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Abstract

We consider a nonlinear Schrödinger equation set in the whole space with a single power of
interaction and an external source. We first establish existence and uniqueness of the solutions
and then show, in low space dimension, that the solutions vanish at a finite time. Under a
smallness hypothesis of the initial data and some suitable additional assumptions on the external
source, we also show that we can choose the upper bound on which time the solutions vanish.
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1 Introduction and explanation of the method

Let us consider the following Schrödinger equation with a nonlinear damping term,

iut +∆u+ a|u|m−1u = f(t, x), in (0,∞)× Ω, (1.1)
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where Ω ⊆ RN is an open subset, a ∈ C, 0 < m < 1 and f : (0,∞)×Ω −→ C measurable is an external

source. When a ∈ R, m ⩾ 1 and f = 0, equation (1.1) has been intensively studied, especially with

Ω = RN (among which existence, uniqueness, blow-up, scattering theory, time decay). The literature

is too extensive to give an exhaustive list. See, for instance, the monographs of Cazenave [11], Sulem

and Sulem [22], Tao [23] and the references therein. The case a ∈ C is more anecdotic. See, for

instance, Bardos and Brezis [3], Lions [16], Tsutsumi [24] and Shimomura [21]. Note that except in

[16], it is always assumed m > 1.

In this paper, we are looking for solutions which vanishes at a finite time. For many reasons, we have

to consider 0 < m < 1. When m = 1, existence is not hard to obtain, since the equation is linear, while

the finite time property is not possible (which is a direct consequence of (1.4)). To our knowledge the

first paper in this direction is due to Carles and Gallo [9] with a = i, f = 0 and Ω is a compact manifold

without boundary. To construct solutions, they regularize the nonlinearity and use a compactness

method to pass in the limit. They prove the finite time extinction property for N ⩽ 3 including the

case m = 0. More recently, Carles and Ozawa [10] obtain the existence, uniqueness and finite time

extinction for Ω = RN , a ∈ iR+ and f = 0. Due to the lack of compactness, they restrict their study

to N ⩽ 2 and add an harmonic confinement in (1.1) for some technical reasons. For the finite time

property with N = 2 they also restrict the range of m to
[
1
2 , 1

)
and make a smallness assumption of

the initial data. In this paper, we work in the whole space and we remove of all these restrictions and

extend the previous results to a large class of values of a (see, for instance, Theorems 2.7 and 3.1).

Indeed, we shall assume that the complex number a is in a cone of the complex plane. More precisely,

a ∈ C(m)
def
=

{
z ∈ C; Im(z) > 0 and 2

√
mIm(z) ⩾ (1−m)|Re(z)|

}
. (1.2)

The assumption that a belongs to the cone C(m) was considered in a series of papers by Okazawa and

Yokota [18, 19, 20]. They studied the asymptotic behavior of the solutions to the complex Ginzburg-

Landau equation in a bounded domain with the assumption (1.2) and, sometimes, with m > 1. See

also Kita and Shimomura [15] and Hou, Jiang, Li and You [14] where (1.2) is assumed but with

(among others restrictive assumptions) m > 1. In all these papers, there is no finite time extinction

result. We would also like mention the (very complete) work of Antontsev, Dias and Figueira [1]

where they consider the complex Ginzburg-Landau equation,

e−iγut −∆u+ |u|m−1u = f(t, x), in (0,∞)× Ω, (1.3)

where Ω is bounded, 0 < m < 1 and −π
2 < γ < π

2 . In particular, e−iγ ̸= ±i. They show spatial

localization, waiting time and finite time extinction properties. The case of equation (1.3) with

a delayed nonlocal perturbation is studied in the recent paper of Dı́az, Padial, Tello and Tello [12].

Finally, Hayashi, Li and Naumkin [13] study time decay for a more classical Schrödinger equation (1.1)
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(a satisfying (1.2), m > 1 and Ω = RN ).

In this paper, we are interested in the finite time extinction of the solution. Formally, this result is

not too hard to obtain (the method we explain below for the finite time extinction property is that

used in [9, 10, 7]). Suppose f = 0. It is well known that solutions that vanish in finite time do not

exist when m ⩾ 1 (at least when a ∈ R). Indeed, multiplying (1.1) by iu, integrating by parts and

taking the real part, we obtain,

1

2

d

dt
∥u(t)∥2L2 + Im(a)∥u(t)∥m+1

Lm+1 = 0. (1.4)

To expect a finite time extinction, the mass has to be non increasing and so Im(a) > 0. Now, since

m + 1 < 2, we may interpolate L2 between Lm+1 and Lp, for some p > 2, and control the Lp-norm

by a Sobolev norm. Using a Gagliardo-Nirenberg’s inequality,

∥u(t)∥
2m+1

2θℓ

L2 ⩽ ∥u(t)∥m+1
Lm+1∥u(t)∥

(m+1)(1−θℓ)

θℓ

Hℓ , (1.5)

for some an explicit constant θℓ ∈ (0, 1), if u is bounded in Hℓ then putting together (1.4)–(1.5), we

arrive at the ordinary differential equation,

y′ + Cyδ ⩽ 0, (1.6)

with δ = m+1
2θℓ

, where y(t) = ∥u(t)∥2L2 . By integration, we then obtain the asymptotic behavior of u

with respect to the value of δ.

• If δ < 1 then y(t)1−δ ⩽ (y(0)1−δ − Ct)+ and so u vanishes before time T⋆ = C−1y(0)1−δ.

• If δ = 1 then y(t) ⩽ y(0)e−Ct.

• If δ > 1 then y(t)δ−1 ⩽ y(0)δ−1(1 + Ct)−1.

As a consequence, a sufficient condition to have extinction in finite time is δ < 1 which turns out to

be equivalent to N = 1 when ℓ = 1. To increase the space dimension, we assume that u is bounded

in H2 and we deduce that δ < 1 when N ⩽ 3. Theoretically, we can reach any space dimension if u

is bounded in Hℓ for ℓ large enough (actually, if ℓ =
[
N
2

]
+ 1, where

[
N
2

]
denotes the integer part of

N
2 ; see Theorem 2.1 in Bégout and Dı́az [7]). But this is not reasonable due to the lack of regularity

of the nonlinearity, which is merely Hölder continuous. A reachable goal is to obtain existence and

boundedness of the solutions in H2.

Now, we focus on the construction of a solution to (1.1) in RN with f = 0 (to fix ideas). First of

all, we would like to uniformly control ∥u(t)∥2H1 . Estimate (1.4) partially answers this question. For

∥∇u(t)∥2L2 , we multiply (1.1) by i∆u and take the real part. We get,

1

2

d

dt
∥∇u(t)∥2L2 +Re

ia

∫
RN

|u(t)|m−1u(t)∆u(t)dx

 = 0.
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We then expect to have,

Re

ia

∫
RN

|u(t)|m−1u(t)∆u(t)dx

 ⩾ 0. (1.7)

Regularizing the nonlinearity, integrating by parts and passing to the limit, (1.7) can be proved under

assumption (1.2) (Lemma 4.4). Actually, we extended the method found in Carles and Gallo [9],

where the situation is simpler since a = i. Assume Ω ⊆ RN . To construct a solution to (1.1), we use

theory of the maximal monotone operators in the Hilbert space L2. We then consider the operator,

Au = −i∆u− ia|u|m−1u, (1.8)

with the natural domain1 D(A) =
{
u ∈ H1

0 (Ω);u
m ∈ L2(Ω) and ∆u ∈ L2(Ω)

}
. Monotonicity relies

on the inequality,

Re

−i a∫
Ω

(
|u|m−1u− |v|m−1v

)
(u− v)dx

 ⩾ 0. (1.9)

Once (1.9) is proved, it remains to show that R(I + A) = L2 (Theorem 4.1 and Corollary 4.5). This

means that for any F ∈ L2, the equation

−i∆u− ia|u|m−1u+ u = F, (1.10)

admits a solution belonging to D(A). Existence, uniqueness, a priori estimates and smoothness of

the solutions of (1.10) for a large class of values of a (including (1.2)) have been intensively studied

in the papers by Bégout and Dı́az [4, 6]. The natural2 space to look for a solution is H1
0 ∩ Lm+1.

When Ω is bounded with a smooth boundary, a bootstrap method yields u ∈ H2(Ω). Note that in

this case, the condition um ∈ L2(Ω) is automatically verified since um ∈ L
2
m (Ω) ↪→ L2(Ω) and then

u ∈ D(A). Although this method works very well, we proposed another one in Bégout and Dı́az [7]:

we make the sum of two monotone operators, where one of them is maximal monotone (−i∆) and

the other one is continuous over L2(Ω) (−ia|u|m−1u). A difficulty appears when Ω is unbounded, say

Ω = RN . In this case, we have D(A) = H2(RN ) ∩ L2m(RN ) and we have to show that a solution

u ∈ H1(RN ) ∩ Lm+1(RN ) belongs to L2m(RN ), or equivalently ∆u ∈ L2(RN ). Having (1.7) in mind,

a natural method would be to multiply (1.10) by −∆u and take the real part. But then we lose the

term ∥∆u∥2L2(RN ). The original idea is to rotate a in the complex plane and stay in the cone C(m) to

still have (1.7) (see Lemma 4.2 and the picture p.13). If we can find b ∈ C such that ab ∈ C(m) then

multiplying (1.10) by −b∆u, integrating by parts and taking the real part, we arrive at,

−Im(b)∥∆u∥2L2(RN ) +Re

iab

∫
RN

|u|m−1u∆udx

+Re(b)∥∇u∥2L2(RN ) = −Re

b

∫
RN

F∆udx

 .

1It is natural in the sense that it is the smallest domain, in the sense of the inclusion, for which D(A) ⊂ L2.
2Multiply (1.10) by iu and u, integrate by parts and take the real part.

4



We see that we must have Im(b) < 0 and so the rotation has to be made in the negative sense. So

we exclude the boundary of C(m) located in the first quarter complex plane. Hence Assumption 2.1

below. Note that the sign of Re(b) has no importance since we already have an estimate in H1(RN ).

Having a priori estimates, we may construct a solution u ∈ H2(RN ) ∩ L2m(RN ) of (1.10) as a limit

of solutions with compact support. The existence of such solutions is provided in Bégout and Dı́az [4]

(see also Bégout and Dı́az [5]). To conclude the explanation of our method, we go back to the proof

of (1.9). When a = i, this is very simple since this estimate is equivalent to the monotonicity of the

derivative of the convex function defined on R2 by, (x, y) 7−→ 1
m+1 (x

2 + y2)
m+1

2 (see Remark 9.3 in

Bégout and Dı́az [4]). But when Re(a) ̸= 0 then the imaginary part of the integral in (1.9) is still

there. Fortunately, this can be controlled by its real part under assumption (1.2) and a consequence

of Liskevich and Perel′muter [17] (Lemma 2.2).

Finally, we consider the limit cases m = 0 and m = 1 for the values of a. Since lim
m↘0

C(m) = {0} ×
i(0,∞), it seems that no extension of [9, 10] is possible. The other limit case lim

m↗1
C(m) = R× i(0,∞)

is entirely treated in Bégout and Dı́az [7]: existence, uniqueness and boundedness for any subset

Ω ⊆ RN .

We will use the following notations throughout this paper. We denote by z the conjugate of the

complex number z, by Re(z) its real part and by Im(z) its imaginary part. Unless if specified,

all functions are complex-valued (H1(Ω) = H1(Ω;C), etc). For 1 ⩽ p ⩽ ∞, p′ is the conjugate

of p defined by 1
p + 1

p′ = 1. For a Banach space X, we denote by X⋆ its topological dual and by

⟨ . , . ⟩X⋆,X ∈ R the X⋆ − X duality product. In particular, for any T ∈ Lp′
(Ω) and φ ∈ Lp(Ω)

with 1 ⩽ p < ∞, ⟨T, φ⟩Lp′ (Ω),Lp(Ω) = Re
∫
Ω
T (x)φ(x)dx. The scalar product in L2(Ω) between

two functions u, v is, (u, v)L2(Ω) = Re
∫
Ω
u(x)v(x)dx. For a Banach space X and p ∈ [1,∞], u ∈

Lp
loc

(
[0,∞);X

)
means that for any T > 0, u|(0,T ) ∈ Lp

(
(0, T );X

)
. In the same way, we will use the

notation u ∈W 1,p
loc

(
[0,∞);X

)
. As usual, we denote by C auxiliary positive constants, and sometimes,

for positive parameters a1, . . . , an, write as C(a1, . . . , an) to indicate that the constant C depends

only on a1, . . . , an and that dependence is continuous (we will use this convention for constants which

are not denoted by “C”).

This paper is organized as follows. In Section 2, we state the mains results about existence, uniqueness

and boundness for (1.1) (Theorem 2.4, 2.6 and 2.7). In Section 3, we give the results about the finite

time extinction property and the asymptotic behavior (Theorems 3.1, 3.4 and 3.5). The proofs of the

existence, uniqueness and boundness are made in Section 4 while those of the finite time extinction

property and the asymptotic behavior are given in Section 5.
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2 Existence and uniqueness of the solutions

Let 0 < m < 1, let a ∈ C, let f ∈ L1
loc

(
[0,∞);L2(RN )

)
and let u0 ∈ L2(RN ). We consider the

following nonlinear Schrödinger equation.

i
∂u

∂t
+∆u+ a|u|−(1−m)u = f(t, x), in (0,∞)× RN ,

u(0) = u0, in RN .

(2.1)

(2.2)

The main results in this paper hold with the assumptions below.

Assumption 2.1. We assume that 0 < m < 1 and a ∈ C satisfy,

2
√
m Im(a) ⩾ (1−m)|Re(a)|. (2.3)

If Re(a) ⩾ 0 then we assume further that,

2
√
m Im(a) > (1−m)Re(a). (2.4)

Here and after, we shall always identify L2(RN ) with its topological dual. Let 0 < m < 1 and

let X = H ∩ Lm+1(RN ), where H = L2(RN ) or H = H1(RN ). We recall that (see, for instance,

Lemmas A.2 and A.4 in Bégout and Dı́az [7]),

X⋆ = H⋆ + L
m+1
m (RN ), (2.5)

D(RN ) ↪→ X ↪→ Lm+1(RN ) with both dense embeddings, (2.6)

L
m+1
m (RN ) ↪→ X⋆ ↪→ D ′(RN ), with both dense embeddings, (2.7)

Lm+1
loc

(
[0,∞);X

)
∩W

1,m+1
m

loc

(
[0,∞);X⋆

)
↪→ C

(
[0,∞);L2(RN )

)
. (2.8)

This justifies the notion of solution below (and especially 4)).

Definition 2.2. Let 0 < m < 1, let a ∈ C, let f ∈ L1
loc

(
[0,∞);L2(RN )

)
and let u0 ∈ L2(RN ). Let us

consider the following assertions.

1) u ∈ Lm+1
loc

(
[0,∞);H1(RN ) ∩ Lm+1(RN )

)
∩W

1,m+1
m

loc

(
[0,∞);H⋆ + L

m+1
m (RN )

)
.

2) For almost every t > 0, ∆u(t) ∈ H⋆.

3) u satisfies (2.1) in D ′((0,∞)× RN
)
.

4) u(0) = u0.
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We shall say that u is a strong solution if u is an H2-solution or an H1-solution. We shall say

that u is an H2-solution of (2.1)–(2.2)
(
respectively, an H1-solution of (2.1)–(2.2)

)
, if u satisfies the

Assertions 1)–4) with H = L2(RN )
(
respectively, with H = H1(RN )

)
.

We shall say that u is an L2-solution or a weak solution of (2.1)–(2.2) if there exists a pair,

(fn, un)n∈N ⊂ L1
loc

(
[0,∞);L2(RN )

)
× C

(
[0,∞);L2(RN )

)
, (2.9)

such that for any n ∈ N, un is an H2-solution of (2.1) where the right-hand side of (2.1) is fn, and if

fn
L1((0,T );L2(RN ))−−−−−−−−−−−→

n→∞
f and un

C([0,T ];L2(RN ))−−−−−−−−−−→
n→∞

u, (2.10)

for any T > 0, and if u satisfies (2.2).

Remark 2.3. Let 0 < m < 1. Set for any z ∈ C, g(z) = |z|−(1−m)z (g(0) = 0). We define the mapping

for any measurable function u : RN −→ C, which we still denote by g, by g(u)(x) = g(u(x)). Let X

be as in the beginning of this section (see (2.5)–(2.8)). From (2.6), (2.7) and the basic estimate,

∀(z1, z2) ∈ C2, |g(z1)− g(z2)| ⩽ C|z1 − z2|m, (2.11)

(see, for instance, Lemma A.1 in Bégout and Dı́az [7]), we deduce easily that,

g ∈ C
(
Lm+1(RN );L

m+1
m (RN )

)
and g is bounded on bounded sets, (2.12)

g ∈ C(X;X⋆) and g is bounded on bounded sets. (2.13)

By (2.6)–(2.7) and (2.12)–(2.13), it follows that,

⟨g(u), v⟩X⋆,X = ⟨g(u), v⟩
L

m+1
m (RN ),Lm+1(RN )

= Re

∫
RN

g(u)vdx, (2.14)

for any u, v ∈ X. Now, let us collect some basic informations about the solutions.

1) Any strong or weak solution belongs to C
(
[0,∞);L2(RN )

)
and Assertion 4) makes sense in L2(RN )

(by (2.8)).

2) It is obvious that an H2-solution is also an H1-solution and a weak solution. But it is not clear that

an H1-solution is a weak solution, without a continuous dependence of the solution with respect

to the initial data. Such a result will be established with the additional assumptions (2.3)–(2.4)

on a (see Lemma 4.6 below). Note also that Assertion 2) of Definition 2.2 is not an additional

assumption for the H1-solutions.

3) AnyH2-solution (respectively, anyH1-solution) satisfies (2.1) in L2(RN )+L
m+1
m (RN )

(
respectively,

in H−1(RN ) + L
m+1
m (RN )

)
, for almost every t > 0. Indeed, this is a direct consequence of Defini-

tion 2.2 and (2.13).
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4) If u is a weak solution then u ∈W 1,1
loc

(
[0,∞);Y ⋆

)
and it solves (2.1) in Y ⋆, for almost every t > 0,

where Y = H2(RN ) ∩ L
2

2−m (RN ) and Y ⋆ = H−2(RN ) + L
2
m (RN ) ↪→ D ′(RN ) (by Lemma A.2 in

Bégout and Dı́az [7]). Indeed, using the notation of Definition 2.2 and (2.11), this comes from

(2.10) and the uniform convergences,

∆un
C([0,T ];H−2(RN ))−−−−−−−−−−−−→

n→∞
∆u, (2.15)

g(un)
C([0,T ];L

2
m (RN ))−−−−−−−−−−−→

n→∞
g(u), (2.16)

for any T > 0. In particular, u solves (2.1) in D ′((0,∞)× RN
)
.

Theorem 2.4 (Existence and uniqueness of L2-solutions). Let Assumption 2.1 be fulfilled and

let f ∈ L1
loc

(
[0,∞);L2(RN )

)
. Then for any u0 ∈ L2(RN ), there exists a unique weak solution u to

(2.1)–(2.2). In addition,

u ∈ Lm+1
loc

(
[0,∞);Lm+1(RN )

)
, (2.17)

1

2
∥u(t)∥2L2(RN ) + Im(a)

t∫
s

∥u(σ)∥m+1
Lm+1(RN )

dσ ⩽
1

2
∥u(s)∥2L2(RN ) + Im

t∫∫
s RN

f(σ, x)u(σ, x) dxdσ, (2.18)

for any t ⩾ s ⩾ 0. Finally, if v is a weak solution of (2.1) with v(0) = v0 ∈ L2(RN ) and g ∈
L1
loc([0,∞);L2(RN )) instead of f in (2.1) then,

∥u(t)− v(t)∥L2(RN ) ⩽ ∥u(s)− v(s)∥L2(RN ) +

t∫
s

∥f(σ)− g(σ)∥L2(RN )dσ, (2.19)

for any t ⩾ s ⩾ 0.

Remark 2.5. Let Assumption 2.1 be fulfilled. It follows from (2.18) and Hölder’s and Young’s

inequalities that if f ∈ L1
(
(0,∞);L2(RN )

)
then,

u ∈ L∞(
(0,∞);L2(RN )

)
∩ Lm+1

(
(0,∞);Lm+1(RN )

)
.

By interpolation, we infer that for any p ∈ [m+ 1, 2),

u ∈ Cb

(
[0,∞);L2(RN )

)
∩ L

p(1−m)
2−p

(
(0,∞);Lp(RN )

)
. (2.20)

If, in addition, (φn)n∈N ⊂ L2(RN ), (fn)n∈N ⊂ L1
(
(0,∞);L2(RN )

)
and,

φn
L2(RN )−−−−−→
n→∞

u0 and fn
L1((0,∞);L2(RN ))−−−−−−−−−−−−→

n→∞
f,

then by (2.19), (2.20) and again by interpolation, we have for any p ∈ (m+ 1, 2),

un
Cb([0,∞);L2(RN ))∩L

p(1−m)
2−p ((0,∞);Lp(RN ))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

n→∞
u,

where for each n ∈ N, un is the weak solution of (2.1) with un(0) = φn and fn instead of f.
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Theorem 2.6 (Existence and uniqueness of H1-solutions). Let Assumption 2.1 be fulfilled and

let f ∈ W 1,1
loc

(
[0,∞);H1(RN )

)
. Then for any u0 ∈ H1(RN ), there exists a unique H1-solution u to

(2.1)–(2.2). Furthermore, u is also a weak solution and satisfies the following properties.

1) u ∈ C
(
[0,∞);L2(RN )

)
∩ C1

(
[0,∞);Y ⋆

)
and u satisfies (2.1) in Y ⋆, for any t ⩾ 0, where Y ⋆ =

H−2(RN ) + L
2
m (RN ).

2) u ∈ Cw

(
[0,∞);H1(RN )

)
∩W 1,∞

loc

(
[0,∞);H−1(RN ) + L

2
m (RN )

)
and,

∥∇u(t)∥L2(RN ) ⩽ ∥∇u0∥L2(RN ) +

∫ t

0

∥∇f(s)∥L2(RN )ds, (2.21)

for any t ⩾ 0.

3) The map t 7−→ ∥u(t)∥2L2(RN ) belongs to W 1,1
loc

(
[0,∞);R

)
and we have,

1

2

d

dt
∥u(t)∥2L2(RN ) + Im(a)∥u(t)∥m+1

Lm+1(RN )
= Im

∫
RN

f(t, x)u(t, x) dx, (2.22)

for almost every t > 0.

Theorem 2.7 (Existence and uniqueness of H2-solutions). Let Assumption 2.1 be fulfilled and

let f ∈ W 1,1
loc

(
[0,∞);L2(RN )

)
. Then for any u0 ∈ H2(RN ) ∩ L2m(RN ), there exists a unique H2-

solution u to (2.1)–(2.2). Furthermore, u satisfies (2.1) in L2(RN ), for almost every t > 0, and the

following properties.

1) u ∈ C
(
[0,∞);H1(RN )∩Lm+1(RN )

)
∩C1

(
[0,∞);H−1(RN ) +L

m+1
m (RN )

)
and u satisfies (2.1) in

H−1(RN ) + L
m+1
m (RN ), for any t ⩾ 0.

2) u ∈W 1,∞
loc

(
[0,∞);L2(RN )

)
∩ L∞

loc

(
[0,∞);H2(RN ) ∩ L2m(RN )

)
and,


∥u(t)− u(s)∥L2(RN ) ⩽ ∥ut∥L∞((s,t);L2(RN ))|t− s|,

∥∇u(t)−∇u(s)∥L2(RN ) ⩽ M |t− s| 12 ,

∥ut∥L∞((0,t);L2(RN )) ⩽ ∥∆u0 + a|u0|m−1u0 − f(0)∥L2(RN ) +

∫ t

0

∥f ′(σ)∥L2(RN )dσ,

(2.23)

(2.24)

(2.25)

for any t ⩾ s ⩾ 0, where M2 = 2∥ut∥L∞((s,t);L2(RN ))∥∆u∥L∞((s,t);L2(RN )).

3) The map t 7−→ ∥u(t)∥2L2(RN ) belongs to C1
(
[0,∞);R

)
and (2.22) holds for any t ⩾ 0.

4) If f ∈W 1,1
(
(0,∞);L2(RN )

)
then we have,

u ∈ Cb

(
[0,∞);H1(RN )

)
∩ L∞(

(0,∞);H2(RN ) ∩ L2m(RN )
)
∩W 1,∞(

(0,∞);L2(RN )
)
.

Remark 2.8. Since f ∈W 1,1
loc

(
[0,∞);L2(RN )

)
↪→ C

(
[0,∞);L2(RN )

)
(see, for instance, 1) of Lemma A.4

in Bégout and Dı́az [7]), estimate (2.25) with f(0) makes sense.
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Remark 2.9. We recall that if u ∈ L2(RN ) with ∆u ∈ L2(RN ) then u ∈ H2(RN ). Furthermore, if

∥u∥2H2,2(RN ) = ∥u∥
2
L2(RN )+∥∆u∥2L2(RN ) then ∥ .∥H2,2(RN ) and ∥ .∥H2(RN ) are equivalent norms. Indeed,

this us due to the Fourier transform and Plancherel’s formula. Finally, note that,

∥∇u∥2L2(RN ) ⩽ ∥u∥L2(RN )∥∆u∥L2(RN ) ⩽ ∥u∥2L2(RN ) + ∥∆u∥2L2(RN ), (2.26)

for any u ∈ H2(RN ).

Remark 2.10. Using a radically different method than the one we propose here, we may show that

all the results of this section remain valid if we replace RN with an unbounded domain Ω ̸= RN . This

will be the subject of a future work.

3 Finite time extinction and asymptotic behavior

Following the method by Carles and Gallo [9] (also used by Carles and Ozawa [10]) and Bégout and

Dı́az [7], we are able to prove the finite time extinction and asymptotic behavior results.

Theorem 3.1. Let Assumption 2.1 be fulfilled with N ∈ {1, 2, 3}, let f ∈ W 1,1
(
(0,∞);L2(RN )

)
, let

u0 ∈ H1(RN ) and assume that one of the following hypotheses holds.

1) N = 1 and f ∈W 1,1
(
(0,∞);H1(R)

)
.

2) N ∈ {1, 2, 3} and u0 ∈ H2(RN ) ∩ L2m(RN ).

Let u be the unique strong solution of (2.1)–(2.2). Finally, assume that there exists T0 ⩾ 0 such that,

for almost every t > T0, f(t) = 0.

Let ℓ be the exponant in u0 ∈ Hℓ(RN ). We have the following results.

a) There exists a finite time T⋆ ⩾ T0 such that,

∀t ⩾ T⋆, ∥u(t)∥L2(RN ) = 0. (3.1)

Furthermore,

T⋆ ⩽ C∥u∥
N(1−m)

2ℓ

L∞((0,∞);Hℓ(RN ))
∥u(T0)∥

(1−m)(2ℓ−N)
2ℓ

L2(RN )
+ T0, (3.2)

where C = C(Im(a), N,m, ℓ).

b) There exists ε⋆ = ε⋆(|a|, N,m) satisfying the following property. Let δ = (2ℓ+N)+m(2ℓ−N)
4ℓ ∈

(
1
2 , 1

)
.

If f ∈W 1,1
(
(0,∞);H1(RN )

)
,

(
∥u0∥H1(RN ) + ∥f∥L1((0,∞);H1(RN ))

)1−m
⩽ ε⋆ min

{
1, T0

}
, if N = 1,(

∥u0∥mH2(RN ) + ∥f∥
m
W 1,1((0,∞);H1(RN ))

)1−m

⩽ ε⋆ min
{
1, T0

}
, if N ∈ {2, 3},
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and if for almost every t > 0,

∥f(t)∥2L2(RN ) ⩽ ε⋆
(
T0 − t

) 2δ−1
1−δ

+
, (3.3)

then (3.1) holds with T⋆ = T0.

Remark 3.2. If (N, ℓ) ∈ {(1, 1), (2, 2)} then 2δ−1
1−δ = 2 1+m

1−m , if (N, ℓ) = (1, 2) then 2δ−1
1−δ = 2 1+3m

3(1−m)

and if (N, ℓ) = (3, 2) then 2δ−1
1−δ = 2 3+m

1−m . Note that if N = 1 and u0 ∈ H2(RN ) then there are two

possible choices for 2δ−1
1−δ in (3.3): 2 1+m

1−m or 2 1+3m
3(1−m) . Since for t near T0, T0 − t < 1 then the choice

the less restrictive is that for which 2δ−1
1−δ is the smallest as possible, that is 2 1+3m

3(1−m) .

Remark 3.3. In the case of our nonlinearity, Theorem 3.1 is an improvement of the result of Carles

and Ozawa [10] in the sense they obtain the same conclusion as in a) but with a presence harmonic

confinement in (2.1), Re(a) = 0, f = 0, N ∈ {1, 2} and
(
u0 ∈ H1(R) ∩ F (H1(R))3

)
, if N = 1

and
(
u0 ∈ H2(R2) ∩F (H2(R2))3, ∥u0∥L2(R2) small enough and 1

2 ⩽ m < 1
)
, if N = 2. Additional

nonlinearities are also considered in [10].

Theorem 3.4. Let Assumption 2.1 be fulfilled with N ⩾ 4, let f ∈ W 1,1
loc

(
[0,∞);L2(RN )

)
and let

u0 ∈ H1(RN ). Suppose further that f ∈ W 1,1
loc

(
[0,∞);H1(RN )

)
or u0 ∈ H2(RN ). Let u be the unique

strong solution of (2.1)–(2.2). Finally, assume that there exists T0 ⩾ 0 such that,

for almost every t > T0, f(t) = 0.

Then we have for any t ⩾ T0,

∥u(t)∥L2(RN ) ⩽ ∥u(T0)∥L2(RN )e
−C(t−T0),

if N = 4 and u0 ∈ H2(RN ),

∥u(t)∥L2(RN ) ⩽
∥u(T0)∥L2(RN )(

1 + C∥u(T0)∥
(1−m)(N−2ℓ)

2ℓ

L2(RN )
(t− T0)

) 2ℓ
(1−m)(N−2ℓ)

,

if N ⩾ 5 or u0 ∈ H1(RN ), where C = C(∥u∥L∞((0,∞);Hℓ(RN )), Im(a), N,m, ℓ).

Theorem 3.5. Let Assumption 2.1 be fulfilled, let f ∈ L1
loc

(
[0,∞);L2(RN )

)
, let u0 ∈ L2(RN ) and let

u be the unique weak solution of (2.1)–(2.2). If

f ∈ L1
(
(0,∞);L2(RN )

)
,

then,

lim
t↗∞

∥u(t)∥L2(RN ) = 0.

3F (H1(R)) ↪→ L2m(R) and F (H2(R2)) ↪→ L2m(R2), for any 1
3
< m ⩽ 1.
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4 Proofs of the existence and uniqueness theorems

Since we have to prove existence in the whole space, the method is radically different than that used

in Bégout and Dı́az [7].

Theorem 4.1. Let Assumption 2.1 be fulfilled and let λ, b0 > 0. Then for any F ∈ L2(RN ), there

exists a unique solution u to,u ∈ H2(RN ) ∩ L2m(RN ),

−λ∆u− aλ|u|−(1−m)u− ib0u = F, in L2(RN ).
(4.1)

In addition,

∥u∥2H2(RN ) + ∥u∥
m+1
Lm+1(RN )

+ ∥u∥2mL2m(RN ) ⩽ M∥F∥2L2(RN ), (4.2)

where M = M(|a|,Arg(a), b0, λ). Furthermore, if F is compactly supported then so is u. Finally, let

G ∈ L2(RN ). If v is a solution to (4.1) with G instead of F then,

∥u− v∥L2(RN ) ⩽
1

b0
∥F −G∥L2(RN ). (4.3)

Here and after, Arg(a) ∈ (0, π) denotes the principal value of the argument of a.

The proof of the theorem relies on the following lemmas.

Lemma 4.2. Let Assumption 2.1 be fulfilled. Then there exists b ∈ C, with |b| = 1, satisfying the

following property.

Re(b) > 0 and Im(b) < 0, (4.4)

2
√
m Im(ab) > (1−m)Re(ab) ⩾ 0. (4.5)

In addition, b = b(Arg(a)). In particular, ab satisfies (2.3)–(2.4) of Assumption 2.1.

Proof. Let θa = Arg(a) ∈ (0, π), since Im(a) > 0. We look for b = e−iθb , where 0 < θb <
π
2 .

Case 1: Re(a) < 0.

If follows that, π
2 < θa < π. We choose θb = θa − π

2 . We then have ab = i|a| and the conclusion is

clear.

Case 2: Re(a) ⩾ 0.

If follows that, 0 < θa ⩽ π
2 and by (2.4), one has

2
√
m sin(θa) > (1−m) cos(θa) ⩾ 0. (4.6)

By continuity and (4.6), there exists θb ∈ (0, θa) such that,

2
√
m sin(θa − θb) > (1−m) cos(θa − θb) > 0. (4.7)
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Then, 0 < θa − θb <
π
2 , ab = |a|e

i(θa−θb) and again the conclusion is clear.

We may summarize the proof of Lemma 4.2 with the picture below.

.

.0

1

i

a = |a|eiθa

b = e−iθb

ab

+

−θb

←− −θb
Re(z)

Im(z)

Im(z)= 1−m
2
√

m
|Re(z)|

θb = θa − π
2

Case 1: Re(a) < 0

.

.

.

0

1

i

a

b = e−iθb

ab

+

−θb

←− −θb
Re(z)

Im(z)

Im(z)= 1−m
2
√

m
|Re(z)|

0 < θb ≪ 1
Case 2: Re(a) ⩾ 0

Lemma 4.3. Let 0 < m < 1. Set for any z ∈ C, g(z) = |z|−(1−m)z (g(0) = 0). We define the mapping

for any measurable function u : RN −→ C, which we still denote by g, by g(u)(x) = g(u(x)). Then for

any p ∈ [1,∞),

g ∈ C
(
Lp(RN );L

p
m (RN )

)
and g is bounded on bounded sets. (4.8)

Let a ∈ C with Im(a) > 0 satisfying (2.3). Then
(
g(u)− g(v)

)
(u− v) ∈ L1(RN ) and,

Re

−i a ∫
RN

(
g(u)− g(v)

)
(u− v)dx

 ⩾ 0, (4.9)

for any u, v ∈ Lm+1(RN ).

Proof. Property (4.8) is an obvious consequence of (2.11) which implies the integrability property

in the lemma. By Lemma 2.2 of Liskevich and Perel′muter [17], we have

2
√
m

∣∣∣Im((
g(z1)− g(z2)

)(
z1 − z2

))∣∣∣ ⩽ (1−m)Re
((

g(z1)− g(z2)
)(
z1 − z2

))
, (4.10)
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for any (z1, z2) ∈ C2. Let u, v ∈ Lm+1(RN ). We have by (4.10),

Re

−i a ∫
RN

(
g(u)− g(v)

)
(u− v)dx


= Im(a)Re

∫
RN

(
g(u)− g(v)

)(
u− v

)
dx+Re(a)Im

∫
RN

(
g(u)− g(v)

)(
u− v

)
dx

⩾

(
Im(a)− |Re(a)|1−m

2
√
m

)
Re

∫
RN

(
g(u)− g(v)

)(
u− v

)
dx

⩾ 0.

The lemma is proved.

Lemma 4.4 ([7]). Let 0 < m < 1 and let a ∈ C with Im(a) > 0 satisfying (2.3). Let g be as in

Lemma 4.3. Then g(u)∆u ∈ L1(RN ) and,

Re

ia

∫
RN

g(u)∆udx

 ⩾ 0, (4.11)

for any u, v ∈ H2(RN ) ∩ L2m(RN ).

Proof. See Bégout and Dı́az [7] (Lemma 6.3).

Proof of Theorem 4.1. Let Assumption 2.1 be fulfilled, λ, b0 > 0 and F ∈ L2(RN ). Let g be as in

Lemma 4.3. We want to solve,

−λ∆u− aλg(u)− ib0u = F, in H−1(RN ) + L
m+1
m (RN ). (uF )

We proceed with the proof in five steps.

Step 1: A first estimate. Let G ∈ L2(RN ). If u, v ∈ H2
loc(RN )∩H1(RN )∩Lm+1(RN ) are solutions

of (uF ) and (vG), respectively, then estimate (4.3) holds true.

We multiply by iφ, for φ ∈ D(RN ), the equation satisfied by u− v, we integrate by parts and we take

the real part. By density of D(RN ) in H1(RN )∩Lm+1(RN ) and (4.8),
(
g(u)−g(v)

)
(u− v) ∈ L1(RN )

and we may choose φ = u− v. It follows that,

λRe

−ia ∫
RN

(
g(u)− g(v)

)
(u− v)dx

+ b0∥u− v∥2L2(RN ) = −Im

 ∫
RN

(F −G)(u− v)dx

 . (4.12)

Estimate (4.3) then comes from (4.12), (4.9) and Cauchy-Schwarz’s inequality.

Step 2: A second estimate. If u is a solution to (4.1) then u ∈ Lm+1(RN ) and satisfies (4.2).

Since 2m < m + 1 < 2, then L2m(RN ) ∩ L2(RN ) ⊂ Lm+1(RN ). By Theorem 2.9 in Bégout and

Dı́az [6],

∥u∥2H1(RN ) + ∥u∥
m+1
Lm+1(RN )

⩽ M(|a|, b0, λ)∥F∥2L2(RN ). (4.13)
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Let b ∈ C be given by Lemma 4.2. We multiply the equation in (4.1) by −ib∆u, integrate by parts

and take the real part. We obtain,

− λIm(b)∥∆u∥2L2(RN ) + λRe

iab

∫
RN

g(u)∆udx

+ b0Re(b)∥∇u∥2L2(RN )

= Im

(
b

∫
RN

F∆udx

)
.

(4.14)

By (4.5), we may apply Lemma 4.4. Using (4.4), (4.11) and applying Cauchy-Schwarz’s inequality in

(4.14), one obtains,

∥∆u∥L2(RN ) ⩽
1

λ|Im(b)|
∥F∥L2(RN ). (4.15)

Now, since by Plancherel’s formula, ∥u∥Ḣ2(RN ) ⩽ C∥|ξ|2û∥L2(RN ) ⩽ C∥∆u∥L2(RN ), putting together

(4.13) and (4.15), one obtains (4.2).

Step 3: Compactness of the solution. If suppF is compact and if u ∈ H1(RN ) ∩ Lm+1(RN ) is

a solution to (uF ) then suppu is compact.

This comes from Theorem 3.6 in Bégout and Dı́az [4].

Step 4: Existence and uniqueness. There exists a unique solution u ∈ H2
loc(RN ) ∩ H1(RN ) ∩

Lm+1(RN ) to (uF ).

By Theorem 2.8 in Bégout and Dı́az [6], equation (uF ) admits a solution u ∈ H1(RN ) ∩ Lm+1(RN ).

By Proposition 4.5 in Bégout and Dı́az [4], u ∈ H2
loc(RN ). Finally, by Step 1 this solution is unique.

Step 5: Conclusion.

Estimates (4.2)–(4.3), uniqueness and compactness property come from Steps 1–3, once the existence

of a solution to (4.1) is proved. Let u ∈ H2
loc(RN ) ∩ H1(RN ) ∩ Lm+1(RN ) the solution of (uF ) be

given by Step 4. Let (Fn)n∈N ⊂ D(RN ) be such that Fn
L2(RN )−−−−−→
n→∞

F. Finally, for each n ∈ N, denote

by un the unique solution to (4.1), where the right-hand side is Fn instead of F (Steps 4 and 3). By

Steps 1 and 2, (un)n∈N is bounded in H2(RN ) and un
L2(RN )−−−−−→
n→∞

u. It follows that u ∈ H2(RN ) and,

from the equation in (4.1), g(u) ∈ L2(RN ). Hence u is a solution to (4.1). This concludes the proof

of the lemma.

Corollary 4.5. Let Assumption 2.1 be fulfilled. Let us define the following (nonlinear) operator on

L2(RN ). D(A) = H2(RN ) ∩ L2m(RN ),

∀u ∈ D(A), Au = −i∆u− ia|u|−(1−m)u,

Then A is maximal monotone on L2(RN ) (and so m-accretive) with dense domain.
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Proof. The density is obvious. For any λ > 0, I + λA is bijective from D(A) onto L2(RN ) and

(I + λA)−1 is a contraction (Theorem 4.1). It follows that A is maximal monotone (Brezis [8],

Proposition 2.2, p.23).

Proof of Theorem 2.7. Let g be as in Lemma 4.3. We first recall that by Remark 2.8,

f ∈ C
(
[0,∞);L2(RN )

)
. (4.16)

By Corollary 4.5 and Barbu [2] (Theorem 2.2, p.131), there exists a unique u ∈W 1,∞
loc

(
[0,∞);L2(RN )

)
satisfying u(t) ∈ H2(RN ) ∩ L2m(RN ) and (2.1) in L2(RN ), for almost every t > 0, u(0) = u0 and

(2.25). This last estimate yields (2.23). Since u ∈W 1,∞
loc

(
[0,∞);L2(RN )

)
, it follows from Lemma A.5

in Bégout and Dı́az [7] that the map M : t 7−→ 1
2∥u(t)∥

2
L2(RN ) belongs to W 1,∞

loc

(
[0,∞);R

)
and

M ′(t) =
(
u(t), ut(t)

)
L2(RN )

, for almost every t > 0. Multiplying (2.1) by iu, integrating by parts

over RN and taking the real part, we obtain (2.22), for almost every t > 0. We deduce easily from

(2.22), (4.16) and Hölder’s inequality that u ∈ L∞
loc

(
[0,∞);Lm+1(RN )

)
. Multiplying again (2.1) by u,

integrating by parts and taking the real part, we get

∥∇u(t)∥2L2(RN ) ⩽ |Re(a)|∥u(t)∥
m+1
Lm+1(RN )

+
(
∥ut(t)∥L2(RN ) + ∥f(t)∥L2(RN )

)
∥u(t)∥L2(RN ),

for almost every t > 0. It follows that u ∈ L∞
loc

(
[0,∞);H1(RN )

)
. We infer that u is an H2-solution.

Let b ∈ C be given by Lemma 4.2. We multiply (2.1) by iabg(u), integrate and take the real part. We

get,

Re

ab

∫
RN

utg(u)dx

+Re

iab

∫
RN

g(u)∆udx

+ |a|2Re(ib)∥g(u)∥2L2(RN )

= Re

iab

∫
RN

fg(u)dx

 .

(4.17)

By Lemma 4.2, we have (4.11). This implies,

Re

iab

∫
RN

g(u)∆udx

 = Re

iab

∫
RN

g(u)∆udx

 ⩾ 0, (4.18)

and (4.17) becomes,

|a||Im(b)| ∥u∥2mL2m(RN ) ⩽
∫
RN

|(ut + if)g(u)|dx, (4.19)

since Re(ib) = −Im(b) > 0, by (4.4). By Cauchy-Schwarz’s and Young’s inequalities, we get∫
RN

|(ut + if)g(u)|dx ⩽
1

2|a||Im(b)|
∥ut + if∥2L2(RN ) +

|a||Im(b)|
2

∥u∥2mL2m(RN ). (4.20)
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Putting together (4.19) and (4.20), we arrive at,

∥u(t)∥2mL2m(RN ) ⩽
1

|a|2|Im(b)|2
(
∥ut(t)∥L2(RN ) + ∥f(t)∥L2(RN )

)2
, (4.21)

for almost every t > 0. Multiplying again (2.1) by ib∆u, using (4.18) and proceeding as above, we

arrive at,

∥∆u(t)∥L2(RN ) ⩽
1

|Im(b)|
(
∥ut(t)∥L2(RN ) + ∥f(t)∥L2(RN )

)
, (4.22)

for almost every t > 0. By (4.16), (4.21), (4.22), Remark 2.9 and Hölder’s inequality (recalling that

2m < m+ 1 < 2), we obtain,

u ∈ L∞
loc

(
[0,∞);H2(RN )

)
∩ L∞

loc

(
[0,∞);L2m(RN )

)
, (4.23)

u ∈ C
(
[0,∞);L2(RN )

)
∩ L∞

loc

(
[0,∞);L2m(RN )

)
↪→ C

(
[0,∞);Lm+1(RN )

)
. (4.24)

Recalling that u ∈ W 1,∞
loc

(
[0,∞);L2(RN )

)
, by (4.23) and the embedding 3) of Lemma A.4, we have

u ∈ C
(
[0,∞);H1(RN )

)
. We then deduce Property 1), with help of (2.13), (4.16) and (2.1). With

(2.26), (2.23) and (4.23), we get (2.24) and Property 2) is proved. Property 3) comes from (2.22),

(4.16) and (4.24). Finally, Property 4) follows easily from Remarks 2.5, 2.8 and 2.9, (2.25), (4.21)

and (4.22). This concludes the proof of the theorem.

Lemma 4.6. Let Assumption 2.1 be fulfilled and f1, f2 ∈ L1
loc

(
[0,∞);L2(RN )

)
. If u and v are strong

solutions or weak solutions of

iut +∆u+ a|u|−(1−m)u = f1,

ivt +∆v + a|v|−(1−m)v = f2,

respectively, then u, v ∈ C
(
[0,∞);L2(Ω)

)
and

∥u(t)− v(t)∥L2(Ω) ⩽ ∥u(s)− v(s)∥L2(Ω) +

t∫
s

∥f1(σ)− f2(σ)∥L2(Ω)dσ, (4.25)

for any t ⩾ s ⩾ 0.

Proof. Let X = H1(RN ) ∩ Lm+1(RN ) and let u, v be as in the lemma. Continuity comes from

(2.8) and Definition 2.2. Estimate (4.25) being stable by passing to the limit in C
(
[0, T ];L2(RN )

)
×

L1
(
(0, T );L2(RN )

)
, for any T > 0, it is sufficient to establish it for the H2-solutions. And since

an H2-solution is an H1-solution, we may assume that u, v are H1-solutions. Making the difference

between the two equations, it follows from 3) of Remark 2.3 that we can take the X⋆ − X duality

17



product of the result with i(u− v). With help of (A.3) of Lemma A.5 in Bégout and Dı́az [7], (2.14),

(4.9) and Cauchy-Schwarz’s inequality, we then arrive at,

1

2

d

dt
∥u( . )− v( . )∥2L2(Ω) ⩽ ∥f1 − f2∥L2(Ω)∥u− v∥L2(Ω),

almost everywhere on (0,∞). Integrating over (s, t), one obtains (4.25).

Proof of Theorem 2.4. Existence, estimate (2.19) and uniqueness comes from density of
(
H2(RN )∩

L
2
m (RN )

)
×W 1,1

loc

(
[0,∞);L2(RN )

)
in L2(RN ) × L1

loc

(
[0,∞);L2(RN )

)
, Theorem 2.7, Lemma 4.6 and

completeness of C
(
[0, T ];L2(RN )

)
, for any T > 0. Finally, estimates (2.17)–(2.18) are due to Bégout

and Dı́az [7] (Proposition 2.3). This ends the proof of the theorem.

Proof of Theorem 2.6. Uniqueness comes from Lemma 4.6. Let f ∈ W 1,1
loc ([0,∞);H1(RN )) and

let u0 ∈ H1(RN ). Let (φn)n∈N ⊂ D(RN ) be such that φn
H1(RN )−−−−−→
n→∞

u0. Finally, let g be defined as in

Lemma 4.3 and for each n ∈ N, let un the unique H2-solution of (2.1) such that un(0) = φn, be given

by Theorem 2.7. By Lemma 4.6, we have for any T > 0 and n, p ∈ N,

∥un∥C([0,T ];L2(RN )) ⩽ ∥φn∥L2(RN ) +

∫ T

0

∥f(t)∥L2(RN )dt, (4.26)

∥un − up∥L∞((0,∞);L2(RN )) ⩽ ∥φn − φp∥L2(RN ).

It follows that for any T > 0, (un)n∈N is a Cauchy sequence in C
(
[0, T ];L2(RN )

)
. As a consequence,

there exists u ∈ C
(
[0,∞);L2(RN )

)
such that for any T > 0,

un
C([0,T ];L2(RN ))−−−−−−−−−−→

n→∞
u. (4.27)

By definition, it follows from (4.27) that u is a weak solution of (2.1)–(2.2). By Theorem 2.7, we can

take the L2-scalar product of (2.1) with −i∆un and it follows from (A.4) in Bégout and Dı́az [7] that

for any n ∈ N and almost every s > 0,

1

2

d

dt
∥∇un(s)∥2L2(RN ) +Re

ia

∫
RN

g(un(s))∆un(s)dx

 =
(
∇f(s), i∇un(s)

)
L2(RN )

.

which gives with (4.11) and Cauchy-Schwarz’s inequality,

1

2

d

dt
∥∇un(s)∥2L2(RN ) ⩽ ∥∇f(s)∥L2(RN )∥∇un(s)∥L2(RN ).

By integration, we obtain for any t > 0 and any n ∈ N,

∥∇un(t)∥L2(RN ) ⩽ ∥∇φn∥L2(RN ) +

∫ t

0

∥∇f(s)∥L2(RN )ds. (4.28)

By the Sobolev embedding (see, for instance, 1) of Lemma A.4 in Bégout and Dı́az [7]),

W 1,1
loc

(
[0,∞);L2(RN )

)
↪→ C

(
[0,∞);L2(RN )

)
, (4.29)
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(4.26), (4.28), (4.8) and (2.1), we infer that,

(un)n∈N is bounded in L∞(
(0, T );H1(RN )

)
∩W 1,∞(

(0, T );Z⋆
)
, (4.30)

for any T > 0, where Z⋆ = H−1(RN ) + L
2
m (RN ) is the topological dual space of Z = H1(RN ) ∩

L
2

2−m (RN ). Note that Z⋆ is reflexive (Lemma A.2 in Bégout and Dı́az [7]) and since H1(RN ) ↪→ Z⋆,

it follows from (4.27), (4.30), (2.15) and Proposition 1.1.2, p.2, and (ii) of Remark 1.3.13, p.12, in

Cazenave [11] that,

u ∈ Cw

(
[0,∞);H1(RN )

)
∩W 1,∞

loc

(
[0,∞);Z⋆

)
, (4.31)

∆u ∈ C
(
[0,∞);H−2(RN )

)
, (4.32)

un(t) ⇀ u(t), in H1
w(RN ), as n→∞, (4.33)

for any t ⩾ 0. After integration of (2.22), we see with help of (4.26) that for any T > 0, (un)n∈N is

bounded in Lm+1
(
(0, T );Lm+1(RN )

) ∼= Lm+1
(
(0, T )× RN

)
, which is reflexive. We infer with (4.27),

u ∈ Lm+1
loc

(
[0,∞);Lm+1(RN )

)
. (4.34)

By 4) of Remark 2.3, (4.29), (4.31), (4.34) and (2.1), it follows that u satisfies 1) of Definition 2.2

and then u is an H1-solution. By 3) of Remark 2.3, we can take the X −X⋆ duality product with iu,

where X = H1(RN )∩Lm+1(RN ). Applying Lemma A.5 of Bégout and Dı́az [7] and (2.14), Property 3)

follows. Estimate (2.21) comes from (4.33), (4.28) and the weak lower semicontinuity of the norm.

Finally, smoothness of the solution in Properties 1) and 2) follows easily from (4.29), (4.31), (4.32),

(4.8) and the equation (2.1). This concludes the proof of the theorem.

5 Proofs of the finite time extinction and asymptotic behavior
theorems

Proof of Theorem 3.1. Apply Theorems 2.6, 2.7 and use the general theorem of finite time

extinction in [7] (Theorem 2.1 and Remark 4.8). Nevertheless, to make the proof more understandable,

we briefly explain how to obtain (3.1)–(3.2). Let ℓ = 1, if u0 ∈ H1(RN ) and ℓ = 2, if u0 ∈ H2(RN ).

Assume that for some T0 ⩾ 0, f(t) = 0, for almost every t > T0. It follows from Theorems 2.6, 2.7 and

Remark 2.5 that u ∈ L∞(
(0,∞);Hℓ(RN )

)
. We have by Gagliardo-Nirenberg’s inequality and (2.22),

∥u(t)∥
(2ℓ+N)+m(2ℓ−N)

2ℓ

L2(RN )
⩽ C∥u∥

N(1−m)
2ℓ

L∞((0,∞);Hℓ(RN ))
∥u(t)∥m+1

Lm+1(RN )
,

d

dt
∥u(t)∥2L2(RN ) + 2Im(a)∥u(t)∥m+1

Lm+1(RN )
= 0,

for almost every t > T0. It follows that,

y′(t) + Cy(t)δ ⩽ 0, (5.1)
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for almost every t > T0, where y(t) = ∥u(t)∥2L2(RN ) and δ = (2ℓ+N)+m(2ℓ−N)
4ℓ . By our assumption on

ℓ, we have δ ∈ (0, 1) if N ⩽ 3. Hence (3.1)–(3.2) by integration.

Proof of Theorem 3.4. Let ℓ = 1, if u0 ∈ H1(RN ) and ℓ = 2, if u0 ∈ H2(RN ). By Theorems 2.6,

2.7 and Remark 2.5, u ∈ L∞(
(0,∞);Hℓ(RN )

)
. Repeating the proof of Theorem 3.1, we obtain (5.1).

According to the different cases as in the theorem, we have δ = 1 or δ > 1. The results then follow by

integration (see also (1.6) and the lines below). For more details, see 3) of Remark 2.4 in [7].

Proof of Theorem 3.5. By Remark 2.5, we may assume that f ∈ D
(
[0,∞);L2(RN )

)
and u0 ∈

H2(RN ). Let [0, T0] ⊃ supp f. By (2.22), d
dt∥u(t)∥

2
L2(RN ) ⩽ 0, for any t > T0. It follows that

lim
t↗∞

∥u(t)∥L2(RN ) = ℓ0, for some ℓ0 ∈ [0,∞). Let q ∈ (2,∞) with (N − 2)q < 2N. By Hölder’s

inequality and Sobolev’s embedding H1(RN ) ↪→ Lq(RN ), there exists θ ∈ (0, 1) such that,

ℓ0 ⩽ ∥u(t)∥L2(RN ) ⩽ ∥u(t)∥θLm+1(RN )∥u(t)∥
1−θ
Lq(RN )

⩽ C∥u(t)∥θLm+1(RN )∥u∥
1−θ
L∞((0,∞);H1(RN ))

,

for any t > T0. We get, still by (2.22),

d

dt
∥u(t)∥2L2(RN ) ⩽ −Cℓ

m+1
θ

0 ⩽ 0,

for any t > T0. Hence ℓ0 = 0.
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Gauthier-Villars, Paris, 1969.

[17] V. A. Liskevich and M. A. Perel′muter. Analyticity of sub-Markovian semigroups. Proc. Amer.
Math. Soc., 123(4):1097–1104, 1995.

[18] N. Okazawa and T. Yokota. Monotonicity method for the complex Ginzburg-Landau equation,
including smoothing effect. Nonlinear Anal., 47(1):79–88, 2001.

[19] N. Okazawa and T. Yokota. Global existence and smoothing effect for the complex Ginzburg-
Landau equation with p-Laplacian. J. Differential Equations, 182(2):541–576, 2002.

[20] N. Okazawa and T. Yokota. Monotonicity method applied to the complex Ginzburg-Landau and
related equations. J. Math. Anal. Appl., 267(1):247–263, 2002.

[21] A. Shimomura. Asymptotic behavior of solutions for Schrödinger equations with dissipative
nonlinearities. Comm. Partial Differential Equations, 31(7-9):1407–1423, 2006.

[22] C. Sulem and P.-L. Sulem. The nonlinear Schrödinger equation, volume 139 of Applied Mathe-
matical Sciences. Springer-Verlag, New York, 1999. Self-focusing and wave collapse.

[23] T. Tao. Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in
Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington,
DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis.

[24] M. Tsutsumi. On global solutions to the initial-boundary value problem for the damped nonlinear
Schrödinger equations. J. Math. Anal. Appl., 145(2):328–341, 1990.

21


	Introduction and explanation of the method
	Existence and uniqueness of the solutions
	Finite time extinction and asymptotic behavior
	Proofs of the existence and uniqueness theorems
	Proofs of the finite time extinction and asymptotic behavior theorems
	References

