
Université Toulouse 1 Capitole

École Doctorale de Mathématiques, Informatique,
Télécommunications de Toulouse (ED475)

Laboratoire TSE-R (CNRS UMR 5314)

On deep network training: complexity,
robustness of nonsmooth backpropagation,

and inertial algorithms

Entrâınement des réseaux profonds : complexité,
robustesse de la rétropropagation non lisse et

algorithmes inertiels

Par Ryan BOUSTANY

Thèse de doctorat de mathématiques appliquées

Dirigée par Jérôme BOLTE
et Edouard PAUWELS

Présentée et soutenue publiquement le 31 mars 2025.

Devant un jury composé de :
Audrey REPETTI Heriot-Watt University Rapporteure
Samir ADLY Université de Limoges Président du jury
Peter OCHS Saarland University Rapporteur
Pierre ABLIN Apple ML Research Examinateur
Jérôme BOLTE Toulouse School of Economics Directeur de thèse
Edouard PAUWELS Toulouse School of Economics Co-directeur de thèse
Béatrice PESQUET-POPESCU Thales LAS France Co-encadrante
Andrei PURICA Thales LAS France Co-encadrant

ii

iii

Title: On deep network training: complexity, robustness of nonsmooth backprop-
agation, and inertial algorithms

Abstract : Learning based on neural networks relies on the combined use of
first-order non-convex optimization techniques, subsampling approximation [1],
and algorithmic differentiation, which is the automated numerical application
of differential calculus [2]–[4]. These methods are fundamental to modern
computing libraries such as TensorFlow [5], PyTorch [6] and JAX [7]. However,
these libraries use algorithmic differentiation beyond their primary focus on
basic differentiable operations [8]. Often, models incorporate non-differentiable
activation functions like ReLU or generalized derivatives for complex objects
(solutions to sub-optimization problems [9]). Consequently, understanding the
behavior of nonsmooth algorithmic differentiation and its impact on learning
has emerged as a key issue in the machine learning community [8]. To address
this, a new concept of nonsmooth differentiation, called conservative gradients,
has been developed to model nonsmooth algorithmic differentiation in modern
learning contexts [10]. This concept also helps in formulating learning guarantees
and ensuring algorithm stability in practical implementation within deep neural
networks [10], [11].

In this context, we propose two extensions of the conservative calculus, finding
a wide range of applications in machine learning. The first result provides a
simple model to estimate the computational costs of the backward and forward
modes of algorithmic differentiation for a wide class of nonsmooth programs. A
second result focuses on the reliability of automatic differentiation for nonsmooth
neural networks operating with floating-point numbers. Finally, we propose a
new optimizer algorithm exploiting second-order information only using noisy
first-order nonsmooth nonconvex automatic differentiation. Starting from a
dynamical system (an ordinary differential equation), we build INNAprop,
derived from a combination of INNA [12] and RMSprop [13].

Keywords: Nonsmooth algorithms, automatic differentiation, conservative gra-
dients, nonsmooth nonconvex optimization.

iv

Titre: Entrâınement des réseaux profonds : complexité, robustesse de la rétropropagation
non lisse et algorithmes inertiels

Résumé : L’apprentissage basé sur les réseaux neuronaux repose sur
l’utilisation combinée de techniques d’optimisation non convexe de premier
ordre, d’approximation par sous-échantillonnage [1], et de différenciation algorith-
mique, qui est l’application numérique automatisée du calcul différentiel [2]–[4].
Ces méthodes sont fondamentales pour les bibliothèques informatiques modernes
telles que TensorFlow [5], PyTorch [6] et JAX [7]. Cependant, ces bibliothèques
utilisent la différenciation algorithmique au-delà de leur cadre primaire sur
les opérations différentiables [8]. Souvent, les modèles intègrent des fonctions
d’activation non différentiables comme ReLU ou des dérivées généralisées pour
des objets complexes (solutions à des problèmes de sous-optimisation [9]). Par
conséquent, comprendre le comportement de la différenciation algorithmique
non lisse et son impact sur l’apprentissage est devenu un enjeu clé dans la
communauté de l’apprentissage automatique [8]. Pour aborder cela, un nouveau
concept de différenciation non lisse, appelé gradients conservatifs, a été développé
pour modéliser la différenciation algorithmique non lisse dans les contextes
d’apprentissage modernes [10]. Ce concept facilite également la formulation
de garanties d’apprentissage et la stabilité des algorithmes dans les réseaux
neuronaux profonds tels qu’ils sont pratiquement implémentés [10], [11].

Dans ce contexte, nous proposons deux extensions des gradients conservatifs,
trouvant une large gamme d’applications dans l’apprentissage automatique. Le
premier résultat fournit un modèle simple pour estimer les coûts computationnels
des modes backward et forward de la différenciation algorithmique pour une
large classe de programmes non lisses. Un deuxième résultat se concentre sur la
fiabilité de la différenciation automatique pour les réseaux de neurones non lisses
opérant avec des nombres en virgule flottante. Enfin, nous proposons un nouvel
algorithme d’optimisation exploitant uniquement des informations de second
ordre en utilisant la différenciation automatique non lisse non convexe de premier
ordre bruitée. Partant d’un système dynamique (une équation différentielle
ordinaire), nous construisons INNAprop, dérivé d’une combinaison d’INNA [12]
et de RMSprop [13].

Mots-clés : Algorithmes non lisses, différenciation automatique, gradients con-
servatifs, optimisation non convexe non lisse.

v

Remerciements

Comme on ne le fait jamais assez souvent, ces quelques lignes sont l’occasion
de remercier toutes les personnes qui, de près ou de loin, ont contribué à cette thèse.

Je tiens d’abord à remercier Jérôme et Edouard, mes deux directeurs de thèse,
pour tout ce que vous m’avez apporté sur le plan scientifique. Merci pour votre
bienveillance et vos précieux conseils, qui m’ont permis de gagner en autonomie
au fil du temps. Ce fut un vrai plaisir de travailler avec vous, et je garderai
d’excellents souvenirs de nos échanges, qu’ils concernent la recherche, les sujets
d’actualité ou le sport.

Je tiens également à remercier Andrei et Béatrice, mes encadrants chez Thales.
Vos compétences scientifiques sont indéniables et ont grandement contribué à la
qualité des travaux menés durant cette thèse. Merci, Andrei, pour ton aide dans
la réalisation des expériences numériques de tous ces articles. Merci aussi pour
ta patience, ta bienveillance, et tes conseils toujours avisés. J’ai été vraiment
impressionné par tes connaissances en code, en recherche, et sur l’état de l’art en
IA.

Je tiens à remercier les membres du jury de soutenance. Un grand merci à
Audrey Repetti, Samir Adly et Peter Ochs d’avoir rapporté ma thèse, ainsi qu’à
Pierre Ablin pour avoir été examinateur. Je suis très honoré et reconnaissant que
vous ayez accepté d’évaluer mes travaux.

Bien que les conférences et séminaires marquent des temps forts dans la vie
de la recherche et favorisent des rencontres enrichissantes, ce sont les échanges du
quotidien qui ont réellement tisser le fil de mon aventure en thèse. Je remercie
donc chaleureusement tous mes collègues de Thales Rungis pour leurs conseils
avisés et leur bienveillance. Un merci particulier à Rémy, Jules, Sylvain, Anita,
Manu, Sophie, Raymond, Daniel, et Benôıt. Je remercie aussi toutes les personnes
que j’ai croisées au laboratoire de TSE. Merci à mes collègues de bureau : Tam,
Tony, Marine, Colombe, Camille, Lukas, Étienne, Joseph. Merci également aux
enseignants-chercheurs avec qui j’ai pu échanger: Abdelaati, Laurent, Anne, Éric,
Adrien, Thibault, Jérôme et Bénédicte. Un grand merci au service informatique
pour votre aide précieuse avec les accès aux clusters, et une mention spéciale
pour Mélodie Angeletti et Céline Parzani. Je remercie également Nicolas Renon,
Christophe Marteau, Laurent Cabanas, Alejandro Estana et toute l’équipe Calmip
pour leur aide précieuse concernant l’accès au cluster Turpan.

Je profite de ces quelques lignes pour remercier tous mes amis. Je ne vais pas
vous citer un par un, de peur d’en oublier et de m’attirer des ennuis. . . Mais
sachez que je vous suis infiniment reconnaissant pour votre soutien tout au long
de cette aventure. Merci à mes amis d’Enghien-les-Bains, cela fait bientôt plus de
la moitié de ma vie que l’on se connâıt, et même si je ne le dis pas assez (voire pas
du tout), merci pour votre soutien. Merci aussi à mes amis de l’ENSAE, qui ont
sans doute influencé positivement mon choix de poursuivre en thèse après notre
dernière année là-bas. Enfin, merci à mes amis de Dauphine, et en particulier aux

vi

jumeaux Nathan et Sacha. Merci à Samy d’avoir relu une partie de ce manuscrit.

Je remercie Lola d’avoir toujours été là pour moi, même à distance pendant ces
deux premières années, et pour son immense soutien qui m’a porté au quotidien.
Enfin, je dédie ces quelques mots à mes parents et à ma soeur: merci pour votre
présence constante et tout ce que vous avez fait pour moi. Rien de tout cela
n’aurait été possible sans vous.

Contents

1 Introduction 1
1.1 Training nonsmooth neural networks 2
1.2 Automatic differentation . 4
1.3 Numerical precision in deep learning 7
1.4 Gradient-based optimization for deep learning 9
1.5 Thesis outline and contributions . 13

2 On the complexity of nonsmooth automatic differentiation 15
2.1 Introduction . 16
2.2 Preliminaries on nonsmooth optimization 17
2.3 Nonsmooth calculus with conservative derivatives 19
2.4 A cheap conservative gradient principle 20
2.5 On the computational hardness of generalized gradients 25

A Appendix of Chapter 2 29
2.6 Further comments, discussion and technical elements 29
2.7 Proofs related to Section 2.4.3 . 31
2.8 Proofs of Section 2.5.1 . 36
2.9 Proofs of Section 2.5.3 . 38

3 On the numerical reliability of nonsmooth automatic differentia-
tion 49
3.1 Introduction . 51
3.2 Nonsmooth AD for MaxPool neural networks 53
3.3 A new numerical bifurcation zone 56
3.4 Experiments on learning . 62

B Appendix of Chapter 3 65
3.5 Further comments, discussion, and technical elements 65
3.6 Proof related to Section 3.2.3 . 69
3.7 Complements on experiments . 69

4 A second-order-like optimizer with adaptive gradient scaling for
deep learning 73
4.1 Introduction . 74
4.2 INNAprop: a second-order method in space and time based on RM-

SProp . 77
4.3 Empirical evaluation of INNAprop 79

vii

viii

C Appendix of Chapter 4 87
4.4 A reminder on optimization algorithms 87
4.5 Derivation of INNAprop from DIN 88
4.6 Alternative discretizations . 92
4.7 Scheduler procedures . 96
4.8 Choosing hyperparameters α and β for INNAprop 96
4.9 Additional experiments . 99
4.10 Experimental Setup . 100

5 Conclusion and perspectives 105

List of Figures

1.1 ReLU function. 3
1.2 MaxPool function . 3
1.3 Example of a convolutional architecture (LeNet-5 [49]). 4
1.4 Top: AD applied to ReLU and two different implementations of the

same function. Figure taken from [11]. 7
1.5 Bit representation of 64-bit double-precision floats. 7

2.1 Analysis of computational costs ωb for backpropagation in ReLU
networks using the MNIST dataset. 24

2.2 DAG illustrating different programs with dictionary D := {+,×}.
(a) P0(a, b) = a + b, of level 0 which is identified with + from the
dictionary, (b) P1(a, b, c) = a(b+ c), of level 1, (c) Q1(a, b, c) = ab+
ac, of level 1 and equivalent to P1, (d) P2(a, b, c, d) = (a+b)(c+d) =
Q1(a, c, d) + P1(b, c, d), of level 2. 30

3.1 Image segment post-convolution, spotlighting equal pixel values (marked
in red) within a 2x2 MaxPool window. 51

3.2 Implementation of programs max1, max2 and zero using PyTorch.
Programs max1 and max2 are an equivalent implementation of max,
but with different derivatives due to the implementation. 52

3.3 Histogram of backprop variation Dm,q for LeNet-5 on MNIST (128
mini-batch size) at 32-bit precision, comparing P with P̃ and P
with Q over M = 1000 experiments. 58

3.4 Histogram of backprop variation under nondeterministic GPU op-
erations, where f is a LeNet-5 network on MNIST with batch size
128 for M = 1000 experiments. 59

3.5 Histogram of backprop variation with ReLU-derived programs, where
f is a LeNet-5 network on MNIST with batch size 128 for M = 1000
experiments. 60

3.6 Impact of different size parameters on the proportion of affected
mini-batches (see Equation (3.18) using CIFAR10 dataset. First:
Different VGG network sizes. Second: VGG11 with varying mini-
batch sizes. Third: VGG11 with and without batch normalization. . 62

3.7 Training a VGG network on CIFAR10 with SGD. We performed ten
random initializations for each experiment, depicted by the boxplots
and the filled contours (standard deviation). 63

ix

x

3.8 Left: Difference between network parameters (L1 norm) at each
epoch. “0 vs 0” indicates ∥θk,P0 − θk,P7∥1 where P7 is a second run
of P0 for sanity check, “0 vs 1” indicates ∥θk,P0−θk,P1∥1. Right: test
accuracy of each {Pi}5

i=0 for 200 epochs. 64
3.9 Implementation of max1, max2 and zero2 using Pytorch. Programs

max1 and max2 are an equivalent implementation of max, but im-
plemented using different ReLU-derived programs. 65

3.10 Histogram of backprop variation between P and Q for a LeNet-
5 network on MNIST (128 mini-batch size) with 16-bit. We run
M = 1000 experiments. 66

3.11 Training losses on CIFAR10 (left) and test accuracy (right) on VGG
network trained with Adam optimizer and without batch normal-
ization. 71

3.12 Training a LeNet-5 network on MNIST with SGD. We performed
ten random initializations for each experiment, depicted by the box-
plots and the filled contours (standard deviation). 71

3.13 Training a ResNet18 network on CIFAR10 with SGD. We performed
ten random initializations for each experiment, depicted by the box-
plots and the filled contours (standard deviation). 72

3.14 Test accuracy during training a Resnet50 on ImageNet with SGD
using mixed precision. The shaded area represents three runs. We
have a chaotic test accuracy behavior for β = 103. 72

4.1 Log-scale training loss and test accuracies for hyperparameters (α, β)
with VGG11 on CIFAR10 at 20 and 200 epochs. Optimal learning
rate γ0 = 10−3 and weight decay λ = 0.01, with one random seed. . 81

4.2 Training VGG11 on CIFAR10. Left: train loss, middle: test accu-
racy (%), right: train accuracy (%), with 8 random seeds. 81

4.3 Training a ResNet50 (top) and ViT-B/32 (bottom) on ImageNet.
Left: train loss, middle: Top-1 test accuracy (%), right: Top-1 train
accuracy (%). 3 random seeds. 83

4.4 Finetuning a VGG11 on Food101. Left: train loss, middle: test ac-
curacy (%), right: train accuracy (%). Qualitatively similar results
for ResNet18 are in Figure 4.16 in Section 4.9. 3 random seeds. . . 84

4.5 GPT-2 training from scratch on OpenWebText (Sophia-G unstable
on mini and medium). 85

4.6 Perplexity test with GPT-2 E2E Dataset with LoRA finetuning on
five epochs. Three random seeds. 85

4.7 Training VGG11 on CIFAR10. Left: train loss, middle: test accu-
racy (%), right: train accuracy (%), with 8 random seeds. 91

4.8 Training ResNet18 on CIFAR10. Left: train loss, middle: test ac-
curacy (%), right: train accuracy (%), with 8 random seeds. 91

4.9 Training a ResNet50 (top) and ResNet18 (bottom) on ImageNet.
Left: train loss, middle: Top-1 test accuracy (%), right: Top-1
train accuracy (%). 3 random seeds. 92

4.10 The version of INNA with momentum of Section 4.6.2 is an unstable
method. 94

xi

4.11 Comparative performance of the training loss and test accuracy ac-
cording to γ0. We trained VGG11 and ResNet18 models on CI-
FAR10 for 200 epochs. 97

4.12 Log-scale training loss and test accuracies for (α, β) hyperparame-
ters with VGG11 on CIFAR10 at different epochs. Optimal learning
rate γ0 = 10−3, weight decay λ = 0. 97

4.13 Log-scale training loss and test accuracies for (α, β) hyperparame-
ters with ResNet18 on CIFAR10 at different epochs. Optimal learn-
ing rate γ0 = 10−3, weight decay λ = 0.01. 98

4.14 Log-scale training loss and test accuracies for (α, β) hyperparame-
ters with ResNet18 on CIFAR10 at different epochs. Optimal learn-
ing rate γ0 = 10−3, weight decay λ = 0. 98

4.15 Training ResNet18 on CIFAR10. Left: train loss, middle: test ac-
curacy (%), right: train accuracy (%), with 8 random seeds. 99

4.16 Finetuning a ResNet18 on Food101, same as Figure 4.4 for ResNet18.
Left: train loss, middle: test accuracy (%), right: train accuracy
(%), with 3 random seeds. 99

4.17 Training ResNet18 on ImageNet. Left: train loss, middle: test
accuracy (%), right: train accuracy (%), with 3 random seeds. . . . 99

4.18 Fast training ViT/B-32 on ImageNet with weight decay λ = 0.01
for INNAprop (α, β) = (0.1, 0.9). Left: train loss, middle: test
accuracy (%), right: train accuracy (%), with 3 random seeds. . . . 100

4.19 Validation loss comparison during GPT-2 mini training from scratch
on the OpenWebText dataset. 100

xii

List of Tables

1.1 Comparison of float16, float32, and float64 formats in deep learning. 8

2.1 Complexity constant of ωb in Theorem 3 for elementary g in DReLU
and derived program with dictionary D′

ReLU. This proves Corollary
2 (more details in Appendix 2.7.1). 24

2.2 Extension of cost table. cnonlin ≥ 1 is the cost of nonlinear operations
and cReLU ≥ 0 is the cost of sign evaluation for ReLU or ReLU′. . . 34

2.3 Extension of cost table. cnonlin ≥ 1 is the cost of nonlinear operations
and cReLU ≥ 0 is the cost of sign evaluation for ReLU or ReLU′. For
simplicity cReLU is abbreviated cR and cnonlin is abbreviated cnl . . . 34

3.1 Overview of numerical AD errors for the zero program with 32 bits
precision. 52

3.2 Impact of S according to floating-point precision using a VGG11,
on CIFAR10 dataset and M = 1000 experiments. The first line
represents network parameters θm in S, while the second measured
the proportion of affected mini-batches falling in S. 61

3.3 Summary of various types of AD errors with zero2 program using
PyTorch for different combinations of t and x. 66

3.4 Threshold values of various neural networks f across different datasets. 68

4.1 Hyperparameter tuning strategy for INNAprop and AdamW: AdamW
is systematically favored. 80

4.2 Test accuracy (%) of ResNet-18, VGG11, and DenseNet121 on CIFAR-
10 using AdamW optimized weight decay and learning rate. Results
are averaged over eight runs. 82

4.3 Top-1 and Top-5 accuracy (%) of ResNet-18, ResNet-50, and ViT-
B/32 on ImageNet. Results are averaged from three runs for ResNets
and one run for ViT-B/32. AdamW favored as in Table 4.1. 83

4.4 Performance comparison for GPT-2 training from scratch on Open-
WebText (validation loss) and fine-tuning with LoRA on the E2E
dataset (perplexity). 86

4.5 Update rules considered for known optimizers. SGD is due to [26],
Momentum to [62], Nesterov to [64], RMSprop + Momentum to
[166], Adam to [65], NAdam to [158] and INNA to [12]. 87

xiii

xiv

Chapter 1

Introduction

Neural networks, which were introduced decades ago [14], [15], were largely ig-
nored by the computer science community until their resurgence in the 1980s [16].
Their popularity began in the late 2000s [17]–[19], driven by breakthroughs in ap-
plications such as computer vision [20] and natural language processing [21]. This
renewed interest gave rise to deep learning, a branch of machine learning focused
on neural networks. The success of the convolutional neural network AlexNet [20]
in the ImageNet 2012 Challenge marked a significant milestone. More broadly, the
success of deep learning can be attributed to advancements in computing power
(particularly GPUs1), the availability of large-scale datasets [22]–[24], and the pro-
liferation of open-source software tools [5], [6], [25].

A key challenge in machine learning problems is training more complex neu-
ral networks, which implies minimizing a large, non-convex, and nonsmooth2 loss
function. This training relies on nonsmooth automatic differentiation [3], [10] and
stochastic first-order methods [1], particularly stochastic gradient descent [26].
Another major challenge in training large models is the high computational costs
and energy requirements [27]–[29]. For example, the significant expense of lan-
guage model pre-training means that even a small improvement in optimization
algorithms can substantially reduce training time, costs, and energy consumption.
For example, Google claimed that the training cost for Gemini [30] exceeded 100
million dollars. This implies a need for more cost-efficient optimization algorithms.

The practical success of deep learning algorithms is frequently valued more
highly by practitioners than their theoretical guarantees. The field is driven by
strong empirical performance, while the unexplained aspects of deep learning re-
main under active research. For example, most existing optimization algorithms,
such as AdaGrad [31], AdamW [32], and Lion [33] are designed for convex opti-
mization and do not fully exploit the nonconvex nonsmooth nature of deep learning
loss functions. The convergence is well understood for convex functions [34] and
smooth networks typically by using Lipschitz gradient continuity assumptions [35],
[36]. However, guarantees for nonsmooth neural networks are limited, with a few
exceptions [10], [37]. Actually, smooth and nonconvex is also a challenge [38]–[40].

1Graphics Processing Unit.
2Nonsmoothness refers to the lack of differentiability at certain points.

1

2

This thesis focuses on the numerical and theoretical aspects of deep learning
problems arising from nonsmoothness during neural network training. Indeed,
common operations in neural networks, like finding the maximum and threshold-
ing values, introduce points of nondifferentiability that need specific analysis. In
addition, the thesis proposes a new optimization algorithm that combines Hessian-
driven damping with adaptive gradient scaling. It leverages second-order informa-
tion and rescaling while keeping the computational and memory requirements of
standard deep learning optimization algorithms.

1.1 Training nonsmooth neural networks
In the context of machine learning, training a model can be formally viewed as a
risk minimization problem. Let Z ⊂ Rd denote the space of possible data points,
where each data point z ∈ Z is a d-dimensional vector, and let P be the underlying
data distribution over Z. The objective is to find a model f(θ, ·), parameterized
by θ ∈ Rp, that minimizes the expected risk, defined as:

min
θ∈Rp

F (θ) := Ez∼P [ℓ(f(θ, z))] (1.1)

where ℓ : Rp × Rd → R is a loss function that evaluates the model’s performance
f(θ, z) on a data point z, and E represents the expectation over the distribution
P . Nonsmooth optimization problems often arise when the loss function ℓ includes
nonsmooth operations such as ReLU [41] or MaxPool [42]. Conversely, nonconvex-
ity is inherent in many modern machine learning models, especially deep neural
networks. The nonsmoothness and nonconvexity make the optimization landscape
challenging, as traditional convex optimization techniques [43], [44] are not directly
applicable.

1.1.1 Deep learning framework
Supervised learning. In the context of supervised learning, we consider a
dataset D = {(xn, yn)}Nn=1 consisting of input-output pairs (xn, yn) ∈ X × Y .
The goal is to find a predictor function f(θ, ·) that maps inputs x to outputs y
by minimizing the expected risk over the joint distribution of (x, y). This can be
formally expressed as:

min
θ∈Rp

F (θ) := E(x,y)∼P [ℓ(f(θ, x), y)] (1.2)

where P denotes the underlying joint distribution of input-output pairs, and ℓ is a
loss function such as the cross-entropy loss or mean squared error. The probability
law P is often unknown and represents the distribution of real-world data. Hence,
the empirical risk J over the training dataset D is minimized in practice:

min
θ∈Rp
J (θ) := 1

N

N∑
n=1

ℓ(f(θ, xn), yn) (1.3)

We denote Jn the n-th term of the sum in (1.3), i.e, for all θ ∈ Rp, Jn :=
ℓ(f(θ, xn), yn).

3

Neural networks. In Equation (1.3), the predictor function f(θ, ·) can take
various forms. Here, we focus on predictors used in deep learning, known as
neural networks. They are compositions of nonlinear functions (σl)Ll=0 and affine
transformations parameterized by (Wl, bl)Ll=0. Formally, a neural network with L
layers can be represented as:

f(θ, x) = σL
(
WLσL−1

(
WL−1 · · ·σ1(W1x+ b1) · · ·+ bL−1

)
+ bL

)
, (1.4)

where σl are the nonlinear activation functions (for e.g ReLU, LeakyReLU or
MaxPool), Wl ∈ Rdl×dl−1 are the weight matrices, and bl ∈ Rdl are the bias vectors
for layer l. The parameter θ consists of all weight matrices and bias vectors
(Wl, bl)Ll=0.

The Rectified Linear Unit (ReLU), defined as
ReLU(x) := max(0, x), is one of the most widely
used activation functions in deep learning. ReLU is
frequently incorporated into various model architec-
tures, such as convolutional neural networks (CNNs)
[20], deep residual networks [45], and transformer
blocks in attention-based models [46], which play
a critical role in natural language processing. The
ReLU activation function introduces nonsmoothness
due to its piecewise linear nature (refer to Figure 1.1).

x

y

−2 −1 1 2

1

2

Figure 1.1: ReLU func-
tion.

Another commonly used nonlinear transformation for image data is the MaxPool-
ing operation. Given a matrix input X, structured as a block matrix with blocks
of size d× d (typically d = 2), MaxPool outputs a matrix where each element rep-
resents the maximum value within each block. This transformation enables image
down-sampling, reducing spatial dimensions while preserving key features. When
applied to uniform pixel values (as in Figure 1.2), MaxPool can cause nonsmooth-
ness and identical points can be chosen arbitrarily (see Section 3.1). Below is an
example of MaxPooling applied with a window size of 2:

10 10 1 1

10 10 -3 0

1 2 17 11

9 14 5 3

10 1

14 17

2× 2 MaxPool

Figure 1.2: MaxPool function

Popular deep learning architectures. The range of neural network architec-
tures is rapidly growing, with each designed to tackle specific challenges in different
fields. While a two-layer network can theoretically approximate any continuous
function [47], deeper networks have proven more effective in practice, especially
for tasks involving large datasets [48]. These include applications like character
recognition, object and speech recognition, and natural language processing.

4

One of the first influential architectures for image classification was LeNet-5
[49], developed for handwritten digit recognition. It had seven layers, including
convolutional and subsampling layers, and laid the foundation for modern CNNs.
AlexNet, introduced in 2012, built on this by using 60 million parameters across 8
layers and was trained on the ImageNet dataset, which contained 1.2 million images
[22]. Residual Networks (ResNets) [45] and VGG [50] pushed network complexity,
with configurations reaching up to 152 layers. More recently, Vision Transformers
(ViTs) [51] have gained popularity by using self-attention mechanisms to process
images, offering an alternative to CNNs. As large language models (LLMs) have
grown, so has model size. For example, the Mistral 7B [52], an advanced open-
source model, incorporates 7 billion parameters.

Max-Pool Convolution Max-Pool Dense

8@128x128
8@64x64

24@48x48 24@16x16 1x256
1x128

1x10

Figure 1.3: Example of a convolutional architecture (LeNet-5 [49]).

1.2 Automatic differentation
Many numerical methods rely on calculating derivatives. Classic examples include
using gradient descent or Newton’s method to optimize an objective function. In
machine learning, gradients are essential for training neural networks [53]. How-
ever, derivatives often cannot be computed analytically and must be approximated
numerically. Even when analytical solutions exist, manual calculations can be
complex and error-prone. Three methods automate derivative calculations: finite
differentiation, symbolic differentiation, and automatic differentiation (also called
autodiff or AD). For more details on the computation of derivatives in computer
programs, refer to [2], [8].

Finite differentiation. A simple way to approximate the gradient of a differ-
entiable function f : Rp → R is through finite differences. This method estimates
each partial derivative by slightly shifting θ along each coordinate axis:

∇f(θ) ≈ 1
t

f(θ + te1)− f(θ)
f(θ + te2)− f(θ)

...
f(θ + tep)− f(θ)

where t is a small positive number, and ei represents the ith unit vector in the
canonical basis of Rp. The computational cost scales with the number of param-
eters p, making this method expensive in machine learning, especially for large
models.

5

Symbolic differentiation. This method calculates exact derivatives by apply-
ing algebraic rules directly to the function’s symbolic form. Unlike numerical meth-
ods, which approximate derivatives, symbolic differentiation provides an exact gra-
dient for a function f by manipulating its mathematical expression∇θf(θ) = ∂f(θ)

∂θ
.

For example, for f(θ1, θ2) = θ2
1 + sin(θ2), the derivatives are:

∂f

∂θ1
= 2θ1,

∂f

∂θ2
= cos(θ2).

While this method is precise and avoids approximation errors, it can become
inefficient for complex functions due to “expression swell,” where derivative expres-
sions grow large and unwieldy. This limits its practicality for large-scale models
in machine learning, which involve many nested operations.

1.2.1 Practical implementation of AD
For now, we set aside the nonsmooth case. AD is a highly efficient method for com-
puting exact gradients by systematically applying the chain rule. In deep learning,
AD is better known as backpropagation, where it automates gradient computation
by breaking down complex functions into simpler ones [3], [8], [49]. AD works by
evaluating the gradient of a function f : Rp → R through a sequence of elementary
operations (e.g., sum, product, exponential, sine, cosine). Mathematically, if f is
composed of several operations, f(θ) = fn ◦ fn−1 ◦ · · · ◦ f1(θ), AD uses the chain
rule as follows:

∇f(θ) = ∂fn
∂fn−1(θ)

× ∂fn−1

∂fn−2(θ)
· · · × ∂f1

∂θ

AD operates in two main modes: forward mode and reverse mode. Forward
mode computes derivatives by propagating from inputs to outputs, which is effi-
cient when the number of inputs is smaller than the number of outputs. In contrast,
reverse mode computes derivatives by propagating from outputs back to inputs,
which is ideal for functions with many inputs and fewer outputs, such as neural
networks. This mode is commonly used in deep learning for backpropagation. As
a result, AD is a core component of modern machine learning frameworks like
TensorFlow [5], PyTorch [6], and JAX [7], enabling efficient training of large-scale
models with high accuracy.

1.2.2 Complexity of AD
For rational functions, Baur and Strassen [54] show that the cost of computing
gradients using AD is at most five times the cost of evaluating the function itself.
This result has been extended to cover differentiable functions more generally [8].
For a differentiable function f : Rp → Rm, if the cost to evaluate f is denoted
as cost(f), then the time required to compute the m × p Jacobian matrix using
forward mode AD is proportional to p× c× cost(f). In contrast, reverse mode AD
computes the same Jacobian in m× c× cost(f), where c is a constant with c < 6,
typically around 2 to 3 [8].

6

This implies that reverse mode AD is more efficient when m≪ p, which is often
the case in machine learning, where we compute the gradient of a scalar-valued
loss function (m = 1) with respect to a large number of parameters (p).

Justifying nonsmooth calculus is essential to understanding the complexity of
algorithms in practice, especially as they are implemented in nonsmooth settings.
In domains like deep learning, where numerous nonsmooth models are used; a
flexible and user-friendly theoretical framework is highly desirable. In Section 2.4,
we present our first contribution [55], introducing a simple model to estimate the
computational costs of both forward and reverse modes of AD for a wide range of
nonsmooth programs.

1.2.3 Nonsmooth AD implementation
As seen previously, AD is frequently applied to nonsmooth functions in deep learn-
ing, which often arise in practical implementations due to conditional statements
such as if and else. These conditionals allow AD to operate on different parts
of the computational graph, even when the function is not differentiable at all
points. For example, consider the representation of the ReLU function, which can
be defined using conditional statements as follows:

ReLU(x) =
0 if x ≤ 0
x else.

In PyTorch’s native implementation of ReLU, the autodiff (backpropagation) out-
put is calculated as:

backprop ReLU(x) =
0 if x ≤ 0

1 else.

AD operates on programs, not functions [11]. While AD is theoretically
designed for smooth functions [8], it is commonly used for nonsmooth functions in
practice. Here, we describe the spurious behavior of nonsmooth AD, as discussed
by Bolte and Pauwels in [11]. The key point is that the output of AD depends on
how the function is implemented, as AD operates on the program that represents
the function, rather than the function itself. To illustrate this, we recall a simple
experiment in PyTorch with the ReLU function, as done in [11]. The results,
shown in Figure 1.4, confirm that ReLU′(0) = 0.

ReLU2 : t 7→ ReLU(−t) + t, ReLU3 : t 7→ 1
2(ReLU(t) + ReLU2(t)).

As mathematical functions on R, these variations are equivalent to ReLU. However,
in practice, PyTorch returns different results: ReLU′

2(0) = 1 and ReLU′
3(0) = 1/2,

as shown in Figure 1.4.

This approach enables what can be called “formal automatic differentiation.”
For example, the chain rule can be applied to nonsmooth functions by substitut-
ing classical Jacobians with the outputs from automatic differentiation, effectively
providing a surrogate first-order oracle. This method of handling nonsmooth func-
tions forms the foundation of neural network training [3], [16].

7

2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0 relu'
relu

2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0 relu2'
relu2

2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0 relu3'
relu3

Figure 1.4: Top: AD applied to ReLU and two different implementations of the
same function. Figure taken from [11].

1.3 Numerical precision in deep learning

Numerical precision is crucial for key computations in deep learning, including
automatic differentiation and optimization algorithms, which rely on accurate ma-
nipulation of gradients, weights, and intermediate values. However, the finite
precision of floating-point arithmetic can introduce rounding errors and numerical
instability. Modern computers represent floating-point numbers using the IEEE
754 standard [56]. According to this standard, a floating-point number x is repre-
sented as:

x = (−1)s × (1 + f)× 2e

where s is the sign bit, f is the fraction (mantissa), and e is the exponent. This
standard allows for a vast spectrum of values, which is crucial for the various scales
present in deep learning tasks.

Figure 1.5: Bit representation of 64-bit double-precision floats.

Floating-point numbers have limited precision—roughly 7 decimal digits for single
precision and 16 for double precision. Additionally, since floating-point addition
and multiplication are not associative, the order of operations can significantly
impact the computed results.

Floating numbers and deep learning. Floating-point precision formats are
essential in deep learning as they balance computational speed, memory usage,
and numerical accuracy. Common formats include half precision (float16), single
precision (float32), and double precision (float64). These formats differ in terms
of storage size, with float16 using 16 bits, float32 using 32 bits, and float64 using
64 bits, each offering increasing precision but also requiring more memory and
computational resources. See Table 1.1 for more details.

8

Feature float16 float32 float64

Total bits 16 32 64
Sign bits 1 1 1
Exponent bits 5 8 11
Fraction bits 10 23 52
Range ±6.55× 104 ±3.4× 1038 ±1.8× 10308

Precision 3 digits 7 digits 15 digits
Typical use case Speed, low-memory General-purpose High-accuracy

Table 1.1: Comparison of float16, float32, and float64 formats in deep learning.

The choice of precision format in deep learning significantly impacts memory us-
age, computational performance, and numerical stability:

• Memory usage: Lower precision formats, such as float16, greatly reduce mem-
ory requirements for storing model parameters and activations. This enables train-
ing larger models or using bigger batch sizes, improving both efficiency and speed,
particularly for large-scale models [57]..

• Computational performance: Float16 accelerates arithmetic operations due
to its smaller bit size, resulting in faster data processing and shorter training times.
This advantage is crucial for training large neural networks, such as GPT models
with billions of parameters.

• Numerical stability and accuracy: Despite its performance benefits, float16
can introduce numerical instability, such as exploding gradients during backpropa-
gation [18], and may fail to capture small gradient updates accurately. In contrast,
formats like float64 provide greater numerical stability but require more memory
and slower computations.

Mixed-precision training. This approach is widely adopted to balance reduced
memory usage and improved computational efficiency with the need for numerical
precision [57]. This technique primarily employs float16 for most operations to
leverage its efficiency, while reserving float32 for critical tasks, such as gradient
accumulation, to ensure accuracy and prevent numerical instability. To address
the risk of small gradient values underflowing in float16, loss scaling methods are
applied [58]. This strategy enables models to achieve the speed and memory ad-
vantages of float16 without sacrificing the precision required for effective training.

In Chapter 3, we present our second contribution, where we study the reliability
of nonsmooth autotiff for neural networks across various precision levels (16, 32,
and 64 bits).

9

1.4 Gradient-based optimization for deep learn-
ing

After obtaining a first-order oracle of the loss function through autodiff, stochastic
gradient descent can be applied to update the model parameters iteratively. It is
one of the most widely used algorithms for optimization and is a common method
for training neural networks. This section focuses on gradient-based optimiza-
tion techniques, highlighting first-order methods and various stochastic gradient
descent variants commonly employed in machine learning.

1.4.1 First-order sampling
We consider the empirical risk function J , as defined in Equation (1.3), which is
differentiable. However, this discussion can be extended to non-differentiable but
locally Lipschitz continuous functions (see Section 3.2). Using the backpropaga-
tion algorithm, we can efficiently compute the gradient ∇J , allowing us to apply
gradient descent for training deep neural networks. Despite the efficiency of back-
propagation, the large dataset size N and the high number of parameters p still
make gradient evaluation computationally expensive [1], [27].

Mini-batch sampling. In deep learning, the standard approach to approximat-
ing the gradient is through mini-batch sampling. This method estimates both J
and ∇J by computing only a subset of the terms in the sum from Equation (1.3).
Mathematically, let B ⊂ {1, . . . , N} represent a subset of indices corresponding to
a sample of the full dataset. For any θ ∈ Rp, we define:

JB(θ) := 1
|B|

∑
n∈B
Jn(θ) and ∇JB(θ) := 1

|B|
∑
n∈B
∇Jn(θ), (1.5)

where |B| is the size of the mini-batch. These mini-batches balance the trade-off
between the high variance of stochastic gradient descent (SGD) and the compu-
tational cost of full-batch gradient descent [27], leading to faster convergence and
better generalization. When B = {1, . . . , N}, the mini-batch corresponds to the
full dataset, and JB(θ) = J (θ).

Stochastic gradient descent. Approximating ∇J leads to a modified version
of gradient descent (GD) called stochastic gradient descent (SGD). In this method,
the exact gradient is replaced with an approximation, as shown in Equation (1.5).
Let (Bk)k∈N be a sequence of nonempty subsets of {1, . . . , N} and (γk)k∈N be a
sequence of step sizes. SGD is then described by the following iterative process:

θk+1 = θk − γk∇JBk
(θk) (1.6)

In the nonsmooth case, first-order sampling can be done using a backprop
oracle instead of the gradient. For example, the stochastic gradient method with
backprop is given by:

θk+1 = θk − γkbackprop JBk
(θk). (1.7)

In this case, it is necessary to justify the procedure, specifically whether sampling
backprop JBk

(θk) (resulting from nonsmooth autodiff) provides a valid descent
direction for J at θk (see Section 2.2).

10

Noisy interpretation of SGD. Another way to view SGD is as a noisy version
of gradient descent. This can be written as the following equivalent formulation
of (1.6):

θk+1 = θk − γk(∇JBk
(θk) + ξk), (1.8)

where ξk = ∇JBk
(θk)−∇J (θk) represents the part of the gradient not included in

the SGD update compared to GD. If Bk is randomly sampled from the dataset, ξk is
a random variable called noise. Moreover, as Bk is chosen such that E[∇JBk

(θ)] =
∇J (θ), the conditional expectation of ξk with respect to the current iterate θk at
iteration k is:

E[ξk | θk] = E[∇JBk
(θk)−∇J (θk) | θk] = E[∇JBk

(θk) | θk]−∇J (θk) = 0.

Thus, the sequence (ξk)k∈N forms a zero-mean martingale based on the random
mini-batches up to iteration k. This means that, while SGD does not follow the
exact steepest descent direction at each step like GD, it does so on average [26],
[27].

Computational complexity and convergence of SGD. Stochastic gradient
descent (SGD), introduced by Robbins and Monro [26], is a widely used stochastic
algorithm. The mini-batch version of SGD, as shown in Equation (1.6), reduces
the computational cost by sub-sampling data, allowing faster iterations compared
to gradient descent. Backpropagation works efficiently with mini-batches, making
the computation of∇JB for B ⊂ {1, . . . , N} about N

|B| times faster than∇J . Com-
paring methods by epochs (where one epoch equals N backpropagations) shows
that while SGD iterates faster, its updates are less precise. Despite this, in large-
scale optimization, especially for deep learning, SGD is often empirically faster
than GD [1].

Using gradient approximations,∇J , introduces additional complexities in opti-
mization, particularly in the nonconvex setting. Notably, critical points in stochas-
tic gradient descent are not necessarily stationary points— where the algorithm
halts if reached—in contrast to gradient descent. Specifically, there can exist an
iteration k ∈ N of SGD where ∇J (θk) = 0 but ∇JBk

(θk) ̸= 0, allowing the algo-
rithm to escape the critical point θk. To address this, a standard strategy is to
adopt a sequence of diminishing step-sizes (γk)k∈N that satisfies conditions such as
those proposed by Robbins and Monro [26]:

+∞∑
k=1

γk = +∞, and
+∞∑
k=1

γ2
k < +∞. (1.9)

Assuming conditions such as the noise in Equation (1.8) being uniformly bounded,
this is sufficient to guarantee the convergence of SGD to critical points. However,
using a sequence of step sizes that vanishes too quickly can significantly slow down
SGD. Thus, selecting the appropriate sequence is crucial and can be challenging.
Techniques like back-tracking line search [59] can help in choosing step sizes. Un-
fortunately, these methods often require computing exact values of J , which is
nearly as costly as computing exact gradients ∇J in deep learning (see Section
1.2.2) and is therefore not suitable for training neural networks.

11

Other challenges. Mini-batch gradient descent comes with several challenges.
Choosing an appropriate step size (also called learning rate) is crucial: if it is too
small, convergence is slow; if it is too large, the algorithm may become unstable
or even diverge. Learning rate schedules, such as annealing strategies [60], adjust
the step size over time, but are fixed in advance and do not adapt to the specific
characteristics of the dataset. Additionally, a uniform learning rate may not work
well for sparse data, where infrequent features often require larger updates. An-
other issue is the nonconvex nature of neural network error functions, which can
trap the model in suboptimal local minima. As noted by Dauphin et al. [61], the
main difficulty arises from saddle points, where gradients are nearly zero, making
it hard for SGD to escape.

1.4.2 Alternatives of the gradient method used in machine
learning

In deep learning, many variants of the stochastic gradient method have been de-
veloped to speed up computationally expensive training. These variants include
strategies to accelerate convergence, improve stability, and adapt to changes in the
optimization process. In this section, we assume that J is differentiable, (γk)k∈N
is a sequence of step sizes, (Bk)k∈N are mini-batches, and θk represents the current
iteration of the algorithm. We will present the mini-batch version of each method.

Momentum methods. Polyak’s heavy ball method [62] improves gradient de-
scent by adding a fraction of the previous update to the current one, smoothing
the gradient trajectory. The update rule is:

mk+1 = βmk + (1− β)∇JBk
(θk), (1.10)

θk+1 = θk − γkmk+1, (1.11)

where β ∈ [0, 1] is the momentum coefficient. In this method, think of the loss
function J (θ) as a landscape with valleys representing local minima. The iterates
(θk)k∈N are like a ball rolling down this landscape, with the gradient ∇J acting
like gravity. The term mk+1 represents the ball’s velocity, accumulating over time
and speeding up the descent, while the momentum term βmk prevents overshoot-
ing and helps the ball settle at a minimum.

There are several variations of the heavy ball method; the version here follows
[63]. A popular alternative is the Nesterov accelerated gradient (NAG) method
[64], with the update rule:

mk+1 = µkmk − γk∇JBk
(θk + µkmk), (1.12)

θk+1 = θk +mk+1, (1.13)

where µk may vary (originally µk = k
k+3). Unlike the heavy ball method (Equation

(1.11)), NAG evaluates the gradient at the extrapolated point θk +µkmk, incorpo-
rating future gradient information into the current step. This anticipatory update
can speed up convergence by adjusting the direction based on the expected posi-
tion. While no theoretical explanation fully accounts for its success in nonsmooth,
nonconvex settings, NAG is widely used in deep learning, popularized by works
like [20], [63].

12

Adaptive methods. A common challenge in gradient methods is choosing the
step sizes (γk)k∈N, especially in deep learning, where the optimal step sizes are
unknown. Long training phases can lead to vanishing step sizes, slowing down
progress [26], while tuning a constant step size can be costly. As a result, adaptive
methods that adjust the learning rate dynamically are often preferred. Methods
like AdaGrad, RMSprop, and Adam adjust the learning rate based on historical
gradient information.

• AdaGrad [31] scales the learning rate inversely with the square root of all
historical gradients:

θk+1 = θk −
η√

Gk + ϵ
∇JBk

(θk) (1.14)

where η > 0 is a global learning rate, ϵ > 0 is a small constant for numerical
stability, and Gk ∈ Rp is the vector of coordinate-wise accumulated squared
gradients (Gk = ∑k

i=1∇JBi
(θi)2).

• RMSprop [13] improves AdaGrad by considering only recent gradients:

Gk = βGk−1 + (1− β)∇JBk
(θk)2 (1.15)

• Adam [65] combines momentum and adaptive learning rates:

mk = β1mk−1 + (1− β1)∇JBk
(θk) (1.16)

vk = β2vk−1 + (1− β2)∇JBk
(θk)2 (1.17)

m̂k = mk

1− βk1
, v̂k = vk

1− βk2
(1.18)

θk+1 = θk − η
m̂k√
v̂k + ϵ

(1.19)

Some other methods. While we have covered the most popular methods for
training DNNs, many variations exist. Similar methods to Adam and AdaGrad
include AdamW [32], AdaBelief [66], AdaDelta [67], and AMSgrad [68]. Other
approaches include the Lookahead algorithm [69] and more recently, Lion optimizer
[33].

1.4.3 Using second-order information in gradient methods
In this section, let θ ∈ Rp represent the parameter vector, and B ⊂ {1, . . . , N}
a mini-batch. The main idea behind second-order methods in deep learning is to
develop more practical versions of Newton’s method. Newton’s method, assuming
J is twice-differentiable, updates parameters as:

θk+1 = θk − (∇2J (θk))−1∇J (θk), (1.20)

where ∇2J (θk) is the Hessian matrix. While this method converges quickly to
a local minimum, it is computationally expensive due to the cost of computing
and inverting the Hessian, especially for high-dimensional problems. Variations of
Newton’s method have been proposed for large-scale machine learning [70]–[72],

13

but few are feasible for deep learning due to the computational cost and mini-
batch sub-sampling. Some methods, like AdaGrad [31], K-FAC [73], and Sophia
[74], adapt Newton’s method by using mini-batch estimates ∇JB(θ) and surrogate
matrices that are cheaper to compute and invert than ∇2J (θ). These approaches
form the basis of stochastic quasi-Newton updates.

In general, second-order information could greatly improve DNN training, but
there are significant challenges. Computing or storing the Hessian, with p2 el-
ements, is impractical, and inverting it for Newton’s method or calculating its
eigenvalues is even harder. For non-smooth functions, second-order information
may be less useful; for example, the ReLU function is almost everywhere twice-
differentiable but has a zero second-order derivative. Additionally, mini-batch
sub-sampling introduces noise, reducing the effectiveness of higher-order deriva-
tives, even for smooth functions. As noted in Section 1.4.1 (Equation 1.8), the
update direction in SGD is less precise due to this noise. For further details on
second-order methods in DNN training, see [27]. In Chapter 4, we introduce a new
optimization algorithm exploiting only second-order information, using noisy first-
order nonsmooth nonconvex automatic differentiation. Starting from a dynamical
system (an ordinary differential equation), we construct INNAprop, derived from
a combination of INNA and RMSprop. It leverages second-order information and
rescaling while maintaining the computational and memory efficiency of Adam.

1.5 Thesis outline and contributions
This thesis is organized into three parts, each exploring different aspects of nons-
mooth optimization and automatic differentiation in deep learning.

In Chapter 2, we introduce key concepts such as nonsmooth calculus, conser-
vative gradients, and nonsmooth automatic differentiation. The focus is on the
computational complexity of nonsmooth autodiff, extending Bauer-Strassen’s re-
sults to nonsmooth programs. The main contributions include a model to estimate
the computational costs of the backward and forward modes for a broad class of
nonsmooth programs. We also show that conservative gradients have computa-
tional properties similar to smooth derivatives, which are much more favorable
than those of alternative nonsmooth oracles (subgradients or directional deriva-
tives). This chapter is based on [55], spotlighted at ICLR 2023.

In Chapter 3, we investigate the numerical precision and reliability of nons-
mooth autodiff in neural networks using the MaxPool operation. This chapter
examines errors from finite precision arithmetic during training and analyzes nu-
merical bifurcation zones, offering insights into learning stability at different preci-
sion levels. Empirical benchmarks highlight the impact of numerical precision on
model accuracy and performance. This part is based on [42], published at TMLR.

In Chapter 4, we introduce INNAprop, a novel optimizer that leverages second-
order information in deep learning without the high computational costs typical of
such methods. This chapter details the derivation of INNAprop, which combines
elements of INNA [12] and RMSprop, using noisy first-order nonsmooth auto-

14

matic differentiation. We validate its performance through extensive experiments
on large-scale vision and language models. This last part is based on [75].

This thesis contributes to efficient methods for nonsmooth automatic differen-
tiation, robust training of nonsmooth neural networks under limited precision, and
optimization algorithms that use second-order information with minimal compu-
tational overhead in deep learning.

References. This thesis is based on the following articles:

• [55] Jérôme Bolte, Ryan Boustany, Edouard Pauwels, Béatrice Pesquet-
Popescu. On the complexity of nonsmooth automatic differentiation, Spot-
light at ICLR, 2023.

• [42] Ryan Boustany. On the numerical reliability of nonsmooth autodiff: a
MaxPool case study, Transactions on Machine Learning Research, 2024.

• [75] Jérôme Bolte, Ryan Boustany, Edouard Pauwels, Andrei Purica. A
second-order-like optimizer with adaptive gradient scaling for deep learning,
submitted, 2024.

Chapter 2

On the complexity of nonsmooth
automatic differentiation

Abstract

The research presented here is the initial work of this PhD, which is
part of Thales’ certification process for critical systems that integrate
artificial intelligence and neural networks. Neural network training
relies on nonsmooth nonconvex first-order optimization, sub-sampling
approximations, and algorithmic differentiation, which automates the
computation of derivatives. These techniques are central to modern
libraries like TensorFlow [5] and PyTorch [6]. However, these libraries
extend algorithmic differentiation beyond its core function, which is
limited to differentiable operations. In this chapter, we recall the
concept of conservative gradients [10], [11], a flexible framework for
nonsmooth automatic differentiation in modern learning contexts.
Using this concept, we also present our contribution to the complexity
of nonsmooth automatic differentiation [55].

The main thesis of this work is that conservative gradients have com-
putational properties similar to smooth derivatives, making them more
favorable than other nonsmooth oracles like subgradients or directional
derivatives.

This chapter is organized as follows:
• In Section 2.1, we cover the background and related work. In Sections 2.2

and 2.3, we introduce nonsmooth analysis and the concept of conservative
gradients used throughout this thesis.

• In Section 2.4, we present a general computational model to express the cost
and complexity of programs, functions, and their conservative gradients. We
also introduce an abstract framework for algorithmic differentiation, culmi-
nating in Section 2.4.3, where we extend the Baur-Strassen result with the
cheap conservative gradient principle.

• In Section 2.5, we describe computational lower bounds for evaluating direc-
tional derivatives and distinct subgradients for simple programs.

15

16

2.1 Introduction
Automatic evaluation of derivatives. Algorithmic differentiation (AD) was
introduced around 60 years ago [76], [77] and has since been continuously devel-
oped and applied in various fields. For a detailed discussion, see [8], [78]. Today,
AD is central to modern learning architectures [2], [79], [80], where training a
neural network is largely the result of AD computations. Recent advancements
include flexible numerical libraries [5]–[7], implicit differentiation [8], [81] and its
extensions [82]–[85], the adjoint method [86]–[88] for neural ODEs [89], and differ-
entiation of optimization algorithms [81], [90]–[92], including conjugate gradient
methods [93].

Backward algorithmic differentiation, or backpropagation, is crucial for smooth
optimization tasks, as it computes gradients with a cost proportional to function
evaluations, regardless of dimension. This property, known as the cheap gradient
principle [8], [94], underpins the revolution in machine learning libraries. For
arithmetic circuits, this principle is formalized in the Baur-Strassen theorem [54].

Theorem 1 (Baur-Strassen [54]) For any rational function f : Rp → R, we
have

cost(∇f) ≤ 5× cost(f)

where cost(·) denotes the execution time to evaluate a function.

Extensions exist for smooth differentiable functions [8], [54] but standard compu-
tational practice of AD consists of little known about the nonsmooth case.

Computational complexity. Key numerical operations like sorting, pooling,
thresholding, and finding nearest points are common in machine learning and op-
timization. These nonsmooth operations are often much cheaper to compute than
their smoothed counterparts. For example, the widely used ReLU activation in
deep learning, which thresholds negative values to zero to simulate neuron inac-
tivity, theoretically requires only one bit of encoding. In contrast, other nonlinear
activations may need auxiliary algorithms for evaluation, leading to higher com-
putational costs. While simple to use, this raises challenges for training models
and differentiating nonsmooth functions. Standard AD practice applies differen-
tial calculus directly to nonsmooth objects, replacing gradients with surrogates like
Clarke subgradients, as done in TensorFlow, PyTorch, and Jax. This approach has
been highly successful [80] and widely adopted over the past decade.

Yet, despite this empirical success, Barton et al. claimed in [95] that “there
does not seem to exist [at this day] a true analogous reverse AD mode to compute
generalized derivatives for nonsmooth functions”, illustrating the difficulty of non-
smooth AD. Conservative gradients were introduced as a faithful mathematical
model capturing the formal application of calculus rules to subdifferentials by [10],
[11], [84].

17

Related work. Conservative gradients were introduced in [10], [11] to model
“formal subdifferentiation” used by practitioners and nonsmooth backpropaga-
tion. They were further studied in [84], [96], [97] and empirically investigated in
[41]. Computational AD complexity was only qualitatively considered. We pro-
vide a rigorous description of this aspect based an arithmetic computational cost
framework capturing programming with nondifferentiable components. The quest
for a computationally cheap nonsmooth derivative has a long history in AD litera-
ture. Existing works of Griewank [8], [98]–[100] are essentially based on piecewise
smoothness structures [101]. A cheap subgradient principle was also given in [102],
but it requires a very strong qualification condition. As illustrated in [99], such
qualification conditions can be computationally hard to check in practice.

In another research line, based on chain rules for directional derivatives, Khan-
Barton [95], [103]–[105] studied the vector forward mode AD. In particular, they
investigated the forward AD framework to evaluate elements of the lexicographic
subdifferential (see [106]), which is contained in the Clarke subdifferential. In the
worst case, the computational overhead ratio they obtain is proportional to the
ambient dimension. This contrasts with our cheap gradient principle, whose con-
stant is dimension-less. While these contributions are most relevant to nonsmooth
AD, their applicability to large-scale learning models is limited, due to the central
role of forward AD.

2.2 Preliminaries on nonsmooth optimization
Before the introduction of neural networks and automatic differentiation, there was
a need for a nonsmooth calculus in the convex optimization. It was noted that
it’s not always possible to obtain the subgradient of the sum by simply summing
subgradients, and there isn’t a general counterpart to the chain rule for comput-
ing subderivatives in compositions [107]. Consequently, specific conditions were
established to ensure the validity of basic calculus rules, such as those for sums
or compositions. These conditions often required convexity, Clarke regularity, or
qualification conditions for constrained problems [102], [107], [108].
For convex functions, the gradient can be extended to nonsmooth functions F :
Rp → R by using the set-valued map ∂F . This map satisfies the condition that
for all x, and for all v ∈ ∂F (x),

F (z) ≥ F (x) + ⟨v, z − x⟩ for all z ∈ Rp. (2.1)

Rockafellar introduced the concept of the subgradient ∂F for convex functions
[44], [109], as did Moreau [110]. In the convex setting, the inequality (2.1) shows
that ∂F has a natural variational interpretation, capturing the local variations of
the function. This can also be understood as a first-order approximation on one
side.

Clarke extended the notion of the subgradient to locally Lipschitz nonsmooth
functions, motivated by minimizing maximum value functions [107]. He defined it
as the convex closure of the gradient. For a locally Lipschitz function F : Rp → R,

18

the Clarke subgradient at any x ∈ Rp is given by

∂cF (x) = conv
{

lim
k→+∞

∇F (xk) : xk ∈ diffF , xk −→
k→+∞

x
}

(2.2)

where diffF is the full measure set where F is differentiable and ∇F is the standard
gradient. The subdifferential is set-valued; it takes values in subsets of Rp, which
we write ∂cF : Rp ⇒ Rp. For each x ∈ Rp, elements of ∂cF (x) are called Clarke
subgradients of F .

Example 1 For ReLU: t 7→ max(0, t), we have ∂cReLU(t) is {0} if t < 0, {1}
if t > 0 and [0, 1] if t = 0. We may define the function ReLU′ as a selection in
∂cReLU :

ReLU′(t) = 1, if t > 0, ReLU′(t) = 0, otherwise.

Unlike the convex (Fenchel–Moreau–Rockafellar) subdifferential, which is only
defined for convex functions, the Clarke subdifferential is well-defined for any lo-
cally Lipschitz function, including nonconvex ones. To illustrate this, we present
an example where the convex subdifferential is not applicable, but the Clarke
subdifferential remains valid.

Example 2 Let F (x) = |x| + sin(x) for x ∈ R. Then F is locally Lipschitz and
nonconvex. The convex subdifferential (see Equation (2.1)) at x = 0 is empty. For
x ̸= 0, F is differentiable with

∇F (x) = sign(x) + cos(x).

To compute the Clarke subdifferential at x = 0, consider sequences (xk)k∈N ap-
proaching 0 from both sides:

xk > 0⇒ ∇F (xk)→ 2, xk < 0⇒ ∇F (xk)→ 0.

Taking the convex hull of these limits yields

∂cF (0) = [0, 2].

The Jacobian of a composition of two differentiable functions can be derived
using the chain rule, while for the sum of two differentiable functions, the gradient
of the sum is simply the sum of the gradients. However, these basic calculus prin-
ciples do not extend to Clarke derivatives. For locally Lipschitz functions, only
one-sided inclusions hold, as given by Clarke’s generalized derivatives [107]:
• (Composition or chain rule) For F : Rq → Rr and G : Rp → Rq locally Lipschitz,
Jacc (F ◦G) ⊂ conv Jacc F (G)Jacc G.
• (Sum rule) For f : Rp → R and g : Rp → R, ∂c(f + g) ⊂ ∂cf + ∂cg.

The inclusions are generally strict, and the usual conditions to obtain equalities
are convexity or Clarke regularity [107] which are often too restrictive for machine
learning applications. The equality doesn’t hold even in simple cases. For exam-
ple, f = 2ReLU(x) and g = −1

3ReLU(−x). The Clarke subdifferential of f + g at
x = 0 is [1

3 , 2] and ∂cf(0) + ∂cg(0) = [0, 7
3].

19

In the following section, we investigate a novel variational model termed con-
servative gradients, introduced in [10]. This model extends classical calculus
rules—such as those for composition and sum operations—to a broad nonsmooth,
nonconvex setting. A practical advantage of this framework is its independence
from qualification conditions, allowing a rigorous and practical justification for the
formal application of the Clarke subdifferential, as commonly employed in practice.

2.3 Nonsmooth calculus with conservative deriva-
tives

Bolte and Pauwels [10] proposed the notion of conservative gradients, which are
set-valued maps satisfying the chain rule along absolutely continuous curves.

Definition 1 (Conservative gradients [10]) Let f : Rp → R be a locally Lip-
schitz continuous function and Df : Rp ⇒ Rp a locally bounded, nonempty and
graph closed set-valued map. Then Df is a conservative gradient for f , if for any
absolutely continuous curve γ : [0, 1]→ Rp,

d

dt
f(γ(t)) = ⟨v, γ̇(t)⟩ ∀v ∈ Df (γ(t)), for almost all t ∈ [0, 1]. (2.3)

Conservative gradients may be taken convex-valued: if DF is a conservative gra-
dient, conv DF is also a conservative gradient. The chain rule along curves may
be extended to multivariate maps in order to define conservative Jacobians.

Definition 2 (Conservative Jacobians [10]) Let F : Rp → Rm be a locally
Lipschitz continuous function and DF : Rp ⇒ Rm×p a locally bounded, nonempty
and graph closed set-valued map. Then DF is a conservative Jacobian for F , if
for any absolutely continuous curve γ : [0, 1]→ Rp,

d

dt
F (γ(t)) = V γ̇(t) ∀V ∈ DF (γ(t)), for almost all t ∈ [0, 1]. (2.4)

In this case, F is called path differentiable. A rich class of path differentiable
functions is given by locally Lipschitz continuous semi-algebraic functions with
the Clarke subdifferential as a conservative gradient.

Definition 3 (Path differentiable function) A locally Lipchitz function f :
Rp → R is called path differentiable if it satisfies the following equivalent prop-
erties:

• there exists a conservative gradient for f

• ∂cf is a conservative gradient.

Actually, virtually all functions used in machine learning are path differentiable
[10], [11]. For instance, in deep learning, ReLU and MaxPooling are path differ-
entiable. A fundamental theorem is the following:

20

Theorem 2 (Path differentiable functions are ubiquitous [10]) Locally Lip-
chitz semialgebraic (or definable) functions are path differentiable.

Proposition 1 (Some path differentiable functions) Let f : Rp → R be Lip-
schitz continuous, the following are sufficient conditions for f to be path differen-
tiable

(i) f is convex or concave.
(ii) f is real semialgebraic (or more generally tame, i.e., definable in some

o-minimal structure).

The most salient facts about path differentiable functions and their conservative
gradients are:
• (Clarke subgradient), for all x ∈ Rp, ∂cf(x) ⊂ conv(Df (x)).
• (Gradient almost everywhere) Conservative gradients are gradients almost
everywhere [10].
• (First-order oracle) Selection in conservative gradients can be used as surro-
gate gradients while preserving convergence guarantees [10], [11], [84].

Conservative Jacobians can be composed while preserving conservativity [10], a
feature which do not enjoy Clarke Jacobians.

Proposition 2 (Composition rule [10]) For F : Rq → Rr, G : Rp → Rq path
differentiable with conservative Jacobians DF and DJ respectively, DF (G(x)) ×
DG(x) is a conservative Jacobian for F ◦G.

Corollary 1 (Sum rule) For f : Rp → R and g : Rp → R path differentiable
with conservative gradients Df and Dg respectively, then Df +Dg is a conservative
gradient for f + g.

Conservative gradients offer a convenient framework for modeling automatic
differentiation (AD) in the nonsmooth setting [10], [11]. The composition rule
supports AD by applying the chain rule to Clarke subderivatives. For example,
AD on a neural network composed of ReLU and affine functions may not yield an
element of the Clarke Jacobian but rather a selection from a conservative Jacobian.
While a framework to justify AD within the Clarke subdifferential model was
proposed in [102], it relies on qualification conditions and rules that may not align
with common practice.

2.4 A cheap conservative gradient principle

2.4.1 Calculus model, programs, computational cost and
complexity

A dictionary D is a finite set of real functions (e.g. {+,−,×, /}); it is paired
with P0(D), a set of elementary programs implementing them in real arithmetic.
Starting from P0(D), we aim at capturing the notion of “program of programs” at
any depth. As this is an inductive process, we call k ∈ N a program “level”, which
is simply an induction counter needed for consistency. Recursively, programs of
level k + 1, in Pk+1(D), consist of combinations of outputs of programs of level k,

21

in Pk(D). For example if P1 and P2 are elementary programs in P0(D), then the
program which sums the outputs of P1 and P0 is of level 1. More precisely :

Let p, q be input and output sizes respectively and m ≥ p + q a memory size. A
predecessor relation is a set valued map pr : {1, . . . ,m} ⇒ {1, . . . ,m} such that
for i = 1, . . . ,m:
• for j ∈ pr(i), j < i.
• pr(i) is empty if i ≤ p and nonempty otherwise.

An adapted program sequence (gi)mi=p+1 in Pk(D), is a set of programs such that gi
has |pr(i)| input arguments and a single output, for all i = p + 1, . . . ,m. Given(
p, q,m, pr, (gi)mi=p+1

)
, the program given in Algorithm 1 is a level k + 1 program

on D.
Algorithm 1:

Program data:
(
p, q,m, pr, (gi)mi=p+1

)
.

Input: x = (x1, . . . xp)
1: for i = p+ 1, p+ 2, . . .m do
2: xi = gi(xpr(i)) where
3: xpr(i) = (xj)j∈pr(i).

Return: y := (xj)mj=m−q+1.

The set of programs with dictionary D is P(D) = ⋃
k≥0Pk(D). We shall see how-

ever that Pk(D) = P1(D) for all k, using modification of the computational graph.

A cost on a dictionary D is a nonnegative function on D, it extends additively by
induction on programs on D through the rule cost(P) = ∑m

i=p+1 cost(gi) where P
is a program on D as described in Algorithm 1. A direct example is the dictio-
nary of arithmetic functions {+,−,×, /}, together with addition or multiplication
by fixed constants, denoted by +c and ×c respectively1, see also Appendix 2.6.1.
Throughout the section, we assume that dictionaries contain at least operations
+ and ×. Each program on D may be represented by a program in P1(D) with
the same cost by expanding all subprograms until they reduce to an elementary
program. Cost evaluation is thus well-defined in such programs. As detailed in
Appendix 2.6.1, this model of computation is equivalently expressed using directed
acyclic graphs.

To sum up, we have defined the set of programs P(D) on D, which includes
programs of programs. The programs gi in Algorithm 1 may be taken in P(D). The
cost of a program is evaluated through the calls it makes to elementary programs
in the dictionary.

Programs vs functions: A program P defines a unique input-output function
f : we say that P “computes” f , or “implements” f , and with a slight abuse of
notation, we will identify P and f when there is no ambiguity (e.g. derivative of
P). We use the equivalence relation ∼ to relate programs computing the same

1Constants need to be distinguished from variables (for instance to define a polynomial)

22

function. The equivalence classes correspond to functions expressible by programs
with a given dictionary D. Given a function f : Rp → Rq and a program P on
dictionary D, with p inputs and q outputs, we write f = [P] to denote the fact
that P is in the equivalence class of programs computing f , that is, P implements
f .

Complexity of a function: The complexity of a function f over a dictionary D
is the quantity comp(f,D) = inf {cost(P), s.t P ∈ P(D), f = [P]}, the infimum
being over all programs implementing f on dictionary D. It could be infinite, if it
is finite then it is attained.

2.4.2 Automatic differentiation
We pertain to programs implementing functions, that is Algorithm 1 with single
outputs q = 1.

Given a dictionary D of locally Lipschitz path differentiable functions, a derived
dictionary is a set of functions D′ ⊃ D which extends D and contains operations
required to express at least an element in a conservative gradient for each of the
functions in D, for example, an element in the Clarke subdifferential. We also
consider a cost function on D′, which we denote by cost and which extends to pro-
grams over D′. Given programs gi on D, i = p + 1, . . . ,m, we define di a derived
program on D′, with |pr(i)| inputs and outputs, which returns an element of a
conservative gradient for gi (as for instance a Clarke subgradient, or simply a gra-
dient in the C1 case). By gdi, we denote a program on D′ evaluating (gi(x), di(x))
jointly for a given x. We denote by Algorithm 1’, an extension of Algorithm 1
which additionally returns wi = di(xpr(i)) for i = p+ 1, . . . ,m, by replacing line 2
in Algorithm 1 with a call to gdi instead of gi. The backward (resp. forward) AD
program backprop(P) (resp. forprop(P)) is defined as follows:

Algorithm 2: Algorithmic differentiation of P as in Section 2.4.1
Input: variables (xi)pi=1
Forward evaluation with derivatives: evaluate wi = di(xpr(i)),
i = p+ 1, . . . ,m,

with Algorithm 1’: Algorithm 1 with gdi instead of gi on line 2.
1: Forward mode:
2: Initialize: ∂xi

∂x
= ei , i = 1, . . . , p,

from canonical basis in Rp.
3: for i = p+ 1, . . .m do
4:

∂xi
∂x

=
∑

j∈pr(i)

∂xj
∂x

wi[j]

where x = (x1, . . . , xp).
Return: ∂xm

∂x
and xm.

1: Backward mode:
2: Initialize: v = em
3: for t = m, . . . p+ 1 do
4: for j ∈ pr(t) do
5: Update coordinate j of v:

v[j] := v[j] + v[t]wt[j]

Return: (v[j])pj=1 and xm.

Note that Algorithm 2 starts with Algorithm 1’, i.e., Algorithm 1 with gdi
instead of gi on line 2. Its computational cost, denoted cost(gdi), should be thought

23

of as an exogenous parameter: it may model, for instance, the use of underlying
software libraries or the hardware properties.

2.4.3 Computational complexity of nonsmooth AD
We now evaluate the complexity of the forprop and backprop operations for conser-
vative gradients in the path differentiable case – which encompasses, as mentioned
earlier, all semi-algebraic and definable locally Lipschitz functions. We show, in
particular, that backpropagation with conservative gradients has a computational
overhead ratio that is independent of the dimension. This is in contrast with the
best known algorithmic oracles for the Clarke subdifferential (see [95], [103]–[105]),
whose computational overhead ratio scales linearly with the dimension. The fol-
lowing theorem is proved in Section 2.7.

Theorem 3 (Complexity of nonsmooth AD) Let P be a program over a dic-
tionary D of path-differentiable functions with p inputs as in Algorithm 1 & 2.
Then, the corresponding function [P] is path differentiable, there is a conservative
gradient DP for the function [P] such that:
(i) (Cost of backward mode) At each input point x ∈ Rp, the output of program
backprop(P) is in DP (x) and we have cost(backprop(P)) ≤ ωb cost(P), where

ωb = max
i=p+1,m

{(cost(gdi) + 2 max(cost(+), cost(×))|pr(i)|) / cost (gi)} . (2.5)

(ii) (Cost of forward mode) At each input point x ∈ Rp, the output of program
forprop(P) is in DP (x) and we have cost(forprop(P)) ≤ ωf × cost(P) where

ωf = max
i=p+1,m

{(cost (gdi) + p|pr(i)|cost(×) + p(|pr(i)| − 1)cost(+)) / cost (gi)} .

There is a dissymmetry between the two modes since the constant ωb is in-
dependent of the dimension p. This is why property (i) is sometimes called the
“cheap conservative gradient principle” extending the classical smooth one which
was derived by [54] for real rational functions. Theorem 3 describes worst case
upper bounds (maximum over i), which are tight, for example if pr(i), costs of gi
and gdi are independent of i.

We will consider several examples now.

The class of ReLU programs: Let DReLU be the dictionary composed of ele-
mentary arithmetic operations, logarithm, exponential and the ReLU function:

DReLU := {+,×,+c,×c, inv, exp, log,ReLU}. (2.6)

A ReLU program P is a program with dictionary DReLU; it can be expressed in a
compositional form (Section 2.4.1) with program sequences in DReLU. Note that
this yields path differentiable functions.

Assumption 1 (Computational Cost) In Algorithms 2, define the dictionary
D′

ReLU := DReLU ∪ {ReLU′} as in Example 1; then, all operations from D′
ReLU

have unit cost (see Remark 1).

24

Corollary 2 (Backprop complexity of ReLU programs) Let P be a ReLU pro-
gram, under Assumption 1, we have: cost(backprop(P)) ≤ 5 × cost(P). This
extends to more complex cost weighting schemes (Remark 1) and to selection func-
tions which virtually capture all losses in ML (Remark 2).

Table 2.1: Complexity constant of ωb in Theorem 3 for elementary g in DReLU and
derived program with dictionary D′

ReLU. This proves Corollary 2 (more details in
Appendix 2.7.1).

g (+,×) (+c,×c) log exp inv ReLU
(cost(gd) + 2cost(×)|pr|) / cost (g) 5 3 4 3 5 3

A numerical example on ReLU networks: We illustrate the backpropagation
complexity of ReLU networks through a numerical experiment on the standard
MNIST dataset of handwritten digits. We consider a multilayer perceptron (MLP)
with ReLU activations and analyze how the computational overhead associated
with nonsmooth automatic differentiation manifests in practice. The architecture
is varied systematically: we consider networks with increasing depth (from 1 to 20
hidden layers) and varying hidden layer widths. Each hidden unit uses a ReLU
nonlinearity. The networks are trained using stochastic gradient descent with fixed
hyperparameters across all settings to ensure comparability. For each architecture,
we compute the theoretical complexity overhead ωb defined in Theorem 3. As
shown in Figure 2.1, our results confirm the theoretical predictions of Theorem 3.
In particular, we observe that the overhead ωb remains independent of the network
dimension (i.e., the number of layers or neurons).

1 2 3 4 5 6 10 20
Layers

0

1

2

3

4

5

6

Co
m

pu
ta

tio
na

l o
ve

rh
ea

d
ra

tio

MNIST - ReLU Network
Neurons

1000
2000
3000
4000
5000

Figure 2.1: Analysis of computational costs ωb for backpropagation in ReLU net-
works using the MNIST dataset.

25

Remark 1 (On refined cost systems) Unit cost in Assumption 1 gives a sim-
ple interpretation to Corollary 2: the cost of a program is the total number of
numerical operations. This rough estimate of computational complexity, could be
refined with different weighting schemes. However, the obtained constant 5 is ro-
bust to many different weighting choices, far beyond Assumption 1. We detail an
example in the Appendix 2.7.2 for which the cost of all smooth nonlinear opera-
tions different from + or × is cnonlin ≥ 1 and we model the cost of sign branching
in computation of ReLU and ReLU′ with constant cReLU ≥ 0. This yields the same
constant as in Corollary 2.

Remark 2 (Beyond ReLU programs) Many other dictionaries could be con-
sidered. ReLU is an example chosen for its simplicity, but Corollary 2 would hold
similarly (with the same constant 5) for many different nonsmooth activations or
components such as absolute value, max-pooling, ELU function, ℓ1 and ℓ∞ norms.
Similar results could be developed for the class of selection functions, which en-
compasses the vast majority of ML building blocks (see [11]). This is sketched in
Appendix 2.7.3.

Chaining backpropagation derived programs: Our approach is flexible to
describe “programs of programs” and backpropagation chaining. Let P be a pro-
gram as in Algorithm 1, with adapted ReLU program sequence {(gi)mi=p+1}. If
cost(gi) ≫ |pr(i)|, gi is a “long program”, with many operations per input. We
may set gdi = backprop(gi) using Algorithm 2, i = p+1, . . . ,m. From Corollary 2,
we have cost(gdi)/cost(gi) ≤ 5, and for long programs ωb ≃ 5 in Theorem 3. This
illustrates the versatility of our approach as it captures the complexity of chaining
backprop operations, the resulting estimate being quite sharp in the regime of long
programs. Refer to Figure 2.1 for a numerical illustration.

2.5 On the computational hardness of general-
ized gradients

Let P and DP be two programs such that DP evaluates jointly P and a deriva-
tive of P . In the sequel, we use the term (computational) overhead ratio of DP
to denote the quantity cost(DP)

cost(P) and computational overhead ratio of derivatives
of P to denote the quantity comp(DP)

cost(P) . As established in Theorem 3, this ratio
is dimensionless in the case of backpropagation with conservative gradients. Are
there other ways to compute cheap nonsmooth gradients? Toward an answer to
this question, we discuss this ratio for other nonsmooth differentiation oracles: di-
rectional derivatives (for which we relate worst-case complexity to that of matrix
multiplication), lexicographic derivatives with forward AD (with an overhead ratio
of order p [95]). As for the Clarke subdifferential, we prove the hardness of subgra-
dients enumeration. Our motivation to estimate the complexity of these particular
types of derivatives (directional, lexicographic and Clarke) is that they serve as a
basis to alternative implementable AD approaches (see [95] and references therein),
and are thus concurrent strategies of conservative gradient backpropagation. The
results presented below do not provide a definitive answer, but they strongly sug-

26

gest that backpropagation of conservative gradients has a much more favorable
complexity.

2.5.1 The overhead ratio for evaluating p directional deriva-
tives

Given G : Rp → R locally Lipschitz and x, d ∈ Rp, the directional derivative of G
at x in direction d is given by limt↓0(G(x+td)−G(x))/t when the limit exists. This
section considers a family of functions with p inputs and q real parameters, repre-
sented by a locally Lipschitz function F : Rp × Rq → R, for which we investigate
hardness of evaluation of p directional derivatives. The function F may describe,
for instance, a ReLU feedforward neural network empirical loss, parameterized by
q real weights, with p inputs. For functions represented by ReLU programs, we
prove an overhead ratio of order pω−2+o(1) where ω is the matrix multiplication
exponent (see definition below). In all rigor, it is not known whether ω > 2 or
ω = 2, so the derived ratio could be essentially dimensionless (if ω = 2), though all
practical evidences are against this so far. The best known lower bound is ω < 2.37
, and in practice, the matrix multiplication exponent is closer to 2.7, both corre-
sponding to a dimension-dependent overhead, in contrast with the smooth case
with essentially dimensionless overhead ratio to evaluate p directional derivatives
(essentially a gradient).

Complexity of matrix multiplication: Throughout this section, we set D =
{+,×,+c,×c}, with unit costs (corresponding to polynomial functions). Denote
by c(p) complexity of p × p matrix multiplication. More precisely, if f : Rp×p ×
Rp×p → Rp×p is such that f(A,B) = AB for all, square matrices A,B ∈ Rp×p,
we have c(p) = comp(f,D), which we may write c(p) = pω+o(1) where ω is called
the matrix multiplication exponent. Note that c(p) ≥ p2, as one needs at least one
operation for each of the 2p2 entries.

Directional derivatives: Given a function F : Rp × Rq → R, we denote by
F ′

1 : Rp × Rq × Rp×p → Rp the function which associates to x ∈ Rp, y ∈ Rq and a
matrix A ∈ Rp×p the p directional derivatives with respect to x variable, for fixed
y, in directions given by the columns of A. The proof of the following theorem is
given in Appendix 2.8.

Theorem 4 (Computational ratio for directional derivatives) There exists
a function F : Rp × Rq → R and a program PF implementing F on dictionary
{+,×,ReLU,+c,×c} (all operations have unit cost), such that for any program P ′

implementing (y, A) 7→ F ′
1(0, y, A) on derived dictionary {+,×,ReLU,ReLU′,+c,×c},

cost(P ′)/cost(PF) ≥ (c(p)− 5p)/(40p2) = pω−2+o(1). (2.7)

Theorem 4 has q parameters, parametric dependency is required to express
hardness. Indeed, for some parameter values, computation may be trivial (e.g.
null values). Alternatively, it states that for some values of the q parameters,
computing p directional derivatives has cost as in Equation (2.7).

The bound in (2.7) is sharp up to multiplicative constants for linear ReLU
networks, see Remark 5 in Appendix 2.6.2.

27

Consequences: Our overhead estimate is roughly pω−2, it constitutes a bottle-
neck: a “cheap nonsmooth p directional derivatives principle”, would imply easy
matrix multiplication, to the point that ω = 2. Since the seminal work of [111], it
is known that ω ≤ log2(7) ≃ 2.81. Determining the precise exponent ω has been
an object of intense research [112]. Asymptotically, one has 2 ≤ ω < 2.373, see
[113], [114], the best known bound being given in [115]. In this case, the estimate
in (2.7) is roughly p0.373.

Comparison with the smooth case: If F is C1, evaluating p directional
derivatives is comparatively easier because F ′(x, d) = ⟨∇F (x), d⟩ for all x, d ∈ Rp.
Hence, one may first evaluate ∇F (once), at a cost similar to that of F (cheap
gradient principle), and then evaluate p scalar products, at a cost p2. If the cost
of F is of order p2 at least (for example F is a feedforward neural network with
p inputs and a layer of p hidden neurons), then this is overall proportional to the
cost of computing F .

2.5.2 Computing Clarke subgradients using forward auto-
matic differentiation

In [103]–[105], several automatic differentiation strategies are proposed to evaluate
elements of the Clarke subdifferential. These approaches are based on directional
[116] and lexicographic derivatives [106] which satisfy a chain rule under structural
assumptions. The chain rule may be implemented using the vector forward mode of
automatic differentiation [95], which suffers from computational overhead scaling
linearly in p, contrary to the reverse mode in Theorem 3. Reducing this factor
is an open question, even for compositional functions involving only univariate
nonsmoothness such as absolute value [117]. More details are given in Appendix
2.6.2.

2.5.3 Computational hardness of subgradient enumeration
We investigate in this section the hardness finding subgradients for programs de-
fined on the elementary dictionary D0 = {+,−,ReLU} with unit costs. Let us
denote by P(D0) the set of such programs. We will, with a slight abuse of nota-
tion, identify a program P ∈ D0 = {+,−,ReLU} with the function it computes
to state our complexity result (proof in Section 2.9).

Theorem 5 (Clarke subgradients and NP-Hardness)
(i) The problem of finding two distinct subgradients in the Clarke subdifferential of
P ∈ P(D0) at given input (or one single subgradient if it is reduced to a singleton)
is NP-hard.
(ii) Deciding if P ∈ P(D0) is not differentiable at some given input is NP-hard.

Remark 3 In Theorem 5, numerical parameters and inputs are constrained to be
in {−1, 0, 1}, so that the hardness result does not depend on numerical represen-
tation and only involves program size (strong NP-hardness). See Appendix 2.9 for
more details.

28

The above problems (i)-(ii) enter the field of computational complexity as we
consider programs P ∈ P(D0) with a natural notion of size, given by their cost,
cost(P), the number of operations (recall that we assumed unit costs). Since
the considered programs implement piecewise linear functions, it follows from [95,
Proposition 2.7] that, our hardness result also holds for the lexicographic subdif-
ferential [106], which reduces in this case to the set of neighboring gradients (see
Appendix 2.9).

The counterpart of the above problem for AD conservative gradients as in
Definition 4 is tractable, illustrating a major computational difference between
Clarke subdifferential and AD conservative gradient. The proof is in Appendix
2.9.4, by reduction to a graph shortest path problem.

Proposition 3 (Find two elements in AD conservative gradients is tractable)
Given P ∈ P(D0), with conservative gradient DP given by Theorem 3, finding two
elements in DP (x) at a given input x (or one single element if DP (x) is a singleton)
is solvable in polynomial time.

To conclude, we extended the “cheap gradient” principle to nonsmooth auto-
matic differentiation with a flexible version of Baur-Strassen’s result: the overhead
ratio of conservative gradients is independent of the dimension. On the other hand,
we showed that the potential gain in efficiency of forward AD for multiple direc-
tional derivatives is limited due to an intrinsic connection to matrix multiplication.
Finally, we have shown that for simple ReLU networks, the enumeration of Clarke
subgradients is computationally hard, in contrast to the enumeration of conserva-
tive gradients. The global picture is significantly different from the smooth case,
with a well understood “cheap gradient” principle that yields “cheap p directional
derivatives”, illustrating the specificities of nonsmoothness. Our results confirm
the centrality of conservative gradients in nonsmooth AD and machine learning:
they generalize gradients with a clear “cheap principle”, contrary to concurrent
notions. An important open question in this context is the complexity of subgra-
dients, or, in other words, the existence of a “cheap subgradient principle”. We
conjecture a negative answer in general.

A Appendix of Chapter 2

2.6 Further comments, discussion and technical
elements

2.6.1 Comments on Section 2.4

Computational model in Section 2.4.1

DAG representation and examples 2.4.1: We start with a remark regard-
ing representations of programs as directed acyclic graphs and use them to illus-
trate the model of computation proposed in the main text. It reduces to that of
arithmetic circuit complexity for a dictionary composed of elementary arithmetic
operations.

Remark 4 (Programs as directed graphs) A predecessor relation trivially de-
scribes a directed acyclic graph (DAG). Therefore, a program is equivalently rep-
resented as a DAG, nodes corresponding either to input variables (empty predeces-
sor) or computation (nonempty predecessor). Directed edges connect predecessor
nodes to their successors. Each computation node contains a lower-level program
(with a single output), with the number of input edges being coherent with the
number of arguments. The cost of a node is that of the underlying program and
the cost of P is the sum of the costs of its nodes. Nodes without outer edges are
output nodes. See examples in Appendix 2.6.1.

We represent programs using the DAG representation as in Remark 4. Let
us define a simple dictionary D := {+,×} and introduce a level 0 elementary
program P0 such that P0(a, b) = a + b meaning that P0 computes the quantity
a + b. P0 is identified with + from the dictionary. We also introduce a level 1
program P1 such that P1(a, b, c) = a × (b + c). We can construct an equivalent
level 1 program, Q1 such that Q1(a, b, c) = a × b + a × c, in this case, we have
P1 ∼ Q1, or [P1] = [Q1] since they compute the same quantity. The level 2 program
P2 is such that P2(a, b, c, d) = (a + b) × (c + d) = Q1(a, c, d) + P1(b, c, d) and
uses level 1 programs Q1 and P1 in its computation nodes. The Directed Acyclic
Graphs (DAGs) representing these programs are given in Figure 2.2. Assuming
cost(+) = cost(×) = 1, we have cost(P0) = 1, cost(P1) = 2, cost(Q1) = 3 and
cost(P2) = cost(Q1) + cost(P1) + cost(×) = 6.

29

30

a b

+

(a) P0

a b c

+

×

(b) P1

b a c

× ×

+

(c) Q1

a c db

P1Q1

+

(d) P2

Figure 2.2: DAG illustrating different programs with dictionary D := {+,×}. (a)
P0(a, b) = a + b, of level 0 which is identified with + from the dictionary, (b)
P1(a, b, c) = a(b+ c), of level 1, (c) Q1(a, b, c) = ab+ ac, of level 1 and equivalent
to P1, (d) P2(a, b, c, d) = (a+ b)(c+ d) = Q1(a, c, d) + P1(b, c, d), of level 2.

2.6.2 Comments on Section 2.5
Forward AD and Clarke subgradients

[106] introduced the notion of lexicographic subdifferential, denoted here ∂LF for
a Lipschitz function F : Rp → R. The construction of ∂LF is based on successive
local approximations of F with directional derivatives, and one has ∂LF (x) ⊂
∂cF (x) for all x such that the first term is well defined.

It is known that automatic differentiation can be used to compute directional
derivatives, particularly the forward mode of automatic differentiation [8]. Based
on this observation, Khan and Barton developed several algorithms to evaluate
elements of ∂cF , based on directional derivatives [103]–[105]. They concentrate
on piecewise C1 functions, see for example [101], and propose to handle composi-
tional structures with different restrictions on the function class considered, such
as functions in abs-normal forms [103], or broader classes [95], [104].

All these procedures either require to evaluate p directional derivatives [103],
[104], or rely on forward chain rule propagation for lexicographic derivatives [95],
[105], which also require to maintain p directional derivatives. For this reason,
all these methods suffer from a multiplicative computational overhead ratio of the
order of p in the worst case, and it is not known if this could be improved [95],
although efforts have been made in this direction [117].

Matrix multiplications

Remark 5 The lower bound described in Theorem 4 is sharp for a linear ReLU
network F as in (2.13) involving only square p× p matrices. Indeed, p directional
derivatives of F in directions a1, . . . , ap, can be computed with roughly Lc(p)
operations, using a matrix multiplication algorithm realizing the c(p) bound, for
example using the forward mode of AD [103], [104]. The naive PF algorithm for
forward evaluation performs roughly 2Lp2 operations which results in the bound
(neglecting terms of order one in numerator and denominator),

comp(Fd, D ∪ {ReLU,ReLU′})
cost(PF) ≤ c(p)

2p2 ,

for this class of networks, to be compared with (2.7). Finally, we remark that in the
smooth case such complexity estimates reduce to gradient computation which can

31

be done using backward algorithmic differentiation with a constant multiplicative
overhead ratio.

We denote by Fd, the function Fd : (y, A) 7→ F ′
1(0, y, A) which computes p direc-

tional derivatives at a given point. Setting ω = lim supp→∞ log(c(p))/ log(p), since
P ′ is an arbitrary program implementing Fd, we have shown that asymptotically,
for any ϵ > 0

sup
p,F=[PF],PF ∈P(D∪{ReLU})

comp(Fd, D ∪ {ReLU,ReLU′})
cost(PF) × p2−ω+ϵ = +∞,

where the supremum is taken over all p and all functions F : Rp×q → R imple-
mented by a program PF with dictionary D ∪ {ReLU}. It is not known whether
ω > 2.

2.7 Proofs related to Section 2.4.3
Proof of Theorem 3: Given a program P as in Section 2.4.1, the path differ-
entiability of [P] is immediate by composition and the chain rule property. The
associated conservative gradient DP is constructed in [10].

We have the following cost estimates which can be deduced from the definition
of the cost of a program in Section 2.4.1.

• Algorithm 1 forward evaluation:

cost(P) = cost(Algorithm 1) =
m∑

i=p+1
cost (gi) (2.8)

• Algorithm 1 forward evaluation with derivatives: Algorithm 1’ with gdi
instead of gi on line 2

cost(Algorithm 1’) =
m∑

i=p+1
cost (gdi) (2.9)

• Algorithm 2 backward AD cost:

cost(backprop(P)) = cost(Algorithm 1’) +
m∑

i=p+1
|pr(i)|(cost(+) + cost(×))

=
m∑

i=p+1
cost (gdi) + |pr(i)|(cost(+) + cost(×)). (2.10)

• Algorithm 2 forward AD cost:

cost(forprop(P)) = cost(Algorithm 1’) +
m∑

i=p+1
p|pr(i)|cost(×) + p(|pr(i)| − 1)cost(+)

=
m∑

i=p+1
cost (gdi) + p|pr(i)|cost(×) + p(|pr(i)| − 1)cost(+).

(2.11)

Let us derive the complexity bound of Algorithm 1 according to Algorithm 2.

32

Backward AD complexity result: Using (2.10) and the fact that cost has
value in R∗

+, we have

cost(backprop(P)) =
m∑

i=p+1
cost (gdi) + |pr(i)|(cost(+) + cost(×))

=
m∑

i=p+1
cost(gi)×

cost (gdi) + |pr(i)|(cost(+) + cost(×))
cost(gi)

≤ max
i=p+1,m

(
cost (gdi) + |pr(i)|(cost(+) + cost(×))

cost(gi)

)
m∑

i=p+1
cost(gi),

where the inequality is due to factorization by the maximal value. Using (2.8), we
obtain

cost(backprop(P)) ≤ ωb × cost(P)

where ωb is given in (2.5). This proves point (i).

Forward AD complexity result: Using (2.11) and the fact that cost has
value in R∗

+, we have

cost(forprop(P)) =
m∑

i=p+1
cost (gdi) + p|pr(i)|cost(×) + p(|pr(i)| − 1)cost(+)

=
m∑

i=p+1
cost(gi)×

cost (gdi) + p|pr(i)|cost(×) + p(|pr(i)| − 1)cost(+)
cost(gi)

≤ max
i=p+1,m

(
cost (gdi) + p|pr(i)|cost(×) + p(|pr(i)| − 1)cost(+)

cost(gi)

)
×

m∑
i=p+1

cost(gi),

where the inequality is due to factorization by the maximal value. Using (2.8), we
obtain

cost(forprop(P)) ≤ ωf × cost(P)

where ωf is given in (2.5).
□

2.7.1 Justification of the complexity Table 2.1 of the DReLU-
Dictionary.

The proof of Corollary 2 follows from Theorem 3 by computing the relevant con-
stants. They are shown in Table 2.1, let us justify the proposed numbers.

Case 1 (cost(×), cost(+)) Let us define g(a, b) = a × b. To evaluate g, we need
one operation from DReLU. The derived program d related to g, should satisfy
d(a, b) = (b, a) which does not require additional operation. Therefore, from As-
sumption 1 we can deduce that cost(g) = 1 and cost(gd) = 1. We get the same
result for cost(+) by applying identical reasoning.

33

Case 2 (cost(×c), cost(+c)) Let us define g(a) = c × a. To evaluate g, we need
one operation from DReLU. The derived program d related to g, should satisfy
d(a) = c which does not require additional operation from D′

ReLU. Therefore, from
Assumption 1 we can deduce that cost(g) = 1 and cost(gd) = 1. We get the same
result for cost(+c) by applying identical reasoning.

Case 3 (cost(log)) Let us define g(a) = log(a). To evaluate g, we need one oper-
ation from DReLU. The derived program d related to g, should satisfy d(a) = 1/a,
which requires the inverse operation from D′

ReLU. Therefore, from Assumption 1
we can deduce that cost(g) = 1 and cost(gd) = 2.

Case 4 (cost(exp)) Let us define g(a) = exp(a). To evaluate g, we need one
operation from DReLU. The derived program d related to g, should satisfy d(a) =
g(a) which does not require operation from D′

ReLU. Finally, from Assumption 1 we
can deduce that cost(g) = 1 and cost(gd) = 1.

Case 5 (cost(inv)) Let us define g(a) = 1
a
. To evaluate g, we need one operation

from DReLU. The derived program d related to g, should satisfy d(a) = −1
a2 which

requires one additional multiplication to compute the square and one (−1) multi-
plication operation from D′

ReLU. Finally, from Assumption 1 we can deduce that
cost(g) = 1 and cost(gd) = 3.

Case 6 (cost(ReLU)) Let us define g(x) = ReLU(x) = max(x, 0). To evaluate g,
we need to evaluate the sign of x. The derived program ReLU′ can be computed also
from the sign of x without further operation. We have cost(g) = 1 by hypothesis,
but it is also reasonable to consider cost(gd) = 1 as both operations only require
sign evaluation of the same object.

Remark 6 SinceDReLU dictionary contains the ReLU function, we can build other
non-smooth functions such as the maximum and the absolute value. For example,
max{x, y} = ReLU(x− y) + y = ReLU(x− y) + ReLU(y)− ReLU(−y).

2.7.2 An extension of Table 2.1
The justifications of the following are similar to Section 2.7.1, simply taking into
consideration different types of operations. Taking cnonlin = cReLU = 1, we recover
table 2.1. We replace ReLU by ×ReLU which corresponds to its usage in practice
and allows us to balance the cost of ReLU operations and that of multiplications.

The justification is the same as in Section 2.7.1 taking into consideration differ-
ent types of operations. For the ×ReLU operation, the justification is as follows.
Case 7 (×cost(ReLU)) The operation has two argument and requires one sign
evaluation and one multiplication in the worst case, so we assign it the cost
1 + cReLU. The differentiated program d should compute the function (a, b) 7→
(ReLU(b), a× ReLU′(b)). One can write a program to compute jointly g and d as
follows: return (a × b, b, a) if b ≥ 0 and (0, 0, 0) if b < 0. This only requires a
bit sign check which cost is cReLU and a multiplication. We therefore model this
operation such that cost(gd) = cost(g) = 1 + cReLU.
Further refinements could be considered including various type of computational
operations, such as memory moves, these are beyond the scope of the present
paper.

34

Table 2.2: Extension of cost table. cnonlin ≥ 1 is the cost of nonlinear operations
and cReLU ≥ 0 is the cost of sign evaluation for ReLU or ReLU′.

g (+,×) (+c,×c) log exp inv ×ReLU
cost(g) 1 1 cnonlin cnonlin cnonlin 1 + cReLU
|pr| 2 1 1 1 1 2

cost(gd) 1 1 2cnonlin cnonlin cnonlin + 2 1 + cReLU
cost(gd)
cost (g) 1 1 2 1 cnonlin+2

cnonlin
1

cost(×)|pr|
cost (g) 4 2 1

cnonlin
1

cnonlin
1

cnonlin
2

1+cReLU

cost(gd) + 2cost(×)|pr|
cost (g) 5 3 ≤ 4 ≤ 3 ≤ 5 ≤ 5

2.7.3 Additional elementary nonsmooth programs and cost
examples

For simplicity, we do not discuss the dictionary and its related derived dictionary
as there are many possibilities, one of them being DReLU and D′

ReLU as all the
considered operations can be equivalently expressed with ReLU. We use the same
framework as in 2.7.2 and we identify the cost of comparing two real numbers with
cReLU > 0. For each program g and associated derived program d, we let

ω = cost(gd) + 2cost(×)|pr|
cost (g)

Table 2.3: Extension of cost table. cnonlin ≥ 1 is the cost of nonlinear operations
and cReLU ≥ 0 is the cost of sign evaluation for ReLU or ReLU′. For simplicity
cReLU is abbreviated cR and cnonlin is abbreviated cnl

g (+,×) | · | ELU 3× 3-max-pool ∥ · ∥∞ ∥ · ∥1
cost(g) 1 1 + cR 2 + cR + cnl 153 + 8cR n+ 2ncR − 1 n(2 + cR)− 1
|pr| 2 1 1 9 n n

cost(d, g) 1 1 + cR 2 + cR + cnl 153 + 8cR n+ 2ncR − 1 n(2 + cR)− 1
cost(gd)
cost (g) 1 1 1 1 1 1

cost(×)|pr|
cost (g) 4 1

1+cR
1

2+cR+cnl
9

153+8cR
n

n+2ncR−1
n

n(2+cR)−1

ω 5 ≤ 3 ≤ 2 ≤ 1.12 ≤ 3 ≤ 2

Case 8 (Absolute value and Leaky-ReLU) Recall that |x| = x if x > 0 and
−x otherwise. Similarly Leaky-ReLU(x) = x if x > 0 and ax otherwise, for
some parameter a ∈ (0, 1) so that both cases are exactly the same. The reasoning
and result are exactly the same for both operations so we treat the absolute value.
The construction is similar as what was proposed for ×cost(ReLU) treated in the
previous section.

35

Let g be a program to evaluate | · |, in the worst case it requires one sign evalu-
ation and one multiplication so that cost(g) = 1 + cReLU. Similarly it is possible to
built a program which returns (x, 1) if x > 0 and (−x,−1) otherwise, this computes
(gd) and require the exact same operations so that cost(gd) = cost(g) = 1 + cReLU.

Case 9 (ELU)

f(x) =
{
x if x ≥ 0
a(ex − 1) if x < 0 with a > 0.

Let g be a program to evaluate the ELU function, it requires a sign evaluation
and in the worst case one nonlinear operation to evaluate ex, one multiplication
to evaluate aex, and one substraction to evaluate aex − a. Therefore, cost(g) =
cReLU + cnonlin + 2. The derived program d requires the same sign and returns 1 or
aex depending on the sign. This does not require additional operation and therefore
the joint computation of g and d satisfies cost(gd) = cost(g).

Case 10 (max-m-linear) Set n a number of inputs and m ≥ 2 a number of
linear functions which are parameters, represented by a matrix A and a fixed input
vector of size n represented by x ∈ Rn. Setting maxm : Rm to R the function which
evaluates the maximum of m numbers, we consider g a program which evaluates
the function A 7→ maxm(Ax). Recall that x is fixed so that the number of inputs
is m × n. The multiplication requires m × (2n − 1) multiplications and additions
and the evaluation of maxm requires (m − 1)cReLU as it requires m − 1 pairwise
comparisons. We therefore have cost(g) = m× (2n− 1) + (m− 1)cReLU.

As for the derived program d, setting Mi = 0 except for row number i which
attains the maximum in g which is set to x, we have an element of a conservative
gradient for g. It is possible to jointly compute g(A) and d(A) by invoking a
program which returns ((Ax)[i],Mi) where i is any index realizing the max and
Mi is as discussed. This does not require more operations and we have therefore
cost(gd) = cost(g) = m× 2n− 1 + (m− 1)cReLU

Case 11 (Two dimensional max-pooling (3× 3-max-pool)) We consider a
kernel of size 3 × 3 for simplicity. The goal is to differentiate with respect to the
kernel weights for a fixed input. Let g denote a program implementing such a
function, it is of the same form as max-m-linear except that the matrix A is of
size 9×25 (padding values at the boundary of the 3×3 patch, this gives 5×5 = 25
inputs and 9 outputs), but it is sparse and can be parametrized by only 9 values,
and the evaluation of the linear function for a fixed 5 × 5 input only requires
9 × (9 + 8) = 153 addition and multiplications. We then take the maximum of
these 9 outputs so that and cost(g) = 153 + 8cnonlin. For the same reason as
max-m-linear, we have cost(gd) = cost(g) = 153 + 8cnonlin.

Case 12 (l1-norm, ∥ · ∥∞) Denote by g a program which evaluate the l1 norm
on Rn. It has n inputs. In the worst case, its evaluation can be done with n − 1
addition, n multiplication by −1 and n pairwise comparisons. Therefore we have
cost(g) = 2n + ncReLU − 1. For the same reasons as all examples before, it is
possible to identify a derived program d without requiring additional operation so
that cost(gd) = cost(g) = 2n+ ncReLU − 1.

36

Case 13 (Median of n numbers) Denote by g a program that evaluates the me-
dian of n numbers. This can be done by sorting the n numbers and outputting the
value corresponding to ⌊n2 ⌋, which requires roughly n log(n) operations, depending
on the algorithm used. The sorting operation is a permutation, one could apply the
same permutation to the vector (1, 2, . . . , n) without additional operation required.
The number at position ⌊n2 ⌋, call it i, is the index of the value associated with
the median. Setting d to be the null vector in Rn with value 1 at position i only,
we have a selection in a conservative gradient for the median with no additional
operation required. Therefore in this case cost(g) = cost(gd).

Case 14 (Selection functions) This example encompasses virtually all exam-
ples used in machine learning and extends the median example above. Assume
that f : Rp → R is locally Lipschitz, given in the form

f(x) = fs(x)(x)

where s : Rp → {1, . . . ,m} is an index selection function, and for each i = 1, . . . ,m,
fi : Rp → R is a C2 function. Let g be a program computing f , one possibility is
to first evaluate s(x) at cost cs and then evaluate fs(x)(x) at cost cf . As shown
in [11], under very mild restrictions on s and f (which should be expressed with
logarithms, polynomials, exponentials etc ...), the function

x 7→ ∇s(x)f(x)

is a conservative gradient for f . It can be seen that it is possible to evaluate jointly
(g, gd) by first computing s, at a cost cs, then evaluate fs and ∇fs jointly at a cost
c∇.

cost(g) = cs + cf

cost(gd) = cs + c∇

cost(gd)
cost(g) = cs + c∇

cs + cf
≤ cs + 5cf

cs + cf

where we used c∇ ≤ 5cf , the cheap gradient principle for smooth programs. This
ratio is close to 5 if cs is negligible, we recover the usual ratio for smooth programs.
It is close to 1 if cs dominates, which is the case in the median example where fs
just corresponds to coordinate number s of the input and has a constant derivative.

2.8 Proofs of Section 2.5.1

2.8.1 Proof of the main result
Proof of Theorem 4: Let U ∈ Rp×p be an orthogonal matrix with entries in
{−1, 1} which columns are denoted by u1, . . . , up (with squared norm p). Assume
that we have as variables a matrix M ∈ Rp×p and two matrices A,B ∈ Rp×p with
columns a1, . . . , ap and b1, . . . , bp respectively.

Consider the function

F : (x,B,M) 7→ 1
p

p∑
i=1
|[UBTMx]i|.

37

The pair (M,B) will be identified as y in the statement of the theorem. Con-
sidering the dictionary of elementary functions {+,×,ReLU,+c,×c}, F has a
representation as a program PF using the identity |t| = ReLU(t) + ReLU(−t) for
all t ∈ R. We may construct PF such that cost(PF) = 6p2 + 2p ≤ 8p2 where we
count 2p2− p operation for each matrix vector multiplication to evaluate UBTMx
(there are three of them), p multiplication by −1 to evaluate −UBTMx , 2p ap-
plication of ReLU (on UBTMx and −UBTMx), p additions of ReLU outputs to
evaluate p applications of the absolute value, p− 1 for the outer sum and 1 for the
division. Now consider the constraints

sign(UBTMai) = ui, i = 1, . . . p. (2.12)
The set of matrices A,B,M satisfying this constraint is an open set, call it S. We
now restrict our attention to this open set and argue that cost(P ′) does not change
if the input variables are constrained to be in S.

We have for all i = 1, . . . , p and (A,B,M) ∈ S, the following directional
derivatives with respect to variable x

F ′
1(0, B,M, ai) = 1

p
sign(UBTMai)TUBTMai = 1

p
uTi UB

TMai = bTi Mai.

Setting the function G : (A,B,M) 7→ ∑p
i=1 F

′
1(0, B,M, ai) = Tr(MABT), we have

that G is a polynomial and ∇MG(A,B,M) = ∑p
i=1 bia

T
i = BAT . Note that this

does not depend on M .
Fix P ′ any program implementing the directional derivatives function (y, A) 7→

F ′
1(0, y, A) of F described above, with dictionary {+,×,ReLU,ReLU′,+c,×c}, as

in the statement of the theorem.
Claim 1 There is a program P2 on dictionary D = {+,×,+c,×c} such that G =
[P2] (on the whole space) and cost(P2) ≤ cost(P ′) + p.

We use the DAG representation of programs as in Remark 4. Therefore P ′

is described by a DAG which node are either input nodes or computation nodes
implementing functions from D′

ReLU. We will modify the program by simple mod-
ifications of the computation nodes. We may obtain a program P0 implementing
G on S with dictionary D′

ReLU with cost(P0) ≤ cost(P ′) + p by summing the out-
puts of P ′. The ReLU′ nodes in P0 represent a semialgebraic function [118], [119]
with values in a finite set. Therefore, there is a dense open semialgebraic set on
which all ReLU′ nodes in P0 are locally constant [118, Theorem 6.7]. Reducing S
if necessary, we obtain a program P1 on dictionary DReLU such that P1 ∼ P0 on
S by replacing each ReLU′ node in P0 by the corresponding constants. We have
cost(P1) ≤ cost(P0) (we replace computing nodes by constants). By Lemma 1,
there is a program P2 on D such that cost(P2) = cost(P1) ≤ cost(P0) ≤ cost(P ′)+p
and G = [P2] (on the whole space). This proves the claim.

We may obtain a program D2 implementing ∇MG with dictionary D by back-
ward algorithmic differentiation on P2, that is D2 = backprop(P2). we have there-
fore

comp(BAT ,D) ≤ cost(D2)
≤ cost(P2, D2)
≤ 5cost(P2)
≤ 5p+ 5cost(P ′),

38

where the first inequality is because D2 is a program computing BAT for all A,B
on dictionary D, the second is because adding computation increases the cost, the
third is a property of backward algorithmic differentiation on D and the last one
is by construction of P2. Note that comp(BAT ,D) = c(p) by definition, therefore
we have the claimed lower bound

cost(P ′)
cost(PF) ≥

c(p)− 5p
5cost(PF) = c(p)− 5p

8p2 .

□

2.8.2 An additional Lemma

Lemma 1 Let Q : Rp → R be a polynomial and P1 be a program (without loss
of generality of level 1) on the dictionary D1 = {+,×,ReLU,+c,×c}, such that
Q = [P1] for all inputs restricted to an open set S ⊂ Rp. Then there is a level
1 program P2 on the dictionary D = D1 \ {ReLU} = {+,×,+c,×c} such that
Q = [P2] (for all inputs in Rp). Furthermore, if cost(ReLU) = cost(×c), then,
cost(P2) = cost(P1).

Proof : We use the DAG representation of programs as in Remark 4. Therefore
P1 is described by a DAG which node are either input nodes or computation nodes
implementing functions from D1. The function computed by P1 as well as each
of its nodes are semi-algebraic [118]–[120]. For each ReLU node in the graph
representing P1 (assume that there are N of them) we associate a number: the
function ReLU′ evaluated on its input (with the convention that ReLU′(0) = 0).
This defines a semialgebraic function G : Rp → {0, 1}N . As it has values in a finite
set, by semialgebraicity, there is an open subset of S ′ ⊂ S such that G is constant
on S [118, Theorem 6.7]. Consider P2 which computation graph is the same as
that of P1 except that each absolute value node is replaced by multiplication by
the corresponding ReLU′ value (which is constant on S ′). Then Q = [P1] = [P2]
for all inputs in the open set S ′. All computation nodes of programs on D are
multivariate polynomials and two polynomials which agree on an open set are
equal globally. This concludes the proof. □

2.9 Proofs of Section 2.5.3

We investigate in this section the hardness of finding a Clarke subgradient for
programs defined on the elementary dictionary D0 = {+,−,ReLU}. We start with
an equivalent representation of these programs as linear ReLU networks with skip
connections and specific weight matrices. This equivalence preserve representation
size up to polynomial factors. We will then prove a hardness result on such ReLU
networks. This will provide proof arguments for Theorem 5 by the polynomial time
equivalence of the two representation. We proceed similarly to prove Proposition
3, using the equivalence with the two representations.

39

2.9.1 Polynomial time equivalence with linear ReLU net-
works with skip connections

Given a set of matrices M1 ∈ {−1, 0, 1}p1×p, M2 ∈ {−1, 0, 1}p2×p1 , . . .ML−1 ∈
{−1, 0, 1}pL−1×pL−2 , ML ∈ {−1, 0, 1}1×pL−1 we consider the function F : Rp → R,

F : x 7→MLΦL−1(ML−1ΦL−2(. . .Φ1(M1x))). (2.13)

where Φi : Rpi → Rpi are given functions which apply to each coordinate, an
activation function which is either the identity or the ReLU function. There is an
obvious notion of size for this representation, corresponding to the number of free
parameters (matrix entries and coordinates on which ReLU or identity is applied),
the size of the representation is pL−1 +∑L−1

i=1 pi × pi−1 + pi.
A function F given in (2.13) can be represented by a program on D0 of equiv-

alent size, this correspond to a naive implementation. Similarly, any program
P ∈ P(D0) on p inputs and with a single output can be represented by a net-
work as in (2.13) which size is at most 18cost(P)3. Indeed, we may assume that
cost(P) ≥ p/2 without loss of generality, otherwise, the program would not perform
operations on some of the input variables and it could be simplified by removing
variables which do not affect the output. Recall that m in Algorithm 1 is the
memory footprint of P , in our case, it is m = p + cost(P), the number of inputs
plus the total number of operations. Note that we have m ≤ 3cost(P). Each
operation +, − or ReLU in the program can be represented by a m ×m matrix
composed with a certain Φ: Rm → Rm which contribution to the Relu network
size is at most (m2 +m) ≤ 2m2 ≤ 18cost(P)2 since m is integer and m ≤ 3cost(P).
There are cost(P) such operations so that a program can be represented equiva-
lently by linear Relu network, with L = cost(P) layers which contribution to the
network size is at most 18cost(P)2 so that the size of the resulting network is at
most 18cost(P)3, which is the desired bound since.

We have shown that working with functions represented as in equation (2.13)
is equivalent to work with programs in P(D0) as it is possible to switch from
one to the other at a cost of an increase of the representation size which is only
cubic. Therefore we will from now on work with functions represented as linear
relu networks with skip connections as in (2.13), and NP-hardness or polynomial
time results on such function will be valid on P(D0) by the construction above.

2.9.2 Further properties of Linear ReLU networks
Throughout this section F denotes a with representation as in (2.13). This func-
tion is positively homogeneous, it satisfies F (0) = 0 and it. By piecewise linearity,
its Clarke subdifferential is a polyhedron (see e.g., [121], [122]). The Clarke subd-
ifferential is a conservative gradient for this function, and we will associate to it a
different conservative gradient, associated to Algorithm 2

Definition 4 (Autodiff conservative gradient) We consider a specific conser-
vative gradient for F , it is given by Da

F (x) = {MT
1 D1M

T
2 D2 . . .M

T
L−1DL−1M

T
L },

where for i = 1, . . . , L− 1, Di is a diagonal matrix which entries respects the sign
pattern of the corresponding activation function: 1 if the activation is identity, 0

40

if the activation is ReLU and the input is negative, 1 if the input is positive and
all elements in [0, 1] if the input is null. We have in particular

Da
F (0) = {MT

1 D1M
T
2 D2 . . .M

T
L−1DL−1M

T
L } (2.14)

where in this case, diagonal entries of matrices Di corresponding to ReLU activa-
tions are arbitrary in [0, 1] and the remaining diagonal entries are 1 (corresponding
to identity activations).

The autodiff conservative gradient is associated with the algorithmic differentiation
of a natural numerical program implementing F as in Subsection 2.4.2. Further-
more, one can check that given a program P ∈ P(D0), after the transformation
outlined in Section 2.9.1, we have that Dα

F coincides with DP in Theorem 3. In
the following definition, DF could be,for example, the Clarke subdifferential of F
or the algorithmic differentiation conservative gradient Da

F .
We consider the following problem.

Problem 1 (Conservative gradient enumeration) Given matricesM1 ∈ Rp1×p,
M2 ∈ Rp2×p1 , . . .ML−1 ∈ RpL−1×pL−2 , ML ∈ R1×pL−1 , and functions Φ1, . . . ,ΦL−1,
consider F : Rp → R the associated linear ReLU network with skip connections in
(2.13), x ∈ Rp and DF : Rp ⇒ Rp a conservative gradient for F . Compute two
distinct elements in DF (x) or one element if it is a singleton.

This problem enters the field of computational complexity as we have associated
to it a representation size corresponding to the number of “free parameters” to be
chosen: each matrix entry and the activation (ReLU or identity) corresponding to
each coordinate, resulting in a number of parameters pL−1 + ∑L−1

i=1 pi × pi−1 + pi.
In what follows, we will consider integral or rational entries for matrices and input
x with the common notion of bit size. [123].

Clarke enumeration is NP-hard for ReLU networks

The decision version of Problem 1, under the same assumptions, is to decide if
there exists two distinct elements in DF (x), that is, decide if DF (x) is not reduced
to a singleton.

Theorem 6 (Finding two Clarke subgradients is NP-Hard) Decision ver-
sion of problem (1) with matrix and vector entries in {−1, 0, 1} and DF = ∂cF is
NP-hard.

Sketch of proof: We encode a boolean formula π on p boolean variable, in a
linear ReLU network with p inputs, of size proportional to that of π. We do so by
replacing ”or” operations by maxima, ”and” operations by minima, negation by
multiplication by −1 and adding ReLU operations to the result. Using Lemma 3
in appendix 2.9.5, the resulting F is represented by a linear ReLU network. By
construction, 0 is a global minimum of F so 0 ∈ ∂cF (0), and F takes positive
values if and only if π is satisfiable if and only if ∂cF (0) ̸= {0}. We detail this
proof in coming sections.

Theorem 6 illustrates the hardness enumerating Clarke subgradients of linear
ReLU networks. For F as in (2.13) and x ∈ Rp, ∂cF (x) is not a singleton if and
only if F is not differentiable at x, therefore:

41

Corollary 3 (Deciding non-differentiability of a NN is NP-Hard) Given a
linear ReLU network as in (2.13) with matrices as in Theorem 6 and x ∈ Rp, de-
ciding if F is not differentiable at x is NP-hard.

In the coming section, we will provide a proof for Theorem 6 and Corollary 3. By
the polynomial time equivalence of the representation of programs in P(D0) and
functions as in (2.13) detailed in Section 2.9.1, this proves Theorem 5.

We add a remark on lexicographic subdifferential. It follows from [95, Propo-
sition 2.7] that, for linear ReLU network F as in (2.13), the lexicographic sub-
differential [106] is the set of neighboring gradients and is contained in Clarke
subdifferential.

Corollary 4 (Finding two lexicographic subgradients is NP-Hard) If DF

is the lexicographic subdifferential, Theorem 6 remains true.

2.9.3 Proof of the main hardness result
Preliminary on 3-SAT We will use reduction to 3-SAT problem which is
among the most well known NP-complete problems. Recall that a boolean for-
mula is built from boolean variables, and operators: AND (conjunction, denoted
∧) OR (disjunction, ∨) and NOT (negation, ¬). A literal, is either a variable or
the negation of a variable. A clause is a disjunction of literals (or a single literal).
A formula is in conjunctive normal form (CNF), if it is a conjunction of clauses
or a clause. 3-SAT is the decidability problem associated to CNF formulas with
clauses containing 3 literals, such formulas are called 3-CNF formulas.

Example 3 The formula (b1∨b2∨¬b3)∧ (b1∨b4∨¬b5)∧ (¬b2∨¬b3∨b6) is 3-CNF
with 6 boolean variables b1, . . . , b6 and 3 clauses.

Problem 2 (3-SAT) Given p, n ∈ N and a boolean function π with p boolean
arguments b1, . . . , bp represented by a 3-CNF formula with n clauses, decide if
there exists an assignment (b1, . . . , bp) ∈ {0, 1}p such that π(b1, . . . , bp) = 1.

Proof of Theorem 6:
The reduction is to 3-SAT.
Consider a 3-CNF function π in p variables b1, . . . , bp with n clauses of size

3. We may assume without loss of generality that n is of the form 2k for k ∈ N
by adding clauses which are always true and increasing the number of clauses by
a factor at most 2. We will consider p real variables x1, . . . , xp. Consider the
first clause of π, say for example (b1 ∨ b2 ∨ ¬b3). We associate to each literal
the corresponding variable x if the literal is equal to a variable, and −x if it is
the negation of the corresponding variable, for example x1, x2,−x3. These are
combined using ReLU ◦max resulting in the expression ReLU(max{x1, x2,−x3}).

We proceed similarly for each clause, we obtain n = 2k expressions involving
ReLU ◦max where the max is over three numbers. The max of 3 numbers is the
same as the max of 4 numbers (by copying one of the inputs) and, according to
Lemma 3, can be represented by a ReLU network with 2 ReLU layers of size at
most 3× 2 = 6 with weight matrices in {−1, 0, 1}.

We may therefore represent the n ReLU◦max expressions with a network with
p inputs and n outputs, with 3 ReLU layers (2 for each max and one for the outer

42

ReLU) of size at most 6n (6 nodes for each max) involving matrices with entries
in {−1, 0, 1}. These expressions are combined using the operator min applied to
the n = 2k clause. Thanks to Lemma 3 again, using min{a, b} = −max{−a,−b},
the max over the 2k numbers can be expressed with k layers of size at most
3× 2k−1 = 3

2n
We call the resulting network F . It has a representation as in (2.13), with

matrices with entries in Z3 = {−1, 0, 1} as in Problem 1. It contains log2(n) + 3
ReLU layers of size at most 6n and it has therefore a description which size is
polynomially bounded in n which is proportional to the bit size representation of
the 3-CNF formula π.

Example 4 If the 3-CNF formula is given by (b1 ∨ b2 ∨ ¬b3) ∧ (b1 ∨ b4 ∨ ¬b5) ∧
(¬b2 ∨ ¬b3 ∨ b6) ∧ (b2 ∨ ¬b2 ∨ b6) with p = 6 boolean variables and n = 4 clauses,
we will obtain a network computing the following expression in 6 real variables
x1, . . . , x6:

F (x1, . . . , x6)
= min(ReLU(max(x1, x2,−x3)),ReLU(max(x1, x4,−x5)),

ReLU(max(−x2,−x3, x6)),ReLU(max(x2,−x2, x6)))).

We have the following rules for min and max over real numbers a, b, c (we use the
convention sign(0) = 0).

• max(a, b, c) > 0 ⇔ (a > 0) ∨ (b > 0) ∨ (c > 0).

• max(a, b, c) > 0 ⇔ max(sign(a), sign(b), sign(c)) > 0.

• min(a, b, c) > 0 ⇔ (a > 0) ∧ (b > 0) ∧ (c > 0).

• min(a, b, c) > 0 ⇔ min(sign(a), sign(b), sign(c)) > 0.

• a > 0 ⇔ (−a < 0) ⇔ sign(a) > 0.

• ReLU(max(sign(a), sign(b), sign(c))) ∈ {0, 1}.

Because of the min ◦ReLU structure, we have F (x) ≥ 0 for all x, furthermore,
F (0) = 0, so that 0 is a global minimum of F and 0 ∈ ∂cF (0). For any x, we have
F (x) > 0 if and only if the output of each max is positive, if and only if each max
clause contains a positive argument. We therefore have that F (x) > 0 if and only
if F (sign(x)) > 0 where sign is the coordinatewise application of the sign, taking
value 0 at 0.

We have the following chain of equivalence

∂cF (0) ̸= {0}
⇔ ∃x ∈ Rp, F (x) ̸= 0
⇔ ∃x ∈ Rp, F (x) > 0
⇔ ∃x ∈ Rp, xi ̸= 0 (∀i = 1, . . . , p) F (x) > 0
⇔ ∃x ∈ Rp, xi ̸= 0 (∀i = 1, . . . , p) F (sign(x)) > 0
⇔ ∃x ∈ {−1, 1}p, F (x) > 0
⇔ ∃x ∈ {−1, 1}p, π(b) = 1, bi = I(xi = 1) (i = 1 . . . p),

43

where I outputs 1 if the boolean argument is true, and 0 otherwise. The first
equivalence is by Lemma 2, the second is because F ≥ 0, the third is because F is
continuous, the fourth is by the discussion above and the fifth is obvious because all
possible {−1, 1} patterns can be described as coordinatewise sign applied vectors
in Rp with nonzero entries. For the last equivalence, for xi ∈ {−1, 1} we set
bi = 0 if xi = −1 and bi = 1 if xi = 1. Each ReLU◦max applied to the sign vector
corresponds to a clause and its output is in {0, 1}. The output of each ReLU◦max
clause is 1 if and only if at least one of its argument is 1, if and only if one of the
litteral of the corresponding disjunction is 1 if and only if the disjunction applied
to the corresponding boolean variables is true. Otherwise, it is 0. Similarly, the
min combination has positive output if and only if all max outputs are 1 if and
only if all the disjunctions applied to variables bi are true.

This shows that Problem 1 is NP-hard, because 0 ∈ ∂cF (0) and ∂cF (0) ̸= {0}
if and only if there exists two distinct elements in ∂cF (0). □

2.9.4 Proof of feasibility for autodiff conservative gradient

The counterpart of Problem 1 for AD conservative gradient in Definition 4 is
tractable, illustrating a major computational difference between Clarke subdiffer-
ential and AD conservative gradient. The proof is in Section 2.9.4, by reduction
to a graph shortest path problem. By the polynomial time equivalence between
linear ReLU network and programs on {+,−,ReLU} proved in Section 2.9.1, this
proves Proposition 3.

Proposition 4 Problem (1) with matrix entries in Q and DF = Da
F is polynomial

time solvable.

Proof of Proposition 4: Consider the following polynomial expression:

MT
1 (Q̄1 +Q1) . . .MT

L−1(Q̄L−1 +QL−1)MT
L , (2.15)

where we decomposed Di = Q̄i+Qi in Definition 4, such that Q̄i is constant, diag-
onal, with zero entries except for the 1 entries which are enforced by the network
activation and sign pattern: strictly positive activation before application of ReLU
when network is evaluated at x, or identity activations. Furthermore, Qi contains
qi ≤ pi diagonal variables to be chosen in [0, 1] corresponding to the zero activa-
tion pattern before application of ReLU, for i = 1, . . . , L−1. The strictly negative
values before application of ReLU do not play an additional role, they correspond
diagonal entries constrained to 0 in both Q̄i and Qi, i = 1, . . . , L − 1. Note that
a polynomial is constant on a box if and only if it is constant so the polynomial
expression in (2.15) is constant when diagonal entries are constrained in [0, 1], if
and only if it is constant. So the problem reduces to decide if the polynomial
expression in (2.15) is non constant, with respect to variables Q1, . . . , QL−1. We
show that this reduces to a graph connectivity problem over 2 + ∑l−1

i=1 qi vertices
and edge weight given by partial products in (2.15).

First, the problem can be reduced to finding a non-zero value in the expression
in (2.15). Indeed, one can substract the value obtained choosing Qi = 0, i =

44

1, . . . , L− 1 and use the following block representation:

(
MT

1 −MT
1

)(Q̄1 +Q1 0
0 Q̄1

)
. . .

(
MT

L−1 0
0 MT

L−1

)(
Q̄L−1 +QL−1 0

0 Q̄L−1

)(
MT

L

MT
L

)
= MT

1 (Q̄1 +Q1) . . .MT
L−1(Q̄L−1 +QL−1)MT

L − MT
1 Q̄1 . . .M

T
L−1Q̄L−1M

T
L .

(2.16)

Therefore, expression (2.15) is nonconstant if and only if expression in (2.16) takes
a nonzero value for some assignment of Q1, . . . , QL−1. The number of variables in
(2.15) and (2.16) is the same and they have exactly the same form. Therefore we
assume without loss of generality that the problem is to decide if the polynomial
expression in (2.15) is not equal to the null polynomial.

Expression (2.15) is a vector function each of its coordinates being a polynomial
function. It is not uniformly null if and only if and only if there exists a coordinate
which is not the null polynomial, so we may add a diagonal matrix Q0 with p0 = p
diagonal entries in [0, 1] (and Q̄0 = 0 for the sake of symmetry) and M0 ∈ Rp×1

the vector of all ones and find a nonzero value for the product

MT
0 (Q̄0 +Q0)MT

1 (Q̄1 +Q1) . . .MT
L−1(Q̄L−1 +QL−1)MT

L , (2.17)

Expression (2.17) is now real valued and therefore defines a polynomial. For each
0 = 1 . . . L − 1, denote by di ∈ [0, 1]qi , the vector containing the diagonal entries
of matrix Qi, this corresponds exactly to the variable diagonal elements of Di in
Definition 4. Denote by P (d0, . . . , dL) the obtained polynomial, P is multilinear in
d0, . . . , dL−1, that is, it has an affine dependency for one block vector if the others
are fixed. Therefore the hessian of P has zero diagonal blocks and the function is
harmonic (hessian has zero trace), as a consequence, the maximum principle for
harmonic functions entails that its maximum and minimum on any polytope are
attained at vertices.

For i = 0, . . . , L− 1 denote by ∆i ⊂ Rqi , the convex hull of the origin and the
canonical basis vectors, this is a qi dimensional simplex with nonempty interior.
The polynomial P in (2.17) is identically zero if and only if it vanishes on the
product of simplices ∆0 × . . .×∆L−1 (which has non empty interior), if and only
if it vanishes on the product set of the edges of these simplices by the maximum
principle. In other words, P is not identically zero, if and only if it contains a
nonzero element when each di is restricted to be an element of the canonical basis
(zero vector with exactly one nonzero entry) or the null vector.

Define a graph with a layer structure:

• The source layer V−1 contains a single source node, v−1,1.

• The zero-th layer V0 contains q0 = p nodes v0,1 . . . v0,q0 .

• Recursively, the i-th layer Vi contains qi nodes vi,1 . . . vi,qi
, for i = 1 . . . L− 1.

• The sink layer VL contains a single node node vL,1.

We connect nodes between consecutive layers, respecting the order induced by the
layer structure. For i = −1, . . . L − 1 and j = 0, . . . , L, with j > i, we connect
layers Vi and Vj as follows

45

• Compute the quantity

R =
 j−1∏
m=i+1

MT
mQ̄m

×MT
j ,

where if j = i+ 1 the product reduces to the identity (R = MT
j).

• For k = 1, . . . , qi and l = 1, . . . , qj, add an edge with between vi,k and vj,l if
Rk,l ̸= 0.

The resulting graph has a number of nodes equal to the number of ReLU
functions in F plus p additional nodes and the source and sink nodes. Computation
of edges can be done in polynomial time: it requires at most 4(L + 1)2 matrix
products involving at most 2L+1 matrices. Indeed the product of m matrices has
polynomial time complexity in the representation bit size of the m input matrices.

In this graph, a directed path from the source to the sink visits each layer at
most once, and in that case it visits a single node. Each such path corresponds
to a monomial with nonzero coefficient appearing in the polynomial P in (2.17)
by construction of the graph structure. Conversely each nonzero coefficient of
a given monomial in (2.17) is uniquely associated to a path in the graph which
corresponds to the nodes associated to variables in the monomial. Therefore,
the source is connected to the sink if and only if there is a nonzero monomial
in (2.17), if and only if the corresponding polynomial is nonzero. Furthermore,
each path corresponds to the evaluation of the program at an edge of the product
∆0 × . . . × ∆L−1. Therefore finding a path connecting the source to the sink
allows to compute a nonzero element in the product and if no such path exists,
the polynomial is identically zero.

So we have shown that the truth value of problem 1 with DF = Da
F , is the

same as the source being connected to the sink by a directed path in the graph we
defined, which has size polynomialy bounded compared to network size. Connec-
tivity can be solved, for example using Dijkstra’s algorithm, in time O(|V |2) where
|V | is the number of nodes (or vertices). A path represents a nonzero element of
Df (0) and if no such path exists, we conclude that DF (0) = {0}. This shows that
the problem is solvable in polynomial time and concludes the proof.

□

2.9.5 Additional lemmas
The following lemma provides a characterization of singleton subgradient for linear
ReLU networks.

Lemma 2 Let F be a linear ReLU network, then ∂cF (0) = {0} if and only if F
is constant.

Proof : If F is constant, the result is immediate because F ≡ 0. Now, suppose
that ∂cF (0) = {0}. We know that F is piecewise linear and there exists a finite set
of polyhedron whose union is Rp, where F is affine linear over each polyhedron.
Furthermore, F is positively homogeneous, therefore for each x ∈ Rp, ∂cF (x) =

46

∂cF (λx) with λ > 0. Setting R ⊂ Rp, the full measure set where F is differentiable,
one has that for all x ∈ Rp and

∂cF (x) = conv
{
v ∈ Rp, ∃yk →

k→∞
0 with yk ∈ R, vk = ∇F (yk) →

k→∞
v
}

= {0}.

Therefore, each affine part has zero derivative on each polyhedra and by continuity
we conclude that F is constant. □

The next lemma describes an explicit representation of maximum of finitely
many numbers using a ReLU network with weights in {−1, 0, 1}.

Lemma 3 Given k ∈ N, k > 0, there exists F , a ReLU network with k ReLU
layers of size at most 3× 2k−1 and weight matrices with entries in {−1, 0, 1}, with
p = 2k inputs such that for any x ∈ Rp,

F (x) = max
i=1,...,2k

xi.

Proof : We proceed by recursion on k. Note that for any x1, x2 ∈ R

max{x1, x2} = ReLU(x1 − x2) + x2 = ReLU(x1 − x2) + ReLU(x2)− ReLU(−x2).

Set the matrices

A =

1 −1
0 1
0 −1

 B =
(
1 1 −1

)
.

The function F1 : R2 → R given by

F1(x) = BReLU(Ax)

satisfies F1(x) = max{x1, x2}. This proves the result for k = 1.
Now assume that for k ≥ 1, we have a network with k ReLU layers of size at

most 3× 2k represented by matrices M1, . . . ,Mk+1 with entries in {−1, 0, 1}, such
that the corresponding ReLU network, as in (2.13) Fk : R2k → R satisfies for all
x ∈ R2k ,

Fk(x) = max
i=1,...,2k

xi.

Set F̃k the concatenation of two copies of Fk, that is F̃k : R2k+1 → R2, such that
for all x, y ∈ R2k,

F̃k(x, y) =
(

maxi=1,...,2k xi
maxi=1,...,2k yi

)
.

The matrices representing F̃k can be described in block form

M̃i =
(
Mi 0
0 Mi

)
∈ R(2pi)×(2pi−1)

47

for i = 1, . . . , k+ 1, where p0 = 2k and pk = 1. This network is made of k layers of
size at most 3× 2k+1, it has 2k+1 inputs and two outputs and its weight matrices
have elements in {−1, 0, 1}. The block representation of the last matrix of this
network is of the form (

Mk+1 0
0 Mk+1

)
∈ R2×l

where l is the size of the row vector Mk+1. We have

A× ˜Mk+1

=

1 −1
0 1
0 −1

× (Mk+1 0
0 Mk+1

)
=

Mk+1 −Mk+1
0 Mk+1
0 −Mk+1

 ∈ R3×(2l).

We set Fk+1(x, y) = F1(Fk(x), Fk(y)) = F1(F̃k(x, y)) for all x, y ∈ R2k. In matrix
notation we have

Fk+1(x, y) = BReLU(AF̃k(x, y)).

The involved matrices are Mk+2 = B, A × M̃k+1 and M̃k . . . M̃1. They all have
entries in {−1, 0, 1} and the corresponding network has layers of size at most
3× 2k+1. The result then holds by recursion. □

48

Chapter 3

On the numerical reliability of
nonsmooth automatic
differentiation

Abstract

This section investigates the reliability of automatic differentiation
(AD) for neural networks using nonsmooth operations (e.g., MaxPool,
ReLU) across varying precision levels (16, 32, 64 bits), architectures
(LeNet, VGG, ResNet), and datasets (MNIST, CIFAR10, SVHN, Im-
ageNet). While AD computes derivatives that are almost everywhere
correct, even for nonsmooth operations, it relies on floating-point arith-
metic, which introduces the potential for numerical inaccuracies.
Bertoin et al. [41] analyzed the impact of ReLU′(0) on AD output,
identifying a numerical bifurcation zone where ReLU′(0) = 0 differs
from ReLU′(0) = 1. We generalize this concept to a broader range of
nonsmooth operations by introducing:

(1) Bifurcation zone: AD is incorrect over real numbers.

(2) Compensation zone: AD is incorrect in floating-point arith-
metic but correct over reals.

Our experiments with SGD show that lower-norm MaxPool Jacobians
preserve training stability and performance, while higher-norm Jaco-
bians lead to instability and reduced accuracy. Techniques such as
batch normalization, Adam-like optimizers, or higher precision effec-
tively mitigate the adverse effects of high-norm MaxPool Jacobians.

This Part is organized as follows:

• In Section 3.1, we present the background, our motivation, and related work.

• In Section 3.2, we discuss the elements of nonsmooth backpropagation and
define three subsets of network parameters - the bifurcation zone, compensa-
tion zone, and regular zone. We also examine the implications of nonsmooth

49

50

MaxPool Jacobians for backpropagation, based on Bolte and Pauwels [10],
[11].

• In Section 3.3, we focus on the numerical bifurcation and compensation
zones, and the factors that affect their importance.

• In Section 3.4, we present detailed experiments on neural network training.

51

3.1 Introduction
As seen in Chapter 1 and Chapter 2, nonsmooth neural networks are trained using
optimization algorithms [27], [124] based on autodiff [2]–[4]. AD is a crucial tool
in contemporary learning architectures as it allows for fast differentiation [8], [55].
It is implemented in popular machine learning libraries such as TensorFlow [5],
PyTorch [6], and Jax [7]. Although the validity domain of AD is theoretically
limited to smooth functions [8], it is commonly used for nonsmooth functions
[41], [55], [84]. In this part, we examine the reliability of autodiff for neural
networks with nonsmooth operations (MaxPool, ReLU) operating with floating
point numbers.

MaxPool: a nonsmooth operation The MaxPool operation, introduced by
Yamaguchi et al. [125], is commonly used in convolutional neural networks (CNN)
for image classification [20], [23], [50], [80]. MaxPool reduces the spatial dimen-
sions of a feature map by selecting the maximum value within specific patches.
However, when applied to uniform pixel values, MaxPool can cause nonsmooth-
ness, especially at image edges where identical pixels can be chosen arbitrarily
(see Figure 3.1 for an illustration). In such cases, different nonsmooth MaxPool
Jacobians bear a variational sense as it corresponds to a subgradient [108].

0 5 10 15 20 25
0

5

10

15

20

25

Figure 3.1: Image segment post-convolution, spotlighting equal pixel values
(marked in red) within a 2x2 MaxPool window.

3.1.1 Various types of nonsmooth AD errors
We carry out a PyTorch [6] experiment to investigate the autodiff behavior of the
nonsmooth max function, defined as max : x 7→ max1≤i≤4 xi ∈ R. We implement
two max programs (max1 and max2) with different derivative implementations as
in Figure 3.2. For example, the max function is not differentiable at x = (1, 1, 1, 1)
and autodiff returns (1, 0, 0, 0) for max1 and (0.25, 0.25, 0.25, 0.25) for max2. Let
zero be a program as follows: zero : t 7→ max1(t×x)−max2(t×x). The AD output
of zero is denoted by zero′.

As mathematical functions, both max1 and max2 output the same value and zero
always outputs 0. However, we observe an unexpected behavior when using AD
and floating-point numbers: zero′(t) ̸= 0 for some t ∈ R.

52

def max1(x):
res = x[0]
for i in range(1, 4):

if x[i] > res:
res = x[i]

return res

def max2(x):
return torch.max(x)

def zero(t):
z = t * x
return max1(z) - max2(z)

Figure 3.2: Implementation of programs max1, max2 and zero using PyTorch.
Programs max1 and max2 are an equivalent implementation of max, but with
different derivatives due to the implementation.

zero′(t)
t −10−3 −10−2 −10−1 0 101 102 103

x1 = (1, 2, 3, 4) 0.0 0.0 0.0 −1.5 0.0 0.0 0.0
x2 = (1.4, 1.4, 1.4, 1.4) 10−7 10−7 10−7 10−7 10−7 10−7 10−7

Table 3.1: Overview of numerical AD errors for the zero program with 32 bits
precision.

For x1 in Table 3.1, we observe a significant error at t = 0 where the com-
puted derivative, zero′(0), is −1.5, deviating from the correct derivative value. In
contrast, for x2, which often appears in tasks such as image classification (refer to
Figure 3.1), theoretical calculations predict zero′(t) = 0 for any t ∈ R. However,
discrepancies emerge when using floating-point arithmetic, as illustrated by AD
results. Specifically, across all t values listed in Table 3.1, zero′(t) approximates to
5.96× 10−8 (rounded to 10−7 in the table), which is near the computational preci-
sion limit of 32-bit systems. This phenomenon occurs due to numerical arithmetic
limits. Typically, t denotes a neural network parameter and x represents an input
image pixel area where the pixel values are identical.

The behavior observed in Table 3.1 are not due to the nonsmooth multi-
variate nature of the max function. Similar phenomena can also be seen when
the univariate ReLU operation computes max. In contrast, we observe no er-
rors near machine precision using NormPool—a nonsmooth multivariate function
that computes the Euclidean norm. Furthermore, reproducing Table 3.1 with
zero : t 7→ ReLU1(t) − ReLU2(t) where ReLU′

1(0) = 0 and ReLU′
2(0) = 1, also

shows no AD errors near machine precision. These observations suggest that mi-
nor AD errors may stem from the intrinsic properties of the max function. Thus,
our study primarily examines max and MaxPool operations. For more details,
please refer to Appendix 3.5.1 and Appendix 3.5.2.

3.1.2 Reals vs floating-point numbers
Over the real numbers, AD computes derivatives for nondifferentiable functions,
except on a Lebesgue measure-zero subset of inputs [10], [11]. However, as in-

53

dicated in Table 3.1, the use of floating-point arithmetic can expand the subsets
where AD yields incorrect results. In Section 3.3, we propose two subsets of net-
work parameters where AD numerically fails: a new bifurcation zone, characterized
by significant AD amplitude variations, and a compensation zone, where minor am-
plitude variations occur near machine precision due to rounding schemes in inexact
arithmetic over reals (e.g., non-associativity). Our experiments show that in a 64-
bit network using MaxPool, the compensation zone covers the entire parameter
space. In a 32-bit network, both compensation and bifurcation zones exist, while
in a 16-bit setting, the bifurcation zone dominates the entire parameter space.

3.1.3 Related works and contributions
Recent work shows that for a broad class of programs using nonsmooth functions,
AD is mostly incorrect on a Lebesgue measure-zero subset of the input domain [10],
[126]. However, practical inputs are machine-representable. In this context, [126]
examined AD correctness in neural networks with machine-representable parame-
ters, excluding MaxPool. Additionally, Bertoin et al. [41] studied how ReLU′(0)
affects AD and training, identifying a bifurcation zone in ReLU networks where AD
is incorrect. These studies don’t address cases where AD is incorrect for floating-
point numbers but correct over reals, as seen in Table 3.1. To fill this gap, we
propose a new bifurcation zone and introduce the concept of a compensation zone.
Our research evaluates AD reliability in MaxPool neural networks at different pre-
cision levels, examining how the compensation zone’s impact varies with network
architecture. We also explore how nonsmooth MaxPool Jacobians affect training
stability and performance.

3.2 Nonsmooth AD for MaxPool neural networks

3.2.1 Preliminaries and notations
As discussed in Chapter 1, supervised training uses a dataset (xi, yi)Ni=1, where each
xi is an input and yi its corresponding label. A neural network, represented by the
function f with parameters θ, generates predictions ŷi = f(xi, θ). The difference
between these predictions and the true labels is measured by a loss function ℓ.
The goal is to minimize this discrepancy over the training set by minimizing an
empirical loss function L, such as:

min
θ∈Rp

L(θ) := 1
N

N∑
i=1

ℓ(ŷi, yi). (3.1)

For all i ∈ {1, . . . , N} and θ ∈ Rp, Equation (3.1) can be expressed with ℓ(ŷi, yi) =
li(θ), where li : Rp → R represents a composition of H elementary functions as
follows:

li(θ) = gi,H ◦ gi,H−1 ◦ . . . ◦ gi,1(θ). (3.2)

Equation (3.2) models common neural network types, including feed-forward [127],
convolutional [49], and recurrent networks [128]. For a more concrete example,
please refer to Appendix A.2 in [41]. We focus on elementary functions that
are locally Lipschitz and semialgebraic, commonly found in nonsmooth neural

54

networks [10], [11]. Functions gi,j include operations such as linear transformations,
ReLU, MaxPool, convolution with filters, and softmax for classification.

3.2.2 Nonsmooth AD framework
Training nonsmooth neural networks [10], [37], [55], [84], [129] is challenging due
to the need to compute subgradients from Equation (3.1). Major machine learning
tools such as TensorFlow [5], PyTorch [6], and Jax [7] address this issue using auto-
matic differentiation, referred to here as backprop [2], [3]. They apply differential
calculus to nonsmooth items, often replacing derivatives with Clarke Jacobians
[107] (see Section 2.1).

Definition 5 (Calculus model, programs and nonsmooth AD) Let l be a
composition function evaluated at θ ∈ Rp, as specified in Equation (3.2). A pro-
gram P that executes l can be described through a sequence of subprograms such
as:

• Elementary programs: {gj}Hj=1 such that l(θ) = gH ◦ gH−1 ◦ . . . ◦ g1(θ).

• Derived programs: {vj}Hj=1 where each vj(w) ∈ Jacc gj(w) at point w =
gj−1 ◦ · · · ◦ g1(θ).

Then, the backprop algorithm automates applying differential calculus rules as
follows:

backprop[P](θ) = vH (gH−1 ◦ . . . ◦ g1(θ)) · vH−1 (gH−2 ◦ . . . ◦ g1(θ)) · . . . · v1(θ).
(3.3)

In practice, AD libraries [5]–[7] implement dictionaries (see for e.g. [8], [55] and
Section 2.4) containing conjointly elementary programs and derived programs
which efficiently computes the quantities defined in Equation (3.3).

Remark 7 As seen in Section 3.1.1 with the zero program, various programs can
implement a unique composition function l. Each nonsmooth elementary program
gj in the composition (see Definition 5) can be associated with different derived
programs vj. Specifically, for any j = 1, . . . , H and w = gj−1 ◦ · · · ◦ g1(θ), all
selections vj(w) from the Clarke Jacobian of gj(w) bear a variational sense.

Example 5 The Clarke subdifferential of ReLU(t) = max(0, t) at t is 0 for t < 0,
1 for t > 0, and the interval [0, 1] for t = 0. All ReLU-derived program that
implements ReLU′(0) = s with s ∈ [0, 1] can be used for backprop.

Definition 6 (Backprop set) Let l denote a composition function evaluated at
θ ∈ Rp, as specified in Equation (3.2). We define J(θ) as the function that encom-
passes the set of all possible backprop outputs through all programs implementing
l(θ) as in Definition 5:

J(θ) = {backprop[P](θ) : P is a program implementing l(θ)} . (3.4)

Remark 8 For a composition function l composed by C1 elementary programs
{gj}Hj=1, J(θ) is a singelton for all θ ∈ Rp. For locally Lipchitz semialgebraic (or
definable) elementary programs {gj}Hj=1: Equation (3.3) returns an element within
the backprop set.

55

3.2.3 Network parameters subsets
Bertoin et al. [41] studied the bifurcation zone in ReLU networks, where AD
output diverges between ReLU′(0) = 0 and ReLU′(0) = 1. However, they did
not explore cases where backprop should compute a singleton, but AD produces
errors due to floating-point arithmetic. We observe this issue when comparing AD
outputs from different MaxPool derivative implementations. To address this, we
introduce the concept of the compensation zone.

Definition 7 (Compensation, bifurcation and regular zones) For each i =
1, . . . , N , let li denote a composition function evaluated at θ ∈ Rp and Ji(θ) denote
the backprop set associated as detailed in Definition 6. We define the following
network parameters subsets of Rp:

ΘR =
{
θ ∈ RP : ∀i, j ∈ {1, . . . , N} × {1, . . . , H}, Jacc gi,j(w) a singleton

}
(3.5)

ΘC =
{
θ ∈ RP\ΘR : ∀i ∈ {1, . . . , N}, Ji(θ) is a singleton

}
(3.6)

ΘB = {θ ∈ Rp\ΘR : ∃i ∈ {1, . . . , N} such that Ji(θ) is not a singleton} (3.7)

where w = gi,j−1 ◦ . . . ◦ gi,1(θ), ΘR is the regular zone, ΘC the compensation zone
and ΘB the bifurcation zone.

The mathematical tools of Proposition 5 are conservative fields developed in [10].
This proposition implies that theoretically (assuming exact arithmetic over the
reals), the backprop set is almost everywhere a singleton. The proof is given in
Appendix 3.6.

Proposition 5 Given subsets ΘR, ΘB, and ΘC in Rp as defined in Definition 7,
the following properties hold:

• ΘR, ΘB, and ΘC form a partition of Rp.

• ΘB is a Lebesgue null measure subset.

Remark 9 (Backprop returns a gradient a.e.) Let θ ∈ Rp and P be a pro-
gram implementing a composition function l(θ) as in Definition 5. Then backprop[P](θ) =
∇l(θ) almost everywhere.

3.2.4 MaxPool-derived programs
Definition 8 (Clarke Jacobian of matrix’s maximum function) Let X be
a m×n real matrix and Fs be a function such that Fs(X) = max1≤i≤m,1≤j≤nXij ∈
R, where s := m×n denotes the size of X. The Clarke Jacobian of Fs at the point
X is:

Jacc Fs(X) = conv
 ⋃

(i,j)∈A(X)
Eij

 , (3.8)

where A(X) := {(i, j) ∈ {1, . . . ,m} × {1, . . . , n} : Fs(X) = Xij} is the active set
and Eij is an m×n matrix with all entries equal to 0 except for the (i, j)-th entry
which is 1.

56

Definition 9 (MaxPool operation) Let X ∈ Rp×q be a real matrix, and s :=
m × n be the size of a pooling window such that p ≥ m and q ≥ n. For each
i ∈ {0, . . . ,

⌊
p
m

⌋
− 1} and j ∈ {0, . . . ,

⌊
q
n

⌋
− 1}, we define a submatrix Xi,j of X, of

size m× n as follows:

Xi,j := {Xkl : m× i ≤ k < m× (i+ 1), n× j ≤ l < n× (j + 1)}, (3.9)

where k and l are the indices of the entries in X, in the lexicographic order. The
MaxPool operation output a matrix Y ∈ R⌊

p
m⌋×⌊ q

n⌋ where Yij = Fs(Xi,j) for all
i ∈ {0, . . . ,

⌊
p
m

⌋
− 1} and j ∈ {0, . . . ,

⌊
q
n

⌋
− 1}. Finally, the MaxPool Clarke

Jacobian at point X, denoted as Jacc MaxPool(X), can be obtained by replacing
each submatrix Xi,j in X with Jacc Fs(Xi,j).

Definition 10 (MaxPool-derived programs) Define Xi,j ∈ Rm×n as a subma-
trix of X (Definition 9), from which we derive MaxPool programs based on the
Clarke Jacobian:

• Native: Chooses the first index (i1, j1) from the active set A(Xi,j) and
outputs Ei1j1 . Autograd libraries use this implementation.

• Minimal: Takes all indices from A(Xi,j), averaging them as
1

|A(Xi,j)|
∑

(k,l)∈A(Xi,j) Ekl. We called it ”minimal” as it yields the smallest
norm element within Equation (3.8).

• Hybrid: A blend of native and minimal, parameterized by β > 0:

(1− β) · Ei1j1 + β ·

 1
|A(Xi,j)|

∑
(k,l)∈A(Xi,j)

Ekl

 ,
Remark 10 The hybrid MaxPool-derived program is a selection of the MaxPool
Clarke Jacobian for β ∈ [0, 1] and a selection of a conservative Jacobian approach
for other β values, as outlined in [10].

In the following section, we will examine the impact of using a conservative
Jacobian (β > 1) on learning and training. This is important because conservative
Jacobians have a variational interpretation in nonsmooth AD [10].

3.3 A new numerical bifurcation zone
In this section, we examine numerical subsets of network parameters for neural net-
works with MaxPool operations across different floating-point precisions. We find
that the numerical bifurcation zone identified by Bertoin et al. [41] does not apply
to MaxPool-based programs. Specifically, both the max function and MaxPool
cause minor AD errors in floating-point computations, but not in real numbers.
To address this, we propose a new numerical bifurcation and define a compensa-
tion zone using two methods: one with nondeterministic GPU computations and
another with ReLU-derived programs, based on the framework in Section 3.2.

57

3.3.1 A numerical criteria for the bifurcation and compen-
sation zone

Numerical bifurcation zone for ReLU networks: Recently, Bertoin et al.
[41] investigated a numerical bifurcation zone S01 specific to ReLU-derived pro-
grams. For each i = 1, . . . , N , two programs implement a same function li: R0

i

(using ReLU′(0) = 0) and R1
i (using ReLU′(0) = 1). The bifurcation zone S01 is

defined as:

S01 =
{
θ ∈ RP : ∃i ∈ {1, . . . , N}, backprop[R0

i](θ) ̸= backprop[R1
i](θ)

}
. (3.10)

Definition 11 (Backprop variation) Let (Bq)q∈N be a sequence of mini-batches,
where each batch size |Bq| falls within {1, . . . , N}. Consider P = {Pi}Ni=1 and
Q = {Qi}Ni=1 as two neural network implementations using different nonsmooth-
derived programs (e.g., ReLU or MaxPool). Each Pi and Qi computes a compo-
sition function li. The backprop variation between P and Q over M experiments
with random parameters {θm}Mm=1 is defined as:

Dm,q(P,Q) =
∥∥∥∥∥∥backprop

∑
i∈Bq

Pi(θm)
− backprop

∑
i∈Bq

Qi(θm)
∥∥∥∥∥∥

1

. (3.11)

A 32 bits MNIST experiment: Let P and Q be programs for a LeNet-5 net-
work (see Figure 1.3) on MNIST, using native and minimal MaxPool programs,
respectively. For a sanity check, let P̃ be a copy of P . We compute the backprop
variation (as in Definition 11) between P and P̃ and between P and Q. We control
all sources of divergence in our implementation using deterministic computation.
Results are reported in Figure 3.3, and the experiment was run on a CPU under
32 bits precision. See also Section 3.5.3 for a practical example.

We observe no variation in backpropagation between P and P̃ , indicating
controlled sources of divergence. This observation contrasts with the expecta-
tions from Proposition 5, which predicts no variation between P and Q; we find
Dm,q(P,Q) > 0 across all m, q. We identify two types of variations: minor ones,
comprising 98.78% of parameters, which align with machine precision in 32 bits
(between 10−8 and 10−7), and major ones, peaking at 10−3 and accounting for
1.22% of parameters. Consequently, this section focuses on analyzing backprop
variations in MaxPool-derived programs to propose a new bifurcation zone.

An heuristic for the numerical bifurcation zone: In Figure 3.3, we identify
two types of backpropagation variations: one potentially arising from numerical
bifurcations and another due to floating-point arithmetic errors, which we refer to
as compensation errors. To establish criteria for proposing a new numerical bi-
furcation zone for nonsmooth-derived programs, we compare these observed back-
propagation variations with known sources, such as GPU nondeterminism and
variations from ReLU-derived programs at 16 and 32-bit precision. This method
allows us to differentiate between numerical bifurcations and compensation errors
without presuming distinct zones. We denote floating-point precision by ω and
consider various neural networks like LeNet-5, VGG, or ResNet for our analysis.

58

0 -8 -7 -6 -5 -4 -3 -2 -1
log10(magnitude)

10 1

100

101

102

Pr
op

or
tio

n
(%

)

(a) Dm,q(P, Q)

0 -8 -7 -6 -5 -4 -3 -2 -1
log10(magnitude)

101

102

Pr
op

or
tio

n
(%

)

(b) Dm,q(P, P̃)

Figure 3.3: Histogram of backprop variation Dm,q for LeNet-5 on MNIST (128
mini-batch size) at 32-bit precision, comparing P with P̃ and P with Q over
M = 1000 experiments.

A threshold with nondeterministic GPU computations: We set a thresh-
old τ 1

f,ω for the maximum backprop variation due to nondeterministic GPU com-
putations (refer to Appendix 3.5.4 for more details):

τ 1
f,ω = max

1≤m≤M,1≤q
Dm,q(P, P̃) (3.12)

where P and P̃ compute a neural network f using the same nonsmooth-derived
program, for example, ReLU′(0) = 0 or minimal MaxPool. See Figure 3.4 for an
illustration. We observe no variation at ω = 16, with PyTorch’s nondeterministic
GPU operations disabled. Additionally, τ 1 can be interpreted as an upper bound
on the expected backprop variation when repeatedly running the same program
under nondeterministic conditions.

A threshold with ReLU-derived programs: For ReLU-derived programs, we
define R0 (with ReLU′(0) = 0) and R1 (with ReLU′(0) = 1) as two programs im-
plementing a same network f under deterministic GPU operations. We introduce
threshold τ 2

f,ω for backprop variation:

τ 2
f,ω = min

1≤m≤M,1≤q

{
Dm,q(R0, R1) : Dm,q(R0, R1) > 0

}
, (3.13)

τ 2 can be interpreted as a lower bound on the error we expect to make when
running two different ReLU-derived programs of the same function.

59

0 -4 -3 -2 -1 0
log10(magnitude)

101

102

Pr
op

or
tio

n
(%

)

(a) τ1
f,16 = 0

0 -9 -8 -7 -6 -5 -4
log10(magnitude)

101

102

Pr
op

or
tio

n
(%

)

(b) τ1
f,32 = 1.11× 10−7

0 -17 -16 -15 -14 -13
log10(magnitude)

101

102

Pr
op

or
tio

n
(%

)

(c) τ1
f,64 = 1.55× 10−16

Figure 3.4: Histogram of backprop variation under nondeterministic GPU opera-
tions, where f is a LeNet-5 network on MNIST with batch size 128 for M = 1000
experiments.

Remark 11 We do not consider τ 2 in the context of MaxPool-derived programs,
as it is anticipated that τ2 will approximate machine precision values as in Figure
3.3.

Figure 3.5 illustrates two types of backpropagation variations with ReLU-
derived programs: significant divergences or none at all, contrasting with phe-
nomena observed with MaxPool-derived programs. These divergences may sug-
gest the presence of a numerical bifurcation zone. Additionally, variations from
nondeterministic GPU computations, as shown in Figure 3.4, correspond to minor
variations near machine precision, similar to those seen in Figure 3.3. We propose
establishing a numerical bifurcation zone, applying different thresholds for various
precisions to accommodate hardware constraints.

60

0 -7 -6 -5 -4 -3 -2 -1 0
log10(magnitude)

100

101

102

Pr
op

or
tio

n
(%

)

(a) τ2
f,16 = 3.39× 10−6

0 -7 -6 -5 -4 -3 -2 -1 0
log10(magnitude)

10 2

10 1

100

101

102

Pr
op

or
tio

n
(%

)

(b) τ2
f,32 = 4.81× 10−5

0 -17 -16 -15 -14
log10(magnitude)

101

102

Pr
op

or
tio

n
(%

)

(c) τ2
f,64 = 0

Figure 3.5: Histogram of backprop variation with ReLU-derived programs, where
f is a LeNet-5 network on MNIST with batch size 128 for M = 1000 experiments.

Criteria 1 (Numerical bifurcation zone) For a neural network f and a floating-
point precision ω, let τf,ω be a fixed threshold (for e.g τ 1

f,ω, τ 2
f,ω). The numerical

bifurcation zone is defined as:

S(τf,ω) =
{
θ ∈ RP : ∃i ∈ {1, . . . , N}, ∥backprop[Pi](θ)− backprop[Qi](θ)∥1 > τf,ω

}
.

(3.14)

Here, Pi and Qi are programs implementing f using different nonsmooth-derived
programs.

Table 3.4 in Appendix 3.5.4 lists threshold values for various networks and
datasets across 16-bit, 32-bit, and 64-bit precisions. These thresholds are nu-
merical guides and fluctuate based on the initial network parameters, datasets,
and architecture. The characteristics of the compensation zone depend on the

61

neural network’s structure rather than the nature (univariate or multivariate) of
the nonsmooth elementary programs defined in Definition 5. For example, com-
puting MaxPool using ReLU programs can lead to compensation errors, as de-
tailed in Table 3.1 (see Appendix 3.5.1). In convolutional networks like VGG or
ResNet, computing MaxPool with ReLU functions using the formula 2 max(x, y) =
(x + y) + (ReLU(x) − ReLU(−y)) + (ReLU(y) − ReLU(−x) does not align with
the bifurcation zone proposed by [41]. Conversely, using NormPool—a nonsmooth
multivariate function calculating the Euclidean norm—avoids such compensation
errors. Further details can be found in Appendix 3.5.2.

3.3.2 Volume of the numerical bifurcation zone
We employed Monte Carlo sampling to estimate the volume of the numerical bi-
furcation zone for various networks, adhering to Criteria 1. Thresholds τ 2

f,16, τ 1
f,32,

and τ 1
f,64 were consistently applied across all networks, as detailed in Appendix

3.5.4 with reference to Equations (3.12) and (3.13).

Experimental Setup: We generated a set of network parameters {θm}Mm=1 ran-
domly using Kaiming-Uniform initialization [130], with M = 1000 experiments
conducted. Subsequently, we iterated over the entire CIFAR10 dataset to estimate
the proportion of θm within the numerical bifurcation zone S as defined in Crite-
ria 1 (referenced in Equation (3.17)) and the proportion of affected mini-batches
(detailed in Equation (3.18)).

Impact of floating-point precision: Using the VGG11 model on the CIFAR10
dataset, we evaluated the volume of S across different precision levels. The re-
sults revealed that at 16-bit and 32-bit precision, all parameters resided within S,
whereas at 64-bit precision, none did. This variance demonstrates the significant
role of precision in the effects of backprop with MaxPool-derived programs. No-
tably, the impact on mini-batches was substantial, with 46% at 32 bits and 100%
at 16 bits, underscoring the influence of precision on the computational outcomes.

Table 3.2: Impact of S according to floating-point precision using a VGG11, on
CIFAR10 dataset and M = 1000 experiments. The first line represents network
parameters θm in S, while the second measured the proportion of affected mini-
batches falling in S.

Floating-point precision 16 bits 32 bits 64 bits
Proportion of {θm}Mm=1 in S 100% 100% 0%
Proportion of impacted mini-batches 100% 46.67% 0%

We also investigated the influence of mini-batch size on the proportion of af-
fected mini-batches within the numerical bifurcation zone S using the VGG11
model on the CIFAR10 dataset. Our findings indicate that larger mini-batch sizes
correlate with an increased proportion of impacted mini-batches at 32-bit preci-
sion. However, at 64-bit precision, no parameters were observed to fall into S

62

(as shown in Figure 3.6). Additionally, variations in network depth—examined
across VGG variants 11, 13, 16, and 19—did not significantly alter the impact on
mini-batches at 16-bit and 32-bit precisions. Notably, the introduction of batch
normalization markedly increased the number of affected mini-batches at 32-bit
precision.

VGG11 VGG13 VGG16 VGG19
Networks

0

20

40

60

80

100

Pr
op

or
tio

n
(%

)

64 256 512 1024
 Mini-batch size

False True
Batch-normalization

Precision
16
32
64

Figure 3.6: Impact of different size parameters on the proportion of affected mini-
batches (see Equation (3.18) using CIFAR10 dataset. First: Different VGG net-
work sizes. Second: VGG11 with varying mini-batch sizes. Third: VGG11 with
and without batch normalization.

3.4 Experiments on learning

3.4.1 Benchmarks and implementation
Datasets and architectures: We train neural networks to investigate the im-
pact of numerical effects outlined in Section 3.3. Our experiments used CIFAR10
[23], MNIST [49] and ImageNet [22] datasets. We test various network architec-
tures including VGG11 [131], ResNet [45], and LeNet [49]. Details are available in
Appendix 3.7.1.

Training settings: The default optimizer is SGD. Conducted on PyTorch and
Nvidia V100 GPUs, we define mini-batch sequences (Bq)q∈N with sizes |Bq| ⊂
{1, . . . , N}, where αq > 0 is the learning rate for each mini-batch q. Each program
Pi in P = {Pi}Ni=1 implements a function li (as in Definition 5). The SGD algorithm
updates network parameters θq,P by:

θq+1,P = θq,P − γ
αq
|Bq|

∑
i∈Bq

backprop[Pi](θq,P) (3.15)

with γ > 0 indicating the step-size parameter.

3.4.2 Effect on training and test errors
We further investigate the phenomenon from Section 3.3 using the CIFAR10
dataset [23] and the VGG11 architecture [131], at 16-bit and 32-bit precision with
various β values (as defined in Definition 10). Each configuration was repeated

63

ten times with random initialization, and the results are shown in Figure 3.7. To
validate our findings, we also tested with MNIST [49] and ImageNet [20] using
ResNet18 and ResNet50 architectures [45]. Additional details on the experiments
are in Appendix 3.7.

Training effect with 16-bit: For β values greater than 103, we observe training
instability characterized by exploding gradients, unaffected by the presence of
batch normalization. Conversely, stable and efficient test accuracies are maintained
for β values within the set {0, 1, 10, 100}.

Training effect with 32-bit: When β values are large, such as 104, the training
process may become unstable, exhibiting oscillations and sudden fluctuations in
the learning curve. This instability can occur if batch normalization is not used.
However, incorporating batch normalization with high β values helps stabilize the
training dynamics, enhances test data accuracy, and prevents gradient explosion.

0 1 10 100 1000 10000

0.90

0.91

0.92

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(a) 16-bit

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ai
n

lo
ss 0

1
10
100
1000
10000

(b) 16-bit, with batch normalization

0 1 10 100 1000 10000
0.905

0.910

0.915

0.920

0.925

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(c) 32-bit

0 50 100 150 200
epoch

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
lo

ss 0
1
10
100
1000
10000

(d) 32-bit, without batch normalization

Figure 3.7: Training a VGG network on CIFAR10 with SGD. We performed ten
random initializations for each experiment, depicted by the boxplots and the filled
contours (standard deviation).

Training and weight differences: We trained seven VGG11 networks {Pi}6
i=0

at 32-bit precision on CIFAR10 for 200 epochs, using 128-size mini-batches, fixed
learning rate for each mini-batch q: αq = 1.0. All networks started with the same
parameters and varied by hybrid MaxPool values {βi}6

i=0. Using non-deterministic
GPU computation, we measured backpropagation differences between P0 and the
others, tracking parameter variations and test accuracies. As shown in Figure 3.8,
for β ≤ 103, results were consistent, showing minimal impact from β. However, at
β = 104, significant divergences and a drop in test accuracy occurred, indicating
that high β values can destabilize training due to exploding gradients.

64

0 25 50 75 100 125 150 175 200
Epoch

0
100

101

102

103

104

W
ei

gh
t d

iff
er

en
ce

0 vs 0
0 vs 1
0 vs 10
0 vs 102

0 vs 103

0 vs 104

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

= 0
= 1
= 10
= 102

= 103

= 104

Figure 3.8: Left: Difference between network parameters (L1 norm) at each epoch.
“0 vs 0” indicates ∥θk,P0 − θk,P7∥1 where P7 is a second run of P0 for sanity check,
“0 vs 1” indicates ∥θk,P0 − θk,P1∥1. Right: test accuracy of each {Pi}5

i=0 for 200
epochs.

Recommendation for practitioners: Our findings show that large β values
can destabilize training and reduce test accuracy, making them impractical for
real-world use. For realistic β values, we observed no impact on training loss or
accuracy. We recommend using low-norm Jacobians to ensure stable training,
with β = 1 yielding the minimal MaxPool Jacobian norm. Additionally, using
the Adam optimizer at 32-bit precision, as suggested by [41], helps mitigate the
negative effects of large β values and stabilizes training (see Appendix 3.7.2).

Connexion with the choice of ReLU′(0): Initially, [41] reported that the
choice of ReLU′(0) significantly impacts learning, with vanilla SGD training show-
ing ReLU′(0) = 0 as the most efficient option. A recent erratum published by the
same authors [132] revises this finding, indicating that the impact of ReLU′(0) on
learning outcomes is considerably less pronounced than initially stated.

B Appendix of Chapter 3

3.5 Further comments, discussion, and technical
elements

3.5.1 AD errors with ReLU-derived programs
We conduct a small PyTorch experiment using the nonsmooth function ReLU: x 7→
max(x, 0). Consider two programs max1 and max2 implementing the max : x 7→
max1≤i≤4 xi ∈ R function using different ReLU-derived programs. Note that
2 max(x, y) = (x + y) + (ReLU(x) − ReLU(−y)) + (ReLU(y) − ReLU(−x)). Let
zero2 : t 7→ max1(t × x) −max2(t × x) be a program implementing the null func-
tion as described in Figure 3.9. Let zero′

2 denote the backward AD algorithm for
the zero program. As mathematical functions, max1 and max2 are equal and the
program zero outputs constantly 0. However, for some t ∈ R, AD can return
zero′

2(t) ̸= 0. Results are reported in Table 3.3 and similar to Table 3.1.

def relu(x):
return torch.relu(x)

def relu2(x):
return torch.where(x >= 0, x, torch.tensor(0.0))

def max01(x):
return (x[0] + x[1]) / 2 + relu((x[0] - x[1]) / 2) + relu((x[1] - x[0]) /

2)↪→

def max02(x):
return (x[0] + x[1]) / 2 + relu2((x[0] - x[1]) / 2) + relu((x[1] - x[0]) /

2)↪→

def max1(x):
return max01(torch.stack([max01(x[0:2]), max01(x[2:4])]))

def max2(x):
return max02(torch.stack([max02(x[0:2]), max02(x[2:4])]))

def zero_2(t):
z = t * x
return max1(z) - max2(z)

Figure 3.9: Implementation of max1, max2 and zero2 using Pytorch. Programs
max1 and max2 are an equivalent implementation of max, but implemented using
different ReLU-derived programs.

65

66

zero′
2(t)

t −10−3 −10−2 −10−1 0 101 102 103

x =
[
1.0 2.0 3.0 4.0

]
0.0 0.0 0.0 1.5 0.0 0.0 0.0

x =
[
1.4 1.4 1.4 1.4

]
10−7 10−7 10−7 10−7 10−7 10−7 10−7

Table 3.3: Summary of various types of AD errors with zero2 program using Py-
Torch for different combinations of t and x.

3.5.2 NormPool : a nonsmooth multivariate operation with-
out compensation errors

We conducted an experiment to show that compensation errors are not caused by
the multivariate nature of nonsmooth elementary functions when using floating-
point arithmetic. In this experiment, we used the NormPool operation, which is
similar to the MaxPool operation but replaces the maximum with the Euclidian
norm. Two programs, P and Q, were used to implement a LeNet-5 network on
the MNIST dataset with two different NormPool-derived programs. We computed
the backprop variation (see Definition 11) between P and Q, while controlling all
sources of divergence in our implementation using deterministic computation. The
results are presented in Figure 3.10. The experiment was conducted on a CPU
with 16-bit floating-point precision.

0 -7 -6 -5 -4 -3 -2 -1 0 1
log10(magnitude)

10 1

100

101

102

Pr
op

or
tio

n
(%

)

Figure 3.10: Histogram of backprop variation between P and Q for a LeNet-5
network on MNIST (128 mini-batch size) with 16-bit. We run M = 1000 experi-
ments.

In contrast to our findings with MaxPool, we obtained similar results to those
reported in [41] with ReLU-based programs. Specifically, for NormPool-based
programs, we observed either significant divergence of backprop or none.

3.5.3 Bifurcation zone: a practical example

This section presents an example that demonstrates cases where AD can be in-
correct. Calculating the accurate derivative for all inputs might be impossible,
particularly when the function is nondifferentiable. This is because the derivative
does not exist for inputs where the function is nondifferentiable.

67

Network configuration

Consider an input matrix X of size 4× 4 given by:

X =

1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 (Input)

Let k be a positive number and W be a convolution kernel of size 3× 3 given
by:

W = k ·

1 1 1
1 1 1
1 1 1

 (Convolution kernel)

Let’s consider a composition function l such that:

l(W) = MaxPool ◦ (X ∗W) = k (3.16)

where the convolution operation X ∗W produces an output matrix Z of size 2×2,
followed by the application of a MaxPool with a pooling window of size 2× 2.

Backprop computation: native vs minimal

Let P (resp. Q) be a program implementing the composition function l in Equation
(3.16) using the native (resp. minimal) MaxPool-derived program. Then, we have:

backprop[P](W) =

1 0 0
0 0 0
0 0 0

 , backprop[Q](W) =

0.5 0 0.5
0 0 0
0 0 0

The convolutional kernel W falls within the bifurcation zone defined in Defini-

tion 7.

3.5.4 Comments on Section 3.3
Non-determinism in GPU computation

Graphics Processing Units (GPUs) are designed for parallel processing, which can
result in unpredictable behaviors.

• Floating-point operations: The non-associative nature of floating-point
arithmetic can lead to discrepancies. These differences might become signif-
icant as they accumulate across operations.

• Reduction operations: Functions like sum or maximum, especially in
GPUs, can exhibit variability between runs. This variability can result in
divergent accumulated rounding errors.

68

Network f Dataset τ 1
f,16 τ 2

f,16 τ 1
f,32 τ 2

f,32 τ 1
f,64 τ 2

f,64

LeNet-5 MNIST 0 10−5 10−6 10−5 10−14 0
VGG-11 CIFAR-10 0 10−1 10−8 10−7 10−14 0
VGG-11 SVHN 0 10−1 10−8 10−7 10−15 0
VGG-13 CIFAR-10 0 10−1 10−9 10−9 10−14 0
VGG-16 CIFAR-10 0 10−2 10−10 10−9 10−15 0
VGG-19 CIFAR-10 0 10−3 10−11 10−10 10−15 0
ResNet-18 CIFAR-10 10−2 1 10−3 10−4 10−13 0
DenseNet-121 CIFAR-100 0 10−2 10−6 10−1 10−14 0

Table 3.4: Threshold values of various neural networks f across different datasets.

Threshold values for various networks in Section 3.3.1

Table 3.4 presents threshold values for various neural networks on different datasets,
computed under different floating-point precisions (16-bit, 32-bit, and 64-bit) and
as explained in Section 3.3.1. For simplicity, thresholds are approximated as pow-
ers of 10.

Details on Monte Carlo sampling in Section 3.3.2

Recall that, for a neural network f and a floating-point precision ω, we want to
estimate the volume of the set

S(τf,ω) =
{
θ ∈ RP : ∃i ∈ {1, . . . , N}, ∥backprop[Pi](θ)− backprop[Qi](θ)∥1 > τf,ω

}
,

and we have S(τf,ω) ⊂ ΘB.

Our experiments divide a dataset into R mini-batches. Each r-th mini-batch
is represented by the index set Br ⊂ {1, . . . , N}. The programs Pr and Qr are
associated with the neural network f and implement a composition function lr
for each r. Specifically, Pr uses the native MaxPool-derived program, whereas Qr

uses the minimal one. For every precision level ω ∈ {16, 32, 64}, we establish a
threshold τf,ω as in Section 3.3. Using the Kaiming-Uniform [130] initialization in
PyTorch, we randomly generate a parameter set {θj}Mj=1, with M = 1000. The
first line of Table 3.2 is given by the formula

1
M

K∑
j=1

1

∃r ∈ {1, . . . , R},
∥∥∥∥∥∥backprop

∑
j∈Br

Pj(θ)
− backprop

∑
j∈Br

Qj(θ)
∥∥∥∥∥∥

1

> τf,ω

 ,
(3.17)

where 1 represents the indicator function, returning either 1 or 0 depending on
the truth value of its argument’s condition. Similarly, the second line of Table 3.2
is given by the formula

1
MR

M∑
j=1

R∑
r=1

1

∥∥∥∥∥∥backprop
∑
j∈Br

Pj(θ)
− backprop

∑
j∈Br

Qj(θ)
∥∥∥∥∥∥

1

> τf,ω

 ,
(3.18)

69

Using the formula √√√√ ln
(

2
α

)
2n ,

and setting α = 0.05, we compute the error margin of the Hoeffding confidence
interval as n = M for Table 3.2’s first line and n = MR for its second. The
first line adheres to a 95% confidence interval under the iid assumption due to
Hoeffding’s inequality.

Using McDiarmid’s inequality at risk level α = 0.05, we compute the error
margin of the second line in Table 3.2 by the formula√

1
2

(1
M

+ 1
R

)
ln
(2
α

)
.

3.6 Proof related to Section 3.2.3
Proof of Proposition 5:

1 The three subsets have unique definitions, indicating that they are separate.
For instance, a parameter cannot belong to the regular and bifurcation zones
since the regular zone is defined as the area where each program gi,j is as-
sessed at differentiable points. On the other hand, the bifurcation zone is
defined as the region where the set of all possible backprop outputs is not a
singleton, indicating non-differentiability at some points. Additionally, the
union of these zones covers the entire parameter space Θ as every parameter
must be assigned to one of the three subsets: resulting in differentiable points
when evaluated, resulting in nondifferentiable points but having a singleton
backprop set, or resulting in nondifferentiable points with a non-singleton
backprop set. Therefore, ΘR ∪ΘB ∪ΘC = Θ.

2 As we consider locally Lipchitz semialgebraic (or definable) functions, see
[Theorem 1, [10]] for the proof arguments.

□

3.7 Complements on experiments

3.7.1 Benchmark datasets and architectures
Datasets: In this work, we utilized various well-known image classification bench-
marks. Below are the datasets, including their characteristics and original refer-
ences.

Dataset Dimensionality Training set Test set
MNIST 28× 28 (grayscale) 60K 10K

CIFAR10 32× 32 (RGB) 60K 10K
SVHN 32× 32 (RGB) 600K 26K

ImageNet 224× 224 (RGB) 1.3M 50K

The corresponding references for these datasets are [23], [49], [133].

70

Neural network architectures: We evaluated various CNN neural network
architectures, with details as follows:

Name Layers Loss function
LeNet-5 5 Cross-entropy
VGG11 11 Cross-entropy
VGG13 13 Cross-entropy
VGG16 16 Cross-entropy
VGG19 19 Cross-entropy

ResNet18 18 Cross-entropy
ResNet50 50 Cross-entropy

DenseNet121 125 Cross-entropy

The corresponding references for these architectures are [45], [49], [131], [134].

LeNet-5: The implementation for LeNet-5 was sourced from the following GitHub
repository: https://github.com/ChawDoe/LeNet5-MNIST-PyTorch/blob/master/
model.py.

VGG: We used the PyTorch repository’s implementation for the VGG models.
It can be accessed at the following link: https://github.com/PyTorch/vision/
blob/main/torchvision/models/vgg.py.

ResNet: For ResNet models, we utilized the PyTorch repository’s implementa-
tion available at: https://github.com/PyTorch/vision/blob/main/torchvision/
models/resnet.py. We made minor adjustments to the output layer’s size (chang-
ing from 1000 to 10 classes) and the kernel size in the primary convolutional, vary-
ing from 7 to 3). When batch normalization was not used, we replaced the batch
normalization layers with identity mappings.

DenseNet: The implementation for DenseNet was taken from the PyTorch repos-
itory, available at: https://github.com/PyTorch/vision/blob/main/torchvision/
models/densenet.py.

3.7.2 Mitigating factor: Adam optimizer
After training a VGG11 network on CIFAR-10 using the Adam optimizer, we
obtained results shown in Figure 3.11. Our findings are consistent with those
presented in Section 3.4, but the network exhibits reduced sensitivity to β, resulting
in improved stability of both test errors and training loss.

3.7.3 Additional experiments with MNIST and LeNet-5
networks

We repeated the experiments in Section 3.4.2 using a LeNet-5 network on the
MNIST dataset. The results are depicted in Figure 3.12. We found that for 16
bits, the test accuracies were similar when training was possible, but β = {103, 104}
caused chaotic training behavior. For 32 bits, the test accuracies were mostly

https://github.com/ChawDoe/LeNet5-MNIST-PyTorch/blob/master/model.py
https://github.com/ChawDoe/LeNet5-MNIST-PyTorch/blob/master/model.py
https://github.com/PyTorch/vision/blob/main/torchvision/models/vgg.py
https://github.com/PyTorch/vision/blob/main/torchvision/models/vgg.py
https://github.com/PyTorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/PyTorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/PyTorch/vision/blob/main/torchvision/models/densenet.py
https://github.com/PyTorch/vision/blob/main/torchvision/models/densenet.py

71

0 50 100 150 200
epoch

0.0

0.1

0.2

0.3

0.4

0.5
Tr

ai
n

lo
ss 0

1
10
100
1000
10000

(a) 32-bit without batch normalization

0 1 10 100 1000 10000

0.86

0.88

0.90

0.92

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(b) 32-bit

Figure 3.11: Training losses on CIFAR10 (left) and test accuracy (right) on VGG
network trained with Adam optimizer and without batch normalization.

similar, except for β = 104. We noticed that the chaotic oscillations had completely
disappeared.

0 1 10 100 1000 10000
0.991

0.992

0.993

0.994

0.995

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(a) 16-bit

0 20 40 60 80 100
epoch

0.00

0.02

0.04

0.06

0.08

0.10
Tr

ai
n

lo
ss 0

1
10
100
1000
10000

(b) 16-bit, with batch normalization

0 1 10 100 1000 10000

0.990

0.992

0.994

0.996

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(c) 32-bit

0 20 40 60 80 100
epoch

0.00

0.05

0.10

0.15

Tr
ai

n
lo

ss 0
1
10
100
1000
10000

(d) 32-bit, without batch normalization

Figure 3.12: Training a LeNet-5 network on MNIST with SGD. We performed ten
random initializations for each experiment, depicted by the boxplots and the filled
contours (standard deviation).

3.7.4 Additional experiments with ResNet18

We performed the same experiments described in Section 3.4.2 using ResNet18
architecture trained on CIFAR 10. Figure 3.13 represents the test errors with or
without batch normalization. For 16 bits, test accuracies are similar, but β = 104

induces chaotic training behavior. For 32 bits, test accuracies are identical, and
the chaotic oscillations phenomena have entirely disappeared.

72

0 1 10 100 1000

0.90

0.91

0.92

0.93

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(a) 16-bit

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss 0
1
10
100
1000
10000

(b) 16-bit, with batch normalization

0 1 10 100 1000 10000
0.91

0.92

0.93

0.94

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(c) 32-bit

0 50 100 150 200
epoch

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
lo

ss 0
1
10
100
1000
10000

(d) 32-bit, with batch normalization

Figure 3.13: Training a ResNet18 network on CIFAR10 with SGD. We performed
ten random initializations for each experiment, depicted by the boxplots and the
filled contours (standard deviation).

3.7.5 Additional experiments with ResNet50 on ImageNet
We performed the same experiments described in Section 3.4.2 using a ResNet50
architecture trained on ImageNet. The test accuracy is represented in Figure 3.14.
We employ mixed precision [57], [135], utilizing 16 and 32 bits precision to balance
computational speed and information retention. Test accuracies are similar when
training is possible, but β = 103 induces chaotic training behavior.

0 20 40 60 80
epoch

0

20

40

60

80

Te
st

 a
cc

ur
ac

y 0
1
10
100
1000

Figure 3.14: Test accuracy during training a Resnet50 on ImageNet with SGD
using mixed precision. The shaded area represents three runs. We have a chaotic
test accuracy behavior for β = 103.

Chapter 4

A second-order-like optimizer
with adaptive gradient scaling for
deep learning

Abstract

In this empirical part, we introduce INNAprop, an optimization algo-
rithm that combines the INNA method with the RMSprop adaptive
gradient scaling. It leverages second-order information and rescaling
while keeping the memory requirements of standard DL methods as
AdamW or SGD with momentum. After giving geometrical insights,
we evaluate INNAprop on CIFAR-10, Food101, and ImageNet with
ResNets, VGG, DenseNet, and ViT, and on GPT-2 (OpenWebText)
train from scratch and with LoRA fine-tuning (E2E). INNAprop con-
sistently matches or outperforms AdamW both in training speed and
accuracy, with minimal hyperparameter tuning in large-scale settings.

This Part is organized as follows:

• In Section 4.1, we present the background and related work.

• In Section 4.2, we describe our algorithm and its derivation.

• In Section 4.3, we provide hyperparameter tuning recommendations and our
experimental results.

73

74

4.1 Introduction

4.1.1 Motivations
As deep learning models grow in size, massive computational resources are needed
for training, representing significant challenges in terms of financial costs, energy
consumption, and processing time [136], [137]. According to the UN’s Environ-
ment Programme Training, the Big Tech sector produced between two and three
percent of the world’s carbon emissions in 2021; some estimations for the year
2023 go beyond 4%, see the latest Stand.earth reports, and also [28], [29], [138]
for related issues. For instance, training GPT-3 is estimated to require 1,287
megawatt-hours (MWh) of electricity, equivalent to the annual usage of over 100
U.S. households [29], [139]. Similarly, the financial cost of specialized hardware
and cloud computing is extremely high. OpenAI claimed that the training cost for
GPT-4 [140] exceeded 100 million dollars. The PaLM model developed by Google
AI was trained for two months using 6144 TPUs for 10 million dollars [141]. All
this implies a need for faster and more cost-efficient optimization algorithms. It
also suggests that early stopping [142], [143] in the training phase is a desirable
feature whenever possible.

We focus in this work on computational efficiency during the training phase and
consider the problem of unconstrained minimization of a loss function J : Rp → R,
as follows

min
θ∈Rp
J (θ). (4.1)

4.1.2 Continuous dynamical systems as optimization mod-
els

To achieve higher efficiency, it is necessary to deeply understand how algorithms
work and how they relate to each other. A useful way to do this is by interpreting
optimization algorithms as discrete versions of continuous dynamical systems [144],
further developed in [145]–[149]. In deep learning, this approach is also quite
fruitful; it has, in particular, been used to provide convergence proofs or further
geometric insights [10], [37], [150], [151].

In the spirit of [12], we consider the following continuous-time dynamical sys-
tem introduced in [152] and referred to as DIN (standing for “dynamical inertial
Newton”):

θ̈(t)︸︷︷︸
Inertial term

+ α θ̇(t)︸ ︷︷ ︸
Friction term

+ β∇2J (θ(t))θ̇(t)︸ ︷︷ ︸
Newtonian effects

+ ∇J (θ(t))︸ ︷︷ ︸
Gravity effect

= 0, t ≥ 0, (4.2)

where t is the time, J : Rp → R is a loss function to be minimized (e.g., empirical
loss in DL applications) as in Equation (4.1), assumed C2 with gradient ∇J and
Hessian ∇2J . A key aspect of Equation (4.2) that places it between first- and
second-order optimization is that a change of variables allows to describe it using
only the gradient ∇J , since ∇2J (θ(t))θ̇(t) = d

dt
∇J (θ(t)) (see Section 4.2.2 for

details). INNA is a discretized version of Equation (4.2), specifically adapted for
deep learning applications. This greatly reduces computational costs, as it can
be discretized as a difference of gradients which does not require Hessian vector

75

product, making it possible to design more practical algorithms, as shown in [12],
[153], [154].

We recover the continuous-time heavy ball system by assuming α > 0, and
removing the geometrical “damping” term in Equation (4.2) through the choice
β = 0. A discrete version of this system corresponds to the Heavy Ball method
[62], which is at the basis of SGD solvers with momentum in deep learning [63],
[155]. By allowing both α and β to vary, we recover Nesterov acceleration [64],
[156], [157].

Adaptive methods. Adaptive optimization methods, such as RMSprop [13]
and AdaGrad [31], modify the update dynamics by introducing coordinate-wise
scaling of the gradient based on past information. These methods can be modeled
by continuous-time ODEs of the following form, expressed here for the simple
gradient system:

θ̇(t) + 1√
G(t, θ(t)) + ϵ

⊙∇J (θ(t)) = 0, t ≥ 0, (4.3)

where ϵ > 0, G(t, θ(t)) ∈ Rp represents accumulated information. The scalar
addition, square root, and division are understood coordinatewise and ⊙ denotes
the coordinate-wise product for vectors in Rp. In AdaGrad or RMSprop, G(t, θ(t))
is defined as an accumulation of squared gradient coordinates of the form:

G(t, θ(t)) :=
∫ t

0
∇J (θ(τ))2 dµt(τ), (4.4)

for different choices of µt (uniform for AdaGrad and moving average for RMSprop).
Both approaches scale the gradient based on accumulated information on past
gradient magnitudes, improving performance, particularly in settings with sparse
or noisy gradients [13], [31].

Our approach. We combine the “dynamical inertial Newton” method (DIN)
from Equation (4.2) with an RMSprop adaptive gradient scaling. This allows us
to take into account second-order information for the RMSProp scaling. Compu-
tationally, this second-order information is expressed using a time derivative. In
discrete time, this will provide a second-order intelligence with the same compu-
tational cost as gradient evaluation. The resulting continuous time ODE is given
as follows:

θ̈(t) + α θ̇(t) + β
d

dt
RMSprop(J (θ(t))) + RMSprop(J (θ(t))) = 0, t ≥ 0

(4.5)

where RMSprop(J (θ(t))) = 1√
G(t, θ(t)) + ϵ

⊙∇J (θ(t))

with G of the form (4.4) with an adequate time-weight distribution µt correspond-
ing to the RMSProp scaling. A discretization of this continuous time system, com-
bined with careful memory management, results in our new optimizer INNAprop,
see Section 4.2.1.

76

4.1.3 Related works and contributions
Relation with existing work. To improve the efficiency of stochastic gradient
descent (SGD), two primary strategies are used: leverage local geometry for hav-
ing clever directions and incorporate momentum to accelerate convergence. These
approaches include accelerated methods (e.g., Nesterov’s acceleration [64], [158],
momentum SGD [62], [63], [155], and adaptive methods (e.g., Adagrad [31], RM-
SProp [13]), which adjust learning rates per parameter.

Adam remains the dominant optimizer in deep learning. It comes under numerous
variants proposed to improve its performance or to adapt it to specific cases [32],
[66], [68], [158], [159]. Adafactor [159] improves memory efficiency, Lamb [160]
adds layerwise normalization, and Lion [33] uses sign-based momentum updates.
AdEMAMix [161] combines two EMAs, while Defazio et al. [162] introduced a
schedule-free method incorporating Polyak-Ruppert averaging with momentum.

One of the motivations of our work is the introduction of second-order properties
in the dynamics akin to Newton’s method. Second-order optimizers are com-
putationally expensive due to frequent Hessian computations [73], [163] and their
adaptation to large scale learning settings require specific developments [164], [165].
For example, the Sophia optimizer [74], designed for large language models, uses a
Hessian-based pre-conditioner to penalize high-curvature directions. In this work,
we draw inspiration from the INNA optimizer [12], based on the DIN continuous
time dynamics introduced by [152], which combines gradient descent with a New-
tonian mechanism for first-order stochastic approximations.

Our proposed method, INNAprop, integrates the algorithm INNA, which features
a Newtonian effect with cheap computational cost, with the gradient scaling mech-
anism of RMSprop. This framework preserves the efficiency of second-order meth-
ods and the adaptive features of RMSprop while significantly reducing the compu-
tational overhead caused by Hessian evaluation. Specific hyperparameter choices
for our method allow us to recover several existing optimizers as special cases.

Contributions. They can be summarized as follows:

• We introduce INNAprop, a new optimization algorithm that combines the
Dynamical Inertial Newton (DIN) method with RMSprop’s adaptive gradi-
ent scaling, efficiently using second-order information for large-scale machine
learning tasks. We obtain a second-order optimizer with computational re-
quirements similar to first-order methods like AdamW, making it suitable
for deep learning (see Section 4.2.2 and Appendix 4.5).

• We provide a continuous-time explanation of INNAprop, connecting it to
second-order ordinary differential equations (see Section 4.2 and Equation (4.5)).
We discuss many natural possible discretizations and show that INNAprop is
empirically the most efficient. Let us highlight a key feature of our method:
it incorporates second-order terms in space without relying on Hessian com-
putations or inversions of linear systems which are both prohibitive in deep
learning.

77

• We show through extensive experiments that INNAprop matches or out-
performs AdamW in both training speed and final accuracy on benchmarks
such as image classification (CIFAR-10, ImageNet) and language modeling
(GPT-2) (see Section 4.3).

4.2 INNAprop: a second-order method in space
and time based on RMSProp

4.2.1 The algorithm
Our method is built on the following Algorithm 3, itself derived from a combination
of INNA [12] and RMSprop [13] (refer to Section 4.2.2 for more details). The
following version of the method is the one we used in all experiments. It includes
the usual ingredients of deep-learning training: mini-batching, decoupled weight-
decay, and scheduler procedure. For a simpler, “non-deep learning” version, refer
to Algorithm 4 in Appendix 4.5.

Algorithm 3: Deep learning implementation of INNAprop
1: Objective function: J (θ) = 1

n

∑N
n=1 Jn(θ) for θ ∈ Rp.

2: Learning step-sizes: γk := {SetLrSchedule(k)}k∈N where γ0 is the initial
learning rate.

3: Hyper-parameters: σ ∈ [0, 1], α ≥ 0, β > supk∈N γk, λ ≥ 0, ϵ = 10−8.
4: Mini-batches: (Bk)k∈N of nonempty subsets of {1, . . . , N}.
5: Initialization: time step k ← 0, parameter vector θ0, v0 = 0,
ψ0 = (1− αβ)θ0.

6: for k = 1 to K do
7: gk = 1

|Bk|
∑
n∈Bk
∇Jn(θk) ▷ select batch Bk and return the corresponding

gradient
8: γk ← SetLrSchedule(k) ▷ see above and Remark 12
9: θk ← (1− λγk)θk ▷ decoupled weight decay

10: vk+1 ← σvk + (1− σ)g2
k

11: v̂k+1 ← vk+1/(1− σk)
12: ψk+1 ←

(
1− γk

β

)
ψk + γk

(
1
β
− α

)
θk

13: θk+1 ←
(
1 + γk(1−αβ)

β−γk

)
θk − γk

β−γk
ψk+1 − γkβ

(
gk/(
√
v̂k+1 + ϵ

)
14: return θK+1

In Algorithm 3, SetLrSchedule is the “scheduler” for step-sizes; it is defined
as a custom procedure for handling learning rate sequences for different networks
and databases. To provide a full description of our algorithm, we provide detailed
explanations of the scheduler procedures used in our experiments (Section 4.3) in
Appendix 4.7, along with the corresponding benchmarks.

Remark 12 (Well posedness) Observe that, for all schedulers γk < β for k ∈
N, so that INNAprop is well-posed (line 13 in Algorithm 3, the division is well
defined).

78

4.2.2 Derivation of the algorithm
There are several ways to combine RMSprop and INNA, or DIN its second-order
form, as there exist several ways to do so with the heavy ball method and RMSprop.
We opted for the approach below because of its mechanical and geometrical appeal
and its numerical success (see Appendix 4.5 for further details). Consider the
following dynamical inertial Newton method [152]:

θ̈(t) + α θ̇(t) + β
d

dt
∇J (θ(t)) +∇J (θ(t)) = 0, t ≥ 0, (4.6)

as in Equation (4.2) and replacing ∇2J (θ(t))θ̇(t) by d
dt
∇J (θ(t)). We use finite

differences with a fixed time step γ to discretize this system, replacing in particular
the gradient derivatives by gradient differences:

d

dt
∇J (θ(t)) ≃ ∇J (θk+1)−∇J (θk)

γ
,

where θk, θk+1 correspond to two successive states around the time t.
Setting ∇J (θk) = gk, we obtain

θk+1 − 2θk + θk−1

γ
+ α

θk − θk−1

γ
+ β

gk − gk−1

γ
+ gk−1 = 0. (4.7)

To provide our algorithm with an extra second-order geometrical intelligence,
we use the proxy of RMSprop direction in place of the gradient.

Choose σ > 0 and ϵ > 0, and consider:

vk+1 = σvk + (1− σ)g2
k (4.8)

θk+1 − 2θk + θk−1

γ
+ α

θk − θk−1

γ
+ β

gk√
vk+1+ϵ −

gk−1√
vk+ϵ

γ
+ gk−1√

vk + ϵ
= 0. (4.9)

Although this system has a natural mechanical interpretation, its memory foot-
print is abnormally important for this type of algorithm: for one iteration of the
system (4.8)-(4.9), it culminates at 6 full dimension memory slots, namely gk−1,
gk, θk−1, θk, vk, and vk+1 before the evaluation of (4.9).

Therefore, we proceed to rewrite the algorithm in another system of coordi-
nates. The computations and the variable changes are provided in Appendix 4.5.
We eventually obtain:

vk+1 = σvk + (1− σ)g2
k

ψk+1 = ψk

(
1− γ

β

)
+ γ

(
1
β
− α

)
θk,

θk+1 =
(

1 + γ(1− βα)
β − γ

)
θk −

γ

β − γ
ψk+1 − γβ

gk√
vk+1 + ϵ

which only freezes 3 full dimension memory slots corresponding to vk, ψk, θk. As
a result, the memory footprint is equivalent to that of the Adam optimizer (see
Table 4.5).

79

Remark 13 (A family of algorithms indexed by α, β) INNAprop can be seen
as a family of methods indexed by the hyperparameters α and β. When β = 0,
we recover a modified version of RMSprop with momentum [166] (see Appendix
4.5.1). For α = β = 1, INNAprop with its default initialization, boils down to
AdamW without momentum (β1 = 0), see Appendix 4.5.1 and Table 4.5. By
setting α = β = 1, we empirically recover the behavior of AdamW. Experiments
demonstrate that this consistently aligns with AdamW, suggesting that AdamW
can be seen as a special case within the broader INNAprop family. See Appendix
4.5.1 for further details and illustrations.

Remark 14 (On other possible discretizations) (a) If we use the proxy of
RMSprop directly with INNA [12], we recover indeed INNAprop through a rather
direct derivation (see Appendix 4.6.1 for more details). Our motivation to start
from the “mechanical” version of the algorithm is to enhance our understanding
of the geometrical features of the algorithm.
(b) RMSprop with momentum [166] is obtained by a discretization of the heavy
ball continuous time system, using a momentum term and an RMSprop proxy.
It would be natural to proceed that way in our case, and it indeed leads to a
different method (see Appendix 4.6.2). However, the resulting algorithm appears
to be numerically unstable (see Figure 4.10 for an illustration).
(c) Incorporating RMSprop as it is done in Adam using momentum leads to a third
method (see Appendix 4.6.3), which appears to be extremely similar to NAdam
[158]; it was thus discarded. We now explain how these hyperparameters (α, β)
have been tuned on “small size” problems.

4.3 Empirical evaluation of INNAprop
We conduct extensive comparisons of the proposed algorithm and the AdamW
optimizer, which is dominantly used in image classification [66], [167]–[169] and
language modeling tasks [74], [170], [171]. See Section 4.10 for more details. Hy-
perparameter tuning [172] is a crucial issue for this comparison, and we start
with this. As a general rule, we strive to choose the hyperparameters that give
a strong baseline for AdamW (based on literature or using grid search). Unless
stated differently, our experiments use the AdamW optimizer 1 with its default
settings as defined in widely-used libraries [5]–[7]: β1 = 0.9, β2 = 0.999, λ = 0.01
and ϵ = 1e − 8. For INNAprop, unless otherwise specified, the default settings
for the RMSprop component align with those of AdamW: σ = 0.999 and ϵ = 1e−8.

The INNAprop method and the AdamW optimizer involve different classes of
hyperparameters; some of them are common to both algorithms, and some are
specific. Our hyperparameter tuning strategy for both algorithms is summarized
in Table 4.1.

We begin this section with the tuning of parameters α, β for INNAprop on
CIFAR10 with VGG and ResNet architectures and then use these parameters on
larger datasets and models. We use as much as possible the step size scheduler

1https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html

80

and weight decay settings reported in the literature for the AdamW optimizer,
which we believe to be well-adjusted and provide adequate references for each
experiment. These are used both for AdamW and INNAprop. With this protocol,
we only perform minimal hyperparameter tuning for INNAprop for larger-scale
experiments. This is due to constrained computational resources. We aim to
demonstrate the typical performance of the Algorithm 3, rather than its peak
performance with extensive tuning.

Table 4.1: Hyperparameter tuning strategy for INNAprop and AdamW: AdamW
is systematically favored.

Parameters AdamW tuning INNAprop tuning Comparative advantage

Learning rate Literature or grid search tuning Reused from AdamW AdamW favored
Step size scheduler Literature Reused from AdamW N/A
Weight decay λ Literature or grid search tuning Reused from AdamW AdamW favored
RMSprop parameter (β2, ϵ) Default or literature Reused from AdamW AdamW favored
Inertial parameters (α, β) N/A Tuned on CIFAR-10 N/A

4.3.1 Tuning INNAprop on CIFAR-10 with VGG11 and
ResNet18

Hyperparameter tuning: We tune (α, β) using VGG11 [131] and ResNet18
[45] models trained on CIFAR10 [23], together with the initial learning rate γ0
to ensure proper training. We fix a cosine scheduler where Tmax = 200 and
γmin = 0 (see Section 4.7 for more details) and we consider two weight decay
parameters λ = 0 or λ = 0.01. Our experiment suggests using an initial learning
rate γ0 = 10−3, which is the baseline value reported for AdamW in this experiment
(see Section 4.8). For INNAprop, we optimize only the hyperparameters α and β,
using test accuracy and training loss as the optimization criteria. A grid search is
performed over (α, β) ∈ {0.1, 0.5, 0.9, . . . , 3.5, 4.0} using optuna [173]. In Figure
4.1, we detail the obtained training loss and test accuracy for various (α, β) con-
figurations over short training durations (20 epochs) and long training durations
(200 epochs) for VGG11 with weight decay λ = 0.01. Our criteria (short and
long training duration) are chosen to find parameters (α, β) that provide a rapid
decrease in training loss in the early stages and the best test accuracy for long
training duration.

These results highlight a tendency for efficient couples; we choose for further
experiments the values (α, β) = (0.1, 0.9) which correspond to aggressive opti-
mization of the training loss for short training durations, and (α, β) = (2.0, 2.0)
which provides very good results for longer training durations. Additional results
for VGG11 and ResNet18 with and without weight decay are in Appendix 4.8.2,
which are qualitatively similar.

Validation and comparison with AdamW: We confirm our hyperparameter
choices (γ0 = 10−3, λ = 0.01) by reproducing the experiment with 8 random seeds
and comparing with AdamW using the same settings. Based on hyperparameter
tuning, we select two pairs of (α, β) with different training speeds. As shown in

81

(a) 20 epochs

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Log-scaled Training Loss

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Test Accuracy

1.0

0.8

0.6

0.4

0.2

76

78

80

82

84

86

(b) 200 epochs

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Log-scaled Training Loss

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Test Accuracy

4.0

3.5

3.0

2.5

2.0

1.5

88.5

89.0

89.5

90.0

90.5

91.0

Figure 4.1: Log-scale training loss and test accuracies for hyperparameters (α, β)
with VGG11 on CIFAR10 at 20 and 200 epochs. Optimal learning rate γ0 = 10−3

and weight decay λ = 0.01, with one random seed.

Figure 4.2 (and Section 4.9 for ResNet18), with (α, β) = (0.1, 0.9), INNAprop
improves training loss and test accuracy rapidly by the 100th epoch, maintaining
the highest training accuracy. With (α, β) = (2.0, 2.0), INNAprop trains more
slowly but achieves higher final test accuracy. This is aligned with the experiments
described in Figure 4.1. In Table 4.2, we compare the performance of different
networks on CIFAR-10 using INNAprop and AdamW optimizers.

0 50 100 150 200
Epochs

10 4

10 3

10 2

10 1

100

Tr
ai

n
lo

ss

0 50 100 150 200
Epochs

85

86

87

88

89

90

91

92

Te
st

 a
cc

ur
ac

y

0 50 100 150 200
Epochs

86

88

90

92

94

96

98

100

Tr
ai

n
ac

cu
ra

cy

AdamW INNAprop, (,)= (0.1,0.9) INNAprop, (,)= (2.0,2.0)

Figure 4.2: Training VGG11 on CIFAR10. Left: train loss, middle: test accuracy
(%), right: train accuracy (%), with 8 random seeds.

Remark 15 (Trade-off between fast learning and good generalization) For
CIFAR-10 experiments, INNAprop offers flexibility in adjusting convergence speed
through (α, β). Faster training configurations generally lead to weaker generaliza-
tion compared to slower ones, highlighting the trade-off between quick convergence
and generalization [174], [175].

4.3.2 Extensive experiments on large-scale vision models
We present experiments on large-scale vision benchmarks with the hyperparame-
ters of Section 4.3.1.

82

Table 4.2: Test accuracy (%) of ResNet-18, VGG11, and DenseNet121 on CIFAR-
10 using AdamW optimized weight decay and learning rate. Results are averaged
over eight runs.

Model Optimizer Test accuracy

Training on CIFAR-10 over 200 epochs

ResNet18
AdamW 91.14

INNAprop (α = 2.0, β = 2.0) 91.58

VGG11
AdamW 90.79

INNAprop (α = 2.0, β = 2.0) 90.99

DenseNet121
AdamW 86.19

INNAprop (α = 0.1, β = 0.9) 86.91

Resnets on ImageNet: We consider the larger scale ImageNet-1k benchmark
[20]. We train a ResNet-18 and a ResNet-50 [45] for 90 epochs with a mini-batch of
size of 256 as in [33], [66]. We used the same cosine scheduler for both AdamW and
INNAprop with initial learning rate γ0 = 10−3 as reported in [33], [66], [167]. The
weight decay of AdamW is set to λ = 0.01 for the ResNet18, instead of λ = 0.05
reported in [66], [167] because it improved the test accuracy from 67.93 to 69.43.
The results of the ResNet18 experiment are presented in Figure 4.17 in Section 4.9.
The figure shows that our algorithm with (α, β) = (0.1, 0.9) outperforms AdamW
in test accuracy (70.12 vs 69.34), though the training loss decreases faster initially
but slows down towards the end of training.

For the ResNet50, we kept the value λ = 0.1 as reported in [66], [167]. For
INNAprop, we tried two weight decay values {0.1, 0.01} and selected λ = 0.01 as
it resulted in a faster decrease in training loss. We report the results in Figure 4.3,
illustrating the advantage of INNAprop. As discussed in Section 4.3.1, INNAprop
with (α, β) = (0.1, 0.9) leads to a faster decrease in training loss but yields lower
test accuracy compared to either AdamW or INNAprop with (α, β) = (2.0, 2.0).
For (α, β) = (2.0, 2.0), the loss decrease is similar to AdamW, with no clear advan-
tage for either method. This obviously suggests developing scheduling strategies
for damping parameters (α, β). This would require a much more computation-
intensive tuning, far beyond the numerical resources used in the current work.
In Table 4.3, we present the performance of INNAprop achieved using minimal
hyperparameter tuning, as explained in Table 4.1.

Vision transformer (ViT) on ImageNet: We performed the same experi-
ment with a ViT-B/32 architecture over 300 epochs with a mini-batch size of
1024, following [169], [176]. For AdamW, we used a cosine scheduler with a linear
warmup (30 epochs) and the initial learning rate and weight decay from [176].
For INNAprop, we tested weight decay values of {0.1, 0.01}, selecting λ = 0.1 for
better test accuracy. Results in Figure 4.3 show the advantage of INNAprop. For
faster convergence using INNAprop (0.1, 0.9), we recommend a weight decay of
λ = 0.01 (see Figure 4.18 in the Appendix).

83

0 20 40 60 80

10
0

Tr
ai

n
lo

ss

ResNet50

0 20 40 60 80
10

20

30

40

50

60

70

To
p-

1
te

st
 a

cc
ur

ac
y

0 20 40 60 80
20

30

40

50

60

70

80

90

To
p-

1
tra

in
 a

cc
ur

ac
y

0 50 100 150 200 250 300
Epochs

3 × 10
0

4 × 10
0

6 × 10
0

Tr
ai

n
lo

ss

ViT-B/32

0 50 100 150 200 250 300
Epochs

10

20

30

40

50

60

70

To
p-

1
te

st
 a

cc
ur

ac
y

0 50 100 150 200 250 300
Epochs

20

30

40

50

60

70

80

90

To
p-

1
tra

in
 a

cc
ur

ac
y

AdamW INNAprop, (,)= (0.1,0.9) INNAprop, (,)= (2.0,2.0)

Figure 4.3: Training a ResNet50 (top) and ViT-B/32 (bottom) on ImageNet. Left:
train loss, middle: Top-1 test accuracy (%), right: Top-1 train accuracy (%). 3
random seeds.

In the ImageNet experiments, we evaluated INNAprop for rapid early training
and optimal final test accuracy without tuning (γ0, α, β). For ViT-B/32 with
λ = 0.1, INNAprop achieved lower training loss and higher final test accuracy
than AdamW (75.23 vs. 75.02).

Table 4.3: Top-1 and Top-5 accuracy (%) of ResNet-18, ResNet-50, and ViT-B/32
on ImageNet. Results are averaged from three runs for ResNets and one run for
ViT-B/32. AdamW favored as in Table 4.1.

Model Optimizer Top-1 accuracy Top-5 accuracy

Train from scratch on ImageNet

ResNet18
AdamW 69.34 88.71

INNAprop (α = 0.1, β = 0.9) 70.12 89.21

ResNet50
AdamW 76.33 93.04

INNAprop (α = 1.0, β = 1.0) 76.43 93.15

ViT-B/32
AdamW 75.02 91.52

INNAprop (α = 0.1, β = 0.9) 75.23 91.77

Fintetuning VGG11 and ResNet18 models on Food101: We fine-tuned
ResNet-18 and VGG-11 models on the Food101 dataset [24] for 20 epochs, using
pre-trained models on ImageNet-1k. Since weight decay and learning rate values
for AdamW were not found in the literature, we chose the default AdamW weight
decay value, λ = 0.01. We used a cosine scheduler and tried one run for each initial

84

learning rate value in {10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3}. The best result for
AdamW was obtained for γ0 = 10−4, and we kept the same setting for INNAprop.
See for this Figure 4.4, where INNAprop performs no worse than AdamW on three
random seeds.

0 5 10 15 20
Epochs

10 3

10 2

10 1

100

Tr
ai

n
lo

ss

0 5 10 15 20
Epochs

70

71

72

73

74

75

76

77

78

79

Te
st

 a
cc

ur
ac

y

0 5 10 15 20
Epochs

90

92

94

96

98

100

Tr
ai

n
ac

cu
ra

cy

AdamW INNAprop, (,)= (0.1,0.9) INNAprop, (,)= (2.0,2.0)

Figure 4.4: Finetuning a VGG11 on Food101. Left: train loss, middle: test
accuracy (%), right: train accuracy (%). Qualitatively similar results for ResNet18
are in Figure 4.16 in Section 4.9. 3 random seeds.

Conclusion and recommendation for image classification: Tuning (α, β)
significantly impacts training. Based on heatmaps in Section 4.3.1 and in Section
4.3.2, we recommend using α = 0.1 and β ∈ [0.5, 1.5] for shorter training (e.g., fine-
tuning). For longer training, α, β ≥ 1 is preferable. In both cases, our algorithm
either matches or outperforms AdamW.

4.3.3 Pre-training and fine-tuning GPT2
We present experimental results on LLMs using the hyperparameters selected as
in Section 4.3.1.

Training GPT-2 from scratch: We train various GPT-2 transformer models
from scratch [177] using the nanoGPT repository2 on the OpenWebText dataset.
For all models, gradients are clipped to a norm of 1, following [74], [169], [170].
We use AdamW with hyperparameters from the literature [74], [170], the standard
configuration for LLM pre-training. The reported RMSprop parameter β2 = 0.95
is different from AdamW’s default (0.999), the weight decay is λ = 0.1 and
γ0 depending on the network size (see [74], [170]). For example, GPT-2 small
works with an initial learning rate γ0 = 6 × 10−4. For INNAprop, we keep the
same values for λ and γ0 as AdamW, and use the RMSprop parameter σ = 0.99
(corresponding to β2 for AdamW), which provides the best results among values
{0.9, 0.95, 0.99} on GPT-2 mini. We use this setting for all our GPT-2 experi-
ments with (α, β) = (0.1, 0.9). The results are in Figure 4.5. INNAprop leads
to a faster decrease in validation loss during the early stages compared to the
baseline for GPT-2 models of Mini (30M), Small (125M), and Medium (355M)
sizes. Its performance could be further improved with more thorough tuning of
hyperparameters (α, β, σ, λ). For GPT-2 small, we also include a comparison with
Sophia-G, using the hyperparameters provided in the literature 3 [74].

2https://github.com/karpathy/nanoGPT
3https://github.com/Liuhong99/Sophia

https://github.com/karpathy/nanoGPT
https://github.com/Liuhong99/Sophia

85

0K 20K 40K 60K 80K 100K
Number of steps

3.4

3.6

3.8

4.0

4.2

4.4
Va

lid
at

io
n

lo
ss

GPT-2 Mini

0K 20K 40K 60K 80K 100K
Number of steps

3.0

3.1

3.2

3.3

3.4

3.5

Va
lid

at
io

n
lo

ss

GPT-2 Small

0K 20K 40K 60K 80K 100K
Number of steps

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

Va
lid

at
io

n
lo

ss

GPT-2 Medium

AdamW Sophia-G INNAprop, (,) = (0.1, 0.9)

Figure 4.5: GPT-2 training from scratch on OpenWebText (Sophia-G unstable on
mini and medium).

Fine-tune GPT-2 with LoRA: Using LoRA [171], we fine-tune the same
GPT-2 models on the E2E dataset, consisting of roughly 42000 training 4600
validation, and 4600 test examples from the restauration domain. We compare
AdamW and INNAprop for 5 epochs, as recommended in [171]. We use for both
algorithms the same linear learning rate schedule, the recommended mini-batch
size, and the RMSprop parameter (β2 = σ = 0.999); these are listed in Table 11
in [171]. The results are displayed in Figure 4.6 and Table 4.4, where we see the
perplexity mean result over 3 random seeds. INNAprop with (α, β) = (0.1, 0.9)
consistently achieves lower perplexity loss compared to AdamW across all GPT-2
fine-tuning experiments.

0K 5K 10K 15K 20K 25K
Number of steps

3.5

3.6

3.7

3.8

3.9

P
er

pl
ex

ity
 te

st

GPT-2 Small

0K 5K 10K 15K 20K 25K
Number of steps

3.2

3.3

3.4

3.5

3.6

3.7

P
er

pl
ex

ity
 te

st

GPT-2 Medium

0K 5K 10K 15K 20K 25K
Number of steps

3.10

3.15

3.20

3.25

3.30

3.35

P
er

pl
ex

ity
 te

st

GPT-2 Large

AdamW INNAprop, (,)= (0.1,0.9)

Figure 4.6: Perplexity test with GPT-2 E2E Dataset with LoRA finetuning on five
epochs. Three random seeds.

We synthetize the performance of our algorithm on LLMs below and we em-
phasize the capabilities of INNAprop compared to AdamW in the context of early
training where gains are considerable.

86

Table 4.4: Performance comparison for GPT-2 training from scratch on OpenWeb-
Text (validation loss) and fine-tuning with LoRA on the E2E dataset (perplexity).

Model AdamW best INNAprop best Steps to match AdamW

GPT-2 Training from scratch (Validation loss)

GPT-2 mini 3.57 3.47 51,000 (1.96× faster)
GPT-2 small 3.03 2.98 79,000 (1.26× faster)
GPT-2 medium 2.85 2.82 83,000 (1.2× faster)

GPT-2 with LoRA (Perplexity test)

GPT-2 small 3.48 3.44 19,000 (1.31× faster)
GPT-2 medium 3.20 3.17 20,000 (1.25× faster)
GPT-2 large 3.09 3.06 20,000 (1.25× faster)

C Appendix of Chapter 4

4.4 A reminder on optimization algorithms

Considering the problem in Equation (4.1) and setting ∇J (θk) = gk, we outline
several well-known update rule optimizers.

Table 4.5: Update rules considered for known optimizers. SGD is due to [26],
Momentum to [62], Nesterov to [64], RMSprop + Momentum to [166], Adam to
[65], NAdam to [158] and INNA to [12].

SGD(γk)
θk+1 = θk − γkgk

Adam(γk, β1, β2, ϵ)
m0 = 0, v0 = 0
mk+1 = β1mk + (1− β1)gk
vk+1 = β2vk + (1− β2)g2

k

θk+1 = θk − γk
mk+1√
vk+1 + ϵ

NAdam(γk, ψ, β1, β2, ϵ)
m0 = 0, v0 = 0

µk = β1(1−
1
20.96kψ)

mk+1 = β1mk + (1− β1)gk
vk+1 = β2vk + (1− β2)g2

k

θk+1 = θk − γk
µk+1mk+1 + (1− µk)gk√

vk+1 + ϵ

Momentum(γk, β1)
v0 = 0
vk+1 = β1vk + (1− β1)gk
θk+1 = θk − γkvk+1

RMSprop + Momentum(γk, β1, β2, ϵ)
v0 = 1,m0 = 0
vk+1 = β2vk + (1− β2)g2

k

mk+1 = β1mk + gk√
vk+1 + ϵ

θk+1 = θk − γkmk+1

INNA(γk, α, β)
ψ0 = (1− αβ)θ0

ψk+1 = ψk + γk

(
(1
β
− α)θk −

1
β
ψk

)

θk+1 = θk + γk

(
(1
β
− α)θk −

1
β
ψk − βgk

)

87

88

4.5 Derivation of INNAprop from DIN
We consider (4.9) which was a discretization of (4.6), namely:

vk+1 = σ2vk + (1− σ2)g2
k (4.10)

θk+1 − 2θk + θk−1

γ2 + α
θk − θk−1

γ
+ β

gk√
vk+1+ϵ −

gk−1√
vk+ϵ

γ
+ gk−1√

vk + ϵ
= 0. (4.11)

This gives

1
γ

((
θk+1 − θk

γ
+ β

gk√
vk+1 + ϵ

)
−
(
θk − θk−1

γ
+ β

gk−1√
vk + ϵ

))

= − αθk − θk−1

γ
− gk−1√

vk + ϵ

and thus

1
γ

((
θk+1 − θk

γ
+ β

gk√
vk+1 + ϵ

)
−
(
θk − θk−1

γ
+ β

gk−1√
vk + ϵ

))

=
(

1
β
− α

)
θk − θk−1

γ
− 1
β

(
θk − θk−1

γ
+ β

gk−1√
vk + ϵ

)
.

Multiplying by β, we obtain

1
γ

((
β
θk+1 − θk

γ
+ β2 gk√

vk+1 + ϵ

)
−
(
β
θk − θk−1

γ
+ β2 gk−1√

vk + ϵ

))

= (1− αβ) θk − θk−1

γ
− θk − θk−1

γ
− β gk−1√

vk + ϵ

after rearranging all terms

1
γ

(β θk+1 − θk
γ

+ β2 gk√
vk+1 + ϵ

+ (αβ − 1)θk
)

−
(
β
θk − θk−1

γ
+ β2 gk−1√

vk + ϵ
+ (αβ − 1)θk−1

)
= − θk − θk−1

γ
− β gk−1√

vk + ϵ
.

Setting ψk−1 = −β θk−θk−1
γ
− β2 gk−1√

vk+ϵ − (αβ − 1)θk−1, we obtain the recursion

vk+1 = σ2vk + (1− σ2)g2
k (4.12)

ψk − ψk−1

γ
= −ψk−1

β
−
(
α− 1

β

)
θk−1 (4.13)

θk+1 − θk
γ

= −1
β
ψk − β

gk√
vk+1 + ϵ

−
(
α− 1

β

)
θk (4.14)

89

We can also rewrite the above as follows:

vk+1 = σ2vk + (1− σ2)g2
k

ψk+1 = ψk

(
1− γ

β

)
+ γ

(
1
β
− α

)
θk,

θk+1 = θk

(
1 + γ

(
1
β
− α

))
− γ

β
ψk − γβ

gk√
vk+1 + ϵ

.

We can save a memory slot by avoiding the storage of ψk:

ψk+1 = ψk

(
1− γ

β

)
+ γ

(
1
β
− α

)
θk, (4.15)

⇔ ψk = β

β − γ

(
ψk+1 − γ

(
1
β
− α

)
θk

)
= β

β − γ
ψk+1 −

β

β − γ
γ

(
1
β
− α

)
θk

θk+1 = θk

(
1 + γ

(
1
β
− α

))
− γ

β
ψk − γβ

gk√
vk+1 + ϵ

= θk + γ

(
1
β
− α

)
θk −

γ

β − γ
ψk+1 + γ

β − γ
γ

(
1
β
− α

)
θk − γβ

gk√
vk+1 + ϵ

= θk +
(

1 + γ

β − γ

)
γ

(
1
β
− α

)
θk −

γ

β − γ
ψk+1 − γβ

gk√
vk+1 + ϵ

= θk +
(

β

β − γ

)
γ

(
1
β
− α

)
θk −

γ

β − γ
ψk+1 − γβ

gk√
vk+1 + ϵ

= θk +
(
γ(1− βα)
β − γ

)
θk −

γ

β − γ
ψk+1 − γβ

gk√
vk+1 + ϵ

=
(

1 + γ(1− βα)
β − γ

)
θk −

γ

β − γ
ψk+1 − γβ

gk√
vk+1 + ϵ

(4.16)

Finally, we merely need to use 3 memory slots having the underlying dimension
size p:

vk+1 = σ2vk + (1− σ2)g2
k

ψk+1 = ψk

(
1− γ

β

)
+ γ

(
1
β
− α

)
θk,

θk+1 =
(

1 + γ(1− βα)
β − γ

)
θk −

γ

β − γ
ψk+1 − γβ

gk√
vk+1 + ϵ

4.5.1 Equivalence between a special case of INNAprop and
Adam without momentum

In this section, we demonstrate that INNAprop with α = 1 and β = 1 is equivalent
to Adam [65] without momentum (β1 = 0). To illustrate this, we analyze the
update rules of both algorithms. We assume that the RMSprop parameter β2 (for
Adam) and σ (for INNAprop) are equal. Starting with INNAprop, we initialize
ψ0 = (1− αβ)θ0. For α = 1 and β = 1, this simplifies to ψ0 = 0. The update for

90

Algorithm 4: INNAprop
1: Objective function: J (θ) for θ ∈ Rp.
2: Constant step-size: γ > 0
3: Hyper-parameters: σ ∈ [0, 1], α ≥ 0, β > γ, ϵ = 10−8.
4: Initialization: θ0, v0 = 0, ψ0 = (1− αβ)θ0.
5: for k = 1 to K do
6: gk = ∇J (θk)
7: vk+1 ← σvk + (1− σ)g2

k

8: ψk+1 ←
(
1− γ

β

)
ψk + γ

(
1
β
− α

)
θk

9: θk+1 ←
(
1 + γ(1−αβ)

β−γ

)
θk − γ

β−γψk+1 − γβ gk√
vk+1+ϵ

10: return θK+1

ψ becomes:

ψk+1 =
(

1− γ

β

)
ψk + γ

(
1
β
− α

)
θk = (1− γ)ψk

Given that ψ0 = 0, it follows that ψk = 0 for all k. The parameter update rule for
INNAprop is:

θk+1 =
(

1 + γ(1− αβ)
β − γ

)
θk −

γ

β − γ
ψk+1 − γβ

gk√
vk+1 + ϵ

Replacing α = 1, β = 1, and ψk = 0, we get:

θk+1 = θk − γ
gk√

vk+1 + ϵ

Here, gk is the gradient, and vk+1 is the exponential moving average of the squared
gradients:

vk+1 = σvk + (1− σ)g2
k

The Adam optimizer uses two moving averages, mk (momentum term) and vk
(squared gradients):

mk = β1mk−1 + (1− β1)gk
vk = σvk−1 + (1− σ)g2

k

Setting β1 = 0, the momentum term mk simplifies to mk = gk. The update rule
becomes:

θk+1 = θk − γ
gk√
vk + ϵ

This matches the form of Adam’s update rule without the momentum term, con-
firming that INNAprop with α = 1 and β = 1 is equivalent to Adam with β1 = 0.

91

Algorithm 5: INNAprop with (α, β) = (1, 1)
1: Objective function: J (θ) for θ ∈ Rp.
2: Constant step-size: γ > 0
3: Hyper-parameters: σ ∈ [0, 1], α ≥ 0, β > γ, ϵ = 10−8.
4: Initialization: time step k ← 0, parameter vector θ0, v0 = 0.
5: repeat
6: k ← k + 1
7: gk = ∇J (θk)
8: vk+1 ← σvk + (1− σ)g2

k

9: v̂k+1 ← vk+1/(1− σk)
10: θk+1 ← θk − γk

(
gk/(
√
v̂k+1 + ϵ

)
11: until stopping criterion is met
12: return optimized parameters θk+1

0 25 50 75 100 125 150 175 200
Epochs

10
4

10
3

10
2

10
1

10
0

Tr
ai

n
lo

ss

0 25 50 75 100 125 150 175 200
Epochs

80

82

84

86

88

90

92

Te
st

 a
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
Epochs

86

88

90

92

94

96

98

100

Tr
ai

n
ac

cu
ra

cy

AdamW INNAprop, (,)= (0.1,0.9) INNAprop, (,)= (1.0,1.0)

Figure 4.7: Training VGG11 on CIFAR10. Left: train loss, middle: test accuracy
(%), right: train accuracy (%), with 8 random seeds.

0 25 50 75 100 125 150 175 200
Epochs

10
3

10
2

10
1

10
0

Tr
ai

n
lo

ss

0 25 50 75 100 125 150 175 200
Epochs

82

84

86

88

90

92

Te
st

 a
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
Epochs

90

92

94

96

98

100

Tr
ai

n
ac

cu
ra

cy

AdamW INNAprop, (,)= (0.1,0.9) INNAprop, (,)= (1.0,1.0)

Figure 4.8: Training ResNet18 on CIFAR10. Left: train loss, middle: test accuracy
(%), right: train accuracy (%), with 8 random seeds.

92

0 20 40 60 80

10
0

6 × 10
1

2 × 10
0

3 × 10
0

4 × 10
0

Tr
ai

n
lo

ss

ResNet50

0 20 40 60 80
40

45

50

55

60

65

70

75

To
p-

1
te

st
 a

cc
ur

ac
y

0 20 40 60 80
40

50

60

70

80

90

To
p-

1
tra

in
 a

cc
ur

ac
y

0 20 40 60 80
Epochs

2 × 10
0

3 × 10
0

4 × 10
0

Tr
ai

n
lo

ss

ResNet18

0 20 40 60 80
Epochs

40

45

50

55

60

65

70

75

To
p-

1
te

st
 a

cc
ur

ac
y

0 20 40 60 80
Epochs

40

50

60

70

80

90

To
p-

1
tra

in
 a

cc
ur

ac
y

AdamW INNAprop, (,)= (0.1,0.9) INNAprop, (,)= (1.0,1.0)

Figure 4.9: Training a ResNet50 (top) and ResNet18 (bottom) on ImageNet. Left:
train loss, middle: Top-1 test accuracy (%), right: Top-1 train accuracy (%). 3
random seeds.

4.6 Alternative discretizations

4.6.1 An alternative derivation of INNAprop
As mentioned in Remark 14, we can obtain INNAprop easily from INNA [12]. The
algorithm INNA writes (see Table 4.5):

ψk+1 = ψk + γ

(
(1
β
− α)θk −

1
β
ψk

)

θk+1 = θk + γ

(
(1
β
− α)θk −

1
β
ψk − βgk

)

Rearranging the terms and saving a memory slot — use ψk+1 in the second
equation instead of ψk, (see Equation (4.16) for details)— yields

ψk+1 = ψk

(
1− γ

β

)
+ γ

(
1
β
− α

)
θk

θk+1 =
(

1 + γ(1− βα)
β − γ

)
θk −

γ

β − γ
ψk+1 − γβgk

Now, use the RMSprop proxy directly within INNA. Using the usual RMSprop
constants σ ∈ [0, 1] and ϵ > 0, we obtain:

vk+1 = σvk + (1− σ)g2
k

ψk+1 = ψk

(
1− γ

β

)
+ γ

(
1
β
− α

)
θk

θk+1 =
(

1 + γ(1− βα)
β − γ

)
θk −

γ

β − γ
ψk+1 − γβ

gk√
vk+1 + ϵ

93

This is INNAprop and the derivation is much more direct, although less illustrative
of the geometric features.

4.6.2 A variant of INNAprop with momentum
The algorithm. We follow the rationale behind the algorithm RMSprop with
momentum [166]. We therefore start with Equation (4.9) using the RMSprop
proxy for the gradient:

vk+1 = σvk + (1− σ)g2
k

θk+1 − 2θk + θk−1

γ
+ α

θk − θk−1

γ
+ β

gk√
vk+1+ϵ −

gk−1√
vk+ϵ

γ
+ gk−1√

vk + ϵ
= 0.

Rearranging terms, we have

vk+1 = σvk + (1− σ)g2
k

θk+1 = θk + (1− αγ)(θk − θk−1)− βγ
(

gk√
vk+1 + ϵ

− gk−1√
vk + ϵ

)
− γ2 gk−1√

vk + ϵ

Let us introduce a momentum variable mk = θk−1 − θk to obtain:

vk+1 = σvk + (1− σ)g2
k (4.17)

mk+1 = (1− αγ)mk + γ2 gk−1√
vk + ϵ

+ βγ

(
gk√

vk+1 + ϵ
− gk−1√

vk + ϵ

)
(4.18)

θk+1 = θk −mk+1 (4.19)

As previously need now to optimize the dynamics in terms of storage. For this
we rewrite Equation (4.18) as

mk+1 = amk + bgk − cgk−1. (4.20)

where a = (1−αγ), b = βγ and c = γ(β − γ). Writing m̃k = mk − c
a
gk−1, we have

m̃k+1 = mk+1 −
c

a
gk

= amk + bgk − cgk−1 −
c

a
gk

= a
(
mk −

c

a
gk−1

)
+
(
b− c

a

)
gk

= am̃k +
(
b− c

a

)
gk.

Therefore, using this identity, we may rewrite the following

mk+1 = amk + bgk − cgk−1,

θk+1 = θk −mk+1

as

m̃k+1 = am̃k +
(
b− c

a

)
gk,

θk+1 = θk − m̃k+1 −
c

a
gk.

94

Recalling that a = (1 − αγ), b = βγ and c = γ(β − γ). Finally, we get the
following recursion which is an alternative way to integrate RMSprop to INNA:

vk+1 = σvk + (1− σ)g2
k (4.21)

m̃k+1 = (1− αγ)m̃k + γ2
(

1− αβ
1− αγ

)
gk√

vk+1 + ϵ
(4.22)

θk+1 = θk − m̃k+1 −
γ(β − γ)
1− αγ

gk√
vk+1 + ϵ

(4.23)

but as shown below through numerical experiments, the factor γ2 is poorly scaled
for 32 bits or lower machine precision.

Numerical experiments. Using CIFAR-10 dataset, we train a VGG11 network
with the momentum version of INNAprop with the hyperparameters (α, β) =
(0.1, 0.9) above. We used a cosine annealing scheduler with γ0 = 10−3 and no
weight decay. As seen in Figure 4.10, the training loss stops decreasing between
the 125th and 150th epochs. Upon closely examining the algorithm in this regime,
we observe that at the end of training, γ2

k falls below the numerical precision,
resulting in unstable behavior in Equation (4.22).

0 25 50 75 100 125 150 175 200
Epochs

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

0 25 50 75 100 125 150 175 200
Epochs

8

10

12

14

16

18

20

22

24

Pa
ra

m
 n

or
m

0 25 50 75 100 125 150 175 200
Epochs

10 3

3 × 10 4

4 × 10 4

6 × 10 4

Au
xi

lia
ry

 v
ar

ia
bl

e
no

rm

0 25 50 75 100 125 150 175 200
Epochs

10 13

10 11

10 9

10 7

10 5

Ad
ju

st
ed

 G
ra

di
en

t n
or

m

innaprop_v2, (,)= (0.1,0.9), lr = 0.001, wd = 0.0

Figure 4.10: The version of INNA with momentum of Section 4.6.2 is an unstable
method.

4.6.3 An approach à la Adam
In this section, we mimic the process for deriving Adam from the heavy ball with a
RMSprop proxy, see, e.g., [65], [178], by simply replacing the heavy ball by DIN4.
We call this optimizer DINAdam.

From (4.6), we infer the discretization:

θk+1 − 2θk + θk−1

γ2 + α
θk+1 − θk

γ
+ β

gk − gk−1

γ
+ gk = 0. (4.24)

Rearranging terms, we have

θk+1 = θk −
γ2

1 + αγ
gk + 1

1 + αγ
(θk − θk−1)−

βγ

(1 + αγ)(gk − gk−1) (4.25)

4Note that DIN with β = 0 boils down to the heavy ball method.

95

By introducing the new variable mk = (θk−1 − θk)/η and setting η > 0, we can
rewrite equation (4.25) as:

mk+1 = 1
(1 + αγ)mk + γ2

(1 + αγ)ηgk + βγ

(1 + αγ)η (gk − gk−1) (4.26)

θk+1 = θk − ηmk+1 (4.27)

To follow the Adam spirit, we set σ1 = 1
(1+αγ) and (1− σ1) = γ2

(1+αγ)η . Solving
for γ, we get

αγ

1 + αγ
= γ2

(1 + αγ)η ⇒ γ = η

α

Then, we find the following recursion:

mk+1 = σ1mk + (1− σ1)gk + βασ1(gk − gk−1) (4.28)
θk+1 = θk − ηmk+1 (4.29)

From Equation (4.28), we make a change of variable m̃k = mk−αβgk−1 to save
a memory cell.

m̃k+1 = σ1m̃k + (1− σ1 + βασ1 − βα)gk (4.30)
θk+1 = θk − η(m̃k+1 − αβgk) (4.31)

Using the usual RMSprop constants σ2 ∈ [0, 1] and ϵ > 0, we obtain:

vk+1 = σ2vk + (1− σ2)g2
k (4.32)

m̃k+1 = σ1m̃k + (1− σ1 + βασ1 − βα)gk (4.33)

θk+1 = θk − η
m̃k+1 − αβgk√

vk+1 + ϵ
(4.34)

Algorithm 6: DINAdam
1: Objective function: J (θ) for θ ∈ Rp.
2: Constant step-size: γ > 0
3: Hyper-parameters: (σ1, σ2) ∈ [0, 1]2, α, β > 0, ϵ = 10−8.
4: Initialization: θ0, v0 = 0, m̃0 = 0.
5: repeat
6: gk = ∇J (θk)
7: vk+1 ← σ2vk + (1− σ2)g2

k

8: m̃k+1 ← σ1m̃k + (1− σ1 + βασ1 − βα)gk
9: θk+1 ← θk − γ m̃k+1−αβgk√

vk+1+ϵ
10: until stopping criterion is met
11: return optimized parameters θk

96

Remark 16 The way RMSprop is added in INNAprop and DINAdam is different.
In INNAprop, RMSprop is incorporated directly during the discretization process
of Equation (4.9) for all gradients. However, in DINAdam, RMSprop is added only
at the last step, as shown in Equation (4.32), and only on the gradient in the θk+1
update. This is how RMSprop was combined with heavy ball to obtain Adam.

Remark 17 After setting α = 1 and β = 0, we obtain Adam update rules. If
β ̸= 0, DINAdam is very close to NAdam algorithm. Hence, we did not investigate
this algorithm numerically.

4.7 Scheduler procedures
Cosine annealing [60]. Let γk represent the learning rate at iteration k, Tmax be
the maximum number of iterations (or epochs), and γmin be the minimum learning
rate (default value is 0). The learning rate γk at iteration k is given by:

γk = γmin + 1
2(γ0 − γmin)

(
1 + cos

(
k

Tmax
π

))
This scheduler was employed in all image classification experiments except for ViT.

Cosine annealing with linear warmup [179]. Let γk represent the learning
rate at iteration k, γmin the minimum learning rate, γ0 the initial learning rate,
Twarmup the number of iterations for the warmup phase, and Tdecay the iteration
number after which the learning rate decays to γmin. The learning rate is defined
as follows:

γk =

γ0 · k

Twarmup
, if k < Twarmup

γmin + 1
2 (γ0 − γmin)

(
1 + cos

(
π · k−Twarmup

Tdecay−Twarmup

))
, if Twarmup ≤ k ≤ Tdecay

γmin, if k > Tdecay

This scheduler was applied in experiments involving training GPT-2 from scratch
and for ViT.

Linear schedule with linear warmup [171]. Let γk represent the learning
rate at iteration k and Tmax be the maximum number of iterations, Twarmup be the
number of warmup steps, and γmin be the minimum learning rate after warmup
(default value is typically set to the initial learning rate, γ0). The learning rate γk
at iteration k is given by:

γk =
γ0 · k

Twarmup
if k < Twarmup,

γ0 ·
(
1− k−Twarmup

Tmax−Twarmup

)
otherwise.

This scheduler was used for fine-tuning GPT-2 with LoRA.

4.8 Choosing hyperparameters α and β for IN-
NAprop

4.8.1 Comparison with AdamW
For VGG and ResNet training on CIFAR10, the literature suggest using initial
learning rate γ0 = 10−3 with a learning rate schedule [66], [169], [176], [180]. Our

97

experiment fix a cosine scheduler where Tmax = 200 and γmin = 0 as it achieves a
strong baseline for AdamW [60], [169]. We set weight decay λ = 0.1. Then, we
tune the initial learning rate γ0 among {10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2}. In
Figure 4.11, we report the performance in terms of training loss and test accuracy
for AdamW. These results confirm the usage of γ0 = 10−3.

(a) Performance rankings with VGG11.
γ0 Train loss Test accuracy (%)

10−3 0.00041 91.02
5× 10−3 0.00047 90.86
5× 10−4 0.00048 90.79

10−2 0.00057 90.41
10−4 0.00081 88.49

(b) Performance rankings with ResNet18.
γ0 Train loss Test accuracy (%)

2× 10−3 0.00040 92.10
5× 10−3 0.00049 91.84
5× 10−4 0.00094 92.32

10−2 0.00057 90.41
10−4 0.0018 87.85

Figure 4.11: Comparative performance of the training loss and test accuracy ac-
cording to γ0. We trained VGG11 and ResNet18 models on CIFAR10 for 200
epochs.

4.8.2 Heatmap for preliminary tuning of α and β

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Log-scaled Training Loss

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Test Accuracy

1.0

0.8

0.6

0.4

0.2

76

78

80

82

84

86

(a) 20 epochs

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Log-scaled Training Loss

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Test Accuracy

4.00

3.75

3.50

3.25

3.00

2.75

2.50

2.25

88.5

89.0

89.5

90.0

90.5

91.0

(b) 200 epochs

Figure 4.12: Log-scale training loss and test accuracies for (α, β) hyperparameters
with VGG11 on CIFAR10 at different epochs. Optimal learning rate γ0 = 10−3,
weight decay λ = 0.

98

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Log-scaled Training Loss

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Test Accuracy

0.8

0.7

0.6

0.5

0.4

0.3

0.2

76

78

80

82

84

86

88

(a) 20 epochs

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Log-scaled Training Loss

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Test Accuracy

3.5

3.0

2.5

2.0

1.5

88.5

89.0

89.5

90.0

90.5

91.0

91.5

92.0

(b) 200 epochs

Figure 4.13: Log-scale training loss and test accuracies for (α, β) hyperparameters
with ResNet18 on CIFAR10 at different epochs. Optimal learning rate γ0 = 10−3,
weight decay λ = 0.01.

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Log-scaled Training Loss

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Test Accuracy

0.8

0.7

0.6

0.5

0.4

0.3

0.2

76

78

80

82

84

86

88

(a) 20 epochs

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Log-scaled Training Loss

0.1 0.5 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.9
0.5
0.1

Test Accuracy

3.5

3.0

2.5

2.0

88.5

89.0

89.5

90.0

90.5

91.0

91.5

92.0

(b) 200 epochs

Figure 4.14: Log-scale training loss and test accuracies for (α, β) hyperparameters
with ResNet18 on CIFAR10 at different epochs. Optimal learning rate γ0 = 10−3,
weight decay λ = 0.

99

4.9 Additional experiments

4.9.1 CIFAR10 experiments

0 50 100 150 200
Epochs

10 3

10 2

10 1

100

Tr
ai

n
lo

ss

0 50 100 150 200
Epochs

82

84

86

88

90

92

Te
st

 a
cc

ur
ac

y
0 50 100 150 200

Epochs

90

92

94

96

98

100

Tr
ai

n
ac

cu
ra

cy

AdamW INNAprop, (,)= (0.1,0.9) INNAprop, (,)= (2.0,2.0)

Figure 4.15: Training ResNet18 on CIFAR10. Left: train loss, middle: test accu-
racy (%), right: train accuracy (%), with 8 random seeds.

4.9.2 Food101 experiments

0 5 10 15 20
Epochs

10 2

10 1

100

Tr
ai

n
lo

ss

0 5 10 15 20
Epochs

72

73

74

75

76

77

78

79

Te
st

 a
cc

ur
ac

y

0 5 10 15 20
Epochs

90

92

94

96

98

100

Tr
ai

n
ac

cu
ra

cy

AdamW INNAprop, (,)= (0.1,0.9) INNAprop, (,)= (2.0,2.0)

Figure 4.16: Finetuning a ResNet18 on Food101, same as Figure 4.4 for ResNet18.
Left: train loss, middle: test accuracy (%), right: train accuracy (%), with 3
random seeds.

4.9.3 ImageNet

0 20 40 60 80
Epochs

2 × 10
0

3 × 10
0

4 × 10
0

Tr
ai

n
lo

ss

0 20 40 60 80
Epochs

10

20

30

40

50

60

70

To
p-

1
te

st
 a

cc
ur

ac
y

0 20 40 60 80
Epochs

20

30

40

50

60

70

To
p-

1
tra

in
 a

cc
ur

ac
y

AdamW INNAprop, (,)= (0.1,0.9) INNAprop, (,)= (2.0,2.0)

Figure 4.17: Training ResNet18 on ImageNet. Left: train loss, middle: test accu-
racy (%), right: train accuracy (%), with 3 random seeds.

100

0 50 100 150 200 250 300
Epochs

3 × 10
0

4 × 10
0

6 × 10
0

Tr
ai

n
lo

ss

0 50 100 150 200 250 300
Epochs

10

20

30

40

50

60

70

80

To
p-

1
te

st
 a

cc
ur

ac
y

0 50 100 150 200 250 300
Epochs

20

30

40

50

60

70

80

To
p-

1
tra

in
 a

cc
ur

ac
y

AdamW INNAprop, (,)= (0.1,0.9) INNAprop, (,)= (2.0,2.0)

Figure 4.18: Fast training ViT/B-32 on ImageNet with weight decay λ = 0.01 for
INNAprop (α, β) = (0.1, 0.9). Left: train loss, middle: test accuracy (%), right:
train accuracy (%), with 3 random seeds.

4.9.4 Comparision with INNA

We evaluate INNA on GPT-2 Mini and compare it to INNAprop and AdamW.
Following [12], we used the recommended hyperparameters (α, β) = (0.5, 0.1) and
tested learning rates {1e − 4, 1e − 3, 1e − 2, 1e − 1}, selecting γ0 = 0.1 as the
best. Figure 4.19 shows that INNAprop and AdamW outperform INNA in both
convergence speed and final validation loss.

0K 20K 40K 60K 80K 100K
Number of steps

3.4

3.5

3.6

3.7

3.8

3.9

4.0

Va
lid

at
io

n
lo

ss

GPT-2 Mini

AdamW INNAprop, (,) = (0.1, 0.9) INNA, (,) = (0.5, 0.1)

Figure 4.19: Validation loss comparison during GPT-2 mini training from scratch
on the OpenWebText dataset.

4.10 Experimental Setup

4.10.1 CIFAR-10

We used custom training code based on the PyTorch tutorial code for this problem.
Following standard data-augmentation practices, we applied random horizontal
flips and random offset cropping down to 32x32, using reflection padding of 4
pixels. Input pixel data was normalized by centering around 0.5.

101

Hyper-parameter Value
Architecture VGG11 and ResNet18

Epochs 200
GPUs 1×V100

Batch size per GPU 256
Baseline LR 0.001

Seeds 8 runs

Hyper-parameter Value
Baseline schedule cosine
Weight decay λ 0.01

β1, β2 (for AdamW) 0.9, 0.999
σ (for INNAprop) 0.999

4.10.2 Food101

We used the pre-trained models available on PyTorch for VGG11 and ResNet18.5.

Hyper-parameter Value
Architecture VGG11 and ResNet18

Epochs 200
GPUs 1×V100

Batch size per GPU 256
Baseline LR 0.001

Seeds 3 runs

Hyper-parameter Value
Baseline schedule cosine
Weight decay λ 0.01

β1, β2 (for AdamW) 0.9, 0.999
σ (for INNAprop) 0.999

4.10.3 ImageNet

We used the same code-base as for our CIFAR-10 experiments, and applied the
same preprocessing procedure. The data-augmentations consisted of PyTorch’s
RandomResizedCrop, cropping to 224x224 followed by random horizontal flips.
Test images used a fixed resize to 256x256 followed by a center crop to 224x224.

ResNet18

Hyper-parameter Value
Architecture ResNet18

Epochs 90
GPUs 4×V100

Batch size per GPU 64
Baseline LR 0.001

Seeds 3 runs

Hyper-parameter Value
Baseline schedule cosine
Weight decay λ 0.01

β1, β2 (for AdamW) 0.9, 0.999
σ (for INNAprop) 0.999

5https://pytorch.org/vision/stable/models.html

https://pytorch.org/vision/stable/models.html

102

ResNet50

Hyper-parameter Value
Architecture ResNet18

Epochs 90
GPUs 4×V100

Batch size per GPU 64
Baseline LR 0.001

Mixed precision True
Seeds 3 runs

Hyper-parameter Value
Baseline schedule cosine
Weight decay λ 0.1

β1, β2 (for AdamW) 0.9, 0.999
σ (for INNAprop) 0.999

ViT/B-32

Hyper-parameter Value
Architecture ViT/B-32

Epochs 300
GPUs 8×A100

Batch size per GPU 128
Baseline LR 0.001

Seeds 5000

Hyper-parameter Value
Baseline schedule cosine

Warmup linear for 30 epochs
Weight decay λ 0.1

β1, β2 (for AdamW) 0.9, 0.999
σ (for INNAprop) 0.999

4.10.4 GPT2 from scratch

We followed the NanoGPT codebase 6 and we refer to [170] as closely as possible,
matching the default batch-size and schedule.

Hyper-parameter Value
Architecture GPT-2

Batch size per gpu 12
Max Iters 100000

GPUs 4×A100
Dropout 0.0

Baseline LR refer to [170]
Warmup Steps 500

Hyper-parameter Value
Seeds 5000

Weight decay λ 0.1
β1, β2 (for AdamW) 0.9, 0.95
σ (for INNAprop) 0.99
Gradient Clipping 1.0

Float16 True

4.10.5 GPT-2 with LoRA

We followed the LoRA codebase 7 and we refer to [171] as closely as possible,
matching the default batch-size, training length, and schedule. We train all of our
GPT-2 models using AdamW [32] and INNAprop on E2E dataset with a linear
learning rate schedule for 5 epochs. We report the mean result over 3 random
seeds; the result for each run is taken from the best epoch.

6https://github.com/karpathy/nanoGPT
7https://github.com/microsoft/LoRA

https://github.com/karpathy/nanoGPT
https://github.com/microsoft/LoRA

103

Hyper-parameter Value
Architecture GPT-2

Batch size per gpu 8
Epochs 5
GPUs 1×A100

Dropout 0.1
Baseline LR 0.0002

Warmup steps 500

Hyper-parameter Value
Seeds 3 runs

Weight decay λ 0.01
β1, β2 (for AdamW) 0.9, 0.98
σ (for INNAprop) 0.98

Learning Rate Schedule Linear
LoRA α 32

104

Chapter 5

Conclusion and perspectives

This thesis focused on the theoretical and practical aspects of automatic differen-
tiation and optimization algorithms for nonsmooth neural networks. It addressed
critical issues related to certifiability and robustness while proposing tools and
methods applicable to various machine learning contexts.

In Chapter 2, we extended the complexity analysis of automatic differentiation
to nonsmooth programs. By introducing a model based on conservative gradients,
we established principles such as the “cheap conservative gradient principle” and
demonstrated that these gradients exhibit computational properties akin to classi-
cal derivatives. These results provide a rigorous framework for understanding the
computational costs of nonsmooth programs.

In Chapter 3, we investigated the numerical reliability of automatic differenti-
ation in nonsmooth architectures by analyzing numerical bifurcation zones in the
context of MaxPool networks. Our experiments highlighted the significant role of
numerical precision (16, 32, or 64 bits) in model stability and proposed strategies
to manage errors introduced by floating-point arithmetic.

In Chapter 4, we introduced INNAprop, a novel optimization algorithm that
combines adaptive scaling (via RMSprop) with second-order information derived
from dynamic systems. This algorithm was validated on large-scale models, demon-
strating its effectiveness across diverse contexts while maintaining computational
complexity comparable to classical first-order algorithms.

This work is motivated by the need for AI certifiability, focusing on providing
theoretical and numerical guarantees for widely adopted practices in the machine
learning community. A natural extension is to develop and refine algorithms tai-
lored to nonsmooth and nonconvex settings. The results presented here open the
way for several promising directions for future research:

• Explore nonsmooth optimization in new domains like reinforcement learning,
optimal transport, and scientific computing to uncover fresh theoretical and
practical insights.

• Expand robustness guarantees to address adversarial scenarios, hardware
limitations (e.g., quantization), and extreme noise conditions, enhancing
real-world applicability.

• Develop effective scheduling strategies for the hyperparameters α and β in
INNAprop.

105

106

In conclusion, this thesis contributed to establishing a theoretical foundation for
learning algorithms based on nonsmooth automatic differentiation while providing
practical solutions to computational and numerical challenges in deep learning.

Bibliography

[1] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning”, Ad-
vances in neural information processing systems, vol. 20, 2007.

[2] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Auto-
matic differentiation in machine learning: A survey”, Journal of Marchine
Learning Research, vol. 18, pp. 1–43, 2018.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors”, nature, vol. 323, no. 6088, pp. 533–536,
1986.

[4] B. Speelpenning, Compiling fast partial derivatives of functions given by
algorithms. University of Illinois at Urbana-Champaign, 1980.

[5] M. Abadi, P. Barham, J. Chen, et al., “Tensorflow: A system for large-scale
machine learning”, in 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), 2016, pp. 265–283. [Online]. Available:
https://www.usenix.org/system/files/conference/osdi16/osdi16-
abadi.pdf.

[6] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-
performance deep learning library”, in Advances in Neural Information Pro-
cessing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http : / / papers . neurips . cc / paper / 9015 -
pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf.

[7] J. Bradbury, R. Frostig, P. Hawkins, et al., JAX: Composable transforma-
tions of Python+NumPy programs, version 0.2.5, 2018. [Online]. Available:
http://github.com/google/jax.

[8] A. Griewank and A. Walther, Evaluating derivatives: principles and tech-
niques of algorithmic differentiation. SIAM, 2008.

[9] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter,
“Differentiable convex optimization layers”, in Advances in Neural Infor-
mation Processing Systems, vol. 32, 2019.

[10] J. Bolte and E. Pauwels, “Conservative set valued fields, automatic differ-
entiation, stochastic gradient methods and deep learning”, Mathematical
Programming, pp. 1–33, 2020.

[11] J. Bolte and E. Pauwels, “A mathematical model for automatic differentia-
tion in machine learning”, in Conference on Neural Information Processing
Systems, 2020.

107

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://github.com/google/jax

108

[12] C. Castera, J. Bolte, C. Févotte, and E. Pauwels, “An inertial newton al-
gorithm for deep learning”, The Journal of Machine Learning Research,
vol. 22, no. 1, pp. 5977–6007, 2021.

[13] T. Tieleman, G. Hinton, et al., “Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude”, COURSERA: Neural networks
for machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[14] D. O. Hebb, The organization of behavior: A neuropsychological theory.
Psychology press, 2005.

[15] F. Rosenblatt, “The perceptron: A probabilistic model for information stor-
age and organization in the brain.”, Psychological review, vol. 65, no. 6,
p. 386, 1958.

[16] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation applied to hand-
written zip code recognition”, Neural computation, vol. 1, no. 4, pp. 541–
551, 1989.

[17] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks”, science, vol. 313, no. 5786, pp. 504–507, 2006.

[18] Y. Bengio, “Gradient-based optimization of hyperparameters”, Neural com-
putation, vol. 12, no. 8, pp. 1889–1900, 2000.

[19] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise
training of deep networks”, Advances in neural information processing sys-
tems, vol. 19, 2006.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks”, pp. 1097–1105, 2012.

[21] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space”, arXiv preprint arXiv:1301.3781, 2013.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database”, pp. 248–255, 2009.

[23] A. Krizhevsky and G. Hinton, “The cifar-10 dataset”, 2010.
[24] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101–mining discrimi-

native components with random forests”, in Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part VI 13, Springer, 2014, pp. 446–461.

[25] G. Van Rossum and F. L. Drake Jr, Python tutorial, 1995.
[26] H. Robbins and S. Monro, “A stochastic approximation method”, The an-

nals of mathematical statistics, pp. 400–407, 1951.
[27] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-

scale machine learning”, Siam Review, vol. 60, no. 2, pp. 223–311, 2018.
[28] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-

erations for modern deep learning research”, in Proceedings of the AAAI
conference on artificial intelligence, vol. 34, 2020, pp. 13 693–13 696.

[29] D. Patterson, J. Gonzalez, Q. Le, et al., “Carbon emissions and large neural
network training”, arXiv preprint arXiv:2104.10350, 2021.

109

[30] G. Team, R. Anil, S. Borgeaud, et al., “Gemini: A family of highly capable
multimodal models”, arXiv preprint arXiv:2312.11805, 2023.

[31] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization.”, Journal of machine learning
research, vol. 12, no. 7, 2011.

[32] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization”, arXiv
preprint arXiv:1711.05101, 2017.

[33] X. Chen, C. Liang, D. Huang, et al., “Symbolic discovery of optimization
algorithms”, arXiv preprint arXiv:2302.06675, 2023.

[34] E. Moulines and F. Bach, “Non-asymptotic analysis of stochastic approx-
imation algorithms for machine learning”, Advances in neural information
processing systems, vol. 24, 2011.

[35] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for non-
convex stochastic programming”, SIAM journal on optimization, vol. 23,
no. 4, pp. 2341–2368, 2013.

[36] X. Li and F. Orabona, “On the convergence of stochastic gradient descent
with adaptive stepsizes”, in The 22nd international conference on artificial
intelligence and statistics, PMLR, 2019, pp. 983–992.

[37] D. Davis, D. Drusvyatskiy, S. Kakade, and J. D. Lee, “Stochastic subgra-
dient method converges on tame functions”, Foundations of computational
mathematics, vol. 20, no. 1, pp. 119–154, 2020.

[38] R. Sun and Z.-Q. Luo, “Guaranteed matrix completion via non-convex fac-
torization”, IEEE Transactions on Information Theory, vol. 62, no. 11,
pp. 6535–6579, 2016.

[39] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, “How to
escape saddle points efficiently”, in International Conference on Machine
Learning (ICML), 2017, pp. 1724–1732.

[40] Y. Nesterov, Introductory lectures on convex optimization: A basic course.
Springer Science & Business Media, 2004.

[41] D. Bertoin, J. Bolte, S. Gerchinovitz, and E. Pauwels, “Numerical influence
of relu’(0) on backpropagation”, Advances in Neural Information Processing
Systems, vol. 34, 2021.

[42] R. Boustany, “On the numerical reliability of nonsmooth autodiff: A max-
pool case study”, Transactions on Machine Learning Research, 2024.

[43] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge university
press, 2004.

[44] R. Rockafellar, “Convex analysis”, Princeton Math. Series, vol. 28, 1970.
[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition”, pp. 770–778, 2016.
[46] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need”,

Advances in neural information processing systems, vol. 30, 2017.

110

[47] G. Cybenko, “Approximation by superpositions of a sigmoidal function”,
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989.

[48] J. B. Simon, D. Karkada, N. Ghosh, and M. Belkin, “More is better in
modern machine learning: When infinite overparameterization is optimal
and overfitting is obligatory”, arXiv preprint arXiv:2311.14646, 2023.

[49] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition”, Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[50] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks”, pp. 818–833, 2014.

[51] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An image is worth 16x16
words: Transformers for image recognition at scale”, arXiv preprint arXiv:2010.11929,
2020.

[52] A. Q. Jiang, A. Sablayrolles, A. Mensch, et al., “Mistral 7b”, arXiv preprint
arXiv:2310.06825, 2023.

[53] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: Percep-
tron, madaline, and backpropagation”, Proceedings of the IEEE, vol. 78,
no. 9, pp. 1415–1442, 1990.

[54] W. Baur and V. Strassen, “The complexity of partial derivatives.”, Theo-
retical Computer Science, 22:317–330, 1983.

[55] J. Bolte, R. Boustany, E. Pauwels, and B. Pesquet-Popescu, “On the com-
plexity of nonsmooth automatic differentiation”, in The Eleventh Interna-
tional Conference on Learning Representations, 2022.

[56] “Ieee standard for floating-point arithmetic”, IEEE Std 754-2019 (Revision
of IEEE 754-2008), pp. 1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229.

[57] P. Micikevicius, S. Narang, J. Alben, et al., “Mixed precision training”,
arXiv preprint arXiv:1710.03740, 2017.

[58] M. Ott, S. Edunov, D. Grangier, and M. Auli, “Scaling neural machine
translation”, arXiv preprint arXiv:1806.00187, 2018.

[59] L. Armijo, “Minimization of functions having lipschitz continuous first par-
tial derivatives”, Pacific Journal of mathematics, vol. 16, no. 1, pp. 1–3,
1966.

[60] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm
restarts”, arXiv preprint arXiv:1608.03983, 2016.

[61] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Ben-
gio, “Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization”, Advances in neural information processing sys-
tems, vol. 27, 2014.

[62] B. T. Polyak, “Some methods of speeding up the convergence of itera-
tion methods”, Ussr computational mathematics and mathematical physics,
vol. 4, no. 5, pp. 1–17, 1964.

https://doi.org/10.1109/IEEESTD.2019.8766229

111

[63] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning”, in International conference
on machine learning, PMLR, 2013, pp. 1139–1147.

[64] Y. E. Nesterov, “A method of solving a convex programming problem with
convergence rate O(1/k2)”, in Doklady Akademii Nauk, Russian Academy
of Sciences, vol. 269, 1983, pp. 543–547.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”,
arXiv preprint arXiv:1412.6980, 2014.

[66] J. Zhuang, T. Tang, Y. Ding, et al., “Adabelief optimizer: Adapting step-
sizes by the belief in observed gradients”, Advances in neural information
processing systems, vol. 33, pp. 18 795–18 806, 2020.

[67] M. D. Zeiler, “Adadelta: An adaptive learning rate method”, arXiv preprint
arXiv:1212.5701, 2012.

[68] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond”, arXiv preprint arXiv:1904.09237, 2019.

[69] M. Zhang, J. Lucas, J. Ba, and G. E. Hinton, “Lookahead optimizer: K steps
forward, 1 step back”, Advances in neural information processing systems,
vol. 32, 2019.

[70] J. Martens et al., “Deep learning via hessian-free optimization.”, in Icml,
vol. 27, 2010, pp. 735–742.

[71] R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal, “On the use of
stochastic hessian information in optimization methods for machine learn-
ing”, SIAM Journal on Optimization, vol. 21, no. 3, pp. 977–995, 2011.

[72] C. Boyer and A. Godichon-Baggioni, “On the asymptotic rate of conver-
gence of stochastic newton algorithms and their weighted averaged ver-
sions”, Computational Optimization and Applications, vol. 84, no. 3, pp. 921–
972, 2023.

[73] J. Martens and R. Grosse, “Optimizing neural networks with kronecker-
factored approximate curvature”, in International conference on machine
learning, PMLR, 2015, pp. 2408–2417.

[74] H. Liu, Z. Li, D. Hall, P. Liang, and T. Ma, “Sophia: A scalable stochastic
second-order optimizer for language model pre-training”, arXiv preprint
arXiv:2305.14342, 2023.

[75] J. Bolte, R. Boustany, E. Pauwels, and A. Purica, A second-order-like opti-
mizer with adaptive gradient scaling for deep learning, 2024. arXiv: 2410.
05871 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2410.05871.

[76] L. M. Beda, L. N. Korolev, N. V. Sukkikh, and T. S. Frolova, “Programs for
automatic differentiation for the machine BESM”, Institute for Precise Me-
chanics and Computation Techniques, Academy of Science, Moscow, USSR,
Tech. Rep., 1959.

[77] R. E. Wengert, “A simple automatic derivative evaluation program”, Com-
munications of the ACM, vol. 7, no. 8, pp. 463–464, 1964.

[78] A. Griewank et al., “On automatic differentiation”, Mathematical Program-
ming: recent developments and applications, vol. 6, no. 6, pp. 83–107, 1989.

https://arxiv.org/abs/2410.05871
https://arxiv.org/abs/2410.05871
https://arxiv.org/abs/2410.05871

112

[79] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Representa-
tions by Back-propagating Errors”, Nature, vol. 323, no. 6088, pp. 533–536,
1986. doi: 10.1038/323533a0. [Online]. Available: http://www.nature.
com/articles/323533a0.

[80] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[81] A. Griewank and C. Faure, “Piggyback differentiation and optimization”,
in Large-scale PDE-constrained optimization, Springer, 2003, pp. 148–164.

[82] A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. M. Moursi, “Differ-
entiating through a cone program”, J. Appl. Numer. Optim, vol. 1, no. 2,
pp. 107–115, 2019.

[83] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models”, Advances
in Neural Information Processing Systems, vol. 32, 2019.

[84] J. Bolte, T. Le, E. Pauwels, and T. Silveti-Falls, “Nonsmooth implicit dif-
ferentiation for machine-learning and optimization”, Advances in Neural
Information Processing Systems, vol. 34, 2021.

[85] M. Blondel, Q. Berthet, M. Cuturi, et al., “Efficient and modular implicit
differentiation”, arXiv preprint arXiv:2105.15183, 2021.

[86] P. E. Farrell, D. A. Ham, S. W. Funke, and M. E. Rognes, “Automated
derivation of the adjoint of high-level transient finite element programs”,
SIAM Journal on Scientific Computing, vol. 35, no. 4, pp. C369–C393, 2013.

[87] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neural
networks: A survey”, IEEE Transactions on Neural networks, vol. 6, no. 5,
pp. 1212–1228, 1995.

[88] R.-E. Plessix, “A review of the adjoint-state method for computing the
gradient of a functional with geophysical applications”, Geophysical Journal
International, vol. 167, no. 2, pp. 495–503, 2006.

[89] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations”, Advances in neural information processing
systems, vol. 31, 2018.

[90] S. Mehmood and P. Ochs, “Automatic differentiation of some first-order
methods in parametric optimization”, in International Conference on Arti-
ficial Intelligence and Statistics, PMLR, 2020, pp. 1584–1594.

[91] Q. Bertrand, Q. Klopfenstein, M. Blondel, S. Vaiter, A. Gramfort, and J.
Salmon, “Implicit differentiation of lasso-type models for hyperparameter
optimization”, in International Conference on Machine Learning, PMLR,
2020, pp. 810–821.

[92] J. Lorraine, P. Vicol, and D. Duvenaud, “Optimizing millions of hyperpa-
rameters by implicit differentiation”, in International Conference on Arti-
ficial Intelligence and Statistics, PMLR, 2020, pp. 1540–1552.

https://doi.org/10.1038/323533a0
http://www.nature.com/articles/323533a0
http://www.nature.com/articles/323533a0

113

[93] S. Gratton, D. Titley-Peloquin, P. Toint, and J. T. Ilunga, “Differentiating
the method of conjugate gradients”, SIAM Journal on Matrix Analysis and
Applications, vol. 35, no. 1, pp. 110–126, 2014. doi: 10.1137/120889848.
eprint: https://doi.org/10.1137/120889848. [Online]. Available: https:
//doi.org/10.1137/120889848.

[94] P. Wolfe, “Checking the calculation of gradients”, ACM Transactions on
Mathematical Software (TOMS), vol. 8, no. 4, pp. 337–343, 1982.

[95] P. I. Barton, K. A. Khan, P. Stechlinski, and H. A. Watson, “Compu-
tationally relevant generalized derivatives: Theory, evaluation and appli-
cations”, Optimization Methods and Software, vol. 33, no. 4-6, pp. 1030–
1072, 2018. doi: 10.1080/10556788.2017.1374385. eprint: https://
doi.org/10.1080/10556788.2017.1374385. [Online]. Available: https:
//doi.org/10.1080/10556788.2017.1374385.

[96] A. Lewis and T. Tian, “The structure of conservative gradient fields”, arXiv
preprint arXiv:2101.00699, 2021.

[97] D. Davis and D. Drusvyatskiy, “Conservative and semismooth derivatives
are equivalent for semialgebraic maps”, arXiv preprint arXiv:2102.08484,
2021.

[98] A. Griewank, “On stable piecewise linearization and generalized algorithmic
differentiation”, Optimization Methods and Software, vol. 28, Jul. 2013. doi:
10.1080/10556788.2013.796683.

[99] A. Griewank and A. Rojas, “Treating artificial neural net training as a non-
smooth global optimization problem.”, In International Conference on Ma-
chine Learning, Optimization, and Data Science (pp. 759-770). Springer,
Cham., 2019.

[100] A. Griewank and A. Walther, “Beyond the oracle: Opportunities of piece-
wise differentiation.”, In Numerical Nonsmooth Optimization (pp. 331-361).
Springer, Cham., 2020.

[101] S. Scholtes, Introduction to piecewise differentiable equations. Springer Sci-
ence & Business Media, 2012.

[102] S. M. Kakade and J. D. Lee, “Provably correct automatic sub-differentiation
for qualified programs”, in Advances in Neural Information Processing Sys-
tems, vol. 31, Curran Associates, Inc., 2018.

[103] K. A. Khan and P. I. Barton, “Evaluating an element of the clarke gener-
alized jacobian of a piecewise differentiable function”, in Recent Advances
in Algorithmic Differentiation, Springer, 2012, pp. 115–125.

[104] K. A. Khan and P. I. Barton, “Evaluating an element of the clarke gen-
eralized jacobian of a composite piecewise differentiable function”, ACM
Transactions on Mathematical Software (TOMS), vol. 39, no. 4, pp. 1–28,
2013.

[105] K. A. Khan and P. I. Barton, “A vector forward mode of automatic differ-
entiation for generalized derivative evaluation”, Optimization Methods and
Software, vol. 30, no. 6, pp. 1185–1212, 2015.

https://doi.org/10.1137/120889848
https://doi.org/10.1137/120889848
https://doi.org/10.1137/120889848
https://doi.org/10.1137/120889848
https://doi.org/10.1080/10556788.2017.1374385
https://doi.org/10.1080/10556788.2017.1374385
https://doi.org/10.1080/10556788.2017.1374385
https://doi.org/10.1080/10556788.2017.1374385
https://doi.org/10.1080/10556788.2017.1374385
https://doi.org/10.1080/10556788.2013.796683

114

[106] Y. Nesterov, “Lexicographic differentiation of nonsmooth functions”, Math-
ematical programming, vol. 104, no. 2, pp. 669–700, 2005.

[107] F. H. Clarke, Optimization and nonsmooth analysis. SIAM, 1983.
[108] R. T. Rockafellar and R. J. B. Wets, Variational Analysis. 1998.
[109] R. T. Rockafellar and R. J.-B. Wets, Variational analysis. Springer Science

& Business Media, 2009, vol. 317.
[110] J. J. Moreau, “Fonctionnelles sous-différentiables”, Comptes rendus hebdo-

madaires des séances de l’Académie des sciences, vol. 257, pp. 4117–4119,
1963.

[111] V. Strassen et al., “Gaussian elimination is not optimal”, Numerische math-
ematik, vol. 13, no. 4, pp. 354–356, 1969.

[112] S. Robinson, “Toward an optimal algorithm for matrix multiplication”,
SIAM news, vol. 38, no. 9, pp. 1–3, 2005.

[113] V. V. Williams, “Multiplying matrices faster than coppersmith-winograd”,
in Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, 2012, pp. 887–898.

[114] F. Le Gall, “Powers of tensors and fast matrix multiplication”, in Proceed-
ings of the 39th international symposium on symbolic and algebraic compu-
tation, 2014, pp. 296–303.

[115] J. Alman and V. V. Williams, “A refined laser method and faster matrix
multiplication”, in Proceedings of the 2021 ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), SIAM, 2021, pp. 522–539.

[116] A. Shapiro, “On concepts of directional differentiability”, Journal of opti-
mization theory and applications, vol. 66, no. 3, pp. 477–487, 1990.

[117] K. A. Khan, “Branch-locking ad techniques for nonsmooth composite func-
tions and nonsmooth implicit functions”, Optimization Methods and Soft-
ware, vol. 33, no. 4-6, pp. 1127–1155, 2018.

[118] M. Coste, An introduction to o-minimal geometry. Istituti editoriali e poligrafici
internazionali Pisa, 2000.

[119] M. Coste, An introduction to semialgebraic geometry, 2000.
[120] J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry. Springer

Science & Business Media, 2013, vol. 36.
[121] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding deep

neural networks with rectified linear units”, in International Conference on
Learning Representations, Conference Track Proceedings, 2018.

[122] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, “On
the expressive power of deep neural networks”, in international conference
on machine learning, PMLR, 2017, pp. 2847–2854.

[123] A. Schrijver, Theory of linear and integer programming. John Wiley & Sons,
1998.

[124] D. Davis, D. Drusvyatskiy, S. Kakade, and J. D. Lee, “Stochastic subgradi-
ent method converges on tame functions.”, Foundations of Computational
Mathematics., 2018.

115

[125] K. Yamaguchi, K. Sakamoto, T. Akabane, and Y. Fujimoto, “A neural net-
work for speaker-independent isolated word recognition.”, in ICSLP, 1990.

[126] W. Lee, S. Park, and A. Aiken, On the correctness of automatic differen-
tiation for neural networks with machine-representable parameters, 2023.
arXiv: 2301.13370 [cs.LG].

[127] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors”, Nature, vol. 323, pp. 533–536, 1986.

[128] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural
Computation, vol. 9, pp. 1735–1780, 1997.

[129] J. Bolte, T. Le, E. Pauwels, and A. Silveti-Falls, “Nonsmooth implicit differ-
entiation for machine learning and optimization”, CoRR, vol. abs/2106.04350,
2021. arXiv: 2106.04350. [Online]. Available: https://arxiv.org/abs/
2106.04350.

[130] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification”, pp. 1026–1034,
2015.

[131] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition”, arXiv preprint arXiv:1409.1556, 2014.

[132] D. Bertoin, J. Bolte, S. Gerchinovitz, and E. Pauwels, Erratum: Numerical
influence of relu’(0) on backpropagation, 2023. arXiv: 2106.12915 [cs.LG].

[133] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading
digits in natural images with unsupervised feature learning”, vol. 2011, p. 5,
2011.

[134] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks”, Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4700–4708, 2017.

[135] X. Jia, S. Song, W. He, et al., “Highly scalable deep learning training system
with mixed-precision: Training imagenet in four minutes”, arXiv preprint
arXiv:1807.11205, 2018.

[136] T. Susnjak, T. R. McIntosh, A. L. Barczak, et al., “Over the edge of chaos?
excess complexity as a roadblock to artificial general intelligence”, arXiv
preprint arXiv:2407.03652, 2024.

[137] G. Varoquaux, A. S. Luccioni, and M. Whittaker, “Hype, sustainability, and
the price of the bigger-is-better paradigm in ai”, arXiv preprint arXiv:2409.14160,
2024.

[138] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai”, Commu-
nications of the ACM, vol. 63, no. 12, pp. 54–63, 2020.

[139] L. F. W. Anthony, B. Kanding, and R. Selvan, “Carbontracker: Tracking
and predicting the carbon footprint of training deep learning models”, arXiv
preprint arXiv:2007.03051, 2020.

[140] J. Achiam, S. Adler, S. Agarwal, et al., “Gpt-4 technical report”, arXiv
preprint arXiv:2303.08774, 2023.

https://arxiv.org/abs/2301.13370
https://arxiv.org/abs/2106.04350
https://arxiv.org/abs/2106.04350
https://arxiv.org/abs/2106.04350
https://arxiv.org/abs/2106.12915

116

[141] A. Chowdhery, S. Narang, J. Devlin, et al., “Palm: Scaling language model-
ing with pathways”, Journal of Machine Learning Research, vol. 24, no. 240,
pp. 1–113, 2023.

[142] L. Prechelt, “Early stopping-but when?”, in Neural Networks: Tricks of the
trade, Springer, 2002, pp. 55–69.

[143] Y. Bai, E. Yang, B. Han, et al., “Understanding and improving early stop-
ping for learning with noisy labels”, Advances in Neural Information Pro-
cessing Systems, vol. 34, pp. 24 392–24 403, 2021.

[144] L. Ljung, “Analysis of recursive stochastic algorithms”, IEEE transactions
on automatic control, vol. 22, no. 4, pp. 551–575, 1977.

[145] J. Harold, G. Kushner, and G. Yin, “Stochastic approximation and recursive
algorithm and applications”, Application of Mathematics, vol. 35, no. 10,
1997.

[146] M. Benaim, “Dynamics of stochastic approximation algorithms”, in Semi-
naire de probabilites XXXIII, Springer, 2006, pp. 1–68.

[147] V. S. Borkar and V. S. Borkar, Stochastic approximation: a dynamical sys-
tems viewpoint. Springer, 2008, vol. 9.

[148] H. Attouch, J. Peypouquet, and P. Redont, “Fast convex optimization via
inertial dynamics with hessian driven damping”, Journal of Differential
Equations, vol. 261, no. 10, pp. 5734–5783, 2016.

[149] J.-F. Aujol, C. Dossal, and A. Rondepierre, “Optimal convergence rates
for nesterov acceleration”, SIAM Journal on Optimization, vol. 29, no. 4,
pp. 3131–3153, 2019.

[150] A. Barakat and P. Bianchi, “Convergence and dynamical behavior of the
adam algorithm for nonconvex stochastic optimization”, SIAM Journal on
Optimization, vol. 31, no. 1, pp. 244–274, 2021.

[151] L. Chen, B. Liu, K. Liang, and Q. Liu, “Lion secretly solves constrained op-
timization: As lyapunov predicts”, arXiv preprint arXiv:2310.05898, 2023.

[152] F. Alvarez, H. Attouch, J. Bolte, and P. Redont, “A second-order gradient-
like dissipative dynamical system with hessian-driven damping.: Applica-
tion to optimization and mechanics”, Journal de mathématiques pures et
appliquées, vol. 81, no. 8, pp. 747–779, 2002.

[153] L. Chen and H. Luo, “First order optimization methods based on hessian-
driven nesterov accelerated gradient flow”, arXiv preprint arXiv:1912.09276,
2019.

[154] H. Attouch, Z. Chbani, J. Fadili, and H. Riahi, “First-order optimization
algorithms via inertial systems with hessian driven damping”, Mathematical
Programming, pp. 1–43, 2022.

[155] N. Qian, “On the momentum term in gradient descent learning algorithms”,
Neural networks, vol. 12, no. 1, pp. 145–151, 1999.

[156] W. Su, S. Boyd, and E. J. Candes, “A differential equation for modeling
nesterov’s accelerated gradient method: Theory and insights”, Journal of
Machine Learning Research, vol. 17, no. 153, pp. 1–43, 2016.

117

[157] H. Attouch, Z. Chbani, and H. Riahi, “Rate of convergence of the nes-
terov accelerated gradient method in the subcritical case α ≤ 3”, ESAIM:
Control, Optimisation and Calculus of Variations, vol. 25, p. 2, 2019.

[158] T. Dozat, “Incorporating nesterov momentum into adam”, 2016.
[159] N. Shazeer and M. Stern, “Adafactor: Adaptive learning rates with sublinear

memory cost”, in International Conference on Machine Learning, PMLR,
2018, pp. 4596–4604.

[160] Y. You, J. Li, S. Reddi, et al., “Large batch optimization for deep learning:
Training bert in 76 minutes”, arXiv preprint arXiv:1904.00962, 2019.

[161] M. Pagliardini, P. Ablin, and D. Grangier, “The ademamix optimizer: Bet-
ter, faster, older”, arXiv preprint arXiv:2409.03137, 2024.

[162] A. Defazio, H. Mehta, K. Mishchenko, A. Khaled, A. Cutkosky, et al., “The
road less scheduled”, arXiv preprint arXiv:2405.15682, 2024.

[163] V. Gupta, T. Koren, and Y. Singer, “Shampoo: Preconditioned stochastic
tensor optimization”, in International Conference on Machine Learning,
PMLR, 2018, pp. 1842–1850.

[164] M. Jahani, S. Rusakov, Z. Shi, P. Richtárik, M. W. Mahoney, and M. Takáč,
“Doubly adaptive scaled algorithm for machine learning using second-order
information”, arXiv preprint arXiv:2109.05198, 2021.

[165] X. Qian, R. Islamov, M. Safaryan, and P. Richtárik, “Basis matters: Bet-
ter communication-efficient second order methods for federated learning”,
arXiv preprint arXiv:2111.01847, 2021.

[166] A. Graves, “Generating sequences with recurrent neural networks”, arXiv
preprint arXiv:1308.0850, 2013.

[167] J. Chen, D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu, “Closing the
generalization gap of adaptive gradient methods in training deep neural
networks”, arXiv preprint arXiv:1806.06763, 2018.

[168] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou,
“Training data-efficient image transformers & distillation through atten-
tion”, in International conference on machine learning, PMLR, 2021, pp. 10 347–
10 357.

[169] K. Mishchenko and A. Defazio, “Prodigy: An expeditiously adaptive parameter-
free learner”, arXiv preprint arXiv:2306.06101, 2023.

[170] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learn-
ers”, Advances in neural information processing systems, vol. 33, pp. 1877–
1901, 2020.

[171] E. J. Hu, Y. Shen, P. Wallis, et al., “Lora: Low-rank adaptation of large
language models”, arXiv preprint arXiv:2106.09685, 2021.

[172] P. T. Sivaprasad, F. Mai, T. Vogels, M. Jaggi, and F. Fleuret, “Optimizer
benchmarking needs to account for hyperparameter tuning”, in Interna-
tional conference on machine learning, PMLR, 2020, pp. 9036–9045.

[173] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, Optuna: A next-
generation hyperparameter optimization framework, 2019. arXiv: 1907 .
10902 [cs.LG].

https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902

118

[174] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The marginal
value of adaptive gradient methods in machine learning”, Advances in neu-
ral information processing systems, vol. 30, 2017.

[175] J. Zhang, S. P. Karimireddy, A. Veit, et al., “Why are adaptive methods
good for attention models?”, Advances in Neural Information Processing
Systems, vol. 33, pp. 15 383–15 393, 2020.

[176] A. Defazio and K. Mishchenko, “Learning-rate-free learning by d-adaptation”,
in International Conference on Machine Learning, PMLR, 2023, pp. 7449–
7479.

[177] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Lan-
guage models are unsupervised multitask learners”, OpenAI blog, vol. 1,
no. 8, p. 9, 2019.

[178] S. Ruder, “An overview of gradient descent optimization algorithms”, arXiv
preprint arXiv:1609.04747, 2016.

[179] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving
language understanding by generative pre-training”, 2018.

[180] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, and M. Mahoney,
“Adahessian: An adaptive second order optimizer for machine learning”, in
proceedings of the AAAI conference on artificial intelligence, vol. 35, 2021,
pp. 10 665–10 673.

	Introduction
	Training nonsmooth neural networks
	Automatic differentation
	Numerical precision in deep learning
	Gradient-based optimization for deep learning
	Thesis outline and contributions

	On the complexity of nonsmooth automatic differentiation
	Introduction
	Preliminaries on nonsmooth optimization
	Nonsmooth calculus with conservative derivatives
	A cheap conservative gradient principle
	On the computational hardness of generalized gradients

	A Appendix of part1
	Further comments, discussion and technical elements
	Proofs related to Section 2.4.3
	Proofs of Section 2.5.1
	Proofs of Section 2.5.3

	On the numerical reliability of nonsmooth automatic differentiation
	Introduction
	Nonsmooth AD for MaxPool neural networks
	A new numerical bifurcation zone
	Experiments on learning

	B Appendix of part2
	Further comments, discussion, and technical elements
	Proof related to Section 3.2.3
	Complements on experiments

	A second-order-like optimizer with adaptive gradient scaling for deep learning
	Introduction
	INNAprop: a second-order method in space and time based on RMSProp
	Empirical evaluation of INNAprop

	C Appendix of part3
	A reminder on optimization algorithms
	Derivation of INNAprop from DIN
	Alternative discretizations
	Scheduler procedures
	Choosing hyperparameters and for INNAprop
	Additional experiments
	Experimental Setup

	Conclusion and perspectives

