satisfies (in distributional sense) the nonlinear PDE

∂tµt = −∂xi{bi(t, ·, µt)µt} + 1
2∂xi∂xj {σikσjk(t, ·, µt)µt},

which makes (1.15) interesting to both probabilists and PDE analysts.
In the thesis, we consider the following generalization of (1.15), i.e.,{

Xt = b(t,Xt, ℓt(Xt), µt) dt+ σ(t,Xt, µt) dBt,
µt is the distribution of Xt, and ℓt is the density of Xt,

(1.16)

where

b : R+ × Rd × R+ × P(Rd) → Rd,
σ : R+ × Rd × P(Rd) → Rd ⊗ Rd.

The drift in (1.16) depends pointwisely on marginal density of the process. SDE (1.16) is called
MV-SDE with density-dependent drift. In particular, b(t, x, r, µ) is not necessarily continuous in
(t, x). Unlike classical MV-SDEs, the map µ 7→ b(t, x, dµ

dx (x), µ) is not even continuous w.r.t the
weak topology of P(Rd) (see e.g. [SH24]). This discontinuity presents additional challenges in
the analysis of these equations. Below are two situations where (1.16) arises.

Example 1.3 (Nonlinear Filtering). Consider the nonlinear filtering problem in continuous time

signal process : dXt= M(Xt) dt+ dVt,
observation process : dZt = h(Xt) dt+ dWt.

Above, M : Rd → Rd and h : Rd → R are regular enough; Vt and Wt are independent
Brownian motions of dimension d and 1 respectively; and the filtration Zt := σ(Zs, s ≤ t). We
fix T ∈ (0,∞) and let T := [0, T ]. Let n ≥ 1 be an integer and ε := T

n be the step size. Let
tk := kε for k = 0, . . . , n. In practice, we have access to (Ztk)nk=0 instead of (Zt, t ∈ T). We
define a random function v from T × Rd × P(Rd) to Rd by

vt(x, µ) := 1
ωd

∫
Rd

y − x

|y − x|d
{mt(y) − m̄t} dµ(y),

mt(y) := h(y)
Ztk+1 − Ztk

ε
− 1

2h
2(y) for t ∈ [tk, tk+1),

m̄t :=
∫
Rd
mt(y) dµ(y),

where ωd is the surface area of the unit ball in Rd. Crisan-Xiong [CX10] proposed to approximate
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(Xt, t ∈ T) by a solution (Yt, t ∈ T) to the following SDE (see e.g. [PRS21, Equation (1.5)])

dYt = M(Yt) dt+ dVt + vt(Yt, µt)
ℓt(Yt)

dt,

where µt is the conditional distribution of Yt given Zt; and ℓt is the density of µt.

Example 1.4 (Generative Modeling). Assume that an unknown distribution µ0 of X0 is
perturbed through a mechanism modeled by an SDE

dXt = f(t,Xt) dt+ g(t) dBt,

where f : T × Rd → Rd and g : T → R are regular enough. We are given the functions f, g and
the distribution µT of XT . We are aimed at sampling from µ0. We define Yt := XT−t for t ∈ T.
Anderson [And82] proved that (Yt, t ∈ T) satisfies the SDE (see e.g. [Son+21, Equation (6)])

dYt = −[f̃(t, Yt) − g̃2(t)∇x log ℓt(Yt)] dt+ g̃(t) dBt.

Above, ℓt is the density of Yt; f̃ is defined as f̃(t, x) := f(T − t, x); and g̃ is defined as
g̃(t) := g(T − t).

In the thesis, we study three questions: Langevin dynamics (1.14) for non-convex potentials,
well-posedness of (1.16) and Euler-Maruyama scheme for (1.16). The first question is to get
ourself into the research problem. The other two questions (with corresponding preprints) will
be the original contribution of the thesis. In the following, we give an introduction for each of
them. We emphasize that the cited works below do not exhaustively cover the related literature.
As such, we also direct the readers to the references therein.

1.2.1 Langevin dynamics

Let V and x̄ be as in Section 1.1. For γ > 0, let πγ ∈ P(Rd) such that dπγ ∝ e−γV dx. Under
mild conditions except convexity (see e.g. [Hwa80; Hwa81; AH10; Bra22]), πγ converges weakly
to δx̄ as γ → ∞. Let ϕγ(µ) be the (non-negative) relative entropy of µ ∈ P(Rd) w.r.t πγ . Then
ϕγ(µ) = 0 i.f.f µ = πγ . Our goal is to construct a curve (µγt ) ⊂ P2(Rd) that approximates πγ in
the metric W2. We are motivated by [Cra17] where she established existence of gradient flows
in (P2(Rd),W2) for ω-convex functionals. In particular, ∇V is not necessarily locally Lipschitz.
In our setting, there exists a non-decreasing continuous function ψ : R+ → R+, called Osgood
modulus of continuity, such that

1. ψ(0) = 0 and
∫ 1

0
ds
ψ(s) = ∞.

2. ψ(s) ≥ s for s ∈ R+.

3. |∇V (x) − ∇V (y)|2 ≤ ψ(|x− y|2) for x, y ∈ Rd.

An example of ψ taken from [Cra17] is

ψ(s) =


0 if s = 0,
s| ln s|2 if s ∈ (0, β],
s− 2β ln(β) if s ∈ (β,∞),

with β := e−(1+
√

2).

We refer to [FZ05; LW14; Luo18] for well-posedness results of an SDE that assumed Osgood
modulus of continuity. We consider

αγ := inf{ϕγ(µ) : µ ∈ P2(Rd)}.
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Our approach is by gradient flows in the space (P2(Rd),W2). We obtain

1. (Existence) One candidate for such an approximating curve is the unique solution (in
distributional sense) to the PDE

∂tµ
γ
t = γ div(µγt ∇V ) + ∆µγt .

2. (Convergence) If, in addition, πγ satisfies a κ-logarithmic Sobolev inequality for some
κ > 0, then we obtain an exponential rate of convergence

ϕγ(µγt ) − α ≤ e−2κt{ϕγ(µγ0) − α} for t ≥ 0.

To obtain convergence rate, [RRT17; Xu+18; EMS18] assumed that V satisfies ⟨∇V (x), x⟩ ≥
c1|x|2 − c2 for some constants c1, c2 > 0. In [KNS16; BB18; LMS23], V is assumed to satisfies
Polyak-Łojasiewicz inequality, i.e., 1

2 |∇V (x)|2 ≥ c{V (x) − minV } for some constant c > 0.
Optimizing a functional G : P(Rd) → (−∞,∞] has attracted considerable research efforts
because training an “ideal” two-layer neural network can be cast as such problem.

Example 1.5 (Neural Network). A two-layer neural network is described as a map

gn : Rd → R, x 7→ 1
n

n∑
k=1

ckσ(w⊤
k x),

for some parameter (wk, ck)nk=1 ⊂ Rd × R and activation function σ : R → R. Here n is called
the width of the hidden layer. Due to law of large numbers and under regularity assumption,

gn(x) → gν(x) :=
∫
Rd×R

cσ(w⊤x) dν(w, c) as n → ∞,

where ν ∈ P(Rd × R) is the asymptotic distribution of parameters. Let our data be (X,Y ). We
can estimate ν by solving

inf{ϕ(µ) : µ ∈ P(Rd × R)} with ϕ(µ) := E[{Y − gµ(X)}2]. (1.17)

We review some related works in this general framework.

1. [MMN18; SS20a] studied an approximation of (1.17) by stochastic gradient descend when
gµ is replaced by gn; and the population (X,Y ) is replaced by its sample (Xi, Yi)mi=1. They
obtained some non-asymptotic convergence rates.

2. Chizat-Bach [CB18] considered V : Ω → F where Ω is the closure of a convex open subset
of Rd and F is a separable Hilbert space.

3. [Hu+21; Chi22; CRW23] studied the problem inf{ϕ(µ) : µ ∈ P(Rd)} for a generic map
ϕ : P(Rd) → R that admits a linear functional derivative (see e.g. [CD18, Volume I - Part
II]).

The results in this section are not completely novel, and their purpose is to get ourself familiar
with the rigorous machinery developed by Ambrosio-Gigli-Savaré [AGS08]. This approach by
gradient flows could be adapted without difficulty to deal with functionals of the form Gγ := F ◦ϕγ
for some function F : R+ → R+ regular enough.

1.2.2 Well-posedness of classical MV-SDEs

[McK67; TH81; Tan84; NT85; Léo86; HM86; Szn91; BT96; Mél96; FM97; BT97; Ben+98;
BRV98; MS19; MV20; Cha20] studied (1.15) where the coefficients are of integral form, i.e.,
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b(t, x, µ) =
∫
Rd b̂(t, x, y) dµ(y) and σ(t, x, µ) =

∫
Rd σ̂(t, x, y) dµ(y) for some b̂ : R+ ×Rd×Rd → Rd

and σ̂ : R+ × Rd × Rd → Rd ⊗ Rd. We mention some works where b (or b̂) is continuous in x:

1. Dawson [Daw83] and Scheutzow [Sch86] considered specific models where b contains a
polynomial component.

2. Funaki [Fun84] assumed that b and σ are continuous. He proved existence of martingale
problem (MP) under a Lyapunov-type condition and uniqueness under a Lipschitz condition.
The proof is by Euler scheme. We refer to [MS19; HŠS21a; LM22; LM23; LM24] where
Lyapunov-type conditions were used.

3. Oelschläger [Oel84] proved well-posedness of MP when b, σ are Lipschitz and σ is bounded.
Scheutzow [Sch87] provided some examples of (1.15) having more than one solution when
σ = 0 and b is locally (but not globally) Lipschitz in µ. Méléard-Roelly [MR88] proved
well-posedness of MP when b is Lipschitz and σ is of integral form. Gärtner [Gär88]
assumed that b, σ are continuous and proved well-posedness of MP under some coercivity
and monotonicity conditions, which are weaker than those in [Léo86].

4. Graham-Méléard [Gra92; GM97] considered (1.15) with jumps and proved well-posedness
of MP when b, σ are Lipschitz. Erny [Ern22] also considered (1.15) with jumps and proved
strong well-posedness when

a) b, σ satisfy some growth condition and X0 has exponential moment; and
b) b is locally Lipschitz in (x, µ) and σ is Lipschitz in (x, µ).

Graham-Méléard [GM93; GM94a; GM94b] studied interacting systems which are not
necessarily exchangeable nor Markovian.

5. [Ben+98; BRV98] studied one-dimensional constant-diffusion models. They proved strong
well-posedness when X0 satisfies some integrability condition and b̂(t, x, y) = β(x − y).
Here the function β : R → R is odd increasing locally Lipschitz and has polynomial growth.

6. Chaudru de Raynal [Cha20] proved strong well-posedness when

a) b̂ is bounded and Hölder in x;
b) b̂ is differentiable in y with bounded derivative;
c) σ̂ is uniformly non-degenerate and Lipschitz in (x, y); and
d) σ̂ is differentiable in y with derivative being bounded and Hölder in x.

The proof is by Zvonkin transformation and parametrix expansion of transition density.
With differential calculus in (P2(Rd),W2), Chaudru De Raynal and Frikha [CF22] extended
[Cha20] to more general (b, σ). For differentiation in (P2(Rd),W2), we refer to [HW21a;
Wan23a].

7. As a corollary of their path-dependent framework, Hammersley-Šiška-Szpruch [HŠS21b]
proved weak existence under two sets of assumptions. First, X0 satisfies some integrability
condition and (b, σ) is bounded continuous in (x, µ) w.r.t the weak topology of P(Rd).
Second, σ is non-degenerate and b, σ are of integral form with (b̂, σ̂) being bounded.

8. Kalinin-Meyer-Proske [KMP22] proved strong well-posedness when

a) (b, σ) is continuous in x and satisfies some growth and local boundedness conditions;
and

b) b is locally monotonic in x and σ is uniformly continuous in x.
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The authors also established some exponential stability estimates. We refer to [Wan18;
KMP24; HHL24] where monotonicity conditions were used.

9. For state spaces more general than Rd, we refer to [CKS91; DV95; BM19b]. For MV-SDEs
driven by noise other than Brownian motion, we refer to [HY21; RJM22; GHM22; Fan+22;
RJM23; DH23; GHM23]. For SDEs that involve conditional expectation or conditional
distribution, we refer to [Der03; LSZ20; LSZ22].

In some practical models [JR15; FPZ19; CGL23], the drift b is not continuous in x. We
mention some works that tackle the discontinuity of b (or b̂) in x:

1. With fixed-point argument, Jourdain [Jou97] proved well-posedness of MP when

a) b is bounded and Lipschitz in µ; and
b) σ(t, x, µ) = σ(x) is Lipschitz and uniformly elliptic.

2. In their study of Burgers equation, Bossy-Talay [BT96; BT97] considered (1.15) where σ is
constant and b̂(t, x, y) = 1R+(x− y). We refer to [Jou00a; Jou02; Jou00b; JMW05] where
the convolution of 1R+ with measure appears. This special form of distribution-dependence
is related to rank-based models [JM08; Shk12; JR13; ASZ19].

3. As a corollary of their path-dependent framework, Li-Min [LM16] proved weak well-
posedness when

a) b is bounded and uniformly continuous in µ; and
b) σ(t, x, µ) = σ(t, x) is uniformly elliptic and Lipschitz in x.

The proof is by Schauder fixed point theorem and Girsanov’s theorem.

4. Bauer-Meyer-Proske [BMP18; BM19a] considered constant-diffusion models. They proved
weak existence when b is continuous in µ and has at most linear growth.

5. Inspired by [MV20; GM01], Huang-Wang [HW19] proved weak existence when (b, σ) can
be approximated by a sequence (bn, σn)n∈N of functions such that

a) (bn, σn) is bounded and Lipschitz in (x, µ); and
b) bn is locally integrable in (t, x) and σn is uniformly elliptic.

There exists a unique strong solution if we assume, in addition, that

a) (b, σ) is Lipschitz in µ;
b) σ is uniformly continuous in x and weakly differentiable in x; and
c) |b(·, ·, µ)|2 + |∇σ(·, ·, µ)|2 is locally integrable for any µ.

We refer to [WR24] for an exposition of this direction; to [RZ21; Hua21; Zha24] where
b is locally integrable in (t, x); and to [HW21b; HW22; Hua23; Ren23; Wan23b] for a
generalization where b also contains a Lipschitz component.

6. Inspired by [VK76; Kry08], Mishura-Veretennikov [MV20] proved weak existence when b̂, σ̂
have at most linear growth in x and σ̂ is non-degenerate. The proof is by Krylov’s estimates.
Studying constant-diffusion models, Lacker [Lac23] obtained some well-posedness results
under more relaxed linear growth assumptions on b. The proof is by relative entropy
method. Partial generalization of [Lac23] was obtained by Han [Han22].
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1.2.3 Well-posedness of density-dependent MV-SDEs

When replacing distribution-dependence by density-dependence in (1.15), we have{
Xt = b(t,Xt, ℓt(Xt)) dt+ σ(t,Xt, ℓt(Xt)) dBt,
ℓt is the density of Xt,

(1.18)

where

b : R+ × Rd × R+ → Rd,
σ : R+ × Rd × R+ → Rd ⊗ Rd.

Compared to (1.16), (1.18) does not involve distribution but its σ additionally has density-
dependence. Let a := σσ⊤. We use notations b(t, x, r) and σ(t, x, r) for coefficients of (1.18).
First, we review some works about (1.18).

1. Studying PoC for Burgers equation, [CP83; GK83; OK85; Szn86] considered one-dimensional
constant-diffusion models where b(t, x, r) = r. Roynette-Vallois [RV95] proved strong well-
posedness in a more general setting where b(t, x, r) = rα−1

α for some α > 1. Studying porous
medium equations, [Ino91; Ben+96] considered driftless models where σ(t, x, r) = rαId for
some α > 0.

2. [Oel85; MR87] considered constant-diffusion models where b(t, x, r) = b(x, r) is bounded
Lipschitz and (x, r) 7→ rb(x, r) is Lipschitz. Jourdain [Jou97] proved well-posedness of MP
when

a) r 7→ rb(t, x, r) is bounded Lipschitz; and
b) σ(t, x, r) = σ(x) is Lipschitz and uniformly elliptic.

Studying SDEs driven by α-stable process, Simon-Olivera [SO18] considered constant-
diffusion models where b(t, x, r) = b(x, r) is bounded Lipschitz.

3. Jourdain-Méléard [JM98] considered models where b(t, x, r) = b(r) and σ(t, x, r) = σ(r).
Bringing together results from [FBL14; LS88], they proved strong well-posedness when

a) b is C2 (twice continuously differentiable);
b) σ is C3 and Lipschitz;
c) r 7→ (ra(r))′ is strongly elliptic; and
d) ℓ0 belongs to the Hölder space H2+α(Rd).

4. [Ber+10; BJT11; BJ15; BJ18] considered stochastic Lagrangian models where the depen-
dence is on conditional density.

5. Studying generalized porous media equations, [BRR10; BRR11] considered one-dimensional
driftless models where σ(t, x, r) =

√
β(r)
r Id. Here the function β : R → R is (possibly

discontinuous) increasing with β(0) = 0. The proof is by nonlinear semigroup [Bar10;
Bar21]. We refer to [BCR13; BRR17] for partial extensions of those results; to [BBC75;
BC79; BC81; Pie82; EM24] for studies of the related PDE ∂tu = 1

2∂
2
xxβ(u); and to [Var91;

Uch00] where the PDE ∂tu = 1
2∂

2
xxβ(u) is the limit of constant-diffusion interacting particle

systems.

6. Bossy-Jabir [BJ19] considered driftless models where σ(t, x, r) = σ(r). Using comparison
principles and energy estimates (see e.g. [Vaz06; Eva22]), they proved strong well-posedness
when



20 Chapter 1. Introduction

a) σ is C1 and ℓ0 satisfies some integrability condition; and
b) r 7→ (ra(r))′ is continuous and strongly elliptic.

7. In a series of papers [BR21b; BR20; BR23a; BR18; BR23b; BR24b], Barbu-Röckner
considered models where

a) b and σ are density-dependent; and
b) r 7→ ra(t, x, r) satisfies some monotonicity condition.

They used PDE techniques to study the associated Fokker-Planck equation. Well-posedness
of (1.18) then follows from superposition principle [Fig08; Tre16; RXZ20; BRS21]. We refer
to [BR24a] for an exposition of this direction; to [Mar23] for a dual variational approach;
to [Bog+15; Bar16; Bar18] for studies of Fokker-Planck equations; and to [Gru23; Gru24;
RRW22; BSR23; Reh23b; RR23; Reh23a] for partial extensions and related works.

8. [IR23; Iss+24] considered constant-diffusion models where b involves a term belonging to a
negative Besov space, besides density-dependence.

The literature on (1.16), which is the object of the thesis, is much scarcer. We use notations
b(t, x, r, µ) and σ(t, x, µ) for coefficients of (1.16).

1. Wang [Wan23c] proved strong well-posedness when

a) b is locally integrable in (t, x) and Lipschitz in (r, µ);
b) σ(t, ·, µ) is uniformly elliptic and belongs to the Hölder space C1+α

b (Rd);
c) ∥σ(t, ·, µ) − σ(t, ·, µ̃)∥Cα

b
≤ C∥µ− µ̃∥∞; and

d) ℓ0 satisfies some integrability condition.

He used the space of bounded densities (together with supremum norm) for (absolutely
continuous) distributions.

2. Hao-Röckner-Zhang [HRZ24] proved strong well-posedness when

a) b is locally integrable in (t, x) and Lipschitz in (r, µ);
b) σ(t, x, µ) = σ(t, x) is uniformly elliptic and Hölder in x;
c) σ is weakly differentiable in x and ∇σ is locally integrable in (t, x); and
d) ℓ0 satisfies some integrability condition.

They used total variation metric for distributions.

3. Zhang [Zha22] considered kinetic models where both b and σ depend on density as well as
distribution. Here the distribution-dependence is of integral form.

In the same vein as [Wan23c; HRZ24], we aim at proving some well-posedness results for
(1.16). Let us elaborate on our contribution that distinguishes the thesis from [Wan23c; HRZ24]:

1. We use a mollifying argument whereas [HRZ24; Wan23c] employed a Picard-iteration
argument. We argue that our approach is more flexible because it can be extended to those
situations where reasonable Hölder estimates are available. An interesting case for future
study is when b is allowed to grow linearly in space as in [MPZ21].

2. For existence result, the conditions on σ in [Wan23c; HRZ24] are more restrictive than
ours. First, [HRZ24] assumed that σ(t, x, µ) = σ(t, x). Second, [Wan23c] assumed that σ
is Lipschitz in space, that ∇σ is Hölder continuous, and that ∥σ(t, ·, µ) − σ(t, ·, ν)∥Cα

b
≲

∥ℓµ − ℓν∥∞. Here ℓµ, ℓν are the densities of µ, ν respectively.
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3. To be more aligned with existing literature of Mckean-Vlasov SDEs, we use Wasserstein
metric for assumptions of continuity. This makes estimating supremum norm between
marginal densities (as in [HRZ24; Wan23c]) (of two weak solutions) not applicable in
our case. However, using Wasserstein metric to estimate the difference between marginal
distributions (of two weak solutions) is also not applicable due to the presence of pointwise
density ℓt(Xt) in b. To overcome these difficulties, we will estimate weighted total variation
distance between marginal densities.

1.2.4 Euler-Maruyama scheme for density-dependent MV-SDEs

For discretization, we consider a particular case of (1.16), i.e.,

Xt = X0 +
∫ t

0
b(s,Xs, ℓs(Xs), µs) ds+

√
2Bt. (1.19)

For n ∈ N, the step size is defined as εn := T/n. The Euler-Maruyama scheme Xn := (Xn
t , t ∈

T) of (1.19) is constructed byX
n
t := X0 +

∫ t

0
b(s,Xn

τn
s
, ℓnτn

s
(Xn

τn
s

), µnτn
s

)1(εn,T ](s) ds+
√

2Bt,

µns is the distribution of Xn
s , and ℓns is the density of Xn

s .

We review some works about discretization of (1.16).

1. Bencheikh-Jourdain [BJ22] considered constant-diffusion models where b(t, x, r, µ) = b(t, x)
is bounded. They obtained sup{∥µtk − µntk∥TV : k = 1, . . . , n} ≲

√
εn. The proof is by

randomization in time.

2. Jourdain-Menozzi [JM24] considered constant-diffusion models where b(t, x, r, µ) = b(t, x)
is locally integrable. They proved that the pointwise difference between transition densities
is bounded by |εn|α (with α := 1 − (dp + 2

q )) multiplied by some centered Gaussian density.
The proof is by randomization in time and cutoff in space. This result was extended by
Fitoussi-Jourdain-Menozzi [FJM24] to the case of α-stable noise.

3. Lê-Ling [LL22] considered models where

a) b(t, x, r, µ) = b(t, x) is locally integrable;
b) σ(t, x, µ) = σ(t, x) is uniformly elliptic and Hölder in x; and
c) σ is weakly differentiable in x and ∇σ is locally integrable.

They obtained strong rate of convergence. The proof is by stochastic sewing lemma.

4. [DGI22; JIP23] considered constant-diffusion models where b(t, x, r, µ) = b(t, x) belongs
to some subspace of Schwartz distributions. They obtained convergence results for
supt∈T E[|Xn

t −Xt|].

5. With Euler approximation, Hao-Röckner-Zhang [HRZ21] proved strong well-posedness
when

a) σ is constant;
b) b(t, x, r, µ) = b(t, x, r) is bounded and Lipschitz in r; and
c) ℓ0 satisfies some integrability condition.

Hao [Hao23] obtained supt∈T ∥ℓt − ℓnt ∥1 ≲
√
εn for convergence in [HRZ21]. Wu-Hao

[WH23] extended [HRZ21] to SDEs driven by α-stable noise. Song-Hao [SH24] obtained
supt∈T ∥ℓt − ℓnt ∥1 ≲ |εn|

α−1
α for convergence in [WH23].
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There appears to be a shortage of results about (1.16). In this direction, we have found only
four papers [Wan23c; HRZ24; Zha22; Le24b]. To our best knowledge, there has not been any
study on Euler-Maruyama scheme of (1.16). This scarcity is the motivation for our study of
(1.19). We assume that b(t, x, r, µ) is bounded and Lipschitz in (r, µ). The drift b(t, x, r, µ) is
not necessarily continuous in x. Our contribution that distinguishes the thesis from [HRZ21;
Hao23; WH23; SH24] is that b also depends on distribution in our case. First, we obtain Hölder
continuity of the scheme (Xn

t , t ∈ T)n∈N. As a consequence of this regularity, we give a direct
proof of well-posedness of (1.19). Finally, we derive the rate of convergence

sup
t∈T

∫
Rd

(1 + |x|)|ℓnt (x) − ℓt(x)| dx ≲ |εn|
α
2 ,

where α is the Hölder exponent of ℓ0.



Chapter 2

Preliminary

2.1 Optimal transport

We have explained at the end of Section 1.2.3 that using Wasserstein metric instead of infinity
norm distinguishes the thesis from [Wan23c; HRZ24]. Therefore, we recall definitions and results
about Wasserstein spaces from [Vil03; Vil09] and about gradient flows from [AGS08]. Currently,
optimal transport enjoys numerous applications in statistics, artificial intelligence, and signal
processing, to name just a few. See e.g. the works of Peyre, Cuturi and Bach.

The genesis of optimal transport can be traced back to Gaspard Monge in 1781 [Mon81]. In
modern terminology, Monge problem is formulated as follows: given two probability measures
µ, ν defined on measurable spaces X,Y respectively, find a measurable map T̄ : X → Y with
ν = T̄♯µ such that T̄ minimizes the transport cost, i.e.,∫

X
c(x, T̄ (x) dµ(x) = min

{∫
X
c(x, T (x) dµ(x) : ν = T♯µ

}
, (2.1)

where c : X × Y → R+ is a given cost function. When T satisfies ν = T♯µ, it is called a transport
map, and if T also minimizes the cost, we call it optimal transport map. Even existence of a
solution to (2.1) turns out to be very challenging (see e.g. [Mag23, Sections 1.1 and 1.2]).

A major advance is due to Kantorovich [Kan42; Kan48], who suggested to look for transport
plans instead of transport maps, i.e., probability measures on X × Y whose first and second
marginal are µ and ν respectively. With this relaxation, existence of an optimal transport plan
can be established easily by direct method from calculus of variations.

The next advance is due to Brenier [Bre87], who proved well-posedness of optimal transport
map when the cost is the squared Euclidean metric. The result was then extended to compact
Riemannian manifolds by McCann [McC01] and led to connections with PDEs, fluid mechanics,
differential geometry, probability theory and functional analysis. See e.g. the works of Otto,
Villani, Figalli and Ambrosio.

2.1.1 Wasserstein spaces

We fix p ∈ [1,∞). Let Mp(µ) :=
∫
Rd |x|p dµ(x) be the p-th moment of µ ∈ P(Rd). Let Pp(Rd)

be the set of those measures in P(Rd) with finite p-th moment. For µ, ν ∈ P(Rd), the set of
transport plans (or couplings) between them is defined as

Γ(µ, ν) := {ϱ ∈ P(Rd × Rd) : µ = π1
♯ ϱ and ν = π2

♯ ϱ},

where πi is the projection of Rd × Rd onto its i-th coordinate, and πi♯ϱ is the push-forward of ϱ
through πi. For µ, ν ∈ Pp(Rd), we define

Wp(µ, ν) := inf
{∫

Rd
|x− y|p dϱ(x, y) : ϱ ∈ Γ(µ, ν)

}1/p
. (2.2)

23
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By [Vil09, Theorem 6.18], (Pp(Rd),Wp) is a Polish space. By [Vil09, Theorem 6.9], it holds for
µn, µ ∈ Pp(Rd) that Wp(µn, µ) → 0 i.f.f µn ⇀ µ and Mp(µn) → Mp(µ). Let Φp be the collection
of all (φ,ψ) ∈ Cb(Rd) × Cb(Rd) such that φ(x) + ψ(y) ≤ |x− y|p for x, y ∈ Rd. For brevity, we
denote W p

p (µ, ν) := (Wp(µ, ν))p. We denote by |µ− ν| the variation of the signed measure µ− ν
as in [Rud87, Section 6.1]. By [Rud87, Theorems 6.2 and 6.4], |µ− ν| is a non-negative finite
measure. We recall properties needed for Chapter 4:

Lemma 2.1. 1. [Vil03, Theorem 1.3] It holds for µ, ν ∈ Pp(Rd) that

W p
p (µ, ν) = sup

{∫
Rd
φ dµ+

∫
Rd
ψ dν : (φ,ψ) ∈ Φp

}
.

2. [Vil03, Theorem 1.14] It holds for µ, ν ∈ P1(Rd) that

W1(µ, ν) = sup
{∫

Rd
f d(µ− ν) : f ∈ L1(|µ− ν|) with [f ]1 ≤ 1

}
.

3. [Vil03, Remark 7.1.2] It holds for 1 ≤ p ≤ q < ∞ and µ, ν ∈ Pq(Rd) that Wp(µ, ν) ≤
Wq(µ, ν).

Above, the first claim is called Kantorovich duality while the second one is called Kantorovich-
Rubinstein theorem. For more information about optimal transport, we refer to [FG21; Mag23;
Vil09; Vil03; AG13; San15; ABS21; Tho23]. The next result states that W p

p is controlled by the
weighted L1-metric.

Lemma 2.2. Let µ, ν ∈ Pp(Rd) be absolutely continuous with corresponding densities ℓµ, ℓν.
Then

W p
p (µ, ν) ≤ (1 ∨ 2p−1)

∫
Rd

|x|p|ℓµ − ℓν |(x) dx.

Proof. For B ∈ B(Rd), we denote by Π(B) the collection of all finite measurable partitions
of B. This means (B1, . . . , Bn) ∈ Π(B) i.f.f {B1, . . . , Bn} ⊂ B(Rd) are pairwise disjoint and
B =

⋃n
k=1Bk. We have

|µ− ν|(B) = sup
{ n∑
k=1

|(µ− ν)(Bk)| : (B1, . . . , Bn) ∈ Π(B)
}

= sup
{ n∑
k=1

∣∣ ∫
Bk

(ℓµ − ℓν)(x) dx
∣∣ : (B1, . . . , Bn) ∈ Π(B)

}

≤ sup
{ n∑
k=1

∫
Bk

|ℓµ − ℓν |(x) dx : (B1, . . . , Bn) ∈ Π(B)
}

=
∫
B

|ℓµ − ℓν |(x) dx.

On the other hand, we have from [Vil03, Proposition 7.10] that

W p
p (µ, ν) ≤ (1 ∨ 2p−1)

∫
Rd

|x|p d|µ− ν|(x).

The claim then follows.

2.1.2 Geodesics in Wasserstein spaces

In this section, we work with (P2(Rd),W2). Let Γo(µ, ν) be the set of minimizers in (2.2). By
[Vil03, Theorem 1.3], Γo(µ, ν) is non-empty. We call ϱ ∈ Γo(µ, ν) an optimal transport plan
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between µ and ν. A curve γ : [0, 1] → P2(Rd) from µ to ν is a continuous map with γ0 = µ and
γ1 = ν. The length of γ is defined as

Len(γ) := sup
{
n−1∑
k=0

W2(γtk , γtk+1) : n ∈ N and 0 = t0 < t1 < · · · < tn = 1
}
.

We define πt : Rd × Rd → Rd by πt := (1 − t)π1 + tπ2 for t ∈ [0, 1]. The (interpolating)
curve induced by ϱ ∈ Γ(µ, ν) is a curve γ from µ to ν defined by γt := (πt)♯ϱ for t ∈ [0, 1].
A geodesic from µ to ν is a curve with shortest length among those curves from µ to ν. A
constant-speed geodesic γ : [0, 1] → P2(Rd) from µ to ν is a geodesic from µ to ν such that
W2(γs, γt) = |s− t|W2(µ, ν) for s, t ∈ |0, 1]. By [AGS08, Theorem 7.2.2], γ is a constant-speed
geodesic from µ to ν i.f.f γ is induced by some ϱ ∈ Γo(µ, ν). From now on, all geodesics are
understood as constant-speed geodesics.

Let Pa
2(Rd) be the subset of P2(Rd) that contains measures admitting a density. Let ϕ :

P2(Rd) → (−∞,∞]. The proper domain D(ϕ) of ϕ is defined as {µ ∈ P2(Rd) : ϕ(µ) < ∞}. We say
that ϕ is proper if D(ϕ) is non-empty, and that ϕ is lower semi-continuous if ϕ(µ) ≤ lim infn ϕ(µn)
whenever µn ⇀ µ. In the remaining of this section, we assume D(ϕ) ⊂ Pa

2(Rd).

Definition 2.3. 1. [AGS08, Definition 9.2.2] For µ1, µ2, ν ∈ P2(Rd), a generalized geodesic
from µ1 to µ2 with base ν is a curve induced by π1,2

♯ ϱ ∈ Γ(µ1, µ2) for some ϱ ∈ Γ(µ1, µ2, ν)
with π1,3

♯ ϱ ∈ Γo(µ1, ν) and π2,3
♯ ϱ ∈ Γo(µ2, ν). Here πi,j is the projection of Rd × Rd × Rd

onto its i-th and j-th coordinates. If ν coincides with either µ1 or µ2, then a generalized
geodesic is also a geodesic.

2. [Cra17, Definition 2.17] A map ω : R+ → R+ is a modulus of continuity if it is continuous
non-decreasing and vanishes only at s = 0. If, in addition, there exists another modulus
of continuity ω̄ such that

∫ 1
0

ds
ω̄(s) = ∞ and |ω(s) − ω(t)| ≤ ω̄(|s − t|) for s, t ≥ 0, then ω

is called an Osgood modulus of convexity. In this case, ω̄ is called an Osgood modulus of
continuity of ω.

3. [Cra17, Definition 2.4] For a modulus ω of convexity and a curve γ induced by ϱ ∈ Γ(µ, ν),
the map ϕ is ω-convex along γ (with constant λ ∈ R) if it holds for t ∈ [0, 1] that

ϕ(γt) ≤ (1 − t)ϕ(γ0) + tϕ(γ1)

− λ

2 {(1 − t)ω(t2K2
2(ϱ)) + tω((1 − t)2K2

2(ϱ))},

where K2(ϱ) := ∥π2 − π1∥L2(ϱ). In case ω = id, we simply say ϕ is λ-convex along γ.

The map ϕ is ω-convex along geodesics if for µ, ν ∈ P2(Rd) there exists a geodesic γ from
µ to ν such that ϕ is ω-convex along γ. The map ϕ is ω-convex along generalized geodesics
if for µ0, µ1, ν ∈ P2(Rd) there exists a generalized geodesic γ from µ0 to µ1 with base ν such
that ϕ is ω-convex along γ. Clearly, ω-convexity along generalized geodesics implies that along
geodesics. In case ω = id, we simply say ϕ is λ-convex along geodesics/generalized geodesics,
which is consistent with [AGS08, Definitions 9.1.1 and 9.2.2]. In case λ = 0, we simply say ϕ is
convex along geodesics/generalized geodesics.

Lemma 2.4. [Cra17, Propositions 2.8 and 4.7] Let V and ψ be given by Assumption 3.1. We
define ω : R+ → R+ by ω(s) :=

√
sψ(s). We define V : P2(Rd) → R by V(µ) :=

∫
Rd V dµ. We fix

µ, ν ∈ P2(Rd) and ϱ ∈ Γ(µ, ν). Let γ be the curve induced by ϱ. Then t 7→ V(γt) is differentiable
with

V(γ1) − V(γ0) − d
dtV(γt)

∣∣∣
t=0

≥ 2Cω(K2
2(ϱ)). (2.3)

As a consequence, V is ω-convex along any interpolating curve with constant λω = −4C < 0.



26 Chapter 2. Preliminary

Proof. First, we are going to prove (2.3). By Assumption 3.1(2) and Leibniz integral rule,

d
dtV(γt) =

∫
Rd×Rd

⟨∇V ◦ πt, π2 − π1⟩ dϱ.

By Taylor formula,

V(γ1) − V(γ0) − d
dtV(γt)

∣∣∣
t=0

=
∫ 1

0

∫
Rd×Rd

⟨∇V ◦ πt − ∇V ◦ π1, π2 − π1⟩ dϱdt.

Notice that πt − π1 = t(π2 − π1). We have∫
Rd×Rd

|⟨∇V ◦ πt − ∇V ◦ π1, π2 − π1⟩| dϱ

≤ ∥∇V ◦ πt − ∇V ◦ π1∥L2(ϱ)∥π2 − π1∥L2(ϱ) by Cauchy–Schwarz inequality

≤ 2C
∥∥∥√ψ(|π2 − π1|2)

∥∥∥
L2(ϱ)

∥π2 − π1∥L2(ϱ) by Assumption 3.1(3)

≤ 2C
√

∥π2 − π1∥2
L2(ϱ)ψ(∥π2 − π1∥2

L2(ϱ)) because
√
ψ is concave

= 2Cω(K2
2(ϱ)).

Second, we are going to prove the ω-convexity of V. We fix t ∈ (0, 1). We need to prove

V(γt) ≤ (1 − t)V(γ0) + tV(γ1)

− λω
2 {(1 − t)ω(t2K2

2(ϱ)) + tω((1 − t)2K2
2(ϱ))}.

(2.4)

Let ϱ̂ := (πt, π2)♯ϱ ∈ Γ(γt, γ1) and ϱ̌ := (πt, π1)♯ϱ ∈ Γ(γt, γ0). Let γ̂, γ̌ be the curves induced
by ϱ̂, ϱ̌ respectively. By (2.3),

V(γ̂1) − V(γ̂0) − d
dsV(γ̂s)

∣∣∣
s=0

≥ 2Cω(K2
2(ϱ̂)), (2.5)

V(γ̌1) − V(γ̌0) − d
dsV(γ̌s)

∣∣∣
s=0

≥ 2Cω(K2
2(ϱ̌)). (2.6)

Notice that γ̂s = γs(1−t)+t and γ̌s = γt(1−s) for s ∈ [0, 1]. By chain rule,

d
dsV(γ̂s)

∣∣∣
s=0

= (1 − t) d
drV(γr)

∣∣∣
r=t
,

d
dsV(γ̌s)

∣∣∣
s=0

= −t d
drV(γr)

∣∣∣
r=t
.

Notice that K2(ϱ̂) = (1 − t)K2(ϱ) and K2(ϱ̌) = tK2(ϱ). We multiply (2.5) with t, multiply
(2.6) with (1 − t), and add the resulting inequalities. Then (2.4) follows. This completes the
proof.

2.1.3 Gradient flows in Wasserstein spaces

We define the tangent space at µ ∈ P2(Rd) as

TµP2(Rd) := {∇φ : φ ∈ C∞
c (Rd)}

L2(µ)
.

Definition 2.5. 1. [AGS08, Definition 1.1.1] A map µ : (0,∞) → P2(Rd) belongs to
ACp

loc((0,∞);P2(Rd)) with p ∈ [1,∞) if there exists f ∈ Lploc((0,∞);R+) such that
W2(µs, µt) ≤

∫ t
s f(r) dr for 0 < s < t < ∞. In case p = 1, we say that (µt) is locally
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absolutely continuous. By [AGS08, Theorem 1.1.2], its metric derivative

|µ′|(t) := lim
s→0

W2(µt+s, µt)
|s|

exists for a.e. t > 0 and W2(µs, µt) ≤
∫ t
s |µ′|(r) dr for 0 < s < t < ∞.

2. [AGS08, Definition 10.1.1] For µ ∈ D(ϕ), a vector field f ∈ L2(µ) belongs to the Fréchet
subdifferential ∂ϕ(µ) if

ϕ(ν) − ϕ(µ) ≥
∫
Rd

⟨f, tttνµ − id⟩ dµ+ O(W2(µ, ν)),

or equivalently

lim inf
ν→µ

ϕ(ν) − ϕ(µ) −
∫
Rd⟨f, tttνµ − id⟩ dµ

W2(µ, ν) ≥ 0,

where tttνµ is the optimal map that transports µ to ν. If f ∈ ∂ϕ(µ) also satisfies

ϕ(ttt♯ν) − ϕ(µ) ≥
∫
Rd

⟨f, ttt − id⟩ dµ+ O(∥ttt − id ∥L2(µ)),

then f is called a strong subdifferential.

3. [AGS08, Definition 11.1.1] A curve (µt) ∈ AC2
loc((0,∞);P2(Rd)) is a gradient flow for ϕ if

there exists a time-dependent Borel vector filed v such that

a) vt ∈ TµtP2(Rd) and vt ∈ −∂ϕ(µt) for a.e. t > 0.

b) t 7→ ∥vt∥L2(µt) belongs to L2
loc(0,∞).

c) ∂tµt + div(µtvt) = 0 holds in distributional sense.

2.1.4 Auxiliary lemmas

Definition 2.6. 1. [AGS08, Definition 1.2.1] A map g : P2(Rd) → [0,∞] is a strong upper
gradient for ϕ if, for every locally absolutely continuous curve (µt), the map t 7→ g(µt) is
Borel measurable and

|ϕ(µt) − ϕ(µs)| ≤
∫ t

s
g(µr)|µ′|(r) dr for 0 < s < t < ∞, (2.7)

with the convention |ϕ(µt) − ϕ(µs)| = ∞ whenever ϕ(µt) + ϕ(µs) = ∞.

2. [AGS08, Definition 1.2.4] The local and global slopes of ϕ at µ ∈ D(ϕ) are defined as

|∂ϕ|(µ) := lim sup
ν→µ

(ϕ(µ) − ϕ(ν))+

W2(µ, ν) and lϕ(µ) := sup
ν ̸=µ

(ϕ(µ) − ϕ(ν))+

W2(µ, ν) .

3. [AGS08, Definition 1.3.2] For p ∈ (1,∞), a locally absolutely continuous curve (µt) is a
p-curve of maximal slope for ϕ w.r.t |∂ϕ| if t 7→ ϕ(µt) is equal a.e. to a non-increasing map
f and

|µ′|p(t)
p

+ |∂ϕ|q(µt)
q

≤ f ′(t) for a.e. t > 0, (2.8)

where q is the Hölder conjugate of p, i.e., 1
p + 1

q = 1.
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4. [AGS08, Definition 10.1.4] The map ϕ is regular if it satisfies Assumption 2.7(1) and
the strong differential fn ∈ ∂ϕ(µn), φn = ϕ(µn),
µn → µ in P2(Rd), φn → φ, supn ∥fn∥L2(µn) < ∞,

fn → f ∈ L2(µ) weakly in the sense of [AGS08, Definition 5.4.3],
=⇒

{
f ∈ ∂ϕ(µ),
φ = ϕ(µ).

5. [Cra17, Definition 2.12] For t ≥ 0, the proximal map Jtϕ of ϕ is defined as J0ϕ[µ] := µ and

Jtϕ[µ] := arg min
{
ϕ(µ) + W 2

2 (µ, ν)
2t : ν ∈ P2(Rd)

}
for t > 0.

First, we have a sufficient condition for being regular:

Assumption 2.7. 1. ϕ is proper and lower semi-continuous with D(ϕ) ⊂ Pa
2(Rd).

2. There exists τ ∈ (0,∞] such that Jtϕ[µ] ̸= ∅ for µ ∈ P2(Rd) and t ∈ (0, τ).

Lemma 2.8. Assume that ϕ satisfies Assumption 2.7(1) and is ω-convex along geodesics with
ω(s) = O(

√
s) as s ↓ 0. Then ϕ is regular.

Proof. The argument in the proof of [AGS08, Lemma 10.1.3] (for λ-convex functionals) also
works in our case of ω-convex functionals. This is because that argument is due to the variational
characterization of the Fréchet subdifferential, whose counterpart in our case (which is Lemma 2.9)
exists.

Second, we have a characterization of Fréchet subdifferential:

Lemma 2.9. Let ϕ be ω-convex along geodesics with ω(s) = O(
√
s) as s ↓ 0. We fix µ ∈ D(ϕ)

and f ∈ L2(µ). Then f ∈ ∂ϕ(µ) i.f.f it holds for ν ∈ D(ϕ) that∫
Rd

⟨f, tttνµ − id⟩ dµ+ λω
2 ω(W 2

2 (µ, ν)) ≤ ϕ(ν) − ϕ(µ).

Proof. The implication ⇐= is obvious due to ω(W 2
2 (µ, ν)) = O(W2(µ, ν)) as ν → µ. Let’s prove

the other implication. We define γt := ((1 − t) id +ttttνµ)♯µ for t ∈ [0, 1]. Then γ is a geodesic from
µ to ν. Then

ϕ(γt) ≤ (1 − t)ϕ(γ0) + tϕ(γ1)

− λω
2 {(1 − t)ω(t2W 2

2 (γ0, γ1)) + tω((1 − t)2W 2
2 (γ0, γ1))}.

Thus

ϕ(γt) − ϕ(γ0)
t

≤ ϕ(γ1) − ϕ(γ0)

− λω
2 {(1 − t)ω(t2W 2

2 (γ0, γ1))
t

+ ω((1 − t)2W 2
2 (γ0, γ1))}.

Because limt↓0
ω(t2W 2

2 (γ0,γ1))
t = 0,

lim inf
t↓0

ϕ(γt) − ϕ(γ0)
t

≤ ϕ(γ1) − ϕ(γ0) − λω
2 ω(W 2

2 (γ0, γ1)).
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Notice that W2(γt, γ0) = tW2(γ1, γ0) and tttγt
µ = (1 − t) id +ttttνµ. Fréchet sub-differentiability

implies

lim inf
t↓0

ϕ(γt) − ϕ(γ0)
t

≥ lim inf
t↓0

1
t

∫
Rd

⟨f, tttγt
µ − id⟩ dµ

=
∫
Rd

⟨f, tttνµ − id⟩ dµ.

The claim then follows.

Finally, being regular implies several nice properties:

Lemma 2.10. Let ϕ be regular and satisfy Assumption 2.7.

1. [AGS08, Lemma 10.1.5] We have µ ∈ D(|∂ϕ|) i.f.f ∂ϕ(µ) ̸= ∅ and

|∂ϕ|(µ) = inf
f∈∂ϕ(µ)

∥f∥L2(µ). (2.9)

In this case, there exists a unique vector f̄ ∈ ∂ϕ(µ) which attains the minimum in (2.9):
we denote it by ∂oϕ(µ).

2. [AGS08, Theorem 11.1.3] We have (µt) is a p-curve of maximal slope for ϕ w.r.t |∂ϕ| i.f.f
(µt) is a gradient flow for ϕ and (ϕ(µt)) is a.e. equal to a function of bounded variation.
In this case,

vt = −∂oϕ(µt) for a.e. t > 0.

3. [Cra17, Theorem 3.12 and Remark 2.11] Assume, in addition, that ϕ is ω-convex along
generalized geodesics for an Osgood modulus ω of convexity with ω̄(s) = O(

√
s) as s ↓ 0.

For µ0 ∈ D(ϕ), there exists a unique gradient flow (µt) for ϕ such that µt → µ0 as t ↓ 0.

2.2 Stochastic differential equations

In the rest of the manuscript, (Bt) is a given m-dimensional Brownian motion (m-BM) and (Ft)
is a given admissible filtration (AF) on a given probability space (PS) (Ω,A,P). This means
for 0 ≤ s ≤ t that Bt is adapted to Ft and that Bt −Bs is independent of Fs. We assume that
(Ω,A, (Ft),P) satisfies the usual conditions.

We fix T ∈ (0,∞) and let T be the interval [0, T ]. We consider the SDE{
dXt = b(t,Xt) dt+ σ(t,Xt) dBt,
ν is the distribution of X0.

(2.10)

Above, the coefficients

b : T × Rd → Rd,
σ : T × Rd → Rd ⊗ Rm,

are measurable. The study of (2.10) started with theory of stochastic integration created by
Itô in 1940’s [Itô44; Itô46]. The theory was further developed by Doob [Doo53], Meyer [Mey62;
Mey67a; Mey67b; Mey67c; Mey67d], Courrège [Cou63], Kunita-Watanabe [KW67], and Doléans-
Dade-Meyer [DM70], among others. We refer to [JP04; Mey09] for a brief history of stochastic
calculus and to [Din00; Bic02; Kuo06; Med07; Sok12; Sok13; Pro13; CW13; MP14; MR14] for
expositions of stochastic integration. SDEs have many practical applications such as modeling
stock prices and random growth phenomena (see e.g. [KP92, Chapter 7]).
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Definition 2.11. 1. A strong solution to (2.10) is a continuous Rd-valued process (Xt) on
(Ω,A,P) such that for t ∈ T: Xt is Ft-adapted and

Xt = X0 +
∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs P-a.s.,∫ t

0
E[|b(s,Xs)| + |σ(s,Xs)|2] ds < ∞.

2. A weak solution to (2.10) is a continuous Rd-valued process (Xt) on some PS (Ω,A,P)
where there exist some m-BM (Bt) and some AF (Ft) such that the conditions in (1.) are
satisfied.

3. SDE (2.10) has strong uniqueness if, whenever the PS, the AF and the m-BM are fixed,
two strong solutions (Xt) and (Yt) such that X0 = Y0 coincide P-a.s. on the path space
C(T;Rd). SDE (2.10) has weak uniqueness if two weak solutions with the same initial
distribution induce the same distribution on C(T;Rd).

4. SDE (2.10) is strongly well-posed if it has strong solution and strong uniqueness. SDE
(2.10) is weakly well-posed if it has weak solution and weak uniqueness. SDE (2.10) is
well-posed if it is both strongly and weakly well-posed.

Let a := σσ⊤. We denote bt := b(t, ·), σt := σ(t, ·) and at := a(t, ·).

2.2.1 Heat kernel estimates of transition density

In this section, we mainly recall heat kernel estimates from [MPZ21] and heat semigroup estimates
from [Wan23c]. They are essential tools to obtain regularity of marginal density.

Assumption 2.12. 1. at is invertible for t ∈ T.

2. There exist constants C > 0 and β ∈ (0, 1) such that for t ∈ T and x, y ∈ Rd:

|bt(0)| + ∥at∥∞ + ∥a−1
t ∥∞ ≤ C,

|bt(x) − bt(y)| ≤ C(1 ∨ |x− y|),
|σt(x) − σt(y)| ≤ C|x− y|β.

We gather parameters in Assumption 2.12:

Θ2 := (d, T, β, C).

In Section 2.2.1, we assume that (b, σ) satisfies Assumption 2.12. For (s, x) ∈ [0, T ) ×Rd, the
SDE

dXx
s,t = b(t,Xx

s,t) dt+ σ(t,Xx
s,t) dBt, t ∈ [s, T ], Xx

s,s = x, (2.11)

is weakly well-posed by [MPZ21, Theorem 1.2] and has transition density denoted by (pb,σs,t )0≤s<t≤T .
This means pb,σs,t (x, ·) is the density of Xx

s,t. The semigroup (P b,σs,t )0≤s<t≤T is defined for x ∈ Rd

and f ∈ L0
+(Rd) ∪ L0

b(Rd) by

P b,σs,t f(x) := E[f(Xx
s,t)] =

∫
Rd
pb,σs,t (x, y)f(y) dy. (2.12)

The associated time-dependent second-order differential operator (Lb,σt )t∈T is defined for
f ∈ C2(Rd) and x ∈ Rd by

Lb,σt f(x) := ⟨bt(x),∇f(x)⟩ + 1
2 tr(at(x)∇2f(x)).
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The backward Kolmogorov equation holds, i.e., for f ∈ C2
b (Rd), x ∈ Rd and 0 ≤ s < t ≤ T :

∂sP
b,σ
s,t f(x) + Lb,σs P b,σs,t f(x) = 0. (2.13)

As in [MPZ21, Section 1.2], we will construct a family (ψs,t)s,t∈T of C∞-diffeomorphisms on
Rd. Let ρ : Rd → R be a smooth symmetric density whose support is contained in the unit ball
of Rd. We define b : T × Rd → Rd by b(t, ·) := b(t, ·) ∗ ρ where ∗ is the convolution operator. By
[MPZ21, Inequalities (1.9) and (1.10)], it holds for n ∈ N that

sup{∥∇nb(t, ·)∥∞ + ∥b(t, ·) − b(t, ·)∥∞ : t ∈ T} < ∞. (2.14)

For (s, x) ∈ T × Rd, we consider the ODE{ d
dtψs,t(x) = b(t, ψs,t(x)) for t ∈ T,
ψs,s(x) = x.

For κ > 0, we consider the Gaussian heat kernel defined for t > 0 and x ∈ Rd by

pκt (x) := 1
(κπt)

d
2

exp
(

−|x|2

κt

)
.

The following results give density and gradient estimates for (2.11):

Theorem 2.13. Let Assumption 2.12 hold.

1. [MPZ21, Theorem 1.2] There exist constants c, κ > 0 (depending on Θ2) such that for
i ∈ {0, 1, 2}, 0 ≤ s < t ≤ T and x, y ∈ Rd:

|∇i
xp
b,σ
s,t (x, y)| ≤ c(t− s)− i

2 pκt−s(ψs,t(x) − y).

2. [MPZ21, Lemma A.1] For α ∈ (0, β), there exist constants c, κ > 0 (depending on Θ2, α)
such that for 0 ≤ s < t ≤ T and x, y, y′ ∈ Rd:

|∇xp
b,σ
s,t (x, y) − ∇xp

b,σ
s,t (x, y′)| ≤ c|y − y′|α(t− s)− 1+α

2

× {pκt−s(ψs,t(x) − y) + pκt−s(ψs,t(x) − y′)}.

We define for κ > 0, f ∈ L0
+(Rd) ∪ L0

b(Rd), x ∈ Rd and 0 ≤ s < t ≤ T :

P κt f(x) :=
∫
Rd
pκt (x− y)f(y) dy,

P̂ κs,tf(x) :=
∫
Rd
pκt−s(ψs,t(x) − y)f(y) dy,

P̃ κs,tf(x) :=
∫
Rd
pκt−s(ψs,t(y) − x)f(y) dy. (2.15)

For brevity, we denote q−p
pq

:= 1
p − 1

q for p, q ∈ [1,∞]. By Young’s inequality for convolution,
there exists a constant c > 0 (depending on d, κ) such that for t > 0 and 1 ≤ p ≤ p̄ ≤ ∞:

∥P κt ∥Lp→Lp̄ := sup
∥f∥Lp ≤1

∥P κt f∥Lp̄ ≤ ct
− d(p̄−p)

2pp̄ . (2.16)

We recall a class of functions locally integrable in space-time. Let p, q ∈ [1,∞]. The localized
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version L̃p(Rd) of Lp(Rd) is defined by the norm

∥f∥L̃p := sup
x∈Rd

∥1B(x,1)f∥Lp ,

Above, B(x, r) is the open ball centered at x with radius r. For 0 ≤ t0 < t1 ≤ T , we define
the Bochner space

Lpq(t0, t1) := Lq([t0, t1];Lp(Rd)).

The localized version L̃pq(t0, t1) of Lpq(t0, t1) is defined by the norm

∥g∥L̃p
q(t0,t1) := sup

x∈Rd

∥1B(x,1)g∥Lp
q(t0,t1).

Then ∥g∥L̃∞
∞(t0,t1) = ∥g∥L∞

∞(t0,t1). It holds for p, q ∈ [1,∞) that

∥g∥Lp
q(t0,t1) =

(∫ t1

t0

(∫
Rd

|g(s, y)|p dy
) q

p

ds
) 1

q

,

∥g∥L̃p
q(t0,t1) = sup

x∈Rd

(∫ t1

t0

(∫
B(x,1)

|g(s, y)|p dy
) q

p

ds
) 1

q

.

For brevity, we denote

Lpq(t) := Lpq(0, t), L̃pq(t) := L̃pq(0, t), Lpq := Lpq(0, T ), L̃pq := L̃pq(0, T ).

We recall generalizations of (2.16) for dealing with unbounded drift:

Lemma 2.14. [Wan23c, Lemma 3.2] Let Assumption 2.12 hold.

1. There exists a constant c > 0 (depending on Θ2) such that for 0 ≤ s < t ≤ T and
1 ≤ p ≤ p̄ ≤ ∞:

∥P κt−s∥L̃p→L̃p̄ + ∥P̂ κs,t∥L̃p→L̃p̄ + ∥P̃ κs,t∥L̃p→L̃p̄ ≤ c(t− s)− d(p̄−p)
2pp̄ .

2. There exists a constant c > 0 (depending on Θ2) such that for 0 ≤ s < t ≤ T, 1 ≤ p ≤ p̄ ≤ ∞
and q ∈ [1,∞]:

∥P̂ κ·,tf∥L̃p̄
q(t) + ∥P̃ κ·,tf∥L̃p̄

q(t) ≤ c
∥∥(t− ·)− d(p̄−p)

2pp̄ f
∥∥
L̃p

q(t) for f ∈ L0
+([0, t] × Rd),

sup
z∈Rd

∥gP̂ κs,t{1B(z,1)f}∥L1 ≤ c(t− s)− d(p̄−p)
2pp̄ ∥g∥L̃p̄∗ ∥f∥L̃p for f, g ∈ L0

+(Rd).

Proof. We only include the proof of (1.). Let z ∈ Rd, f ∈ L0
+(Rd) and Bn := {v = (v1, . . . , vd) ∈

Zd :
∑d
i=1 |vi| = n} for n ∈ N. We write M1 ≲ M2 if there exists a constant c > 0 (depending

on Θ2) such that M1 ≤ cM2. By [Wan23c, Inequality (3.11)], there exists a constant c1 > 0
(depending on Θ2) such that

∥1B(z,1)P̂
κ
s,tf∥Lp̄ ≲ (t− s)− d(p̄−p)

2pp̄

∞∑
n=0

∑
v∈Bn

e
− n2

c1(t−s) ∥1B(z+v,d)f∥Lp .

We have card(Bn) ≤ (2n+ 1)d, so

∞∑
n=0

∑
v∈Bn

e
− n2

c1(t−s) ≤
∞∑
n=0

(2n+ 1)de− n2
c1T ≲ 1.
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On the other hand, ∥1B(z+v,d)f∥Lp ≲ ∥f∥L̃p . Then

∥P̂ κs,tf∥L̃p̄ ≲ (t− s)− d(p̄−p)
2pp̄ ∥f∥L̃p .

Notice that P κt−s is a special case of P̂ κs,t where ψs,t = id. Then

∥P κt−sf∥L̃p̄ ≲ (t− s)− d(p̄−p)
2pp̄ ∥f∥L̃p .

It remains to prove for P̃ κs,t. By [Wan23c, Inequality (3.2)], there exists a constant c2 ≥ 1
(depending on Θ2) such that

sup{∥∇ψs,t∥∞ + ∥∇ψ−1
s,t ∥∞ : 0 ≤ s ≤ t ≤ T} ≤ c2. (2.17)

We have

P̃ κs,tf(x) =
∫
Rd
pκt−s(ψs,t(y) − x)f(y) dy by (2.15)

≤
∫
Rd
pκt−s

(
ψ−1
s,t (x) − y)

c2

)
f(y) dy by (2.17)

≲
∫
Rd
pκ̄t−s(ψ−1

s,t (x) − y)f(y) dy where κ̄ := κ|c2|2

= (P κ̄t−sf) ◦ ψ−1
s,t (x). (2.18)

It suffices to consider p̄ < ∞. We have

∥1B(z,1)P̃
κ
s,tf∥p̄Lp̄ ≲

∫
B(z,1)

|(P κ̄t−sf) ◦ ψ−1
s,t (x)|p̄ dx by (2.18)

=
∫
ψ−1

s,t (B(z,1))
|(P κ̄t−sf)(x)|p̄| det ∇ψs,t(x)| dx (2.19)

≲
∫
ψ−1

s,t (B(z,1))
|(P κ̄t−sf)(x)|p̄ dx (2.20)

= ∥1ψ−1
s,t (B(z,1))P

κ̄
t−sf∥p̄Lp̄

≲ ∥P κ̄t−sf∥p̄
L̃p̄ by (2.17).

Above, (2.19) is due to change of variables formula and (2.20) due to Hadamard’s inequality
for determinants. Then ∥1B(z,1)P̃

κ
s,tf∥Lp̄ ≲ ∥P κ̄t−sf∥L̃p̄ . This completes the proof.

2.2.2 Stability estimates of marginal density

The inspiration for Chapter 4 comes from [Wan23c, Lemma 5.1], which is about uniform Hölder
regularity in space of marginal density. We intended to establish its counterpart for time regularity,
so this section was intended as a preparation of auxiliary results leading to the counterpart.
Unfortunately, Professor Francesco Russo has pointed out that Wang’s proof contains a gap,
which is the symmetry pγs,t(x, y) = pγs,t(y, x). For the sake of our understanding of related
techniques, we decide to keep this section.

In our study, b is not necessarily continuous but only locally integrable in (t, x). To measure
the local integrability in space-time, we introduce the class K of exponent parameters:

K :=
{

(p, q) ∈ (2,∞]2 : d
p

+ 2
q
< 1

}
.

Assumption 2.15. 1. at is invertible for t ∈ T.
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2. There exist measurable maps b(0) : T × Rd → Rd and b(1) : T × Rd → Rd such that
bt(x) = b

(0)
t (x) + b

(1)
t (x) for t ∈ T and x ∈ Rd.

3. There exists 1 ≤ f0 ∈ L̃p0
q0 with (p0, q0) ∈ K such that |b(0)

t (x)| ≤ f0(t, x) for t ∈ T and
x ∈ Rd.

4. There exist constants β ∈ (0, 1), C > 0 such that for t ∈ T and x, y ∈ Rd:

|b(1)
t (x) − b

(1)
t (y)| ≤ C|x− y|,

|b(1)
t (0)| + ∥σt∥∞ + ∥a−1

t ∥∞ ≤ C,

|σt(x) − σt(y)| ≤ C|x− y|β.

By (2.14), if b satisfies Assumption 2.12 then it also satisfies Assumption 2.15. We gather
parameters in Assumption 2.15:

Θ3 := (d, T, β, C, p0, q0, f0).

Remark 2.16. If f ∈ L̃pq for some (p, q) ∈ K, then there exists (p̄, q̄) ∈ K̄ such that |f |2 ∈ L̃p̄q̄ .

Assumption 2.15 is appealing because it is a general but sufficient condition to obtain Krylov’s
and Khasminskii’s estimates. The class K̄ of exponent parameter is defined by

K̄ :=
{

(p, q) ∈ (1,∞)2 : d
p

+ 2
q
< 2

}
.

Proposition 2.17. Let (b, σ) satisfy Assumption 2.15 and (Xt, t ∈ T) be the solution to (2.10).
We fix (p, q) ∈ K̄.

1. (Khasminskii’s estimate) There exist constants c > 0, k > 1 (depending on Θ3, p, q) such
that for 0 ≤ t0 < t1 ≤ T and g ∈ L̃pq(t0, t1):

E
[

exp
(∫ t1

t0
|g(s,Xs)| ds

) ∣∣∣∣Ft0

]
≤ exp(c(1 + ∥g∥k

L̃p
q(t0,t1))). (2.21)

2. (Krylov’s estimate) For j ∈ [1,∞), there exists a constant c > 0 (depending on Θ3, p, q, j)
such that for 0 ≤ t0 < t1 ≤ T and g ∈ L̃pq(t0, t1):

E
[(∫ t1

t0
|g(s,Xs)| ds

)j ∣∣∣∣Ft0

]
≤ c∥g∥j

L̃p
q(t0,t1). (2.22)

Proof. 1. There exists q̄ ∈ (1, q) such that (p, q̄) ∈ K̄. By [ZY21, Theorem 3.1], there exists a
constant c1 > 0 (depending on Θ3, p, q̄) such that for 0 ≤ t0 < t1 ≤ T , stopping time τ and
g ∈ L̃pq̄(t0, t1):

E
[ ∫ t1∧τ

t0∧τ
|g(s,Xs)| ds

∣∣∣∣Ft0

]
≤ c1∥g∥L̃p

q̄(t0,t1). (2.23)

Let δ := 1
q̄ − 1

q ∈ (0, 1). By Hölder’s inequality, it holds for 0 ≤ t0 < t1 ≤ T and g ∈ L̃pq(t0, t1)
that

∥g∥L̃p
q̄(t0,t1) ≤ (t1 − t0)δ∥g∥L̃p

q(t0,t1). (2.24)
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We denote by Inj the open interval ( (j−1)(t1−t0)
n , j(t1−t0)

n ) for j = 1, . . . , n. We fix g ∈
L̃pq(t0, t1) ⊂ L̃pq̄(t0, t1). Let n ≥ 2 be the smallest integer such that

∥g∥L̃p
q̄(In

j ) ≤ 1
2c1

for j = 1, . . . , n. (2.25)

By (2.23) and [XZ20, Lemma 3.5],

E
[

exp
(∫ t1

t0
|g(s,Xs)| ds

)∣∣∣∣Ft0

]
≤ 2n.

By (2.25), there exists j̄ ∈ {1, . . . , n− 1} such that

∥g∥L̃p
q̄(In−1

j̄
) >

1
2c1

. (2.26)

By (2.24) and (2.26), (
t1 − t0
n− 1

)δ
∥g∥L̃p

q(In−1
j̄

) >
1

2c1
.

Then
n < 1 + T (2c1)− 1

δ ∥g∥1/δ
L̃p

q(t0,t1).

The estimate (2.21) then follows with k := 1
δ .

2. We follow an elegant idea from [HW22, Lemma 2.3]. Let Cj := ej−1. We define h : R+ → R+
by h(r) := | ln(Cj + r)|j . Then h is concave. We have

E
[(∫ t1

t0
|g(s,Xs)| ds

)j ∣∣∣∣Ft0

]

≤ E
[{

ln
(
Cj + exp

(∫ t1

t0
|g(s,Xs)| ds

))}j∣∣∣∣Ft0

]

≤
{

ln
(
Cj + E

[
exp

(∫ t1

t0
|g(s,Xs)| ds

)∣∣∣∣Ft0

])}j
by Jensen’s inequality

≤ {ln[Cj + exp(c(1 + ∥g∥k
L̃p

q(t0,t1)))]}
j .

Above, the constants c, k > 0 are given by (2.21). As a result, there exists a constant
C̄j > 0 (depending on c, j) such that

E
[(∫ t1

t0
|g(s,Xs)| ds

)j ∣∣∣∣Ft0

]
≤ C̄j(1 + ∥g∥k

L̃p
q(t0,t1))

j .

Replacing g with g
∥g∥

L̃
p
q (t0,t1)

in above inequality, we obtain

E
[(∫ t1

t0
|g(s,Xs)| ds

)j ∣∣∣∣Ft0

]
≤ C̄j2j∥g∥j

L̃p
q(t0,t1).

The estimate (2.22) then follows. This completes the proof.

For another proof of Proposition 2.17, see e.g. [Xia+20, Lemma 4.1]. We recall the following
result about Lipschitz continuity w.r.t initial data. This result is interesting because the drift b
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in Assumption 2.15 is not necessarily continuous. The key ingredient in its proof is Zvonkin’s
transform that allows one to extract Lipschitz regularity from a locally integrable drift.

Lemma 2.18. [HW22, Theorem 1.1(2)] Let Assumption 2.15 hold and p ∈ [1,∞). Assume, in
addition, that

1. σt is weakly differentiable for t ∈ T.

2. For i ∈ {1, 2, . . . , l}, there exists 1 ≤ fi ∈ L̃pi
qi

with (pi, qi) ∈ K such that |∇σt(x)| ≤∑l
i=1 fi(t, x) for t ∈ T and x ∈ Rd.

For i ∈ {1, 2}, let (Xi
t , t ∈ T) satisfy (2.10) and νi be the distribution of Xi

0. There exists a
constant c > 0 (depending on Θ3, p, (pi, qi, fi)li=1) such that

E
[
sup
t∈T

|X1
t −X2

t |p
]

≤ cE[|X1
0 −X2

0 |p].

Proof. By Assumption 2.15(2), there exist measurable maps b(0) : T×Rd → Rd and b(1) : T×Rd →
Rd such that bt(x) = b

(0)
t (x) + b

(1)
t (x). By Assumption 2.15(3), there exists 1 ≤ f0 ∈ L̃p0

q0 with
(p0, q0) ∈ K such that |b(0)

t (x)| ≤ f0(t, x). We write M1 ≲ M2 if there exists a constant c > 0
(depending on Θ3, p) such that M1 ≤ cM2. Let (Lt, t ∈ T) be the time-dependent differential
operator defined by

Ltv := ⟨bt,∇v⟩ + 1
2 tr(at∇2v)

for any function v : Rd → R with two weak derivatives. By Zvonkin transform [ZY21, Theorem
2.1], there exists a constant λ0 > 0 (depending on Θ3) such that for j ∈ {1, . . . , d} the PDE (in
distributional sense) {

(∂t + Lt)u(j) = λ0u
(j) − b0,j ,

uj(T, ·) = 0,

has a unique solution u(j) : T × Rd → R with the properties

∥∇2u(j)∥L̃p0
q0

≲ 1 and ∥u(j)∥∞ + ∥∇u(j)∥∞ ≤ 1
2 . (2.27)

Above, b0,j is the j-th row of b(0). We define u : T × Rd → Rd by u := (u(1), . . . , u(d))⊤. By
(2.27),

∥∇2u∥L̃p0
q0

≲ 1,

∥u∥∞ + ∥∇u∥∞ ≤ 1
2 . (2.28)

Above, ∇u and ∇2u are the first and second-order weak derivatives (w.r.t spatial variable) of
u. In particular, ∇u is the Jacobian matrix of u. By generalized Itô’s lemma [ZY21, Lemma 3.3],

du(j)(t,Xi
t) = {∂t + Lt}u(j)(t,Xi

t) dt+ {(∇u(j))⊤σ}(t,Xi
t) dBt

= {λ0u
(j) − b0,j}(t,Xi

t) dt+ {(∇u(j))⊤σ}(t,Xi
t) dBt,

which can be written in matrix form as

du(t,Xi
t) = {λ0u− b(0)}(t,Xi

t) dt+ {(∇u)σ}(t,Xi
t) dBt. (2.29)

Let Y i
t := Xi

t + u(t,Xi
t). By (2.10) and (2.29),

dY i
t = {λ0u+ b(1)}(t,Xi

t) dt+ {(Id + ∇u)σ}(t,Xi
t) dBt.
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By maximal inequality (see e.g. [Xia+20, Lemma 2.1(i)]),

|σ(t, x) − σ(t, y)| ≲ |x− y|
{
M|∇σt|(x) + M|∇σt|(y) + ∥σ∥∞

}
≲ |x− y|

l∑
i=1

{
Mfi(t, ·)(x) + Mfi(t, ·)(y)

}
, (2.30)

|∇u(t, x) − ∇u(t, y)| ≲ |x− y|
{
M|∇2u(t, ·)|(x) + M|∇2u(t, ·)|(y) + ∥∇u∥∞

}
≲ |x− y|

{
1 + M|∇2u(t, ·)|(x) + M|∇2u(t, ·)|(y)

}
. (2.31)

Above, M is the local Hardy–Littlewood maximal operator defined for g : Rd → R+ by
Mg(x) := supr∈(0,1)

1
|B(0,r)|

∫
B(0,r) g(x+ y) dy. Let

Ht := {λ0u+ b(1)}(t,X1
t ) − {λ0u+ b(1)}(t,X2

t ),
Gt := {(Id + ∇u)σ}(t,X1

t ) − {(Id + ∇u)σ}(t,X2
t ),

ht :=
2∑
j=1

M|∇2u(t, ·)|(Xj
t ) +

2∑
j=1

l∑
i=1

Mfi(t, ·)(Xj
t ).

Recall that b(1) is Lipschitz in space uniformly in time. By (2.28),

|Ht| ≲ |X1
t −X2

t |. (2.32)

By (2.28), (2.30) and (2.31),

|Gt| ≲ |X1
t −X2

t |(1 + ht). (2.33)

Let Zt := Y 1
t − Y 2

t . Then dZt = Ht dt + Gt dBt. We consider g : Rd → R+ defined by
g(x) := |x|2p. Then ∇g(x) = 2p|x|2(p−1)x and ∇2g(x) = 2p{2(p− 1)|x|2(p−2)xx⊤ + |x|2(p−1)Id}.
Thus

|∇g(x)| ≲ |x|2p−1 and |∇2g(x)| ≲ |x|2(p−1). (2.34)

By (2.28),
1
2 |X1

t −X2
t | ≤ |Zt| ≤ 3

2 |X1
t −X2

t |. (2.35)

By Itô’s lemma,

d|Zt|2p = [(∇g(Zt))⊤Ht + 1
2 tr{∇2g(Zt)GtG⊤

t }] dt+ (∇g(Zt))⊤Gt dBt

≲ |Zt|2p(1 + |ht|2) dt+ (∇g(Zt))⊤Gt dBt (2.36)
≤ |Zt|2p dAt + dMt. (2.37)

Above, At :=
∫ t

0 (1 + |hs|2) ds and Mt :=
∫ t

0 (∇g(Zs))⊤Gs dBs. Also, (2.36) follows from (2.32),
(2.33), (2.34) and (2.35). Then

|X1
t −X2

t |2p ≲ |X1
0 −X2

0 |2p +
∫ t

0
|X1

s −X2
s |2p dAs +Mt.

Let ηt := sup{|X1
s −X2

s |p : s ∈ [0, t]} for t ∈ T. By (2.37) and stochastic Gronwall’s lemma
(see e.g. [Xia+20, Lemma 3.7]), there exists a constant c1 > 0 (depending on p) such that

E[ηT |F0] ≲
{
E
[

exp
(
c1

∫ T

0
(1 + |ht|2) dt

)∣∣∣∣F0

]}c1

|X1
0 −X2

0 |p

:= γc1 |X1
0 −X2

0 |p.
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We have

γ ≲ E
[

exp
(
c1

∫ T

0
|ht|2 dt

)∣∣∣∣F0

]

≲ E
[

exp
(
c1

∫ T

0

{ 2∑
j=1

{M|∇2u(t, ·)|}2(Xj
t ) +

2∑
j=1

l∑
i=1

{Mfi(t, ·)}2(Xj
t )
}

dt
)∣∣∣∣F0

]

≲
2∑
j=1

E
[

exp
(
c1

∫ T

0
{M|∇2u(t, ·)|}2(Xj

t ) dt
)∣∣∣∣F0

]

+
2∑
j=1

l∑
i=1

E
[

exp
(
c1

∫ T

0
{Mfi(t, ·)}2(Xj

t ) dt
)∣∣∣∣F0

]
by AM–GM inequality

=:
2∑
j=1

Ij +
2∑
j=1

l∑
i=1

Ki,j .

Recall that (pi, qi) ∈ K and thus (pi
2 ,

qi
2 ) ∈ K̄ for i ∈ {1, . . . , l}. By Proposition 2.17(1), there

exists a constant c2 > 0 (depending on Θ3) such that

Ij ≤ exp(c2(1 +
∥∥{M|∇2u(t, ·)|}2∥∥c2

L̃
p0/2
q0/2

))

= exp(c2(1 +
∥∥M|∇2u(t, ·)|

∥∥2c2
L̃

p0
q0

))

≲ exp(c2(1 + ∥∇2u(t, ·)∥2c2
L̃

p0
q0

)) by [Xia+20, Lemma 2.1(ii)].

By Proposition 2.17(1), there exists a constant c3 > 0 (depending on Θ3) such that

Ki,j ≤ exp(c3(1 +
∥∥{Mfi(t, ·)}2∥∥c3

L̃
pi/2
qi/2

))

= exp(c3(1 +
∥∥Mfi(t, ·)

∥∥2c3
L̃

pi
qi

))

≲ exp(c3(1 + ∥fi(t, ·)∥2c3
L̃

pi
qi

)) by [Xia+20, Lemma 2.1(ii)].

Then E[ηT ] ≲ E[|X1
0 −X2

0 |p]. This completes the proof.

We recall Duhamel presentation and Lp estimate of marginal density:

Theorem 2.19. [Wan23c, Lemma 4.1] Let Assumption 2.15 hold. Let ν admit a density ℓν and
ℓt be the density of Xt in (2.10).

1. For p ∈ (1,∞], there exists a constant c > 0 (depending on Θ3, p) such that for t ∈ (0, T ]
and 1 ≤ k ≤ k̄ ≤ ∞:

∥ℓt∥L̃(pk̄∗)∗ ≤ ct
− d(k̄−k)

2kk̄p ∥ℓν∥
1
p

L̃k .

2. Let v : T×Rd → Rd be another drift such that (v, σ) satisfies Assumption 2.12. We assume
there exists 1 ≤ g ∈ L̃p̄q̄ with (p̄, q̄) ∈ K̄ such that |bt(x) − vt(x)| ≤ g(t, x) for t ∈ T and
x ∈ Rd. It holds for t ∈ T and x ∈ Rd:

ℓt(x) =
∫
Rd
pv,σ0,t (y, x)ℓν(y) dy

+
∫ t

0

∫
Rd
ℓs(y)⟨bs(y) − vs(y),∇yp

v,σ
s,t (y, x)⟩ dy ds.
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3. There exists a constant c > 0 (depending on Θ3) such that for k ∈ [p∗
0,∞]:

sup
t∈T

∥ℓt∥L̃k ≤ c∥ℓν∥L̃k .

The existence of (ℓt) is guaranteed by Theorem 4.5(1). We remind that p0 is a parameter in
Θ3. Recall that r∗ is the Hölder conjugate of r ∈ [1,∞].

Proof. We write M1 ≲ M2 if there exists a constant c > 0 (depending on Θ3, p) such that
M1 ≤ cM2. By Assumption 2.15(4), (b(1), σ) satisfies Assumption 2.12. By Theorem 2.13(1),
there exist a constant κ > 0 (depending on Θ3) and a family (ψs,t)0≤s<t≤T of C∞-diffeomorphisms
on Rd such that for i ∈ {0, 1}, 0 ≤ s < t ≤ T and x, y ∈ Rd:

|∇i
xp
b(1),σ
s,t (x, y)| ≲ (t− s)− i

2 pκt−s(ψs,t(x) − y). (2.38)

1. It suffices to consider p ∈ (1,∞). Then p∗ ∈ (1,∞). Let RT and (X̄t, t ∈ T) be as in the
proof of Theorem 4.5. Let Kr := E[|RT |r] for r ∈ R. As in the proof of [FF13, Proposition
2.4], we have Kr < ∞. Notice that Kr depends on Θ3, r. Let z ∈ Rd and f ∈ L0

+(Rd). We
have∫
Rd

{ℓt1B(z,1)f}(x) dx = Ē[(1B(z,1)f)(X̄t)] by (4.7)

= E[R(1B(z,1)f)(X̄t)] by Girsanov’s theorem

≤ |Kp∗ |
1

p∗ (E[{1B(z,1)|f |p}(X̄t)])
1
p by Hölder’s inequality

≲ (E[{1B(z,1)|f |p}(X̄t)])
1
p

=
(∫

Rd

∫
Rd
pb

(1),σ
0,t (x, y){1B(z,1)|f |p}(y)ℓν(x) dx dy

) 1
p

by (4.6)

≲
(∫

Rd

∫
Rd
pκt (ψ0,t(x) − y){1B(z,1)|f |p}(y)ℓν(x) dx dy

) 1
p

by (2.38)

= ∥ℓνP̂ κ0,t{1B(z,1)|f |p}∥
1
p

L1 .

Let 1 ≤ k ≤ k̄ ≤ ∞. Applying Lemma 2.14(2) with (p, p̄) = (k̄∗, k∗), we have

∥ℓνP̂ κ0,t{1B(z,1)|f |p}∥L1 ≲ t−
d(k̄−k)

2kk̄ ∥ℓν∥L̃k∥|f |p∥L̃k̄∗ .

Then ∫
Rd

{ℓt1B(z,1)f}(x) dx ≲ t
− d(k̄−k)

2kk̄p ∥ℓν∥
1
p

L̃k∥f∥L̃pk̄∗ .

The claim then follows from duality.

2. Notice that (pv,σs,t )0≤s<t≤T is well-defined. Let f ∈ C∞
c (Rd). Applying Itô’s lemma on

[0, t] × Rd → R, (s, x) 7→ (P v,σs,t f)(x), we have

d{(P v,σs,t f)(Xs)} = {(∂s + Lb,σs )(P v,σs,t f)}(Xs) ds+ dMs

= {(∂s + Lv,σs ) + (Lb,σs − Lv,σs )}(P v,σs,t f)(Xs) ds+ dMs

= {(Lb,σs − Lv,σs )(P v,σs,t f)}(Xs) ds+ dMs. (2.39)



40 Chapter 2. Preliminary

Above, P v,σs,t f is defined by (2.12); M0 = 0 and dMs = {∇(P v,σs,t f)(Xs)}⊤σ(s,Xs) dBs for
s ∈ [0, t]; and (2.39) is due to (2.13). Then

f(Xt) = (P v,σ0,t f)(X0) +
∫ t

0
⟨bs(Xs) − vs(Xs),∇(P v,σs,t f)(Xs)⟩ ds

+
∫ t

0
{∇(P v,σs,t f)(Xs)}⊤σ(s,Xs) dBs.

(2.40)

Clearly, f and thus P v,σ0,t f are bounded. Let’s prove that ∥∇(P v,σs,t f)∥∞ < ∞. It suffices to
verify that P v,σs,t f is Lipschitz. We consider the SDE

dY x
s,t = v(t, Y x

s,t) dt+ σ(t, Y x
s,t) dBs, t ∈ [s, T ], Y x

s,s = x.

By Lemma 2.18, there exists a constant c1 > 0 such that

|P v,σs,t f(x) − P v,σs,t f(y)| = |E[f(Y x
s,t)] − E[f(Y y

s,t)]|
≤ ∥∇f∥∞E[|Y x

s,t − Y y
s,t|]

≤ c1∥∇f∥∞|x− y|.

We have

E
[ ∫ t

0
|bs(Xs) − vs(Xs)| × |∇(P v,σs,t f)(Xs)| ds

]
≤ ∥∇(P v,σs,t f)∥∞E

[ ∫ t

0
g(t,Xs) ds

]
≲ ∥∇(P v,σs,t f)∥∞∥g∥L̃p̄

q̄(t) by Proposition 2.17(2).

So each term in (2.40) is P-integrable. Then∫
Rd
ℓt(x)f(x) dx =

∫
Rd
ℓν(x)(P v,σ0,t f)(x) dx

+
∫ t

0

∫
Rd
ℓs(x)⟨bs(x) − vs(x),∇(P v,σs,t f)(x)⟩ dx ds.

(2.41)

By Theorem 2.13(1) and Leibniz integral rule,

∇(P v,σs,t f)(x) = ∇x

∫
Rd
pv,σs,t (x, y)f(y) dy =

∫
Rd

∇xp
v,σ
s,t (x, y)f(y) dy.

So (2.41) is equivalent to∫
Rd
ℓt(x)f(x) dx =

∫
Rd

(∫
Rd
pv,σ0,t (y, x)ℓν(y) dy

)
f(x) dx

+
∫
Rd

(∫ t

0

∫
Rd
ℓs(y)⟨bs(y) − vs(y),∇yp

v,σ
s,t (y, x)⟩ dy ds

)
f(x) dx.

The required representation then follows.

3. By Assumption 2.15(4), (b(1), σ) satisfies Assumption 2.12. By Theorem 2.19(2),

ℓt(x) =
∫
Rd
pb

(1),σ
0,t (y, x)ℓν(y) dy +

∫ t

0

∫
Rd
ℓs(y)⟨b(0)

s (y),∇yp
b(1),σ
s,t (y, x)⟩ dy ds. (2.42)
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By (2.38) and (2.42),

ℓt(x) ≲
∫
Rd
pκt (ψ0,t(y) − x)ℓν(y) dy

+
∫ t

0
(t− s)− 1

2

∫
Rd
ℓs(y)f0(s, y)pκt−s(ψs,t(y) − x) dy ds

= P̃ κ0,tℓν(x) +
∫ t

0
(t− s)− 1

2 P̃ κs,t{ℓsf0(s, ·)}(x) ds by (2.15).

Then it holds for l ∈ [1,∞] that

∥ℓt∥L̃l ≲ ∥P̃ κ0,tℓν∥L̃l +
∫ t

0
∥P̃ κs,t{f0(s, ·)(t− s)− 1

2 ℓs}∥L̃l ds

=: ∥P̃ κ0,tℓν∥L̃l + It.

Applying Lemma 2.14(1) with (p, p̄) = (l, l), we have ∥P̃ κ0,tℓν∥L̃l ≲ ∥ℓν∥L̃l . For convenience,
we denote ℓ(s, x) := ℓs(x). We fix l ∈ [p∗

0,∞]. There exists ql ∈ [1, p0] such that 1
ql

= 1
p0

+ 1
l .

Then (p0, q0) ∈ K implies

δ := 1
2 + d(l − ql)

2lql
= 1

2 + d

2p0
<
q0 − 1
q0

< 1.

Applying Lemma 2.14(2) with (p, p̄, q) = (ql, l, 1), we have

It = ∥P̃ κ·,tf0(t− ·)− 1
2 ℓ∥L̃l

1(t) ≲ ∥f0(t− ·)−δℓ∥L̃ql
1 (t).

By Hölder’s inequality,

∥f0(t− ·)−δℓ∥L̃ql
1 (t) =

∫ t

0
∥f0(s, ·)(t− s)−δℓs∥L̃ql ds

≤
∫ t

0
∥f0(s, ·)∥L̃p0 ∥(t− s)−δℓs∥L̃l ds

≤
(∫ t

0
∥f0(s, ·)∥q0

L̃p0
ds
) 1

q0
(∫ t

0
∥(t− s)−δℓs∥

q∗
0
L̃l ds

) 1
q∗

0

= ∥f0∥L̃p0
q0 (t)

(∫ t

0
∥(t− s)−δℓs∥

q∗
0
L̃l ds

) 1
q∗

0
.

Then

∥ℓt∥L̃l ≲ ∥ℓν∥L̃l + ∥f0∥L̃p0
q0

(∫ t

0
(t− s)−δq∗

0 ∥ℓs∥
q∗

0
L̃l ds

) 1
q∗

0
.

Thus
∥ℓt∥

q∗
0
L̃l ≲ ∥ℓν∥

q∗
0
L̃l +

∫ t

0
(t− s)−δq∗

0 ∥ℓs∥
q∗

0
L̃l ds. (2.43)

Notice that (p0, q0) ∈ K implies δq∗
0 ∈ (0, 1). WLOG, we assume ℓν ∈ L̃k(Rd).

a) We consider the case k = ∞. Let l ∈ [p∗
0,∞). We apply Theorem 2.19(1) with

k = k̄ = ∞ and p = l∗ ∈ (1, p0]. Then there exists a constant c1,l > 0 (depending on
Θ3, l) such that

sup
t∈T

∥ℓt∥L̃l ≤ c1,l∥ℓν∥
1
l∗

L̃∞ < ∞. (2.44)
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By (2.43), (2.44) and Gronwall’s lemma,

sup
t∈T

∥ℓt∥L̃l ≲ ∥ℓν∥L̃l . (2.45)

Taking the limit l ↑ ∞ in (2.45), we have sup{∥ℓt∥L̃∞ : t ∈ T} ≲ ∥ℓν∥L̃∞ .

b) We consider the case k ∈ [p∗
0,∞). For k̄ ∈ (k,∞), let pk,k̄ := k(k̄−1)

k̄(k−1) > 1 and thus

k = (pk,k̄k̄
∗)∗ and lim

k̄↓k

d(k̄ − k)
2k̄kpk,k̄

= 0.

Recall that δq∗
0 ∈ (0, 1), so there exists k̄ ∈ (k,∞) such that

εk,k̄ := d(k̄ − k)
2k̄kpk,k̄

∈ (0, 1 − δq∗
0).

By Theorem 2.19(1), there exists a constant c2,k > 0 (depending on Θ3, k) such that

∥ℓt∥L̃k ≤ c2,kt
−εk,k̄∥ℓν∥

1/pk,k̄

L̃k . (2.46)

By (2.43) with l = k and (2.46),

sup
t∈T

∥ℓt∥
q∗

0
L̃k ≲ ∥ℓν∥

q∗
0
L̃k + c2,k∥ℓν∥

q∗
0/pk,k̄

L̃k sup
t∈T

∫ t

0
(t− s)−δq∗

0s−εk,k̄ ds.

Because δq∗
0 + εk,k̄ < 1,

sup
t∈T

∫ t

0
(t− s)−δq∗

0s−εk,k̄ ds < ∞.

Then
sup
t∈T

∥ℓt∥
q∗

0
L̃k < ∞. (2.47)

By (2.43) with l = k, (2.47) and Gronwall’s lemma, sup{∥ℓt∥L̃k : t ∈ T} ≲ ∥ℓν∥L̃k .
This completes the proof.

2.2.3 Auxiliary lemmas

We include here results that will be used later on. Consider the Fokker-Planck equation

∂tµt = −∂xi{bi(t, x)µt} + 1
2∂xi∂xj {ai,j(t, x)µt}. (2.48)

Lemma 2.20 (Superposition principle). Assume that a weakly continuous map T → P(Rd), t 7→
µt satisfies

∫
T
∫
Rd{|b(t, x)| + |a(t, x)|} dµt(x) dt < ∞ and is a distributional solution to (2.48).

Then (2.10) has a weak solution whose distribution of Xt is µt for t ∈ T.

The above form of Lemma 2.20 is taken from [BR20, Section 2]. We refer to [Fig08; Tre16;
RXZ20; BRS21] for studies of superposition principle. We denote by ∗

⇀ the weak-∗ convergence
on P(Rd). This means µn

∗
⇀ µ i.f.f

∫
Rd f dµn →

∫
Rd f dµ for f ∈ Cc(Rd).

Lemma 2.21. Let µn, µ ∈ P(Rd) for n ∈ N. If µn
∗
⇀ µ then µn ⇀ µ.
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Proof. Let f ∈ Cb(Rd) and g ∈ Cc(Rd) such that 0 ≤ g ≤ 1. Then gf ∈ Cc(Rd) and f =
(1 − g)f + gf . We have∣∣∣∣∫

Rd
f d(µn − µ)

∣∣∣∣ ≤ ∥f∥∞

∫
Rd

(1 − g) d(µn + µ) +
∣∣∣∣∫

Rd
gf d(µn − µ)

∣∣∣∣ .
It follows from µn

∗
⇀ µ that limn

∫
Rd gf d(µn − µ) = 0. Then

lim sup
n

∣∣∣∣∫
Rd
f d(µn − µ)

∣∣∣∣ ≤ ∥f∥∞ lim sup
n

∫
Rd

(1 − g) d(µn + µ).

Notice that

lim sup
n

∫
Rd

(1 − g) dµn = 1 − lim inf
n

∫
Rd
g dµn

= 1 −
∫
Rd
g dµ because µn

∗
⇀ µ

=
∫
Rd

(1 − g) dµ.

Thus
lim sup

n

∣∣∣∣∫
Rd
f d(µn − µ)

∣∣∣∣ ≤ 2∥f∥∞

∫
Rd

(1 − g) dµ. (2.49)

Because µ is a probability measure,

sup
{∫

Rd
g dµ : g ∈ Cc(Rd) and 0 ≤ g ≤ 1

}
= 1. (2.50)

The claim then follows from (2.49) and (2.50).

See e.g. [HLS22] for a generalization of Lemma 2.21. Finally, we recall freezing lemma.

Lemma 2.22. Let D,G be independent sub-σ-algebras of A. Let (E, E) be a measurable space
and Y : Ω → E measurable w.r.t D. Assume that φ : E × Ω → Rd is measurable w.r.t E ⊗ G and
that φ(Y, ·) is integrable.

1. Let N := {x ∈ E : φ(x, ·) not integrable}. Let µ be the distribution of Y on (E, E). Then
N ∈ E and µ(N) = 0.

2. We define Φ : E → Rd by Φ(y) := 0 for y ∈ N and Φ(y) := E[φ(y, ·)] for y ∈ E \N . Then
Φ is measurable and E[φ(Y, ·)|D] = Φ(Y ).

Proof. WLOG, we assume d = 1 and φ is non-negative. The claims that N ∈ E and that Φ is
measurable follow from Tonelli theorem, measurability and non-negativity of φ.

1. Let ν be the joint distribution of (Y, id) : (Ω,A) → (E×Ω, E ⊗G). Let PG be the restriction
of P to (Ω,G). We have ν = µ⊗ PG because it holds for A ∈ E and B ∈ G that

ν(A×B) = P[(Y, id) ∈ A×B]
= P[{Y ∈ A} ∩ {id ∈ B}]
= P[Y ∈ A] × P[id ∈ B] by independence of D,G
= µ(Y ∈ A) × PG [B].
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Then

E[|φ(Y, ·)|] =
∫
E×Ω

|φ(y, ω)| dν(y, ω) because φ is measurable w.r.t E ⊗ G

=
∫
E

(∫
Ω

|φ(y, ω)| dPG(ω)
)

dµ(y) by Tonelli theorem

=
∫
E
E[|φ(y, ·)|] dµ(y). (2.51)

By the integrability of φ(Y, ·), it holds for µ-a.e. y ∈ E that E[|φ(y, ·)|] < ∞. Thus
µ(N) = 0.

2. It remains to prove E[φ(Y, ·)|D] = Φ(Y ). First, we verify that Φ(Y ) is integrable. Indeed,

E[|Φ(Y )|] =
∫
E

|Φ(y)| dµ(y)

=
∫
E

|E[φ(y, ·)]| dµ(y)

≤
∫
E
E[|φ(y, ·)|] dµ(y)

= E[|φ(Y, ·)|] by (2.51)
< ∞.

Let D ∈ D. We need to prove E[φ(Y, ·)1D] = E[Φ(Y )1D]. It suffices to consider the
case P[D] > 0. We define a probability measure P̃ on (Ω,A) by P̃[A] := P[A∩D]

P[D] for
A ∈ A. Let Ẽ be the expectation w.r.t (Ω,A, P̃). By approximation with simple functions,
E[Z1D] = P[D]Ẽ[Z] for Z ∈ L1(Ω,A, P̃). So it suffices to prove Ẽ[φ(Y, ·)] = Ẽ[Φ(Y )].
Let µ̃ be the distribution of Y on (E, E) under P̃. Let ν̃ be the joint distribution of
(Y, id) : (Ω,A) → (E × Ω, E ⊗ G) under P̃. Let P̃G be the restriction of P̃ to (Ω,G). Let’s
prove that ν̃ = µ̃⊗ P̃G . Indeed, it holds for A ∈ E and B ∈ G that

ν̃(A×B) = P̃[(Y, id) ∈ A×B]
= P̃[{Y ∈ A} ∩ {id ∈ B}]

= P[({Y ∈ A} ∩D) ∩ {id ∈ B}]
P[D]

= P[{Y ∈ A} ∩D] × P[{id ∈ B} ∩D]
(P[D])2 by independence of D,G under P

= P̃[Y ∈ A] × P̃[id ∈ B]
= µ̃(Y ∈ A) × P̃G [B].
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Then

Ẽ[φ(Y, ·)] =
∫
E×Ω

φ(y, ω) dν̃(y, ω) because φ is measurable w.r.t E ⊗ G

=
∫
E

(∫
Ω
φ(y, ω) dP̃G(ω)

)
dµ̃(y) by Fubini theorem

=
∫
E
Ẽ[φ(y, ·)] dµ̃(y),

Ẽ[φ(y, ·)] = E[φ(y, ·)1D]
P[D]

= E[φ(y, ·)] × E[1D]
P[D] by independence of D and G under P

= E[φ(y, ·)] = Φ(y).

Thus Ẽ[φ(Y, ·)] =
∫
E Φ(y) dµ̃(y) = Ẽ[Φ(Y )]. This completes the proof.





Chapter 3

A class of Langevin dynamics

3.1 Introduction

Let V : Rd → R be differentiable and π ∈ P(Rd) such that dπ = e−V dx. This means e−V is
the density of π w.r.t Lebesgue measure on Rd. We define φ : R+ → R+ by φ(0) := 0 and
φ(s) := s log s for s > 0. For µ, ν ∈ P(Rd), their (non-negative) relative entropy is defined as

H(µ|ν) :=
{∫

Rd φ ◦ ϱdν if ϱ = dµ
dν ,

∞ otherwise.

For µ ∈ P2(Rd), its internal energy is defined as

H(µ) :=
{∫

Rd φ ◦ ϱdx if ϱ = dµ
dx ,

∞ otherwise.

If V has at most quadratic growth at infinity, then [ABS21, Proposition 15.6] implies

ϕ(µ) := H(µ|π) =
∫
Rd
V dµ+ H(µ) for µ ∈ P2(Rd).

Consider
α := inf{ϕ(µ) : µ ∈ P2(Rd)}. (3.1)

We have explained in Section 1.1 that (3.1) gives rise to the PDE

∂tµt = div(µt∇V ) + ∆µt. (3.2)

For well-posedness of (3.2), we assume the following set of assumptions:

Assumption 3.1. 1. V : Rd → R is differentiable with
∫
Rd e−V dx = 1.

2. There exists a constant C > 0 such that V (x) ≥ −C and |V (x)| + |∇V (x)|2 ≤ C(1 + |x|2)
for x ∈ Rd.

3. There exists a continuous non-decreasing and concave function ψ : R+ → R+ such that

a) ψ(0) = 0,
∫ 1

0
ds
ψ(s) = ∞ and ψ(s) ≥ s for s ≥ 0.

b) |∇V (x) − ∇V (y)|2 ≤ 4C2ψ(|x− y|2) for x, y ∈ Rd.

For µ, ν ∈ P(Rd), their relative Fisher information is defined by

I(µ|ν) :=
{

4
∫
Rd |∇(√ϱ)|2 dν if ϱ = dµ

dν with √
ϱ ∈ W 1,2(Rd),

∞ otherwise.

47
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For rate of convergence, we assume a log-Sobolev inequality.

Assumption 3.2. There exists a constant κ > 0 such that

H(µ|π) ≤ I(µ|π)
2κ for µ ∈ P(Rd).

We recall from [Chi22] two conditions under which π satisfies Assumption 3.2. The first by
[BÉ85] is when ∇2V ⪰ κId. The second by [HS87] is when π = e−ψν for some ψ ∈ L∞(Rd) and
some ν ∈ P(Rd) satisfying Assumption 3.2.

Our result is the following

Theorem 3.3. Let Assumption 3.1 hold and µ0 ∈ D(ϕ). There exists a unique distributional
solution (µt) to (3.2) such that µt → µ0 in P2(Rd) as t ↓ 0. If, in addition, Assumption 3.2 holds,
then ϕ(µt) − α ≤ e−2κt{ϕ(µ0) − α} for t ≥ 0.

The rest of this chapter is dedicated to the proof of Theorem 3.3.

3.2 Convexity along generalized geodesics

We define ω : R+ → R+ by ω(s) :=
√
sψ(s). It follows from lims↓0

ω(s)√
s

= 0 that ω(s) = O(
√
s) as

s ↓ 0. We have ψ is a modulus of convexity, so is ω. Let’s prove that ω is concave. For x, y ∈ R+
and t ∈ [0, 1],

ω((1 − t)x+ ty) ≥ (1 − t)ω(x) + tω(y)

⇐⇒
√

((1 − t)x+ ty)ψ((1 − t)x+ ty) ≥ (1 − t)
√
xψ(x) + t

√
yψ(y)

⇐⇒ ((1 − t)x+ ty)ψ((1 − t)x+ ty) ≥ (1 − t)2xψ(x) + t2yψ(y)

+ 2t(1 − t)
√
xyψ(x)ψ(y).

Above, the last inequality is true due to the concavity of ψ and AM-GM inequality. Let’s
prove that ω is an Osgood modulus of continuity of itself. Let x ≥ y ≥ 0. It suffices to prove
ω(x) −ω(y) ≤ ω(x− y) or equivalently ω(x) ≤ ω(x− y) +ω(y). This is true because ω is concave
with ω(0) = 0.

We define V : P2(Rd) → R by V(µ) :=
∫
Rd V dµ. By Assumption 3.1(2), V is well-defined.

By Lemma 2.4, V is ω-convex along any interpolating curve with constant λω = −4C < 0. By
[AGS08, Proposition 9.3.9], H is convex along generalized geodesics. Then ϕ = V+H is ω-convex
along generalized geodesics.

3.3 Existence of a solution

It is clear that ϕ is proper. By [AGS08, Lemma 9.4.3], ϕ is lower semi-continuous. The proximal
map Jtϕ at µ ∈ P2(Rd) is non-empty for all t > 0. This is due to the fact that ϕ is non-negative
and lower semi-continuous. By Lemma 2.8, ϕ is regular. By Lemma 2.10(3), there exists a unique
gradient flow µ ∈ AC2

loc((0,∞);P2(Rd)) for ϕ such that µt → µ0 as t ↓ 0. We fix g ∈ C∞
c (Rd).

By Definition 2.5(3), there exists a time-dependent Borel vector field v with the property: it
holds for a.e. t > 0 that vt ∈ −∂ϕ(µt) and

d
dt

∫
Rd
g dµt =

∫
Rd

⟨∇g, vt⟩ dµt. (3.3)

By Lemma 2.9, it holds for a.e. t > 0 that∫
Rd

⟨vt, id −tttνµt
⟩ dµt + λω

2 ω(W 2
2 (ν, µt)) ≤ ϕ(ν) − ϕ(µt) for ν ∈ D(ϕ). (3.4)
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We fix t > 0 such that (3.3) and (3.4) hold. Let fs := id +s∇g for s ∈ R. Then fs =
∇(1

2 | · |2 + sg). There exists δ ∈ (0, 1) such that 1
2 | · |2 + sg is convex for |s| ≤ δ. By Brenier

theorem (see e.g. [Vil03, Theorem 2.12]), fs is the unique optimal map that transports µt to
νs := (fs)♯µt for |s| ≤ δ. Hence

W2(νs, µt) =
{ |s|

δ W2(µt, νδ) if s ∈ [0, δ],
|s|
δ W2(µt, ν−δ) if s ∈ [−δ, 0].

Recall that ω(s) = O(
√
s) as s ↓ 0, so

lim
s→0

ω(W 2
2 (νs, µt))
s

= 0. (3.5)

By (3.4),

−
∫
Rd

⟨∇g, vt⟩ dµt + λω
2
ω(W 2

2 (νs, µt))
s

≤ ϕ(νs) − ϕ(µt)
s

for s ∈ [0, δ],

−
∫
Rd

⟨∇g, vt⟩ dµt + λω
2
ω(W 2

2 (νs, µt))
s

≥ ϕ(νs) − ϕ(µt)
s

for s ∈ [−δ, 0].
(3.6)

By Taylor formula,

V ◦ fs(x) − V (x)

= s⟨∇V (x),∇g(x)⟩ + s

∫ 1

0
⟨∇V (x+ rs∇g(x)) − ∇V (x),∇g(x)⟩ dr.

We have

V(νs) − V(µt)
s

=
∫
Rd

V ◦ fs − V

s
dµt by change of variables formula

=
∫
Rd

⟨∇g,∇V ⟩ dµt +
∫
Rd

∫ 1

0
⟨∇V (x+ rs∇g(x)) − ∇V (x),∇g(x)⟩ dr dµt(x).

We have ∣∣∣∣∫
Rd

∫ 1

0
⟨∇V (x+ rs∇g(x)) − ∇V (x),∇g(x)⟩ dr dµt(x)

∣∣∣∣
≤
∫
Rd

∫ 1

0
|∇V (x+ rs∇g(x)) − ∇V (x)| × |∇g(x)| dr dµt(x)

≤ 2C∥∇g∥∞

√
ψ(s∥∇g∥2

∞) by Assumption 3.1(3).

We have ψ is continuous with ψ(0) = 0, so

lim
s→0

V(νs) − V(µt)
s

=
∫
Rd

⟨∇g,∇V ⟩ dµt.

By [Mag23, Theorem 13.9(iii)],

lim
s→0

H(νs) − H(µt)
s

= −
∫
Rd

∆g dµt.

Then
lim
s→0

ϕ(νs) − ϕ(µt)
s

=
∫
Rd

{⟨∇g,∇V ⟩ − ∆g} dµt. (3.7)



50 Chapter 3. A class of Langevin dynamics

By (3.5), (3.6) and (3.7),∫
Rd

⟨∇g, vt⟩ dµt =
∫
Rd

{∆g − ⟨∇g,∇V ⟩} dµt. (3.8)

By (3.3) and (3.8),
d
dt

∫
Rd
g dµt =

∫
Rd

{∆g − ⟨∇g,∇V ⟩} dµt.

Then (µt) is indeed a distributional solution to (3.2).

3.4 Uniqueness of a solution

We consider the SDE
dXt = −∇V (Xt) dt+

√
2 dBt. (3.9)

Because ∇V is continuous, it is locally integrable. By [KR05, Theorem 2.1], (3.9) has weak
uniqueness. Another way to obtain this is by noticing supx∈Rd

|∇V (x)|
1+|x| < ∞ and applying [BL08,

Theorem 2]. Let (νt) be another distributional solution to (3.2) such that (νt) is locally bounded
and νt → µ0 as t ↓ 0. We have

1. µt, νt ∈ P(Rd) for t ≥ 0.

2. x 7→ ∇V (x) is measurable and∫ T

0

∫
Rd

|∇V | d{µt + νt} dt < ∞ for T ≥ 0.

3. t 7→ µt and t 7→ νt are weakly continuous.

By Lemma 2.20, (3.9) has two weak solutions (Xt, t ≥ 0) and (Yt, t ≥ 0) such that the
distribution of Xt is µt and that of Yt is νt. The weak uniqueness of (3.9) implies (µt) = (νt).

3.5 Regularity of a solution

In the rest of this chapter, “it holds a.e.” means “it holds for almost every t > 0”. From the
previous section, it holds a.e. that µt ∈ D(ϕ). Indeed, we can obtain stronger result.

Lemma 3.4. (ϕ(µt)) is locally absolutely continuous.

Proof. By [AGS08, Theorem 8.3.1], it holds a.e. that |µ′|(t) ≤ ∥vt∥L2(µt). By [AGS08, Lemma
10.1.5], it holds a.e. that |∂ϕ|(µt) ≤ ∥vt∥L2(µt). By definition of a gradient flow, t 7→ ∥vt∥L2(µt)
belongs to L2

loc(0,∞). Then

t 7→ |∂ϕ|(µt)|µ′|(t) belongs to L1
loc(0,∞). (3.10)

We fix 0 < a < b < ∞. Let P0 := {µt : t ∈ [a, b]}. Then (P0,W2) is compact. We need
to prove [a, b] ∋ t 7→ ϕ(µt) is absolutely continuous. For t ∈ [a, b], the global slope l0ϕ(µt) of
ϕ : P0 → (−∞,∞] is defined as

l0ϕ(µt) := sup
ν∈P0\{µt}

(ϕ(µt) − ϕ(ν))+

W2(µt, ν) . (3.11)

By [Cra17, Proposition 2.7],

|∂ϕ|(µt) = sup
ν ̸=µt

(
ϕ(µt) − ϕ(ν)
W2(µt, ν) + λωω(W 2

2 (µt, ν))
W2(µt, ν)

)+

. (3.12)
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By [AGS08, Theorem 1.2.5], l0ϕ is a strong upper gradient for ϕ : P0 → (−∞,∞]. By (2.7), it
suffices to prove that [a, b] ∋ t 7→ l0ϕ(µt)|µ′|(t) is integrable. Let R := diam(P0) < ∞. The map
(0, R] ∋ s 7→ ω(s2)

s is continuous and lims↓0
ω(s2)
s = 0. So S := sups∈(0,R]

ω(s2)
s < ∞. By (3.11),

(3.12) and the fact that λω < 0, it holds for t ∈ [a, b] that

l0ϕ(µt) ≤ |∂ϕ|(µt) − λωS. (3.13)

The claim then follows from (3.10) and (3.13).

As a consequence of Lemma 3.4, it holds a.e. that µt admits a density, which will be denoted
by ρt. We will verify that φ satisfies doubling condition (10.4.23) in [AGS08, Lemma 10.4.4].

Lemma 3.5. There exists a constant c > 0 such that φ(s+ r) ≤ c{1 + φ(s) + φ(r)} for s, r ≥ 0.

Proof. The minimizer of φ is 1
e and its minimum value is −1

e ≤ −2
5 . Then 1 + φ(s) + φ(r) ≥ 1

5
for s, r ∈ R+. It holds for 2 ≤ s ≤ r that φ(s+ r) = (s+ r) ln(s+ r) ≤ 2r ln(2r) ≤ 2r ln(r2) =
4r ln r ≤ 4{1 + φ(s) + φ(r)}. Let c1 := 5 max{φ(s+ r) : 0 ≤ s ≤ r ≤ 2}. The claim then follows
by picking c := 4 ∨ c1.

Next we obtain differentiability of ρt and explicit form of ∂oϕ(µt).

Lemma 3.6. We fix t > 0 such that µt ∈ D(|∂ϕ|). Then ρt ∈ W 1,1(Rd) and ρt∇V + ∇ρt = ρtw
a.e. on Rd for some vector field w ∈ L2(µt). In this case, w = ∂oϕ(µt).

Proof. 1. We fix g ∈ C∞
c (Rd;Rd). Let fs := id +sg and νs := (fs)♯µt for s ∈ R. By (3.7),

lim
s→0

ϕ(νs) − ϕ(µt)
s

=
∫
Rd

{⟨g,∇V ⟩ − div g} dµt.

It holds for s ≥ 0 that W2(µt, νs) ≤ s∥g∥L2(µt). We have

lim
s↓0

ϕ(νs) − ϕ(µt)
s

≤ lim sup
s↓0

(ϕ(νs) − ϕ(µt))+

s

≤ ∥g∥L2(µt) lim sup
s↓0

(ϕ(νs) − ϕ(µt))+

W2(µt, νs)
≤ ∥g∥L2(µt)|∂ϕ|(µt) by definition of |∂ϕ|(µt).

Then ∫
Rd

{⟨g,∇V ⟩ − div g} dµt ≤ ∥g∥L2(µt)|∂ϕ|(µt). (3.14)

By Cauchy–Schwarz inequality,

−
∫
Rd

div g dµt ≤ {|∂ϕ|(µt) + ∥∇V ∥L2(µt)}∥g∥L2(µt). (3.15)

By Assumption 3.1(2), ∥∇V ∥L2(µt) < ∞. Then ρt is a function of bounded variation. Thus
its distributional derivative Dρt = (D1ρt, . . . , Ddρt) is a finite Rd-valued Radon measure
on Rd. Then (3.15) is equivalent to

d∑
i=1

∫
Rd
gi d{Diρt} ≤ {|∂ϕ|(µt) + ∥∇V ∥L2(µt)}∥g∥L2(µt).
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By Riesz representation theorem, there exists a unique vector field z ∈ L2(µt) such that

d∑
i=1

∫
Rd
gi d{Diρt} =

∫
Rd

⟨g, z⟩ dµt.

Then ρt ∈ W 1,1(Rd) with its weak gradient ∇ρt = ρtz. Thus (3.14) is equivalent to∫
Rd

⟨g, ρt∇V + ∇ρt⟩ dx ≤ ∥g∥L2(µt)|∂ϕ|(µt).

By Riesz representation theorem, there exits a unique vector field w ∈ L2(µt) such that
∥w∥L2(µt) ≤ |∂ϕ|(µt) and ∫

Rd
⟨g, ρt∇V + ∇ρt⟩ dx =

∫
Rd

⟨g, w⟩ dµt.

In particular,
ρt∇V + ∇ρt = ρtw a.e. on Rd.

2. To prove w = ∂oϕ(µt), it remains to check w ∈ ∂ϕ(µt). There exist vector fields w1, w2 ∈
L2(µt) such that ρt∇V = ρtw1 and ∇ρt = ρtw2. It holds for µt-a.e. that w = w1 + w2.
It suffices to check w1 ∈ ∂V(µt) and w2 ∈ ∂H(µt). We fix ν ∈ D(ϕ). Let ttt := tttνµt

be the
unique optimal map that transports µt to ν. By Lemma 2.9, it suffices to prove∫

Rd
⟨w1, ttt − id⟩ dµt + λω

2 ω(W 2
2 (µt, ν)) ≤ V(ν) − V(µt), (3.16)∫

Rd
⟨w2, ttt − id⟩ dµt ≤ H(ν) − H(µt). (3.17)

Let γ be the unique constant-speed geodesic from µt to ν. Then γs = ((1 − s) id +sttt)♯µt
for s ∈ [0, 1].

a) Next we will verify (3.16). Recall that V is ω-convex along any interpolating curve, so
it holds for s ∈ [0, 1] that

V(γs) ≤ (1 − s)V(γ0) + sV(γ1)

− λω
2 {(1 − s)ω(s2W 2

2 (γ0, γ1)) + sω((1 − s)2W 2
2 (γ0, γ1))}.

Then

V(γ1) − V(γ0) ≥ V(γs) − V(γ0)
s

+ λω
2 {(1 − s)ω(s2W 2

2 (γ0, γ1))
s

+ ω((1 − s)2W 2
2 (γ0, γ1))}.

Thus
V(γ1) − V(γ0) ≥ lim

s↓0

V(γs) − V(γ0)
s

+ λω
2 ω(W 2

2 (γ0, γ1)). (3.18)

By Leibniz integral rule,

lim
s↓0

V(γs) − V(γ0)
s

=
∫
Rd

⟨∇V, ttt − id⟩ dγ0. (3.19)

Clearly, (3.18) and (3.19) imply (3.16).
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b) Next we will verify (3.17). By Lemma 3.5 and as in [AGS08, Theorem 10.4.6], there
exists a sequence (νn) ⊂ D(ϕ) of measures with compact support such that νn → ν
and H(νn) → H(ν). By [Vil09, Corollary 5.23], we can assume WLOG that tttνn

µt
→ ttt

in probability measure µt as n → ∞. By Vitali convergence theorem (see e.g. [Bre11,
Exercise 4.14]), ∫

Rd
⟨w2, tttνn

µt
− id⟩ dµt

n→∞−−−→
∫
Rd

⟨w2, ttt − id⟩ dµt.

By [AGS08, Lemma 5.4.1], we indeed have stronger convergence∫
Rd

|tttνn
µt

− ttt|2 dµt
n→∞−−−→ 0.

Hence it suffices to consider ν with compact support. Recall that H is convex along
generalized geodesics. Similar to (3.18), we have

H(γ1) − H(γ0) ≥ lim
s↓0

H(γs) − H(γ0)
s

. (3.20)

As in the proof of [AGS08, Proposition 9.3.9], the requirements of [AGS08, Lemma
10.4.4] are satisfied. By [AGS08, Equation (10.4.22)],

lim
s↓0

H(γs) − H(γ0)
s

= −
∫
Rd

tr(∇̃(ttt − id)) dγ0. (3.21)

Above, ∇̃(ttt − id) is the approximate differential of ttt − id in the sense of [AGS08,
Definition 5.5.1]. By [AGS08, Lemma 10.4.5] and the compactness of supp ν, there
exists an increasing sequence of Lipschitz functions gn : Rd → [0, 1] with compact
support such that (gn) converges to 1 pointwise on Rd and

−
∫
Rd

tr(∇̃(ttt − id)) dγ0 ≥ lim sup
n→∞

∫
Rd
gn⟨∇ρt, ttt − id⟩ dx.

Then

−
∫
Rd

tr(∇̃(ttt − id)) dγ0 ≥ lim sup
n→∞

∫
Rd
gn⟨ρtw2, ttt − id⟩ dx

= lim sup
n→∞

∫
Rd
gn⟨w2, ttt − id⟩ dµt

=
∫
Rd

⟨w2, ttt − id⟩ dµt. (3.22)

Clearly, (3.20), (3.21) and (3.22) imply (3.17).

3.6 Rate of convergence

By Lemma 2.10(2) and Lemma 3.4, (µt) is 2-curve of maximal slope w.r.t |∂ϕ|, and it holds a.e.
that vt = −∂oϕ(µt). A monotone function is differentiable a.e. (see e.g. [Tao11, Theorem 1.6.25]).
By (2.8), it holds a.e. that µt ∈ D(|∂ϕ|). By Lemma 3.6, it holds a.e. that ρt ∈ W 1,1(Rd) and
ρt∇V + ∇ρt = −ρtvt a.e. on Rd. In particular, it holds a.e. that vt = −(∇V + ∇ρt

ρt
) µt-a.e. on
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Rd. We have dπ = e−V dx and dµt = ρt dx, so gt := dµt

dπ = eV ρt. Then

I(µt|π) =
∫

{gt>0}

|∇gt|2

gt
dπ

= ∥∇(ln gt)∥2
L2(µt)

= ∥vt∥2
L2(µt).

By chain rule [AS07, Equation (4.55)], it holds a.e. that

d
dtϕ(µt) = −∥vt∥2

L2(µt) = −I(µt|π).

By Assumption 3.2, I(µt|π) ≥ 2κH(µt|π) = 2κϕ(µt). Let (νn) be a minimizing sequence of
(3.1), i.e., ϕ(νn) ↓ α as n → ∞. Notice that ϕ ≥ 0, so it holds a.e. that

d
dt{ϕ(µt) − ϕ(νn)} ≤ −2κ{ϕ(µt) − ϕ(νn)}.

By Gronwall’s lemma, it holds for t > 0 that ϕ(µt) − ϕ(νn) ≤ e−2κt{ϕ(µ0) − ϕ(νn)}. Taking
the limit n → ∞, we have ϕ(µt) − α ≤ e−2κt{ϕ(µ0) − α} for t > 0. This completes the proof.



Chapter 4

Well-posedness of MV-SDEs with
density-dependent drift

4.1 Introduction

Let T ∈ (0,∞) and T be the interval [0, T ]. Let

b : T × Rd × R+ × Pp(Rd) → Rd,
σ : T × Rd × Pp(Rd) → Rd ⊗ Rm,

be measurable. We consider the SDE
dXt = b(t,Xt, ℓt(Xt), µt) dt+ σ(t,Xt, µt) dBt,
ν is the distribution of X0, µt is that of Xt,

and ℓt is the density of Xt.

(4.1)

We recall notions of a solution:

Definition 4.1. 1. A strong solution to (4.1) is a continuous Rd-valued process (Xt) on
(Ω,A,P) such that for t ∈ T: Xt is Ft-adapted, Xt has a distribution µt ∈ Pp(Rd), Xt

admits a density ℓt, and

Xt = X0 +
∫ t

0
b(s,Xs, ℓs(Xs), µs) ds+

∫ t

0
σ(s,Xs, µs) dBs P-a.s.,∫ t

0
E[|b(s,Xs, ℓs(Xs), µs)| + |σ(s,Xs, µs)|2] ds < ∞.

2. A weak solution to (4.1) is a continuous Rd-valued process (Xt) on some PS (Ω,A,P) on
which there exist some m-BM (Bt) and some AF (Ft) such that the conditions in (1) are
satisfied.

3. SDE (4.1) has strong uniqueness if, whenever the PS, the AF and the m-BM are fixed,
two strong solutions (Xt) and (Yt) such that X0 = Y0 coincide P-a.s. on the path space
C(T;Rd). SDE (4.1) has weak uniqueness if two weak solutions with the same initial
distribution induce the same distribution on C(T;Rd).

4. SDE (4.1) is strongly well-posed if it has strong solution and strong uniqueness. SDE (4.1)
is weakly well-posed if it has weak solution and weak uniqueness. SDE (4.1) is well-posed if
it is both strongly and weakly well-posed.

55



56 Chapter 4. Well-posedness of MV-SDEs with density-dependent drift

Recall that Mp(ϱ) is the p-th moment of ϱ ∈ P(Rd). Let a := σσ⊤. We denote bt(x, r, ϱ) :=
b(t, x, r, ϱ), σt(x, ϱ) := σ(t, x, ϱ) and at(x, ϱ) := a(t, x, ϱ). Below, we introduce the main assump-
tion about initial distribution and coefficients of (4.1).

Assumption 4.2. There exist constants β ∈ (0, 1), p ∈ [1,∞), C > 0 such that for t ∈ T;x, y ∈
Rd; r, r′ ∈ R+ and ϱ, ϱ′ ∈ Pp(Rd):

1. at is invertible and σt is weakly differentiable w.r.t space variable.

2. There exists 1 ≤ f0 ∈ L̃p0
q0 with (p0, q0) ∈ K such that |bt(x, r, ϱ)| ≤ f0(t, x).

3. There exists 1 ≤ fi ∈ L̃pi
qi

with i ∈ {1, 2, . . . , l} and (pi, qi) ∈ K such that |∇σt(x)| ≤∑l
i=1 fi(t, x).

4. ν ∈ Pp(Rd) has a density ℓν ∈ L∞(Rd).

5. The following conditions hold:

∥σt∥∞ + ∥a−1
t ∥∞ ≤ C,

|bt(x, r, ϱ) − bt(x, r′, ϱ)| ≤ C{|r − r′| +Wp(ϱ, ϱ′)},
|σt(x, ϱ) − σt(y, ϱ′)| ≤ C{|x− y|β +Wp(ϱ, ϱ′)}.

We remind that the space L̃p0
q0 and the set K have been defined in Section 2.2.1 and Section 2.2.2

respectively. We gather parameters about (b, σ) in Assumption 4.2:

Θ1 := (p, d, T, β, C, l, (pi, qi, fi)li=0).

There is no continuity condition w.r.t spatial variable of b. Assumption 4.2(2) means that
marginal density and marginal distribution do not affect local integrability of the drift. If b is
bounded, then it satisfies Assumption 4.2(2).

Our results are the following:

Theorem 4.3 (Existence). Let Assumption 4.2 hold.

1. SDE (4.1) has a strong solution (Xt) whose marginal distribution is denoted by (µt) and
marginal density is denoted by (ℓt).

2. There exist constants c1 > 0 (depending on Θ1), c2 > 0 (depending on Θ1, ν), and δ ∈ (0, 1
2)

(depending on q0) such that

sup
t∈T

∥ℓt∥∞ ≤ c1∥ℓν∥∞,

Wp(µs, µt) ≤ c2|t− s|δ for s, t ∈ T.

Theorem 4.4 (Uniqueness). Let Assumption 4.2 hold. Assume in addition that p = 1, ∥b∥∞ ≤ C
and σt(x, ϱ) = σt(x).

1. For k ∈ {1, 2}, let (Xk
t , t ∈ T) be a weak solution to (4.1), νk its initial distribution and

(ℓkt , t ∈ T) its marginal density. We assume that νk satisfies Assumption 4.2(4). There
exists an increasing function Λ : R+ → R+ (depending on Θ1) such that

sup
t∈T

∫
Rd

(1 + |x|)|ℓ1t (x) − ℓ2t (x)| dx

≤ Λ(∥ℓν1∥∞ +M1(ν1))
∫
Rd

(1 + |x|)|ℓν1(x) − ℓν2(x)| dx.

2. SDE (4.1) has both weak and strong uniqueness.
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4.2 Outline of the proofs

We will summarize the main ideas behind our mollifying argument. Let (ρn) be a sequence of
mollifiers. We consider the SDE{

dXn
t = b(t,Xn

t , (ρn ∗ µnt )(Xn
t ), µnt ) dt+ σ(t,Xn

t , µ
n
t ) dBt,

ν is the distribution of Xn
0 , and µnt is that of Xn

t .
(4.2)

Above, ∗ is the convolution operator, i.e.,

(ρn ∗ ϱ)(x) :=
∫
Rd
ρn(x− y) dϱ(y) for ϱ ∈ P(Rd).

Then (4.2) is well-posed and each Xn
t admits a density ℓnt . The sequence (ℓn) is locally

Hölder continuous on (0, T ] × Rd. By Arzelà–Ascoli theorem, we can extract a subsequence
that converges to some function ℓ : T × Rd → R+ uniformly on every strip [R−1, T ] × B(0, R)
where R > 0. We then verify that ℓt := ℓ(t, ·) is indeed a density whose induced distribution
µt ∈ Pp(Rd). Also, µnt converges to µt in Wp (as n → ∞) uniformly for t ∈ [R−1, T ] where R > 0.

By Itô’s lemma, (µnt , t ∈ T) satisfies the Fokker-Planck equation

∂tℓ
n
t (x) = −∂xi{b(t, x, (ρn ∗ ℓnt )(x), µnt )ℓnt (x)} + 1

2∂xi∂xj {ai,j(t, x, µnt )ℓnt (x)}.

By the convergence of ℓnt to ℓt, that of µnt to µt, and the continuity of b(t, x, r, ϱ) in (r, ϱ), we
deduce that (µt) satisfies

∂tℓt(x) = −∂xi{b(t, x, ℓt(x), µt)ℓ(t, x)} + 1
2∂xi∂xj {ai,j(t, x, µt)ℓt(x)}. (4.3)

Notice that (4.3) is the Fokker-Planck equation associated with (4.1). By superposition
principle (e.g. [BR20, Section 2]), (4.1) has a weak solution.

4.3 Moment estimates of marginal distribution

In this section, we consider the classical SDE (2.10). First, we establish the following moment
estimates:

Theorem 4.5. Let p ∈ [1,∞) and (b, σ) satisfy Assumption 2.15. Let µt be the distribution of
Xt in (2.10).

1. µt is absolutely continuous w.r.t Lebesgue measure on Rd.

2. There exist constants c > 0 (depending on Θ3, p) and δ ∈ (0, 1
2) (depending on q0) such that

for 0 ≤ u ≤ t ≤ T :

E
[

sup
s∈[u,t]

|Xs|p
]

≤ c(1 + E[|Xu|p]), (4.4)

E
[

sup
s∈[u,t]

|Xs −Xu|p
]

≤ c|t− u|δp(1 + E[|Xu|p]). (4.5)

Proof. By Assumption 2.15(2), there exist measurable maps b(0) : T × Rd → Rd and b(1) :
T × Rd → Rd such that bt(x) = b

(0)
t (x) + b

(1)
t (x). By Assumption 2.15(3), there exists f0 ∈ L̃p0

q0

with (p0, q0) ∈ K such that |b(0)
t (x)| ≤ f0(t, x). We consider the SDE

dX̄t = b(1)(t, X̄t) dt+ σ(t, X̄t) dBt, (4.6)
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where the distribution of X̄0 is ν. Clearly, (b(1), σ) satisfies Assumption 2.15, so (4.6) is weakly
well-posed. We define

ξt := {σ⊤
t a

−1
t b

(0)
t }(X̄t),

B̄t := Bt −
∫ t

0
ξs ds,

Rt := exp
(∫ t

0
ξ⊤
t dBt − 1

2

∫ t

0
|ξt|2 dt

)
,

It := E
[

exp
(1

2

∫ t

0
|ξt|2 dt

)]
.

By uniform boundedness of σ⊤
t a

−1
t , Remark 2.16 and Proposition 2.17(1), we have IT < ∞.

So RT is an exponential martingale with E[RT ] = 1. By Girsanov’s theorem, (B̄t, t ∈ T) is
an m-BM under the probability measure P̄ := RTP. We denote by Ē the expectation w.r.t P̄.
Clearly, (4.6) can be written under P̄ as

dX̄t = b(t, X̄t) dt+ σ(t, X̄t) dB̄t. (4.7)

1. By Assumption 2.15(4) and [MPZ21, Theorem 1.2], the distribution of X̄t under P admits
a density. Notice that P̄ and P are equivalent, so the distribution of X̄t under P̄ also admits
a density. Because X̄0 is F0-measurable, it holds for φ ∈ C∞

c (Rd) that

Ē[φ(X̄0)] = E[φ(X̄0)R0] = E[φ(X̄0)].

Then ν is also the distribution of X̄0 under P̄. By weak uniqueness of (2.10) and (4.7), the
distribution of Xt under P is the same as that of X̄t under P̄. Thus the distribution of Xt

under P admits a density.

2. We combine localization argument (see e.g. [Bal17, Theorem 9.1]) with Krylov’s estimate.

(a) We fix p ∈ [1,∞) and u ∈ [0, T ) such that E[|Xu|p] < ∞. For R > 0, let τR := inf{t ∈
[u, T ] : |Xt| ≥ R} be the exit time of Xt from the open ball B(0, R). We adopt the
convention that τR = T if |Xt| < R for all t ∈ [u, T ]. We denote XR(t) := Xt∧τR . It
holds for t ∈ [u, T ] that

XR(t) = Xu +
∫ t∧τR

u
b(r,Xr) dr +

∫ t∧τR

u
σ(r,Xr) dBr

= Xu +
∫ t

u
b(r,Xr)1{r<τR} dr +

∫ t

u
σ(r,Xr)1{r<τR} dBr

= Xu +
∫ t

u
b(1)(r,XR(r))1{r<τR} dr +

∫ t

u
b(0)(r,Xr)1{r<τR} dr

+
∫ t

u
σ(r,XR(r))1{r<τR} dBr.

By Hardy’s inequality, it holds for n ∈ N, p ≥ 1 and x1, . . . , xn ∈ Rd that |x1 + · · · +
xn|p ≤ np(|x1|p + · · · + |xn|p). We write M1 ≲ M2 if there exists a constant c > 0
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(depending on Θ3, p) such that M1 ≤ cM2. Then

E
[

sup
s∈[u,t]

|XR(s)|p
]
≲ E[|Xu|p] + E

[( ∫ t

u
f0(r,Xr) dr

)p]
+ E

[( ∫ t

u
|b(1)(r,XR(r))| dr

)p]
+ E

[
sup
s∈[u,t]

∣∣∣∣ ∫ s

u
σ(r,XR(r))1{r<τR} dBr

∣∣∣∣p]
=: E[|Xu|p] + I1 + I2 + I3.

By Proposition 2.17(2), I1 ≲ 1. We have |b(1)(r, x)| ≲ 1 + |x|, so

I2 ≤ |t− u|p−1E
[ ∫ t

u
|b(1)(r,XR(r))|p dr

]
by Hölder’s inequality

≲ |t− u|p−1E
[∫ t

u
(1 + |XR(r)|p) dr

]
≲ 1 + |t− u|p−1E

[∫ t

u
|XR(r)|p dr

]
.

By Burkholder-Davis-Gundy inequality (see e.g. [Sch21, Theorem 19.20]) and bound-
edness of σ (from Assumption 2.15(4)),

I3 ≲ E
[( ∫ t

u
|σ(r,XR(r))|2 dr

)p/2]
≲ |t− u|

p
2 .

As a result, it holds for t ∈ [u, T ] that

ηR(t) := E
[

sup
s∈[u,t]

|XR(s)|p
]

≲ 1 + E[|Xu|p] +
∫ t

u
E[|XR(r)|p] dr.

By construction, |XR(s)| ≤ |Xu|∨R for s ∈ [u, t]. This implies ηR(t) ≤ E[|Xu|p∨Rp] <
∞ for t ∈ [u, T ]. It holds for t ∈ [u, T ] that

ηR(t) ≲ 1 + E[|Xu|p] +
∫ t

u
ηR(r) dr.

By Gronwall’s lemma, it holds for t ∈ [u, T ] and R > 0 that ηR(t) ≲ 1 + E[|Xu|p].
Because X has continuous sample paths, τR ↑ T a.s. as R → ∞. Hence

sup
s∈[u,t]

|XR(s)|p ↑ sup
s∈[u,t]

|Xs|p a.s. as R → ∞.

The estimate (4.4) then follows from monotone convergence theorem (MCT).
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(b) We have

E
[

sup
s∈[u,t]

|Xs −Xu|p
]
≲ E

[( ∫ t

u
f0(r,Xr) dr

)p]
+ E

[( ∫ t

u
|b(1)(r,Xr)| dr

)p]
+ E

[
sup
s∈[u,t]

∣∣∣∣∫ s

u
σ(r,Xr) dBr

∣∣∣∣p ]
=: J1 + J2 + J3.

There exists q̄0 ∈ (2, q0) such that (p0, q̄0) ∈ K̄. Let δ := 1
q̄0

− 1
q0

∈ (0, 1
2). By Hölder’s

inequality,
∥f0∥L̃p0

q̄0
(u,t) ≤ (t− u)δ∥f0∥L̃p0

q0 (u,t).

By Proposition 2.17(2),

J1 ≲ ∥f0∥p
L̃

p0
q̄0

(u,t) ≤ (t− u)δp∥f0∥p
L̃

p0
q0 (u,t) ≲ (t− u)δp.

As for I2 and I3, we have

J2 ≲ |t− u|p−1E
[∫ t

u
(1 + |Xr|p) dr

]
≲ |t− u|p(1 + E[|Xu|p]) by (4.4),

J3 ≲ |t− u|
p
2 .

Then
E
[

sup
s∈[u,t]

|Xs −Xu|p
]
≲ |t− u|δp(1 + E[|Xu|p]).

The estimate (4.5) then follows. This completes the proof.

We consider the following set of assumption:

Assumption 4.6. Let Assumption 2.15 hold with b(1) = 0.

We gather parameters from Assumption 4.6 in Θ4. For λ > 0 and γ ∈ R, the heat kernel pγ,λ
is defined for t > 0 and x ∈ Rd by

pγ,λt (x) := 1
t(γ+d)/2 e

− λ|x|2
t .

First, we recall the following estimates:

Lemma 4.7. [Zha24, Lemma 3.9] Let (b, σ) satisfy Assumption 4.6. Let γ0 := 1 − d
p0

− 2
q0

. Then
(2.11) has a unique weak solution and Xx

s,t admits a density. Moreover, there exist constants
c1, c2, c3 > 0 and λ ∈ (0, 1) depending on Θ4 such that

1. (Gaussian estimate) for 0 ≤ s < t ≤ T and x, y ∈ Rd:

c1p
0,λ−1

t−s (y − x) ≤ pb,σs,t (x, y) ≤ c2p
0,λ
t−s(y − x).
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2. (Gradient estimate) for 0 ≤ s < t ≤ T and x, y ∈ Rd:

|∇xp
b,σ
s,t (x, y)| ≤ c3p

1,λ
t−s(y − x).

3. (Hölder estimate in t and y) for γ ∈ (0, β ∧ γ0), there exists a constant c4 > 0 depending
on (Θ4, γ) such that for 0 ≤ s < t1 < t2 ≤ T and x, y, y1, y2 ∈ Rd:

|pb,σs,t2(x, y) − pb,σs,t1(x, y)| ≤ c4|t1 − t2|
γ
2

2∑
i=1

pγ,λti−s(x− y),

|pb,σs,t (x, y1) − pb,σs,t (x, y2)| ≤ c4|y1 − y2|γ
2∑
i=1

pγ,λt−s(x− yi).

We have an immediate corollary:

Corollary 4.8. Let (b, σ) satisfy Assumption 4.6. Let ν admit a bounded density ℓν . Let ℓt be
the density of Xt in (2.10).

1. There exists a constant c1 > 0 depending on Θ4 such that:

sup
t∈T

∥ℓt∥∞ ≤ c1∥ℓν∥∞.

2. Let γ0 := 1 − d
p0

− 2
q0

. For γ ∈ (0, β ∧ γ0), there exists a constant c2 > 0 depending on
(Θ4, γ, ν) such that for 0 < s, t ≤ T and x, y ∈ Rd:

|ℓt(x) − ℓs(x)| ≤ c2|t− s|
γ
2 (t−

γ
2 + s− γ

2 ),

|ℓt(x) − ℓt(y)| ≤ c2|x− y|γt−
γ
2 .

Proof. We have
ℓt(x) =

∫
Rd
ℓν(y)pb,σ0,t (y, x) dy.

The claims then follow from Lemma 4.7 and the fact that ℓν is bounded.

By Theorem 2.19, we have the following Duhamel presentation:

Lemma 4.9. Let (b, σ) satisfy Assumption 4.6. Let ν admit a density ℓν . Let ℓt be the density
of Xt in (2.10). Then it holds for t ∈ T and x ∈ Rd:

ℓt(x) =
∫
Rd
p0,σ

0,t (y, x)ℓν(y) dy +
∫ t

0

∫
Rd
ℓs(y)⟨bs(y),∇yp

0,σ
s,t (y, x)⟩ dy ds.

Third, we establish a decay of tail moment:

Lemma 4.10. Let p ∈ {0} ∪ [1,∞) and ν ∈ Pp(Rd). Let (b, σ) satisfy Assumption 4.6 and (Xt)
satisfy (2.10). Let µt be the distribution of Xt. There exists a function ϕ : R+ → R+ depending
on (Θ4, ν, p) such that limR→∞ φ(R) = 0 and that

sup
t∈T

∫
Bc(0,R)

| · |p dµt ≤ ϕ(R) for R ≥ 0.

Above, Bc(0, R) := Rd \B(0, R) where B(0, R) := {x ∈ Rd : |x| ≤ R}.
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Proof. WLOG, we consider R > 0. We write M1 ≲M2 if there exists a constant c > 0 depending
on (Θ4, ν, p) such that M1 ≤ cM2. Let ℓt be the density of Xt. Then

ℓt(x) =
∫
Rd
ℓν(y)pb,σ0,t (y, x) dy.

By Lemma 4.7(1), there exists a constant λ ∈ (0, 1) depending on Θ4 such that pb,σ0,t (y, x) ≲
p0,λ
t (y− x). Then ℓt ≲ ℓν ∗ p0,λ

t . Let Z be a standard normal random variable on Rd. Let Y be a
random variable on Rd, independent of Z, with distribution ν. Let ct :=

√
t

2λ and s := 1
2 . Then∫

Bc
R

| · |p dµt ≲ E[1{|ctZ+Y |>R}|ctZ + Y |p]

≲ E[(1{|ctZ|>sR} + 1{|Y |>(1−s)R})(|ct|p|Z|p + |Y |p)]
≲ E[1{|Z|> sR

cT
}|Z|p] + E[1{|Z|> sR

cT
}|Y |p]

+ E[1{|Y |>(1−s)R}|Z|p] + E[1{|Y |>(1−s)R}|Y |p]
=: I1(R) + I2(R) + I3(R) + I4(R)
=: ϕ(R).

By Markov’s inequality,

P[|Z| > sR/cT ] ≤ cTE[|Z|]
sR

,

P[|Y | > (1 − s)R] ≤ E[|Y |]
(1 − s)R.

We have E[|Z|p] + E|Y |p] < ∞. By dominated convergence theorem (DCT),

lim
R→∞

I1(R) = lim
R→∞

I2(R) = lim
R→∞

I3(R) = lim
R→∞

I4(R) = 0.

This completes the proof.

4.4 Existence and regularity of a solution

This section is dedicated to the proof of Theorem 4.3. We recall that Θ1 = (p, d, T, β, C, l, (pi, qi, fi)li=0)
contains parameters about (b, σ) from Assumption 4.2. We write M1 ≲ M2 if there exists a
constant c > 0 (depending on Θ1, ν) such that M1 ≤ cM2. We construct a sequence (ρn) of
mollifiers as follows. We fix a smooth density ρ : Rd → R whose support is contained in B(0, 1).
For each n ∈ N, we define ρn : Rd → R by ρn(x) := ndρ(nx) and consider the McKean-Vlasov
SDE {

dXn
t = b(t,Xn

t , (ρn ∗ µnt )(Xn
t ), µnt ) dt+ σ(t,Xn

t , µ
n
t ) dBt,

ν is the distribution of Xn
0 , and µnt is that of Xn

t .
(4.8)

Then (4.8) is a mollified version of (4.1).
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4.4.1 Stability estimates for mollified SDEs

We define the map bn : T × Rd × Pp(Rd) → Rd by bn(t, x, ϱ) := b(t, x, (ρn ∗ ϱ)(x), ϱ). Then

|bn(t, x, ϱ) − bn(t, x, ϱ̃)| ≲
∣∣∣∣∫

Rd
ρn(x− y) d(ϱ− ϱ̃)(y)

∣∣∣∣+Wp(ϱ, ϱ̃) (4.9)

≤ ∥∇ρn∥∞W1(ϱ, ϱ̃) +Wp(ϱ, ϱ̃) (4.10)
≤ (1 + ∥∇ρn∥∞)Wp(ϱ, ϱ̃). (4.11)

Above, (4.9) is due to Assumption 4.2(5), (4.10) due to Lemma 2.1(2), and (4.11) due
to Lemma 2.1(3). It follows that bn is Lipschitz in distribution variable. We consider the
McKean-Vlasov SDE {

dYt = bn(t, Yt, ξt) dt+ σ(t, Yt, ξt) dBt,
ν is the distribution of Y0, and ξt is that of Yt.

(4.12)

It follows from [HW22, Theorem 1.1(1)] that (4.12) is well-posed.

Remark 4.11. The Lipschitz continuity of bn(t, x, ·) is just for the application of [HW22,
Theorem 1.1(1)], and its Lipschitz constant does not play any role below.

By (4.8), (Xn
t , t ∈ T) satisfies (4.12). As a consequence, (4.8) is well-posed. We define the

maps b̄n : T × Rd → Rd and σ̄n : T × Rd → Rd ⊗ Rm by

b̄n(t, x) := bn(t, x, µnt ),
σ̄n(t, x) := σ(t, x, µnt ).

We have
dXn

t = b̄n(t,Xn
t ) dt+ σ̄n(t,Xn

t ) dBt. (4.13)

Let ān := σ̄n(σ̄n)⊤. We denote b̄nt := b̄n(t, ·), σ̄nt := σ̄n(t, ·) and ānt := ān(t, ·).

Remark 4.12. All pairs (b̄n, σ̄n)n∈N satisfy Assumption 4.6 for the same set of parameters.

By Theorem 4.5(1), each Xn
t admits a density denoted by ℓnt . By Theorem 4.5(2), there

exists a constant δ ∈ (0, 1
2) depending on q0 such that

sup
n∈N

sup
t∈T

Mp(µnt ) ≲ 1, (4.14)

sup
n∈N

Wp(µns , µnt ) ≲ |t− s|δ for s, t ∈ T. (4.15)

Let γ0 := 1 − d
p0

− 2
q0

and γ := β∧γ0
2 . By Corollary 4.8(1),

sup
n∈N

sup
t∈T

∥ℓnt ∥∞ ≲ ∥ℓν∥∞. (4.16)

By Corollary 4.8(2), it holds for t ∈ (0, T ] that

sup
n∈N

sup
s,r∈[t,T ]
s ̸=r

sup
x∈Rd

|ℓns (x) − ℓnr (x)|
|s− r|

γ
2

≲ t−
γ
2 , (4.17)

sup
n∈N

sup
s∈[t,T ]

sup
x,y∈Rd

x ̸=y

|ℓns (x) − ℓns (y)|
|x− y|γ

≲ t−
γ
2 . (4.18)
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By Lemma 4.10, there exists a function ϕ : R+ → R+ depending on (Θ1, ν) such that
limR→∞ ϕ(R) = 0 and that

sup
n∈N

sup
t∈T

∫
Bc(0,R)

(1 + | · |p) dµnt ≤ ϕ(R) for R ≥ 0. (4.19)

By (4.15), the map T → Pp(Rd), t 7→ µnt is continuous.

4.4.2 Convergence of marginal densities of mollified SDEs

By (4.17), (4.18), Arzelà–Ascoli theorem and diagonal extraction, there exist a sub-sequence
(also denoted by (ℓn) for simplicity) and a continuous function ℓ : T × Rd → R+ such that

lim
n

sup
t∈[R−1,T ]

sup
x∈B(0,R)

|ℓnt (x) − ℓt(x)| = 0 for R > T−1. (4.20)

Above, ℓt := ℓ(t, ·). Clearly, ℓ0 = ℓν and

sup
t∈T

∥ℓt∥∞ ≲ ∥ℓν∥∞. (4.21)

We remark that the constant in (4.21) depends on Θ1. Next we verify that ℓt is indeed a
density for t ∈ (0, T ]. We have∫

B(0,R)
ℓnt (x) dx = 1 −

∫
Bc(0,R)

ℓnt (x) dx

≳ 1 − ϕ(R) by (4.19).

By (4.20), (4.21) and DCT,∫
B(0,R)

ℓt(x) dx = lim
n→∞

∫
B(0,R)

ℓnt (x) dx.

It follows that
1 − ϕ(R) ≲

∫
B(0,R)

ℓt(x) dx ≤ 1.

Then ∫
Rd
ℓt(x) dx = lim

R→∞

∫
B(0,R)

ℓt(x) dx = 1.

Let µt ∈ P(Rd) be the probability measure induced by ℓt, i.e.,

µt(B) :=
∫
B
ℓt(x) dx for B ∈ B(Rd).

By (4.20), µnt
∗
⇀ µt as n → ∞. By Lemma 2.21, µnt ⇀ µt as n → ∞. We have∫
Bc(0,R)

| · |p dµt = lim
K→∞

∫
Bc(0,R)∩B(0,K)

| · |p dµt by MCT

= lim
K→∞

lim
n→∞

∫
Bc(0,R)∩B(0,K)

| · |p dµnt by (4.20)

≲ ϕ(R) by (4.19).

Then
sup
t∈T

∫
Bc(0,R)

| · |p dµt ≲ ϕ(R). (4.22)
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Clearly, | · |p is continuous and bounded from below. By Lemma 2.21 and Portmanteau’s
theorem,

sup
t∈T

Mp(µt) ≤ sup
t∈T

lim inf
n

Mp(µnt )

≲ 1 by (4.14).

Then µt ∈ Pp(Rd) for t ∈ T. Moreover,

W p
p (µs, µt) = sup

{∫
Rd
φdµs +

∫
Rd
ψ dµt : (φ,ψ) ∈ Φp

}
(4.23)

= sup
{

lim
n

(∫
Rd
φdµns +

∫
Rd
ψ dµnt

)
: (φ,ψ) ∈ Φp

}
(4.24)

≤ lim sup
n

sup
{∫

Rd
φ dµns +

∫
Rd
ψ dµnt : (φ,ψ) ∈ Φp

}
= lim sup

n
W p
p (µns , µnt ) (4.25)

≲ |t− s|δp. (4.26)

Above, (4.23) and (4.25) are due to Lemma 2.1(1); (4.24) due to Lemma 2.21; and (4.26)
due to (4.15). It follows that

Wp(µs, µt) ≲ |t− s|δ for s, t ∈ T.

Next we establish an essential result about convergence:

Lemma 4.13. We have for R > T−1 that

lim
n

sup
t∈[R−1,T ]

Wp(µnt , µt) = 0.

Proof. We have

W p
p (µnt , µt) ≲

∫
Rd

|x|p|ℓnt (x) − ℓt(x)| dx by Lemma 2.2

≤
∫
B(0,k)

|x|p|ℓnt (x) − ℓt(x)| dx+
∫
Bc(0,k)

|x|p(ℓnt (x) + ℓt(x)) dx

=: I(t, n, k) + J(t, n, k) for k > 0.

By (4.20),
lim
n

sup
t∈[R−1,T ]

I(t, n, k) = 0.

By (4.19) and (4.22),
sup
n∈N

sup
t∈T

J(t, n, k) ≲ ϕ(k).

As such,

lim sup
n

sup
t∈[R−1,T ]

W p
p (µnt , µt)

≲ lim sup
n

sup
t∈[R−1,T ]

I(t, n, k) + lim sup
n

sup
t∈T

J(t, n, k)

≲ ϕ(k).

The claim then follows by taking the limit k → ∞.
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4.4.3 Existence of a weak solution

Notice that ρn ∗ µnt = ρn ∗ ℓnt . The Fokker-Planck equation (in distributional sense) associated
with (4.8) is

∂tℓ
n
t (x) = −∂xi{b(t, x, (ρn ∗ ℓnt )(x), µnt )ℓnt (x)} + 1

2∂xi∂xj {ai,j(t, x, µnt )ℓnt (x)}.

This means for each (φ,ψ) ∈ C∞
c (0, T ) × C∞

c (Rd) that

−
∫
T

∫
Rd
φ′(t)ψ(x) dµnt (x) dt

=
d∑
i=1

∫
T

∫
Rd
b(t, x, (ρn ∗ ℓnt )(x), µnt )φ(t)∂xiψ(x) dµnt (x) dt

+ 1
2

d∑
i,j=1

∫
T

∫
Rd
ai,j(t, x, µnt )φ(t)∂xi∂xjψ(x) dµnt (x) dt.

(4.27)

Above, ai,j is the entry in the i-th row and j-th column of a. We recall from Lemma 4.13
and (4.20) that

Wp(µnt , µt)
n→∞−−−→ 0, (4.28)

sup
x∈B(0,R)

|ℓnt (x) − ℓt(x)| n→∞−−−→ 0 for (t, R) ∈ T × R+. (4.29)

We fix (φ,ψ) ∈ C∞
c (0, T ) × C∞

c (Rd). By (4.28), the boundedness of a, and the continuity of
a w.r.t distribution variable,∫

Rd
ai,j(t, x, µnt )∂xi∂xjψ(x) dµnt (x) n→∞−−−→

∫
Rd
ai,j(t, x, µt)∂xi∂xjψ(x) dµt(x).

Let S := B(0, 1) + suppψ. By triangle inequality,

∥1S{(ρn ∗ ℓnt ) − ℓt}∥∞ ≤ ∥1S{ρn ∗ (ℓnt − ℓt)}∥∞ + ∥1S(ρn ∗ ℓt − ℓt)∥∞

≤ ∥ρn ∗ {1S(ℓnt − ℓt)}∥∞ + ∥1S(ρn ∗ ℓt − ℓt)∥∞

≤ ∥1S(ℓnt − ℓt)∥∞ + ∥1S(ρn ∗ ℓt − ℓt)∥∞.

By (4.29), ∥1S(ℓnt −ℓt)∥∞ → 0 as n → ∞. By [Bre11, Proposition 4.21], ∥1S(ρn∗ℓt−ℓt)∥∞ → 0
as n → ∞. It follows that ∥1S{(ρn ∗ ℓnt ) − ℓt}∥∞ → 0 as n → ∞. This, together with (4.28) and
Assumption 4.2(5), implies

sup
x∈S

|b(t, x, (ρn ∗ ℓnt )(x), µnt ) − b(t, x, ℓt(x), µt)|
n→∞−−−→ 0. (4.30)

Recall that |b| ≤ f0 and f0 ∈ L̃p0
q0 . It follows from (4.28), (4.30) and DCT that∫

Rd
b(t, x, (ρn ∗ ℓnt )(x), µnt )∂xiψ(x) dµnt (x) n→∞−−−→

∫
Rd
b(t, x, ℓt(x), µt)∂xiψ(x) dµt(x).
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Taking the limit n → ∞ in (4.27), we get

−
∫
T

∫
Rd
φ′(t)ψ(x) dµt(x) dt

=
d∑
i=1

∫
T

∫
Rd
b(t, x, ℓt(x), µt)φ(t)∂xiψ(x) dµt(x) dt

+ 1
2

d∑
i,j=1

∫
T

∫
Rd
ai,j(t, x, µt)φ(t)∂xi∂xjψ(x) dµt(x) dt.

So ℓ satisfies the Fokker-Planck equation

∂tℓt(x) = −∂xi{b(t, x, ℓt(x), µt)ℓt(x)} + 1
2∂xi∂xj {ai,j(t, x, µt)ℓt(x)}.

Moreover, ℓ satisfies the following integrability estimate:

Lemma 4.14. There exists a constant c > 0 (depending on Θ1) such that∫
T

∫
Rd

{|b(t, x, ℓt(x), µt)| + |a(t, x, µt)|} dµt(x) dt ≤ c(1 + ∥f0∥L̃p0
q0

).

Proof. By (4.13),
dXn

t = b̄n(t,Xn
t ) dt+ σ̄n(t,Xn

t ) dBt.

Recall that Assumption 4.6 is a special case of Assumption 2.15. By Remark 4.12, all pairs
(b̄n, σ̄n)n∈N satisfy Assumption 2.15 for the same set of parameters. Then∫

T

∫
Rd
f0(t, x) dµnt (x) dt = E

[ ∫ T

0
f0(t,Xn

t ) dt
]

by Tonelli’s theorem

≲ 1 + ∥f0∥L̃p0
q0

by Proposition 2.17(2). (4.31)

We have∫
T

∫
Rd
f0(t, x) dµt(x) dt =

∫
T

lim
k

∫
Rd

1B(0,k)(x)f0(t, x)ℓt(x) dx dt (4.32)

≤ lim inf
k

∫
T

∫
Rd

1B(0,k)(x)f0(t, x)ℓt(x) dx dt (4.33)

= lim inf
k

∫
T

lim
n

∫
Rd

1B(0,k)(x)f0(t, x)ℓnt (x) dx dt (4.34)

≤ lim inf
k

lim inf
n

∫
T

∫
Rd

1B(0,k)(x)f0(t, x)ℓnt (x) dx dt (4.35)

≤ lim inf
n

∫
T

∫
Rd
f0(t, x)ℓnt (x) dx dt

≲ 1 + ∥f0∥L̃p0
q0

by (4.31). (4.36)

Above, (4.32) is due to MCT; (4.33) and (4.35) are due to Fatou’s lemma. We will justify
how (4.34) follows from f0 ∈ L̃p0

q0 and DCT:

1. From (4.16), we get 1B(0,k)(x)f0(t, x)ℓnt (x) ≲ 1B(0,k)(x)f0(t, x).

2. From (4.29), we get 1B(0,k)(x)f0(t, x)ℓnt (x) → 1B(0,k)(x)f0(t, x)ℓt(x) (as n → ∞) for all
x ∈ Rd.
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We denote by I the LHS of the inequality in the statement of Lemma 4.14. Then

I ≲ 1 +
∫
T

∫
Rd
f0(t, x) dµt(x) dt

≲ 1 + ∥f0∥L̃p0
q0

by (4.36).

This completes the proof.

We have

1. The maps (t, x) 7→ b(t, x, ℓt(x), µt) and (t, x) 7→ a(t, x, µt) are measurable.

2. By Lemma 4.14, ∫
T

∫
Rd

{|b(t, x, ℓt(x), µt)| + |a(t, x, µt)|} dµt(x) dt < ∞.

3. The map T → Pp(Rd), t 7→ µt is continuous by (4.26).

By superposition principle [Fig08; Tre16; BRS21] as in [BR20, Section 2], (4.1) has a weak
solution whose marginal distribution is exactly (µt).

4.4.4 Existence of a strong solution

By the previous subsection, there exists a PS (Ω̄, Ā, P̄) on which there exist an m-BM (B̄t), an
AF (F̄t) and a continuous (F̄t)-adapted process (X̄t) such that

dX̄t = b(t, X̄t, ℓt(X̄t), µt) dt+ σ(t, X̄t, µt) dB̄t,
ν is the distribution of X̄0, µt is that of X̄t,

and ℓt is the density of X̄t.

Above, the distribution of X̄0 is ν, that of X̄t is µt, and the density of X̄t is ℓt. We define the
map b̄ : T × Rd × Pp(Rd) → Rd by b̄(t, x, ϱ) := b(t, x, ℓt(x), ϱ). We consider the McKean-Vlasov
SDE {

dYt = b̄(t, Yt, µ′
t) dt+ σ(t, Yt, µ′

t) dBt,
ν is the distribution of Y0, and µ′

t is that of Yt.
(4.37)

We recall that (Bt) is the fixed m-BM on the fixed PS (Ω,A,P) introduced in Section 2.2.
By [HW22, Theorem 1.1(1)], (4.37) is well-posed. On the other hand, (X̄t) also satisfies (4.37).
Then µt = µ′

t and thus the density of Yt is also ℓt. In particular,

dYt = b(t, Yt, ℓt(Yt), µt) dt+ σ(t, Yt, µt) dBt.

This completes the proof.

4.5 Uniqueness of a solution

This section is dedicated to the proof of Theorem 4.4. For k ∈ {1, 2}, we consider the SDE
dXk

t = b(t,Xk
t , ℓ

k
t (Xk

t ), µkt ) dt+ σ(t,Xk
t ) dBk

t ,

νk is the distribution of Xk
0 , µkt is that of Xk

t ,

and ℓkt is the density of Xk
t .

(4.38)

Above, (Bk
t , t ≥ 0) is an m-BM. We define measurable maps bk : T × Rd → Rd by bk(t, x) :=

b(t, x, ℓkt (x), µkt ).
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4.5.1 Uniqueness of marginal density

Clearly, (bk, σ) satisfies Assumption 4.6. We denote bkt (x) := bk(t, x). By Lemma 4.9,

ℓkt (x) =
∫
Rd
p0,σ

0,t (y, x)ℓνk
(y) dy +

∫ t

0

∫
Rd
ℓks(y)⟨bks(y),∇yp

0,σ
s,t (y, x)⟩ dy ds.

Then

|ℓ2t (x) − ℓ1t (x)| ≤
∫
Rd
p0,σ

0,t (y, x)|ℓν1(y) − ℓν2(y)| dy

+
∫ t

0

∫
Rd

|b2
s(y)| × |ℓ2s(y) − ℓ1s(y)| × |∇yp

0,σ
s,t (y, x)| dy ds

+
∫ t

0

∫
Rd
ℓ1s(y)|b2

s(y) − b1
s(y)| × |∇yp

0,σ
s,t (y, x)| dy ds.

We write M1 ≼M2 if there exists a constant c > 0 (depending on Θ1) such that M1 ≼ cM2.
Thus

|ℓ2t (x) − ℓ1t (x)| ≼
∫
Rd
p0,σ

0,t (y, x)|ℓν1(y) − ℓν2(y)| dy

+
∫ t

0

∫
Rd

|ℓ2s(y) − ℓ1s(y)| × |∇yp
0,σ
s,t (y, x)| dy ds

+
∫ t

0

∫
Rd
ℓ1s(y)|b2

s(y) − b1
s(y)| × |∇yp

0,σ
s,t (y, x)| dy ds.

(4.39)

By Corollary 4.8(1),
sup
t∈T

∥ℓ1t ∥∞ ≼ ∥ℓν1∥∞. (4.40)

By Assumption 4.2(5),

|b2
s(y) − b1

s(y)| ≼ |ℓ2s(y) − ℓ1s(y)| +Wp(µ2
s, µ

1
s). (4.41)

By (4.39), (4.40) and (4.41),

|ℓ2t (x) − ℓ1t (x)| ≼
∫
Rd
p0,σ

0,t (y, x)|ℓν1(y) − ℓν2(y)| dy

+ (1 + ∥ℓν1∥∞)
∫ t

0

∫
Rd

|ℓ2s(y) − ℓ1s(y)| × |∇yp
0,σ
s,t (y, x)| dy ds

+
∫ t

0
Wp(µ2

s, µ
1
s)
∫
Rd
ℓ1s(y)|∇yp

0,σ
s,t (y, x)| dy ds

=: I1(t, x) + (1 + ∥ℓν1∥∞)I2(t, x) + I3(t, x).

The pair (0, σ) satisfies Assumption 4.6. By Lemma 4.7, there exists a constant λ > 0
(depending on Θ1) such that for i ∈ {0, 1}, 0 ≤ s < t ≤ T and x, y ∈ Rd:

|∇i
yp

0,σ
s,t (y, x)| ≼ pi,λt−s(y − x). (4.42)

Then ∫
Rd

(|x|p + 1)|∇i
yp

0,σ
s,t (y, x)| dx ≼

∫
Rd

(|x|p + 1)pi,λt−s(y − x) dx by (4.42)

≼ (t− s)− i
2 (|y|p + 1). (4.43)
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We define a measurable map f : T → R+ by

f(s) :=
∫
Rd

(|x|p + 1)|ℓ2s(x) − ℓ1s(x)| dx.

By (4.4), f is bounded. First,∫
Rd

(|x|p + 1)I1(t, x) dx

=
∫ t

0

∫
Rd

|ℓν1(y) − ℓν2(y)|
∫
Rd

(|x|p + 1)p0,σ
0,t (y, x) dx dy ds

≼
∫ t

0

∫
Rd

|ℓν1(y) − ℓν2(y)|(|y|p + 1) dy ds by (4.43)

≼
∫
Rd

(|y|p + 1)|ℓν1(y) − ℓν2(y)| dy = f(0).

Second, ∫
Rd

(|x|p + 1)I2(t, x) dx

=
∫ t

0

∫
Rd

|ℓ2s(y) − ℓ1s(y)|
∫
Rd

(|x|p + 1)|∇yp
0,σ
s,t (y, x)| dx dy ds

≼
∫ t

0
(t− s)− 1

2

∫
Rd

|ℓ2s(y) − ℓ1s(y)|(|y|p + 1) dy ds by (4.43)

=
∫ t

0
(t− s)− 1

2 f(s) ds.

Third, ∫
Rd

(|x|p + 1)I3(t, x) dx

=
∫ t

0
Wp(µ2

s, µ
1
s)
∫
Rd
ℓ1s(y)

∫
Rd

(|x|p + 1)|∇yp
0,σ
s,t (y, x)| dx dy ds

≼
∫ t

0
(t− s)− 1

2Wp(µ2
s, µ

1
s)
∫
Rd
ℓ1s(y)(|y|p + 1) dy ds by (4.43)

≼(1 +Mp(ν1))
∫ t

0
(t− s)− 1

2Wp(µ2
s, µ

1
s) ds by (4.4)

≼(1 +Mp(ν1))
∫ t

0
(t− s)− 1

2 |f(s)|
1
p ds by Lemma 2.2.

To sum up,

f(t) ≼ f(0) + (1 + ∥ℓν1∥∞ +Mp(ν1))
∫ t

0
(T − s)− 1

2 (f(s) + |f(s)|
1
p ) ds.

Because p = 1, we get

f(t) ≼ f(0) + (1 + ∥ℓν1∥∞ +M1(ν1))
∫ t

0
(T − s)− 1

2 f(s) ds.

By Gronwall’s lemma,

sup
t∈T

f(t) ≼ f(0) exp
{
2
√
T (1 + ∥ℓν1∥∞ +M1(ν1))

}
. (4.44)

This implies the existence of the function Λ as required in Theorem 4.4(1).
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4.5.2 Weak and strong uniqueness of a solution

By (4.38),
dXk

t = bk(t,Xk
t ) dt+ σ(t,Xk

t ) dBk
t .

Now we let ν := ν1 = ν2. By (4.44), ℓ1t = ℓ2t and µ1
t = µ2

t for t ∈ T. Then bbb := b1 = b2. We
consider the SDE {

dYt = bbb(t, Yt) dt+ σ(t, Yt) dBt,
ν is the distribution of Y0.

(4.45)

By [HW22, Theorem 1.1(1)], (4.45) is well-posed. On the other hand, (X1
t ) and (X2

t ) satisfy
(4.45). It follows that (4.1) has both weak and strong uniqueness.





Chapter 5

Euler-Maruyama scheme for MV-SDEs with
density-dependent drift

5.1 Introduction

Let T ∈ (0,∞) and T be the interval [0, T ]. Consider a measurable function

b : T × Rd × R+ × Pp(Rd) → Rd.

This chapter is about time discretization of the SDE
dXt = b(t,Xt, ℓt(Xt), µt) dt+

√
2 dBt,

ν is the distribution of X0, µt is that of Xt,

and ℓt is the density of Xt.

(5.1)

The Euler-Maruyama scheme Xn := (Xn
t , t ∈ T) for (5.1) is constructed as follows. We

fix n ∈ N and εn := T/n. Let tk := kεn for k ∈ [[0, n]]. Let τnt := tk if t ∈ [tk, tk+1) for some
k ∈ [[0, n− 1]]. For t ∈ T, let{

Xn
t := X0 +

∫ t
0 b(s,Xn

τn
s
, ℓnτn

s
(Xn

τn
s

), µnτn
s

)1(εn,T ](s) ds+
√

2Bt,
µnt is the distribution of Xn

t , and ℓnt is the density of Xn
t .

(5.2)

We consider the following set of assumptions:

Assumption 5.1. There exist constants α ∈ (0, 1), p ∈ [1,∞), C > 0 such that for t ∈ T;x, y ∈
Rd; r, r′ ∈ R+ and ϱ, ϱ′ ∈ Pp(Rd):

1. |b(t, x, r, ϱ)| ≤ C.

2. ν ∈ Pp(Rd) admits a density ℓν ∈ Cαb (Rd).

3. |b(t, x, r, ϱ) − b(t, x, r′, ρ′)| ≤ C{|r − r′| +Wp(ϱ, ϱ′)}.

We gather parameters in Assumption 5.1:

Θ1 := (d, T, α, p, C).

First, we prove the following estimates about Hölder regularity:

73



74 Chapter 5. Euler-Maruyama scheme for MV-SDEs with density-dependent drift

Theorem 5.2. Let Assumption 5.1 hold. There exist constants c1 > 0 (depending on Θ1), c2 > 0
(depending on Θ1, ν) and δ ∈ (0, 1

2) such that for 0 ≤ s < t ≤ T :

sup
n

sup
t∈T

∥ℓnt ∥Cα
b

≤ c1∥ℓν∥Cα
b
, (5.3)

sup
n

∥ℓnt − ℓns ∥∞ ≤ c2(t− s)
α
2 , (5.4)

sup
n
Wp(µnt , µns ) ≤ c1(t− s)δ, (5.5)

sup
n

∫
Rd

(1 + |x|p)|ℓnt (x) − ℓns (x)| dx ≤ c2(t− s)
α
2 s− α

2 . (5.6)

If we assume, in addition, that
∫
Rd(1 + |x|p)

√
ℓν(x) dx ≤ C, then

sup
n

∫
Rd

(1 + |x|p)|ℓnt (x) − ℓns (x)| dx ≤ c2(t− s)
α
4 . (5.7)

Estimate (5.6) will be used in the proof of Theorem 5.4, but it explodes as s ↓ 0. As in
[SH24], we use time cutoff 1(εn,T ] in (5.2) to tackle this issue. Well-posedness of (5.1) has been
obtained in Chapter 4 via mollifying argument, which in turn relies on [HW22, Theorem 1.1(1)].
We will give an alternative proof of weak existence as a direct application of Theorem 5.2.

Theorem 5.3. Let Assumption 5.1 hold. Then (5.1) has a weak solution whose marginal density
satisfies the estimates in Theorem 5.2.

Finally, we derive the following rate of convergence:

Theorem 5.4. Let Assumption 5.1 hold and p = 1. There exists a constant c > 0 (depending on
Θ1, ν) such that

sup
t∈T

∫
Rd

(1 + |x|)|ℓnt (x) − ℓt(x)| dx ≤ cn− α
2 .

5.2 Some crude estimates

We define bn : T × Rd → Rd by

bn(t, x) := b(t, x, ℓnτn
t

(x), µnτn
t

)1(εn,T ](t). (5.8)

Then Xn satisfies
dXn

t = bn(t,Xn
τn

t
) dt+

√
2 dBt. (5.9)

First, we verify that the scheme is well-defined.

Lemma 5.5. Let Assumption 5.1 hold. Then each Xn
t in (5.2) has a distribution µnt ∈ Pp(Rd)

and admits a density.

Proof. We fix t ∈ (tk, tk+1] for some k ∈ [[0, n− 1]]. By induction argument, we assume WLOG
that the statement holds for tk. We have

Xn
t = Xn

tk
+
∫ t

tk

bn(s,Xn
tk

) ds+
√

2(Bt −Btk).

It follows from Mp(µntk) + ∥bn∥∞ < ∞ that Mp(µnt ) < ∞. It remains to prove that Xn
t admits

a density. Let Σ1
t be the σ-algebra generated by (Bs − Br, tk ≤ r < s ≤ t). Let Σ2

t be the
σ-algebra generated by Xn

tk
. We define Ft : Rd × Ω → Rd by

Ft(x, ·) := x+
∫ t

tk

bn(s, x) ds+
√

2(Bt −Btk).
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Because bn is bounded, Ft is well-defined and measurable w.r.t B(Rd) ⊗ Σ1
t . First, Xn

t =
Ft(Xn

tk
, ·). Second, Ft(x, ·) has a non-degenerate normal distribution. We fix a Lebesgue-null set

A ∈ B(Rd). We need to prove P[Xn
t ∈ A] = 0. We define F̄t : Rd → Rd by F̄t(x) := P[Ft(x, ·) ∈ A].

Then F̄t = 0. Because F is admissible, Σ1
t is independent of Σ2

t . We have

P[Xn
t ∈ A] = P[Ft(Xn

tk
, ·) ∈ A]

= E[P[Ft(Xn
tk
, ·) ∈ A|Σ2

t ]]
= E[F̄t(Xn

tk
)] by Lemma 2.22

= 0.

This completes the proof.

We consider the standard Gaussian heat kernel defined for t > 0 and x ∈ Rd by

pt(x) := 1
(4πt)

d
2

exp
(

−|x|2

4t

)
.

Then

pt(x) ≤ 2
d
2 p2t(x), (5.10)

pt(x+ y) ≤ 2
d
2 exp

(
|y|2

4t

)
p2t(x). (5.11)

The following estimates are classical. See e.g. [HRZ21, Lemma 2.1] for their proofs.

Lemma 5.6. 1. There exists a constant c > 0 (depending on d) such that for t > 0 and
x, y ∈ Rd:

|∇pt(x)| ≤ ct−
1
2 pt(x). (5.12)

2. For α ∈ (0, 1), there exists a constant c > 0 (depending on d, T, α) such that for 0 < t ≤
T ;x, y ∈ Rd and i ∈ {0, 1}:

|∇ipt(x) − ∇ipt(y)| ≤ c|x− y|αt−
i+α

2 {p4t(x) + p4t(y)}. (5.13)

3. For α ∈ (0, 1), there exists a constant c > 0 (depending on d, T, α) such that for 0 ≤ s <
t ≤ T ;x ∈ Rd and i ∈ {0, 1}:

|∇ipt(x) − ∇ips(x)| ≤ c|t− s|
α
2 {t−

i+α
2 p2t(x) + s− i+α

2 p2s(x)}. (5.14)

The associated semigroup (Pt, t > 0) is defined for x ∈ Rd and f ∈ L0
+(Rd) ∪ L0

b(Rd) by

Ptf(x) :=
∫
Rd
pt(x− y)f(y) dy.

Second, we have some crude estimates.

Lemma 5.7. Let Assumption 5.1 hold. Let t ∈ (tk, tk+1] for some k ∈ [[0, n− 1]]. There exists a
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constant c ≥ 1 (depending on Θ1) such that for φ ∈ L0
+(Rd × Rd) ∪ L0

b(Rd × Rd):

E[φ(Xn
tk
, Xn

t )] =
∫
Rd×Rd

φ(x, y)ℓntk(x)pt−tk
(
x− y +

∫ t

tk

bn(s, x) ds
)

dx dy (5.15)

≤ c

∫
Rd×Rd

φ(x, y)ℓntk(x)p2(t−tk)(x− y) dx dy, (5.16)

∥ℓnt ∥∞ ≤ c∥ℓntk∥∞. (5.17)

Proof. Let Σ1
t ,Σ2

t and Ft be defined as in the proof of Lemma 5.5. We have

E[φ(Xn
tk
, Xn

t )] = E[φ(Xn
tk
, Ft(Xn

tk
, ·))]

= E[E[φ(Xn
tk
, Ft(Xn

tk
, ·))|Σ2

t ]]. (5.18)

We define F̂t : Rd → Rd by F̂t(x) := E[φ(x, Ft(x, ·))]. Notice that Ft(x, ·) has a normal
distribution with mean x+

∫ t
tk
bn(s, x) ds and covariance matrix 2tId. Consequently, the density

of Ft(x, ·) is y 7→ pt−tk(x− y +
∫ t
tk
bn(s, x) ds). There exists a constant c1 ≥ 1 (depending on Θ1)

such that

F̂t(x) =
∫
Rd
φ(x, y)pt−tk

(
x− y +

∫ t

tk

bn(s, x) ds
)

dy (5.19)

≤ c1

∫
Rd
φ(x, y)p2(t−tk)(x− y) dy by (5.11) and Assumption 5.1(1). (5.20)

WLOG, we assume φ ∈ L0
b(Rd × Rd). Then

E[φ(Xn
tk
, Xn

t )] = E[F̂t(Xn
tk

)] by (5.18) and Lemma 2.22

=
∫
Rd
ℓntk(x)F̂t(x) dx (5.21)

≤ c1

∫
Rd×Rd

φ(x, y)ℓntk(x)p2(t−tk)(x− y) dx dy by (5.20). (5.22)

Thus (5.16) follows. Clearly, (5.19) and (5.21) imply (5.15). The case φ ∈ L0
+(Rd × Rd)

follows from a truncated argument and MCT. It holds for f ∈ L0
+(Rd) that

E[f(Xn
t )] ≤ c1

∫
Rd×Rd

f(y)ℓntk(x)p2(t−tk)(x− y) dx dy by (5.22)

≤ c1∥ℓntk∥∞

∫
Rd×Rd

f(y)p2(t−tk)(x− y) dx dy

= c1∥ℓntk∥∞∥f∥L1 .

By duality, ∥ℓnt ∥∞ ≤ c1∥ℓntk∥∞. This completes the proof.

Finally, we obtain Duhamel representation of marginal density.

Lemma 5.8. Let Assumption 5.1 hold. It holds for x ∈ Rd that

ℓnt (x) = Ptℓν(x) +
∫ t

0
E[⟨bn(s,Xn

τn
s

),∇pt−s(Xn
s − x)⟩] ds, (5.23)

ℓt(x) = Ptℓν(x) +
∫ t

0
E[⟨b(s,Xs, ℓs(Xs), µs),∇pt−s(Xs − x)⟩] ds. (5.24)

Proof. Let’s prove (5.23). We fix t ∈ (0, T ] and f ∈ C∞
c (Rd). We define

g : [0, t] × Rd → R, (s, y) 7→ (Pt−sf)(y).
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Then (∂s + ∆)g = 0. We have

dg(s,Xn
s ) = ⟨bn(s,Xn

τn
s

),∇g(s,Xn
s )⟩ ds

+ (∂s + ∆)g(s,Xn
s ) ds+ dMs

by Itô’s lemma

= ⟨bn(s,Xn
τn

s
),∇g(s,Xn

s )⟩ ds+ dMs.

Above, M0 = 0 and dMs = {∇g(s,Xn
s )}⊤ dBs. Then

f(Xn
t ) = g(0, X0) +

∫ t

0
⟨bn(s,Xn

τn
s

),∇g(s,Xn
s )⟩ ds+Mt.

To apply Fubini’s theorem, we next verify sups∈T ∥∇g(s, ·)∥∞ < ∞. It suffices to prove that
the Lipschitz constant of g(s, ·) is bounded uniformly in time. We consider the Gaussian process
governed by the SDE

dY x
s,t =

√
2 dBt, t ∈ [s, T ], Y x

s,s = x.

We have

|g(s, x) − g(s, y)| = |E[f(Y x
s,t)] − E[f(Y y

s,t)]|
≤ ∥∇f∥∞E[|Y x

s,t − Y y
s,t|]

≤ c1∥∇f∥∞|x− y|.

Above, the constant c1 > 0 is given by Lemma 2.18. By Fubini’s theorem,∫
Rd
f(x)ℓnt (x) dx = E[g(0, X0)] +

∫ t

0
E[⟨bn(s,Xn

τn
s

),∇g(s,Xn
s )⟩] ds

=: I1 + I2.

By Leibniz integral rule,

∇g(s, y) = ∇y

∫
Rd
pt−s(y − x)f(x) dx =

∫
Rd

∇pt−s(y − x)f(x) dx.

We have

I1 =
∫
Rd
ℓν(y){Ptf}(y) dy

=
∫
Rd
f(x)

(∫
Rd
pt(y − x)ℓν(y) dy

)
dx

=
∫
Rd
f(x){Ptℓν}(x) dx,

I2 =
∫ t

0
E[⟨bn(s,Xn

τn
s

),
∫
Rd
f(x)∇pt−s(Xn

s − x) dx⟩] ds

=
∫
Rd
f(x)

∫ t

0
E[⟨bn(s,Xn

τn
s

),∇pt−s(Xn
s − x)⟩] ds dx.

Then (5.23) follows. The proof of (5.24) is a straightforward modification of above reasoning.

For brevity, we adopt the following conventions in the remaining of this chapter:

1. We write M1 ≲M2 if there exists a constant c > 0 (depending on Θ1) such that M1 ≤ cM2.

2. We write M1 ≼ M2 if there exists a constant c > 0 (depending on Θ1, ν) such that
M1 ≤ cM2.
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5.3 Stability estimates of the scheme

This section is devoted to the proof of Theorem 5.2 where we use techniques from [Wan23c;
HRZ21]. By (5.2),

Xn
t −Xn

s =
∫ t

s
bn(r,Xn

τn
r

) dr +
√

2(Bt −Bs).

Then
E[|Xn

t −Xn
s |p] ≲ (t− s)p + E[|Bt−s|p] ≲ (t− s)

p
2 .

Thus (5.5) follows.

5.3.1 Bound supremum norm of marginal density

By Lemma 5.8 and Assumption 5.1(1), there exists a constant c1 > 0 (depending on Θ1) such
that

ℓnt (x) ≤ ∥ℓν∥∞ + c1

∫ t

0
E[|∇pt−s(Xn

s − x)|] ds

=: ∥ℓν∥∞ + c1

∫ t

0
Es ds. (5.25)

Step 1: We are going to prove the existence of m ∈ [[1, n]] such that m
n depends only on Θ1

and that ∥ℓntk∥∞ ≤ 2∥ℓν∥∞ for k ∈ [[0,m]]. The idea is to pick m such that the following induction
argument is valid. We fix k ∈ [[1,m]] and assume that ∥ℓnti∥∞ ≤ 2∥ℓν∥∞ for i ∈ [[0, k − 1]]. Let
s ∈ (ti, ti+1) for some i ∈ [[0, k − 1]]. We have

Es ≲
∫
Rd×Rd

ℓnti(y)p2(s−ti)(y − z)|∇ptk−s(x− z)| dy dz by (5.16)

≲
1√
tk − s

∫
Rd×Rd

ℓnti(y)p2(s−ti)(y − z)ptk−s(x− z) dy dz by (5.12)

≲
1√
tk − s

∫
Rd×Rd

ℓnti(y)p2(s−ti)(y − z)p2(tk−s)(x− z) dz dy by (5.10)

= 1√
tk − s

∫
Rd
ℓnti(y)p2(tk−ti)(x− y) dy by Chapman–Kolmogorov equation

≤ 2∥ℓν∥∞√
tk − s

by inductive hypothesis. (5.26)

By (5.25) and (5.26), there exists a constant c2 > 0 (depending on Θ1) such that

ℓntk(x) ≤ ∥ℓν∥∞

[
1 + c1c2

∫ tk

0

ds√
tk − s

]
= ∥ℓν∥∞(1 + 2c1c2

√
tk).

It suffices to choose m such that

c1c2
√
tk ≤ 1

2 . (5.27)

Clearly, there exists a constant c3 ∈ (0, 1) (depending on Θ1) such that if m
n ≤ c3 then (5.27)

holds.
Step 2: Repeating Step 1 at most ⌈1/c3⌉ times, we have ∥ℓntk∥∞ ≤ 2⌈1/c3⌉∥ℓν∥∞ for

k ∈ [[0, n]].
Step 3: By (5.17), there exists a constant c4 ≥ 1 (depending on Θ1) such that if t ∈ (tk, tk+1)
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then ∥ℓnt ∥∞ ≤ c4∥ℓntk∥∞. Thus

sup
t∈T

∥ℓnt ∥∞ ≤ c42⌈1/c3⌉∥ℓν∥∞. (5.28)

5.3.2 Hölder continuity in space

We fix x, x′ ∈ Rd. By Lemma 5.8 and Assumption 5.1(1),

|ℓnt (x) − ℓnt (x′)| ≲ |Ptℓν(x) − Ptℓν(x′)|

+
∫ t

0
E[|∇pt−s(Xn

s − x) − ∇pt−s(Xn
s − x′)|] ds

=: I1 +
∫ t

0
In2 (s) ds. (5.29)

We consider the Gaussian process governed by the SDE

dY x
t =

√
2 dBt, t ∈ T, Y x

0 = x.

By [HW22, Theorem 1.1(2)],

E
[
sup
t∈T

|Y x
t − Y x′

t |
]
≲ |x− x′|. (5.30)

On the other hand,

I1 = |E[ℓν(Y x
t )] − E[ℓν(Y x′

t )]|
≤ [ℓν ]αE[|Y x

t − Y x′
t |α]

≤ [ℓν ]α(E[|Y x
t − Y x′

t |])α by Jensen’s inequality
≲ [ℓν ]α|x− x′|α by (5.30). (5.31)

Next we bound In2 (s). We have

In2 (s) ≲ s− 1+α
2 |x− x′|αE[p4(t−s)(Xn

s − x) + p4(t−s)(Xn
s − x′)] by (5.13)

= s− 1+α
2 |x− x′|α

∫
Rd
ℓns (y){p4(t−s)(y − x) + p4(t−s)(y − x′)} dy

≲ ∥ℓν∥∞s
− 1+α

2 |x− x′|α by (5.28). (5.32)

By (5.29), (5.31) and (5.32),

|ℓnt (x) − ℓnt (x′)|
|x− x′|α

≲ [ℓν ]α + ∥ℓν∥∞

∫ t

0
s− 1+α

2 ds

≲ ∥ℓν∥Cα
b

because α ∈ (0, 1). (5.33)

Then (5.28) and (5.33) imply (5.3).

5.3.3 Hölder continuity in time

We fix x ∈ Rd and 0 ≤ s < t ≤ T .
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1. First, we will prove (5.4). By Lemma 5.8,

ℓnt (x) = Ptℓν(x) +
∫ t

0
E[⟨bn(r,Xn

τn
r

),∇pt−r(Xn
r − x)⟩] dr,

ℓns (x) = Psℓν(x) +
∫ s

0
E[⟨bn(r,Xn

τn
r

),∇ps−r(Xn
r − x)⟩] dr.

(5.34)

By (5.34) and Assumption 5.1(1),

|ℓnt (x) − ℓns (x)| ≲ |Ptℓν(x) − Psℓν(x)|

+
∫ s

0
E[|∇pt−r(Xn

r − x) − ∇ps−r(Xn
r − x)|] dr

+
∫ t

s
E[|∇pt−r(Xn

r − x)|] dr

=: I1(x) + In2 (x) + In3 (x). (5.35)

It holds for i ∈ {0, 1} that

∇ipt−r(y − x) − ∇ips−r(y − x)

= ∇i
y

∫
Rd
ps−r(y − z)pt−s(z − x) dz − ∇ips−r(y − x)

= ∇i
y

∫
Rd
ps−r(y − z)pt−s(z − x) dz − ∇i

y

∫
Rd
ps−r(y − x)pt−s(z − x) dz

=
∫
Rd

{∇ips−r(y − z) − ∇ips−r(y − x)}pt−s(z − x) dz. (5.36)

First,

I1(x) =
∣∣∣∣ ∫

Rd
ℓν(y){pt(y − x) − ps(y − x)} dy

∣∣∣∣
=
∣∣∣∣ ∫

Rd

[ ∫
Rd
ℓν(y){ps(y − z) − ps(y − x)} dy

]
pt−s(z − x) dz

∣∣∣∣ by (5.36)

≤
∫
Rd

∣∣∣∣ ∫
Rd
ℓν(y){ps(y − z) − ps(y − x)} dy

∣∣∣∣pt−s(z − x) dz

=
∫
Rd

∣∣∣∣ ∫
Rd
ps(y){ℓν(y + z) − ℓν(y + x)} dy

∣∣∣∣pt−s(z − x) dz

≼
∫
Rd

|z − x|αpt−s(z − x) dz because ℓν ∈ Cαb (Rd)

≲ (t− s)
α
2 . (5.37)

Second,

In2 (x) =
∫ s

0
E
[∣∣∣∣ ∫

Rd
{∇ps−r(Xn

r − z) − ∇ps−r(Xn
r − x)}pt−s(z − x) dz

∣∣∣∣]dr by (5.36)

≤
∫ s

0

∫
Rd

E[|∇ps−r(Xn
r − z) − ∇ps−r(Xn

r − x)|]pt−s(z − x) dz dr

≲
∫ s

0
(s− r)− 1+α

2

∫
Rd

|z − x|αE[p4(s−r)(Xn
r − z)]pt−s(z − x) dz dr

+
∫ s

0
(s− r)− 1+α

2

∫
Rd

|z − x|αE[p4(s−r)(Xn
r − x)]pt−s(z − x) dz dr

by (5.13)

=: In21(x) + In22(x).
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We have

In21(x) =
∫ s

0
(s− r)− 1+α

2

∫
Rd×Rd

|z − x|αℓns (y)p4(s−r)(y − z)pt−s(z − x) dy dz dr

≼
∫ s

0
(s− r)− 1+α

2

∫
Rd×Rd

|z − x|αp4(s−r)(y − z)pt−s(z − x) dy dz dr by (5.28)

≲
∫ s

0
(s− r)− 1+α

2

∫
Rd×Rd

|z − x|αp4(s−r)(y − z)p4(t−s)(z − x) dy dz dr by (5.10)

=
∫ s

0
(s− r)− 1+α

2

∫
Rd

|z − x|αp4(t−s)(z − x) dz dr

≲ (t− s)
α
2

∫ s

0
(s− r)− 1+α

2 dr. (5.38)

Similarly,
In22(x) ≼ (t− s)

α
2

∫ s

0
(s− r)− 1+α

2 dr. (5.39)

Third,

In3 (x) =
∫ t

s

∫
Rd
ℓnr (y)|∇pt−r(y − x)| dy dr

≲
∫ t

s

1√
t− r

∫
Rd
ℓnr (y)pt−r(y − x) dy dr by (5.12) (5.40)

≼
∫ t

s

1√
t− r

∫
Rd
pt−r(y − x) dy dr by (5.28)

=
∫ t

s

dr√
t− r

≲
√
t− s ≲ (t− s)

α
2 . (5.41)

By (5.37), (5.38), (5.39) and (5.41),

|ℓnt (x) − ℓns (x)| ≼ (t− s)
α
2

[
1 + sup

s∈T

∫ s

0
(s− r)− 1+α

2 dr
]

≲ (t− s)
α
2 because α ∈ (0, 1).

This implies (5.4).

2. Second, we will prove (5.6). We have

I1(x) ≤
∫
Rd
ℓν(y)|pt(y − x) − ps(y − x)| dy

≲ |t− s|
α
2

∫
Rd
ℓν(y){t−

α
2 p2t(y − x) + s− α

2 p2s(y − x)} dy by (5.14)

≲ (t− s)
α
2 s− α

2

∫
Rd
ℓν(y){p2t(y − x) + p2s(y − x)} dy.

Then ∫
Rd

(1 + |x|p)I1(x) dx

≲ (t− s)
α
2 s− α

2

∫
Rd
ℓν(y)

[ ∫
Rd

(1 + |x|p){p2t(y − x) + p2s(y − x)} dx
]

dy

≲ (t− s)
α
2 s− α

2

∫
Rd

(1 + |y|p)ℓν(y) dy

≼ (t− s)
α
2 s− α

2 . (5.42)
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We have

In2 (x) ≲ |t− s|
α
2

∫ s

0
E[(t− r)− 1+α

2 p2(t−r)(Xn
r − x)

+ (s− r)− 1+α
2 p2(s−r)(Xn

r − x)] dr

by (5.14)

≲ |t− s|
α
2

∫ s

0
(s− r)− 1+α

2 E[p2(t−r)(Xn
r − x)] dr.

Then ∫
Rd

(1 + |x|p)In2 (x) dx

≲ |t− s|
α
2

∫ s

0
(s− r)− 1+α

2 E
[ ∫

Rd
(1 + |x|p)p2(t−r)(Xn

r − x) dx
]

dr

≲ |t− s|
α
2

∫ s

0
(s− r)− 1+α

2 E[1 + |Xn
r |p] dr

≼ |t− s|
α
2

∫ s

0
(s− r)− 1+α

2 dr by (5.5)

≲ |t− s|
α
2 because α ∈ (0, 1). (5.43)

We have ∫
Rd

(1 + |x|p)In3 (x) dx

≲
∫ t

s

1√
t− r

∫
Rd
ℓnr (y)

[ ∫
Rd

(1 + |x|p)pt−r(y − x) dx
]

dy dr by (5.40)

≲
∫ t

s

1√
t− r

[ ∫
Rd

(1 + |y|p)ℓnr (y) dy
]

dr

≼
∫ t

s

dr√
t− r

by (5.5)

≲
√
t− s ≲ (t− s)

α
2 . (5.44)

We have (5.35) together with (5.42), (5.43) and (5.44) implies (5.6).

3. We assume, in addition, that
∫
Rd(1 + |x|p)

√
ℓν(x) dx ≤ C holds. Finally, we will prove

(5.7). Let Y be a random variable whose density is p1. Then

I1(x) = |E[ℓν(x+
√
tY ) − ℓν(x+

√
sY )]|

≤ E[{|ℓν(x+
√
tY ) − ℓν(x+

√
sY )|2}

1
2 ]

≼ E[|(
√
t−

√
s)Y |

α
2 × |ℓν(x+

√
tY ) − ℓν(x+

√
sY )|

1
2 ] because ℓν ∈ Cαb (Rd)

≲ (t− s)
α
4 E[|Y |

α
2 {|ℓν(x+

√
tY )|

1
2 + |ℓν(x+

√
sY )|

1
2 }].
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Thus ∫
Rd

(1 + |x|p)I1(x) dx

≼ (t− s)
α
4 E[|Y |

α
2

∫
Rd

(1 + |x|p){|ℓν(x+
√
tY )|

1
2 + |ℓν(x+

√
sY )|

1
2 } dx]

≲ (t− s)
α
4 E[|Y |

α
2

∫
Rd

(1 + |x|p + |Y |p)
√
ℓν(x) dx]

≼ (t− s)
α
4 E[|Y |

α
2 (1 + |Y |p)]

≤ (t− s)
α
4 . (5.45)

We have (5.35) together with (5.45), (5.43) and (5.44) implies (5.7). This completes the
proof.

5.4 Existence of a weak solution

This section is dedicated to the proof of Theorem 5.3.

5.4.1 Convergence of marginal densities

By Theorem 5.2 and Arzelà–Ascoli theorem, there exist a sub-sequence (also denoted by (ℓn) for
simplicity) and a continuous function ℓ : T × Rd → R+ such that

lim
n

sup
t∈T

sup
x∈B(0,R)

|ℓnt (x) − ℓt(x)| = 0 for R > 0. (5.46)

Above, ℓt := ℓ(t, ·). Clearly, ℓ0 = ℓν and

sup
t∈T

∥ℓt∥Cα
b
≲ ∥ℓν∥Cα

b
,

∥ℓt − ℓs∥∞ ≼ |t− s|
α
2 for s, t ∈ T.

As in Section 4.4.2, we get

1. ℓt is a density whose induced distribution µt ∈ Pp(Rd).

2. There exist a function ϕ : R+ → R+ depending on (Θ1, ν) and a constant δ ∈ (0, 1
2) such

that limR→∞ ϕ(R) = 0 and

lim
n

sup
t∈[R−1,T ]

Wp(µnt , µt) = 0, (5.47)

Wp(µt, µs) ≼ |t− s|δ, (5.48)
sup
n∈N

sup
t∈T

µnt (Bc
R) ≼ ϕ(R), (5.49)

sup
t∈T

µt(Bc
R) ≼ ϕ(R) for R > T−1. (5.50)

5.4.2 Existence of a weak solution

We fix (f, g) ∈ C∞
c (0, T )×C∞

c (Rd). We apply Itô’s lemma to (5.9) and the map (t, x) 7→ f(t)g(x).
Then

E
[ ∫ t

0
f ′(s)g(Xn

s ) ds
]

= − E
[ ∫ t

0
⟨f(s)∇g(Xn

s ), bn(s,Xn
τn

s
)⟩ ds

]
− E

[ ∫ t

0
f(s)∆g(Xn

s ) ds
]
.

(5.51)
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Let

In1 (s) := E[g(Xn
s )],

In3 (s) := E[∆g(Xn
s )],

In2 (s) := E[⟨∇g(Xn
s ), bn(s,Xn

τn
s

)⟩]

=
∫
Rd×Rd

⟨∇g(y), bn(s, x)⟩ℓnτn
s

(x)

× ps−τn
s

(
x− y +

∫ s

τn
s

bnr (x) dr
)

dx dy.

by (5.15) (5.52)

By (5.51) and Fubini’s theorem,∫ t

0
f ′(s)In1 (s) ds = −

∫ t

0
f(s)In2 (s) ds−

∫ t

0
f(s)In3 (s) ds. (5.53)

It holds for n large enough that supp f ⊂ (εn, T ). WLOG, we assume s ∈ (εn, T ) and thus
bn(s, x) = b(s, x, ℓnτn

s
(x), µnτn

s
). By (5.47),

lim
n
In1 (s) =

∫
Rd
g(x)ℓ(s, x) dx,

lim
n
In3 (s) =

∫
Rd

∆g(x)ℓ(s, x) dx.
(5.54)

Next we consider In2 (s). For x ∈ Rd, we define νn,x ∈ P(Rd), hn(x) ∈ R and I2(s) ∈ R by

dνn,x(y) := ps−τn
s

(
x− y +

∫ s

τn
s

bn(r, x) dr
)

dy, (5.55)

hn(x) :=
∫
Rd

⟨∇g(y), b(s, x, ℓnτn
s

(x), µnτn
s

)⟩ dνn,x(y), (5.56)

I2(s) :=
∫
Rd
ℓs(x)⟨∇g(x), b(s, x, ℓs(x), µs)⟩ dx. (5.57)

Then ∫
Rd

|x− y| dνn,x(y) =
∫
Rd

|y|ps−τn
s

(
y +

∫ s

τn
s

bn(r, x) dr
)

dy,

≲
√
s− τns by Assumption 5.1(1) and (5.11), (5.58)

In2 (s) =
∫
Rd
ℓnτn

s
(x)hn(x) dx by (5.52), (5.55) and (5.56). (5.59)

WLOG, we assume ∥f∥∞ + ∥∇g∥∞ + ∥∇2g∥∞ ≤ 1. By (5.57) and (5.59),

|In2 (s) − I2(s)| ≲
∫
Rd

|ℓnτn
s

(x) − ℓs(x)| × |⟨∇g(x), b(s, x, ℓs(x), µs)⟩| dx

+
∫
Rd
ℓnτn

s
(x)|hn(x) − ⟨∇g(x), b(s, x, ℓs(x), µs)⟩| dx.

(5.60)
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First,

|hn(x) − ⟨∇g(x), b(s, x, ℓs(x), µs)⟩|

≲
∫
Rd

|∇g(y) − ∇g(x)| dνn,x(y)

+ |b(s, x, ℓnτn
s

(x), µnτn
s

) − b(s, x, ℓs(x), µs)|

by (5.56)

≲
∫
Rd

|x− y| dνn,x(y) + |ℓnτn
s

(x) − ℓs(x)| +Wp(µnτn
s
, µs) by Assumption 5.1(3)

≲
√
s− τns + |ℓnτn

s
(x) − ℓs(x)| +Wp(µnτn

s
, µs) by (5.58). (5.61)

Let S := supp g. Then S is compact. By (5.60) and (5.61),

|In2 (s) − I2(s)| ≲
∫
S

|ℓnτn
s

(x) − ℓs(x)| dx+
√
s− τns

+
∫
Rd
ℓnτn

s
(x)|ℓnτn

s
(x) − ℓs(x)| dx+Wp(µnτn

s
, µs).

(5.62)

By (5.4) and (5.46), it holds for R > 0 that

lim
n

sup
x∈B(0,R)

|ℓnτn
s

(x) − ℓs(x)| = 0. (5.63)

By (5.5) and (5.47),
lim
n
Wp(µnτn

s
, µs) = 0. (5.64)

We have

lim sup
n

|In2 (s) − I2(s)|

≲ lim sup
n

∫
Rd
ℓnτn

s
(x)|ℓnτn

s
(x) − ℓs(x)| dx by (5.62), (5.63) and (5.64)

≼ lim sup
n

∫
Rd

|ℓnτn
s

(x) − ℓs(x)| dx by (5.3)

≤ lim sup
n

∫
B(0,R)

|ℓnτn
s

(x) − ℓs(x)| dx+ lim sup
n

∫
Bc

R

|ℓnτn
s

(x) − ℓs(x)| dx

=: lim sup
n

In41(s,R) + lim sup
n

In42(s,R) for R > 0.

By (5.63), lim supn In41(s,R) = 0. By (5.49) and (5.50), lim supn In42(s,R) ≼ ϕ(R). Then
lim supn |In2 (s) − I2(s)| ≼ ϕ(R) and thus limn I

n
2 (s) = I2(s). This together with (5.53), (5.54)

and DCT implies∫ t

0

∫
Rd
f ′(s)g(x)ℓ(s, x) dx ds = −

∫ t

0

∫
Rd
f(s)⟨∇g(x), b(s, x, ℓ(s, x), µs)ℓ(s, x)⟩ dx ds

−
∫ t

0

∫
Rd
f(s)∆g(x)ℓ(s, x) dx ds.

Hence ℓ satisfies the following Fokker-Planck equation in distributional sense

∂tℓ(t, x) = −
d∑
i=1

∂xi{bi(t, x, ℓ(t, x), µt)ℓ(t, x)} + ∆ℓ(t, x).

Clearly,
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1. (t, x) 7→ b(t, x, ℓ(t, x), µt) is measurable with∫
T

∫
Rd

|b(t, x, ℓ(t, x), µt)| dµt(x) dt < ∞.

2. T → Pp(Rd), t 7→ µt is continuous by (5.48).

We apply superposition principle as in [BR20, Section 2] and get that (5.1) has a weak
solution whose marginal distribution is exactly (µt, t ∈ T). This completes the proof.

5.5 Rate of convergence

This section is dedicated to the proof of Theorem 5.4.

5.5.1 Decomposition of error

For (s, z) ∈ T × Rd, we define

In1 (s, z) := E[⟨bn(s,Xn
τn

s
),∇pt−s(Xn

s − z) − ∇pt−s(Xn
τn

s
− z)⟩],

In2 (s, z) := E[⟨bn(s,Xn
τn

s
),∇pt−s(Xn

τn
s

− z)⟩] − E[⟨bn(s,Xn
s ),∇pt−s(Xn

s − z)⟩],
In3 (s, z) := 1(εn,T ](s)E[⟨b(s,Xn

s , ℓ
n
τn

s
(Xn

s ), µnτn
s

) − b(s,Xn
s , ℓ

n
s (Xn

s ), µns ),∇pt−s(Xn
s − z)⟩],

In4 (s, z) := 1[0,εn](s)E[⟨b(s,Xn
s , ℓ

n
s (Xn

s ), µns ),∇pt−s(Xn
s − z)⟩].

We also define the density-like function ℓ̂nt : Rd → R by

ℓ̂nt (z) := Ptℓν(z) +
∫ t

0
E[⟨b(s,Xn

s , ℓ
n
s (Xn

s ), µns ),∇pt−s(Xn
s − z)⟩] ds.

By Lemma 5.8,

ℓnt (z) − ℓ̂nt (z) =
∫ t

0
{In1 (s, z) + In2 (s, z) + In3 (s, z) − In4 (s, z)} ds.

We define f, f̂ : T → R+ by

f(t) :=
∫
Rd

(1 + |z|p)|ℓnt (z) − ℓt(z)| dz,

f̂(t) :=
∫
Rd

(1 + |z|p)|ℓ̂nt (z) − ℓt(z)| dz.

By (5.5) and (5.48), f is bounded. Clearly,

f(t) ≤ f̂(t) +
∫ t

0

∫
Rd

(1 + |z|p){|In1 (s, z)| + |In2 (s, z)| + |In3 (s, z)| + |In4 (s, z)|} dz ds. (5.65)

We have

|In1 (s, z)| ≲ E[|∇pt−s(Xn
s − z) − ∇pt−s(Xn

τn
s

− z)|] by Assumption 5.1(1)

≲
1√
t− s

E[|Xn
s −Xn

τn
s

|α{p4(t−s)(Xn
s − z) + p4(t−s)(Xn

τn
s

− z)}] by (5.13)

≲
1√
t− s

∫
(Rd)2

|x− y|α{p4(t−s)(y − z) + p4(t−s)(x− z)}

× ℓnτn
s

(x)p2(s−τn
s )(x− y) dx dy.

by (5.16)
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There exists a constant κ > 0 (depending on Θ1) such that∫
Rd

(1 + |z|p){p4(t−s)(y − z) + p4(t−s)(x− z)} dz ≲ 1 + |x|p + |y|p,

|x− y|αp2(s−τn
s )(x− y) ≲ (s− τns )

α
2 pκ(s−τn

s )(x− y).

Then ∫
Rd

(1 + |z|p)|In1 (s, z)| dz

≲
(s− τns )

α
2

√
t− s

∫
(Rd)2

(1 + |x|p + |y|p)ℓnτn
s

(x)pκ(s−τn
s )(x− y) dx dy

≲
(s− τns )

α
2

√
t− s

∫
Rd

(1 + |x|p)ℓnτn
s

(x) dx

≼
(s− τns )

α
2

√
t− s

by (5.5). (5.66)

We have

|In2 (s, z)| ≤
∫
Rd

|⟨bn(s, x),∇pt−s(x− z)⟩| × |ℓnτn
s

(x) − ℓns (x)| dx

≲
1(εn,T ](s)√

t− s

∫
Rd
pt−s(x− z)|ℓnτn

s
(x) − ℓns (x)| dx by (5.8), (5.12) and Assumption 5.1(1).

Then ∫
Rd

(1 + |z|p)|In2 (s, z)| dz

≲
1(εn,T ](s)√

t− s

∫
Rd

[ ∫
Rd

(1 + |z|p)pt−s(x− z) dz
]
|ℓnτn

s
(x) − ℓns (x)| dx

≲
1(εn,T ](s)√

t− s

∫
Rd

(1 + |x|p)|ℓnτn
s

(x) − ℓns (x)| dx

≼
(s− τns )

α
2 1(εn,T ](s)

|τns |
α
2
√
t− s

by (5.6)

≲
(s− τns )

α
2 1(εn,T ](s)

(s− εn)
α
2
√
t− s

. (5.67)

We have

|In3 (s, z)| ≲ E[|∇pt−s(Xn
s − z)|]{∥ℓnτn

s
− ℓns ∥∞ +Wp(µnτn

s
, µns )} by Assumption 5.1(3)

≲
∥ℓnτn

s
− ℓns ∥∞ +Wp(µnτn

s
, µns )

√
t− s

E[pt−s(Xn
s − z)] by (5.12)

≼
(s− τns )

α
2

√
t− s

E[pt−s(Xn
s − z)] by Theorem 5.2.
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Then ∫
Rd

(1 + |z|p)|In3 (s, z)| dz ≼ (s− τns )
α
2

√
t− s

E
[ ∫

Rd
(1 + |z|p)pt−s(Xn

s − z) dz
]

≲
(s− τns )

α
2

√
t− s

E[1 + |Xn
s |p]

≼
(s− τns )

α
2

√
t− s

by (5.5). (5.68)

By Assumption 5.1(1) and (5.12),

|In4 (s, z)| ≲
1[0,εn](s)√
t− s

E[pt−s(Xn
s − z)].

Then ∫
Rd

(1 + |z|p)|In4 (s, z)| dz ≲
1[0,εn](s)√
t− s

E
[ ∫

Rd
(1 + |z|p)pt−s(Xn

s − z) dz
]

≲
1[0,εn](s)√
t− s

E[1 + |Xn
s |p]

≼
1[0,εn](s)√
t− s

by (5.5). (5.69)

5.5.2 Bound weighted total variation norm

As in Section 4.5.1, we have

f̂(t) ≲ (1 + ∥ℓν∥∞ +Mp(ν))
∫ t

0
(T − s)− 1

2 {f(s) + |f(s)|
1
p } ds

≼
∫ t

0
(T − s)− 1

2 {f(s) + |f(s)|
1
p } ds. (5.70)

By (5.65), (5.66), (5.67), (5.68), (5.69) and (5.70),

f(t) ≼ (s− τns )
α
2

∫ t

0

{ 1√
t− s

+
1[0,εn](s)

(s− τns )
α
2
√
t− s

+
1(εn,T ](s)

(s− εn)
α
2
√
t− s

}
ds

+
∫ t

0
(T − s)− 1

2 {f(s) + |f(s)|
1
p } ds

≲ (s− τns )
α
2 +

∫ t

0
(T − s)− 1

2 {f(s) + |f(s)|
1
p } ds.

Because p = 1 and s− τns ≤ 1
n ,

f(t) ≼ n− α
2 +

∫ t

0
(T − s)− 1

2 f(s) ds.

By Gronwall’s lemma,
sup
t∈T

f(t) ≼ n− α
2 .

This completes the thesis.
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