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Abstract

We study the vectorial stationary Schrödinger equation −∆u+aU+b u = F, with a saturated
nonlinearity U = u/|u| and with some complex coefficients (a, b) ∈ C2. Besides the existence and
uniqueness of solutions for the Dirichlet and Neumann problems, we prove the compactness of
the support of the solution, under suitable conditions on (a, b) and even when the source in the
right hand side F (x) is not vanishing for large values of |x|. The proof of the compactness of the
support uses a local energy method, given the impossibility of applying the maximum principle.
We also consider the associate Schrödinger-Poisson system when coupling with a simple magnetic
field. Among other consequences, our results give a rigorous proof of the existence of “solitons
with compact support” claimed, without any proof, by several previous authors.
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1 Introduction

We study the vectorial stationary Schrödinger equation with a saturated nonlinearity
−∆u+ aU + b u = F, in H−1(Ω) + L∞(Ω),

U =
u

|u|
, almost everywhere in ω,

(1.1)

where (a, b) ∈ C2, ω =
{
x ∈ Ω;u(x) ̸= 0

}
and Ω is a subset of RN whose boundary is Γ, with

homogeneous Dirichlet boundary condition

u|Γ = 0, (1.2)

or with homogeneous Neumann boundary condition

∂u

∂ν |Γ
= 0. (1.3)

We point out the important difference between the structure of the “saturated nonlinearity” consid-

ered in this paper with respect to some related nonlinearities called by some authors as “saturable

nonlinearity” in which U is replaced by some regularized approximations as, for instance, function gn

below (see also the cases mentioned in the book by Agrawal and Kivshar [1]).

There are several different motivations to the study of such a coupled nonlinear system. The first

one is associated to the consideration of non-Kerr law optical Schrödinger equation with a saturated

nonlinearity arising, for instance, in nonlinear optical media (see, e.g. Agrawal, G. P. and Kivshar [1],

Biswas and Konar [13]) in which the saturated nonlinear term is understood in an approximated

framework

i
∂ψ

∂t
+∆ψ + a|ψ|−(1−m)ψ = f(t, x),

(notice that our interest here corresponds to the choice m = 0) and we search for “solitary wave

solutions” of the form ψ(t, x) = u(x)e−ibt (when f(t, x) = eibtF (x)). This type of equations also arises

in Quantum Mechanics and Hydrodynamics.

2



We mention that in a series of precedent papers ([9, 10]) we study the extinction in a finite

time property for the case of damped non-Kerr law optical Schrödinger equation with a saturated

nonlinearity. Here our interest has a complementary nature since we are concentrated in the spatial

behavior of solutions.

The different possible assumptions on the complex coefficients (a, b) ∈ C2 play a fundamental

structural framework in the study of the system. In order to better advertise this fact, it is useful to

rewrite the system in terms of the real components of solutions and datau = uR + iuI , F = FR + iFI ,

a = aR + iaI , b = bR + ibI .

Then, the sign of the components of coefficient a is especially crucial for understanding the different

nature of the coupled system
−∆uR + aR

uR√
u2
R+u2

I

− aI
uI√

u2
R+u2

I

+ bRuR − bIuI = FR,

−∆uI + aR
uI√

u2
R+u2

I

+ aI
uR√
u2
R+u2

I

+ bRuI + bIuR = FI .

Curiously enough, this kind of nonlinear coupled systems also arises (for different values of the

coefficients) in the study of systems of Schrödinger coupled equations with real coefficients: see, e.g.

Ambrosetti [2] and Maia, Montefusco and Pellacci [24] for the case of non-linear terms of saturable

type).

Systems of this type also arises in a very different setting: the study of compressed modes in Image

Processing (see, e.g. Ozolins, Lai, Caflisch and Osher [25], Choukroun, Shtern, Bronstein and Kim-

mel [17] and its many references) when the system is understood as the corresponding Euler-Lagrange

system associated to a variational functional involving the L1−norm of the vectorial unknown. This

last fact makes arise the presence of the saturated nonlinearity in the system of scalar equations.

Our study will deal also with the natural coupling of a Schrödinger equation with a magnetic field

in the spirit of many papers in the literature (see, Benci and Fortunato [11], Colin and Watanabe [18]

and their many references). As a matter of facts, we will consider merely the simpler case in which

the coupling is reduced to the so-called Schrödinger-Poisson system: looking for
(u, U, ϕ) ∈ H1(RN ) ∩ L1(RN )× L∞(RN )× D1,2(RN ;R),

U is a saturated section associated to u,

ϕ u ∈ L2(RN ) and ϕ ⩾ 0 in RN ,

(1.4)

solution to −∆u+ aU + b u+ e ϕ u = F, in H−1(RN ) + L∞(RN ),

−∆ϕ =
e

2
|u|2, in L2(RN ),

(1.5)
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where the gauge potential (A, ϕ) is reduced to the case A = 0 and the real coefficient e describes the

strength of the iteration playing an important role in the study of the system. Note that if e ⩽ 0 then

ϕ ⩽ 0 and eϕ ⩾ 0, and if e ⩾ 0 then ϕ ⩾ 0 and eϕ ⩾ 0 (see Remark 9.2 below). So without loss of

generality, we may assume that e ⩾ 0.

One of our main goals is to get sufficient conditions on the data implying that the corresponding

“solitary wave solution” u has a compact support when Ω is unbounded. One of the motivations to

consider this property comes from the fact that different authors claim the existence of solitary waves

with compact support (called sometimes as “solitons”) but no rigorous proof of this fact was given

until now (see, e.g., the many references collected in the monograph Biswas and Konar [13]). Here

we will prove that this kind of “solitons” exists in the presence of saturated non-linear terms, under

suitable conditions on the source term F.

This kind of results on solutions with compact support was initiated with the pioneering paper

by H. Brezis [14] who constructed suitable super and subsolutions with compact support for some

unilateral elliptic problems: the a priori unknown boundary of the support of the solution is a “free

boundary” of the problem. After that, the result was extended to many other equations for which

the maximum principle holds (see, e.g. the exposition made in [19]). The study of this property

for problems in which the maximum principle may fail was the main object of the monograph by

Antontsev, Dı́az and Shmarev [3] where different local energy methods were proposed to get such

type of qualitative properties. This approach was improved and applied to sublinear Schrödinger

equations in [6] and [7]. The adaptation of the energy methods to the case of parabolic problems

involving some possible multivalued nonlinear term was carried out in [19]. The approach we will

follow in this paper is different and simpler than the method used in [20]. One of the unexpected

facts we will prove, in comparison with the results obtained by the authors for suitable sublinear

Schrödinger equations, is that the compact support may hold even if the right hand side term F is

never zero in the whole domain Ω. As mentioned before, this case was considered by the authors

when dealing with a completely different property: the extinction of the solution in a finite time for

the evolution damped saturated Schrödinger equations, nevertheless the required assumptions on the

coefficients (a, b) ∈ C2 are not the same. Among many general cases, we will prove that the compact

support property can be satisfied in the case in which the coefficients of the real or the imaginary parts

of the unknown are not both of “pure absorption type” (case which corresponds to the assumptions

aR > 0, bR > 0 and aI = bI = 0) : see assumption (2.11) below. This also explain why the uniqueness

of solutions is a delicate subject requiring some suitable assumptions on (a, b) ∈ C2.

A very particular statement, dealing with the associated evolution Schrödinger nonlinear problem,

can be presented here as an application of Theorems 2.6, 2.8, and 5.1, and [10, Proposition2.6] below.

Theorem 1.1. Let λ ∈ {1, i,−i}, µ > 0 and F ∈ H−1(RN ). Assume that ∥F∥L∞(Kc) is small

4



enough for some compact subset K of RN . Let u0 ∈ H1(RN ) be the unique global weak solution (see

Definition 2.1 below) to

−∆u0 + µu0 + λ
u0
|u0|

= −F, in H−1(RN ) + L∞(RN ).

For (t, x) ∈ R× RN , set u(t, x) = u0(x)e
iµt. Then, u ∈ C∞(R;H1(RN )) is a solution to

i
∂u

∂t
+∆u = λ

u

|u|
+ F (x)eiµt, in R× RN ,

u(0) = u0, in RN .

Furthermore, suppu(t) = suppu0 is compact, for any t ∈ R. Finally, if λ = −i and F ∈ L2(RN ) then

the solution u is unique.

The organization of this paper is as follows: below, we present a short collection of the notations

used in the paper. The statements on the existence and uniqueness of solutions is given in Section 2

under suitable assumptions on the complex coefficients (a, b) ∈ C2 which are geometrically represented

in Section 3 for the reader convenience. The statemets of the results on the compactness of the

support of the solution is offered in Section 5, after a previous section (Section 4) devoted to the

presentation of some crucial inequalities which will be used in the energy method used in this paper.

Section 6 contains the proofs of the existence and uniqueness of solutions while the proofs of the

spatial localization inequalities and the statements on solutions compactly supported are given in

Sections 7 and 8, respectively. Finally, the Schrödinger-Poisson system is considered in Section 9

where the compactness of the support of the component u is proved under suitable conditions on the

data.

For a complex number z, we denote by z, Re(z) and Im(z), its conjugate, real and imaginary part,

respectively, and i2 = −1. For p ∈ [1,∞], p′ is the conjugate of p defined by 1
p + 1

p′ = 1. Let Ω be

an open subset of RN . Unless specified, all functions are complex-valued (H1(Ω)
def
= H1(Ω;C), etc)

and all the vector spaces are considered over the field R. For a (real) Banach space X, we denote by

X⋆ def
= L (X;R) its topological dual and by ⟨ . , . ⟩X⋆,X ∈ R the X⋆ − X duality product. When

X (respectively, X⋆) is endowed of the weak topology σ(X,X⋆) (respectively, the weak⋆ topology

σ(X⋆, X)), it is denoted by Xw (respectively, by Xw⋆). Auxiliary positive constants will be denoted

by C and may change from a line to another one. Also for positive parameters a1, . . . , an, we shall

write C(a1, . . . , an) to indicate that the constant C depends only and continuously on a1, . . . , an. If

X and E are two Banach spaces then X ↪→ E means that X ⊂ E and that the identity function

i : X −→ E is (injective and) continuous. If A is a subset of RN then Ac denotes its complement,

and A \B = A ∩Bc.

Let us recall some well-known results that we shall often use without referring to them. The first
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one may be proved with Egorov’ Theorem (see also Strauss [26]). Let Ω be an open subset of RN ,

u ∈ CΩ, 1 < p ⩽ ∞, and let (un)n∈N ⊂ Lp(Ω) be bounded. If un
a.e. in Ω−−−−−→
n→∞

u then u ∈ Lp(Ω) and

un
Lq(Ω′)−−−−→
n→∞

u, for any 1 ⩽ q < p and subset Ω′ ⊆ Ω of finite measure. In addition, un
Lp(Ω)w
−−−−−⇀

n→∞
u, if

p <∞, and un
L∞(Ω)w⋆

−−−−−−−⇀
n→∞

u, if p = ∞. The second one comes from results for the weak topology, the

Rellich-Kondrachov Theorem and a classical result of integration (H. Brezis [15, Theorem 4.9, p.94]).

Let (un)n∈N ⊂ H1
0 (Ω) be bounded. Then there exists u ∈ H1

0 (Ω) such that, up to a subsequence,

un
H1

0 (Ω)w
−−−−−−⇀

n→∞
u, un

L2
loc(Ω)−−−−−→
n→∞

u, and un
a.e. in Ω−−−−−→
n→∞

u. There is a similar statement in H1(Ω). The third

result is the following. If X and E are two Banach spaces such that X ↪→ E with dense embedding

then E⋆ ↪→ X⋆, and

∀F ∈ E⋆, ∀u ∈ X, ⟨F, u⟩X⋆,X = ⟨F, u⟩E⋆,E .

By the Riesz representation Theorem, we have for any p ∈ [1,∞),

∀F ∈ Lp′
(Ω), ∀u ∈ Lp(Ω), ⟨F, u⟩Lp′ (Ω),Lp(Ω) = Re

∫
Ω

F (x)u(x)dx.

In particular, this implies that we shall always identify L2(Ω) with its topological dual. Finally, if A1

and A2 are two Banach spaces such that A1, A2 ⊂ H for some Hausdorff topological vector space H,
and if A1∩A2 is dense in both A1 and A2 then A1∩A2 and A1+A2 are Banach spaces, whose norms

are

∥a∥A1∩A2 = max
{
∥a∥A1 , ∥a∥A2

}
and ∥a∥A1+A2 = inf{

a=a1+a2

(a1,a2)∈A1×A2

(
∥a1∥A1 + ∥a2∥A2

)
,

respectively, and
(
A1 ∩A2

)⋆
= A⋆

1 +A⋆
2. This justifies the identity (2.7) below. For more details, see

Trèves [27], Bergh and Löfström [12], and [5].

We end our reminders by the space D1,2(RN ), with N ⩾ 3. Setting |u|2 = ∥∇u∥L2(RN ), we have that

D1,2(RN )
def
= D(RN )

| . |2
, D1,2(RN ) is a reflexive separable Banach space, the embedding D1,2(RN ) ↪→

L2
loc(RN ) is compact, and

D1,2(RN ) =
{
u ∈ L

2N
N−2 (RN );∇u ∈ L2(RN ;CN )

}
.

Finally, there exists C = C(N) such that for any u ∈ D1,2(RN ;R), ∥u∥
L

2N
N−2 (RN )

⩽ C∥∇u∥L2(RN ). For

more details on these spaces, see for instance Galdi [22, Chapter II] (Sections II.6–II.10), and Lieb

and Loss [23] (Theorem 8.6, p.208, and Corollary 8.7, p.212).
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2 Existence and uniqueness

Definition 2.1. Let Ω ⊆ RN be an open subset, (a, b) ∈ C2, and

ϕ ∈ L∞(Ω) + Lpϕ(Ω), where (2.1)

pϕ =


2, if N = 1,

2 + κ, for some κ > 0, if N = 2,

N, if N ⩾ 3.

(2.2)

Although not necessary in this definition, it will sometimes be convenient to assume that ϕ verifies

ϕ : Ω −→ R and ϕ ⩾ 0, a.e. in Ω. (2.3)

1. Let u ∈ L1
loc(Ω). A function U is said to be a saturated section associated to u if it satisfies

U ∈ L∞(Ω) and ∥U∥L∞(Ω) ⩽ 1, (2.4)

U =
u

|u|
, almost everywhere in ω, (2.5)

where ω =
{
x ∈ Ω;u(x) ̸= 0

}
.

2. Let F ∈ H−1(Ω) + L∞(Ω). We shall say that a function u is a global weak solution to

−∆u+ aU + b u+ ϕu = F, in H−1(Ω) + L∞(Ω), (2.6)

with boundary condition (1.2), if u ∈ H1
0 (Ω) ∩ L1(Ω), U is a saturated section associated to u,

and if

⟨∇u,∇v⟩L2(Ω),L2(Ω) + ⟨aU, v⟩L∞(Ω),L1(Ω) + ⟨b u, v⟩L2(Ω),L2(Ω)

+ ⟨ϕu, v⟩L2(Ω),L2(Ω) = ⟨F, v⟩X⋆,X , (2.7)

for any v ∈ H1
0 (Ω) ∩ L1(Ω), where X = H1

0 (Ω) ∩ L1(Ω).

3. Assume that Ω has a finite measure and a Lipschitz continuous boundary. Let F ∈ H1(Ω)⋆.

We shall say that a function u is a global weak solution to (2.6) with boundary condition (1.3)

if u ∈ H1(Ω), U is a saturated section associated to u, and if (u, U, ϕ) satisfies (2.7) for any

v ∈ H1(Ω), where X = H1(Ω).

Sometimes, we shall write (u, U) or (u, U, ϕ) to designate a solution with the obvious meanings.

Remark 2.2. Let ϕ = ϕ1 + ϕ2 ∈ L∞(Ω) + Lpϕ(Ω), where pϕ is given by (2.2). If u ∈ H1
0 (Ω) (or if

u ∈ H1(Ω) and Ω has a Lipschitz continuous boundary) then it follows from Hölder’s inequality and

Sobolev’ embedding that,

∥ϕu∥L2(Ω) ⩽ ∥ϕ1∥L∞(Ω)∥u∥L2(Ω) + C∥ϕ2∥Lpϕ (Ω)∥u∥H1
0 (Ω),

7



from which we deduce,

∥ϕu∥L2(Ω) ⩽ C∥ϕ∥L∞(Ω)+Lpϕ (Ω)∥u∥H1
0 (Ω), (2.8)

where C = C(N,κ). It follows that the L2 − L2 duality product in (2.7) involving ϕu makes sense,

and we have

|⟨ϕu, v⟩L2(Ω),L2(Ω)| ⩽ C∥ϕ∥L∞(Ω)+Lpϕ (Ω)∥u∥H1
0 (Ω)∥v∥L2(Ω), (2.9)

for any v ∈ L2(Ω), where C = C(N,κ).

Convention 2.3. Throughout this paper, Ω denotes any open subset of RN , and (a, b) is a pair of

complex numbers. When a function will be said to satisfy the boundary condition (1.3), it will always

be assumed that Ω has a finite measure and a Lipschitz continuous boundary.

Let,

A = C \
{
z ∈ C; Re(z) ⩽ 0 and Im(z) = 0

}
, (2.10)

(a, b) ∈ A× A and


Im(a)Im(b) ⩾ 0,

or

Im(a)Im(b) < 0 and Re(b) >
Im(b)

Im(a)
Re(a).

(2.11)

Theorem 2.4 (Null solution). Let (a, b) satisfy (2.11), with eventually b = 0, let ϕ satisfy (2.1)–

(2.3), and let F ∈ L∞(Ω) with ∥F∥L∞(Ω) ⩽ |a|. Then there exists M = M(|a|, |b|) such that if

∥F∥L∞(Ω) ⩽
1
M the unique global weak solution (u, U) to (2.6) with boundary condition (1.2) or (1.3)

is given by,

u = 0 and U =
1

a
F, (2.12)

almost everywhere in Ω.

Remark 2.5. Let (u, U) be defined by (2.12). It is easy to check that if ∥F∥L∞(Ω) ⩽ |a| then (u, U)

is always a solution. If ∥F∥L∞(Ω) > |a| or if F /∈ L∞(Ω) then (u, U) is never a solution, in the

sense of Definition 2.1. Indeed, U does not satisfies (2.4). This is trivially obtained by the identity

∥U∥L∞(Ω) =
1
|a|∥F∥L∞(Ω).

Theorem 2.6 (Existence). Let (a, b) satisfy (2.11), and let ϕ satisfy (2.1)–(2.3). Then, for any

F ∈ H−1(Ω) (respectively, F ∈ H1(Ω)⋆), there exists at least one global weak solution to (2.6) with

boundary condition (1.2) (respectively, (1.3)). In addition, Symmetry Property 2.7 below holds.
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Symmetry Property 2.7. If, furthermore, there exists R ∈ SON (R) such that for almost every

x ∈ Ω, Rx ∈ Ω, F (Rx) = F (x) and ϕ(Rx) = ϕ(x) then we may construct a solution u which also

satisfies u(Rx) = u(x), for almost every x ∈ Ω. When N = 1, if Ω is symmetric with respect to the

origin and if F and ϕ are odd functions then u is also an odd function.

Here and in what follows, SON (R) denotes the special orthogonal group of RN .

Theorem 2.8 (Uniqueness). Let ϕ satisfy (2.1)–(2.2), and let (a, b) ∈ C2 be such that a ̸= 0,

Re(a) ⩾ 0 and Re(ab) + Re(aϕ) ⩾ 0, a.e. in Ω. If Re(ab) + Re(aϕ) = 0, on a set of positive measure,

then assume further that one of the three following conditions is satisfied.

1. Re(b) + Re(ϕ) > 0, a.e. in Ω.

2. Im(b) + Im(ϕ) > 0, a.e. in Ω.

3. Im(b) + Im(ϕ) < 0, a.e. in Ω.

If F ∈ H−1(Ω) + L∞(Ω) (respectively, F ∈ H1(Ω)⋆) and if (u1, U1) and (u2, U2) are two global weak

solutions to (2.6) with boundary condition (1.2) (respectively, (1.3)) then u1 = u2 and U1 = U2.

Remark 2.9. Assume that ϕ = 0. Then the assumptions simply become a ̸= 0, Re(a) ⩾ 0, Re(ab) ⩾ 0

and b ∈ A. Note that in any case, a ∈ A. In [8], the authors study, among others, −∆u+a|u|−(1−m)u+

bu = F, with 0 < m < 1. Uniqueness is ensured if a ̸= 0, Re(a) ⩾ 0 and Re(ab) ⩾ 0 ([8, Theorem 2.10]).

Here, the equation we study corresponds to m = 0, and we have to add an assumption to b, namely

b ∈ A. This is due to the fact that the nonlinearity |u|−(1−m)u becomes u
|u| , whose the behavior near

0 is unknown.

Theorem 2.10 (A priori bound). Let (a, b) satisfy (2.11), let ϕ satisfy (2.1)–(2.3), and let F ∈
H−1(Ω) (respectively, F ∈ H1(Ω)⋆). Then there exists M = M(|a|, |b|) such that any global weak

solution u to (2.6) with boundary condition (1.2) (respectively, (1.3)) satisfies

∥u∥2X + ∥u∥L1(Ω) +

∫
Ω

ϕ|u|2dx ⩽M∥F∥2X⋆ , (2.13)

where X = H1
0 (Ω) (respectively, X = H1(Ω)).

3 Geometric interpretation of existence and uniqueness of
complex parameters

Existence. Throughout this paper, the existence of a solution of the equations we study is ensured if

(a, b) satisfies (2.11) (Theorem 2.6). Seeing the complex numbers a and b as points in the Euclidean

plane, the geometric representation of this condition is the following: [a, b] ∩ A = ∅, where A is the
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geometric representation of Ac : the half red line where Re(z) ⩽ 0 and Im(z) = 0. See Figures 1 and

2 below.

Re(z)

Im(z)

0

a

Re(z)=
Re(a)
Im(a)

Im(z)

Admissible values for b with respect to a

Forbidden values for b with respect to a

Figure 1: Existence with Im(a) ̸= 0

Re(z)

Im(z)

0

a

Admissible values for b with respect to a

Forbidden values for b with respect to a

Figure 2: Existence with Re(a) = 0

Uniqueness. Assume ab ̸= 0 and ϕ = 0. Uniqueness is ensured if Re(a) ⩾ 0, Re(ab) ⩾ 0 and b ∈ A

(Theorem 2.8 and Remark 2.9). Now, let us see a complex number z as a vector of the Euclidean

plane: −→z =

(
Re(z)
Im(z)

)
. It follows that Re

(
ab
)
= −→a .

−→
b ⩾ 0 (here, . denotes the scalar product

between two vectors) means that
∣∣∣∠(−→a ,−→b )∣∣∣ ⩽ π

2
rad (see Figures 3 and 4 below).
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Re(z)

Im(z)

0

a

Re(az)=0

Admissible values for b with respect to a

Forbidden values for b with respect to a

Figure 3: Uniqueness with Re(a) > 0

Re(z)

Im(z)

0

a

Admissible values for b with respect to a

Forbidden values for b with respect to a

Figure 4: Uniqueness with Re(a) = 0

4 Inequalities for spatial localization

In this section and in what follows, r+ = max{0, r} denotes the positive part of the real number r. For

x0 ∈ RN and r > 0, B(x0, r) is the open ball of RN of center x0 and radius r, S(x0, r) is its boundary,

and B(x0, r) is its closure. Finally, σ is the surface measure on a sphere.

Theorem 4.1. Let N ∈ N, x0 ∈ RN , ρ0 > 0 and u ∈ H1
(
B(x0, ρ0)

)
. There exists C = C(N) such

that, if u satisfies the inequality

∥∇u∥2L2(B(x0,ρ))
+ ∥u∥L1(B(x0,ρ)) ⩽M

∣∣∣∣∣
∫
S(x0,ρ)

u∇u. x− x0
|x− x0|

dσ

∣∣∣∣∣ , (4.1)

for almost every ρ ∈ (0, ρ0) and for some M > 0, then u = 0, almost everywhere in B(x0, ρmax),

where

ρN+2
max =

(
ρN+2
0 − CM2 max

{
ρN+1
0 , 1

}
min

τ∈( 1
2 ,1]

{
E(ρ0)

γ(τ) max{b(ρ0)µ(τ), b(ρ0)1−γ(τ)}
2τ − 1

})
+

, (4.2)

and where,

E(ρ0) = ∥∇u∥2L2(B(x0,ρ0))
, b(ρ0) = ∥u∥L1(B(x0,ρ0)),

γ(τ) =
2τ − 1

N + 2
, µ(τ) =

2(1− τ)

N + 2
,

for any τ ∈
(
1
2 , 1
]
.
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Below, we give a sufficient condition which ensures that ρmax = ρ0.

Theorem 4.2. Let M > 0, L > 0, ρ1 > ρ0 > 0, F ∈ L2
(
B(x0, ρ1)

)
and u ∈ H1

(
B(x0, ρ1)

)
. Assume

that for almost every ρ ∈ (0, ρ1),

∥u∥2H1(B(x0,ρ))
+ ∥u∥L1(B(x0,ρ)) ⩽M

(∣∣∣∣∣
∫
S(x0,ρ)

u∇u. x− x0
|x− x0|

dσ

∣∣∣∣∣+
∫
B(x0,ρ)

|F (x)u(x)|dx

)
. (4.3)

Then, there exist E⋆ = E⋆(M,L,N, ρ1, ρ0) and ε⋆ = ε⋆(M,L,N, ρ0, ρ1) such that if ∥u∥L1(B(x0,ρ1)) ⩽

L, ∥∇u∥2L2(B(x0,ρ1))
⩽ E⋆ and if

∥F∥2L2(B(x0,ρ))
⩽ ε⋆

(
(ρ− ρ0)+

)N+2
, (4.4)

for any ρ ∈ (0, ρ1), then u = 0, almost everywhere in B(x0, ρ0).

5 Solutions compactly supported

Throughout this section, we assume that (a, b) and ϕ satisfy (2.11) and (2.1)–(2.3), respectively.

Theorem 5.1. Let F ∈ H−1(RN ), and let u ∈ H1(RN ) ∩ L1(RN ) be any global weak solution

to (2.6). There exists M = M(|a|, |b|) such that if there exists a compact subset K of RN such that

F|Kc ∈ L∞(Kc) and ∥F∥L∞(Kc) ⩽
1
M , then suppu is compact.

Theorem 5.2. Let K ⊂ Ω be any compact subset of RN . Let F ∈ H−1(Ω) be such that F|Ω\K ∈
L∞(Ω\K) and let u be any global weak solution to (2.6) with boundary condition (1.2). Then there exist

M =M(|a|, |b|) and ε⋆ = ε⋆(dist(K,Γ)) such that, for any ε ∈ (0, ε⋆), there exists δ = δ(ε, |a|, |b|, N)

satisfying that if ∥F∥H−1(Ω) < δ and ∥F∥L∞(Ω\K) ⩽
1
M then suppu ⊂ K(ε) ⊂ Ω, where

K(ε) =
{
x ∈ RN ; dist(x,K) ⩽ ε

}
. (5.1)

A similar statement holds for the boundary condition (1.3).

Remark 5.3. Here are some comments about Theorems 5.1–5.2.

1. The solutions involved exist with help of Theorem 2.6.

2. By Theorem 2.4, if ∥F∥L∞(Ω) is small enough then the solution is u = 0, in Ω, and the above

theorems do not give any new information. On the other hand, if F|K /∈ L∞(K) or if ∥F∥L∞(K)

is large enough then u = 0, over Ω, can not be a solution (Remark 2.5). It follows that the

above results provide an additional qualitative property about the solutions.
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6 Existence and uniqueness: the proofs

Let (a, b) satisfy (2.11), with eventually b = 0, and let ϕ satisfy (2.1)–(2.3). Let u be a global weak

solution to (2.6) with boundary condition (1.2) or (1.3), with F ∈ Y ⋆. Here, Y = H1
0 (Ω) ∩ L1(Ω), if

u satisfies (1.2), and Y = H1(Ω), if u satisfies (1.3). Choosing u and iu as test functions, we obtain

∥∇u∥2L2(Ω) +Re(a)∥u∥L1(Ω) +Re(b)∥u∥2L2(Ω) +

∫
Ω

ϕ|u|2dx = ⟨F, u⟩Y ⋆,Y , (6.1)

Im(a)∥u∥L1(Ω) + Im(b)∥u∥2L2(Ω) = ⟨F, iu⟩Y ⋆,Y . (6.2)

Now, let us prove Theorems 2.4 and 2.10.

Proof of Theorem 2.4. Let F ∈ L∞(Ω) with ∥F∥L∞(Ω) ⩽ |a|. Then, the pair (u, U) given by (2.12)

is obviously a solution (Remark 2.5). Now, assume that (u, U) is a global weak solution to (2.6) with

boundary condition (1.2) or (1.3), and with b ̸= 0. Using the dense embedding Y ↪→ L1(Ω) (where Y

is defined as above), an appeal to [8, Lemma 4.5] (applied with C1 = ∥∇u∥2L2(Ω) +
∫
Ω
ϕ|u|2dx), and

Hölder’s inequality yield to

∥u∥2H1(Ω) + ∥u∥L1(Ω) +

∫
Ω

ϕ|u|2dx ⩽M∥F∥L∞(Ω)∥u∥L1(Ω),

for some M =M(|a|, |b|). It follows that if ∥F∥L∞(Ω) ⩽
1
M then

∥u∥2H1(Ω) + ∥u∥L1(Ω) ⩽ ∥u∥L1(Ω).

Therefore, then u = 0, a.e. in Ω. From (2.6), we get that aU = F, a.e. in Ω. Now, assume that b = 0.

If Re(a) > 0 then we only deal with (6.1). If Re(a) < 0 then Im(a) ̸= 0 and so we multiply (6.2) by
|Re(a)|+1

Im(a) and add the result to (6.1). In both cases, we apply Hölder’s inequality and arrive at

∥∇u∥2L2(Ω) + ∥u∥L1(Ω) +

∫
Ω

ϕ|u|2dx ⩽M∥F∥L∞(Ω)∥u∥L1(Ω),

for some M =M(|a|). The result follows by taking ∥F∥L∞(Ω) ⩽
1

2M .

Proof of Theorem 2.10. Let the assumptions of the theorem be fulfilled. Let Y be at the beginning

of this section, and let X = H1
0 (Ω), if u satisfies (1.2), and X = Y = H1(Ω), if u satisfies (1.3). By

the dense embedding Y ↪→ X, we have by (6.1)–(6.2) and [8, Lemma 4.5] that,

∥u∥2X + ∥u∥L1(Ω) +

∫
Ω

ϕ|u|2dx ⩽M1∥F∥X⋆∥u∥X , (6.3)

for some M1 =M1(|a|, |b|). Applying Young’s inequality, the result follows.

From now and until the end of this section, we assume that (a, b) ∈ C2, and ϕ satisfies (2.1)–(2.2).

Let δ ∈ [0, 1], and let for n ∈ N and u ∈ L2(Ω),

gn(u) =


u

|u|+ (n− |u|) 1
n2

, if |u| ⩽ n,

u

|u|
, if |u| > n,

(6.4)
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hn(u) =


u, if |u| ⩽ n,

n
u

|u|
, if |u| > n,

(6.5)

fn = agn(u) + (b− δ + ϕ)hn(u). (6.6)

Let u, v ∈ H1
0 (Ω). Since ϕhn(u), ϕv ∈ L2(Ω), we have by Remark 2.2 that,

⟨ϕhn(u), v⟩H−1,H1
0
= ⟨hn(u), ϕv⟩L2,L2 ⩽ C∥hn(u)∥L2∥ϕ∥L∞+Lpϕ∥v∥H1

0
.

We then infer that for any u ∈ H1
0 (Ω),

∥ϕhn(u)∥H−1(Ω) ⩽ C∥hn(u)∥L2(Ω)∥ϕ∥L∞(Ω)+Lpϕ (Ω), (6.7)

where C = C(N,κ). If Ω has a Lipschitz continuous boundary then the same is true with H1(Ω)

instead of H1
0 (Ω).

Lemma 6.1. Let (Un)n∈N ⊂ L∞(Ω), U ∈ L∞(Ω) and u ∈ L1
loc(Ω). We define ω =

{
x ∈ Ω;u(x) ̸= 0

}
.

If Un −−−−⇀
n→∞

U in L∞(Ω)w⋆ and Un
a.e. in ω−−−−−→
n→∞

u
|u| then U = u

|u| , almost everywhere in ω.

Proof. Set for each k ∈ N, ωk = ω ∩ B(0, k). It follows from the dominated convergence Theorem

that Un|ωk

L1(ωk)−−−−→
n→∞

u
|u| |ωk

. Let k ∈ N and h ∈ L∞(Ω) ∩ L1(Ω) be defined by,

h =

{
u
|u| − U, in ωk,

0, in Ω \ ωk.

We have by Hölder’s inequality that for any n ∈ N,∫
ωk

∣∣∣∣ u|u| − U

∣∣∣∣2 dx
= Re

∫
ωk

(
u

|u|
− Un

)
hdx+Re

∫
Ω

(Un − U)hdx

⩽ ∥h∥L∞(Ω)

∥∥∥∥Un − u

|u|

∥∥∥∥
L1(ωk)

+ ⟨Un − U, h⟩L∞(Ω),L1(Ω).

Passing to the limit as n −→ ∞, we get that U = u
|u| , a.e. in ωk, for any k ∈ N, from which the result

follows.

Lemma 6.2. Let us consider the following equation.

−∆un + δun + fn(un) = F. (6.8)
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Let F ∈ H−1(Ω)+L∞(Ω). Assume that for each n ∈ N, there exists a global weak solution un to (6.8)

with boundary condition (1.2). If (un)n∈N is bounded in H1
0 (Ω) and if(

|un|2

|un|+ (n− |un|) 1
n2

1{|un|⩽n}

)
n∈N

is bounded in L1(Ω), (6.9)

then, up to a subsequence,

un
H1

0 (Ω)w
−−−−−−⇀

n→∞
u and gn(un)

L∞(Ω)w⋆

−−−−−−−⇀
n→∞

U,

where (u, U) is a global weak solution to u to (2.6) and (1.2). Finally, Symmetry Property 2.7 holds.

Proof. Let (un)n∈N ⊂ H1
0 (Ω)∩L1(Ω) be a bounded sequence of solutions to (6.8) and (1.2). We note

that for any n ∈ N, ∥gn(un)∥L∞(Ω) ⩽ 1. It follows that there exist a subsequence, that we still denote

by (un)n∈N, u ∈ H1
0 (Ω), and U ∈ L∞(Ω) satisfying (2.4) such that un

H1
0 (Ω)w

−−−−−−⇀
n→∞

u, un
L2

loc(Ω)−−−−−→
n→∞

u,

gn(un)
L∞(Ω)w⋆

−−−−−−−⇀
n→∞

U, and un
a.e. in Ω−−−−−→
n→∞

u. By the almost pointwise convergence of (un)n∈N, (6.9),

Fatou’s Lemma and the local compactness, we deduce that Symmetry Property 2.7 holds, u ∈ L1(Ω),

gn(un)
a.e. in ω−−−−−→
n→∞

u
|u| , where ω =

{
x ∈ Ω;u(x) ̸= 0

}
, and hn(un)

L2
loc(Ω)−−−−−→
n→∞

u. It follows from the

weak⋆ convergence of (gn(un))n∈N and Lemma 6.1 that U is a saturated section associated to u. Since

|hn(u)| ⩽ |un|, we have by (2.8) and the almost pointwise convergence of (un)n∈N that ϕhn(un)
L2(Ω)w−−−−→
n→∞

ϕu. Let v ∈ H1
0 (Ω) ∩ L1(Ω). We have by (6.8) that for any n ∈ N,

⟨∇un,∇v⟩L2(Ω),L2(Ω) + ⟨δ⋆un, v⟩L2(Ω),L2(Ω) + ⟨agn(un), v⟩L∞(Ω),L1(Ω)

+ ⟨(b− δ⋆ + ϕ)hn(un), v⟩L2(Ω),L2(Ω) = ⟨F, v⟩H−1(Ω),H1
0 (Ω). (6.10)

We use the above convergences to pass to the limit in (6.10). We get that u satisfies (2.7) for any

v ∈ H1
0 (Ω) ∩ L1(Ω), so that u is a solution to (2.6) and (1.2). This concludes the proof.

A trivial adaptation of the above proof gives the following result about the homogeneous Neumann

boundary condition. The details are left to the reader.

Lemma 6.3. Let F ∈ H1(Ω)⋆. Assume that for each n ∈ N, there exists a global weak solution un

to (6.8) with boundary condition (1.3). If (un)n∈N is bounded in H1(Ω) then, up to a subsequence,

un
H1(Ω)w

−−−−−−⇀
n→∞

u and gn(un)
L∞(Ω)w⋆

−−−−−−−⇀
n→∞

U,

where (u, U) is a global weak solution to u to (2.6) and (1.3). Finally, Symmetry Property 2.7 holds.

Lemma 6.4. Let n ∈ N. Then, fn : H1
0 (Ω)w −→ L2(Ω)w is weakly-weakly continuous, namely,

if uℓ
H1

0 (Ω)w
−−−−−−⇀

ℓ→∞
u then fn(uℓ)

L2(Ω)w
−−−−−−⇀

ℓ→∞
fn(u). If Ω has a Lipschitz continuous boundary then fn :

H1(Ω)w −→ L2(Ω)w is weakly-weakly continuous.
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Proof. Let n ∈ N. Let uℓ
H1

0 (Ω)w
−−−−−−⇀

ℓ→∞
u. Then, uℓ

L2
loc(Ω)−−−−−→
ℓ→∞

u, and uℓk
a.e. in Ω−−−−−→
k→∞

u, for a subsequence

(uℓk)k∈N ⊂ (un)n∈N. We then have,

fn(uℓk)
a.e. in Ω−−−−−→
k→∞

fn(u),

and by (2.8), (fn(uℓ))ℓ∈N is bounded in L2(Ω). It follows that fn(uℓk)
L2(Ω)w

−−−−−−⇀
k→∞

fn(u). The limit being

necessarily fn(u), we infer that fn(uℓ)
L2(Ω)w

−−−−−−⇀
ℓ→∞

fn(u), for the whole sequence, which is the desired

result. If Ω has a Lipschitz continuous boundary then the above proof applies with H1(Ω) in place of

H1
0 (Ω).

Lemma 6.5. Assume that |Ω| < ∞. Then for any n ∈ N, δ ∈ [0, 1] and F ∈ H−1(Ω) (respectively,

δ ∈ (0, 1] and F ∈ H1(Ω)⋆), there exists a global weak solution un ∈ H1
0 (Ω) to (6.8) with boundary

condition (1.2) (respectively, un ∈ H1(Ω) to (6.8) with boundary condition(1.3)). Finally, Symmetry

Property 2.7 holds.

Proof. We begin with the boundary condition (1.3). By Lax-Milgram’s Theorem, we know that for

any G ∈ H1(Ω)⋆, there exists a unique solution u ∈ H1(Ω) to −∆u + δu = G which satisfies (1.3).

Moreover, there exists α > 0 such that for any G ∈ H1(Ω)⋆,
∥∥(−∆+ δI)−1G

∥∥
H1(Ω)

⩽ α∥G∥H1(Ω)⋆ .

Finally, Symmetry Property 2.7 holds. Let n ∈ N. Set Fn = F − fn, and let us consider the following

mapping Tn of H1(Ω) as follows. Set

Tn : H1(Ω)
Fn−−→ H1(Ω)⋆

(−∆+δI)−1

−−−−−−−→ H1(Ω),

u 7−→ Fn(u) 7−→ (−∆+ δI)−1(Fn)(u).

Let ρn = 2αn|Ω| 12 (|a|+ |b|+ 1 + C∥ϕ∥L∞+Lpϕ ) + α∥F∥H1(Ω)⋆ , where C is given by (6.7). It follows

from (6.7) that for any u ∈ H1(Ω),

∥Tn(u)∥H1(Ω) =
∥∥(−∆+ δI)−1(Fn)(u)

∥∥
H1(Ω)

⩽ α∥Fn(u)∥H1(Ω)⋆ ⩽ ρn.

Then,

Tn(BH1(Ω)(0, ρn)) ⊂ BH1(Ω)(0, ρn), (6.11)

BH1(Ω)(0, ρn) is a weakly compact subset of H1(Ω)w. (6.12)

With help of Lemma 6.4, we easily see that Tn : H1(Ω)w −→ H1(Ω)w is weakly-weakly continuous. As

a consequence, by (6.11), (6.12) and a corollary of the Tychonoff fixed point Theorem (Arino, Gautier

and Penot [4], Vrabie [28, Theorem 1.2.11, p.6]), we infer that Tn admits a fixed point un ∈ H1(Ω).

The Symmetry Property 2.7 is obtained by working in {u ∈ H1(Ω); u(Rx) = u(x), for a.e. x ∈ Ω}

16



(with the obvious modification for the odd case) in place of H1(Ω). Working with H1
0 (Ω) instead of

H1(Ω), the boundary condition (1.2) is treated in the same way, with possibly δ = 0 (with help of

Poincaré’s inequality).

Lemma 6.6 ([8, Lemma 4.5]). If (a, b) verifies (2.11) then there exists δ⋆ = δ⋆(|a|, |b|) ∈ (0, 1],

L = L(|a|, |b|) and M = M(|a|, |b|) such that, if δ ∈ [0, δ⋆] and C0, C1, C2, C3, C4 are non-negative

real numbers satisfying ∣∣C1 + δC2 +Re(a)C3 +
(
Re(b)− δ

)
C4

∣∣ ⩽ C0, (6.13)∣∣Im(a)C3 + Im(b)C4

∣∣ ⩽ C0, (6.14)

then

0 ⩽ C1 + δC2 + LC3 + LC4 ⩽MC0. (6.15)

Remark 6.7. Actually, the conclusion in [8, Lemma 4.5] is that,

0 ⩽ C1 + LC3 + LC4 ⩽MC0.

But letting totally unchanged its proof, we obtain (6.15).

Lemma 6.8. Let (a, b) satisfy (2.11). Assume that ϕ satisfies (2.3) and let F ∈ H−1(Ω). Then

there exists δ⋆ = δ⋆(|a|, |b|) ∈ (0, 1], L = L(|a|, |b|) and M = M(|a|, |b|) such that, if δ ∈ (0, δ⋆],

and we assume that for each n ∈ N, there exists a global weak solution un of (6.8) with boundary

condition (1.2), then we have that,

δ∥un∥2X + L

∫
{|un|⩽n}

|un|2

|un|+ (n− |un|) 1
n2

dx ⩽
M2

δ
∥F∥2X⋆ , (6.16)

for any n ∈ N, where X = H1
0 (Ω). If F ∈ H1(Ω)⋆ and if for each n ∈ N, un is a global weak solution

to (6.8) with boundary condition (1.3) then for any n ∈ N, un satisfies (6.16) where X = H1(Ω).

Proof. Let δ⋆ = δ⋆(|a|, |b|) ∈ (0, 1], L = L(|a|, |b|) and M = M(|a|, |b|) be given by Lemma 6.6.

Assume that δ ∈ (0, δ⋆]. Let n ∈ N. Let X be as in the lemma. Choosing un and iun as test functions

in (6.16), we obtain

∥∇un∥2L2(Ω) + δ∥un∥2L2(Ω) +Re(a)

(∫
{|un|⩽n}

|un|2

|un|+ (n− |un|) 1
n2

dx+ ∥un∥L1({|un|>n})

)
+
(
Re(b)− δ

) (
∥un∥2L2({|un|⩽n}) + n∥un∥L1({|un|>n})

)
+

∫
{|un|⩽n}

ϕ|un|2dx+ n

∫
{|un|>n}

ϕ|un|dx = ⟨F, un⟩X⋆,X , (6.17)
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Im(a)

(∫
{|un|⩽n}

|un|2

|un|+ (n− |un|) 1
n2

dx+ ∥un∥L1({|un|>n})

)
+ Im(b)

(
∥un∥2L2({|un|⩽n}) + n∥un∥L1({|un|>n})

)
= ⟨F, iun⟩X⋆,X . (6.18)

It follows from (6.17)–(6.18) and Lemma 6.6 that,

∥∇un∥2L2(Ω) + δ∥un∥2L2(Ω) + L

∫
{|un|⩽n}

|un|2

|un|+ (n− |un|) 1
n2

dx ⩽M∥F∥X⋆∥un∥X .

Applying Young’s inequality to the above, we get (6.16).

Lemma 6.9 (Extension). Let (Ωn)n∈N ⊂ Ω be a sequence of non-decreasing open subsets of RN

such that ∪n∈NΩn = Ω.

1. Let 0 < p ⩽ ∞, (un)n∈N ⊂ H1
0 (Ωn) ∩ Lp(Ωn), (Un)n∈N ⊂ L∞(Ωn) be a sequence of saturation

sections associated to (un)n∈N, and (ϕn)n∈N ⊂ H1
0 (Ωn). Assume that there exists C > 0 such

for any n ∈ N,

∥un∥H1
0 (Ωn) + ∥un∥Lp(Ωn) + ∥∇ϕn∥L2(Ωn) ⩽ C. (6.19)

Then there exist u ∈ H1
0 (Ω) ∩ Lp(Ω) and a saturated section U associated to u such that, up to

subsequences (and with no change of notation),

un
a.e. in Ω−−−−−−→
n→∞

u, (6.20)

lim
n→∞

⟨θun, φ|Ωn
⟩D′(Ωn),D(Ωn) = ⟨θu, φ⟩D′(Ω),D(Ω), (6.21)

lim
n→∞

⟨Un, φ|Ωn
⟩D′(Ωn),D(Ωn) = ⟨U,φ⟩D′(Ω),D(Ω), (6.22)

lim
n→∞

⟨|un|2, φ|Ωn
⟩D′(Ωn),D(Ωn) = ⟨|u|2, φ⟩D′(Ω),D(Ω), (6.23)

for any θ satisfying (2.1)–(2.2), and φ ∈ D(Ω). Moreover, if Ω = RN and N ⩾ 3 then there

exists ϕ ∈ D1,2(RN ) such that

ϕn
a.e. in Ω−−−−−−→
n→∞

ϕ, (6.24)

lim
n→∞

⟨ϕn, φ|Ωn
⟩D′(Ωn),D(Ωn) = ⟨ϕ, φ⟩D′(RN ),D(RN ), (6.25)

lim
n→∞

⟨ϕnun, φ|Ωn
⟩D′(Ωn),D(Ωn) = ⟨ϕu, φ⟩D′(RN ),D(RN ), (6.26)

for any φ ∈ D(RN ).

2. Let F ∈ H−1(Ω). Let n ∈ N. Let us define for any v ∈ H1
0 (Ωn),

⟨F|Ωn
, v⟩ = ⟨F, ṽ⟩H−1(Ω),H1

0 (Ω), (6.27)

18



where ṽ is the extension of v by 0 in Ω\Ωn. Then for any n ∈ N, F|Ωn
∈ H−1(Ωn), ∥F|Ωn

∥H−1(Ωn) ⩽

∥F∥H−1(Ω) and

lim
n→∞

⟨F|Ωn
, φ|Ωn

⟩D′(Ωn),D(Ωn) = ⟨F,φ⟩D′(Ω),D(Ω), (6.28)

for any φ ∈ D(Ω).

Proof. We begin by the first part of the lemma. Let the assumptions be fulfilled. For each n ∈ N,

let vn, Vn and ψn be the extension by 0 in Ω \ Ωn of un, Un and ϕn, respectively. Let θ satisfy

(2.1)–(2.2). By (6.19) and (2.8), (vn)n∈N, (θvn)n∈N and (Vn)n∈N are bounded in H1
0 (Ω) ∩ Lp(Ω), in

L2(Ω) and in L∞(Ω), respectively. It follows that there exist u ∈ H1
0 (Ω) and U ∈ L∞(Ω) satisfying

(2.4), and an extraction (nk)k∈N ⊂ (n)n∈N such that vnk

H1
0 (Ω)w

−−−−−−⇀
k→∞

u, vnk

L2
loc(Ω)−−−−−→
k→∞

u, Vnk

L∞(Ω)w⋆

−−−−−−−⇀
k→∞

U,

vnk

a.e. in Ω−−−−−→
k→∞

u, and θvnk

a.e. in Ω−−−−−→
k→∞

θu. It follows that θvnk

L2(Ω)w−−−−→
k→∞

θu. Since for any x ∈ Ω, there exists

n0 ∈ N, such that for any n > n0, x ∈ Ω, we deduce that (6.20) holds true, which implies with Fatou’s

Lemma that u ∈ Lp(Ω). It follows from the a.e. pointwise convergence of (vnk
)k∈N that,

Vnk
=

vnk

|vnk
|

a.e. in ω−−−−−→
k→∞

u

|u|
, where ω =

{
x ∈ Ω;u(x) ̸= 0

}
.

By the weak⋆ convergence of (Vnk
)k∈N, the above limit and Lemma 6.1, we get that U = u

|u| , a.e. in

ω, so that U is a saturated section associated to u. Let φ ∈ D(Ω). Since the sets Ωn are open, there

exists k⋆ ∈ N such that for any k > k⋆, suppφ ⊂ Ωnk
, so that φ|Ωnk

∈ D(Ωnk
). We then have for any

k > k⋆,

⟨θunk
, φ|Ωnk

⟩D′(Ωnk
),D(Ωnk

) = ⟨θvnk
, φ⟩D′(Ω),D(Ω)

k→∞−−−−→ ⟨θu, φ⟩D′(Ω),D(Ω). (6.29)

The limit (6.22) is obtain with the same argument. Since (|vn|2)n∈N is bounded in L
N

N−2 (Ω) (in L2(Ω),

if N ⩽ 2) and |vnk
|2 a.e. in Ω−−−−−→

k→∞
|u|2, it follows that |vnk

|2
L

N
N−2 (Ω)w

−−−−−−−−⇀
k→∞

|u|2 (in L2(Ω)w, if N ⩽ 2).We then

easily obtain (6.23) in the same way as in (6.29). Now, assume that Ω = RN and N ⩾ 3. By (6.19),

(ψnk
)k∈N is bounded in D1,2(RN ). It follows that there exist ϕ ∈ D1,2(RN ) such that extracting

another subsequence to (nk)k∈N, if necessary, we have that ψnk

L
2N

N−2 (RN )w
−−−−−−−−−⇀

k→∞
ϕ, ψnk

L2
loc(Ω)−−−−−→
k→∞

ϕ and

ψnk

a.e. in Ω−−−−−→
k→∞

ϕ, from which (6.24) follows. Then, (6.25) is obtained in the same way as in (6.29). In

addition, ψnk
vnk

L1
loc(Ω)−−−−−→
k→∞

ϕu, from which we obtain (6.26). Now, we turn out to the second property.

Let n ∈ N and F|Ωn
be defined by (6.27). It is clear that F|Ωn

∈ H−1(Ωn) since that if v is a unitary

vector of H1
0 (Ωn) then ṽ is a unitary vector of H1

0 (Ω), and

|⟨F|Ωn
, v⟩| = |⟨F, ṽ⟩H−1(Ω),H1

0 (Ω)| ⩽ ∥F∥H−1(Ω),

so that, ∥F|Ωn
∥H−1(Ωn) ⩽ ∥F∥H−1(Ω). Finally, the limit (6.28) is obtain as in (6.29). The lemma is

proved.
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Proof of Theorems 2.6. By Lemmas 6.2, 6.3, 6.5 and 6.8, it remains to show the existence of a

solution satisfying the boundary condition (1.2) with |Ω| = ∞. By Theorem 2.10 and the Extension

Lemma 6.9 (applied with Ωn = Ω∩B(0, n)), we obtain such a solution which satisfies (2.6) in D ′(Ω).

But the terms of the equation belong to H−1(Ω) + L∞(Ω) ↪→ D ′(Ω), from which the result follows.

Lemma 6.10. Let u1, u2 ∈ L1(Ω), and let U1 and U2 be two saturated sections associated to u1 and

u2, respectively. Then Re
(
(U1 − U2)(u1 − u2)

)
⩾ 0, a.e. in Ω, and if

Re

(∫
Ω

(U1 − U2)(u1 − u2)dx

)
= 0, (6.30)

then

(U1 − U2)(u1 − u2) = 0, (6.31)

almost everywhere in Ω.

Remark 6.11. By [10, Lemma 6.1], we already know that, Re
(∫

Ω
(U1 − U2)(u1 − u2)dx

)
⩾ 0.

Proof of Lemma 6.10. For j ∈ {1, 2}, let ωj =
{
x ∈ Ω; uj(x) ̸= 0

}
. Let us write that,

(U1 − U2)(u1 − u2)

=

(
U1 −

u2
|u2|

)
(−u2)1ωc

1∩ω2 +

(
u1
|u1|

− U2

)
u1 1ω1∩ωc

2
+

(
u1
|u1|

− u2
|u2|

)
(u1 − u2)1ω1∩ω2

= (|u2| − U1u2)1ωc
1∩ω2

+ (|u1| − U2u1)1ω1∩ωc
2
+

(
u1
|u1|

− u2
|u2|

)
(u1 − u2)1ω1∩ω2

def
= i1 + i2 + i3,

a.e. in Ω. Since |U1u2| ⩽ |u2| and |U2u1| ⩽ |u1|, we get that Re(i1) ⩾ 0 and Re(i2) ⩾ 0. We also

have Re(i3) ⩾ 0 ([9, Corollary 5.5]). After integration over Ω, we infer with (6.30) that, actually,

Re(i1) = Re(i2) = Re(i3) = 0. Now, we see a complex number z ∈ C as a vector −→z =

(
Re(z)
Im(z)

)
of

R2, whose Euclidean norm is |−→z |2 = |z|. It follows that Re(i1) = 0 may be written as,

−→
U1.

−→u2 = |U1||u2| cos(
−→
U1,

−→u2) = Re(U1u2) = |u2|,

a.e. in ωc
1 ∩ ω2, where . denotes the scalar product between two vectors of R2. Since |U1| ⩽ 1, we

deduce from the above that |U1| = cos(
−→
U1,

−→u2) = 1, so that U1 = u2

|u2|1ωc
1∩ω2 , and so i1 = 0. Arguing

in the same way with Re(i2) = 0, we obtain that i2 = 0. Since Re(i3) = 0, let us write,

Re

((
u1
|u1|

− u2
|u2|

)
(u1 − u2)

)
=

|u1|+ |u2|
|u1||u2|

(
|u1||u2| − Re(u1u2)

)
= 0.
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We deduce that, Re(u1u2) = |u1||u2|, a.e. in ω1 ∩ ω2. This may be reformulate as,

−→u1.−→u2 = |u1||u2|, a.e. in ω1 ∩ ω2.

We then infer that for some k > 0, u2 = ku1, a.e. in ω1 ∩ ω2. Then return to i3, we see that i3 = 0.

Hence (6.31).

Proof of Theorem 2.8. Let u1, u2 be as in Theorem 2.8. It follows that u1 − u2 satisfies,

−∆(u1 − u2) + a(U1 − U2) + b(u1 − u2) + ϕ(u1 − u2) = 0. (6.32)

We first note that if u1 = u2 then by (6.32) we see that U1 = U2. Choosing a(u1−u2) as test function,
we get that,

Re(a)∥∇u1 −∇u2∥2L2(Ω) + |a|2Re(I) +
∫
Ω

(Re(ab) + Re(aϕ))|u1 − u2|2dx = 0, (6.33)

where I =
∫
Ω
(U1 − U2)(u1 − u2)dx. Since Re(I) ⩾ 0 (Remark 6.11), we deduce from (6.33) that

Re(I) = 0, and then I = 0 (Lemma 6.10). If Re(ab) + Re(aϕ) > 0, a.e. in Ω, then u1 = u2 by (6.33).

Otherwise, taking u1 − u2 and i(u1 − u2) as test functions in (6.32), we obtain that,

∥∇u1 −∇u2∥2L2(Ω) +

∫
Ω

(Re(b) + Re(ϕ))|u1 − u2|2dx = 0,

∫
Ω

(Im(b) + Im(ϕ))|u1 − u2|2dx = 0,

since I = 0. Therefore u1 = u2.

7 Inequalities for spatial localization: the proofs

Lemma 7.1. Let α ∈ (0, 1], β, ρ0,K > 0, and E ∈W 1,1(0, ρ0;R) be a non-negative solution to

ρβ−1E(ρ)1−α ⩽ KE′(ρ), (7.1)

for almost every ρ ∈ (0, ρ0), with E(0) = 0. Then we have

∀ρ ∈ [0, r], E(ρ) = 0, (7.2)

where rβ =
(
ρβ0 −K β

αE(ρ0)
α
)
+
.

Proof. We may assume that r > 0, otherwise there is nothing to prove. We note by (7.1) that E is

non-decreasing. Therefore, it is sufficient to prove that E(r) = 0. We proceed by contradiction and

assume that E(r) > 0. Then E > 0 over [r, ρ0] and by (7.1), we have that∫ ρ0

r

ρβ−1dρ ⩽ K

∫ ρ0

r

E′(ρ)E(ρ)α−1dρ,
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from which we get: ρβ0 − rβ ⩽ K β
α (E(ρ0)

α −E(r)α). By definition of r, this implies that E(r) ⩽ 0, a

contradiction.

Remark 7.2. When β = 0, the same proof gives the same result with r = ρ0e
−K

α E(ρ0)
α

.

Lemma 7.3. Let α ∈ (0, 1), K > 0 and ρ1 > ρ0 > 0. Let ε > 0 and E ∈ W 1,1(ρ0, ρ1;R) be a

non-negative solution to

E(ρ)1−α ⩽ KE′(ρ) + ε(ρ− ρ0)
1−α
α , (7.3)

for almost every ρ ∈ (ρ0, ρ1). Then, there exist E⋆ = E⋆(α,K, ρ0, ρ1) and ε⋆ = ε⋆(α,K) such that if

E(ρ1) ⩽ E⋆ and ε ⩽ ε⋆ then E(ρ0) = 0.

Proof. Let E⋆ =
(

α
2K (ρ1 − ρ0)

) 1
α and ε⋆ = 1

2

(
α
2K

) 1−α
α . Let for any ρ ∈ [ρ0, ρ1],

G(ρ) =
( α

2K
(ρ− ρ0)

) 1
α

.

Then, G ∈ C1([ρ0, ρ1];R), G(ρ1) = E⋆ and G satisfies,

G(ρ)1−α −KG′(ρ) =
1

2
G(ρ)1−α = ε⋆(ρ− ρ0)

1−α
α ,

for any ρ ∈ [ρ0, ρ1]. It follows from the assumption ε ⩽ ε⋆ and (7.3) that,

E(ρ)1−α −KE′(ρ) ⩽ G(ρ)1−α −KG′(ρ), (7.4)

for almost every ρ ∈ (ρ0, ρ1). Now we claim that for any ρ ∈ [ρ0, ρ1], E(ρ) ⩽ G(ρ). Otherwise, by

the assumption E(ρ1) ⩽ G(ρ1) and continuity, there would exist r ∈ (ρ0, ρ1] and δ ∈ (0, r − ρ0)

such that E(r) = G(r) and for any ρ ∈ (r − δ, r), E(ρ) > G(ρ). This would give with (7.4) that for

a.e. ρ ∈ (r− δ, r), E′(ρ) > G′(ρ). Integrating this expression over (ρ, r), we would obtain that for any

ρ ∈ (r − δ, r), E(ρ) < G(ρ). A contradiction. Hence the claim. In particular, E(ρ0) ⩽ G(ρ0) = 0.

Hence the result.

Proof of Theorems 4.1 and 4.2. Let the assumptions of the theorems be fulfilled. Let us write

ρ⋆ = ρ0 and δ = 0, for the proof of Theorem 4.1, and ρ⋆ = ρ1 and δ = 1, for the proof of Theorem 4.2.

Let ρ ∈ (0, ρ⋆). We set E(ρ) = ∥∇u∥2L2(B(x0,ρ))
and b(ρ) = ∥u∥L1(B(x0,ρ)). We now proceed with the

proof in 5 steps.

Step 1. E ∈W 1,1(0, ρ⋆), for a.e. ρ ∈ (0, ρ⋆), E
′(ρ) = ∥∇u∥2L2(S(x0,ρ))

and

E(ρ) + b(ρ) ⩽
1

2

(
K1(τ)ρ

−(N+1)E′(ρ)
) 1

2

(E(ρ) + b(ρ))
γ(τ)+1

2 + δM2∥F∥2L2(B(x0,ρ))
, (7.5)

where K1(τ) = C(N)M2 max
{
ρN+1
⋆ , 1

}
max{b(ρ⋆)µ(τ), b(ρ⋆)1−γ(τ)}.

We first note that E(ρ) =
∫ ρ

0

(∫
S(x0,r)

|∇u|2dσ
)
dr, for any ρ ∈ (0, ρ⋆). The mapping r 7−→

∫
S(x0,r)

|∇u|2dσ
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belonging to L1(0, ρ⋆), it follows that E is absolutely continuous on (0, ρ0). Then, E ∈ W 1,1(0, ρ⋆),

and for a.e. ρ ∈ (0, ρ⋆), E
′(ρ) = ∥∇u∥2L2(S(x0,ρ))

. Let ρ ∈ (0, ρ⋆). By the interpolation-trace inequality

(Dı́az and Véron [21, Corollary 2.1]), we have

∥u∥L2(S(x0,ρ)) ⩽ C(N)
(
E(ρ)

1
2 + ρ−

N+2
2 b(ρ)

)N+1
N+2

b(ρ)
1

N+2 , (7.6)

where C = C(N). Applying the Cauchy-Schwarz inequality to (4.1) or (4.3) (according to the different

theorems to prove), and using (7.6), we get that

ET (ρ) + b(ρ) ⩽ CME′(ρ)
1
2

(
E(ρ)

1
2 + ρ−

N+2
2 b(ρ)

)N+1
N+2

b(ρ)
1

N+2 + δM

∫
B(x0,ρ)

|F (x)u(x)|dx, (7.7)

where ET (ρ) = E(ρ), for the proof of Theorem 4.1, and ET (ρ) = ∥u∥2H1(B(x0,ρ))
, for the proof of

Theorem 4.2. In the case of Theorem 4.2, we apply Young’s inequality to obtain∫
B(x0,ρ)

|F (x)u(x)|dx ⩽
M

2
∥F∥2L2(B(x0,ρ))

+
1

2M
∥u∥2L2(B(x0,ρ))

. (7.8)

Putting together (7.7) and (7.8), we obtain for both theorems,

E(ρ) + b(ρ) ⩽ 2CME′(ρ)
1
2

(
E(ρ)

1
2 + ρ−

N+2
2 b(ρ)

)N+1
N+2

b(ρ)
1

N+2 + δM2∥F∥2L2(B(x0,ρ))
. (7.9)

Let τ ∈
(
m+1
2 , 1

]
. A straightforward calculation yields(

E(ρ)
1
2 + ρ−

N+2
2 b(ρ)

)
b(ρ)

1
N+1

= E(ρ)
1
2 b(ρ)

1
N+1 + ρ−

N+2
2 b(ρ)

N+2
N+1

= E(ρ)
1
2 b(ρ)

τ
N+1 b(ρ)

1−τ
N+1 + ρ−

N+2
2 b(ρ)

1
2+

τ
N+1 b(ρ)

N+2
N+1−

τ
N+1−

1
2

= E(ρ)
1
2 b(ρ)

τ
N+1 b(ρ)µ(τ)

N+2
2(N+1) + ρ−

N+2
2 b(ρ)

1
2+

τ
N+1 b(ρ)(1−γ(τ)) N+2

2(N+1)

⩽ 2ρ−
N+2

2 max
{
ρ

N+2
2

⋆ , 1
}
K2

2 (τ)
N+2

2(N+1) (E(ρ) + b(ρ))
1
2+

τ
N+1 ,

where K2
2 (τ) = max{b(ρ⋆)µ(τ), b(ρ⋆)1−γ(τ)}. Hence (7.5) follows from (7.9) and the above estimate

with K1(τ) = 64C2M2K2
2 (τ)max

{
ρN+1
⋆ , 1

}
, since

(
1
2 + τ

N+1

)
N+1
N+2 = γ(τ)+1

2 .

Step 2. For any τ ∈
(
1
2 , 1
]
and a.e. ρ ∈ (0, ρ⋆),

0 ⩽ E(ρ)1−γ(τ) ⩽ K1(τ)ρ
−(N+1)E′(ρ) + δ(2M)2(1−γ(τ))∥F∥2(1−γ(τ))

L2(B(x0,ρ))
.

Let τ ∈
(
1
2 , 1
]
and ρ ∈ (0, ρ⋆), Using the following Young inequality,

xy ⩽
εp

′

p′
xp

′
+

1

pεp
yp,
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with x = 1
2

(
K1(τ)ρ

−(N+1)E′(ρ)
) 1

2 , y = (E(ρ) + b(ρ))
γ(τ)+1

2 , p = 2
1+γ(τ) and ε = (γ(τ) + 1)

γ(τ)+1
2 , we

have

1

2

(
K1(τ)ρ

−(N+1)E′(ρ)
) 1

2

(E(ρ) + b(ρ))
γ(τ)+1

2

⩽
C(τ)

2
2

1−γ(τ)

(
K1(τ)ρ

−(N+1)E′(ρ)
) 1

1−γ(τ)

+
1

2
(E(ρ) + b(ρ)),

where,

C(τ) =
1− γ(τ)

2
(1 + γ(τ))

1+γ(τ)
1−γ(τ) ⩽

1

2
2

2
1−γ(τ) .

We then obtain,(
K1(τ)ρ

−(N+1)E′(ρ)
) 1

2

(E(ρ) + b(ρ))
γ(τ)+1

2 ⩽
(
K1(τ)ρ

−(N+1)E′(ρ)
) 1

1−γ(τ)

+ (E(ρ) + b(ρ)).

Putting this estimate in (7.5), we obtain

E(ρ) + b(ρ) ⩽
(
K1(τ)ρ

−(N+1)E′(ρ)
) 1

1−γ(τ)

+ 2δM2∥F∥2L2(B(x0,ρ))
,

Raising both sides of this inequality to the power (1− γ(τ)) ∈ (0, 1), we obtain the desired result.

Step 3. Let r ∈ (0, ρ0]. If E(r) = 0 then u = 0, almost everywhere in B(x0, r).

It follows from the hypothesis that E′ = 0, almost everywhere on (0, r). We also have by definition

of δ and (4.4) that for both theorem, δM2∥F∥2L2(B(x0,ρ))
= 0, for any ρ ∈ [0, r]. It then follows from

Step 1 that b(r) = 0, which is the desired result.

Step 4. Proof of Theorem 4.1.

Let for τ ∈
(
1
2 , 1
]
, r(τ)N+2 =

(
ρN+2
0 −K1(τ)

N+2
γ(τ)E(ρ0)

γ(τ)
)
+
, where K1 is given at Step 1. Let

τ ∈
(
1
2 , 1
]
. We have by Step 2 that for almost every ρ ∈ (0, ρ0),

ρN+1E(ρ)1−γ(τ) ⩽ K1(τ)E
′(ρ).

It follows from Lemma 7.1 that for any ρ ∈ [0, r(τ)], E(ρ) = 0, and then E(ρmax) = 0, where we have

set ρmax = maxτ∈( 1
2 ,1]

r(τ). We conclude with Step 3.

Step 5. Proof of Theorem 4.2.

Let L > 0. Assume that b(ρ1) ⩽ L. Set K = K1(1)ρ
−(N+1)
0 , where K1 is given at Step 1. It follows

that K = K(M,L,N, ρ1, ρ0). Finally, set α = γ(1) = (N + 2)−1. Let then E⋆ = E⋆(M,L,N, ρ1, ρ0)

and ε̃⋆ = ε̃⋆(M,L,N, ρ1, ρ0) be given by Lemma 7.3. Choosing ε⋆ > 0 such that ε̃⋆ = (2M)2(1−α)ε1−α
⋆ ,

it follows from Step 2 and (4.4) that

E(ρ)1−α ⩽ KE′(ρ) + ε̃⋆(ρ− ρ0)
1−α
α ,

for almost every ρ ∈ (ρ0, ρ1). It follows from Lemma 7.3 that if E(ρ1) ⩽ E⋆ then E(ρ0) = 0. The

result then comes from Step 3. This achieves the proof.
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8 Solutions compactly supported: the proofs

Lemma 8.1. Let (a, b) satisfy (2.11), let ϕ satisfy (2.1)–(2.3), and let F ∈ L1
loc(Ω). Let u be a global

weak solution to (2.6) with the boundary condition (1.2) or (1.3) (with the additional assumption for

F given by Definition 2.1). Let x0 ∈ Ω and ρ0 > 0. If u satisfies (1.3) then assume further that

ρ0 ⩽ dist(x0,Γ). Then there exists M =M(|a|, |b|) such that if F|Ω∩B(x0,ρ0) ∈ L∞(Ω∩B(x0, ρ0)) with

∥F∥L∞(Ω∩B(x0,ρ0)) ⩽
1
M then we have

∥u∥2H1(Ω∩B(x0,ρ))
+ ∥u∥L1(Ω∩B(x0,ρ)) ⩽M

∣∣∣∣∣
∫
Ω∩S(x0,ρ)

u∇u. x− x0
|x− x0|

dσ

∣∣∣∣∣ , (8.1)

for any ρ ∈ (0, ρ0).

Proof. Let U be the saturated section associated to the solution u. Let us rewrite (2.6) as,

−∆u+ f(u) = G,

with f(u) = bu, and G = F − aU − ϕu. With help of (2.8), we may apply [7, Theorem 3.1] to obtain,

∥∇u∥2L2(Ω∩B(x0,ρ))
+Re(a)∥u∥L1(Ω∩B(x0,ρ)) +Re(b)∥u∥2L2(Ω∩B(x0,ρ))

+

∫
Ω∩B(x0,ρ)

ϕ|u|2dx = Re

( ∫
Ω∩B(x0,ρ)

F udx

)
+Re

( ∫
Ω∩S(x0,ρ)

u∇u. x− x0
|x− x0|

dσ

)
,

Im(a)∥u∥L1(Ω∩B(x0,ρ)) + Im(b)∥u∥2L2(Ω∩B(x0,ρ))

= Im

( ∫
Ω∩B(x0,ρ)

F udx

)
+ Im

( ∫
Ω∩S(x0,ρ)

u∇u. x− x0
|x− x0|

dσ

)
,

for any ρ ∈ [0, ρ0). Applying [8, Lemma 4.5] to the above (see also Lemma 6.6), and Hölder’s inequality,

we obtain that u satisfies

∥u∥2H1(Ω∩B(x0,ρ))
+ ∥u∥L1(Ω∩B(x0,ρ))

⩽ C

∣∣∣∣∣
∫
Ω∩S(x0,ρ)

u∇u. x− x0
|x− x0|

dσ

∣∣∣∣∣+ C∥F∥L∞(Ω∩B(x0,ρ))∥u∥L1(Ω∩B(x0,ρ)),

for any ρ ∈ [0, ρ0), where C = C(|a|, |b|). The result follows by setting M = 2C.

Proof of Theorem 5.1. Let the assumption of the theorem be fulfilled. Let M = M(|a|, |b|) be

given by Lemma 8.1 and assume that ∥F∥L∞(Kc) ⩽ 1
M . Let R > 0 be such that K ⊂ B(0, R). By

Lemma 8.1, u satisfies (4.1), for any B(x0, 2) ⊂ B(0, R)c. Choosing ρ0 = 2 in Theorem 4.1, there

exists ε0 such that for any x0 ∈ RN , if ∥∇u∥2L2(B(x0,2))
+ ∥u∥L1(B(x0,2)) < ε0 then ρmax > 1, where

ρmax is given by (4.2). Since u ∈ H1(RN ) ∩ L1(RN ), there exists R0 > R such that

∥∇u∥2L2({|x|>R0}) + ∥u∥L1({|x|>R0}) < ε0.
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Finally, since for any |x0| > R0 + 2, B(x0, 2) ⊂ B(0, R0)
c ⊂ B(0, R)c, it follows from Theorem 4.1

that for any |x0| > R0 + 2, u = 0, a.e. in B(x0, 1). We conclude that u = 0, a.e. in B(0, R0 + 1)c.

Proof of Theorems 5.2. Let M1 = M1(|a|, |b|) and M2 = M2(|a|, |b|) be given by (6.3) and

Lemma 8.1, respectively. Let M = M1 + M2, let K ⊂ Ω be a compact subset, F ∈ H−1(Ω),

(respectively, F ∈ H1(Ω)⋆) with ∥F∥L∞(Ω\K) ⩽ 1
M , and let u be a global weak solution to (2.6)

satisfying one of the two boundary conditions (1.2) or (1.3). Finally, let ε⋆ > 0 be such that K(5ε⋆) ⊂
Ω. Let ε ∈ (0, ε⋆). By Lemma 8.1, we have that u satisfies (4.1), for almost every ρ ∈ (0, 2ε),

and any x0 ∈ Ω such that K ∩ B(x0, 2ε) = ∅ and B(x0, 2ε) ⊂ Ω. By Theorem 2.10, there exists

δ = δ(ε, |a|, |b|,M) such that if ∥F∥H1(Ω)⋆ < δ then ρmax > ε, where ρmax is given by (4.2). We have

that,

K ∩B(x0, 2ε) = ∅, for any x0 ∈ Ω \K(2ε), (8.2)

and B(x0, 2ε) ⊂ Ω, for any x0 ∈ K(3ε). We may use Theorem 4.1 to conclude that u = 0, a.e. in

B(x0, ε), for any x0 ∈ K(3ε) \K(2ε). It follows that

u = 0, almost everywhere in K(4ε) \K(ε). (8.3)

Since K(2ε) ∩K(3ε)c = ∅, it follows from (8.3) that we may define ũ ∈ H1
0 (Ω) ∩ L1(Ω), if u satisfies

(1.2), and ũ ∈ H1(Ω), if u satisfies (1.3), as

ũ =

{
u, in Ωε

def
= Ω \K(3ε),

0, in K(3ε).

Choosing ũ and iũ as test functions, we obtain that

∥∇u∥2L2(Ωε)
+Re(a)∥u∥L1(Ωε) +Re(b)∥u∥2L2(Ωε)

+

∫
Ωε

ϕ|u|2dx ⩽
∫
Ωε

|F u|dx, (8.4)

Im(a)∥u∥L1(Ωε) + Im(b)∥u∥2L2(Ωε)
⩽
∫
Ωε

|F u|dx. (8.5)

It follows from [8, Lemma 4.5] that there exists M3 =M3(|a|, |b|) such that

∥u∥2H1(Ωε)
+ ∥u∥L1(Ωε) +

∫
Ωε

ϕ|u|2dx ⩽M3

∫
Ωε

|F u|dx. (8.6)

Now, let us note that the constant M1 in (6.3) is obtain from [8, Lemma 4.5] applied to (6.1)–(6.2),

in which the constants involved (Re(a), Im(a), Re(b), Im(b) and δ = 0) are exactly the same as in

(8.4)–(8.5). We then infer that M3 =M1. Applying Hölder’s inequality, it follows from (8.6) that,

∥u∥2H1(Ωε)
+ (1−M1∥F∥L∞(Ω\K))∥u∥L1(Ωε) ⩽ 0.

By assumption, ∥F∥L∞(Ω\K) ⩽
1

M1
. Therefore, u = 0 in Ω \K(3ε), hence in Ω \K(ε) by (8.3). The

case in which u satisfies (1.2) is obtained in the same way and the details are left to the reader.
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9 Application to a Schrödinger-Poisson system

Theorem 9.1 (Existence, a priori bound and compactness). Let (a, b) satisfy (2.11) and let

e ⩾ 0. Assume that N ∈ {3, 4}. Then for any F ∈ H−1(RN ), there exists a global weak solution

(u, U, ϕ) to (1.4)–(1.5). In addition, there exists M = M(|a|, |b|) such that any global weak solution

(u, U, ϕ) to (1.4)–(1.5) satisfies the following properties:

∥u∥2H1(RN ) + ∥u∥L1(RN ) + e

∫
RN

ϕ|u|2dx ⩽M∥F∥2H−1(RN ), (9.1)

∥∇ϕ∥2L2(RN ) =
e

2

∫
RN

ϕ|u|2dx. (9.2)

Finally, if there exists a compact subset K of RN such that F|Kc ∈ L∞(Kc) and ∥F∥L∞(Kc) ⩽ 1
M

then suppu is compact.

Remark 9.2. We do not know if the solution (u, U, ϕ) is unique. On the other hand, if −∆ϕ1 =

−∆ϕ2 = e
2 |u|

2, in L2(RN ), then we easily obtain that ∇ϕ1 = ∇ϕ2, in L2(RN ). Since ϕ1, ϕ2 ∈
L

2N
N−2 (RN ), we infer that ϕ1 = ϕ2. It follows that uniqueness of u implies uniqueness of ϕ and then

U. In addition, the solution to −∆ϕ = e
2 |u|

2, in D ′(RN ), is given by,

ϕ =
e

2
(−∆)−1|u|2 =

e

2
G ⋆ |u|2 ∈ L1

loc(RN ),

G(x) =
1

N(N − 2)|B(0, 1)|
1

|x|N−2
, x ̸= 0.

In particular, ϕ ⩾ 0 in RN . By interior elliptic regularity (Cazenave [16, Proposition 4.1.2]), we easily

obtain that ϕ ∈ H2
loc(RN ;R).

Proposition 9.3. Assume |Ω| < ∞. Let (a, b) satisfy (2.11) and let e ⩾ 0. If N ⩽ 4 then for any

F ∈ H−1(Ω), there exists a global weak solution
(u, U, ϕ) ∈ H1

0 (Ω)× L∞(Ω)×H1
0 (Ω;R),

U is a saturated section associated to u,

ϕu ∈ L2(Ω) and ϕ ⩾ 0 in Ω,

(9.3)

to −∆u+ aU + b u+ e ϕ u = F, in H−1(Ω),

−∆ϕ =
e

2
|u|2, in L2(Ω).

(9.4)

In addition, any global weak solution (u, U, ϕ) to (9.3)–(9.4) satisfies that

∥u∥2H1
0 (Ω) + ∥u∥L1(Ω) + e

∫
Ω

ϕ|u|2dx ⩽M∥F∥2H−1(Ω), (9.5)

∥∇ϕ∥2L2(Ω) =
e

2

∫
Ω

ϕ|u|2dx, (9.6)

for some M =M(|a|, |b|).
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Proof. Since N ⩽ 4 we note that if v ∈ H1
0 (Ω) then by Sobolev’ embedding, v satisfies (2.1)–(2.2)

and |v|2 ∈ L2(Ω). Let F ∈ H−1(Ω). Let ϕ0 = 0 and let (u1, U1) ∈ H1
0 (Ω)× L∞(Ω) be a global weak

solution to,

−∆u1 + aU1 + b u1 + e ϕ0u1 = F, in H−1(Ω),

given by Theorem 2.6. Now, let then ϕ1 ∈ H1
0 (Ω;R) be a solution to −∆ϕ1 = e

2 |u1|
2. By the weak

maximum principle, ϕ1 is non-negative. Then ϕ1 satisfies (2.1)–(2.2), and by Theorem 2.6 there exists

a global weak solution (u2, U2) ∈ H1
0 (Ω)× L∞(Ω) to,

−∆u2 + aU2 + b u2 + e ϕ1u2 = F, in H−1(Ω).

And now, we may find ϕ2 ∈ H1
0 (Ω;R) a non-negative solution to −∆ϕ2 = e

2 |u2|
2. By induction, we

construct a sequence (un, Un, ϕn−1)n∈N of global weak solutions to (9.3) and−∆un + aUn + b un + e ϕn−1un = F, in H−1(Ω),

−∆ϕn =
e

2
|un|2, in L2(Ω),

(9.7)

for any n ∈ N. By (2.13), (un)n∈N is bounded in H1
0 (Ω). We infer from the second equation in

(9.7), Cauchy-Schwarz’ inequality, the Sobolev embedding H1
0 (Ω) ↪→ L4(Ω), Poincaré’s inequality,

and Young’s inequality that,

∥∇ϕn∥2L2(Ω) ⩽
e

2
∥un∥2L4(Ω)∥ϕn∥L2(Ω) ⩽ C +

1

2
∥∇ϕn∥2L2(Ω).

As a consequence, (ϕn)n∈N is bounded inH1
0 (Ω), and by Sobolev’ embedding, (ϕn−1un)n∈N is bounded

in L2(Ω). Then, up to a subsequence, there exist u ∈ H1
0 (Ω), U ∈ L∞(Ω) satisfying (2.4), and

ϕ ∈ H1
0 (Ω;R) with ϕ ⩾ 0 such that, up to a subsequence, un

H1
0 (Ω)w

−−−−−−⇀
n→∞

u, un
L2

loc(Ω)−−−−−→
n→∞

u, Un

L∞(Ω)w⋆

−−−−−−−⇀
n→∞

U,

un
a.e. in Ω−−−−−→
n→∞

u, ϕn
L2

loc(Ω)−−−−−→
n→∞

ϕ, and ϕn
a.e. in Ω−−−−−→
n→∞

ϕ. Since |un|2
L1

loc(Ω)−−−−−→
n→∞

|u|2, we may pass to the limit

in the second equation of (9.7) in D ′(Ω) to get, −∆ϕ =
e

2
|u|2, in L2(Ω). In addition, we have

Un = un

|un|
n→∞−−−−→ u

|u| , a.e. where u ̸= 0. We get with help of Lemma 6.1 that U is a saturated

section associated to u. Finally, (ϕn−1un)n∈N is bounded in L2(Ω) and ϕn−1un
a.e. in Ω−−−−−→
n→∞

ϕu, so that

ϕu ∈ L2(Ω) and ϕn−1un
L2(Ω)w
−−−−−⇀

n→∞
ϕu. Finally, we use all these converges to pass to the limit in the first

equation in (9.7) in D ′(Ω). It follows that (u, U, ϕ) is a solution to (9.3)–(9.4). Taking the H−1 −H1
0

duality product of the second equation in (9.4) with ϕ, we get (9.6). To conlude, we note that (9.5)

comes from (2.13).

Proposition 9.4. Let N ⩽ 4 and assume |Ω| <∞. Let (a, b) satisfy (2.11), let K ⊂ Ω be any compact

subset of RN , let F ∈ H−1(Ω) be such that F|Ω\K ∈ L∞(Ω \K), and let (u, U, ϕ) be any global weak
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solution to (9.3)–(9.4). Then, there exist M = M(|a|, |b|) and ε⋆ = ε⋆(dist(K,Γ)) such that, for any

ε ∈ (0, ε⋆), there exists δ = δ(ε, |a|, |b|, N) verifying that if ∥F∥H−1(Ω) ⩽ δ and ∥F∥L∞(Ω\K) ⩽
1
M then

suppu ⊂ K(ε) ⊂ Ω, where K(ε) is given by (5.1).

Proof. Apply Theorem 5.2.

Proof of Theorem 9.1. We first note that if N ∈ {3, 4} then L1(RN ) ∩ L
N

N−1 (RN ) ↪→ L
2N

N+2 (RN )

with dense embedding so that by duality,

D1,2(RN ) ↪→ L
2N

N−2 (RN ) ↪→ L∞(RN ) + Lpϕ(RN ). (9.8)

With help of (2.8), it follows that if (u, ϕ) ∈ H1(RN ) × D1,2(RN ) then ϕ satisfies (2.1)–(2.2) and

ϕu ∈ L2(RN ). Moreover, we have by (2.13) that if (u, U, ϕ) is a global weak solution to (1.4)–(1.5)

then (u, ϕ) satisfies (9.1). Taking the H−1 −H1 duality product of the second equation in (1.5) with

ϕ, we obtain (9.2). Finally, the compactness Property comes from Theorem 5.1. It remains to show

the existence of a solution. Let F ∈ H−1(RN ). Let (F|Ωn
)n∈N ⊂ H−1(Ωn) be defined as in the second

part of the Extension Lemma 6.9, where Ωn = B(0, n), and let us apply Proposition 9.3. For each

n ∈ N, let (un, Un, ϕn) be a global weak solution to (9.3)–(9.4), where the domain is Ωn and where

the right member of the first equation in (9.4) is F|Ωn
. By (9.5)–(9.6), and the second part of the

Extension Lemma 6.9, we have that

∥un∥2H1
0 (Ωn)

+ ∥un∥L1(Ωn) + ∥∇ϕn∥2L2(Ωn)
⩽M∥F|Ωn

∥2H−1(Ωn)
⩽M∥F∥2H−1(RN ),

for any n ∈ N. Therefore, we may apply the first part of the Extension Lemma 6.9 to obtain the

existence of a global weak solution (u, U, ϕ) to (1.4)–(1.5) in D ′(RN ). It is clear that the second

equation in (1.5) makes sense in L2(RN ), while all the terms of the first equation belong to H−1(RN )+

L∞(RN ) ↪→ D ′(RN ). This ends the proof of the theorem.
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