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Abstract We provide a lower bound showing that the O(1/k) convergence rate of the NoLips method
(a.k.a. Bregman Gradient or Mirror Descent) is optimal for the class of problems satisfying the relative
smoothness assumption. This assumption appeared in the recent developments around the Bregman
Gradient method, where acceleration remained an open issue.

The main inspiration behind this lower bound stems from an extension of the performance estimation
framework of Drori and Teboulle (Mathematical Programming, 2014) to Bregman first-order methods.
This technique allows computing worst-case scenarios for NoLips in the context of relatively-smooth
minimization. In particular, we used numerically generated worst-case examples as a basis for obtaining
the general lower bound.

1 Introduction

We consider the constrained minimization problem

min
x∈C

f(x) (P)

where f is a convex continuously differentiable function and C is a nonempty closed convex subset of
Rn. In large-scale settings, first-order methods are particularly popular due to their simplicity and their
low cost per iteration.

The (projected) gradient descent (PG) is a classical method for solving (P), and consists in succes-
sively minimizing quadratic approximations of f , with

xk+1 = argmin
u∈C

f(xk) + 〈∇f(xk), u− xk〉+
1

2λ
‖u− xk‖2, (PG)

where ‖ · ‖ is the Euclidean norm. Although standard, there is often no good reason for making such
approximations, beyond our capability of solving this intermediate optimization problem. In other words,
this traditional approximation typically does not reflect neither the geometry of f nor that of C. A
powerful generalization of PG consists in performing instead a Bregman gradient step

xk+1 = argmin
u∈C

f(xk) + 〈∇f(xk), u− xk〉+
1

λ
Dh(u, xk), (BG)
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Université Toulouse I Capitole, Toulouse & D.I. École Normale Supérieure, Paris, France. radu-alexandru.dragomir@inria.fr

Adrien B. Taylor
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where the Euclidean distance has been replaced by the Bregman distance Dh(x, y) := h(x) − h(y) −
〈∇h(y), x− y〉 induced by some strictly convex and continuously differentiable kernel function h. A well-
chosen h allows designing first-order algorithms adapted to the geometry of the constraint set and/or
the objective function. Of course, a conflicting goal is to choose h such that each iteration (BG) can be
solved efficiently in practice, discarding choices such as h = f (for which performing an iteration would
be as hard as solving the original problem).

Recently, Bauschke et al. [4] introduced a natural condition for analyzing this scheme, assuming that
the inner objective in the iteration (BG) is an upper bound on f . This ensures that performing an iteration
decreases the function values f(xk). This assumption, known as relative smoothness (precisely defined
in Def. 2 below), generalizes the standard L-smoothness assumption implied by Lipschitz continuity of
∇f . The Bregman gradient algorithm, also called NoLips in the setting of [4], is thus a natural extension
of gradient descent (PG) to objective functions whose geometry is better modeled by a non-quadratic
kernel h. Practical examples of relative smoothness arise in Poisson inverse problems [4], quadratic inverse
problems [10], rank minimization [14] and regularized higher-order tensor methods [33].

Can we accelerate NoLips? In the Euclidean setting where h(x) = 1
2‖ ·‖

2, accelerated projected gradient
methods exhibit faster convergence than the vanilla projected gradient algorithm. These methods, which
can be traced back to Nesterov [31], are proven to be optimal for L-smooth functions and have found
a number of successful applications, in e.g., imaging [7]. A natural question is therefore to understand
whether the NoLips algorithm can be accelerated in the relatively-smooth setting. This question has
been raised in several works, including that of Bauschke, Bolte and Teboulle [4, Section 6], that of Lu,
Freund and Nesterov [26, Section 3.4], and the survey of Teboulle [39, Section 6]. Partial answers have
already been provided under somewhat strict additional regularity assumptions (see e.g., [1, 41, 22] and
discussions in the sequel), while the general case was apparently still open, and relevant in practical
applications. In this work, we produce a lower complexity bound proving that NoLips is optimal for the
general relatively-smooth setting, and therefore that generic acceleration is impossible.

In order to do so, we adopt the standard black-box model used for studying complexity of first-
order methods [30]. We consider that both f and h are described by first-order oracles, so as to obtain
generic complexity results, and we look for worst-case couples of functions (f, h) satisfying the relative
smoothness assumption. A central idea in our approach is the fact that, when studying the worst-case
behavior of Bregman methods in the relatively-smooth setting, f and h can get arbitrarily close to some
limiting pathological nonsmooth functions.

Obtaining worst-case scenarios of Bregman first-order methods. To obtain the lower complexity bound,
we start by empirically inspecting the worst-case behaviors of NoLips. In other words, we show that
worst-case scenarios (i.e., worst-case pairs of functions (f, h)) can be generated numerically through
appropriate semidefinite programs (SDP).

The problems of computing such worst-case scenarios are usually referred to as performance estimation
problems (PEPs), and were pioneered by [18] in the context of smooth convex minimization. An additional
attractive feature of this approach is that feasible points to their dual problems naturally correspond
to worst-case guarantees. For our purposes, we adapt the PEP framework to the setting of Bregman
methods and relatively-smooth functions, and showcase the approach by providing worst-case examples
for NoLips, along with the corresponding worst-case guarantees coming from its dual. Finally, the very
simple and pathological worst-case functions for NoLips served as an inspiration for developing the more
general lower bound for Bregman first-order schemes.

Discovering worst-case functions for NoLips is not the only interest of PEPs, as they also allow us to
explore worst-case behaviors and convergence bounds for a variety of first-order methods, in a variety of
settings, as we illustrate in the sequel.

1.1 Contributions and paper organization

The main contribution of this work is twofold. First, we provide a lower bound showing that it is
impossible to generically accelerate Bregman gradient methods under the appropriate oracle model.
More precisely, we show that the O(1/k) convergence rate on function values of NoLips is optimal in
the relatively-smooth setting. As mentioned earlier, the family of worst-case functions that we used for
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developing the lower bound was inspired by numerical solutions to a series of Performance Estimation
Problems (PEPs).

For this purpose, we developed PEP techniques for Bregman settings. It required extending the analy-
sis of [37] to handle classes of differentiable (but not necessarily L-smooth) and strictly convex functions.
While we present the analysis on the basic NoLips algorithm for readability purposes, our results and
methodology can be applied to various Bregman methods, such as inertial variants [1], or the Bregman
proximal point scheme for convex minimization and monotone inclusions [20, 12]. Besides discovering
worst-case examples, PEPs can be used for obtaining bounds with various convergence criteria, as we
showcase by proving a new rate on the Bregman divergence between successive iterates for NoLips.

The paper is organized as follows. After introducing the setup in Section 2, we prove the optimality
of NoLips in Section 3. We expose the framework of computer-aided analysis of Bregman methods in
Section 4, including several applications in Section 4.5. We point out that Sections 3 and 4 are both of
independent interest and can be read separately.

1.2 Related work

Bregman methods. The idea of using non-Euclidean geometries induced by convex kernels can be traced
back to the work of Nemirovskii and Yudin [30]. For nonsmooth objectives, it gave birth to the mirror
descent algorithm [8, 6, 23], which generalizes the subgradient method to non-Euclidean geometries. It
has been proven to be particularly efficient for minimization on the unit simplex, where choosing the
entropy kernel turns out to be much more effective and scalable than the squared Euclidean norm. This
approach has been very successful in online learning; see [11, Chap. 5] and references therein. The use
of Bregman distances has also been thoroughly studied for interior proximal methods [13, 38, 20, 1].

The introduction of the relative smoothness assumption in [4] has provided a way to adapt the
Bregman kernel to the geometry of the objective function f and thus extend the domain of application
of the Bregman Gradient method. Subsequent work has focused on nonconvex extensions [10], linear
convergence rates under additional assumptions [26, 3], and inertial variants [22, 29].

Black-box model and lower complexity bounds. The first-order black-box model, developed initially in
the works of Nemirovskii [30] and later Nesterov [32] has allowed to prove optimal complexity for several
classes of problems in first-order optimization [15]. These results usually rely on well-chosen worst-case
functions whose structure makes them difficult to minimize for all methods within a given class. Our
worst-case instances are obtained from pointwise maxima of affine functions, reminiscent of lower bounds
for nonsmooth convex minimization [30, 42]. Our construction then involves smoothing those piecewise
affine functions, making them differentiable. This technique is also used in the very related work of
Guzman and Nemirovskii [21], which studies lower bounds for minimization of convex functions that are
smooth with respect to `p norms. To the best of our knowledge, the lower bound obtained in the sequel
is not a particular case of those in [21], as smoothness with respect to a certain norm is different from
relative smoothness with respect to the same (squared) norm, beyond the `2-norm.

Performance estimation problems. The PEP methodology, proposed initially by [18], was already used
to discover optimal methods and corresponding lower bounds in other settings: for smooth convex mini-
mization [18, 24, 15, 17], nonsmooth convex minimization [19, 17], and stochastic optimization [16].

1.3 Notation

We use C to denote the closure of a set C, intC for its interior and ∂C for its boundary. We denote
(e1, . . . , en) the canonical basis of Rn, and for p ∈ {1, . . . n} we write Ep = Span(e1, . . . , ep) the set of
vectors supported by the first p coordinates. Sn denotes the set of symmetric matrices of size n. If (P)
is an optimization problem, then val(P) stands for its (possibly infinite) value.

Subscripts on a vector denote the iteration counter, while a superscript such as x(i) denotes the i-th
coordinate. The set I = {0, 1, . . . N, ∗} is often used to index the first N iterates of an optimization
algorithm as well as the optimal point:

{xi}i∈I = {x0, x1, . . . , xN , x∗}.
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We use the standard notation 〈·, ·〉 for the Euclidean inner product, and ‖ · ‖ for the corresponding
Euclidean norm. For a vector x ∈ Rn, we write ‖x‖∞ = maxi=1...n |x(i)| for its `∞ norm. Other notations
are standard from convex analysis; see e.g., [34, 5].

2 Algorithmic setup

In this section, we introduce the base ingredients and technical assumptions on f and h that are used
within Bregman first-order methods.

2.1 Kernel functions

Let C be a nonempty closed convex subset of Rn. The first step in defining Bregman methods is the
choice of a kernel (or reference) function h on C.

Definition 1 (Kernel function) A function h : Rn → R ∪ {+∞} is called a kernel function on C if

(i) h is closed convex proper (c.c.p.),
(ii) domh = C,
(iii) h is continuously differentiable and strictly convex on int domh 6= ∅.

A kernel function h induces a Bregman distance Dh defined as

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉 ∀x ∈ domh, y ∈ dom∇h.

Note that Dh is not a distance in the classical sense, however it enjoys a separation property; due to the
strict convexity of h we have Dh(x, y) ≥ 0 ∀x ∈ domh, y ∈ dom∇h, and Dh(x, y) = 0 iff x = y.

Examples. We list some of the most classical examples of kernel functions:

– the Euclidean kernel h(x) = 1
2‖x‖

2 with domain Rn, and for which Dh(x, y) = 1
2‖x − y‖

2 is the
Euclidean distance,

– the Boltzmann-Shannon entropy h(x) =
∑
i x

(i) log x(i) extended to 0 by setting 0 log 0 = 0,
whose domain is thus Rn+,

– the Burg entropy h(x) =
∑
i− log x(i) with domain Rn++,

– the quartic kernel h(x) = 1
4‖x‖

4 + 1
2‖x‖

2 with domain Rn [10].

We refer the reader to [4, 26] for more examples. It should be emphasized that, while a kernel function
is differentiable on the interior of its domain, it is not required to be differentiable on the boundary. For
instance, the Boltzmann-Shannon entropy is continuous but not differentiable at 0. Moreover, the domain
of h can be closed, such as for the Boltzmann-Shannon entropy, or open, as for the Burg entropy.

Convex conjugate. If h is a kernel function, we define its convex conjugate h∗ as

h∗(y) = sup
u∈Rn

〈u, y〉 − h(u)

If, for every y ∈ Rn, the supremum in the definition of h∗(y) is attained, then h∗ is differentiable and its
gradient satisfies for every u ∈ dom∇h∗

∇h∗(y) = argmax
u∈Rn

〈u, y〉 − h(u).

4



2.2 Relatively-smooth optimization problems

We now recall the framework of relatively-smooth optimization [4, 26] for solving the minimization
problem

min
x∈C

f(x) (P)

For simplicity, we present the setting without nonsmooth regularization term; our lower bound is a
fortiori valid for the Bregman proximal gradient algorithm designed for solving composite problems [4,
Eq. (12)].

Let us first state our blanket assumptions.

Assumption 1

(i) h is a kernel function on C,
(ii) f : Rn → R ∪ {+∞} is a closed convex proper function such that domh ⊂ dom f and which is

continuously differentiable on dom∇h,
(iii) For every λ > 0, x ∈ int domh and p ∈ Rn, the problem

min
u∈C
〈p, u− x〉+

1

λ
Dh(u, x)

has a unique minimizer, which lies in dom∇h,
(iv) The problem has at least one minimizer, i.e., argminC f 6= ∅.

Condition (iii) is standard and ensures well-posedness of Bregman gradient methods. It is satisfied
if, for instance, h is strongly convex or supercoercive [4, Lemma 2]. In addition to these assumptions,
the central property we need in order to apply the Bregman gradient method is the so-called relative
smoothness [4, 26].

Definition 2 (Relative smoothness) Let h be a kernel function on C, and f a function such that
domh ⊂ dom f . We say that f is smooth relative to h if there exists a constant L > 0 such that

Lh− f is convex on domh. (LC)

Relative smoothness allows to build a simple global majorant of f ; indeed, (LC) implies that (see, e.g, [4])

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ LDh(x, y) ∀x ∈ domh, y ∈ dom∇h,

and the NoLips method consists in successively minimizing this upper approximation.

We list below some examples of relatively-smooth problems.

– Euclidean case. When choosing the Euclidean kernel h(x) = 1
2‖x‖

2, (LC) reduces to the usual
descent lemma and holds for instance when the gradient of f is Lipschitz continuous. To avoid
ambiguity, we refer to this standard Euclidean smoothness as L-smoothness.

– Classical mirror descent setting. In some previous work on Bregman methods [1, 41], it is assumed
that f has a Lipschitz continuous gradient with constant L̃ and that the kernel h is σ-strongly convex.
This is a particular case of relative smoothness, since we have{
∇f is Lipschitz continuous with constant L̃
h is σ − strongly convex

=⇒
{
L̃
2 ‖ · ‖

2 − f is convex
h− σ

2 ‖ · ‖
2 is convex

=⇒ L̃

σ
(h− σ

2
‖ · ‖2) + (

L̃

2
‖ · ‖2 − f) is convex

=⇒ L̃

σ
h− f is convex

=⇒ f is smooth relative to h with constant L̃/σ.
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– Poisson inverse problems. More recent examples include functions that are not L-smooth in the
Euclidean sense, such as the Kullback-Leibler divergence between some observation b ∈ Rm and a
linear measurement Ax of an unknown source vector x ∈ Rn:

f(x) = DKL(b, Ax) =

m∑
j=1

bj log
( bj
Ajx

)
−Ajx+ bj .

Minimizing f on the nonnegative orthant allows the recovery of a signal corrupted with Poisson noise,
which is a fundamental problem in imaging sciences [9]. In this setting, f is not L-smooth since its
Hessian diverges around the origin. However, it can be shown to be relatively-smooth with respect to
the Burg entropy h(x) =

∑
i− log(x(i)) (see [4]).

– Quartic functions. A large class of problems in phase recovery and low-rank matrix optimization
involve minimizing polynomials of degree 4. These polynomials are not globally L-smooth but are
relatively-smooth with respect to the quartic kernel h(x) = 1

4‖x‖
4 + 1

2‖x‖
2 (see [10, 14]).

We use the following convenient notation to characterize the class of relatively-smooth problems.

Definition 3 We say that the couple of functions (f, h) is a relatively-smooth instance, and write (f, h) ∈
BL(C) if

(i) f and h satisfy Assumption 1,
(ii) Lh− f is convex on C.

Finally, let us denote by BL the union of BL(C) for all closed convex sets C:

BL =
⋃
n≥1

⋃
C⊂Rn

C closed convex

BL(C)

2.3 The NoLips/Bregman Gradient algorithm

Previous assumptions allow defining the Bregman Gradient (BG)/NoLips algorithm for minimizing f .
For simplicity, we only consider the constant step size method.

Algorithm 1 Bregman Gradient (BG) / NoLips [4]

Input: (f, h) ∈ BL(C), x0 ∈ int domh, step size λ ∈ (0, 1/L].
for k = 0,1,. . . do

xk+1 = argmin
u∈Rn

〈∇f(xk), u− xk〉+
1

λ
Dh(u, xk) (1)

end for

Using first-order optimality conditions, update (1) can alternatively be written as

xk+1 = ∇h∗ [∇h(xk)− λ∇f(xk)] (2)

involving the gradient ∇h∗ which is usually referred to as the mirror map. The three operations ∇f,∇h
and ∇h∗ are the basic building blocks of Bregman-type methods, which we now define formally.

2.4 Defining a class of Bregman first-order methods

For proving a general lower bound for relatively-smooth optimization, we need to specify the oracle model
and the class of methods under consideration.

We adopt the first-order black-box model, where information about a function can be gained by
calling an oracle returning the value and gradient of f at a given point. In the Bregman setting, we
assume that we also have access to the first-order oracles of the kernel function h and its conjugate h∗.
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Definition 4 An algorithm A is called a Bregman first-order algorithm if, for a given problem instance
(f, h) ∈ BL and number of iterations T ∈ N, it generates at each time step t ∈ {0, . . . , T}, a set of primal
points Xt and dual points Yt from the following process:

1. Set X0 = {x0}, where x0 ∈ int domh is some initialization point, and Y0 = {∇f(x0),∇h(x0)}.
2. For each t = 1, . . . T , perform one of the two following operations:

– either call the primal oracle (∇f,∇h) at some point xt chosen such as

xt ∈ Span(Xt−1) ∩ dom∇h

and update the dual set as
Yt = Yt−1 ∪ {∇f(xt),∇h(xt)}.

– Or call the mirror oracle ∇h∗ at some dual point yt chosen such as

yt ∈ Span(Yt−1)

with
∇h∗(yt) = argmin

u∈C
h(u)− 〈yt, u〉

and update the primal set as
Xt = Xt−1 ∪ {∇h∗(yt)}.

3. Output some point xT ∈ Span(XT ).

Such structural assumptions on the class of algorithms are classical from complexity analyses of Eu-
clidean first-order methods and are used to prove e.g., optimality of accelerated first order methods [32].
Definition 4 is a natural extension to the Bregman setting, allowing additional uses of the oracles as-
sociated with the kernel function h. This model can often be relaxed through the use of more involved
information theoretic arguments, see e.g., [30, 21, 15, 42].

Here, we focus on Definition 4 as it is general enough to encompass all Bregman-type methods that
only use oracles for ∇f,∇h, which we call the primal oracles, the map ∇h∗, which we call the mirror
oracle, as well as linear operations. One can verify that all known Bregman gradient methods, including
NoLips and inertial variants such as IGA [1] or the recent algorithm in [22], fit in this model.

Observe that, as NoLips performs one primal oracle call and one mirror call per iteration, an iteration
of NoLips corresponds actually to two time steps of the formal procedure in Definition 4. This is why, in
order to avoid ambiguity, we state our lower bound as a function of the number of oracle calls.

3 Convergence rate and optimality of NoLips

In this section, we start by recalling the O(1/k) convergence rate bound for the NoLips algorithm in the
setting where (f, h) ∈ BL(C). We then proceed to prove that NoLips is an optimal algorithm for the class
BL(C), by showing that this rate is also a lower bound for a generic class of Bregman gradient algorithms
that we define below. The key elements for proving the lower bound were empirically discovered through
the solution to a Performance Estimation Problem (PEP), which is detailed in Section 4.

3.1 Upper bound

We first state the O(1/k) convergence rate for NoLips. It slightly differs with the one from [4], as it is
improved by a factor of 2 and does not involve the so-called symmetry coefficient.

Theorem 1 (NoLips convergence rate) Let L > 0, C be a nonempty closed convex subset of Rn and
(f, h) ∈ BL(C) be an relatively-smooth instance. Then the sequence {xk}k≥0 generated by Algorithm 1
with constant step size λ ∈ (0, 1/L] satisfies for all k ≥ 0

f(xk)− f(u) ≤ Dh(u, x0)

λ k
(3)

for every u ∈ domh.
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Remark 1 Let x∗ ∈ argminC f . In order to take u = x∗ in Equation (3) and obtain a bound on the
suboptimality gap f(xk)− f(x∗), we need x∗ to belong to the domain of h. In most cases, this condition
is trivially satisfied. However, it can fail if x∗ lies on the boundary of C and domh is open, such as for
the Burg entropy.

The proof of Theorem 1, whose analytical form has been inferred from solving a PEP, is provided in
Section 4.5.1. This result extends the O(1/k) rate of Euclidean gradient descent for L-smooth functions
to the relatively-smooth setting.

Faster algorithms under additional assumptions. It is natural to ask whether an accelerated Bregman
algorithm can be obtained, with a better convergence rate than O(1/k). This has already been achieved
under additional regularity assumptions, as follows

– in the Euclidean setting, when h(x) = 1
2‖x‖

2 and f is L-smooth, the seminal accelerated gradient
method of Nesterov [31] enjoys a O(1/k2) convergence rate, which is optimal for this class of functions
[32].

– When h is a strongly convex kernel with closed domain and f is L-smooth (which, as discussed
in Section 2.2, is a particular case of relative smoothness), the Improved Interior Gradient Algo-
rithm (IGA) [1] also admits a O(1/k2) convergence rate using the same momentum technique as
Nesterov-type methods.

– Recently, [22] proposed an accelerated Bregman proximal gradient algorithm with rate O(1/kγ),
where γ ∈ [1, 2] is determined by some crucial triangle scaling property of the Bregman distance,
whose genericity is unclear.

However, the existence of an accelerated algorithm for the general relatively-smooth setting was still
an open question prior to this work. Indeed, many applications such as Poisson inverse problems [4]
or D-optimal design [26] do not satisfy the supplementary assumptions made in the works mentioned
above. In the next section, we prove that, up to a constant factor of 2, the bound (3) is not improvable
in general for Bregman-type methods, making NoLips an optimal algorithm in the black box setting for
(f, h) ∈ BL.

3.2 A lower bound for relatively-smooth Bregman optimization

We show in Theorem 2 below that for any ε ∈ (0, 1) and number of oracle calls N , there is a pair
of functions (f, h) ∈ BL(R2N+1) and some x0 ∈ R2N+1 such that for any Bregman gradient algorithm
initialized at x0, the output xN returned after performing at most N oracle calls satisfies

f(xN )− min
R2N+1

f ≥ (1− ε) LDh(x0, x∗)

2N + 1
. (4)

Proof intuition. For finding an instance (f, h) which is difficult for all Bregman methods, we use two
main ideas. The first is the well-known technique used by Nesterov [32] for proving that O(1/k2) is the
optimal complexity for L-smooth convex minimization. He defines a “worst function in the world” that
allows any gradient method to discover only one dimension per iteration, hence hiding the minimizer
from the algorithm in the remaining unexplored dimensions.

The second idea is more specific to our setting, and relies on the fact that the set of relatively-smooth
problems BL(C) is not closed. In particular, a limit of differentiable functions need not be differentiable.
Thence, we actually build a worst-case sequence of differentiable functions parameterized by some
parameter µ, whose limit when µ→ 0 is a nonsmooth pathological function.

Choosing the objective function. Let us fix a dimension n ≥ 1 and a positive constant η > 0. Define the
convex function f̂ for x ∈ Rn by

f̂(x) = max
i=1,...,n

|x(i) − 1− η

i
| = ‖x− x∗‖∞

which has an optimal value f̂∗ = 0 attained at

x∗ := (1 + η, 1 +
η

2
, . . . , 1 +

η

n
).
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(a) f̂ (b) fµ

Fig. 1 Level curves of function f̂ (left) and of its smoothed Moreau evelope fµ (right) for n = 2, µ = 0.2 and η = 1/2.

Lemma 3 states that if µ is small enough compared to η, the behaviors of f̂ and fµ at x0 = 0 are the same. Indeed, the
size of the smoothed region where the corners are “rounded” decreases when µ goes to 0.

The behavior of f̂ as a pathological function comes from the fact that if at least one of the coordinates
of x is zero, then f̂(x)− f̂∗ ≥ 1. Let us first prove a technical lemma about the subdifferential of f̂ .

Lemma 1 Let x ∈ Rn and v ∈ ∂f̂(x) be a subgradient of f̂ at x. Then

(i) ‖v‖∞ ≤ 1.

(ii) Let i ∈ {1 . . . n}. If v(i) 6= 0 then |x(i) − x(i)∗ | = ‖x− x∗‖∞.

Proof Write f̂ as f̂(x) = max1≤i≤n f̂i(x) with f̂i(x) = |x(i)−x(i)∗ |. Then, by [32, Lemma 3.1.10], we have

∂f̂(x) = Conv {∂f̂i(x)|i ∈ I(x)}

where I(x) = {i ∈ {1 . . . n} | f̂i(x) = f̂(x)}. Hence, (i) follows immediately from the well-known property
that the subgradients of the absolute value lie in [−1, 1]. (ii) is a consequence of the fact that if v(i) 6= 0,

then i ∈ I(x), which means that |x(i) − x(i)∗ | = ‖x− x∗‖∞.

Note that f̂ is nonsmooth hence does not meet our assumptions. We approach it with a differentiable
function by considering its Moreau envelope fµ given by

fµ(x) = min
u∈Rn

f̂(u) +
1

2µ
‖x− u‖2 (5)

where µ ∈ (0, 1) is a small parameter. fµ is a smoothed version of f̂ , which behaves similarly to f̂ when
we choose µ small enough. Figure 1 illustrates this phenomenon in two dimensions.

For general properties of the Moreau proximal envelope, we refer to [27]. Let us state some properties
of fµ that we need for the analysis.

Lemma 2 fµ is a differentiable convex function, whose minimizers are the same as those of f̂ . Its

gradient at a point x ∈ Rn is given by ∇fµ(x) = µ−1
(
x− proxµ

f̂
(x)
)

where

proxµ
f̂
(x) = argmin

u∈Rn
f̂(u) +

1

2µ
‖x− u‖2

is the Moreau proximal map. Moreover, ∇fµ is Lipschitz continuous with constant 1/µ.

Let us now prove the central property of fµ, which states that when the last n − p coordinates of
x are small enough, the gradient ∇fµ(x) is supported on the first p + 1 coordinates. Recall that we
denote (e1, . . . , en) the canonical basis of Rn and write, for p ∈ {1 . . . n}, Ep = Span(e1, . . . , ep) and
E0 = {(0, . . . , 0)}.
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Lemma 3 Assume that µ ∈ (0, 1) and η > 4µn2. Let p ∈ {0 . . . n− 1}. For any vector x ∈ Rn such that

max
i=p+1,...,n

|x(i)| ≤ µ

we have that ∇fµ(x) ∈ Ep+1. In addition, we have ‖∇fµ(x)‖∞ ≤ 1.

Proof Take x ∈ Rn such that maxi=p+1,...,n |xi| ≤ µ. By Lemma 2, ∇fµ is given by

∇fµ(x) =
1

µ
(x− proxµ

f̂
(x)) (6)

Write y = proxµ
f̂
(x). The optimality condition defining the proximal map yields

y − x+ µv = 0 (7)

where v ∈ ∂f̂(y), and therefore the combination of (6) and (7) implies

∇fµ(x) = v ∈ ∂f̂(y). (8)

Now, let us assume by contradiction that ∇fµ(x) is not in Ep+1, meaning that there exists an index
l ∈ {p + 2 . . . n} such that v(l) 6= 0. It follows from Lemma 1 that |(y − x∗)(l)| = ‖y − x∗‖∞. Hence we

have in particular that |y(l) − x(l)∗ | ≥ |y(p+1) − x(p+1)
∗ |. Using Condition (7) to replace y we get

|x(l)∗ + µv(l) − x(l)| ≥ |x(p+1)
∗ + µv(p+1) − x(p+1)|,

and recalling the definition of x∗ we have

|1 +
η

l
+ µv(l) − x(l)| ≥ |1 +

η

p+ 1
+ µv(p+1) − x(p+1)|.

By Lemma 1, ‖v‖∞ ≤ 1, so for all i we have 1 + µv(i) ≥ 1 − µ‖v‖∞ ≥ 0. In addition, we assumed that
maxi=p+1,...,n |x(i)| ≤ µ < η

4n2 which implies η
i − x

(i) ≥ 0 for all i ≥ p+ 1. Therefore, both terms inside
the absolute values are nonnegative, it follows that we can drop absolute values and

µ(v(l) − v(p+1)) ≥ η

p+ 1
− η

l
+ x(l) − x(p+1)

≥ η · l − (p+ 1)

l(p+ 1)
− 2µ

≥ η

l(p+ 1)
− 2µ

≥ η

n2
− 2µ,

(9)

and therefore
v(l) − v(p+1) ≥ η

µn2
− 2 > 2,

because we assumed η > 4µn2. This is a contradiction since (v(l) − v(p+1)) ≤ 2‖v‖∞ ≤ 2. Finally, the
second part of the lemma is a consequence of (8) and ‖v‖∞ ≤ 1.

We also need the following lemma for relating the values of f̂ and fµ.

Lemma 4 Let µ > 0 and x ∈ Rn. Then fµ(x) ≥ f̂(x)− µ.

Proof Write y = proxµ
f̂
(x). By definition of fµ and the proximal map we have

fµ(x) = f̂(y) +
1

2µ
‖y − x‖2

≥ f̂(y)

= ‖y − x∗‖∞
≥ ‖x− x∗‖∞ − ‖x− y‖∞.

Recall the optimality conditions defining the proximal map can be written as

µ−1(x− y) ∈ ∂f(y),

and, since all subgradients of f̂ have coordinates smaller than 1 (Lemma 1), we reach ‖x− y‖∞ ≤ µ. It

follows that fµ(x) ≥ ‖x− x∗‖∞−‖x− y‖∞ ≥ ‖x− x∗‖∞−µ = f̂(x)−µ, which concludes the proof.
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Choosing the kernel. As for the objective function fµ, let us pick a family of kernels hµ, whose behavior
approach those of a nonsmooth function as µ→ 0.

Let us first define a unidimensional convex function φµ : R→ R by

φµ(t) =

{
t− µ/2 if t ≥ µ,
1
2µ t

2 elsewhere.

Note that φµ is sometimes known as the Huber function, which is a smooth approximation of the absolute
value and also appears as a worst-case function for first-order methods in L-smooth minimization [37].

Define dµ : Rn → R through

dµ(x) =
µ

2
‖x‖2 +

n∑
i=1

φµ(x(i)), x ∈ Rn. (10)

dµ is a differentiable strictly convex function, whose gradient satisfies, for x ∈ Rn and i ∈ {1 . . . n},

∇dµ(x)(i) = µx(i) + min(1, x(i)/µ).

From the expression above, we can deduce two crucial properties that we need in the sequel: for x ∈ Rn
and i ∈ {1 . . . n}, we have

∇dµ(x)(i) = 0 if and only if x(i) = 0, (11)

|∇dµ(x)(i)| ≤ 1 implies |x(i)| ≤ µ. (12)

Let L > 0. We define the kernel hµ for x ∈ Rn as

hµ(x) =
1

L
(fµ(x) + dµ(x)) . (13)

By construction, Lhµ − fµ is convex, so the relative smoothness property holds. It is easy to see that
Assumption 1 is satisfied as hµ is strongly convex, so we have (fµ, hµ) ∈ BL(Rn).

Proving the zero-preserving property of the oracles. Now that the functions are defined, we are ready to
prove that all oracles involved in the Bregman algorithm allow to discover only one dimension per oracle
call.

Proposition 1 (Zero-preserving property of ∇fµ,∇hµ,∇h∗µ) Assume that µ ∈ (0, 1) and η > 4µn2.
Let p ∈ {0 . . . n− 1}, and x ∈ Rn ∩ Ep a vector supported by the p first coordinates. Then

∇fµ(x),∇hµ(x),∇h∗µ(x) ∈ Ep+1.

Proof Let x ∈ Ep. Then x satisfies the assumption of Lemma 3 which proves that ∇fµ(x) ∈ Ep+1. By
Property (11) of dµ, we also have that ∇dµ(x) ∈ Ep, which allows us to conclude that

∇hµ(x) = L−1 (∇fµ(x) +∇dµ (x)) ∈ Ep+1.

It remains to prove the result for ∇h∗µ(x). Write z = ∇h∗µ(x), which amounts to say that ∇hµ(z) = x,
that is

∇fµ(z) +∇dµ(z) = Lx

using (13). Let l ∈ {p+ 1 . . . n}. We have x ∈ Ep, hence the l − th coordinate of x is zero and

∇fµ(z)(l) +∇dµ(z)(l) = 0.

Using the second part of Lemma 3, we have that ‖∇fµ(z)‖∞ ≤ 1; it follows that

|∇dµ(z)(l)| ≤ 1,

which implies that |z(l)| ≤ µ, by property (12) of dµ. Since this holds for any l ≥ p+1, we have established

max
l=p+1,...,n

|z(l)| ≤ µ.

Applying Lemma 3 to z, we obtain that ∇fµ(z) ∈ Ep+1. Remembering that ∇hµ(z) = x ∈ Ep by
construction, we get

∇dµ(z) = L∇hµ(z)−∇fµ(z) ∈ Ep+1.

By Property (11) of dµ, it follows that z ∈ Ep+1, which concludes the proof.
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We can now use Proposition 1 inductively to state a lower bound on the performance of any Bregman
gradient algorithm applied to (fµ, hµ).

Proposition 2 Let N ≥ 1 and choose the dimension n = 2N+1. Let µ ∈ (0, 1) and η > 4µn2. Consider
the functions fµ, hµ : Rn → R defined in (5) and (13) respectively. Then, for any Bregman gradient
method satisfying Definition 4, applied to (fµ, hµ) and initialized at x0 = (0, . . . 0), the output x returned
after performing at most N calls to each one of the primal and mirror oracles satisfies

fµ(x)−min
Rn

fµ ≥
LDhµ(x∗, x0)

2N + 1
· 1− µ

1 + µ+ η + µ
2 (1 + η)2

.

Proof The zero-preserving property and the structure of Bregman gradient algorithms described in Def-
inition 4 implies that the set of primal points Xt and dual points Yt at iteration t are supported by the
t first coordinates, i.e.,

Xt,Yt ⊂ Et.

Indeed, since we initialized X0 = {x0} ⊂ E0, this follows by induction. Assume that at time t, we have
Xt,Yt ⊂ Et. If the primal oracle is chosen at iteration t+1, since the query point xt+1 is taken as a linear
combination of points in Xt it also lies in Et, and thus Proposition 1 states that the new dual vectors
∇fµ(xt+1),∇hµ(xt+1) belong to Et+1. If, on the other hand, the mirror oracle is chosen, then with the
same argument we have that yt+1 ∈ Et an by Proposition 1 that ∇h∗µ(yt+1) ∈ Et+1.

Now, because the algorithm has called at most N times each oracle, it has performed at most 2N
steps and thus the output point satisfies x ∈ E2N , which means that x(2N+1) = 0.

We use Lemma 4 to relate fµ(x) and f̂(x). Recalling that min fµ = f̂∗ = 0, we get

fµ(x)−min
Rn

fµ = fµ(x)

≥ f̂(x)− µ

≥ |x(2N+1) − x(2N+1)
∗ | − µ

= 1 +
η

2N + 1
− µ

≥ 1− µ,

(14)

where we used the definition of f̂ and the fact that x(2N+1) = 0.

Let us now upper bound the initial diameter. Remembering that Lhµ = fµ + dµ in (13), we have

LDhµ(x∗, x0) = Dfµ(x∗, x0) +Ddµ(x∗, x0).

by definition of the Bregman distance. To deal with the first term, we recall that fµ(x∗) = 0 and write

Dfµ(x∗, x0) = fµ(x∗)− fµ(x0)− 〈∇fµ(x0), x∗ − x0〉
= −fµ(x0)− 〈∇fµ(x0), x∗ − x0〉

≤ −f̂(x0) + µ− 〈∇fµ(x0), x∗ − x0〉
= −1− η + µ− 〈∇fµ(x0), x∗ − x0〉,

where we used again Lemma 4 at x0 = (0, . . . , 0). Now, Lemma 3 applies to x0 with p = 0 and allows to
state that ∇fµ(x0) ∈ E1 and that ‖∇fµ(x0)‖∞ ≤ 1. Therefore

|〈∇fµ(x0), x∗ − x0〉| = |∇fµ(x0)(1) (x
(1)
∗ − x(1)0 )| ≤ |x(1)∗ − x(1)0 | = 1 + η.

Hence we have the following upper bound

Dfµ(x∗, x0) ≤ −1− η + µ+ |〈∇fµ(x0), x∗ − x0〉|
≤ µ.

(15)
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The second term can be directly computed from Definition (10) of dµ, recalling that x
(i)
∗ ≥ 1 ≥ µ for

i ∈ {0 . . . n},

Ddµ(x∗, x0) = dµ(x∗)− dµ(x0)− 〈∇dµ(x0), x∗ − x0〉
= dµ(x∗)

=

2N+1∑
k=1

[µ
2

(1 +
η

k
)2 + 1 +

η

k
− µ

2

]
≤ (2N + 1)

[µ
2

(1 + η)2 + η + 1
]
.

(16)

Combining (15) and (16) gives

LDhµ(x∗, x0) = Dfµ(x∗, x0) +Ddµ(x∗, x0)

≤ µ+ (2N + 1)
[µ

2
(1 + η)2 + η + 1

]
≤ (2N + 1)

[
µ+

µ

2
(1 + η)2 + η + 1

]
.

This bound, along with (14), yields

fµ(x)−min
Rn

fµ ≥ 1− µ ≥
LDhµ(x∗, x0)

2N + 1
· 1− µ

1 + µ+ η + µ
2 (1 + η)2

whence the desired result.

Since constants µ, η can be taken arbitrarily small, we now use Proposition 1 to show that the bound
can be approached to any precision and thus prove our main result.

Theorem 2 (Lower complexity bound for BL) Let N ≥ 1, a precision ε ∈ (0, 1) and let x0 ∈ R2N+1

be a starting point. Then, there exist functions (f, h) ∈ BL(R2N+1) such that for any Bregman gradient
method A satisfying Definition 4 and initialized at x0, the output x returned after performing at most N
calls to each one of the primal and mirror oracles satisfies

f(x)− min
R2N+1

f ≥ LDh(x∗, x0)

2N + 1
· (1− ε).

Proof Consider a number N of oracle calls and a target precision ε ∈ (0, 1). Choose the functions
fµ, hµ defined respectively in Equations (5) and (13) on Rn with n = 2N + 1. These functions satisfy
Assumption 1, since their domain is Rn, they are convex, differentiable, and hµ is strongly convex.
Moreover, relative smoothness holds because Lhµ− fµ = dµ is convex by construction. Hence (fµ, hµ) ∈
BL(Rn).

Because the class of problems BL(Rn) is invariant by translation, we can assume without loss of
generality that the algorithm is initialized at x0 = (0, . . . 0). Recall that the only conditions our analysis
imposed on the parameters η, µ are that µ ∈ (0, 1) and η > 4µn2.

Let us then choose η = ε/4 and µ = η/(5n2) = ε/(20n2). Under these conditions, Proposition 2
applies and gives that for any point x returned by a Bregman gradient algorithm that is initialized at
x0 and which performs at most N calls to each oracle we have

fµ(x)− min
R2N+1

fµ ≥
LDhµ(x∗, x0)

2N + 1
· 1− µ

1 + µ+ η + µ
2 (1 + η)2

.

The last term can be bounded from below, using our choice of µ, η, and the fact that η < 1, as

1− µ
1 + η + µ+ µ

2 (1 + η)2
≥ 1− µ

1 + η + 3µ
=

1− ε
20n2

1 + ε
4 + 3ε

20n2

≥ 1− ε

yielding the desired result.
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Remark 2 One can refine the result above in the case where the primal and mirror oracles are not used
the same number of times. Indeed, if the primal oracles are called N1 times and the mirror oracle is
called N2 times, then the same reasoning shows that the lower bound remains true by replacing 2N with
N1 +N2.

Our lower bound involves the relative smoothness constant L instead of the step size λ in (3), but
it is equivalent (up to a factor 2) when choosing λ = 1/L, which is actually the best possible step size
choice. This shows the optimality of NoLips within the class of Bregman first-order methods (up to a
universal constant).

Connection with Conditional Gradient and the `∞ setting. The worst-case function used for the
lower bound involves the smoothing of an `∞ norm. As pointed out by one of the referees, there might
be a connection between the hardness of the relatively-smooth setting and the lower bound for smooth
minimization on the `∞ ball as done in Guzman and Nemirovskii [21]. This lower bound, which is also
O(1/k), is used by the authors to prove that the rate of the Conditional Gradient algorithm is near-
optimal in this setting.

It might be insightful to examine connections between these settings in future works, for example by
exploiting duality between Bregman gradient methods and Conditional Gradient, as in [2].

4 Computer-aided performance analyses of Bregman first-order methods

In this section, we extend the computer-aided performance estimation framework in [18, 35] to the
setting of Bregman methods. In short, these results show how to compute the worst-case convergence
rate of a given algorithm by solving a numerical optimization problem, called performance estimation
problem (PEP). Solving a PEP offers several benefits, including:

1. Computing (numerically) the exact worst-case complexity of an algorithm on a given class of problems
after a fixed number of iterations.

2. Studying the corresponding worst-case functions.
3. Inferring an analytical worst-case guarantee by obtaining a feasible point to the dual PEP. Such dual

feasible points correspond to combinations of inequalities that certify the convergence bound.

Here, we focus on inferring worst-case functions. We used this methodology for guessing, and then
designing, the lower bound provided in Section 3.2. However, solving PEPs is also useful for proving
new convergence rates (see Section 4.5.2), or for getting quick numerical insights into the convergence
properties of an algorithm, like for instance on the inertial algorithm IGA [1] (Section 4.5.3).

To use PEPs on Bregman methods, we extend the analysis in [18, 35] to deal with differentiable
and/or strictly convex functions. Previous works on the topic modelled differentiability through an L-
smoothness condition, and strict convexity through strong convexity, which are assumptions that we
avoid in the Bregman setting. The key difference in our work is that the classes of differentiable and/or
strictly convex functions are open sets. Thus, the worst-case functions for this class might lie on the
closure of this set and exhibit some pathological nonsmooth behavior.

This section is organized as follows. In Section 4.1, we introduce the PEP framework. Sections 4.2-
4.4 extend PEPs to the Bregman setting. We provide in Section 4.5 several applications, including the
procedure used to find the worst-case functions involved in the proof of the general lower bound in
Section 3.2.

4.1 Worst-case scenarios through optimization

We now formulate the task of finding the worst-case performance of Algorithm 1 as an optimization
problem. We focus on the analysis of NoLips for simplicity. However, the same ideas are directly applicable
to other Bregman-type algorithms like IGA [1] (see Section 4.5.3) or Bregman proximal point [20].

Recall that we write BL(C) for the set of function pairs (f, h) satisfying Assumption 1, such that
Lh − f is convex on a convex set C. For simplicity, we first focus on the case when functions have full
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domain, i.e., C = Rn for some n ≥ 1. In this setting, the set BL(Rn) can be rewritten as

BL(Rn) =


f is convex, differentiable and has at least one minimizer,
h is strictly convex and differentiable,

f, h : Rn → R Lh− f is convex,
∀λ > 0, ∀x, p ∈ Rn, the function u 7→ 〈p, u− x〉+ 1

λDh(u, x)
has a unique minimizer.

 ,

since all constraints in Assumption 1 about the domains of f and h become irrelevant. The general case
when C is a convex subset of Rn can be treated along the same approach. In fact, from the perspective
of performance estimation, we can show that every problem in BL(C) can be reduced to some problem
in BL(Rn) with equivalent convergence rate (see Appendix A for details).

Performance estimation problem. Throughout this section, we fix a number of iterations N ≥ 1, a
relative smoothness parameter L > 0, and a step size λ > 0. In the currently known analyses of NoLips,
worst-case guarantees have the following form

f(xN )− f(x∗) ≤ θ(N,L, λ)Dh(x∗, x0). (17)

For instance, Theorem 1 states this result with θ(N,L, λ) = 1/(λN) when λ ∈ (0, 1/L] (note that since
we consider the case where C = Rn, we can take x∗ in the bound as x∗ ∈ domh trivially). We then
naturally seek the smallest θ(N,L, λ) such that the bound (17) holds for any couple (f, h) ∈ BL(Rn),
that is, solve the optimization problem

maximize
(
f (xN )− f (x∗)

)
/Dh(x∗, x0)

subject to (f, h) ∈ BL(Rn),
x∗ is a minimizer of f,
x1, . . . , xN are generated from x0 by Algorithm 1 with step size λ,

(PEP)

in the variables f, h, x0, . . . , xN , x∗, n. We refer to this problem as a performance estimation problem
(PEP). We use the convention 0/0 = 0, so that the objective is well defined when x∗ = x0. Optimizing
over the dimension n to get dimension-free bounds allows for the problem to admit efficient convex
reformulations, as we see in the sequel. We look for guarantees that are independent of the kernel h, and
therefore h is also an optimization variable.

Let us start by simplifying the problem. First, due to the strict convexity of h, the NoLips iteration
(1) can be equivalently formulated via the first-order optimality condition

∇h(xi+1) = ∇h(xi)− λ∇f(xi) ∀i ∈ {0 . . . N − 1}

and, since the domain is Rn, the condition that x∗ minimizes f reduces to requiring ∇f(x∗) = 0. Second,
the problem is homogeneous in (f, h) (i.e., from a feasible couple (f, h), take any constant c > 0 and
observe that the couple (cf, ch) is also feasible with the same objective value), hence optimizing the
objective function f(xN ) − f(x∗) under the additional constraint Dh(x∗, x0) = 1 produces the same
optimal value as the problem above.

Finally, we use the same argument as in [18, 37] and observe that the objective of (PEP) and the
algorithmic constraints mentioned above depend solely on the values of the first-order oracles of f and h
at the points x0, . . . , xN , x∗. Denoting I = {0, 1, . . . , N, ∗} the indices associated with the points involved
in the problem, we proceed to write these values as

{(fi, gi)}i∈I =
{(
f(xi),∇f(xi)

)}
i∈I ,

{(hi, si)}i∈I = {
(
h(xi),∇h(xi)

)
}i∈I .

Using those elements, the iterations of NoLips can be expressed as si+1 = si − λgi for i ∈ {0 . . . N − 1},
and the normalization constraint Dh(x∗, x0) = 1 becomes h∗ − h0 − 〈s0, x∗ − x0〉 = 1.
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Using those discrete representations of f and h, we can reformulate (PEP) as

maximize fN − f∗
subject to fi = f(xi), gi = ∇f(xi),

hi = h(xi), si = ∇h(xi), for all i ∈ I and some (f, h) ∈ BL(Rn),
g∗ = 0,
si+1 = si − λgi for i ∈ {1 . . . N − 1},
h∗ − h0 − 〈s0, x∗ − x0〉 = 1,

(PEP)

in the variables n, {(xi, fi, gi, hi, si)}i∈I . The equivalence with the initial problem is guaranteed by the
first two constraints which are called the interpolation conditions.

It turns out that interpolation conditions for the class BL(Rn) are delicate to establish, due to
assumptions on h. Fortunately, there exist two classes BL(Rn) and BL(Rn) for which they can be derived.
The first class is a restriction of BL(Rn) where f and Lh− f are both assumed to be strictly convex:

BL(Rn) = BL(Rn) ∩ {(f, h) : Rn → R | f and Lh− f are strictly convex}

whereas the second class consists in considering a relaxation with possibly nonsmooth functions:

BL(Rn) = {(f, h) : Rn → R | f and Lh− f are convex}.

The following inclusions then directly hold

BL(Rn) ⊂ BL(Rn) ⊂ BL(Rn).

With theses classes, we can now define two easier problems. The first one is a restriction of (PEP) defined
on the class BL(Rn), under the additional constraint that all iterates are distinct:

maximize fN − f∗
subject to fi = f(xi), gi = ∇f(xi),

hi = h(xi), si = ∇h(xi), for all i ∈ I and some (f, h) ∈ BL(Rn),
g∗ = 0,
si+1 = si − λgi for i ∈ {1 . . . N − 1},
h∗ − h0 − 〈s0, x∗ − x0〉 = 1,
xi 6= xj for i 6= j ∈ I,

(PEP)

in the variables n, {(xi, fi, gi, hi, si)}i∈I . The second problem is a relaxation of (PEP), where (f, h) ∈
BL(Rn) are possibly nonsmooth and gi, si are thus subgradients:

maximize fN − f∗
subject to fi = f(xi), gi ∈ ∂f(xi),

hi = h(xi), si ∈ ∂h(xi),
Lsi − gi ∈ ∂(Lh− f)(xi) for all i ∈ I and some (f, h) ∈ BL(Rn),
g∗ = 0,
si+1 = si − λgi for i ∈ {1 . . . N − 1},
h∗ − h0 − 〈s0, x∗ − x0〉 = 1,

(PEP)

in the variables n, {(xi, fi, gi, hi, si)}i∈I . We added the technical constraint Lsi − gi ∈ ∂(Lh − f)(xi),
which is redundant for differentiable functions; but that is necessary in order to establish interpolation
conditions in the nonsmooth case.

Because of the inclusions between the feasible sets of these problems, we naturally have

val(PEP) ≤ val(PEP) ≤ val(PEP).

We prove in the sequel that (PEP) can be solved via a semidefinite program and that val(PEP) =
val(PEP) (Theorem 4), allowing to reach our claims.

Note that the relaxed problem (PEP) does not correspond to any practical algorithm, as NoLips is
not properly defined for nonsmooth functions h. However, we see in the sequel that feasible points of
this problem correspond to accumulation points of (PEP). In other words, instances of NoLips can get
arbitrarily close to pathological nonsmooth functions whose behaviors are captured by (PEP).
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In the following sections, we show that problems (PEP) and (PEP) can be cast as semidefinite
programs (SDP) [40] and solved numerically using standard packages [28, 25]. The main ingredient
consists in showing that interpolation constraints can actually be expressed using quadratic inequalities,
as detailed in the next section.

4.2 Interpolation involving differentiability and strict convexity

In this section, we show how to reformulate interpolation constraints for (PEP) and (PEP) as quadratic
inequalities. We start by recalling interpolation conditions for the class of L-smooth and µ-strongly
convex functions.

Theorem 3 (Smooth strongly convex interpolation, [37]) Let I be a finite index set, {(xi, fi, gi)}i∈I ∈
(Rn × R× Rn)|I| and 0 ≤ µ ≤ L ≤ +∞. The following statements are equivalent:

(i) There exists a proper closed convex function f : Rn → R ∪ {+∞} such that f is µ-strongly convex,
has a L-Lipschitz continuous gradient and

fi = f(xi), gi ∈ ∂f(xi) ∀i ∈ I.

(ii) For every i, j ∈ I we have

fi − fj − 〈gj , xi − xj〉 ≥
1

2L
‖gi − gj‖2 +

µ

2(1− µ/L)
‖xi − xj −

1

L
(gi − gj)‖2.

In particular, when L = +∞ (meaning that we require no smoothness) and µ = 0, those conditions
reduce to the simpler convex interpolation conditions, reminiscent of subgradient inequalities:

fi − fj − 〈gj , xi − xj〉 ≥ 0 (18)

In our setting, we want to avoid working with smoothness and strong convexity, so we provide interpo-
lation conditions for the class of differentiable strictly convex functions.

Proposition 3 (Differentiable and strictly convex interpolation) Let I be a finite index set and
{(xi, fi, gi)}i∈I ∈ (Rn × R× Rn)|I|. The following statements are equivalent:

(i) There exists a convex function f : Rn → R such that f is differentiable, strictly convex and

fi = f(xi), gi = ∇f(xi) ∀i ∈ I.

(ii) For every i, j ∈ I we have {
fi − fj − 〈gj , xi − xj〉 > 0 if xi 6= xj ,
fi = fj and gi = gj otherwise.

(19)

Proof (i) =⇒ (ii). Assume that (i) holds, and choose such a function f . The first inequality of (19)
follows from strict convexity of f , and the second line is a consequence of the fact that a differentiable
convex function has a unique subgradient at each point [34, Thm 25.1].

(ii) =⇒ (i). Assume (ii). If for all i, j ∈ I, we have gi = gj and xi = xj , then there is only one point
and one subgradient to be interpolated, and the result follows immediatly from considering a well-chosen
definite quadratic function. In the other case, define

ν = min
i,j∈I
xi 6=xj

fi − fj − 〈gj , xi − xj〉.

Because of (19) and the finiteness of I, we have that ν > 0. Now, define r as

r = max
i,j∈I

‖gi − gj‖2 + ‖xi − xj‖2

so that r > 0. Condition (19) implies that for all i, j ∈ I we have

fi − fj − 〈gj , xi − xj〉 ≥
ν

r

(
‖gi − gj‖2 + ‖xi − xj‖2

)
. (20)

17



Indeed, if xi 6= xj , this follows from the definition of ν and r. If xi = xj both sides of the inequality are
0 because of the second line in (19). Let us choose two constants 0 < µ < L < +∞ such that

1

L− µ
≤ ν

r
,

µ

1− µ/L
≤ ν

r
,

which is possible as it suffices to take L large enough and µ small enough. We now proceed to show
that the interpolation conditions of Theorem 3 hold with the constants µ,L defined above. Using the
inequality ‖u− v‖2 ≤ 2‖u‖2 + 2‖v‖2 and (20), we get that for all i, j,

1

2L
‖gi − gj‖2 +

µ

2(1− µ/L)
‖xi − xj −

1

L
(gi − gj)‖2

≤
(

1

2L
+

µ

L(L− µ)

)
‖gi − gj‖2 +

µ

1− µ/L
‖xi − xj‖2

≤
(

1

L
+

µ

L(L− µ)

)
‖gi − gj‖2 +

µ

1− µ/L
‖xi − xj‖2

=
1

L− µ
‖gi − gj‖2 +

µ

1− µ/L
‖xi − xj‖2

≤ ν

r
‖gi − gj‖2 +

ν

r
‖xi − xj‖2

≤ fi − fj − 〈gj , xi − xj〉.

Under those conditions, Theorem 3 states that there exists a convex function f that interpolates {(xi, fi, gi)}i∈I
which is µ-strongly convex and has L-Lipschitz continuous gradients. A fortiori, since µ > 0 and L <∞,
f is differentiable and strictly convex. Finally, f is finite on Rn since it is L-smooth.

Using these results, we can now formulate interpolation conditions for the problems (PEP) and (PEP)
involving the classes BL(Rn) and BL(Rn) that were defined in Section 4.1.

Corollary 1 (Interpolation conditions for (PEP)) Let I be a finite index set and {(xi, fi, gi, hi, si)}i∈I ∈
(Rn × R× Rn × R× Rn)|I|. The following statements are equivalent.

(i) There exist functions (f, h) ∈ BL(Rn) such that

fi = f(xi), gi ∈ ∂f(xi),

hi = h(xi), si ∈ ∂h(xi),

Lsi − gi ∈ ∂(Lh− f)(xi).

(ii) For all i, j ∈ I such that i 6= j, we have

fi − fj − 〈gj , xi − xj〉 ≥ 0,

(Lhi − fi)− (Lhj − fj)− 〈Lsj − gj , xi − xj〉 ≥ 0.
(21)

Proof (i) =⇒ (ii) follows immediately from the definition of a subgradient applied to convex functions
f and Lh− f .
Assume that (ii) holds. By the specialization of (18) in Theorem 3, conditions (ii) imply that there exist
two convex functions f, d : Rn → R such that

fi = f(xi), gi ∈ ∂f(xi),

Lhi − fi = d(xi), Lsi − gi ∈ ∂d(xi).

Defining the convex function h = (f + d)/L, we have that d = Lh− f , hence Lsi − gi ∈ ∂(Lh− f)(xi).
We also get

hi = h(xi), si ∈ ∂h(xi),

where we used the fact that Lsi ∈ ∂f(xi) + ∂d(xi) ⊂ ∂(f + d)(xi) = L∂h(xi) (see [34, Thm 23.8] for the
subdifferential of a sum of convex functions). Hence (i) holds.
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Corollary 2 (Interpolation conditions for (PEP)) Let I be a finite index set and {(xi, fi, gi, hi, si)}i∈I ∈
(Rn × R × Rn × R × Rn)|I|. Assume that xi 6= xj for every i 6= j ∈ I. The following statements are
equivalent.

(i) There exist functions (f, h) ∈ BL(Rn) such that

fi = f(xi), gi = ∇f(xi),

hi = h(xi), si = ∇h(xi).

(ii) For all i, j ∈ I such that i 6= j we have

fi − fj − 〈gj , xi − xj〉 > 0,

(Lhi − fi)− (Lhj − fj)− 〈Lsj − gj , xi − xj〉 > 0.
(22)

Proof Note that since we assumed xi 6= xj for every i 6= j, interpolation conditions of Proposition 3
reduce to requiring a strict inequality in (19) for every i 6= j. As before, define d := Lh− f . Then since
(f, h) ∈ BL(Rn) the functions f and d are differentiable strictly convex, hence (i) =⇒ (ii) follows simply
from strict convexity of these functions.

Conversely, assume (ii). By using Proposition 3 again, we can interpolate differentiable strictly convex
functions f and d and recover h with h = (f +d)/L, thus we have naturally Lh−f convex. The function
h is thus also differentiable and strictly convex. Moreover, it can be seen from the proof of Proposition 3
that the interpolating functions can actually be chosen strongly convex, hence with this choice the well-
posedness condition Assumption 1(iii) holds, and we can conclude that (f, h) ∈ BL(Rn).

4.3 Semidefinite reformulations

Now that we established the interpolation conditions for (PEP) and (PEP), we may use them to obtain
semidefinite performance estimation formulations as in [18, 37]. This is made possible by observing that
interpolation conditions (21)-(22) are quadratic inequalities in the problem variables.

Let {(xi, fi, gi, hi, si)}i∈I be a feasible point of one of the PEPs in dimension n. We write G ∈ S3(N+2)

the Gram matrix that contains all dot products between xi, gi, si for i ∈ I, with

G =

 Gxx Ggx Gsx

Ggx> Ggg Ggs

Gsx> Ggs> Gss

 � 0

whose size is independent of the dimension n, where the blocks are defined as

Gxxij = 〈xi, xj〉, Ggxij = 〈gi, xj〉, Ggsij = 〈gi, sj〉, Gggij = 〈gi, gj〉, Gsxij = 〈si, xj〉, Gssij = 〈si, sj〉, i, j ∈ I.

Denote by
F = (f0, . . . , fN , f∗) ∈ RN+2, H = (h0, . . . , hN , h∗) ∈ RN+2,

the vectors representing the function values of f, h at the iterates. Finally observe that all the constraints
of (PEP) and (PEP) can be expressed using only G, F and H.

For instance, interpolation conditions (21) for BL(Rn) rewrite for all i, j ∈ I as

fi − fj −Ggxji +Ggxjj ≥ 0,

(Lhi − fi)− (Lhj − fj)− L(Gsxji −Gsxjj ) +Ggxji −G
gx
jj ≥ 0.

This allows us to reformulate the relaxation (PEP) as a semidefinite program, written

maximize fN − f∗
subject to fi − fj −Ggxji +Ggxjj ≥ 0,

(Lhi − fi)− (Lhj − fj)− L(Gsxji −Gsxjj ) +Ggxji −G
gx
jj ≥ 0 for i, j ∈ I,

Ggg∗∗ = 0,

Gsxi+1,j = Gsxij − λG
gx
ij for i ∈ {0 . . . N − 1}, j ∈ I,

h∗ − h0 −Gsx0∗ +Gsx00 = 1,

G � 0,

(sdp-PEP)
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in the variables G ∈ S3(N+2) and F,H ∈ RN+2.

Any feasible point of (PEP) can be cast into an admissible point of (sdp-PEP) by computing the
semidefinite Gram matrix G. Conversely, if G,F,H is an admissible point of (sdp-PEP), then the vectors
{(xi, gi, si)}i∈I can be recovered by performing, for instance, a Cholesky decomposition of G. Note that
we expressed the algorithmic constraint si+1 = si − λgi only through scalar products with the xi’s in
the SDP, since only the projection of the gradients on Span({xi}i∈I) is relevant in the PEPs. Because
interpolation conditions from Corollary 1 are necessary and sufficient, we conclude that the problems are
equivalent, that is

val(sdp-PEP) = val(PEP).

The rank of G determines the dimension of the interpolated problem. If we look instead for a solution
that has a given dimension n, this would mean imposing a nonconvex rank constraint on G. Our formu-
lation, on the other hand, is convex and finds the best convergence bound that is dimension-independent,
which is a usual requirement for large-scale settings. In our setting, given the size of G and the algorith-
mic constraints, we can show that there exists worst-case instances of dimensions at most 2N + 5. For
NoLips, we show in the sequel that it is even possible to find simple worst-cases in a single dimension.

In the same way, the value of (PEP) can be computed as

maximize fN − f∗
subject to fi − fj −Ggxji +Ggxjj > 0,

(Lhi − fi)− (Lhj − fj)− L(Gsxji −Gsxjj ) +Ggxji −G
gx
jj > 0 for i 6= j ∈ I,

Ggg∗∗ = 0,

Gsxi+1,j = Gsxij − λG
gx
ij for i ∈ {0 . . . N − 1}, j ∈ I,

h∗ − h0 −Gsx0∗ +Gsx00 = 1,

Gxxii +Gxxjj − 2Gxxij > 0 for i 6= j ∈ I,
G � 0,

(sdp-PEP)

in the variables G ∈ S3(N+2) and F,H ∈ RN+2, where we used interpolation conditions for BL(Rn) from
Corollary 2, since all points {xi}i∈I are constrained to be distinct. Therefore, as above we infer that

val(sdp-PEP) = val(PEP).

Recalling the hierarchy between the problems, we thus have

val(sdp-PEP) ≤ val(PEP) ≤ val(sdp-PEP).

By comparing the two semidefinite programs stated above, one can notice that the only difference is that
(sdp-PEP) imposes some inequalities of (sdp-PEP) to be strict. In the next section, we use topological
arguments to prove that the values of the two problems are actually equal. In fact, strict inequalities
have little meaning in numerical optimization (the value of (sdp-PEP) is actually a supremum and not
a maximum); in our experiments, we focus on (sdp-PEP) as solvers usually admit only closed feasible
sets.

4.4 Tightness of the approach: nonsmooth limit behaviors

We are now ready to prove the main result of this section.

Theorem 4 The value of the performance estimation problem (PEP) for NoLips is equal to the value of
the nonsmooth relaxation (PEP), which can be computed by solving the semidefinite program (sdp-PEP).

Proof We show that the closure of the feasible set of (sdp-PEP) is the feasible set of (sdp-PEP). We
first need to prove that the strengthened problem (PEP) is feasible, by finding an instance of NoLips
where f and Lh− f are strictly convex and such that all iterates are distinct. It suffices for instance to
consider two one-dimensional quadratic functions. Define f, h : R→ R with

f(x) =
α

2
x2, h(x) =

1

2
x2 where α = min

(
1

2λ
,
L

2

)
.
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Then f is strictly convex and so is Lh − f = L−α
2 x2 since L − α ≥ L

2 > 0. The optimum is x∗ = 0.
Choose

x0 =
√

2

for which we have Dh(x∗, x0) = x20/2 = 1. Then, Algorithm 1 is equivalent to gradient descent and the
iterates satisfy

xN = (1− λα)Nx0.

Since αλ ≤ 1/2 < 1, all the iterates are distinct and therefore we constructed a feasible point of (PEP).
Let us therefore write (G,F,H) a corresponding feasible point of (sdp-PEP), and (G,F ,H) a feasible
point of (sdp-PEP). Define the sequence {(Gk, F k, Hk)}k≥1 as

Gk =
1

k
G+ (1− 1

k
)G,

F k =
1

k
F + (1− 1

k
)F ,

Hk =
1

k
H + (1− 1

k
)H.

Then, for every k ≥ 1, (Gk, F k, Hk) is still a feasible point of (sdp-PEP), because of convexity of
the constraints and the fact that adding a strict inequality to a weak inequality gives a strict inequality.
Moreover, the sequence converges to the point (G, f, h) when k → +∞.

Hence we proved that for any feasible point of (sdp-PEP), there is a sequence of admissible points
of (sdp-PEP) that converge to it. Since the objective is linear in the vector F therefore continuous, we
deduce that the two problems have the same value:

val(sdp-PEP) = val(sdp-PEP),

which means that val(PEP) = val(PEP). As val(PEP) lies in between these two values, we conclude that
they are all equal.

Theorem 4 states that the value of the original problem (PEP) can be computed numerically with a
semidefinite solver applied to (sdp-PEP). The result itself also helps us gain some theoretical insight: it
tells us that the worst-case for NoLips might be reached as (f, h) approach possibly pathological limiting
nonsmooth functions in BL(Rn).

Observe also that we focused on presenting the PEP for the class BL(Rn) to avoid technicalities
related to the domain of definition. However, we show in Appendix A that the exact same problem
(sdp-PEP) also solves the performance estimation problem for NoLips on the general class BL(C), for
any nonempty closed convex set C.

4.5 Numerical evidence and computer-assisted proofs

We now provide several applications of the performance estimation framework that we developed for
Bregman methods.

4.5.1 Solving (PEP) for finding the exact worst-case convergence rate of NoLips

We first start by the most direct application, that is finding the exact worst-case performance of NoLips.
Theorem 4 states that it can be computed by solving the semidefinite program (sdp-PEP). The link to
the MATLAB implementation is provided in Section 5.

To simplify our setting, note that we can assume without loss of generality that the relative smoothness
constant L is 1, since we can replace h by a scaled version Lh. Recall that we know from Theorem 1,
that

val(PEP) ≤ 1

λN
.

Table 1 shows the result of solving (sdp-PEP) for several values of N up to 100, for a step size λ = 1.
We observe that with high precision, val(sdp-PEP) is equal to the theoretical bound 1/(λN).
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Table 1 Numerical value of the performance estimation problem (PEP) with λ = 1, L = 1. Rel. error denotes the
relative error between val(PEP) and the theoretical bound of 1/N given by Theorem 1. Primal feasibility corresponds to
the maximal absolute value of constraint violation returned by the MOSEK solver.

N val(PEP) Rel. error Primal feasibility

1 1.000 1.8e-11 4.3e-10
2 0.500 1.8e-8 2.8e-9
3 0.333 1.8e-8 2.8e-9
4 0.250 4.9e-8 2.3e-8
5 0.200 1.8e-10 6.4e-11
10 0.100 6.4e-11 1.3e-11
20 0.050 1.1e-8 1.9e-10
50 0.020 6.5e-6 5.0e-7
100 0.01 7.2e-5 1.6e-6

Other values of λ. One can wonder how the numerical value evolves when one varies the step size λ. Our
experimental observations are as follows:

– For any λ ∈ (0, 1/L], val(PEP) is exactly equal to the theoretical bound 1/(λN).
– For any λ > 1/L, val(PEP) = +∞, hence Algorithm 1 does not converge in general with these step

size values. This suggests that the maximal step size value allowed for NoLips is indeed 1/L, unlike
the Euclidean setting where gradient descent can be applied with a step size that goes up to 2/L.

While results above suggest that 1/(λN) is the exact worst-case rate of NoLips, they provide only
numerical evidence. We can however use them to deduce formal guarantees, both for proving an upper
bound and a lower bound.

Upper bound guarantee through duality. As noticed in previous work on PEPs [18, 35], solving the dual of
(sdp-PEP) can be used to deduce a proof. Indeed, the dual solution gives a combination of the constraints
that, when transposed to analytical form, leads to a formal guarantee. This provides the following proof
for the O(1/k) convergence rate of Theorem 1.

Proof of Theorem 1 The proof relies on the fact that, since Lh − f is convex we have that 1
λh − f is

convex for any λ ∈ (0, 1
L ], and only consists in performing the following weighted sum of inequalities:

– convexity of f , between u and xi (i = 0, . . . , k) with weights γ∗,i = 1
k :

f(u) ≥ f(xi) + 〈∇f(xi), u− xi〉,

– convexity of f , between xi and xi+1 (i = 0, . . . , k − 1) with weights γi,i+1 = i
k :

f(xi) ≥ f(xi+1) + 〈∇f(xi+1), xi − xi+1〉,

– convexity of 1
λh− f , between u and xk with weight µ∗,k = 1

k :

1
λh(u)− f(u) ≥ 1

λh(xk)− f(xk) + 〈 1λ∇h(xk)−∇f(xk), u− xk〉,

– convexity of 1
λh− f , between xi+1 and xi (i = 0, . . . , k − 1) with weight µi+1,i = i+1

k

1
λh(xi+1)− f(xi+1) ≥ 1

λh(xi)− f(xi) + 〈 1λ∇h(xi)−∇f(xi), xi+1 − xi〉,

– convexity of 1
λh− f , between xi and xi+1 (i = 0, . . . , k − 1) with weight µi,i+1 = i

k

1
λh(xi)− f(xi) ≥ 1

λh(xi+1)− f(xi+1) + 〈 1λ∇h(xi+1)−∇f(xi+1), xi − xi+1〉.
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The weighted sum is written as

0 ≥
k∑
i=0

γ∗,i [f(xi)− f(u) + 〈∇f(xi), u− xi〉]

+

k−1∑
i=0

γi,i+1 [f(xi+1)− f(xi) + 〈∇f(xi+1), xi − xi+1〉]

+ µ∗,k
[
1
λh(xk)− f(xk)− ( 1

λh(u)− f(u)) + 〈 1λ∇h(xk)−∇f(xk), u− xk〉
]

+

k−1∑
i=0

µi+1,i

[
1
λh(xi)− f(xi)− ( 1

λh(xi+1)− f(xi+1)) + 〈 1λ∇h(xi)−∇f(xi), xi+1 − xi〉
]

+

k−1∑
i=0

µi,i+1

[
1
λh(xi+1)− f(xi+1)− ( 1

λh(xi)− f(xi)) + 〈 1λ∇h(xi+1)−∇f(xi+1), xi − xi+1〉
]
.

By substitution of ∇h(xi+1) = ∇h(xi) − λ∇f(xi) (i = 0, . . . , k − 1), one can reformulate the weighted
sum exactly as (i.e., there is no residual):

0 ≥ f(xk)− f(u)− h(u)−h(x0)−〈∇h(x0),u−x0〉
λk ,

yielding the desired result.

Lower bound through worst-case functions. As (PEP) computes the exact worst-case performance of
NoLips, experiments above suggest that 1/(λN) is also a lower bound, meaning that for every ε > 0,
there exist functions (f, h) ∈ BL such that the iterates of NoLips satisfy

f(xN )− f∗ ≥
Dh(x∗, x0)

λN
− ε.

We detail here how such functions can be constructed from the solution of (sdp-PEP). The numerical
solver allows us to find a maximizer G,F ,H (recall that only the relaxed problem has a maximizer as the
feasible set is closed), and by factorizing the matrix G as PTP , we can thus recover the corresponding
discrete representation {xi, gi, f i, hi, si}i∈I . This discretization can in turn be interpolated to get the
corresponding functions (f, h) ∈ BL. There are multiple ways to perform this interpolation; see [37,
Thm. 1] for a constructive approach.

Recall that since functions (f, h) yield a solution to (PEP), they belong to BL and might thus form
a pathological nonsmooth limiting worst-case. They can be approached by valid instances (fµ, hµ) ∈ BL
by performing for instance smoothing through Moreau evelopes (as in Section 3.2) and adding a small
quadratic to h to make it strictly convex.

There are however many possible maximizers of (sdp-PEP). If we seek a low-dimensional example
that may be easily interpretable, we can search for a maximizer such that the Gram matrix G has minimal
rank. Using rank minimization heuristics, we were able to find one-dimensional worst-case functions. Fix
a number of iterations N ≥ 1, assume λ = 1/L = 1 and define f, h : R→ R as

f(x) = |x− 1|,
h(x) = f(x) + max(−Nx, 0),

and set x0 = 0, x∗ = 1. Then clearly (f, h) ∈ BL(R). Figure 2 shows the functions f, h as well as their
smoothed versions (fµ, hµ) ∈ BL(R). Note that the pathological behavior also reflects in the iterates:
in the limiting instance, all iterates x0, . . . , xN are equal. In the smoothed version, iterates are distinct
(since hµ is strictly convex), but they get closer and closer as the smoothing parameter µ goes to 0.

The smoothed function fµ is a Huber function, which is also the worst-case instance for Euclidean
gradient descent on L-smooth functions described in [37]. This analysis could be formalized to prove
the 1/k lower bound for NoLips; however, this bound is just a particular case of the stronger result for
general Bregman gradient methods derived in Section 3.2.
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x0 = · · · = x3 x∗

f(x)

h(x)

x0 x1 x2 x3 x∗

fµ(x)

hµ(x)

Fig. 2 Worst-case functions for NoLips in dimension 1 with N = 3 iterations. The left figure shows the limiting instance
(f, h) ∈ BL(R), while the right plot represents the smooth approximation by a valid instance (fµ, hµ) ∈ BL(R), with
smoothing parameter µ = 0.1. As µ goes to 0, functions fµ, hµ tend to a pathological behavior where all iterates are equal

and for which we have exactly f(xN )− f∗ = Dh(x∗, x0)/N .

4.5.2 Extension to other criteria

In our performance estimation problem, we focused on studying bounds of the form f(xN ) − f∗ ≤
θ(N,L, λ)Dh(x∗, x0). However, we are not limited to this criterion, and different convergence measures
might be considered by changing the objective and constraints in (PEP). For instance, another popular
criterion is the stationarity measure Dh(xk, xk+1), which boils down to the squared gradient norm in
the unconstrained Euclidean case. By adapting (PEP), we get the following new convergence result for
NoLips.

Proposition 4 (NoLips convergence rate, take II) Let L > 0, C be a nonempty closed convex subset
of Rn and (f, h) ∈ BL(C) a relatively-smooth problem instance. Then the sequence {xk}k≥0 generated by
Algorithm 1 with constant step size λ ∈ (0, 1/L] satisfies for k ≥ 2

min
1≤i≤k

Dh(xi−1, xi) ≤
2Dh(x∗, x0)

k(k − 1)

for every x∗ ∈ argminC f ∩ domh.

Proof In the same way as before, the formal guarantee has been obtained by examining the dual of the
corresponding PEP. The proof relies on the fact that 1

λh − f is convex for any λ ∈ (0, 1
L ], and only

consists in performing the following weighted sum of inequalities:

– convexity of f , between x∗ and xi (i = 0, . . . , k) with weights γ∗,i = 2λ
k(k−1) :

f(x∗) ≥ f(xi) + 〈∇f(xi), x∗ − xi〉,

– optimality of x∗ for each xk with weight γk,∗ = 2λ
k−1 :

f(xk) ≥ f(x∗),

– convexity of 1
λh− f , between x∗ and xk with weight µ∗,k = 2λ

k(k−1) :

1
λh(x∗)− f(x∗) ≥ 1

λh(xk)− f(xk) + 〈 1λ∇h(xk)−∇f(xk), x∗ − xk〉,

– convexity of 1
λh− f , between xi+1 and xi (i = 0, . . . , k − 1) with weight µi+1,i = 2λ(i+1)

k(k−1)

1
λh(xi+1)− f(xi+1) ≥ 1

λh(xi)− f(xi) + 〈 1λ∇h(xi)−∇f(xi), xi+1 − xi〉,

– definition of smallest residual among the iterates (i = 1, . . . , k) with weights τi = 2(i−1)
k(k−1) :

h(xi−1)− h(xi)− 〈∇h(xi), xi−1 − xi〉 ≥ min
1≤j≤k

{Dh(xj−1, xj)}.
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Fig. 3 Numerical worst-case guarantees obtained from PEPs as functions of the iteration counter k (shown in log scale as
rates are sublinear). Left: guarantees for NoLips (Algorithm 1) for two different convergence measures. Numerical values
confirm exactly the theoretical rates of Theorem 1 and Proposition 4. Right: guarantees for IGA with no affine constraints
(Algorithm 2) under the assumption that h is 1-strongly convex and f is 1-smooth, compared to the theoretical bound
from [1]. Notice that the theoretical bound is not tight in this case, as it is obtained by making some approximations in
the proof.

The weighted sum is written as

0 ≥
k∑
i=0

γ∗,i[f(xi)− f(x∗) + 〈∇f(xi), x∗ − xi〉]

+ γk,∗[f(x∗)− f(xk)]

+ µ∗,k[ 1λh(xk)− f(xk)− ( 1
λh(x∗)− f(x∗)) + 〈 1λ∇h(xk)−∇f(xk), x∗ − xk〉]

+

k−1∑
i=0

µi+1,i[
1
λh(xi)− f(xi)− ( 1

λh(xi+1)− f(xi+1)) + 〈 1λ∇h(xi)−∇f(xi), xi+1 − xi〉]

+

k∑
i=1

τi[ min
1≤j≤k

{Dh(xj−1, xj)} − (h(xi−1)− h(xi)− 〈∇h(xi), xi−1 − xi〉)].

By substitution of ∇h(xi+1) = ∇h(xi) − λ∇f(xi) (i = 0, . . . , k − 1), one can reformulate the weighted
sum exactly as (i.e., there is no residual):

0 ≥ min
1≤j≤k

{Dh(xj−1, xj)} − 2h(x∗)−h(x0)−〈∇h(x0),x∗−x0〉
k(k−1) ,

yielding the desired result.

4.5.3 Beyond NoLips: inertial Bregman algorithms

Our approach is not limited to the NoLips algorithm. For instance, we can also solve the performance
estimation problem for the inertial Bregman algorithm proposed by Auslender and Teboulle [1], a.k.a.
the Improved Interior Gradient Algorithm (IGA). We recall its simplified formulation in Algorithm 2, in
the case where there are no affine constraints.
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Algorithm 2 Improved Interior Gradient Algorithm (IGA) [1]

Input: Functions f, h, initial point x0 ∈ int domh, step size λ.

Set z0 = x0 and t0 = 1.

for k = 0,1,. . . do

yk = (1− 1
tk

)xk + 1
tk
zk

zk+1 = argmin {〈∇f(yk), u− yk〉+ 1
tkλ

Dh(u, zk) |u ∈ Rn}
xk+1 = (1− 1

tk
)xk + 1

tk
zk+1

tk+1 = (1 +
√

1 + 4t2k)/2.

end for

In the setting where f has L̃-Lipschitz continuous gradients and h is a σ-strongly convex kernel
function, IGA with step size λ = σ/L̃ enjoys the following convergence rate [1, Thm. 5.2]:

f(xN )− f∗ ≤
4L̃

σN2
(Dh(x∗, x0) + f(x0)− f∗) . (23)

Our PEP framework can also be applied to this algorithm, in order to find the smallest value of
θ(N, L̃, σ, λ) which satisfies

f(xN )− f∗ ≤ θ(N, L̃, σ, λ) (Dh(x∗, x0) + f(x0)− f∗)

for every instance of IGA with the supplementary assumptions made above. In this case, we use the
standard interpolation conditions of Theorem 3 for L-smooth and strongly convex functions. Results are
shown in Figure 3. The exact numerical worst-case performance of IGA is slightly below the theoretical
bound above, since the proof in [1] makes some approximations.

IGA in the general relatively-smooth case: failure of inertia. We pointed out in Section 2 that the setting
in which f is L̃-smooth and h is σ-strongly convex is a particular case of relative smoothness with
constant L = L̃/σ. The natural question that was also raised in [39, Section 6] is therefore: does IGA
converge for the general class BL(C) ? Solving the corresponding PEP yields the following results. For
Algorithm 2 with the setting that (f, h) ∈ BL(C) and several choices of step size in (0, 1/L], the solver
states that the value of the corresponding performance estimation problem is unbounded, i.e., there
does not exist any θ such that the bound (23) holds for every instance (f, h) ∈ BL.

One could legitimately wonder whether there exist other sequences {tk}k≥0 with tk > 1, perhaps less
aggressive than the one in Algorithm 2, such that the method converges (note that choosing tk = 1 ∀k ≥ 0
would yield the standard NoLips scheme). After solving the PEP with several choices of such sequences
and observing that it is unbounded, we formulate the following conjecture: for any sequence {tk}k≥0, in
IGA, such that tk0 > 1 for some k0, it is not possible to bound f(xN ) − f∗ in general. Of course, this
constitutes numerical evidence and not a formal proof. The conjecture could be proved by constructing
worst-case functions in the same spirit as in Section 3, with some pathological lack of smoothness that
would cause the iterates to diverge when taking a step size larger than 1/L.

These experiments lead us to believe that inertial methods with non-adaptive coefficients fail to
converge in the general relatively-smooth setting.

4.5.4 From worst-case functions for NoLips to a lower bound for general Bregman methods

We briefly explain how, with the PEP methodology, the worst case functions from Section 3.2 were
discovered.

We described in Section 4.5.1 how a one-dimensional worst-case instance (f, h) for NoLips was dis-
covered from low-rank solutions of (sdp-PEP). However, this instance may not be difficult enough for a
more generic Bregman algorithm that can use abritrary linear combinations of gradients (as in Definition
4, our definition of the Bregman gradient algorithm), and thus cannot be used to prove a general lower
bound.
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Our objective now is to find worst-case instances that are difficult for any Bregman gradient algo-
rithm. A desirable property would be that these instances allow to explore only one dimension per oracle
call, so that the function hides information in the unexplored dimensions. This is similar in spirit to the
so-called “worst function in the world” of Nesterov [32]. In order to achieve this goal, we propose to
search for functions f for which all gradients ∇f(xi) are orthogonal, guaranteeing that one new dimen-
sion is explored at each step. Note that a similar approach has been used in some previous work on PEPs
to find lower bounds or optimal methods e.g., in [15, 17]. This amounts to adding some orthogonality
constraints to (PEP) and solving

maximize
(
f (xN )− f (x∗)

)
/Dh(x∗, x0)

subject to (f, h) ∈ BL(Rn),
x∗ is a minimizer of f,
x1, . . . , xN are generated from x0 by Algorithm 1 with step size λ,
〈∇f(xi),∇f(xj)〉 = 0 for i 6= j ∈ I,

(PEP-orth)

in the variables f, h, x0, . . . , xN , x∗, n.
In the same spirit as before, we were able to find a dimension-N solution of (PEP-orth). This allows

us to interpolate the following worst-case pathological instance:

f(x) = ‖x− (1, . . . , 1)‖∞,

h(x) = f(x) +

N∑
i=2

max(−x(i), 0).

Again, these are nonsmooth functions and, as such, they do not form valid instances for NoLips. However,
they can be approached by a sequence of such functions, for instance by applying smoothing with the
Moreau evelope, and adding a small quadratic term to make h strictly convex. Along with a few tweaks,
this is how we found the example that was used to prove the general lower bound for BL in Section 3.2.

5 Conclusion

Our paper has two main contributions: proving optimality of NoLips for the general relatively-smooth
setting, and developing numerical performance estimation techniques for Bregman gradient algorithms.
We presented the performance estimation problem on the basic NoLips algorithm for simplicity, but our
approach can be applied to different settings and various algorithms involving Bregman distances. We
provided several applications illustrating how the PEP methodology is an efficient tool for conjecturing
and analyzing the worst-case behavior of Bregman algorithms.

There is a fundamental concept linking the two parts of the paper, which is that of limiting nonsmooth
pathological behavior. When looking for worst-case guarantees over a class of functions that is open such
as the class of differentiable convex functions, the performance estimation problem is a supremum and
the worst-case maximizing sequence might approach some function that is not in this class, e.g., one
that is nonsmooth in our case. This idea, observed by analyzing the equivalence between (PEP) and the
nonsmooth relaxation (PEP), was used in the proof of the lower bound in Section 3.2. Moreover, the
worst-case sequence of functions was directly inspired by examining particular solutions of (PEP).

Our result also shows that additional assumptions on functions f and h are needed in order to prove
better bounds or devise faster algorithms than NoLips. If the usual properties of L-smoothness and strong
convexity are too restrictive and do not hold in many applications, the future challenge is to find weaker
assumptions, that define a larger class of functions where improved rates can be obtained. One other
possible approach would be to find algorithms that do not fit in Definition 4, for instance by including
second-order oracles of h, in the case when h is simple enough.

Code. Experiments have been run in MATLAB, using the semidefinite solver MOSEK [28] as well
as the modeling toolbox YALMIP [25]. The support for Bregman methods has been added to the Per-
formance Estimation Toolbox (PESTO, [36]) for which we provide some examples. The code can be
downloaded from https://github.com/RaduAlexandruDragomir/BregmanPerformanceEstimation.
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A Extension of performance analysis to the case when C is a general closed convex subset
of Rn

For simplicity of the presentation, we left out in Section 4 the case when the domain C is a proper subset of Rn. We show
in this section that it actually corresponds to the same minimization problem (sdp-PEP).

Let us formulate the performance estimation problem for Algorithm 1 in the general case. Recall that we denote BL
the union of BL(C) for all closed convex subsets of Rn and for every n ≥ 1. The performance estimation problem writes

maximize
(
f (xN )− f (x∗)

)
/Dh(x∗, x0)

subject to (f, h) ∈ BL,
x∗ is a minimizer of f on domh such that x ∈ domh,
x1, . . . , xN are generated from x0 by Algorithm 1 with step size λ,

(PEP-C)

in the variables f, h, x0, . . . , xN , x∗, n. Now, as (PEP-C) is a problem that includes (PEP) in the special case where C = Rn,
its value is larger:

val(PEP) ≤ val(PEP-C)

Let us show that val(PEP-C) is upper bounded by the same relaxation val(PEP), which allows to conclude that the values
are equal. We recall that the problem (PEP) can be written, using interpolation conditions of Corollary 1, as

maximize fN − f∗
subject to fi − fj − 〈gj , xi − xj〉 ≥ 0,

(Lhi − fi)− (Lhj − fj)− 〈Lsj − gj , xi − xj〉 ≥ 0 for i, j ∈ I,
g∗ = 0,
si+1 = si − λgi for i ∈ {1, . . . , N − 1},
h∗ − h0 − 〈s0, x∗ − x0〉 = 1,

(PEP)

in the variables n, {(xi, fi, gi, hi, si)}i∈I . We show that every admissible point of (PEP-C) can be cast into an admissible
point of (sdp-PEP). This actually amounts to show that, from the point of view of performance estimation, an instance
(f, h) ∈ BL(C) is actually equivalent to some instance in BL(Rn).

Let f, h, x0, . . . , xN , x∗ be a feasible point of (PEP-C). We distinguish two cases.

Case 1: x∗ ∈ int domh. This is the simplest case, as the necessary conditions are the same as in the situation where
C = Rn. Indeed, then we have x0, . . . , xN , x∗ ∈ int domh, since x0 is constrained to be in the interior and the next iterates
are in int domh by Assumption 1. Since f and h are differentiable on int domh, convexity of f and Lh− f imply that the
first two constraints of (PEP) hold for all i, j ∈ I. Finally, g∗ = 0 follows from the fact that x∗ minimizes f and that it lies
on the interior of the domain. Hence the discrete representation satisfies the constraints of (sdp-PEP).

Case 2: x∗ ∈ ∂domh. In this case, f and h are not necessarily differentiable at x∗, but are still differentiable still at
x0, . . . , xN for the same reasons. But we can still, with a small modification at x∗, derive a discrete representation that fits
the constraints of (PEP) and whose objective is the same. Indeed, define

(gi, fi, si, hi) = (∇f(xi), f(xi),∇h(xi), h(xi)) for i = 0, . . . , N,

(g∗, f∗, s∗, h∗) = (0, f(x∗), v, h(x∗)) ,

where v ∈ Rn is a vector that are specified later. Then, for i ∈ I and j ∈ {0 . . . N}, convexity of f and Lh− f imply that
the constraints

fi − fj − 〈gj , xi − xj〉 ≥ 0

(Lhi − fi)− (Lhj − fj)− 〈Lsj − gj , xi − xj〉 ≥ 0
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hold. It remains to verify them for i ∈ {0 . . . N} and j = ∗. The first one holds because x∗ minimizes f on domh, so with
g∗ = 0 we have fi − f∗ ≥ 0. We now show that the second one is satisfied, i.e., that we can choose v ∈ Rn so that

(Lhi − fi)− (Lh∗ − f∗)− 〈Lv, xi − x∗〉 ≥ 0 ∀i ∈ {0 . . . N}.

To this extent, we use the fact that x∗ ∈ ∂domh and that xi ∈ int domh for i = 0 . . . N . This means that {x∗} ∩
int domh = ∅, and therefore by the hyperplane separation theorem [34, Thm 11.3], there exists a hyperplane that separates
the convex sets {x∗} and int domh properly, meaning that there exists a vector u ∈ Rn such that

〈xi − x∗, u〉 < 0 ∀i ∈ {0, . . . , N}.

Set

α = min
i=0...N

(Lhi − fi)− (Lh∗ − f∗),

β = min
i=0,...,N

−〈xi − x∗, u〉 > 0,

where β > 0 because of the separation result. Choose s∗ = v as v =
|α|
Lβ
u. Then we have

(Lhi − fi)− (Lh∗ − f∗)− 〈Ls∗, xi − x∗〉 ≥ α+ L
|α|
Lβ

β

≥ α+ |α|
≥ 0.

This eventually provides an instance {(xi, gi, fi, hi, si)}i∈I that is admissible for (PEP).
To conclude, we proved that in both cases, an admissible point of (PEP-C) can be turned into an admissible point of

(sdp-PEP) with the same objective value. Hence we have

val(PEP-C) ≤ val(sdp-PEP).

Recalling that val(PEP) ≤ val(PEP-C) and that val(sdp-PEP) = val(PEP) by Theorem 4, we get

val(PEP-C) = val(PEP).

In other words, solving the performance estimation problem (PEP-C) for functions with any closed convex domain is
equivalent to solving the performance estimation problem (PEP) restricted to functions that have full domain.
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