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Abstract
We introduce a non-zero-sum game between a government and a legislative body
to study the optimal level of debt. Each player, with different time preferences, can
intervene on the stochastic dynamics of the debt-to-GDP ratio via singular stochas-
tic controls, in view of minimizing non-continuously differentiable running costs.
We completely characterise Nash equilibria in the class of Skorokhod-reflection-type
policies. We highlight the importance of different time preferences resulting in qual-
itatively different type of equilibria. In particular, we show that, while it is always
optimal for the government to devise an appropriate debt issuance policy, the legis-
lator should optimally impose a debt ceiling only under relatively low discount rates
and a laissez-faire policy can be optimal for high values of the legislator’s discount
rate.

Keywords Non-zero-sum game · Singular stochastic control · Free-boundary
problem · Debt-to-GDP ratio
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1 Introduction

There is probably no more topical issue in macroeconomics than the determination of
the optimal level of debt that favours both its sustainability and the long-term growth
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of an economy. Although paramount and extensively studied in the literature (see
Barro [1] and Dornbusch and Draghi [14] for a general presentation), the question
of the optimal debt level has not yet received clear theoretical foundations. This lack
of a consensual theoretical framework has led to the implementation of exogenous
mechanisms to monitor the level of debt. In the USA, one of these mechanisms is the
statutory debt ceilingwhich restricts the amount of debt a government can be permitted
to issue.1

The traditional analysis of public debt has shown that high public debt has a negative
effect on long-term economic growth, thus giving an argument to debt ceiling advo-
cates. Indeed, a high level of debt generates high risk premiums that reflect creditors’
doubts about the government’s ability to refinance itself. Being unable not only to
repay its debts but also to pay for the excess of its expenditures over its revenues, the
governmentmust then immediately balance its budget by taking exceptionalmeasures,
like increasing taxes and/or cutting its investments, which can have a dramatic impact
on growth.

Motivated by this, the theoretical literature on debt management problems has
focusedon the stochastic control problem facedbya single decisionmaker to determine
the optimal debt reduction policy and thus the debt ceiling, i.e. the level of debt-to-
GDP ratio (also called “debt ratio”) at which the government should intervene in
order to reduce it. In Cadenillas and Huamán-Aguilar [8, 9], the debt ratio evolves
as a controlled one-dimensional geometric Brownian motion that can be reduced via
singular andboundedvariation controls, respectively, in order tominimize the expected
total costs resulting from the instantaneous cost of the debt ratio and intervention
costs. Ferrari [15] studies the optimal debt ratio reduction problem posed as a fully
two-dimensional singular stochastic control problem, where the government takes into
consideration the evolution of the inflation rate (evolving as an uncontrolled diffusion
process) of the country as well. Callegaro et al. [10] consider a model with partial
observation, where the growth rate of GDP follows an unobservable Markov chain.

On the other hand, the positive effect of a high level of public debt on growth should
not be overlooked, since public investments in social policies, education, healthcare,
justice, research, and infrastructure help private initiatives to develop effectively. As
Blanchard observed in his presidential address to the American Economic Association
[4], as long as the interest rate is lower than the growth rate, a large deficit can be
allowed without decreasing the debt ratio. Notable contributions that consider this
ambivalent effect of public debt include Ferrari and Rodosthenous [16], who model
the growth rate of GDP by a continuous-time Markov chain and the government is
allowed to both decrease and increase the debt ratio, as well as Brachetta and Ceci
[6], who consider a model of regular controls where interventions via fiscal policies
affect the public debt and the GDP growth rate at the same time.

A common feature in all aforementioned papers is that an optimal level of debt
ceiling is endogenously determined. However, the potential political game between a
government and a legislative body (e.g. theUSCongress),whosepolitical interestsmay
be divergent, has not been considered so far. In our paper, we contribute to the literature

1 Within the European Community, a similar mechanism exists since the Maastricht Treaty set 60% as the
upper bound for the debt-to-GDP ratio for members of the European Union.
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on debt management by proposing a game that incorporates the opposing interests and
strategic interaction between these two players. Our modeling framework results in a
non-zero-sum game between a government, whose mandate is to manage its public
debt issuance policy to finance its spending, while a legislative body is concerned
with imposing a mechanism limiting the amount of debt to avoid a potential debt
crisis. In mathematical terms, each player exerts a monotone control to set the path
of the stochastically evolving debt ratio. The first player (government) can increase
the level of debt ratio by exerting its control, while the second player (legislative
body) can decrease the level of debt ratio by implementing exceptional measures.
Each player aims at minimizing their own total cost functional and we allow the
rate of increase/reduction of each player to be unbounded and have an instantaneous
effect on the debt ratio. Consequently, this leads to the formulation of a stochastic
non-zero-sum game of singular controls.

Even though there exists a considerable literature on one-player singular control
problems (e.g. Bather and Chernoff [2], Benes et al. [3], Karatzas [18] and many
others), the literature on non-zero-sum stochastic games with singular controls is still
limited.Kwon andZhang [19] study a gameof competitivemarket share control,where
each player can make irreversible investment decisions via singular controls as well as
decide to exit the market, and obtain and characterise Markov perfect equilibria. Our
work is more closely related to De Angelis and Ferrari [13], who prove the existence
of a Nash equilibrium in the class of Skorokhod-reflection policies, by establishing a
new connection of a non-zero-sum game of monotone controls with a non-zero-sum
stopping game. In order to achieve this connection, it is necessary that both players
have the same discount factor (or equivalently time preferences) and that the running
cost is a differentiable function—same assumptions are imposed also in [19]. In our
paper, we relax both of these assumptions, by considering different time preferences
for each player and a non-differentiable running cost function. This results in the need
for a different methodology to prove the existence of a Nash equilibrium.

We first study separately two coupled constrained stochastic control problems faced
by the two players, and then search forNash equilibria in the game, i.e. where no player
has an incentive to deviate unilaterally. From the government’s perspective, assum-
ing that the legislative body imposes a debt ceiling b (or equivalently a Skorokhod
reflection policy for the debt ratio process at b), we investigate the optimal policy of
the government for issuing new public debt. To this end, we establish a connection
between this constrained stochastic control problem and a free-boundary problem,
that we solve via a guess-and-verify approach. As a result, we show that the best debt
issuance policy is to reflect the debt ratio process upwards at a level a(b), which clearly
depends on the imposed debt ceiling mechanism by the legislator. Consequently, con-
sidering that the government is going to use a debt issuance policy of reflecting the
debt ratio process at a level a, the legislator should decide on whether to impose a debt
ceiling. In particular, if there is already a statutory exogenous debt ceiling, is it optimal
to raise it and by howmuch? Our results suggest that a debt ceiling b(a) should indeed
be imposed for a specific range of the legislative body’s time preference rates. For
larger values—implying that the legislator discounts future costs more heavily—the
legislator’s optimal strategy is in fact realised by a laissez-faire policy in which no
debt ceiling mechanism is imposed.
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The main contribution of our paper is to eventually prove the existence and unique-
ness of a Nash equilibrium in the game. We show that—depending on the legislator’s
time preference rate λ—two qualitatively different Nash equilibria exist in the game.
More precisely, for specific values of λ the Nash equilibrium prescribes that the debt
ratio is kept inside the interval [a∗, b∗]with the minimal cost, associated to Skorokhod
reflection policies. On the other hand, for large values of the legislative body’s time
preference rate, the legislative body should optimally not intervene, and an associated
Nash equilibrium without debt ceiling is proved to hold. Interestingly, we prove that
the optimality of adopting such a strategy relies solely on the legislative body’s time
preferences compared to the parameter constellation in the model—it does not depend
on the actions of the opposing player—see specifically our results in Sect. 4.1. When
the discount rate of future costs is high, the consideration of the risk of a debt crisis in
the future is too low to make the implementation of a debt ceiling mechanism optimal.

The paper is organized as follows. Section 2 describes the setting and the two
problems faced by the two players. In Sect. 3, we solve the government constrained
control problem by distinguishing two cases: the legislative body does not intervene
or forces the government to keep its debt ratio below a debt ceiling b > 0. In both
cases, we show that the government can devise an optimal debt issuance policy when
the debt ratio is sufficiently low. In Sect. 4, we solve the constrained control problem
of the legislative body and find its best response strategy to the above governmental
policy.We show that the magnitude of the legislative body’s time preference rate plays
a crucial role, which is a key result of our analysis. In particular, if it is relatively small,
a debt ceiling mechanism is optimal, while if it is relatively large, the legislative body
should not set a debt ceiling at all. We prove the existence and uniqueness of a Nash
Equilibrium in the class of Skorokhod-reflection policies in Sect. 5. Finally, Sect. 6 is
devoted to a comparative statics analysis; we explore how the optimal debt issuance
policy and debt ceilingmechanism are affected by changes in themodel parameters. In
particular, we are able to quantify the transition between a legislative body’s optimal
intervention and non-intervention regimes.

2 Setting and Problem Formulation

2.1 Motivation for theModel

The model applies to a government that has to finance its expenditures through public
debt, under the control of a legislative body. The nominal debt grows at rate r , i.e. it
evolves according to

dDt = r Dtdt, t ≥ 0,

in the absence of any intervention, where we denote by r ∈ R the interest rate on
government debt. When designing its economic policy, the government can choose to
increase the current level of the debt by a new issuance. Denoting by ξt the cumulative
percentage of debt increase by the government up to time t ≥ 0, the dynamics of the
adjusted debt reads as
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dDt = r Dtdt + Dt ◦u dξt , t,≥ 0,

where the latter integral will be defined later in Sect. 2.2. TheGDP follows the stochas-
tic exogenous dynamics

dGt = gGtdt + σGtd ̂Wt , t ≥ 0,

in the absence of any intervention, where we denote by g ∈ R the growth rate of the
GDP and by ̂W a standard one-dimensional Brownian motion. A legislative body can
implement a liberalisation policy in order to boost the GDP by forcing the government
to favor the job market, moderating social insurance programs, reducing burdensome
regulations, lowering the marginal tax rate and privatizing businesses. Denoting by ηt
the cumulative percentage of GDP increase implemented by the legislative body up
to time t ≥ 0, the dynamics of the adjusted GDP read as

dGt = gGtdt + σGtd ̂Wt + Gt ◦u dηt , t ≥ 0.

Hence, we may conclude that the dynamics of the debt-to-GDP ratio, obtained via the
use of Itô’s formula on X := D/G, evolves according to

dXt = (r − g)Xtdt + σ Xt (σdt − d ̂Wt ) + Xt ◦u dξt − Xt ◦d dηt , t ≥ 0,

where the latter integralwill also be defined later in Sect. 2.2.Without loss of generality,
a change of measure to one under which Wt := σ t − ̂Wt is a Brownian motion, will
allow for the following problem formulation.

2.2 Problem Formulation

Let (�,F , P) be a complete probability space accommodating a one-dimensional
Brownian motion W := (Wt )t≥0. We denote by F := {Ft , t ≥ 0} the filtration
generated by W augmented by P-null sets. In absence of any interventions, the debt-
to-GDP ratio (also called “debt ratio”) evolves according to the stochastic differential
equation (SDE)

dX0
t = (r − g)X0

t dt + σ X0
t dWt , X0

t = x > 0. (2.1)

The classical macroeconomic dynamics of the debt ratio, see e.g. [5], are simply the
deterministic version of (2.1) with σ = 0. When increasing the current debt ratio level
by ε > 0 percentage points, the debt ratio exhibits a jump

�Xt = Xt − Xt− = εXt−.

Hence, for small ε > 0, we can associate a governmental intervention on the debt ratio
with Xt = (1 + ε)Xt− ≈ eεXt−. Furthermore, interpreting an intervention �ξt as a
sequence of N individual interventions of size ε = �ξt/N we have Xt = eNεXt− =

123



52 Page 6 of 42 Applied Mathematics & Optimization (2024) 90 :52

e�ξt Xt−, for N large enough. We can thus model the controlled debt ratio dynamics
(by arguing similarly for the interventions of the legislative body) via

dX ξ,η
t = (r − g)X ξ,η

t dt + σ X ξ,η
t dWt + X ξ,η

t ◦u dξt − X ξ,η
t ◦d dηt , t ≥ 0, (2.2)

where the operators ◦u and ◦d are defined as (see also [13])

X ξ,η
t ◦u dξt = X ξ,η

t dξ ct + X ξ,η
t−

∫ �ξt

0
eudu = X ξ,η

t dξ ct + X ξ,η
t−

[

e�ξt − 1
]

,

X ξ,η
t ◦d dηt = X ξ,η

t dηct + X ξ,η
t−

∫ �ξt

0
e−udu = X ξ,η

t dηct + X ξ,η
t−

[

1 − e�ξt
]

.

(2.3)

Here, ξ c (resp., ηc) denotes the continuous part of the process ξ (resp., η).
Using Itô’s formula we can verify that the solution to (2.2) starting at time zero

from level x > 0 is given by

X ξ,η
t = x exp

((

r − g − 1

2
σ 2

)

t + σWt + ξt − ηt

)

= X0
t exp(ξt − ηt ), t ≥ 0,

(2.4)

where X0
t denotes the solution to (2.1). Notice that the impact of interventions by

the government and legislative body are of multiplicative structure and additive to the
logarithm of the debt ratio. Finally, we introduce the process Y ξ,η

t := ln X ξ,η
t , such

that Y 0
t = ln X0

t from (2.1), to obtain from (2.4) that

Y ξ,η
t = Y 0

t + ξt − ηt , t ≥ 0. (2.5)

In accordance with our reasoning above, ξt denotes the cumulative percentage
amount of debt increase by the government and ηt denotes the cumulative percentage
amount of debt decrease by the legislative body, up to time t ≥ 0. It is therefore
natural to model them as nondecreasing stochastic processes, adapted with respect to
the available flow of information F. Hence we take ξ and η in the set

U :=
{

υ : � × R+ → R+ : (υt )t≥0F -adapted, nondecreasing, càdlàg, and υ0− =0
}

.

The Problem of the Government

In this framework, the government is facing a potential debt ceiling (or debt limit) as
a hard constraint imposed by a legislative body, when the country’s debt ratio is too
high. In other words, the government has an exogenous factor, namely a debt ratio
ceiling b, to take into consideration when designing its economic policy. This is the
level at which a legislative body will demand the decrease of the debt ratio and the
adoption of liberalisation policies by the government. In the following, we assume that
having a debt level X ξ,η

t at time t ≥ 0, the government incurs an instantaneous cost
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h(X ξ,η
t ). This may be interpreted as an opportunity cost resulting from having less

room for financing public investments. We make the following standing assumption.

Assumption 2.1 The instantaneous (running) cost function h : R+ → R+ satisfies:

(i) x �→ h(x) is strictly convex, continuously differentiable and increasing on [0,∞);
(ii) the derivative h′ of h satisfies limx→0 h′(x) = 0 and limx→∞ h′(x) = +∞;
(iii) there exists p > 1, K1 > 0 such that

h(x) ≤ K1(1 + |x |p), x ∈ R.

Remark 2.2 It is worth noticing that a cost function of the form h(x) = 1
2 x

2 for x > 0
satisfies Assumption 2.1. Notice that h(0) = 0 together with h′(0) = 0 imply that any
infinitesimal amount of debt does not generate holding costs for the country; indeed,
h(ε) ≈ h′(0)ε = 0. If one wishes to obtain closed-form solutions, a specific function
h must be chosen according to Assumption 2.1; our choice will be precisely the above
one.

Moreover, whenever a legislative body decides to impose a debt ceiling mechanism,
the government incurs a proportional cost to the amount of debt reduction (see also
[8]). This might be seen as a measure of the social and financial consequences, or
repercussions for the financial stability of households and individuals, deriving from
the enforcement of debt-reduction policies. The associated constant marginal cost
c1 > 0 allows to express it in monetary terms. Finally, the government’s main aim is
to increase the current level of debt ratio through public investments, e.g. investments
in infrastructure, healthcare, education and research, etc. We assume that this has a
positive political, social and financial effect, thus overall reduces the total expected
“costs" of the government. Themarginal benefit of increasing the debt ratio is a strictly
positive constant c2 > 0. From the point of view of the government, assuming that it
discounts at a rate ρ > 0, the total expected cost functional, net of investment benefits,
is thus given by

Jx,η(ξ) :=Ex
[

∫ ∞
0

e−ρt h
(

Xξ,η
t

)

dt+c1

∫ ∞
0

e−ρt Xξ,η
t ◦d dηt − c2

∫ ∞
0

e−ρt Xξ,η
t ◦u dξt

]

,

(2.6)

where for any x ∈ R+, Ex denotes the expectation under the measure Px (·) := P(· |
X ξ,η
0− = x).

The Problem of the Legislative Body

On one hand, the legislative body (e.g. Congress) would like governments to ideally
keep their country’s debt ratio at low levels to maintain a low probability of default
and a feasible borrowing from the markets. Even though countries that can print
their own currency cannot default on their debts, there are many countries that do
not control their own monetary policy, e.g. EU members who rely on the European
Central Bank (ECB), or countries that hold large amounts of foreign denominated
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debts, e.g. Argentina (who defaulted on US government bonds). Several levelsm > 0
defining the “healthy” region [0,m] of relatively “low” debt ratio have been used in
the last decades, e.g. m = 60% is the Maastricht Treaty’s reference value of 1992 for
all EU countries, orm = 77% is the threshold found by researchers at theWorld Bank
[11] for developed economies and m = 64% for emerging markets.2

When the debt ratio X ξ,η exceeds this pre-specified value m > 0, the legislative
body would face social and political pressure, which may lead to the implementation
of liberalisation policies in order to decrease the level of X ξ,η via a control strategy
η. This could, for example, be done by setting a debt ceiling b. This debt ceiling b
is expected to be bigger than m, since imposing structural adjustment programs on
countries or restricting further borrowing by governments, is costly for the legislative
body and the associated marginal cost is κ > 0. From the point of view of such a
legislative body, assuming that it discounts at a rate λ > 0, we model the expected
cost functional as3

Ix,ξ (η) := Ex
[

∫ ∞

0
e−λtα(X ξ,η

t − m)+dt + κ

∫ ∞

0
e−λt X ξ,η

t ◦d dηt

]

. (2.7)

When a government wants to reduce its public deficit, it has, in simple terms,
a choice between increasing tax revenues while keeping expenditures constant, or
reducing public expenditures with stable tax revenues. The second choice is usually
the more difficult to make: public spending is sometimes structural (for example, the
payment of civil servants’ salaries) and therefore incompressible in the short term. This
is why, when seeking to reduce public deficits, one most frequently turns to taxation.
Hence, α > 0 can be interpreted as a country tax compliance factor, the smaller α is
the bigger is the willingness to pay tax, if needed in the future. When this factor is low
as it is in Denmark for instance, the legislative body has thus less social pressure to
reduce the debt ratio.

Debt CeilingMechanism as a Non-zero-SumGame of Singular Controls

In our analysis, we restrict our attention to controls producing finite payoffs, which
includes the realistic assumption that both players will not use an economic policy
leading to infinite cost and/or benefit of interventions. Moreover, we note that the
definition of the integrals with respect to the controls, as specified in (2.3), requires
some attention since simultaneous jumps of ξ and η may be difficult to handle.

2 This study goes a step further to quantify the economic cost per percentage point the debt ratio exceeds
m (see also [20] for an empirical study on the effect of high debt towards private investments’ crowding out
and a low subsequent growth).
3 We again highlight the fact that the legislative body discounts with a different discount rate than the
government, which can be interpreted as different time preferences. Moreover, the running cost function
inside the first integral is non-differentiable, which does not satisfy the assumptions in [13], thus the link
between non-zero-sum games of singular controls and optimal stopping, developed therein, breaks down.
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Given that the debt ratio is always a positive number, we therefore consider pairs
(ξ, η) ∈ U × U such that

Ex
[

∫ ∞
0

e−ρt h(Xξ,η
t )dt + c1

∫ ∞
0

e−ρt Xξ,η
t ◦d dηt + c2

∫ ∞
0

e−ρt Xξ,η
t ◦u dξt

]

< +∞,

Ex
[

∫ ∞
0

e−λtα(Xξ,η
t − m)+dt + κ

∫ ∞
0

e−λt Xξ,η
t ◦d dηt

]

< +∞,

Px (�ξt · �ηt > 0) = 0 for all t ≥ 0 and x ∈ R+.

(2.8)

To that end, we consider the class of controls

A := {(ξ, η) ∈ U × U : (2.8) hold true}.

For the purpose of formulating and subsequently tackling the non-zero-sum game of
the government versus the legislative body, it is convenient to introduce the two sets

Aη := {ξ ∈ U : (ξ, η) ∈ A} and Aξ := {η ∈ U : (ξ, η) ∈ A}.

The problem introduced partly in (2.6) and (2.7) is therefore formulated as a non-
zero-sum game between two players: The government (player 1) which aims at solving

V1(x; η) := inf
ξ∈Aη

Jx,η(ξ), x ∈ R+, (2.9)

for any fixed control process η ∈ U , and the legislative body (player 2) which aims at
solving

V2(x; ξ) := inf
η∈Aξ

Ix,ξ (η), x ∈ R+, (2.10)

for any fixed control process ξ ∈ U .
Definition 2.3 A couple (ξ∗, η∗) ∈ A forms a Nash equilibrium if and only if

{

Jx,η∗(ξ∗) ≤ Jx,η∗(ξ) for any ξ ∈ Aη∗ ,

Ix,ξ∗(η∗) ≤ Ix,ξ∗(η) for any η ∈ Aξ∗ .

Each player’s value of the game is then given by V1(x; η∗) = Jx,η∗(ξ∗) and
V2(x; ξ∗) = Ix,ξ∗(η∗).

The following assumptions on the model’s parameters will hold true in the rest of
this paper.

Assumption 2.4 The model’s parameters satisfy:

(i) c1 > c2;
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(ii) ρ > (p(r − g) + σ 2

2 p(p − 1))+, where p is defined in Assumption 2.1;
(iii) λ > r − g;
(iv) m > 0.

The condition in Assumption 2.4(i) is typically assumed in the literature on
bounded-variation stochastic control problems in order to ensure well-posedness of
the optimisation problem (see, e.g., [12, 16, 17]) and to avoid arbitrage opportunities.
In economic terms, a possible interpretation is that the Keynesian multiplier is not
high enough to offset the costs of liberalisation policies.

Assumption 2.4(ii) reflects the fact that governments are more concerned about the
present than the future, since they are in power for only a limited amount of years; hence
discounting future costs and benefits at a sufficiently large rate. Moreover, combining
this with Assumption (2.1)(iii), the trivial policy “never intervene on the debt ratio” is
admissible, since it yields a finite expected cost. The latter is guaranteed also for the
problem of the legislative body due to Assumption 2.4(iii).

In this paper, we will devote our attention to the existence of Nash equilibria of the
game (2.9)–(2.10) in the class of strategies, where at least one of the players chooses
a Skorokhod reflection type policy at a constant threshold. To this end, we first recall
the following well known results on Skorokhod reflection.

Lemma 2.5 Let a, b ∈ R+ with a < b. For any x ∈ [a, b] there exists a unique couple
(ξ(a), η(b)) ∈ A that solves the Skorokhod reflection problem

Find (ξ, η) ∈ A s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

X ξ,η
t ∈ [a, b], P-a.s. for t > 0,

∫ T
0 1{X ξ,η

t >a}dξt = 0, P-a.s. for any T > 0,
∫ T
0 1{X ξ,η

t <b}dηt = 0, P-a.s. for any T > 0,

(SP(a,b;x))

and it follows that supp{dξt (a)} ∩ supp{dηt (b)} = ∅.
Lemma 2.6 For any η ∈ U , a ∈ R+ and x ≥ a there exists a unique ξ(a) ∈ Aη

solving the Skorokhod reflection problem

Find ξ ∈ Aη s.t.

{

X ξ,η
t ≥ a, P-a.s. for t > 0,

∫ T
0 1{X ξ,η

t >a}dξt = 0, P-a.s. for any T > 0.
(SP(a; x, η))

Analogously, for any ξ ∈ U , b ∈ R+ and x ≤ b there exists a unique η(b) ∈ Aξ

solving

Find η ∈ Aξ s.t.

{

X ξ,η
t ≤ b, P-a.s. for t > 0,

∫ T
0 1{X ξ,η

t <b}dηt = 0, P-a.s. for any T > 0.
(SP(b; x, ξ ))

Remark 2.7 Using the change of variable leading to (2.5), the existence of solutions
to the three Skorokhod reflection problems SP(a,b;x), SP(a;x,η) and SP(b;x,ξ ) can
be deduced from Proposition 2.3, Corollary 2.4 and Theorem 2.6 in [7], as well as
Lemmata 2.1 and 2.2 in [13].
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Moreover, we define

M := {(ξ, η) ∈ A : ξ solves SP (a; x, η) or η solves SP (b; x, ξ) for x ∈ R+ and some a, b ∈ R+}
(2.11)

and aim to prove the existence and uniqueness of a Nash equilibrium (ξ, η) ∈ M, in
different parameter configurations of the game. Indeed, we will show that if at least
one player acts according to a Skorokhod reflection type policy as specified above, the
game (2.9)–(2.10) admits a unique Nash equilibrium. Clearly, when not restricting at
least one of the players to a Skorokhod reflection type policy there could also exist
Nash equilibria outside of the setM. However, as pointed out in previous contributions
such as [13], it is impossible to rank different Nash equilibria without an additional
optimality criterion.

3 The Optimal Governmental Debt Management Rule

In this section, we study the problem of the government choosing their investment
economic policy ξ , taking into account that the legislative body (e.g. Congress) may
or may not choose to intervene on the debt ratio. In the following, we distinguish
between two cases, depending on the chosen control policy of the legislative body:

(I) ηt = ηt := 0, (II) ηt = ηbt := 1{t>0}[(x − b)+ + ηt (b)]. (3.1)

In particular, the legislative body does not intervene in Case (I), while in Case (II) it
imposes a debt ceiling mechanism, which forces the government to keep its debt ratio
below a fixed level b ∈ R+ (via e.g. the adoption of liberalisation policies). In the latter
definition, η(b) uniquely solves the Skorokhod reflection problem SP(b; (x∧b), ξ ). In
the following, we aim at determining a best response (i.e. an optimal control strategy
ξ ∈ Aη) in both cases.

For simplicity of exposition, we assume the running cost function h(x) = x2/2 in
(2.6) (cf. Remark 2.2) in the rest of the paper, which further yields that

Assumption 2.4.(ii) with p = 2 ⇔ ρ > 2(r − g) + σ 2. (3.2)

It is clearer to present the two cases (I) and (II) separately.

3.1 The Government’s Optimal Strategy Under No Legislative Body
Intervention: Case (I)

Let us assume that the legislative body does not intervene on the government’s debt.
The value function (2.9) thus rewrites as

V 1(x) := inf
ξ∈Aη

Ex
[

∫ ∞

0
e−ρt h

(

X ξ,η
t

)

dt − c2

∫ ∞

0
e−ρt X ξ,η

t ◦u dξt

]

, (3.3)
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where we let V 1(x) := V1(x; η). It follows from standard theory that we can associate
the value function V 1 of (3.3)with a suitable solution to theHamilton–Jacobi–Bellman
(HJB) equation

min
{

(L − ρ)u(x) + 1
2 x

2, u′(x) − c2
} = 0 (3.4)

for all x ∈ R+, where the second order linear operator L defined by its action on
functions f ∈ C2 is defined by

L f := 1
2σ

2x2 f
′′ + (r − g)x f ′.

We guess that the government chooses to increase its debt ratio only when the current
level is sufficiently small. Hence,we expect that there exists a critical x-level a atwhich
the government increases their debt ratio via a Skorokhod reflection type policy. For
any x ∈ R+, we thus consider the control

ξat := 1{t>0}[(a − x)+ + ξt (a)], (3.5)

where ξ(a) is the unique solution to the Skorokhod reflection problem SP(a; (x ∧
a), η). As a consequence, we can associate the given problem (3.3) with the free-
boundary problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(L − ρ)u(x) ≥ 1
2 x

2, x ∈ R+,

(L − ρ)u(x) = 1
2 x

2, a < x,

u′(x) ≥ c2, x ∈ R+,

u′(x) = c2, 0 < x ≤ a,

u′′(a) = 0,

limx→+∞
(

u(x) − x2

2(ρ − 2(r − g) − σ 2)

)

= 0,

(3.6)

where we impose an additional smoothness condition at the boundary a and the latter
one in order to guarantee uniqueness of the solution to the free-boundary problem. In
the following theorem, we derive a solution to the optimal debt management problem
of the government in Case (I). We follow the usual guess-and-verify approach by first
constructing a solution to the free-boundary problem (3.6) and then verify that this
candidate value function indeed coincides with the true value function (3.3). As a
byproduct, we obtain the optimal debt management policy, which prescribes to reflect
the debt ratio upwards according to the Skorokhod reflection type policy (3.5). The
proof can be found in Appendix A.1.

Theorem 3.1 (Verification Theorem: Case (I)) Assume that the legislative body does
not intervene on the debt ratio and thus acts according to the policy η ≡ 0. Then, the
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value function V 1 of (3.3) is given by

V 1(x) :=
{

V 1(a) − c2(a − x), 0 < x ≤ a,

D1(a)xδ2 + 1
2(ρ−2(r−g)−σ 2)

x2, a < x,
(3.7)

where

D1(a) := − 1

(ρ − 2(r − g) − σ 2)δ2(δ2 − 1)aδ2−2 ,

and a := (1 − δ2)c2(ρ − 2(r − g) − σ 2)

(2 − δ2)
, (3.8)

with δ2 denoting the negative root to the equation 1
2σ

2δ(δ − 1) + (r − g)δ − ρ = 0.
Moreover, the admissible ξat of (3.5), with a given by (3.8), is optimal for problem
(3.3).

3.2 The Government’s Optimal Strategy Under Legislative Body
Interventions: Case (II)

We begin by fixing a constant b ∈ R+ and assume that the legislative body acts
according to the control policy ηb of (3.1), thus keeping the debt ratio below the debt
ceiling b according to a Skorokhod reflection type policy. From the government’s point
of view, we thus study the problem V1(x; ηb) defined in (2.9) and given by4

V1(x; b) := inf
ξ∈A

ηb

Ex
[

∫ ∞

0
e−ρt h

(

X ξ,ηb

t
)

dt + c1

∫ ∞

0
e−ρt X ξ,ηb

t ◦d dηbt

− c2

∫ ∞

0
e−ρt X ξ,ηb

t ◦u dξt

]

. (3.9)

Again, we can associate the latter value function with the solution to the HJB equation

min
{

(L − ρ)u(x; b) + 1
2 x

2, u′(x; b) − c2
} = 0 (3.10)

for all x ∈ (0, b) with boundary condition u(0; b) = 0 and Neumann boundary
condition u′(b; b) = c1.

We guess that the government increases their debt ratio only when the current level
is sufficiently small. Hence, we expect that for any given debt ceiling b ∈ R+, there
exists a critical debt-issuance level a(b) at which the government increases their debt
ratio with minimal effort, via a Skorokhod reflection type policy, where we stress the
(possible) dependency on the debt ceiling threshold b ∈ R+. For any x ∈ R+, we thus

4 For ease of notation, we denote by V1(x; y) and V2(x; y), x, y ∈ R+, the control value functions
V1(x; ηy) and V2(x; ξ y), i.e. when their opponents choose the Skorokhod reflection type strategies ηy and
ξ y , respectively.
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consider the control

ξ
a(b)
t := 1{t>0}[(a(b) − x)+ + ξt (a(b))], (3.11)

where ξ(a(b)) is the unique control such that the couple (ξ(a(b)), η(b)) solves the
Skorokhod reflection problem SP(a(b), b; (x ∨ a(b))∧ b). As a consequence, we can
associate the given problem (3.9) with the free-boundary problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(L − ρ)u(x; b) ≥ − 1
2 x

2, 0 < x < b,

(L − ρ)u(x; b) = − 1
2 x

2, a(b) < x < b,

u′(x; b) ≥ c2, 0 < x < b,

u′(x; b) = c2, 0 < x ≤ a(b),

u′(x; b) = c1, b ≤ x,

u′′(a(b); b) = 0,

(3.12)

where we impose an additional smoothness condition at the free boundary a(b). The
forthcoming analysis is dedicated to determining the optimal debt-issuance threshold
a(b) and proving the optimality of the control (3.11) for the original debt ratio man-
agement problem of the government (3.9), which corresponds to (2.9) with η = ηb

defined in (3.1).
We begin with solving the free-boundary problem (3.12) by constructing a solution

to the ordinary differential equation and imposing the boundary conditions to obtain
a candidate value function

U1(x; b) =

⎧

⎪

⎨

⎪

⎩

U1(a(b); b) − c2(a(b) − x), 0 < x ≤ a(b),

D1(a(b))xδ1 + D2(a(b))xδ2 + 1
2(ρ−2(r−g)−σ 2)

x2, a(b) < x < b,

U1(b; b) + c1(x − b), b ≤ x,
(3.13)

with

Di (a) = (δ3−i − 2)a − c2(δ3−i − 1)(ρ − 2(r − g) − σ 2)

(−1)i+1δi (δ1 − δ2)(ρ − 2(r − g) − σ 2)aδi−1 , for i = 1, 2,

and the constants δ1, δ2 denoting the positive and negative roots to the equation
1
2σ

2δ(δ − 1) + (r − g)δ − ρ = 0, respectively. The optimal boundary is given by the
solution a(b) ∈ (0, b) to the equation

F(a(b), b) = 0, (3.14)

where we define
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F(a, b) := [(2 − δ2)a − c2(1 − δ2)(ρ − 2(r − g) − σ 2)]
(b

a

)δ1−1

+ [(δ1 − 2)a − c2(δ1 − 1)(ρ − 2(r − g) − σ 2)]
(b

a

)δ2−1

− (δ1 − δ2)[b − c1(ρ − 2(r − g) − σ 2)]. (3.15)

In the following result, we prove the existence and uniqueness of the optimal bound-
ary, as well as some monotonicity and limit properties that will be useful in the search
for a Nash equilibrium later in Sect. 5. Its proof can be found in Appendix A.2.

Lemma 3.2 Let b ∈ R+ and recall F(·, b) defined by (3.15) on (0, b). Then,

(i) There exists a unique a(b) ∈ (0, b) solving F(a(b), b) = 0 in (3.14), that satisfies
∂
∂a F(a(b), b) > 0 and a(b) < ã, where

ã := c2(ρ − (r − g)) > 0. (3.16)

(ii) We have

a(·) is
{

increasing on (0,̂b),

decreasing on (̂b, ∞),
wherêb is the unique solution to

∂

∂b
F(a(̂b),̂b) = 0,

(3.17)

and limb→0 a(b) = 0 as well as limb→∞ a(b) = a, where a is the optimal debt-
issuance threshold defined by (3.8) in Case (I) of non-intervention by a legislative
body.

(iii) Furthermore, b �→ a(b) is concave on the interval (0,̂b).

In the following theorem, we prove that the value function V1 of (3.9) is indeed
given by the solution to the free-boundary problem (3.12), i.e. the function U1 of
(3.13). Moreover, the control policy ξa(b) of (3.11), with a(b) given as the unique
solution to equation (3.14), is proven to be optimal. Before doing so, we first notice
that the control policy ξa(b) as in (3.11), combined with the policy ηb of (3.1), is
indeed admissible. Clearly, the couple solves SP(a(b), b; x) and as such belongs toA.
Indeed, by arguing as in Lemma 4.1 in [21] one can easily show (2.8) and moreover,
Px (�ξa(b) · �ηb > 0) = 0 for all t ≥ 0, by construction. The proof of the following
result, which concludes this section, can be found in Appendix A.3.

Theorem 3.3 (Verification Theorem: Case (II)) Assume that the legislative body acts
according to the control policy ηb of (3.1). Then, the function U1 of (3.13) coincides
with the government’s value function V1 in (3.9) and the admissible ξa(b) of (3.11) is
optimal for problem (3.9).

4 The Optimal Debt Ceiling

In this section, we study the control problem of the legislative body. As seen in Sect.
3, the best response of the government to either a legislative body non-intervention
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policy, or a debt ceiling mechanism (threshold-type policy) is given by a debt-issuance
threshold-type policy. We now reverse the roles and assume that the government
chooses to increase its debt ratio at a certain level a ∈ R+, i.e. to the debt-issuance
control policy

ξat := 1{t>0}[(a − x)+ + ξt (a)], (4.1)

where ξ(a) uniquely solves the Skorokhod reflection problem SP(a; x ∨ a, η). In the
following, for any such level a, we study the problem (2.10) of finding a best response
(i.e. an optimal control strategy η ∈ Aξa ). We thus consider the problem4

V2(x; a) := inf
η∈Aξa

Ex
[

∫ ∞

0
e−λtα

(

X ξa ,η
t − m

)+
dt + κ

∫ ∞

0
e−λt X ξa ,η

t ◦d dηt

]

.

(4.2)

Via standard arguments, we can associate the value function V2 of (4.2) with a suitable
solution to the HJB equation

min
{

(L − λ)u(x; a) + α(x − m)+, κ − u′(x; a)
} = 0, (4.3)

for all x ∈ (a,∞) with Neumann boundary condition u′(a; a) = 0. We presume
that the legislative body may only decrease the debt ratio when the current level is
sufficiently large. Therefore, if the legislative body chooses to intervene,we expect that
for any given debt-issuance threshold a ∈ R+, there exists a critical debt ceiling level
b(a) at which the legislative body forces a decrease in the debt ratio via a Skorokhod
reflection type policy, where we stress the (possible) dependency on the debt-issuance
threshold a ∈ R+. On the other hand, also a non-intervention policy is conceivable.
As it turns out, it is crucial in our analysis to distinguish two different cases, depending
on the legislative body’s time preference rate λ:

(I) λ > r − g + α

κ
, (II) λ < r − g + α

κ
.

In the forthcoming Sects. 4.1 and 4.2 we study these cases separately, providing an
optimal control strategy by the legislative body for each one of them.

4.1 The Legislative Body’s Optimal Strategy Under High Time Preference
Rate: Case (I)

Notice that the legislative body discounts future events with a relatively large discount
factor in this case, and it is therefore appropriate to assume that the legislative body
disregards the risk of future government insolvency at a greater extent compared to
Case (II). We verify this intuition by showing that indeed, the optimal control policy
of the legislative body prescribes not to intervene on the debt ratio at all.
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To this end, we prove that the value function V2 of (4.2) coincides with a suitable
solution to a fixed-boundary problem

⎧

⎪

⎨

⎪

⎩

(L − λ)u(x; a) = −α(x − m)+, a < x,

u′(x; a) < κ, a < x,

u′(x; a) = 0, 0 < x ≤ a.

(4.4)

We can solve the latter problem by constructing a solution to the ordinary differential
equation and imposing the stated boundary condition. In the following theorem, we
again follow the usual guess-and-verify approach by proving that the constructed
solution to the fixed-boundary problem (4.4) indeed coincides with the value function
V2 of (4.2). Moreover, the proof reveals that the no-intervention policy η = 0 is
optimal. The proof, including the construction of the solution to the fixed-boundary
problem (4.4), can be found in Appendix B.1.

Theorem 4.1 (Verification Theorem: Case (I)) Assume that the government acts
according to the control policy ξa of (4.1). Then, the function V2 of (4.2) is given
by

V2(x; a) =
{

V2(a; a), 0 < x ≤ a;
D2(a)xθ2 + H(x), a < x,

(4.5)

where

D2(a) := − α

θ2
a1−θ2

∫ ∞

0
e−(λ−(r−g))t�(d1(a, t))dt,

H(x) := α

∫ ∞

0

(

xe−(λ−(r−g))t�(d1(x, t)) − me−λt�(d2(x, t))
)

dt,

d1(x, t) := log
( x
m

) + (

r − g + 1
2σ

2
)

t

σ
√
t

and d2(x, t) := d1(x, t) − σ
√
t, (4.6)

with θ2 denoting the negative root to the equation 1
2σ

2θ(θ − 1) + (r − g)θ − λ = 0
and �(·) denoting the cumulative distribution function of a standard normal random
variable. The optimal policy for the legislative body prescribes not to act on the debt
ratio, i.e. η := 0.

Notice that the strategy of the legislative body not to intervene on the debt ratio is not
triggered by some specific a ∈ R+. This comes solely from the fact that λ > r−g+ α

κ
,

independently of the governmental choice of a debt-issuance level a ∈ R+. On the
other hand, the best response of the government to a legislative body non-intervention
policy η from (3.1), has been treated in Sect. 3.1. In particular, the optimal control for
problem V1(x; η) of (2.9) (cf. V 1(x) in (3.3)) is given by the Skorokhod reflection
type policy ξa as in (3.11), with a defined in (3.8). Indeed, we prove in Sect. 5 that
this pair of strategies leads to an equilibrium.
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4.2 The Legislative Body’s Optimal Strategy Under LowTime Preference
Rate: Case (II)

While it is optimal for the legislative body to never intervene in Case (I), we show
that in this case the best response to a governmental policy (4.1) requires intervention.
Indeed, for anygiven governmental debt-issuance thresholda ∈ R+, thiswill prescribe
keeping the debt ratio below a certain debt ceiling b(a) with minimal effort, via a
Skorokhod reflection type policy, where we stress the (possible) dependency on the
debt-issuance threshold a ∈ R+. For any x ∈ R+, we thus consider the control

η
b(a)
t := 1{t>0}[(x − b(a))+ + ηt (b(a))], (4.7)

where η(b(a)) is the unique control such that the couple (ξ(a), η(b(a))) solves the
Skorokhod reflection problem SP(a, b(a); (x ∨ a)∧ b(a)). As a consequence, we can
associate the given problem (4.2) with the free-boundary problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(L − λ)u(x; a) ≥ −α(x − m)+, a < x,

(L − λ)u(x; a) = −α(x − m)+, a < x < b(a),

u′(x; a) ≤ κ, a < x,

u′(x; a) = κ, b(a) ≤ x,

u′(x; a) = 0, 0 < x ≤ a,

u′′(b(a); a) = 0,

(4.8)

where we imposed an additional smoothness condition at the free boundary b(a).
The forthcoming analysis is dedicated to determining the optimal threshold b(a) and
proving the optimality of the control (4.7) for the original debt ratio management
problem of the government (4.2), which corresponds to (2.10) with ξ = ξa defined in
(4.1).

We begin with solving the free-boundary problem (4.8) by constructing a solution
to the ordinary differential equation and imposing the boundary conditions to obtain
a candidate value function

U2(x; a) :=

⎧

⎪

⎨

⎪

⎩

U2(a; a), 0 < x ≤ a,

D3(b(a))xθ1 + D4(b(a))xθ2 + H(x), a < x < b(a),

U2(b(a)); a) + κ(x − b(a)), b(a) ≤ x,

(4.9)

where

Di (b) := b1−θi−2

θi−2(θ2 − θ1)

[

(θ5−i − 1)
(

k − α

∫ ∞

0
e−(λ−(r−g))t�(d1(b, t))dt

)

+ α

∫ ∞

0
e−(λ−(r−g))t 1√

2π tσ
e− 1

2 d1(b,t)
2
dt

]

, i = 3, 4,
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and the constants θ1, θ2 are given by the positive and negative roots to the equation
1
2σ

2θ(θ − 1) + (r − g)θ − λ = 0, respectively. The optimal boundary is given by the
solution b(a) ∈ (a,∞) to the equation

G(a, b(a)) = 0, (4.10)

where G(a, ·) is defined on (a,∞) by

G(a, b) =
[

(θ1 − 1)
( b

a

)1−θ2 + (1 − θ2)
( b

a

)1−θ1
]( κ

θ1 − θ2
− α

(θ1 − θ2)(λ − (r − g))
1{b≥m}

)

+ α

(θ1 − θ2)(λ − (r − g))

[

(1 − θ2)
(m

a

)1−θ1
1{b>m>a} + (θ1 − 1)

(m

a

)1−θ2
1{b>m>a}

]

+ α

(λ − (r − g)
1{a≥m}. (4.11)

In the following lemma we state our results on the existence and uniqueness of
a solution b(a) ∈ (a,∞) solving (4.10), as well as some monotonicity and limit
properties that will be useful in the search for a Nash equilibrium later in Sect. 5. Its
proof can be found in Appendix B.2.

Lemma 4.2 Let a ∈ R+ and recall G(a, ·) defined by (4.11) on (a,∞). Then,

(i) There exists a unique b(a) ∈ (a,∞) solving G(a, b(a)) = 0 in (4.10), that
satisfies ∂

∂bG(a, b(a)) < 0.
(ii) We have

b(a) ≥ b0 :=
( α

α − κ(λ − (r − g))

) 1
1−θ2 m > m. (4.12)

(iii) The function a �→ b(a) is strictly increasing on R+. In particular, it takes a
linear form b(a) = (1/q̃)a, for all a > m, where q̃ ∈ (0, 1) is given by the
solution to

(1 − θ2)(κ(λ − (r − g)) − α)q̃ θ1−1

+ (θ1 − 1)(κ(λ − (r − g)) − α)q̃ θ2−1 + α(θ1 − θ2) = 0. (4.13)

(iv) Moreover, a �→ b(a) is convex on the interval (0,m), with lima→0 b(a) = b0,
where b0 is given by (4.12), and lima→∞ b(a) = ∞.

Before we present the optimality of the controls, we first notice that the control
policy ηb(a) as in (4.7), combined with the policy ξa of (4.1), is indeed admissible.
Clearly, the couple solves SP(a, b(a); x) and as such belongs toA. Indeed, by arguing
as in Lemma 4.1 in [21] one can easily show (2.8) and moreover, Px (�ξa · �ηb(a) >

0) = 0 for all t ≥ 0, by construction. In the next theorem, we conclude this chapter
by proving that the value function (4.2) is indeed given by the solution to the free-
boundary problem (4.8). Moreover, it is revealed that the control policy ηb(a) of (4.7)
is optimal for the legislative body in Case (II).
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Theorem 4.3 (Verification Theorem: Case (II)) Assume that the government acts
according to the control policy ξa of (4.1). Then, the function U2 of (4.9) coincides
with the value function V2 of (4.2). Furthermore, the policy ηb(a) of (4.7) with the
optimal threshold determined via (4.10) is optimal.

5 Nash Equilibria in theModel

Our main results concern the existence of Nash equilibria in our model. These results
stem from the analysis of the decision problems faced by the government and the
legislative body developed in the previous Sects. 3 and 4, respectively.Wewill focus on
the two cases—each player’s best response to a Skorokhod-reflection type strategy is
either a Skorokhod-reflection type strategy or a no-intervention policy—which suggest
that we should aim at determining a Nash equilibrium via its Definition 2.3 in the class
M of (2.11), in which at least one player acts according to a Skorokhod-reflection
type policy. The analysis in this section focuses on this direction.

We highlight the peculiarity arising from our results in Sect. 4, where we show that
the legislative body may choose not to intervene on the debt ratio at all. Interestingly,
we prove that the optimality of adopting such a strategy relies solely on their (individ-
ual) time preferences compared to the parameter constellation in the model—it does
not depend on the actions of the opposing player (government)—see specifically our
results in Sect. 4.1. We thus split our search for Nash equilibria in the forthcoming
analysis based on the magnitude of the legislative body time preferences.

5.1 The Case of � > r − g + ˛/�

Our results in Sect. 4.1, suggest that the legislative body should restrain themselves
from reflecting the debt ratio at any threshold, when their time preference rate λ is
relatively large. In light of this non-intervention policy, it is natural to then examine
what should the governmental strategy be as a best response. The characterisation of
such a strategy is in fact the main aim of Sect. 3.1, which studies the optimal control
(debt issuance policy) of the government when they are the sole player (there is no
opponent).

We present the resulting Nash equilibrium in the following theorem. Its proof is a
simpler version of the one for Theorem 5.2, and it is thus omitted for brevity.

Theorem 5.1 (Existence and Uniqueness of Nash Equilibrium: Case (I)) Suppose that
the model’s parameters satisfy Assumptions 2.4 as well as λ > r − g+α/κ . A unique
Nash equilibrium of the game (2.9)–(2.10) in the setM of (2.11) can be characterised
by the couple of controls (ξa, η) = (ξa, 0), with the former component defined as in
(3.5) and the threshold a is given explicitly by (3.8).

5.2 The Case of � ∈ (r − g, r − g + ˛/�)

Our results from Sects. 3 and 4 on each player’s best response suggest that a Nash
equilibrium could be characterised by Skorokhod-reflection type policies at finite
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thresholds. More precisely, while the government increases the debt ratio at a(b) (as
a best response to a debt ceiling b ∈ R+), the legislative body forces a debt ratio
reduction at a debt ceiling b(a) (as a best response to a governmental debt-issuance
threshold a ∈ R+).

The aim of the following theorem is to first prove that there always exists a pair
(a∗, b∗) forming a fixed point of these best-response-maps, such that a∗ = a(b∗) and
b∗ = b(a∗), and second, that this pair is unique in the set M, in which at least one
player plays a Skorokhod-reflection type policy. Its proof is given in Appendix C.1.

Theorem 5.2 (Existence and Uniqueness of Nash Equilibrium: Case (II)) Suppose
that the model’s parameters satisfy Assumptions 2.4 as well as λ ∈ (r − g, r −
g + α/κ). A Nash equilibrium in the game (2.9)–(2.10) can be characterised by
the couple of Skorokhod-reflection type policies (ξa

∗
, ηb

∗
), as defined in (3.11) and

(4.7), respectively. The pair of thresholds (a∗, b∗) ∈ R
2+ solves the coupled system of

equations F(a∗, b∗) = 0 = G(a∗, b∗) and satisfies a∗ < b∗, a∗ = a(b∗) < b∗ =
b(a∗) according to Lemmata 3.2 and 4.2, for a unique b∗ > b0 where the latter is
defined in (4.12). Moreover, the Nash Equilibrium is unique in the classM specified
in (2.11).

The following corollary reveals the connection between the equilibria determined
in Theorems 5.1–5.2 by considering the limit as λ ↑ r − g + α/κ. Its proof can be
found in Appendix C.2.

Corollary 5.3 Let (a∗(λ), b∗(λ)) = (a∗, b∗) denote the pair of thresholds that char-
acterises the unique Nash equilibrium derived in Theorem 5.2, where we stress the
dependency on the parameter λ ∈ (r − g, r − g + α/κ). Then,

lim
λ↑r−g+α/κ

a∗(λ) = a, and lim
λ↑r−g+α/κ

b∗(λ) = ∞,

where a denotes the threshold characterising the optimal debt issuance policy of the
government in equilibrium for large values of λ, as determined in Theorem 5.1.

6 Comparative Statics Analysis

In Sect. 5 we derived the existence and uniqueness of Nash equilibria under different
parameter regimes in our model. It was revealed that the parameter λ, measuring the
legislative body’s time preferences, plays a crucial role on the characterisation of Nash
equilibrium.While it is optimal not to intervene for large values of λ > r−g+α/κ , the
equilibrium strategies are characterised by a pair of thresholds (a∗, b∗) for intermediate
values of λ ∈ (r − g, r − g + α/κ).

In this section, we study the sensitivity of these boundaries with respect to some of
the model parameters. In order to highlight the transition from Nash equilibria that are
characterised by thresholds (a∗, b∗) (cf. Theorem 5.2) to those that prescribe a non-
intervention policy for the legislative body (cf. Theorem 5.1), as stated in Corollary
5.3, we plot the equilibrium values of (a∗, b∗) as functions of λ in the following
comparative statics.
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Fig. 1 Sensitivity of the equilibrium values for a∗ and b∗ (as functions of λ) with respect to a change in
some of the model parameters

Unless otherwise specified, we fix the following parameter set.

ρ σ r g α m c1 c2 κ

0.3 0.2 0.025 0.02 0.15 0.6 2 1.25 0.6

Sensitivity with respect to λ. To begin with, it is interesting to study the dependency
of the equilibrium values a∗ and b∗ on the discount factor λ. The numerical sensitivity
analysis exhibited in Fig. 1 depicts the optimal intervention thresholds as functions
of the legislative body’s time preference rate, which here takes values on the interval
λ ∈ (r − g, r − g+α/κ). The latter guarantees, as shown in the previous analysis, the
optimality of a finite debt ceiling mechanism. Some remarks are worth mentioning.
Clearly, the equilibrium debt ceiling b∗ exhibits a monotonically increasing behaviour
as a function of λ, with the peculiarity of an exploding behaviour b∗ ↑ +∞ for
λ ↑ r−g+α/κ . This illustrates our finding of the smooth transition from a debt ceiling
mechanism to a non-intervention policy by the legislative body, as stated in Corollary
5.3. It is interesting to notice that this monotonicity as well as limiting behaviour of b∗
does not depend on the other parameters in themodel, although some of them influence
the interval bounds for the values of λ, for which the legislative body’s optimal strategy
is indeed a debt ceiling mechanism. More precisely, increasing (decreasing) the term
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r − g shifts the interval to the right (left), while the fraction α/κ determines the length
of the interval (r − g, r − g + α/κ). A short discussion on the implications of a shift
in these parameters on the optimal strategy of the legislative body (depending on their
time preference rate λ) is given in the subsequent sensitivity study. Last, we note that
the intervention threshold a∗, characterising the optimal debt issuance policy by the
government, again illustrates our finding of Corollary 5.3, in the sense that a∗ → a
for λ ↑ r − g + α/κ .

Sensitivity with respect to governmental time preference rate ρ. The discount factor
ρ serves as a measure on how myopic a government is regarding its debt. Increasing ρ

has the effect that the government discounts future costs and revenues more heavily,
and thus cares less and less about the future compared to the present. We observe
the sensitivity regarding a change in ρ in Fig. 1A. Clearly, the government aims at
increasing its debt ratio earlier, at a higher debt-issuance threshold a∗, whenever its
subjective discount rate increases. The legislative body reacts to such an increase by
increasing the debt ceiling as well, although we observe Fig. 1A that the equilibrium
value b∗ is relatively robust with respect to a change in ρ.

Sensitivity with respect to debt ratio volatility σ . Increasing volatility increases the
fluctuations of the debt ratio. The government and the legislative body adapt by acting
on the debt ratio later, which is achieved by the government decreasing its optimal
debt-issuance threshold and by the legislative body increasing the debt ceiling. We
can observe this in Fig. 1B.

Sensitivity with respect to the interest rate r on government debt. Increasing inter-
est rates on public debt result in holding debt getting more costly for the government,
which in turn increases the drift of the debt ratio. Clearly, it is optimal for the gov-
ernment to increase its debt at a later stage, which is achieved by decreasing its
debt-issuance threshold, as observed in Fig. 1C.

In the equilibrium, the legislative body also decreases the debt ceiling, since coun-
tries with a higher cost of debt are more in danger of defaulting. Contrary, if interest
rates decrease, the legislative body can be more flexible, since it is optimal to increase
the debt ceiling. Intuitively, in such a case, the growth of GDP helps containing the
debt ratio without interventions. Furthermore, we note that an increase in the interest
rate r shifts the interval of λ-values, for which the optimal strategy of the legislative
body prescribes to set a finite debt ceiling, to the right. It follows that a legislative
body with a fixed time preference rate could change its optimal strategy from a non-
intervention policy to a debt ceiling mechanism, if the government’s interest rate on
debt increases. Notice that an increase in the country’s GDP growth rate has the con-
trary effect, thus implying that fast growing economies could allow a larger deficit
without interventions from a legislative body.

Sensitivity with respect to the tax compliance factor α. The parameter α denotes the
tax compliance factor, which measures the willingness to pay taxes within a country.
This factor can be chosen freely, hence, the legislative body can account for the fact that
some countries have a low probability of default, even though holding a lot of debt. In
Fig. 1Dwe observe the sensitivity of the equilibrium values a∗ and b∗ with respect to a
change in α. Clearly, if the tax compliance factor increases (which implies decreasing
willingness to pay tax), the legislative body faces stronger social and political pressure
to act via the implementation of a debt ceiling mechanism. This has the consequence
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that a larger factor α (i) causes the legislative body to act earlier on the debt ratio
(by decreasing the debt ceiling b∗) and (ii) enlarges the interval of time preference
values λ ∈ (r − g, r − g+α/κ) for which the legislative body’s optimal strategy is to
impose a debt ceiling mechanism. The latter implies that, for a fixed time preference
λ, a change in the factor α could incentivise the legislative body to switch from a
laissez-faire policy to implementing a debt ceiling. On the other hand, if the assigned
likelihood of the country’s default decreases (in terms of a decrease in the parameter
α), the legislative body is willing to postpone interventions by either implementing a
larger debt ceiling b∗ or even choosing a non-intervention policy.

7 Conclusions

In this paper, we study a model of optimal debt management that captures the strategic
interaction between a government and a legislative body aiming to optimally control
the debt-to-GDP ratio (also called “debt ratio”) of a country. While the government
is able to increase the debt ratio in favour of public spending, the legislative body
aims to restrict it by potentially installing a debt ceiling mechanism. The fact that each
player has their own objective and optimises their policy while keeping in mind the
other player’s actions, results in a two-player non-zero-sum game of singular control.
We succeed in proving the existence and uniqueness of a Nash equilibrium within the
classM, i.e. in which at least one player acts according to a Skorokhod reflection type
policy. This is achieved by studying the variational inequalities associated to the cost
minimization problems of each of the two players, and finally determining a “fixed
point” in their best response maps.

From a mathematical point of view, given the limited amount of solvable non-zero-
sum games of singular control, we believe that our detailed study nicely complements
the existing literature. Furthermore, our modelling framework, that includes a non-
differentiable running cost function in the legislative body’s performance criterion and
different time preferences for each player, destroys the link with a non-zero-sum game
of optimal stopping and thus requires an alternative direct approachwhen searching for
Nash Equilibria. Our analysis reveals that one can expect two qualitatively different
Nash equilibria in the model, depending on the model’s parameters. We find that
while the Nash equilibrium always prescribes the government to install a debt issuance
policy (via a Skorokhod reflection at a threshold a), the optimality of a debt-ceiling
mechanism relies on the legislative body’s time preference rate λ. Notably, for large
values of λ, it is optimal to follow a no-intervention policy.

In economic terms, the latter can be interpreted as the legislative body becoming
more myopic regarding future costs of holding debt and thus the government’s prob-
ability of default. This leads them to refrain from taking any actions, leaving the debt
ratio unbounded from above. On the other hand, for lower values of λ, we show that
it is indeed optimal to install a debt ceiling mechanism by reflecting the debt ratio
downwards at a threshold b. Hence, in this situation, the debt ratio is kept within an
interval with minimal effort by the actions of the two opposing players. The sensitiv-
ity of these equilibrium thresholds to the model parameters is then studied through a
comparative statics analysis. Amongst other observations, this reveals that a stricter
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regulation by the legislative body is optimal for higher values of interest rates or tax
compliance factors. It is also interesting to observe that for particular changes in the
underlying parameters, such as the interest rate, GDP growth rate or tax compliance
factor, the legislative bodymay switch from a debt ceilingmechanism to a laissez-faire
policy—and vice versa.

We finally note that in this paper, we consider Nash equilibria, but it might be inter-
esting to consider other types of equilibria (non-threshold-type, Stackelberg, Pareto,
etc.) as well. For example, in the environment of Sect. 3.2, we could consider the case
where the legislative body is credible enough to commit to keep the debt ratio below a
debt ceiling b by implementing the reflection policy ηb. Leaving aside the possibility
of renegotiation, this corresponds to the debt ceiling policy of the US Congress. The
best debt issuance policy is thus to reflect the debt ratio process at the level a(b). Then,
the legislative body chooses a best debt ceiling b by solving the minimisation problem
[cf. (2.7)]

̂V2(x) = inf
b
Ix,ξa(b) (η

b).

If there is an optimal̂b for this problem, the pair (̂b, a(̂b)) is a Stackelberg equilibrium
for our non-zero-sum game. We leave the general study of Stackelberg equilibria
to future research, but make the following observation. Assume the legislative body
commits to b∗ given in Theorem 5.2, the best debt issuance policy will be a∗ = a(b∗)
because (a∗, b∗) is a Nash equilibrium. Therefore, the cost ̂V2(x) satisfies

̂V2(x) ≤ Ix,ξa(b∗) (η
b∗

) = Ix,ξa∗ (ηb
∗
) = V2(x; a∗),

where the latter is the cost for the legislative body along the unique Nash equilibrium
(cf. Definition 2.3). In other words, it is in the legislative body’s interest to commit to
a debt ceiling mechanism.

A Proofs of Results in Sect. 3

A.1 Proof of Theorem 3.1

We derive the result in a number of steps.
Step 1. We begin with solving the free-boundary problem (3.6), by constructing a

solution to the ordinary differential equation and imposing the boundary conditions,
to obtain a candidate value function

U 1(x) :=
{

U 1(a) − c2(a − x), 0 < x ≤ a,

D1(a)xδ2 + 1
2(ρ−2(r−g)−σ 2)

x2, a < x,
(A.1)

with D1(a) and a as in (3.8).
Step 2. We then aim at verifying that the function U 1 of (A.1) solves the free-

boundary problem (3.6) and satisfies the HJB equation (3.4). Notice that, in view of
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the construction of U1, it remains to check whether

(i) (L − ρ)U 1(x) ≥ −1

2
x2 for x ∈ (0, a) and (i i) U

′
1(x) ≥ c2 for x ≥ a.

Proof of (i). We firstly notice that by construction (L − ρ)U 1(a) = − 1
2a

2. We
then observe that x �→ (L − ρ)U 1(x) decreases with slope −c2(ρ − (r − g)), while
x �→ − 1

2 x
2 decreases with slope −x . To conclude (i), it is thus sufficient to prove

that c2(ρ − (r − g)) > x for all x ∈ (0, a), or equivalently that c2(ρ − (r − g)) > a.
The latter follows straightforwardly from the definition (3.8) of a and δ2 < 0.

Proof of (ii). We then show that x �→ U
′
1(x) is increasing for x ≥ a, by computing

U
′′
1(x) = 1

ρ − 2(r − g) − σ 2

(

1 −
( x

a

)δ2−1)

> 0,

where the latter inequality follows from (3.2). Hence, given that U
′
1(a) = c2 by

construction, we conclude that (i i) holds true.
Step 3. Finally, we must verify that the obtained solution U 1 of the HJB equation

(3.4) identifies with the value function V 1 of (3.3). The proof is similar to the one of
Theorem 3.3 given in Appendix A.3 (Steps 2–4), thus it is omitted for brevity.

A.2 Proof of Lemma 3.2

We prove each part separately.
Proof of part (i). Regarding the existence and uniqueness of a solution a(b) ∈ (0, b)

solving (3.14), we straightforwardly calculate

lim
a↓0 F(a, b) = −∞ and F(b, b) = (δ1 − δ2)(c1 − c2)(ρ − 2(r − g) − σ 2) > 0,

where the latter inequality follows from (3.2). Then, the first derivative of F(a, b)
with respect to a is given by

∂

∂a
F(a, b) = a−1

[(b

a

)δ1−1 −
(b

a

)δ2−1]

[

c2(δ1 − 1)(1 − δ2)(ρ − 2(r − g) − σ 2) − (δ1 − 2)(2 − δ2)a
]

,

which implies

∂

∂a
F(a, b) =

{

> 0, 0 < a < ã ∧ b,

< 0, ã ∧ b < a < b,
and

∂

∂a
F(b, b) = 0, (A.2)

for ã defined in (3.16); note that, the positivity of ã follows from (3.2). As a by-product
from the above, F crosses zero only once on (0, b) and we can further conclude that
0 < a(b) < ã ∧ b and ∂

∂a F(a(b), b) > 0.
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Proof of part (ii). Regarding the monotonicity results for a(·), we first derive the
following partial derivatives

b
∂

∂b
F(a, b) = (δ1 − 1)[(2 − δ2)a − c2(1 − δ2)(ρ − 2(r − g) − σ 2)]

(b

a

)δ1−1

+ (δ2 − 1)[(δ1 − 2)a−c2(δ1 − 1)(ρ−2(r − g) − σ 2)]
(b

a

)δ2−1−(δ1 − δ2)b

(A.3)

and

b2
∂2

∂b2
F(a, b) = (δ1 − 1)(δ1 − 2)

[

(2 − δ2)a − c2(ρ − 2(r − g) − σ 2)(1 − δ2)
]

(b

a

)δ1−1

+ (1 − δ2)(2 − δ2)
[

(δ1 − 2)a − c2(ρ − 2(r − g) − σ 2)(δ1 − 1)
]

(b

a

)δ2−1
.

(A.4)

Furthermore, given that ∂
∂a F(a(b), b) > 0 at the value a(b) which satisfies (3.14) due

to part (i), we can obtain the monotonicity of a(b) on (0,∞) through

a′(b) = −
∂
∂b F(a(b), b)
∂
∂a F(a(b), b)

≥ 0 ⇔ ∂

∂b
F(a(b), b) ≤ 0. (A.5)

In the following, we fix b ∈ R+ and consider the uniquely defined a(b) ∈ (0, ã∧b)
given by the solution to (3.14). We distinguish two cases depending on the location of
the fixed a(b) relative to a defined in (3.8).

Case (a): a(b) ≤ a. Given that a < ã due to the assumption in (3.2) and the
definitions (3.8) of a and (3.16) of ã, we observe that

∂2

∂b2
F(a(b), x) < 0, for all x > a(b)

⇒ x �→ ∂

∂b
F(a(b), x) is strictly decreasing on (a(b),∞).

Since ∂
∂b F(a(b), a(b)) = 0 due to (A.3), we have ∂

∂b F(a(b), x) < 0 for all x > a(b).
Combining this with the fact that b > a(b), we conclude from (A.5) that a′(b) > 0
for all b ∈ R+ s.t. a(b) ≤ a. This yields that

a(·)is increasing on (0, b], where b is such that a(b) = a. (A.6)

Also, we observe that a′(b) > 0 and a(b) > a for all b > b.
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Case (b): a(b) > a. We firstly note from Case (a) that this is realised when b > b.
We observe that ∂2

∂b2
F(a(b), x) ≤ 0 if and only if x ≤ x̃ , where

x̃ :=
( (2 − δ2)(1 − δ2)(c2(δ1 − 1)(ρ − 2(r − g) − σ 2) − (δ1 − 2)a(b))a(b)δ1−δ2

(δ1 − 2)(δ1 − 1)((2 − δ2)a(b) − c2(1 − δ2)(ρ − 2(r − g) − σ 2)

) 1
δ1−δ2

> a(b),

which is well-defined since a(b) ∈ (a, ã). To show the inequality via contradiction,
assume that x̃ ≤ a(b). Then, ∂2

∂b2
F(a(b), x) ≥ 0 and hence x �→ ∂

∂b F(a(b), x) is

increasing for all x ≥ a(b). But since ∂
∂b F(a(b), a(b)) = 0, it would follow that x �→

F(a(b), x) is increasing on (a(b),∞), which is a contradiction to F(a(b), b) = 0,
given that a(b) < b. Therefore,

∂2

∂b2
F(a(b), x)

{

≤ 0, a(b) ≤ x ≤ x̃,

≥ 0, x ≥ x̃,

⇒ x �→ ∂

∂b
F(a(b), x) is

{

decreasing on (a(b), x̃),

increasing on (̃x,∞).

Combining this with the fact that ∂
∂b F(a(b), a(b)) = 0 and limx→∞ ∂

∂b F(a(b), x) =
+∞, we conclude that ∂

∂b F(a(b), x) = 0 admits a unique solution on (a(b),∞),
denoted by xm(b) ∈ (̃x,∞). Hence,

x �→ ∂

∂b
F(a(b), x)

{

< 0, x ∈ (a(b), xm(b)),

> 0, x ∈ (xm(b),∞),

⇒ x �→ F(a(b), x) is

{

decreasing on (a(b), xm(b)),

increasing on (xm(b),∞).

Given that F(a(b), a(b)) > 0 (see thefirst part of the proof) and limx→∞ F(a(b), x) =
+∞, we conclude that there exist at most two solutions to F(a(b), x) = 0 and due to
(A.5) that a′(b) changes sign once. This implies – in view of the conclusion a′(b) > 0
in Case (a) – that a(·) is either increasing on the whole (b,∞), or it is increasing only
on (b,̂b) and then decreasing on (̂b,∞), wherêb ∈ (b,∞) would be satisfying

a′(̂b) = 0 ⇔ ∂

∂b
F(a(̂b),̂b) = 0 ⇔ ̂b = xm(̂b).

In order to show that such âb always exists,we study the systemof equations F (̂a,̂b) =
0 = ∂

∂b F (̂a,̂b) (cf. equations above), which is equivalent to

{

J1,2 (̂a) = J1,1(̂b),

J2,2 (̂a) = J2,1(̂b),
where Ji, j (x) := (δi − 2)x − c j (δi − 1)(ρ − 2(r − g) − σ 2)

xδ3−i−1 .

(A.7)
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It can be shown (see, e.g. [16]) that the system (A.7) admits a unique solution (̂a,̂b) ∈
R
2+, where

â = a(̂b), such that a′(̂b) = 0 and a(·) is
{

increasing on (b,̂b),

decreasing on (̂b,∞).
(A.8)

The monotonicity then follows by combining (A.6) and (A.8). Furthermore, this
monotonicity together with the fact that for every choice of b ∈ R+, there always
exists a best response a(b) that satisfies (3.14)–(3.15), due to part (i), then yields
limb→∞ a(b) = a.

Proof of part (iii).Regarding the concavity of a(·) on the interval (0,̂b) we inves-
tigate the term

a′′(b) = 2Fa(a(b), b)Fb(a(b), b)Fab(a(b), b) − F2
b (a(b), b)Faa(a(b), b) − F2

a (a(b), b)Fbb(a(b), b)

F3
a (a(b), b)

,

where we set Fa(a, b) := ∂a F(a, b) (and the other terms analogously). We first notice
that, due to (A.2), we have Fa(a(b), b) > 0. Direct computation yields

2Fa(a(b), b)Fb(a(b), b)Fab(a(b), b) − F2
b (a(b), b)Faa(a(b), b) − F2

a (a(b), b)Fbb(a(b), b)

=
{ 1

a(b)b
(2 − δ2)

( b

a(b)

)δ1−1 + 1

a(b)b
(δ1 − 2)

( b

a(b)

)δ2−1 − (δ1 − δ2)
1

a(b)2

}

×
{

(δ1 − δ2)(ρ − 2(r − g) − σ 2)

[

c2(δ1 − 1)(1 − δ2)(ρ − 2(r − g) − σ 2) − (δ1 − 2)(2 − δ2)a(b)
]

× 1

b

[

c2(δ1 − δ2)
( b

a(b)

)δ1+δ2−2 − c1(δ1 − 1)

( b

a(b)

)δ1−1 − c1(1 − δ2)
( b

a(b)

)δ2−1]

+ c2(1 − δ2)(δ1 − 1)(ρ − 2(r − g) − σ 2)
[( b

a(b)

)δ1−1

−
( b

a(b)

)δ2−1]
Fb(a(b), b)

}

.

Some straightforward calculations reveal that the first termon the above right-hand side
(second line) is strictly positive, while the term in the third line is strictly positive due to
a(b) ≤ ã.Moreover, the term in the fourth line is strictly negative,which easily follows
upon using a(b) ≤ b. Finally, we notice that for b ≤ ̂b, we have Fb(a(b), b) < 0 [see
(A.8)]. Combining these facts, we conclude that indeed a′′(b) < 0 for b ∈ (0,̂b) and
the claim follows. ��
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A.3 Proof of Theorem 3.3

We derive the result in a number of steps. In particular, we show in Step 1 that the
candidate value function (3.13), with a(b) solving (3.14) as in Lemma 3.2, indeed
solves the HJB equation (3.10), and in Steps 2–4 that the latter identifies with value
function V1 in (3.9).

Step 1. By construction, we have (L − ρ)U1(x; b) = − 1
2 x

2 for x ∈ (a(b), b),
U ′
1(x; b) = c2 for x ∈ (0, a(b)) and U ′

1(x; b) = c1 > c2 for x ≥ a(b). Therefore, it
remains to show that:

(i) (L − ρ)U1(x; b)
≥ −1

2
x2 for x ∈ (0, a(b)) and (i i) U ′

1(x; b) ≥ c2 for x ∈ (a(b), b).

In the following, we fix b ∈ R+, so that a(b) is the (fixed) unique solution to (3.14)
according to Lemma 3.2.

Proof of (i). For x ∈ (0, a(b)), we get

(L − ρ)U1(x; b) = (r − g)xc2 − ρU1(a(b); b) + ρc2(a(b) − x).

Clearly, x �→ (L−ρ)U1(x; b)decreaseswith slope−c2(ρ−(r−g)),while x �→ − 1
2 x

2

decreases with slope−x . Since (L−ρ)U1(a(b); b) = − 1
2a(b)2, it is sufficient to then

show that c2(ρ − (r − g)) > x , for all x ∈ (0, a(b)). The latter is true due to (3.16),
thus (i) holds true.

Proof of (ii). For x ∈ (a(b), b), we can calculate

U ′
1(x; b) = (δ2 − 2)a(b) − c2(δ2 − 1)(ρ − 2(r − g) − σ 2)

(δ1 − δ2)(ρ − 2(r − g) − σ 2)

( x

a(b)

)δ1−1

− (δ1 − 2)a(b) − c2(δ1 − 1)(ρ − 2(r − g) − σ 2)

(δ1 − δ2)(ρ − 2(r − g) − σ 2)

( x

a(b)

)δ2−1

+ x

ρ − 2(r − g) − σ 2 .

Combining this with the definition (3.15) of F , we notice that

U ′
1(x; b) ≥ c2 ⇔ F(a(b), x) ≤ (c1 − c2)(δ1 − δ2)(ρ − 2(r − g) − σ 2).

To prove (i i), given that

F(a(b), a(b)) = (c1 − c2)(δ1 − δ2)(ρ − 2(r − g) − σ 2) and F(a(b), b) = 0,

it is sufficient to have that x �→ F(a(b), x) first decreases and changes sign at most
once in (a(b), b). The latter was shown in the proof of Lemma 3.2, thus (i i) holds
true.
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Step 2. Let x ∈ R+ and ξ ∈ Aηb such that (ξ, ηb) ∈ A. For n ≥ 1, we let

τn := inf{t ≥ 0 : X0,ηb
t ≥ n}. SinceU1 ∈ C2(0, b), we can apply Itô–Meyer formula

to the process e−ρτnU1(X
ξ,ηb

τn ; b) on [0, τn] and obtain

e−ρτnU1(X
ξ,ηb

τn
; b) −U1(x; b)

=
∫ τn

0
e−ρs(L − ρ)U1

(

X ξ,ηb

s ; b)ds + σ

∫ τn

0
e−ρsU ′

1

(

X ξ,ηb

s ; b)dWs

−
∫ τn

0
e−ρs X ξ,ηb

s U ′
1

(

X ξ,ηb

s ; b)dηc,bs +
∫ τn

0
e−ρs X ξ,ηb

s U ′
1

(

X ξ,ηb

s ; b)dξ cs

+
∑

s≤τn

e−ρs(U1
(

X ξ,ηb

s ; b) −U1
(

X ξ,ηb

s− ; b)). (A.9)

Clearly, for any s ∈ (0, τn] we have 0 < X ξ,ηb

s < n ∧ b and thus continuity of U ′
1

implies that the second term in (A.9) is a martingale. Furthermore, since (ξ, ηb) ∈ A,
the last term in (A.9) rewrites as

∑

s<τn

e−ρs(U1(X
ξ,ηb

s ; b) −U1(X
ξ,ηb

s− ; b))

=
∑

s<τn

e−ρs(U1(X
ξ,ηb

s ; b) −U1(X
ξ,ηb

s− ; b))[1{�ξs>0} + 1{�ηbs >0}
]

and

(

U1
(

X ξ,ηb

s ; b) −U1
(

X ξ,ηb

s− ; b))1{�ξs>0} = U1
(

e�ξs X ξ,ηb

s− ; b) −U1
(

X ξ,ηb

s− ; b)

=
∫ �ξs

0

∂U1(eu X
ξ,ηb

s− ; b)
∂u

du =
∫ �ξs

0
eu X ξ,ηb

s− U ′
1

(

eu X ξ,ηb

s− ; b)du
(

U1
(

X ξ,ηb

s ; b) −U1
(

X ξ,ηb

s− ; b))1{�ηbs >0} = U1
(

e−�ηbs X ξ,ηb

s− ; b) −U1
(

X ξ,ηb

s− ; b)

=
∫ �ηbs

0

∂U1(e−u X ξ,ηb

s− ; b)
∂u

du

= −
∫ �ηbs

0
e−u X ξ,ηb

s− U ′
1

(

e−u X ξ,ηb

s− ; b)du.

(A.10)

Taking expectations, rearranging terms and using the notation introduced in (2.3) we
can thus write (A.9) as

U1(x; b) = Ex
[

e−ρτnU1
(

X ξ,ηb

τn
; b) −

∫ τn

0
e−ρs(L − ρ)U1

(

X ξ,ηb

s ; b)ds

+
∫ τn

0
e−ρs X ξ,ηb

s U ′
1

(

X ξ,ηb

s ; b) ◦d dηbs
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−
∫ τn

0
e−ρs X ξ,ηb

s U ′
1

(

X ξ,ηb

s ; b) ◦u dξs

]

≤ Ex
[

e−ρτnU1
(

X ξ,ηb

τn
; b)+

∫ τn

0
e−ρsh

(

X ξ,ηb

s

)

ds+c1

∫ τn

0
e−ρs X ξ,ηb

s ◦u dηbs

− c2

∫ τn

0
e−ρs X ξ,ηb

s ◦u dξs

]

, (A.11)

where in the latter inequality, we exploit the fact that U1 solves the free-boundary
problem (3.12), as stated above. By admissibility of ξ we have that the right-hand side
of (A.11) is finite P-a.s., and we notice that Assumption 2.4(ii) guarantees

lim
n→∞ Ex

[

e−ρτnU1
(

X ξ,ηb

τn
; b)] = 0.

Then, noticing that τn ↑ ∞,P-a.s., and taking limits in (A.11),we can useAssumptions
2.1(iii) and 2.4(ii), employ the dominated convergence theorem, and conclude that

U1(x; b) ≤ Ex

[ ∫ ∞
0

e−ρsh
(

Xξ,ηb

s
)

ds + c1

∫ ∞
0

e−ρs Xξ,ηb

s ◦d dηbs − c2

∫ ∞
0

e−ρs Xξ,ηb

s ◦u dξs

]

.

Since ξ ∈ Aηb was arbitrary, we have U1(x; b) ≤ V1(x; b) on R+.
Step 3. We can repeat the above arguments from Step 2, but now fix the con-

trol strategy ξa(b) of (3.11). Since X ξa(b),ηb

t ∈ [a(b), b], P-a.s., for all t > 0, and

U1(X
ξa(b),ηb

t ; b) = c2 on supp{dξ
a(b)
t }, the inequality in (A.11) becomes an equality

and hence, employing dominated convergence arguments as before, we observe

U1(x; b) = Ex
[

∫ ∞

0
e−ρsh

(

X ξa(b),ηb

s

)

ds + c1

∫ ∞

0
e−ρs X ξa(b),ηb

s ◦d dηbs

− c2

∫ ∞

0
e−ρs X ξa(b),ηb

s ◦u dξa(b)
s

]

≥ V1(x; b).

Step 4. Combining the results from Steps 2 and 3 then concludes that U1(x; b) =
V1(x; b) and ξa(b) of (3.11) is an optimal control strategy for problem (3.9).

B Proofs of Results in Sect. 4

B.1 Proof of Theorem 4.1

We derive the result in a number of steps.
Step 1. We begin by solving the fixed-boundary problem (4.4). To this end, we

construct a solution to the ordinary differential equation an impose the stated boundary
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conditions. We then obtain a candidate value function

U2(x; a) =
{

U 2(a; a), 0 < x ≤ a;
D2(a)xθ2 + H(x), a < x,

(B.1)

where D2(·) and H(·) are as in (4.6).
Step 2.We then aim at verifying thatU2 of (B.1) solves the free-boundary problem

(4.4) and satisfies the HJB equation (4.3). In view of the construction ofU2, it remains
to check that 0 ≤ ∂

∂x U 2(x; a) < κ , for all x > a.
Straightforward calculations lead to

∂

∂x
U 2(x; a) = α

∫ ∞

0
e−(λ−(r−g))t

(

�(d1(x, t)) −
( x

a

)θ2−1
�(d1(a, t))

)

dt < κ,

where the inequality follows from the facts that x > a and λ > r − g + α
κ

> r − g

under Case (I). Furthermore, Assumption 2.4(iii) guarantees that ∂
∂x U 2(x; a) ≥ 0, for

all x > a.
Step 3. Finally, we must verify that indeed V2 = U2 and that not intervening is an

optimal debtmanagement strategy. The proof follows the lines of the proof of Theorem
4.3 (Steps 2–4), and is thus omitted for brevity.

B.2 Proof of Lemma 4.2

We prove each part separately.
Proof of part (i). Regarding the existence and uniqueness of a solution b(a) ∈

(a,∞) solving (4.10), we first conclude from the representation of G in (4.11) that

G(a, a) = k > 0, and lim
b→∞G(a, b) = −∞,

where the latter follows precisely from the fact that λ < r −g+ α
κ
in Case (II). Hence,

there exists a solution to the Eq. (4.10). Moreover, it follows from the following
expression

∂

∂b
G(a, b) =

[(b

a

)1−θ2 −
(b

a

)1−θ1
] (θ1 − 1)(1 − θ2)

(θ1 − θ2)(λ − (r − g))b

[

κ(λ − (r − g)) − α1{b>m}
]

,

(B.2)

that

∂

∂b
G(a, b) =

{

> 0, a < b < a ∨ m,

< 0, a ∨ m < b.
(B.3)

Therefore, for any a ∈ R+, there exists a unique b(a) ∈ (a ∨ m,∞) such that
G(a, b(a)) = 0. Moreover, due to (B.2), we conclude that ∂

∂bG(a, b(a)) < 0.
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Proof of part (ii). Let b0 be defined as in (4.12) and fix a ∈ R+. In order to show
(4.12), we examine two cases of a-values.

Case (a): a ≥ b0. In this case, we immediately have b(a) > b0.
Case (b): a < b0. Notice that simple comparison arguments yield that b0 > m and

it can be shown that G(a, b0) ≥ 0. We then assume (aiming for contradiction) that
b(a) ∈ (a ∨ m, b0). Since b �→ G(a, b) is strictly decreasing for b > a ∨ m [see
(B.3)], it follows that

G(a, b(a)) > G(a, b0) ≥ 0,

which is a contradiction, and it thus follows that b(a) ≥ b0.
Proof of part (iii). We are now in position to obtain the monotonicity of b(·) on

(0,∞). Given that ∂
∂bG(a, b(a)) < 0 at the value b(a) which satisfies (4.10), due to

the reasoning above, we have that

b′(a) = −
∂
∂a G(a, b(a))

∂
∂bG(a, b(a))

> 0 ⇔ ∂

∂a
G(a, b(a)) > 0, (B.4)

and we in order to obtain the desired results, we distinguish two cases.
Case (a). If a > m, then we notice that

∂

∂a
G(a, b(a)) = (θ1 − 1)(1 − θ2)(k(λ − (r − g)) − α)

(θ1 − θ2)(λ − (r − g))a

[(b

a

)1−θ1 −
(b

a

)1−θ2
]

> 0.

(B.5)

This implies, thanks to (B.4), that

a �→ b(a) is increasing on (m,∞). (B.6)

Furthermore, combining the expressions of the partial derivatives in (B.2) and (B.5)
with the expression of b′(·) in (B.4) yields b′(a) = b(a)

a , which further implies that
b(a) = (1/q̃)a, for some q̃ ∈ (0, 1). The latter can be specified as the unique equation
to the solution G(q̃, 1) = 0, which is equivalent to (4.13).

Case (b). If a ≤ m, then we notice that

∂

∂a
G(a, b(a))

= 2(α − κ(λ − (r − g))

(θ1 − θ2)aσ 2

[(b(a)

a

)1−θ2 −
(b(a)

a

)1−θ1
]

+ 2α

(θ1 − θ2)σ 2a

[(m

a

)1−θ1 −
(m

a

)1−θ2
]

≥ 2(α − κ(λ − (r − g))

(θ1 − θ2)aσ 2

[(b0
a

)1−θ2 −
(b0
a

)1−θ1
]

+ 2α

(θ1 − θ2)σ 2a

[(m

a

)1−θ1 −
(m

a

)1−θ2
]
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=
[ 2α

(θ1 − θ2)σ 2a
− 2(α − κ(λ − (r − g))b1−θ1

0

(θ1 − θ2)σ 2a

]

≥ 0,

where the first inequality follows from b(a) ≥ b0 and the second one from its definition
(4.12). This implies, thanks to (B.4), that

a �→ b(a) is increasing on (0,m]. (B.7)

Proof of part (iv). Regarding the convexity of b(·) on the interval (0,m), we examine
the term

b′′(a) = 2Ga(a, b(a))Gb(a, b(a))Gab(a, b(a)) − G2
b(a, b(a))Gaa(a, b(a)) − G2

a(a, b(a))Gbb(a, b(a))

G3
b(a, b(a))

,

where Ga(a, b) := ∂aG(a, b) (and the other terms analogously). We first notice that,
due to (B.3), we haveGb(a, b(a)) < 0. Upon using (4.11) and some direct calculation,
we find

2Ga(a, b(a))Gb(a, b(a))Gab(a, b(a)) − G2
b(a, b(a))Gaa(a, b(a)) − G2

a(a, b(a))Gbb(a, b(a))

= (θ1 − 1)3(1 − θ2)
3(α − κ(λ − (r − g))α

(λ − (r − g))3(θ1 − θ2)
3a2b(a)2

×
{

(α − κ(λ − (r − g))
[( b(a)

a

)1−θ1 −
(b(a)

a

)1−θ2
]2[

θ2

(m

a

)1−θ2 − θ1

(m

a

)1−θ1
]

+ α
[(m

a

)1−θ2 −
(m

a

)1−θ1
]2[

θ1

(b(a)

a

)1−θ1 − θ2

( b(a)

a

)1−θ2
]}

.

While the first term on the above right-hand side (second line) is clearly positive, one
can employ the fact that b(a) > b0 > m for all a > 0, with b0 as in (4.12), to show
that the second term is strictly negative. Consequently, we obtain b′′(a) > 0 and thus
the strict convexity of b(·) on (0,m).

Moreover, we straightforwardly calculate lima↓0 G(a, b0) = 0, which due to the
the reasoning above and the monotonicity of b(a) implies lima↓0 b(a) = b0. ��

B.3 Proof of Theorem 4.3

We derive the result in a number of steps. In particular, we show in Step 1 that the
candidate value function U2(x; a) of (4.9) solves the free-boundary problem (4.8),
with b(a) solving (4.10) as in Lemma 4.2, and satisfies the HJB equation (4.3), and in
Steps 2–4 that the latter identifies with value function V2 of (4.2).

Step 1.Byconstruction,we have (L−λ)U2(x; a)+α(x−m)+ = 0 for x ∈ (a, b(a))

as well as ∂
∂x U2(x; a) = κ for x ≥ b(a). It thus remains to show that:

(i) (L − λ)U2(x; a) + α(x − m)+ ≥ 0 for x ≥ b(a)

and (i i) U ′
2(x; a) ≤ κfor x ∈ (a, b(a)).
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In the following, we fix a ∈ R+, so that b(a) is the (fixed) unique solution to (4.10)
according to Lemma 4.2.

Proof of (i). For x ≥ b(a), we notice from the expression (4.9) of U2 that

(L − λ)U2(x; a) = (L − λ)
(

U2(b(a); a) + κ(x − b(a))
)

= (r − g)xκ − λU2(b(a); a) − λκ(x − b(a))

which is a decreasing, linear function in x , with slope −κ(λ − (r − g)). We then
observe that x �→ −α(x −m) also decreases linearly for x ≥ b(a) > m, with a slope
−α that is considered to satisfy −α < −κ(λ − (r − g)), according to the parameter
regime under Case (II). The claim thus follows by noticing that for x = b(a), we have
(L − λ)U2(b(a); a) = −α(b(a) − m)+ = −α(b(a) − m).

Proof of (ii). For x ∈ (a, b(a)), we notice that U ′
2(x; a) = G(x, b(a)). Since x �→

G(x, b(a)) is increasing [recall (B.4) andLemma4.2], we obtain via the representation
(4.11) of G that

U ′
2(x; a) = G(x, b(a)) ≤ G(b(a), b(a)) = κ,

which concludes our claim. Furthermore, we have ∂
∂x U2(x; a) ≥ G(a, b(a)) = 0 for

x > a.
Step 2. Let x ≥ 0 and η ∈ Aξa such that (ξa, η) ∈ A. Since U2 ∈ C2(a,∞), we

can apply Itô–Meyer formula, up to a localising sequence of stopping times given by
τn := inf{t ≥ 0 : X ξa ,0

t ≥ n} P-a.s., to the process U2(X ξa ,η; a) and obtain

e−λτnU2
(

X ξa ,η
τn

; a) −U2(x; a)

=
∫ τn

0
(L − λ)U2

(

X ξa ,η
s ; a)

ds + σ

∫ τn

0
U ′
2

(

X ξa ,η
s ; b)dWs

−
∫ τn

0
e−λs X ξa ,η

s U ′
2

(

X ξa ,η
s ; a)

dηcs +
∫ τn

0
e−λs X ξa ,η

s U ′
2

(

X ξa ,η
s ; a)

dξ c,as

+
∑

s<τn

e−λs(U2
(

X ξa ,η
s ; a) −U2

(

X ξa ,η
s− ; a))

. (B.8)

The second term in (B.8) is a martingale due to the continuity of U ′
2 and the fact that

a ≤ X ξa ,η
s < n for any s ∈ (0, τn]. Furthermore, we can proceed similarly as in

(A.10) in order to rewrite the last term in (B.8) and obtain, after taking expectations
and rearranging terms, that

U2(x; a) = Ex
[

e−λτnU2
(

Xξa ,η
τn ; a) −

∫ τn

0
e−λs (L − λ)U2

(

Xξa ,η
s ; a)

ds

+
∫ τn

0
e−λs Xξa ,η

s U ′
2
(

Xξa ,η
s ; a) ◦d dηs −

∫ τn

0
e−λs Xξa ,η

s U ′
2
(

Xξa ,η
s ; a) ◦u dξas

]

≤ Ex
[

e−λτnU2
(

Xξa ,η
τn ; a) +

∫ τn

0
e−λsα

(

Xξa ,η
s − m

)+ds + κ

∫ τn

0
e−λs Xξa ,η

s ◦d dηs

]

,

(B.9)
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where the latter inequality follows from the fact that U2 solves the free-boundary
problem (4.8) and U ′

2(X
ξa ,η
s ; a) = 0 for all s in the support of dξa . By admissibility

of η, the right-hand side of (B.9) is finite P-a.s., and Assumption 2.4(iii)

lim
n→∞ Ex

[

e−λτnU2
(

X ξa ,η
τn

; a)] = 0.

Then, taking limits in (B.9) upon using that τn ↑ ∞, we can employ dominated
convergence due to Assumption 2.4(iii) and obtain

U2(x; a) ≤ Ex
[

∫ ∞

0
e−λsα

(

X ξa ,η
s − m

)+
ds + κ

∫ ∞

0
e−λs X ξa ,η

s ◦d dηs

]

.

We conclude that U2(x; a) ≤ V2(x; a) on R+.
Step 3.We can now repeat the arguments from Step 2, upon fixing the control strat-

egyηb(a) of (4.7). Since X ξa ,ηb(a)

t ∈ [a, b(a)] a.s. for all t > 0 andU2(X
ξa ,ηb(a)

t ; a) = κ

on supp{dηb(a)}, the inequality in (B.9) becomes an equality. Arguing as before, we
thus obtain

U2(x; a) = Ex
[

∫ ∞

0
e−λsα

(

X ξa ,ηb(a)

s − m
)+

ds + κ

∫ ∞

0
e−λs X ξa ,ηb(a)

s ◦d dηb(a)
s

]

≥ V2(x; a).

Step 4. Combining the results from Steps 2 and 3 then concludes that U2(x; a) =
V2(x; a) on R+ and ηb(a) is an optimal control strategy in problem (4.2).

C Proofs of Results in Sect. 5

C.1 Proof of Theorem 5.2

We prove separately the existence and uniqueness of the Nash Equilibrium.

Existence of a Nash Equilibrium

Recall the function a(b) from Lemma 3.2 and define the function

a1(x) := a(x), for all x ∈ R+. (C.1)

Then, we recall from Lemma 4.2 that the unique solution to G(a, ·) = 0 for any fixed
a ∈ R+, is given in terms of a strictly increasing function a �→ b(a). We can therefore
invert this function and define

a2(x) := b−1(x), such that x �→ a2(x) is strictly increasing on R+. (C.2)
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Fig. 2 A Sketch of the maps a1(b) and a2(b) for different parameter specifications

Thanks to Proposition 4.2, we also know that b(a) = (1/q̃)a, for all a > m, which
yields that

a2(x) = q̃x, for x > m/q̃. (C.3)

For illustration, Fig. 2 sketches the maps for different parameter specifications.
We can thus conclude that

∃ an intersection point b∗, such thata∗ :=a1(b
∗) = a2(b

∗) ⇒ ∃ a Nash equilibrium.

(C.4)

In view of the definitions in (C.1)–(C.2), we have that a∗ = a(b∗) and b∗ = b(a∗).
This would finally imply that (a∗, b∗) solves the system of equations F(a∗, b∗) =
0 = G(a∗, b∗) and complete the proof.

In the remainder of the existence proof, we show that the b∗ in (C.4) indeed exists.
On one hand, it follows from (C.1) and (3.17) in Lemma 3.2 that a1(·) is bounded from
above by â := a(̂b). On the other hand, it follows from (C.2)–(C.3) that a2(·) is strictly
increasing with limb→∞ a2(b) = +∞. We further know from Lemmas 3.2 and 4.2
that the functions a1(·) and a2(·) have supports on (0,∞) and (b0,∞), respectively,
with b0 > m > 0. due to (4.12). Clearly, there exists at least one b∗ ∈ (b0,∞) such
that a1(b∗) = a2(b∗), therefore (C.4) implies that there exists a Nash equilibrium.

Uniqueness of Nash Equilibrium in the ClassM

In order to prove the uniqueness of the equilibrium established in the previous step,
we must prove the uniqueness of the intersection point b∗.

We begin by defining the function

a �→ b0(a), for a ∈ R+, such that b0(a) = (1/q̃)a with q̃ ∈ (0, 1) as in Lemma 4.2,

which can be inverted to define

a0(b) := q̃b, for b ∈ R+.
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Notice from Lemma 4.2 that b(a) = b0(a) for all a > m, hence in view of (C.2), we
get a2(b) = a0(b), for all b > m/q̃. Moreover, Lemma 4.2 implies that b �→ a2(b) is
strictly concave on (b0,

m
q̃ ), where we notice that m/q̃ > b0 due to the monotonicity

of b(a). Moreover, this implies a2(b) ≤ a0(b) for all b ≥ b0.
As a first step, we prove that the curves a1(b) and a0(b) either admit no intersection

or exactly one for b > 0. Since a0(b) = q̃b, any intersection clearly is of the form
(q̃b, b). Plugging in points of this form into the function F of (3.15) we observe that

b → F(q̃b, b) = s(q̃)b + y(q̃) is strictly increasing on R+,

with

s(q) = (2 − δ2)q
2−δ1 + (δ1 − 2)q2−δ2 − (δ1 − δ2) > 0,

y(q) = (ρ − 2(r − g) − σ 2)
[

c1(δ1 − δ2) − c2(1 − δ2)q
1−δ1 − c2(δ1 − 1)q1−δ2

]

.

Clearly, this implies [depending on the value y(q)] that either no intersection point
exists or exactly one. Moreover, if no intersection of a0 and a1 exists, we conclude
that a′

1(0+) < a′
0(0+) = q̃ .

Next, we come back to the uniqueness of an intersection of the maps a1(b) and
a2(b). Recall that b �→ a1(b) is concave on (0,̂b), and a �→ b(a) is convex, which
implies that b �→ a2(b) is concave as well.

We now distinguish the following cases; an illustration for each one of them is
given in Fig. 3:

Case (i). No intersection exists of a1(b) and a0(b): In this case, we first notice that
a′
2(b) ≥ a′

0(b) = q̃ for all b in the support of a2(b) due to the concavity of a2(b) and
the fact that a2(b) ≤ q̃b. Furthermore, we have q̃ > a′

1(0+), and hence q̃ > a′
1(b)

for all b > 0. Combining these insights, it follows that a1(b) = a2(b) for exactly one
b ∈ R+.

For the following cases, we thus assume that there exists exactly one intersection
of a1(b) and a0(b), which yields the point (a∗

0 , b
∗
0).

Case (ii). If a∗
0 ≥ m, the uniqueness of an intersection of a1(b) and a2(b) follows

from the fact that a2(b) = a0(b) for all b ≥ m/q̃. Hence, in this case, we obtain that
the intersection of a1(b) and a2(b) is exactly given by (a∗, b∗) = (a∗

0 , b
∗
0).

Case (iii). If a∗
0 < m and b∗

0 ≥ ̂b, we again observe that a2(b) ≤ q̃b, which
implies that the intersection point is not realized on b ≤ b∗

0. Therefore, since a1(b) is
decreasing for b ≥ ̂b and a2(b) is increasing, the intersection is unique and we denote
it by (a∗, b∗).

Case (iv). If a∗
0 < m and b∗

0 < ̂b, the concavity of a1(b) implies a′
1(b

∗
0) < q̃ as

well as a′
1(b

∗
0) > a′

1(b) for all b ≥ b∗
0. Since a′

2(b) > q̃ for all b, we must have
a1(b) = a2(b) for exactly one b ∈ R+ and we again denote the unique intersection
by (a∗, b∗). ��

C.2 Proof of Corollary 5.3

Recall that a2(b; λ) ≤ a0(b; λ) = q̃(λ)b (see also Figure 3 for illustration), where q̃ ≡
q̃(λ) ∈ (0, 1) is given by the solution to (4.13), which is equivalent toG(q̃(λ), 1) = 0.
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Fig. 3 Case Study for the uniqueness of an intersection of a1(b) and a2(b)

By defining

̂G(q) := (1 − θ2)κ(λ − (r − g)) + (θ1 − 1)(κ(λ − (r − g)) − α)qθ2−1

+ α(θ1 − 1), q ∈ (0, 1),

we observe that G(q, 1) ≥ ̂G(q) for all q ∈ (0, 1), since λ < r − g + α
κ
. Moreover,

we notice that

lim
q↓0G(q, 1) = −∞, lim

q↓0
̂G(q) = −∞, G(1, 1) = ̂G(1) = (θ1 − θ2)κ(λ − (r − g)) > 0

and that both q �→ G(q, 1) and q �→ ̂G(q) are monotonically increasing. Using these
properties, we can denote by q̂ ≡ q̂(λ) ∈ (0, 1) the unique solution to ̂G(q) = 0
(which can be computed explicitly) and obtain

q̃(λ) < q̂(λ) and lim
λ↑r−g+α/κ

q̂(λ) = 0 ⇒ lim
λ↑r−g+α/κ

q̃(λ) = 0.

First of all, recall from Theorem 5.2 that for every λ ∈ (r − g, r − g + α/κ),
there exists a unique equilibrium pair (a∗(λ), b∗(λ)), such that a∗(λ) = a1(b∗(λ)) =
a2(b∗(λ); λ). Since a2(b; λ) ≤ q̃(λ)b, we notice that for any fixed ˜b ∈ (0,∞)

we have limλ↑r−g+α/κ a2(˜b; λ) = 0. However, there is no such fixed ˜b ∈ (0,∞)

that can give a1(˜b) = limλ↑r−g+α/κ a2(˜b; λ) = 0 to create an equilibrium pair
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limλ↑r−g+α/κ(a∗(λ), b∗(λ)) = (0,˜b). Hence, the only possibility for obtaining an
equilibrium as λ ↑ r − g + α/κ , is for b∗(λ) → ∞. Given that b �→ a1(b) is strictly
decreasing on (̂b,∞) and limb→∞ a1(b) = a (independently of λ), we conclude that

lim
λ↑r−g+α/κ

a∗(λ) = lim
λ↑r−g+α/κ

a2(b
∗(λ); λ) = lim

λ↑r−g+α/κ
a1(b

∗(λ)) = a

and lim
λ↑r−g+α/κ

b∗(λ) = ∞,

which completes the proof. ��
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