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Abstract

This thesis comprises four essays on mechanism and information design. The first two chap-

ters focus on the joint mechanism and information design by a monopolistic seller. In Chapter

1, a monopolistic seller jointly designs allocation rules and (new) information about a pay-off

relevant state to a buyer with private types. When the new information flips the ranking of will-

ingness to pay across types, a screening menu of prices and threshold disclosures is optimal.

Conversely, when its impact is marginal, bunching via a single posted price and threshold dis-

closure is (approximately) optimal. While information design expands the scope for random

mechanisms to outperform their deterministic counterparts, its presence leads to an equiva-

lence result regarding sequential versus. static screening. These findings explain distinct strate-

gies of pricing and information provision adopted across industries and stages of a product’s

lifecycle, rationalizing the prevalence of free information in many markets.

Chapter 2 investigates the interaction of buyer’s optimism, information design, and price dis-

crimination. The model features a buyer who holds a biased and private prior belief about

the product’s match quality. The seller can provide additional information about the prod-

uct to refine the buyer’s belief. We fully characterize the revenue-maximizing menu of price-

information bundles that follows a simple cutoff structure. While neither the diversity in the

(biased) priors nor information design suffices to trigger price discrimination, their combi-

nation induces the optimal mechanism featuring both information and price discrimination.

Moreover, we show that it is optimal to offer information free of charge.

Chapter 3 (joint with Takuro Yamashita) considers an auction design problem with private val-

ues, where the seller and bidders may enjoy heterogeneous priors about their (possibly cor-

related) valuations. Each bidder forms an (interim) belief about the others based on his own

prior, updated by observing his own value. If the seller faces uncertainty about the bidders’

priors, even if he knows that the bidders’ priors are within any given distance from his, he may
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find it worst-case optimal to propose a dominant-strategy auction mechanism. This provides a

foundation for dominant-strategy mechanisms in auctions with heterogeneous priors.

Chapter 4 (joint with Daniil Larionov, Takuro Yamashita, and Shuguang Zhu) studies mecha-

nism design with flexible but costly information acquisition. There is a principal and four or

more agents, sharing a common prior over the set of payoff-relevant states. The principal pro-

poses a mechanism to the agents who can then acquire information about the state of the world

by privately designing a signal device. As long as it is costless for each agent to acquire a signal

that is independent of the state, there exists a mechanism which allows the principal to imple-

ment any social choice rule at zero information acquisition cost to the agents. Two applications

are considered, including auctions with common value and collective decision-making.
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Chapter 1

How Information Design Shapes Optimal

Selling Mechanisms

1 INTRODUCTION

The evolution of informational technology has significantly broadened sellers’ ways of selling

their products. They can design not only allocation rules which specify how to allocate products

and charge payments to buyers, but also information policies which control how much buyers

learn about the products, thereby refining their willingness to pay. For instance, they may offer

a posted price, associated with full information, to everyone. Alternatively, they could propose

a rich menu of allocation rules and information policies.

As an example, many software such as McAfee and various (mobile) apps like Spotify provide

users with a single free trial version, followed by a single subscription fee schedule. The trial

version is, therefore, merely a learning opportunity for potential buyers to make well-informed

purchasing decisions. An opposite example is travel agency platforms such as Priceline and

Hotwire practice so-called "opaque pricing" by which, buyers either book hotels with detailed

information at standard prices or opt for limited details at discounted prices. Thus, these travel

agencies screen their buyers via a menu of prices and information policies.

Price and information discrimination is also in the form of pre-order offers for buyers of not-

yet-released products, as exemplified by Google’s recent pre-order bonus for the Pixel 8. By

contrast, well-known products are typically sold via a single posted price, coupled with a single

timeframe for free return to all buyers.
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What leads to these diverse selling strategies? In particular, when is a single posted price and

disclosure policy optimal and conversely, when is it necessary to provide a screening menu of

prices and information? In addition, is there any benefit from offering random mechanisms?

Given that classical mechanism design results (Myerson (1981)) predict that a posted price is

optimal when the informational environment is fixed, answering these questions explains how

information design shapes optimal selling mechanisms. Regarding the timing, can the seller’s

revenue be improved by contracting with the buyer at the “interim” stage where he knows his

type but before the seller’s information disclosure? Or equivalently, should she allow the buyer

to walk away at the “posterior” stage where he observes both his type and the information pro-

vided? Answering this question helps understand the impact of consumer protection regula-

tions that grant the consumer a withdrawal right such as the European directive 2011/83/EU.1

Finally, if the buyer privately observes the information disclosed by the seller, can the buyer

enjoy any rent induced from such an endogenously private information?

This paper aims to answer these questions. The model, as formally described in Section 2,

features a seller (she) who sells an object to a buyer (he) with a privately known initial valuation

(initial type). The seller controls how much the buyer learns about an additional component

in his valuation. For example, this additional component represents what the buyer learns via

product trials. The seller designs a menu of information policies for different types of the buyer,

and allocation rules for different types and signals. Therefore, she solves a joint mechanism

and information design problem in which information plays a dual role. First, it allows the

seller to screen the buyer’s type through discriminatory disclosure policies. Second, disclosed

information serves as input for designing allocation rules. We focus on the case where the buyer

privately observes the new information (private signals) and investigate the case with public

signals as a benchmark.

1.1 Summary of results

First, we establish a revenue-equivalence result regarding sequential vs. static screening. Specif-

ically, we show that for any feasible and deterministic mechanism, there exists a mechanism that

generates the same revenue for the seller and non-negative payoff for the buyer at any type and

signal realization. As a consequence, there is no revenue loss if contracting at the posterior stage

when the buyer knows both his type and signal. This result counters the well-established idea in

sequential screening suggesting that the seller’s revenue is strictly higher if contracting with the

1For a detailed discussion on such policies, see Krähmer and Strausz (2015b).
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buyer before, rather than after, he learns additional information.2 The basic intuition is that the

seller’s ability to flexibly design information can crowd out the advantages of sequential over

static screening. A practical implication is that afore-mentioned consumer protections do not

necessarily harm the seller, rationalizing the prevalence of free information in many markets.

Second, we investigate the (ir)relevance of signal privacy. In the benchmark problem with pub-

lic signals, only expected allocations and payments (over signals) matter. Hence, this bench-

mark admits multiple solutions, including M⋆, a screening menu of threshold disclosures π⋆

and prices paid conditional on trade.3 We provide a simple way to verify the (ir)relevance of

signal privacy, which is to check if, under M⋆, the highest type pays the lowest price. If this is

true, privacy of signals is irrelevant and M⋆ solves the seller’s original problem. We find that this

is not always the case and consequently, not observing signals generally hurts the seller. More-

over, per-signal allocations and payments matter, which significantly complicates the charac-

terization of optimal mechanisms In particular, it is not a priori clear how many signals are

needed and which incentive compatibility (IC) constraints are relevant. The seller must also

handle double deviations when the buyer lies about both his type and observed signal. Lever-

aging techniques for mechanisms with non-convex type spaces, we make it always possible for

the buyer to "correct his lie," facilitating the characterization of optimal double deviations and

thereby, optimal mechanisms.

Our main result characterizes optimal mechanisms, starting with binary types. The seller faces

a trade-off between maximizing virtual surplus and minimizing the posterior rent. A threshold

disclosure rule, under which signal realization is either "good news" if the state is above some

cutoff or "bad news" otherwise, is optimal in both targets.4 Under the optimal mechanism, the

seller either screens the buyer’s types (via a menu of threshold disclosures and posted prices) or

bunches them (via a single posted price and threshold disclosure), depending on whether the

threshold disclosure π⋆ induces a threshold flip of type order: the high type’s value after "bad

news" is lower than the low type’s after "good news." Specifically, screening is optimal when this

flip of type order occurs, and bunching otherwise.

To grasp the intuition, note that such a flip of type order occurs when the variation of valuations

is mainly driven by the unknown component, leaving some room for the threshold disclosure

π⋆ to reverse the ranking of valuation. Information (about the unknown component) matters,

2See Courty and Li (2000) and Krähmer and Strausz (2015b).
3See Definition 4 for a formal description of M⋆.
4See Definition 1 for our formal definition of a threshold disclosure.
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serving as a screening tool. Conversely, if the buyer’s type is the main driver, which prevents π⋆

from flipping the type order, information is not crucial and screening disappears. The optimal

mechanism echoes its counterpart in standard mechanism design where the buyer’s valuation

is his type: a posted price (but associated with threshold disclosure) is optimal.

The significance of this bunching vs. screening result is two-fold. First, it implies that in the

above-mentioned scenarios, eliciting signals and random mechanisms are worthless. Second,

it rationalizes observed mechanisms in practice. For coming-soon items, the unknown com-

ponent’s impact on the variation of valuations is large and a screening menu is employed. By

contrast, its impact is marginal for well-known products where bunching comes into play. The

significance of the unknown component also varies across different industries. In the realm

of hotels, it matters much more than in software or mobile apps, leading to screening for the

former and bunching for the latter.

Having characterized the optimal mechanism for the binary-type setting, we consider larger

type spaces. With more than two types, there are also cases where an information policy re-

verses the ranking of valuations within a group of types but fails to do so for another. Con-

sequently, not only information but also trading probabilities are needed to screen the buyer,

leading to a random solution. However, the two scenarios of bunching/screening extend to the

case with finitely many types, under stronger notions of flip (no flip) of type order. Specifically,

a screening menu is optimal under a partition flip by π⋆ of type order - which generalizes the

threshold flip of type order by π⋆, taking into account medium types and their associated cut-

off states. Instead, bunching via a fixed price and threshold disclosure maximizes the seller’s

revenue when there is uniformly no threshold flip of type order under which, the type order is

to be preserved between any pair of types and after any threshold disclosure. This strong re-

quirement of type order preservation helps deal with the challenge of determining the lowest

type being served in a rich type space.

As binding (IC) constraints can involve local, global, and upward ones, characterizing optimal

random mechanisms becomes difficult. We thus focus on shedding light on how random mech-

anisms outperform their deterministic counterparts.5 We first establish the "no randomization

at the top" result, extending the well-known "no distortion at the top" to a setting with informa-

tion design: the highest type receives an efficient (and hence, deterministic) allocation. In turn,

this implies an optimal contract for this type, featuring a posted price and no disclosure. While

5In the Online Appendix, we solve for the optimal random mechanism in several examples.
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randomization is not needed for the highest type, it can be helpful for the lower types, leading

to a better balance of the efficiency vs. rent trade-off.6 We analyze, by examples, how random

mechanisms facilitate screening distant types as well as screening signals.

Finally, we consider a setting with a continuum of types. In this case, the optimality of a screen-

ing menu of posted prices and threshold disclosures under a partition flip of type order extends

readily. Particularly, in a "continuous" model when valuation shifts smoothly across types and

states, this notion corresponds to the ranking of valuations at the zero-virtual-value states by

types being reversed. On the other hand, the fact that there are always types whose valuations

are close to others’ makes it impossible to flip the ranking of willingness to pay across all types.

We show that when the type order is almost preserved, bunching via a fixed price-threshold

disclosure bundle is approximately optimal. If there is only two states, we establish the "exact"

optimality of bunching within the class of deterministic mechanisms..

1.2 Related literature

We contribute to the literature on joint mechanism and information design, comprising two

main strands. The first, more related, strand endows the buyer with a private type, initiated by

Eső and Szentes (2007) who focus on full disclosure. Most other papers focus on posted-price

mechanisms,7 which in turn, makes it without loss of generality to focus on binary-signal infor-

mation structures (Li and Shi (2017), Guo et al. (2022), Wei and Green (2023), Smolin (2023)).8

Our findings imply that these restrictions are not innocuous in general.

Our model builds on Eső and Szentes (2007) who focus on full disclosure and an environment

with (i) the above-mentioned "continuous" model and (ii) certain assumptions on the valuation

function. Under such an environment, they show that the upper bound of revenue with public

signals can be achieved via full disclosure, associated with a screening menu of prices (for the

good) and information fees. However, their optimal mechanism is not incentive compatible

6While it is natural to expect the two-dimensionality feature of the buyer’s valuation to lead to random mecha-

nisms, the seller has another tool for randomization: the distribution of signals, which potentially makes random

mechanisms redundant. However, signal misreporting off-path shuts off this additional instrument. Thus, random

mechanisms arise to deter double deviations, minimizing the posterior rent.
7In posted-price mechanisms, each type receives a posted price for the good and in some cases, a posted fee for

information.
8Exceptions include Zhu (2023) and Krähmer (2020) who establish full surplus extraction results when the seller

can correlate information disclosed to multiple buyers, and when randomizing over information structures is al-

lowed and the buyer’s type correlates with the unknown component, respectively.
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and moreover, privacy of signals generally matters outside their environment.9 Not only do

we allow for general information structures, we also characterize a joint design of information

and allocation rules in a more general environment of type space and valuation functions. This

allows us to uncover how information design reshapes the optimal selling mechanism which

features not just screening, but also bunching and a random mechanism. At the same time, we

strengthen Eső and Szentes (2007)’s finding by showing that the irrelevance of signals extends

to other (but not all) environments, with appropriate information design.

Bergemann and Wambach (2015) and Wei and Green (2023) revisit Eső and Szentes (2007)’s con-

tinuous model, showing that the latter’s optimal allocation can be implemented under stronger

participation constraints. We show that with deterministic allocations (including Eső and Szentes

(2007)’s), this is true for any feasible allocations, not just optimal. In turn, this provides an alter-

native proof for Wei and Green (2023).10

In the second, less related, strand of this literature, the buyer’s valuation is the unknown com-

ponent itself. See, for example, Lewis and Sappington (1994), Bergemann and Pesendorfer

(2007), Bergemann et al. (2022). Without the buyer’s private types, information cannot serve

as a screening tool. Moreover, the buyer’s private information (about his valuation) arrives only

once, making the seller’s problem static.11

We also contribute to the literature on dynamic mechanism design in which handling off-path

misreporting is a notable issue. Eső and Szentes (2007) explicitly characterize an agent’s opti-

mal double deviation, which is to "correct the lie". However, such a lie correction is feasible

only if the agent’s payoff shares a common support across types, which is rather restrictive. We

show that by leveraging mechanism design techniques for a non-convex type space, lie correc-

tion is feasible even with non-common supports. Moreover, the existing literature (for instance,

Battaglini (2005), Eső and Szentes (2007), Pavan et al. (2014)) extensively relies on the first-order

approach considering only local incentive compatibility constraints.12 Instead, we character-

ize different scenarios of binding constraints, showing that global deviations (associated with

9See Krähmer and Strausz (2015a) for a detailed discussion
10Wei and Green (2023) also shows that information disclosure triggers reverse price discrimination. We show

that this can also be derived from the properties of Eső and Szentes (2007)’s optimal mechanism.
11If the buyer in our model has no private type, the seller fully extracts the surplus by offering no disclosure and

a posted price for the good, which is equal to the expected valuation.
12The validity of this approach usually requires certain regularity conditions, which are not easy to satisfy, see

Battaglini and Lamba (2019).
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double deviation off-path) lead to bunching and random solutions.13

Finally, we contribute to the recent literature on Bayesian persuasion following Kamenica and

Gentzkow (2011), where a sender designs only information disclosure to affect a receiver’s ac-

tion. When the latter has a private type, Kolotilin et al. (2017) show that with binary actions and

linear valuation functions, non-discriminatory disclosure is optimal. In our joint design prob-

lem, the buyer’s action space (which is the menu of allocations and payments) is endogenous

and can consist of more than two options. We show that the optimality of non-discriminatory

disclosure, while not being true in general, holds in some environments even if the seller also

designs allocation rules and the valuation function is non-linear.

2 MODEL

2.1 Environment

The principal, a seller (she) sells an object to an agent, the buyer (he). The buyer’s valuation for

the object, v(θ, x) ∈ R+, depends on two components: (i) the buyer’s type θ ∈Θ ⊂ R and (ii) an

unknown state x ∈ X ⊂ R. There are a finite number of possible types and states, i.e., |Θ| < ∞
and |X | <∞.14 Random variables θ and x are independent. Let f (θ) be the probability of each

type θ and µ(x) of each state x. Without loss of generality, assume f (θ) > 0 and µ(x) > 0 for all θ

and x.

The realization of θ ∈Θ is privately known by the buyer. Neither the seller nor the buyer knows

the state x ∈ X . The seller commits to a policy of information disclosure about the state, for-

mally defined in Section 2.2.

To define payoffs, let q ∈ [0,1] be the trading probability and p ∈ R the expected transfer from

the buyer to the seller. The seller’s ex post payoff is then p and the buyer’s is v(θ, x)q −p.

For expositional clarity, we use the following notations θ ≡ maxΘ, θ ≡ minΘ, θ+ ≡ min
θ′∈Θ

{θ′ | θ′ >
θ} for θ < θ, θ− ≡ max

θ′∈Θ
{θ′ | θ′ < θ} for θ > θ, and θ

+ = θ, θ− = θ. We define x and x similarly. Let

φ(θ, x) ≡ v(θ, x)− [v(θ+, x)− v(θ, x)]

∑
θ′>θ f (θ)

f (θ)

13Even with full disclosure, which makes our problem become a standard dynamic screening problem, random

mechanisms can outperform their deterministic counterparts. See Example 3(b).
14We study the infinite type and state spaces in Section 7.
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denote the buyer’s virtual value. Throughout, assume that both the valuation and virtual valu-

ation increase in the buyer’s type and the state.

Assumption 1 (Monotone value). v(θ, x) increases in θ and x.

Assumption 2 (Monotone virtual value). φ(θ, x) increases in θ and x.

2.2 Selling mechanism

The seller designs, and ex ante commits to a grand mechanism or a menu of (i) information

policies for different types of the buyer and (ii) allocation rules for different types and informa-

tion received by the buyer.

Information policies: We model information policies as information structures (experiments)

Π ≡ (S,π), which consists of a countable set of signals S ⊂ R,15 and a mapping π, which asso-

ciates to each state θ a distribution over signals π(· | x) ∈∆(S). Given a mapping π and a signal

realization s ∈ S, the corresponding posterior belief Ψ(·|s) ∈ ∆(X ) is obtained by Bayes’ rule

whenever possible, and is given by

µs,π(x) = µ(x)π(s | x)∑
x ′∈x g (x ′)π (s | x ′)

An example of information structures is the threshold rule, defined as follows.

Definition 1 (Threshold diclosure). If the information policy follows a threshold rule, each signal

realization is classified as either "good news" or "bad news". Moreover,

π(“good news", x) =


1 if x > x̂,

λ if x < x̂,

λ if x = x̂,

for some x̂ ∈ X and λ ∈ [0,1].

Thus, a threshold disclosure is represented by a pair (x̂,λ) where x̂ is the cut-off state and λ the

probability with which "good news" is sent at the cut-off state. It informs the buyer whether the

state is (weakly) higher or lower than x̂. To simplify notations, throughout the paper, we use

"sg " to represent "good news" and "sb" for "bad news".

A menu of experiments is a set {πθ}θ∈Θ. The paper focuses on the case in which the buyer

privately observes the signal. The benchmark case with public signals is examined in Section

3.3.
15Assuming S is a countable set of R is without loss.
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Without loss of generality, assume that signals are ordered such that upon observing a higher

signal, the buyer’s posterior valuation is higher, as follows.

Assumption 3 (Ranking of signals).

s > s′ ⇔∑
x

v(θ, x)µs,πθ (x) ≥∑
x

v(θ, x)µs′,πθ (x)

Allocation rules: An allocation rule specifies the trading probability, q , and the expected trans-

fer from the buyer to the seller, p. Given the information structure, by the revelation principle

(see, for example, Myerson (1986b)), we focus on direct allocation rules {q(θ, s), p(θ, s)}θ,s .

Thus, a selling mechanism is a tuple M ≡
{
πθ,

(
q(θ, s), p(θ, s)

)}
θ,s

. The formal definitions of a

deterministic mechanism and its random counterpart are as follows.

Definition 2. An mechanism M is deterministic if under M, q(θ, s) ∈ {0,1} for all θ ∈Θ and s ∈ S.

M is random otherwise.

Timing: The timing of interactions is as follows:

1. The seller offers a selling mechanism M.

2. The buyer learns his type θ and decides to accept or reject the offer. In case of acceptance,

he reports a type θ̂ to receive information generated from πθ̂.

3. The buyer privately observes a signal s and reports a signal ŝ.

4. The allocation (q(θ̂, ŝ), p(θ̂, ŝ)) is implemented.

According to this timing, the buyer’s participation is decided at the interim state, as commonly

assumed in the mechanism design literature. See our discussion on the timing structure in

Section 3.2.

2.3 Seller’s problem

An optimal mechanism refers to a revenue-maximizing mechanism. By the revelation principle,

it is without loss of generality to focus on direct mechanisms such that the buyer finds it optimal

to (i) participate in the mechanism, (ii) truthfully report his type, and (iii) truthfully report his

signal conditional on being truthful about his type. Let

u(θ,θ′, s, s′) ≡∑
x

[v(θ, x)q(θ′, s′)−p(θ′, s′)]Ψθ(x|s)

14



denote the ex post payoff for type-θ buyer, who reports θ′, observes s, and reports s′. Note that

if the buyer lies about his type, he may want to lie again about the signal. In other words, double

deviations from truth-telling may be attractive. Let

s⋆(θ,θ′, s) ∈ argmax
s′

u(θ,θ′, s, s′)

be the optimal signal reporting of type-θ buyer who reports θ′ and observes signal s.16 The ex

ante payoff for type-θ buyer, who reports θ′ and then s⋆(θ,θ′, s), is then given by

U (θ,θ′) ≡∑
x

∑
s

u(θ,θ′, s, s⋆(θ,θ′, s))π(s|x).

With abuse of notation, let u(θ, s) ≡ u(θ,θ, s, s), u(θ, s, s′) ≡ u(θ,θ, s, s′), and U (θ) ≡U (θ,θ). For

the buyer to truthfully report his signal on the equilibrium path (conditional on reporting his

type truthfully), it must be that for all θ and s,

u(θ, s) ≥ u(θ, s, s′). (IC-signal)

For the buyer to truthfully report his type, it must be that for all θ and θ′,

U (θ) ≥U (θ,θ′). (IC-type)

Finally, the buyer participates in the mechanism if and only if

U (θ) ≥ 0. (IR)

Definition 3. A mechanism is feasible if it satisfies all constraints (IR), (IC-type), and (IC-signal),

Formally, the seller’s maximization problem is given by

sup{
πθ ,q(θ,s),p(θ,s)

}
s,θ

∑
θ

∑
x

∑
s

p(θ, s)π(s|x)µ(x) f (θ)

s.t . (IR), (IC-type), (IC-signal).
16In case the buyer is indifferent between signals off the equilibrium path, fix arbitrarily one of the seller-

preferred signals.
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3 PRELIMINARY RESULTS

3.1 No distortion at the top and no rent at the bottom

First, we establish that the solution to the seller’s joint design problem bears commonly known

features: the highest type receives an efficient allocation while the lowest is fully extracted.

Lemma 1. Under any optimal mechanism,

(a) the lowest type gets a zero payoff: U (θ) = 0, and

(b) the highest type an efficient allocation: q(θ, x) =
1 if v(θ, x) > 0,

∈ [0,1] if v(θ, x) = 0.
.

To prove Part (a) or the "no rent at the bottom" feature, we first show that the buyer’s rent

U (θ) increases in θ under any incentive-compatible mechanism. For this purpose, consider

the buyer of type θ > θ. He reveals his type only if his payoff from truth-telling is at least that

obtained by mimicking some type θ′ < θ and reporting signals truthfully. Formally,

U (θ) ≥∑
x

[
v(θ, x)q(θ′, s)−p(θ′, s)

]
πθ′(s|x)g (x) (1.1)

As v(θ, x) ≥ v(θ′, x) for all x, (1.1) implies U (θ) ≥∑
x[v(θ′, x)q(θ′, s)−p(θ′, s)]πθ′(s|x)g (x) =U (θ′).

Therefore, U (·) is an increasing function. Armed with this result, we now show that U (θ) = 0

under optimal mechanisms. By contradiction, suppose U (θ) = ε > 0 under an optimal mech-

anism. Then, if increasing p(θ, s) by ε for all θ and s, the seller strictly increases her revenue

while not violating any IC and IR conditions. A contradiction. Thus, U (θ) = 0 at optimum.

We leave the proof of Part (b) or the "no distortion at the bottom" result in Appendix A.1. The

idea is that whenever this type does not trade with probability 1 (at some state), it is possible to

improve the seller’s revenue by letting him always trade under no disclosure and a posted price

being equal to his original expected payment, adding the new surplus.

It is worth noting that by Lemma 1(b), random allocations are not needed for the highest type.

This is not necessarily true for the lower types to which, offering efficient allocations is generally

sub-optimal. See Section 6.1 for a detailed discussion.

3.2 Sequential vs. static screening

This section establishes an irrelevance result regarding the timing structure of interactions. We

show that contracting at the posterior stage (after the buyer observes both his type and signal)
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does not necessarily hurt the seller. Specifically, within the class of deterministic mechanisms,

there is no revenue loss if the buyer can walk away after information disclosure.

Proposition 1. For any deterministic and feasible mechanism, there exists a mechanism which

generates the same revenue for the seller and a non-negative ex post pay-off for the buyer.

Let Md ≡ {q(θ, s), p(θ, s),πθ} be an arbitrary deterministic and feasible mechanism. Hence, un-

der Md , q(θ, s) ∈ {0,1} for any θ and s. Fix θ ∈Θ. Let Sg
θ
≡ {s | q(θ, s) = 1} and Sb

θ
≡ {s | q(θ, s) = 0}.

To induce signal truth-telling by θ, p(θ, s) = p(θ, s′) = p(θ) if s ∈ Sg
θ

; and p(θ, s) = p(θ, s′) ≡ p(θ)

and if s ∈ Sb
θ

. Let

Q(θ) ≡∑
x

∑
s∈S

g
θ

πθ(s|x)g (x)

represent type θ’s trade probability. Consider the following two cases:

Case 1: p(θ) < 0. If ∃s such that π(θ, s) < 0, then type θ who observes s (strictly) prefers to

misreport signal s′ with q(θ, s′) = 0 to receive a negative transfer without buying the good. This

contradicts with Md being feasible. Hence, π(θ, s) ≥ 0 for all s in this case.

Case 2: p(θ) ≥ 0. Revise Md as follows. For any s ∈ Sg
θ

, replace s with signal "sg " ; and for any

s ∈ Sb
θ

, replace it with signal "sb". In addition, each type θ now receives a posted price

p̃(θ) = p(θ)+p(θ)
1−Q(θ)

Q(θ)
, (1.2)

As θ pays only if he decides to buy the good, his payoff is non-negative at any signal realization.

In Appendix A.2 we show that the seller’s revenue remains unchanged under this revision, which

completes the proof for Proposition 1.

Proposition 1 has two implications. First, if only deterministic mechanisms are allowed, there

is no loss for the seller to contract after the buyer observes both type and signal realizations.

Therefore, despite the sequential arrival of his private information, sequential screening the

buyer is not beneficial, unless random mechanisms are necessary.

Second, by the "no rent at the bottom", the lowest type earns a zero payoff under optimal mech-

anisms. Therefore, if there exists θ such that p(θ) < 0, the lowest type mimics θ and not buying

the good to enjoy a positive payoff. Consequently, if Md is optimal, p(θ) ≥ 0 ∀θ. Then, as argued

above, Md do no better than "posted-price" mechanisms, which are signal-independent. As we

will show, such posted-price mechanisms are optimal in several, but not all, environments.
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3.3 (Ir)relevance of signal privacy

As the buyer privately observes signals only after the contract is signed, one might expect that

the privacy of signals does not hurt the seller’s revenue. To investigate this conjecture, we first

consider the benchmark problem with public signals. There, the buyer’s payoff and the seller’s

revenue depends only on expected payments and expected allocations over signals, defined as

Q(θ, x) ≡∑
x

∑
s

q(θ, s)πθ(s|x)µ(x), P(θ) ≡∑
x

∑
s

p(θ, s)πθ(s|x)µ(x).

As a result, the seller’s problem reduces to

(P ) sup
Q,P

∑
θ

P(θ) f (θ)

s.t .
∑

x
v(θ, x)Q(θ, x)µ(x)−P(θ) ≥∑

x
v(θ, x)Q(θ′, x)µ(x)−P(θ′), (IC -type)∑

x
v(θ, x)Q(θ, x)µ(x)−P(θ) ≥ 0. (I R)

Under Assumption 1 and 2, only local IC constraints bind under (P ). By standard arguments

(omitted), this problem reduces to point-wise maximization w.r.t Q only:

sup
Q

∑
θ

∑
x
φ(θ, x)Q(θ, x)µ(x) f (θ). (⋆)

A solution to (⋆) exists and is generically unique:17 Q(θ, x) = 1φ(θ,x)≥0. Expected payment (over

signals) is pinned down by (ICθ+→θ) and (I Rθ). For any θ ≥ θ, let

xθ ≡
min{x |φ(θ, x) ≥ 0} if φ(θ, x) ≥ 0,

+∞ if φ(θ, x) < 0
(1.3)

denote the lowest state at which type θ’s virtual value is non-negative. Note that x⋆
θ

decreases

in θ by Assumption 2.

Lemma 2 (Benchmark problem). With public signals, the optimal mechanism is generically

unique, given by

Q(θ, x) =1φ(θ,x)≥0, (1.4)

P(θ+) =P(θ)+ ∑
xθ+≤x<xθ

v(θ+, x)µ(x) ∀θ ≥ θ. (1.5)

17When φ(θ, x) = 0, any Q(θ, x) ∈ [0,1] is optimal.
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The seller retains a certain level of freedom in designing disclosure and per-signal allocation

rules as long as (i) upon observing any signal, one knows whether the state is above or below

the cut-off xθ and (ii) expected terms are given by equations in Lemma 2. This leads to a mul-

tiplicity of solutions to (P ), including the following menu of threshold disclosures and prices

(paid conditional on trade), under which each type of the buyer (i) knows whether his virtual

value is positive or not and (ii) pays only if trade happens. Formally:

Definition 4. Under M⋆ ≡ {p⋆(θ, s), q⋆(θ, s),π⋆
θ

}θ∈Θ,s∈{sg ,sb } is a menu of threshold disclosures

and prices, in which

1. π⋆
θ

(sg |x) =1x≥xθ , where xθ is given by equation (1.3).

2.
(
q⋆, (θ, s), p⋆(θ)

)=


(1,
P(θ)∑

x≥xθ µ(x)
) if s = sg ,

(0,0) if s = sb ,

where P(θ) is given by equation (1.5).

Let V (P ) represent the value of problem (P ). Then, V (P ) is an upper bound on the seller’s

revenue with private signals. Under a mild condition, Proposition 2(a) below shows that if this

upper bound is achieved via some mechanism, it is via M⋆. The basic intuition is that relative

to other solutions to (P ), M⋆ provides less information (just enough to know the sign of virtual

values) and a higher price for the good (payments are paid only when trade happens). Hence,

if there exists a solution that induces truth-telling with private signals, so does M⋆. This is the

case, by Proposition 2(b), if and only if the highest type pays the lowest price under M⋆.

To formally state Proposition 2, let RM represent the revenue level obtained with private signals

from an arbitrary mechanism M.

Proposition 2.

a) Suppose φ(θ, xθ) > 0 ∀θ. If there exists M such that RM =V (P ), then RM⋆ =V (P ).

b) RM⋆ =V (P ) if and only if p⋆(θ, sg ) = min
θ

{p⋆(θ, sg )} .

It seems counter-intuitive that the highest type pays the lowest price (conditional on buying the

good). However, it is worth noting that information disclosure can flip the ranking of (posterior)

willingness to pay across types, leading to non-monotone price discrimination.18 As will be

18That information disclosure can lead to non-monotone price discrimination has been observed in Bang and

Kim (2013) and Wei and Green (2023) where prices decrease in types. Throughout our paper, several examples are

presented where under M⋆, prices can be decreasing, increasing and even concave in types (see Example 6).
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shown formally in later sections, this occurs in some, but not all environments.

4 A RESTATEMENT OF THE SELLER’S PROBLEM

Without loss of generality, assume that each signal induces a single (on-path) posterior valua-

tion. Therefore, each signal s observed by type-θ buyer corresponds to his on-path posterior

value after observing such a signal, given by

ωπθ (θ, s) ≡∑
x

v(θ, x)µs,πθ (x)

Moreover, that the buyer reveals the realized signal is equivalent to him reporting his posterior

valuation. For any type θ, let

Ωθ ≡ {ω |ω=ωπθ (θ, s) for some s ∈ S}

be the set of all possible on-path posterior values for type θ. Then, requiring signal truth-telling

on-path is equivalent to ensuring truth-telling about on-path posterior values, or

ωq(θ,ω)−p(θ,ω) ≥ωq(θ,ω′)−p(θ,ω′) ∀θ,∀ω,ω′ ∈Ωθ

As mentioned, the buyer may want to coordinate lies about the realized type and signal. Given

that the signal space is endogenous, this significantly complicates the characterization of truth-

telling conditions. To facilitate characterizing the buyer’s optimal double deviation, we extend

the allocation rule to be defined on the set of all possible on-path and off-path posterior valua-

tions, denoted by

Ω≡ [v(θ, x), v(θ, x)].

Moreover, it is without loss of generality to require truthful signal reporting on this setΩ, rather

than in only {Ωθ}θ,19 i.e.,

ωq(θ,ω)−p(θ,ω) ≥ωq(θ,ω′)−p(θ,ω′) ∀θ,∀ω,ω′ ∈Ω (IC-value)

The characterization of (IC-value) is standard.

Lemma 3 (Myerson, 1981). An allocation rule (q, p) :Θ×Ω→ [0,1]×R satisfies (IC-value) if and

only if

19See, for example, Skreta (2006), for mechanism design with non-convex type spaces.
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1. ωq(θ,ω)−p(θ,ω) = ω̂q(θ,ω̂)−p(θ,ω̂)+
∫ ω

ω̂
q(θ, z)d z,

2. q(θ,ω) increases in ω.

It then follows from Lemma 3 that the buyer, after having lied about his type, reveals his true

(off-path) posterior valuation.

Lemma 4 (Optimal double deviations). Under any allocation rule (q, p) :Θ×Ω→ [0,1]×R that

satisfies (IC-value), it is optimal for type θ who mimics θ′ and observe signal s to report his off-

path posterior valuation, given by

ωπθ (θ′, s) ≡∑
x

v(θ, x)µs,πθ′ (x)

The proof (omitted) is similar to what is called "correcting the lie" in the dynamic mechanism

design literature. Often, this lie correction is made feasible by assuming that the agent’s (new)

private information shares a common support across types.20 This is not applicable in our

model as the buyer’s new private information, which is his posterior valuation, is endogenous.

By extending the allocation rule to be defined in the extended signal spaceΩ, we make it possi-

ble for the buyer to "correct his lie."21

Consider θ,θ′ ∈Θwith θ > θ′. Then,

U (θ,θ′) ≡∑
x

∑
s

[ωπθ′ (θ, s)q(θ′,ωπθ′ (θ, s))−p(θ′,ωπθ′ (θ, s))]πθ′(s|x)µ(x)

=∑
x

∑
s

[
[ωπθ′ (θ′, s)q(θ′,ωπθ′ (θ′, s))−p(θ′,ωπθ′ (θ′, s))]+∑

s

∫ ω
πθ′ (θ,s)

ω
πθ′ (θ′,s)

q(θ′, z)d z

]
πθ′(s|x)µ(x)

=U (θ′)+∑
x

∑
s

∫ ω
πθ′ (θ,s)

ω
πθ′ (θ′,s)

q(θ′, z)d zπθ′(s|x)µ(x).

Thus, θ does not benefit from misreporting θ′ if and only if

U (θ)−U (θ′) ≥∑
x

∑
s

∫ ω
πθ′ (θ,s)

ω
πθ′ (θ′,s)

q(θ′, z)d zπθ′(s|x)µ(x).

By similar arguments, θ′ does not benefit from misreporting θ if and only if

U (θ)−U (θ′) ≤∑
x

∑
s

∫ ωπθ (θ,s)

ωπθ (θ′,s)
q(θ, z)d zπθ(s|x)µ(x).

20See Eső and Szentes (2007) and Krähmer and Strausz (2015b) for example.
21This trick can also be helpful in other dynamic mechanism design problems where the agent(s)’ private infor-

mation does not share common support across types.
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To sum up, the seller’s problem can be expressed as follows.

(P ) max
(π,q,U )

∑
θ

f (θ)
[∑

x

∑
s

v(θ, x)q(θ,ωπθ (θ, s))πθ(s|x)µ(x)−U (θ)
]

s.t : ∀θ, U (θ)−U (θ′) ≥∑
x

∑
s

∫ ω
πθ′ (θ,s)

ω
πθ′ (θ′,s)

q(θ′, z)d zπθ′(s|x)µ(x) ∀θ′ < θ (dwIC-type)

U (θ)−U (θ′) ≤∑
x

∑
s

∫ ωπθ (θ′,s)

ωπθ (θ,s)
q(θ, z)d zπθ(s|x)µ(x) ∀θ′ > θ (uwIC-type)

U (θ) ≥ 0 (I R)

q(θ,ω) increases in ω. (MON )

5 OPTIMAL MECHANISM FOR |Θ| = 2

In this section, we characterize the optimal mechanism for binary types. We derive two findings.

First, screening is optimal if and only if the ranking of willingness to pay is flipped under a

certain threshold disclosure and bunching is optimal otherwise. Second, eliciting signals and

random mechanisms are worthless. Formally,Θ= {h, l } and hence, the seller’s problem reduces

to (Pb), given by

(Pb) max
(π,q,U )

∑
θ

f (θ)
[∑

x

∑
s

v(θ, x)q(θ,ωπθ (θ, s))πθ(s|x)µ(x)−U (θ)
]

s.t : U (h)−U (l ) ≥∑
x

∑
s

∫ ωπl (h,s)

ωπl (l ,s)
q(l , z)d zπl (s|x)µ(x) (IChl )

U (h)−U (l ) ≤∑
x

∑
s

∫ ωπh (h,s)

ωπh (l ,s)
q(h, z)d zπh(s|x)µ(x) (IClh)

U (h) ≥ 0 (I Rh)

U (h) ≥ 0 (I Rl )

q(θ,ω) increases in ω.

To state the main result of this section, we introduce the following notion of type order flip,

which shapes the optimal mechanism. Recall that π⋆ is the threshold disclosure associated

with M⋆ formally defined in Definition 4, with π⋆l (sg |x) =1x≥xl .

Definition 5 (Threshold flip of type order by π⋆l ).

If π⋆l induces the threshold flip of type order, E[v(h, x) | x < xl ] ≤ E[v(l , x) | x ≥ xl ].
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By Definition 5, π⋆l induces the threshold flip of type order when ωπ
⋆
l (h, sb) ≤ ωπ

⋆
l (h, sg ). In

words, this threshold disclosure overturns the ranking of willingness to pay with h’s valuation

after "bad news" being lower than l ’s after "good news". Intuitively, this is the case when the un-

known component x causes significant variations of valuations, creating room for π⋆l to flip the

type order. By contrast, it does not happen in, for example, an extreme case in which valuation

is constant with respect to this component (i.e., g (·) is a degenerate distribution with x = x), as

in standard mechanism design problems.

We are now ready to state the main result of this section, assuming that type l ’s virtual value

is either strictly positive or negative, i.e., φ(l , xl ) > 0. Accordingly, the benchmark allocation is

unique, given by Q(l , x) =1x≥xl .

Theorem 1 (Binary types). Fix Θ= {h, l }. There exists some λ ∈ [0,1] and x̂l ∈, such that in the

unique optimal mechanism, the allocation is given by

q(h, x) = 1 ∀x, q(l , x) =


1 if x > x̂l ,

0 if x < x̂l ,

λ if x = x̂l .

Moreover,

(a) If π⋆l induces the threshold flip of type order,
(
x̂l ,λ

) = (
xl ,1

)
. A menu of posted prices and

threshold disclosures is optimal.

(b) Ifπ⋆l does not induce the threshold flip of type order,
(
x̂l ,λ

) ̸= (
xl ,1

)
. A posted price, associated

with a uniform threshold disclosure, is optimal.

In short, Theorem 1 states that the optimal mechanism features screening whenever π⋆l leads to

the threshold flip of type order and bunching otherwise. Intuitively, when the unknown com-

ponent x dominates the buyer’s private type θ in triggering the variation of the buyer’s valuation

(to induce the threshold flip of type order), the new information matters and helps screen the

buyer. Conversely, when the ranking of willingness to pay mainly depends on the buyer’s type,

screening disappears. Then, the optimal mechanism closely resembles its counterpart in stan-

dard mechanism design where the state is known: a posted price (but associated with threshold

disclosure) is optimal. The optimal mechanism in each case is explicitly characterized in the re-

mainder of this section. To illustrate Theorem 1, consider the following examples.

Example 1 (Binary types and states). Θ= {l ,h} and X = {b, g }. Types and states are equally likely.
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Assume that φ(θ1, x1) < 0 <φ(θ1, x2) to make the problem non-trivial.

In this simple binary-type, binary-state setting, there are two scenarios of optimal mechanisms.

If v(θ3, x1) ≥ v(θ1, x2), thenπ⋆ does not induce the threshold flip of type order. By Theorem 1(a),

a fixed price and threshold disclosure is optimal. On the other hand, if v(θ3, x1) < v(θ1, x2), then

π⋆ leads to the threshold flip of type order. By Theorem 1(b), a menu of prices and threshold

disclosures is optimal.

Example 2. Θ= {l ,h} and X is a finite subset ofN. Types and states are equally likely. Valuations

are given by: v(θ, x) = θ+x.

Let

∆θ ≡ v(h, x)− v(l , x) = h − l ∀x,

∆x ≡ v(θ, x)− v(θ, x) = x −x ∀θ.

Then, ∆θ represents the variation of valuation due to the buyer’s type, whereas ∆x due to the

state x. For any state x̂ ∈Ω,

E[v(h, x) | x < x̂]−E[v(l , x) | x ≥ x̂] =
(
h + x̂ −1+x

2

)
−

(
l + x̂ +x

2

)
=∆θ−

∆x +1

2
,

Thus, the threshold flip of type order happens if and only if

∆θ ≤
∆x +1

2
, (1.6)

which is the case when the impact of the buyer’s type is relatively small, relative to that of the

unknown component. By Theorem 1, when (1.6) holds, it is optimal to offer a menu of thresh-

old disclosures and posted prices. Otherwise, a posted price, coupled with uniform threshold

disclosure, maximizes the seller’s revenue.22

Remark 1. Theorem 1 and its proof extends readily to the case with a continuum of states. As an

example, fix Θ= {l ,h} and X = [0,10], and both θ and x are uniformly distributed. Then, for any

state x̂ ∈Ω, E[v(h, x) | x < x̂]−E[v(l , x) | x ≥ x̂] =∆θ−5. Thus, a menu of prices and information

is optimal if ∆≥ 5 and a fixed price coupling with a threshold disclosure (for all types) is optimal

if ∆< 5.

Theorem 1 has two important implications:

22In particular, when ∆θ is too high, the seller does not benefit from information disclosure. In this case, the

optimal threshold for type l is the highest state (x̂l = x), which means no disclosure is provided.
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Corollary 1. With |Θ| = 2, privacy of signals does not matter when the threshold flip of type order

happens under γ⋆l . It matters otherwise.

Corollary 2. With |Θ| = 2, the seller does not strictly benefit from using random mechanisms, nor

from eliciting signals.

What leads to the (ir)relevance of signal privacy and the optimality of deterministic mecha-

nisms, signal-independent allocations will be explained when we present the key steps of the

proof of Theorem 1, to which we turn next.

5.1 Proof of Theorem 1

To prove Theorem 1, we solve a relaxed problem, denoted by (RP b), ignoring (IClh) and (I Rh)

and provide an implementation. Formally, this relaxed problem is as follows.

(RP b) max
(π,q,U )

∑
θ

f (θ)
[∑

x

∑
s

v(l , x)q(θ,ωπθ (θ, s))πθ(s|x)µ(x)−U (θ)
]

s.t : U (h)−U (l ) ≥∑
x

∑
s

∫ ωπl (h,s)

ωπl (l ,s)
q(l , z)d zπl (s|x)µ(x) (ICh→l )

U (l ) ≥ 0 (I Rl )

q(θ,ω) increases in ω. (MON )

The characterization of the solution to (RP b) is done via the following steps. First, we prove

the optimality of deterministic allocation rules. This step, while standard, is helpful in decom-

posing the buyer’s rent into two components: the ex ante rent (due to privacy of types) and

the posterior rent (due to privacy of signals). Using this rent decomposition, we establish the

optimality of binary-signal experiments and furthermore, of threshold disclosures. Finally, we

characterize the optimal allocation and implement it.

First, to obtain the optimality of deterministic allocations, note that (ICh→l ) and (I Rl ) must

bind in (RP b),i.e.,

U (l ) = 0, U (h) =∑
x

∑
s

∫ ωπl (h,s)

ωπl (l ,s)
q(l , z)d zπl (s|x)µ(x),

25



Thus, transfers have been eliminated, reducing the seller’s relaxed problem to

max
q,π

f (h)
∑

x

∑
s

v(h, x)q(h,ωπθ (θ, s))πh(s|x)µ(x)

+ f (l )
∑

x

∑
s

[
v(l , x)q(l ,ωπθ (θ, s))−

∫ ωπl (h,s)

ωπl (l ,s)
q(l , z)d z

]
πl (s|x)µ(x)

s.t q(θ,ω) increases in ω. (MON )

Fix π. Given that the objective function is linear and the only constraint is (MON), there exists

an optimal allocation rule that is deterministic and exhibits a cut-off structure. Moreover, as

v(h, x) is always non-negative, h receives an efficient allocation.

Lemma 5 (Deterministic allocations). In (RP b), there exists an optimal allocation rule, given

by q(θ,ω) =1ω≥ω̂θ , where ω̂h = v(l , x).

Second, we derive the sufficiency of binary-signal experiments. As q(h, s) = 1 for all s, any πh is

optimal. The relaxed problem reduces to finding the optimal πl . Let

Rl ≡ f (l )
∑

x

∑
s

[
v(l , x)q(l ,ωπl (l , s))−

∫ ωπl (h,s)

ωπl (l ,s)
q(l , z)d z

]
πl (s|x)µ(x)

denote the term involvingπl in the seller’s objective function (revenue) in (RP b). Using q(l ,ω) =
1ω≥ω̂l by Lemma 5, we obtain

Rl = f (l )
∑

x

[ s∑
ŝl

v(l , x)πl (s|x)−
s∑
ŝl

∫ ωπl (h,s)

ωπl (l ,s)
d z

f (h)

f (l )
πl (s|x)−

ŝl∑
s

∫ ωπl (h,s)

ωπl (l ,ŝl )
d z

f (h)

f (l )
πl (s|x)

]
µ(x)

= f (l )
∑

x

[ s∑
ŝl

v(l , x)︸ ︷︷ ︸
l ’s surplus

−
s∑
ŝl

[ωπl (h, s)−ωπl (l , s)]
f (h)

f (l )︸ ︷︷ ︸
h’s ex ante rent

−
ŝl∑
s

[ωπl (h, s)−ωπl (l , ŝl )]
f (h)

f (l )︸ ︷︷ ︸
h’s posterior rent

]
πl (s|x)µ(x).

Rl depends on (i) the buyer’s expected value (on path for l and off path for h), conditional on

whether s ≥ ŝl or s < ŝl , and (ii) the cut-off signal, ŝl . By (i), there is no revenue loss in replacing

all signals s ≥ ŝl with "good news" (sg ) and all s < ŝl with "bad news" (sb). At the same time, such

a binary-signal experiment for type l increases the cut-off signal because ωπl (l , sg ) = E[v(l , x) |
s ≥ ŝl ] ≥ ŝl . In turn, this improves Rl , which increases in the cut-off signal. We thus obtain the

optimality of binary-signal experiments.

Lemma 6 (Binary signals). In (RP b), there exists an optimal experiment for type l where the

signal realization can be either "good news" (sg ) or "bad news" (sb).
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Third, we prove the optimality of threshold disclosures. By replacing all signals s ≥ ŝl (resp.,

s < ŝl ) with "good news" (resp., "bad news"), Rl becomes

f (l )
∑

x

[
v(l , x)πl (sg |x)︸ ︷︷ ︸

l ’s surplus

− [v(h, x)− v(l , x)]
f (h)

f (l )
πl (sg |x)︸ ︷︷ ︸

h’s ex ante rent

− [ωπl (h, sb)−ωπl (l , sg )]
f (h)

f (l )
πl (sb |x)︸ ︷︷ ︸

h’s posterior rent

]
µ(x)

= f (l )
∑

x
φ(l , x)πl (sg |x)µ(x)︸ ︷︷ ︸

l ’s virtual value

− f (l )
∑

x
max

{[
ωπl (h, sb)−ωπl (l , sg )

] f (h)

f (l )
,0

}
πl (sb |x)µ(x)︸ ︷︷ ︸

h’s posterior rent

.

Fix πl (sb). Then, a threshold disclosure minimizes h’s posterior rent by simultanenously max-

imizing ωπl (h, sb) and minimizing ωπl (h, sb). Moreover, as φ(l , x) increases in x, a threshold

disclosure maximizes l ’s expected virtual value. Therefore:

Lemma 7 (Threshold structure). In (RP b), a threshold disclosure for l is optimal.

Last, we characterize the optimal allocation and provide an implementation. Let x̂l ∈ X be the

cut-off state associated with the optimal threshold disclosure for l and λ ∈ [0,1] be the proba-

bility with which "good news" is sent at x̂l . Then, by Lemmas 5, 6, and 7, the optimal allocation

is given by

q(h, x) = 1 ∀x, q(l , x) =


1 if x > x̂l ,

0 if x < x̂l ,

λ if x = x̂l .

Solving for the optimal allocation reduces to solving for the optimal
(
x̂l ,λ

)
. As will be shown,

there are two cases, depending on whether π⋆l triggers the threshold flip of type order. In the

first case, when this flip happens, offering π⋆l with
(
x̂l ,λ

) = (
xl ,1

)
is optimal. Not only does it

induce zero posterior rent for h, given that

ωπ
⋆
l (h, sb)−ωπ⋆l (l , sg ) ≤ 0

when the threshold flip occurs under π⋆l , but it also creates the highest expected virtual value

for l ’s, given by f (l )
∑

x≥xl
φ(l , x)πl (sg |x)µ(x).

With
(
x̂l ,λ

) = (
xl ,1

)
, l ’s allocation coincides with the benchmark Q(l , x) = 1x≥xl . To find out

payments, without loss of generality, assume the buyer pays only if "good news" is realized (or

trade happens). Thus, p(h, sb) = p(l , sb) = 0. Then, p(l , sg ) =ωπ
⋆
l (l , sg ) by (I Rl ), and p(h, sg ) is
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such that (ICh→l ) holds, or U (h) =U (h, l ), which implies

p(h, sg ) =E[v(h, x)]− [
ωπ

⋆
l (h, sg )−p(l , sg )

]
π⋆l (sg ).

Now, verify that ignored constraints are satisfied. First,(I Rh) hold because

U (h) =[
ωπ

⋆
l (h, sg )−ωπ⋆l (l , sg )

]
π⋆l (sg ) ≥ 0

Second, ICl→h is satisfied given that

U (l ,h) = E[v(l , x)]−p(h, sg )

= E[v(l , x)]−E[v(h, x)]+ [
ωπ

⋆
l (h, sg )−p(l , sg )

]
π⋆l (sg )

= E[v(l , x)]−E[v(h, x)]+ [
ωπ

⋆
l (h, sg )−ωπ⋆l (l , sg )

]
π⋆l (sg )

= [
ωπ

⋆
l (l , sb)−ωπ⋆l (h, sb)

]
π⋆l (sb) < 0 =U (l )

Moreover, under no threshold flip of type order by π⋆, ωπ
⋆
l (h, sb) ≤ωπ

⋆
l (l , sg ) = p(l , sg ). There-

fore, if h mimics l , it is optimal for him to report signals truthfully. This deviating behavior is

not beneficial for h by the construction of p(h, sg ). We thus obtain Theorem 1(a):

Lemma 8 (With threshold flip by π⋆l ). If π⋆l induces the threshold flip of type order, q(l , x) =
Q(l , x) =1x≥x̂l , and M⋆ ≡ {p⋆(θ),π⋆

θ
}θ is optimal.

By contrast, whenπ⋆
θ

preserves the type order, orωπ
⋆
l (h, sb) >ωπ⋆l (l , sg ), offeringπ⋆l to l induces

a strictly positive posterior rent for h. Consequently, the seller trades off between l ’s expected

virtual value and h’s posterior rent. On the one hand, she wants the threshold to be close to

the cut-off xl , maximizing l ’s expected value. On the other hand, she desires to induce a small

posterior rent for h.

Let π⋆⋆l be an optimal experiment for l , associated with
(
x⋆⋆(l ),λ⋆⋆

)
. Suppose, π⋆⋆l can flip

the type order, i.e., vπ
⋆⋆
l (h, sb) <ωπ⋆⋆l (l , sg ). Then, given thatωπ

⋆
l (h, sb) ≤ωπ⋆l (l , sg ), we can con-

struct π̃l associated with
(
ω̃, λ̃

)
such that (i)

(
x⋆⋆(l ),λ⋆⋆

)
is closer to

(
x⋆l ,1

)
and (ii) v π̃l (h, sb) ≤

v π̃l (l , sg ). By (i), l ’s expected virtual value under π̃l is higher than that under π⋆l , whereas by

(ii), h’s poterior rent is zero under π̃l . This contradicts with π⋆⋆l being optimal. Therefore, π⋆⋆l

must not affect the type order. Formally:

Claim 1. ωπ
⋆⋆
l (h, sb) ≥ωπ⋆⋆l (l , sg ).
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The detailed proof is in Appendix B.1. By Claim 1, Rl reduces to

f (l )
∑

x
φ(l , x)π⋆⋆l (sg |x)µ(x)− f (h)

[
ωπ

⋆⋆
l (h, sb)−ωπ⋆⋆l (l , sg )

]
πl (sb)

=ωπ⋆⋆l (l , sg )
[

f (l )π⋆⋆l (sg |x)µ(x)+ f (h)
]−E[v(h, x)].

Therefore,

π⋆⋆l ∈ argmax
πl

ωπl (l , sg )
[

f (l )π⋆⋆l (sg , x)+ f (h)
]
. (1.7)

To find optimal transfers, note that by Claim 1, h’s value after "bad news" is higher than l ’s after

"good news." Hence, if h mimics l , he always reports "good news," and always buys the good.

Consequently, l ’s allocation is the same as h ’s from the latter’s perspective. This leads to a

bunching solution. As information is of no value for h, the seller can offer π⋆⋆l to both types.

Moreover, as h always gets the good either on or off-path, by (ICh→l ), both types receive the

same posted price.23 Then, by (I Rl ),

p⋆⋆(h) = p⋆⋆(l ) =ωπ⋆⋆l (l , sg ). (1.8)

This bunching mechanism satisfies ignored constraints, and hence, is optimal.

Lemma 9 (No threshold flip byπ⋆l ). Ifπ⋆l does not induce the threshold flip of type order,
(
x̂l ,λ

) ̸=(
xl ,1

)
. A single-option menu, {π⋆⋆l , p⋆⋆(l )} given by (1.7) and (1.8), is optimal.

6 OPTIMAL MECHANISM FOR |Θ| ≥ 3

With binary types, there are two scenarios of the optimal mechanism (screening/bunching),

depending on whether after information disclosure, the threshold flip of type order occurs or

not. With richer type sets, it can be the case that information disclosure flips the order of a

group of types but fails to do so for another group. Consequently, the characterization of op-

timal mechanisms cannot be obtained as a simple extension of that in the binary-type case.

Moreover, as we will show, random mechanisms could be used to effectively screen signals and

distant types. Despite these complications, we show that the optimality of a rich (respectively,

single-option) menu of prices and threshold disclosure extends beyond the binary-type setting

to a general model under stronger notions of type order flip (respectively, preservation). This

result is presented in Section 5, followed by an analysis on the role of random mechanisms in

6.1.
23With deterministic allocations, it is without loss to offer a menu of posted prices. See Proposition 1.
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6.1 Revenue improvement via random mechanisms

Using Example 3 below, we illustrate how random mechanisms outperform their deterministic

counterparts in two aspects (i) screening distant types and (ii) screening signals to improve the

seller’s revenue and efficiency.24

Example 3. Θ= {θ1,θ2,θ3} and X = {x1, x2}. Types and states are equally likely. Valuations are as

follows.

v(θ, x) x1 x2

θ3 6.5 10

θ2 0 7

θ1 0 4

Table 1.1: Example 3(a)

v(θ, x) x1 x2

θ3 5 5

θ2 2 5

θ1 0 4

Table 1.2: Example 3(b)

Example 3(a) - Screening distant types: In this example, type θ3’s value is always higher than

type θ1’s. This leaves room for random mechanisms to “separate" these two types. To see this,

note the following. If the seller employs deterministic mechanisms, type θ1 either trades or not

at any signal realization. Therefore, if type θ1 trades (with probability 1) for some signal, it is

optimal for θ3 whose posterior value is always higher than type θ1’s, having mimicked θ1, to

(mis)report the realized signal such that he always trades. Then, θ1 ’s allocation is the same as

θ3’s from the latter’s perspective, leading to bunching these types.25 In turn, this gives too much

rent for type θ3, making it optimal to exclude type θ1.

Claim 2. In Example 3(a), if only deterministic mechanisms are allowed, it is optimal to offer type

θ3 with no disclosure and a posted price p(θ3) = 6.75, type θ2 with full disclosure and a posted

price p(θ2) = 7, and to exclude type θ1.

The story, however, is different with random allocations. The key is that if θ1 trades with a

small probability (for any signal), this type’s allocation becomes unattractive to θ3. To see this,

modify the optimal deterministic mechanism by letting θ1 trade with a probability ε ∈ [0, 3
4 ] and

24In the Online Appendix, we fully characterize the optimal random mechanism in several examples.
25In Example 3(a), if the seller employs deterministic mechanisms and serves type θ1, a fixed price p = 4, associ-

ated with full disclosure is optimal.
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adjusting transfers such that truth-telling remains satisfied, as follows:

q(θ3, x) = 1∀x, q(θ2, x) =1x=b , q(θ1, x) =
ε if x = g ,

0 if x = b,

p(θ3) = 6.5−ε, p(θ2) = 7−2ε, p(θ1) = 5 paid conditional on trade occurs.

Then, expected payment by θ3 and θ2 reduces by ε; however, that by θ2 increases by 5ε
2 . Overall,

the seller’s revenue increases by f (θ1) 5ε
2 − [

f (θ2)+ f (θ3)
]
ε = 3ε

2 > 0. Therefore, random alloca-

tion helps the seller screen effectively distant types (types θ3 and θ1), thereby, improving trade

surplus extensively as well as the seller’s revenue.

Example 3(b) - Screening signals: In this example, type θ2’s value varies significantly across

states. This makes it optimal to exclude type θ2 at state x1, rather than "pooling" the two states

under deterministic mechanisms which allow either trade or no trade at any signal realization.

Formally, the optimal deterministic mechanism, stated in Claim 3 below, specifies:

q(θ3, x) = 1∀x, q(θ2, x) = q(θ1, x) =1x=x2 ,

which are implemented via full disclosure and a fixed price.

Claim 3. In Example 3(b), if only deterministic mechanisms are allowed, it is optimal to offer full

disclosure and a posted price p = 4.

Random mechanisms, on the other hand, arm the seller with the flexibility in designing trade

probabilities. This helps her screen realized states by allowing trade to happen at a small prob-

ability at low states. To see this, revise the optimal deterministic mechanism by letting θ2 trade

with probability δ≤ 1
3 , such that now:

q(θ3, x) = 1∀x, q(θ1, x) =1x=x2 , p(θ3) = p(θ1) = 4,

(
q(θ2, x), p(θ2, x)

)=
(1,4) if x = x2

(δ,2δ) if x = x1

, with δ≤ 1

3
.

This revised mechanism differs from the optimal deterministic mechanism only in the new

trade created with type θ2 at state x1. Therefore, as long as this new trade creation preserves

incentive compatibility, the seller’s revenue increases by 2 f (θ2)g (x1)δ> 0. We show that this is

the case in the Online Appendix.
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6.2 Screening vs. Bunching

This section generalizes the finding of optimal mechanisms with binary types (Theorem 1) to a

general model with finitely many types.

6.2.1 Optimality of screening

Recall that information disclosure can be used to screen the buyer of binary types when it in-

duces a threshold flip of type order. Similarly, information serves as a screening tool in a richer

type space under the following notion of type order flip:

Definition 6 (Partition flip of type order).

The partition flip of type order happens if E[v(θ+, x) | xθ+ ≤ x < xθ] decreases in θ.

Under the partition flip of type order, the expected valuations over relevant partitions of states

decrease in types. As the relevant partition for a higher type consists of lower states, such a type

order flip requires the new information (about the state) to sufficiently dominate the buyer’s

initial type in driving valuation fluctuations. Indeed, it coincides with the threshold flip nota-

tion when there are only two types. In a richer type set, more than one interior threshold is

involved under the menu of threshold disclosure {π⋆
θ

}θ, leading to relevant partitions of states.

Theorem 2 below states the optimal mechanism under the partition flip of type order, which

features discriminatory information and prices.

Theorem 2 (Screening). Under the partition flip of type order, the optimal allocation is given by

Q(θ, x) =1x≥ω⋆(θ). A menu of posted prices and threshold disclosures is optimal.

This result extends Theorem 1(a) to a model with more than two types, following the same logic:

when information disclosure matters sufficiently, it helps screen the buyer. The only difference

is that the partition flip of type order is required here, taking into account interior types.

The proof proceeds by showing that under the partition flip of type order, M⋆ induces truth-

telling even if the seller does not observe signals. Therefore, offering M⋆ with the buyer pri-

vately observing signals is equivalent to offering a menu of posted prices and threshold disclo-

sures {p⋆(θ),π⋆
θ

}θ, where the posted price is equal to the payment paid after "good news" in

M⋆: p⋆(θ) = p⋆(θ, sg ). This menu helps the seller achieve the upper bound of revenue attained

when signals are public signals; hence, it is optimal.

We close this section with an illustrative example.
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Example 4. Θ= {h,m, l }. X is a finite subset of N. Types and states are equally likely. Valuations

are given by v(h, x) = x +∆θ, v(m, x) = x, v(l , x) = x −∆θ. Accordingly, virtual values are given by

φ(h, x) = x +∆θ, φ(m, x) = x −∆θ, φ(m, x) = x −3∆θ.

In this example, v(θ+, x)− v(θ, x) = ∆θ ∀x and ∆x ≡ v(θ, x)− v(θ, x) = x − x ∀θ. In addition,

x⋆h = x, x⋆m =∆θ, and x⋆l = 3∆θ, which implies

E[v(h, x) | x⋆h ≤ x < xm] = 3∆θ−1+x

2
,

E[v(m, x) | xm ≤ x < xl ] = 4∆θ−1

2
,

E[v(l , x) | xl ≤ x ≤ x)] = ∆θ+x −1

2

Thus, the partition flip of type order happens if

3∆θ−1+x ≤ 4∆θ−1 ≤∆θ+x −1 ⇔ x ≤∆θ ≤∆x ,

which requires the impact of the unknown component to be higher than that of the buyer’s

type (and is of at least x). If this is the case, by Theorem 2, it is optimal to screen the buyer’s type

using different bundles of posted prices and threshold disclosure.

6.2.2 Optimality of bunching

In the binary-type case, the benefit of screening disappears if the threshold disclosure rule π⋆l
fails to flip the ranking of willingness to pay by types. A similar story holds with more than two

types under a stronger notion of (no) threshold flip of type order:

Definition 7 (Uniformly no threshold flip of type order). Under uniformly no threshold flip of

type order,

E[v(θ+, x | x < x̂] ≥ E[v(θ, x) | x ≥ x̂] ∀θ ∈Θ,∀x̂ ∈ X .

In words, this condition satisfies if under any threshold disclosure and for any type θ: θ+’s value

after "bad news" must be higher than θ’s after "good news". This is more likely to hold when

valuation heterogeneity is mainly driven by the buyer’s type. For instance, when θ+’s values are

always higher regardless of states, i.e., v(θ+, x) ≥ v(θ, x), it is impossible to flip their ranking of

valuation after any rule of information disclosure, not just the threshold ones.

We are now ready to state the main result of this section.
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Theorem 3 (Bunching). Under uniformly no threshold flip of type order, a posted price, associ-

ated with a threshold disclosure, is optimal.

This result extends Theorem 1(b), carrying the same intuition: when valuation heterogeneity

is mainly due to the buyer’s types, information about the state becomes inessential for (most

types of) the buyer; as a result, its screening function shuts off. The only difference is that no

type order flip by any threshold disclosure is required here, of which the role is to be explained.

The proof proceeds by solving a relaxed problem considering only deviating behaviors under

which all types mimic the lowest type being served. This problem mirrors that for the binary-

type caseΘ= {h, l }, with the lowest type being served representing type l and all the other types

echoing type h. The optimality of bunching under uniformly no threshold flip of type order

follows similar arguments for that in the binary-type setting under no threshold flip by π⋆l . The

lowest type being served, and thereby, the optimal posted price and threshold disclosure can be

explicitly characterized, leveraging the fact that no threshold flip holds uniformly regardless of

pairs of types and threshold rule.

To end this section, revisit Example 4 for an illustration. In this example, for any x̂ ∈ X ,

E[v(h, x) | x < x̂]−E[v(m, x) | x ≥ x̂] = (
∆θ + x̂ −1+x

2

)− (
m + x + x̂

2

)=∆θ− ∆x −1

2
,

E[v(m, x) | x < x̂]−E[v(l , x) | x ≥ x̂] = (
m + x̂ −1+x

2

)− (
l −∆θ+

x + x̂

2

)=∆θ− ∆x −1

2
,

where, just to recall,∆θ and∆x measure the impact of the buyer’s private type and the unknown

component in valuation variations, respectively. Therefore, uniformly no threshold flip of type

order occurs if

∆θ ≥
∆x −1

2
,

which requires the buyer’s type to be significantly impactful, relative to the unknown compo-

nent. If this is the case, by (Theorem 3), information is not leveraged to screen the buyer. A

single price-threshold disclosure bundle is optimal.

7 INFINITE-TYPE SETTING

All the proofs of our results extend readily if there is a continuum of states. The extension to

the infinite-type case, however, is not trivial. Nevertheless, we find that the previous insights

remain valid: Section 7.1 shows that a menu of prices and threshold disclosure is optimal under
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the partition flip the ranking of willingness to pay across cut-off types; and Section 7.2 shows

that a fixed price- threshold disclosure bundle is approximately optimal when the type order is

almost preserved.

Throughout this section, consider a continuum of typesΘ= [θ,θ] ⊂R, endowed with the distri-

bution F (θ). We assume that F (θ) is differentiable in θ with density f (θ), and moreover, v(θ, x)

is differentiable in θ. Then, the virtual value in this environment is given by

φc (θ, x) = v(θ, x)− vθ(θ, x)
1−F (θ)

f (θ)
.

Similar to the finite-type case, we assume that φc (θ, x) increases in θ and x.

7.1 Optimality of a screening menu

By the monotonicity of the virtual values, each state x is associated with a cut-off type θx above

(respectively, below) which the buyer’s virtual value is non-negative (respectively, negative).

Formally,

θx ≡ inf{θ |φc (θ, x) ≥ 0}.

Moreover, as φc (θ, x) increases in x, this cut-off type θx decreases in x. We use

Θx ≡ {θx}x∈X

to denote the type space consisting of only cut-off types. Even with a continuum of types, there

are finitely many cut-off types {θx}x∈X due to the finiteness of the state space. Accordingly, M⋆

comprises |Θx | options of prices and disclosure rules because each interval of types [θx+ ,θx) is

assigned the same option. Then, the following proposition can be obtained following the proof

of Theorem 2 for a type space consisting of only the cut-off types.

Proposition 3. Fix Θ = [θ,θ] and |X | < ∞. If there is a partition flip of type order within Θx , a

menu of threshold disclosures and posted prices is optimal.

This result holds even if there is a continuum of states X = [x, x] and the valuation function

is continuous over states, by approximating an associated finite-state model as the distance

between states approaches zero. In this case, the partition flip of type order reduces to the

valuation at the cut-off state v(θ, xθ) decreasing in types.26

26This is the case in, for example, the environments studied in Eső and Szentes (2007) and Wei and Green (2023)

under which the valuation function is concave in types and states, and the cross derivative is positive.
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7.2 (Approximate) optimality of bunching

When valuations shift smoothly across (a continuum of) types, there are always types whose

valuations are sufficiently close to others’. This makes it impossible to preserve the ranking of

willingness to pay uniformly across the types. Consequently, the optimality of bunching cannot

be derived as an extension of Theorem 3 which shows that under the uniformly no threshold

flip of valuation ranking across finitely many types, a fixed price-information bundle is opti-

mal. Nevertheless, we establish the approximate optimality of bunching under ε-uniformly no

threshold flip of type order, formally defined below.

Definition 8 (ε-uniformly no threshold flip of type order). ε-uniformly no threshold flip of type

order occurs if for some ε> 0,

E[v(θ+ε, x) | x ≤ x̂] ≥ E[v(θ, x) | x ≥ x̂] ∀θ, x̂.

The following proposition shows that as ε vanishes, the seller’s maximized revenue can be ap-

proximated by offering via a fixed price-threshold disclosure bundle. Formally, let Rε represent

the revenue guarantee if the seller offers a single posted price and threshold disclosure rule

under the ε-uniformly no threshold flip of type order, we find that:

Proposition 4. Rε→V (P ) as ε→ 0

Moreover, if there are only two states Ω= {b, g } with b < g , we establish the exact optimality of

a fixed price and disclosure rule within the class of deterministic mechanisms.

Proposition 5. Fix Θ = [θ,θ] and X = {b, g }. If v(θb ,b > v(θg , g ) and only deterministic alloca-

tions are allowed, a posted price, associated with full disclosure, is optimal.

The idea of the proof is as follows. With binary states X = {b, g }, there are only two cut-off

types θg and θb . Hence, the partition flip of type order reduces to v(θb ,b) ≤ v(θg , g ). If this is

the case, a menu of prices and threshold disclosures is optimal by Proposition 3. If by contrast,

v(θb ,b) ≤ v(θg , g ), the seller adjusts the cut-off types to θ̃b , θ̃g just enough to restore the partition

flip of type order: v(θ̃b ,b) = v(θ̃g , g ). In turn, at this boundery of the partition flip, the seller is

indifferent between offering a screening menu and a single option of price and information.

Put differently, bunching is optimal.

We end this section with a numerical example to illustrate Proposition 5.

Example 5. v(θ, x) = 3θ2 +6θ+x,Θ= [0,2], X = {8,12}. Types and states are likely equally.
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In this example, φ(θ, x) = 3θ2 +6θ+ x − (6θ+6)(2−θ) = 9θ2 + x −12. Thus, θ12 = 0 and θ8 = 2
3 .

Hence, v(θ8,8) = 43
3 and v(θ12,12) = 12. As v(θ8,8) > v(θ12,12), no flip of type order occurs. By

Proposition 5, within the class of deterministic mechanism, offering a fixed bundle of price and

threshold disclosure to all types is optimal.

8 DISCUSSION

8.1 Posterior rent and privacy of signals

As explained in the binary-type model, not observing signals generally hurts the seller due to

the presence of the buyer’s posterior rent. Specifically, implementing the benchmark allocation

requires the seller to pay the buyer’s posterior rent (apart from his ex ante rent), making V (P ) <
V (P ). When valuation shifts smoothly across (infinite) types, the relevance of signal privacy

comes from a different reason. Indeed, any allocations implementable with private signals can

be implemented without generating posterior rent to the buyer.27 Therefore, if the seller fails

to achieve the upper bound of revenue V (P ), it is due to an implementability issue. In such

a scenario, information design can expand the set of implementable allocations. To illustrate,

consider the following example where the benchmark allocation is implementable with private

signals only if uninformative experiments are possible.

Example 6. v(θ, x) = θ2+θ+x −2. Types and states are uniformly distributed overΘ= [0,1] and

Ω= [0,3].

In this example, p⋆(θ, sg ) = −θ2 + 2
3θ + 1. Moreover, p⋆(θ, sg ) is a concave function in [0,1]

with p(0, sg ) = 1, p(1, sg ) = 2
3 . Thus, p⋆(θ, sg ) = minθ p⋆(θ, sg ). Then by Proposition 2, the seller

implements the benchmark allocation via M⋆. Suppose the seller provides full disclosure to

all types. To implement the benchmark allocation, it must be that for any θ and x, q(θ, x) =
1x≥ω⋆(θ). For the buyer to report truthfully their states, it is necessary that

p(θ, x) =
p(θ) if x ≥ω⋆(θ),

p(θ) otherwise.

To prevent the lowest type θ from mimicking some type θ and always report x <ω⋆(θ), it must

27We omit the formal proof, which extends the arguments in Krähmer and Strausz (2015a) to a setting with

information design and possibly finitely many states.
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be that p(θ) ≥ 0. Therefore,∫
x≥xθ

µ(x)d xp⋆(θ, sg ) =
∫

x≥xθ
µ(x)d xp(θ)+p(θ)

∫
x≤xθ

µ(x)d x ≥
∫

x≥xθ
µ(x)d xp(θ)

where the equality uses the fact that all mechanisms implementing the benchmark allocation

share the same expected payment. Thus, p⋆(θ) ≥ p(θ) for all type θ.

Consider θ = 1
3 , we have p⋆( 1

3 , sg ) = 10
9 , and v( 1

3 , x 1
3

) = 13
9 . Thus, v( 1

3 , x( 1
3 )) > p⋆( 1

3 , sg ) ≥ p( 1
3 ).

Then, if the buyer observes any state x ∈ (p
(1

3 ), v( 1
3 , x( 1

3 ))
)
, it is optimal for him to misreport

state x, receiving the good at a price lower than his valuation. Thus, the benchmark allocation

is not implementable under full disclosure.

8.2 Alternative proof for Wei and Green (2023)

Wei and Green (2023) revisit Eső and Szentes (2007)’s “continuous" model, adding a twist that

the buyer can walk away after information disclosure. In this section, we solve the former’s

problem by directly modifying the latter’s optimal mechanism.28

Under Eső and Szentes (2007)’s optimal mechanism, the seller offers full disclosure and a menu

of "information fees" ĉ(·) and "strike prices" p̂(·) for the good to implement the benchmark

optimal allocation. Thus,
(
q(θ), p(θ)

) ∈ {(
0, ĉ(θ)

)
,
(
1, ĉ(θ)+ p̂(θ)

)}
. This menu is a deterministic

mechanism. Therefore, following the arguments in the proof of Proposition 1, it is revenue-

equivalent to a persuasive-posted price mechanism which offers type θ (i) a binary-signal ex-

periment which sends "good news" if x ≥ xθ and "bad news" otherwise, and (ii) a posted price.

p̃(θ) = ĉ(θ)+ p̂(θ)+
ĉ(θ) [1−Q(θ)]

Q(θ)
= p̂(θ)+

ĉ(θ)

Q(θ)
.

In addition, Wei and Green (2023) show that information design leads to reverse price discrimi-

nation in the continuous model. This feature can also be obtained by leveraging the properties

of Eső and Szentes (2007)’s optimal mechanism. Let X(θ) ≡ 1
Q(θ) represent the inverted trade

probability for θ. Then, p̃(θ) = p̂(θ)+ ĉ(θ)X(θ), and

p̃ ′(θ) = p̂ ′(θ)+ ĉ ′(θ)X(θ)+ ĉ(θ)X′(θ) = ĉ(θ)X′(θ) < 0,

where the second equality uses the fact that under Eső and Szentes (2007)’s optimal mecha-

nism, ĉ(θ) and ĉ(θ) solves ĉ ′(θ) = p̂ ′(θ)Q(θ) = p̂ ′(θ) 1
X(θ) , and the last uses X′(θ) < 0. Thus, p̃(·) is

a decreasing function.

28Indeed, this modified mechanism coincides with Wei and Green (2023)’s solution.
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8.3 On the number of signals

As we have seen, it is without loss of generality to offer binary-signal experiments with deter-

ministic allocation. This is no longer true when random mechanisms are necessary. When the

variations vary significantly across states, a rich menu is needed to screen the states effectively.

As a result, binary-signal experiments are not sufficient. In this section, we illustrate this with a

simple example where an optimal experiment sends at least three signals to some type.

Example 7. Θ= {t3,θ2,θ1}, X = {x1, x2, x3, x4}. Types and states are equally likely.

v(θ, x) x1 x2 x3 x4

θ3 7 7 7 7

θ2 0 3 7 7

θ1 0 0 0 6

In this example, θ2’s valuation varies significantly across states with that at state x1 being suf-

ficiently low. If restricted to binary-signal experiments, the seller can only separate the state

space for type θ2 into two partitions which, under the optimal mechanism, include {x1, x2} and

{x3, x4}. Armed with three signals, the seller can distinguish a very unfavorable state x1 from a

better one x, fine-tuning the design of allocations. The formal proof is in the Online Appendix.

A PRELIMINARY RESULTS: OMITTED PROOFS

A.1 Proof of Lemma 1

Let M ≡ {πθ, q(θ, s), p(θ, s)}θ,s be an optimal mechansim. Toward a contradiction, assume that

there exists x such that q(θ, x) < 1. Then, the seller can improve her revenue by revising type θ

contract to C̃ ≡ {π̃
θ

, p̃(θ)} in which π̃
θ

provides no information and p̃(θ) is a posted price for the

good, given by:

p̃(θ) =∑
s

p(θ, s)π
θ

(s)+E[v(θ, x)]−∑
x

v(θ, x)
∑

s
q(θ, s)π

θ
(s|x)g (x)

To see this, note the following. If type θ buys the good at the price p̃(θ) and no disclosure, he

obtains:

E[v(θ, x)]− p̃(θ) =∑
x

v(θ, x)
∑

s

[
q(θ, s)−p(θ, s)

]
π
θ

(s|x)g (x),
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which is equal to that under the original mechanism M. Moreover, if type θ mimics θ, he either

does not buy the good to get a zero payoff or buys the good, to obtain

E[v(θ, x)]− p̃(θ)

=E[v(θ, x)]−E[v(θ, x)]+∑
x

∑
s

[v(θ, x)q(θ, s)π
θ

(s|x)g (x)−∑
x

∑
s

p(θ, s)π
θ

(s|x)g (x)

=E[v(θ, x)]−∑
x

∑
s

v(θ, x)[1−q(θ, s)]π
θ

(s|x)g (x)−∑
x

∑
s

p(θ, s)π
θ

(s|x)g (x)

≤E[v(θ, x)]−∑
x

∑
s

v(θ, x)[1−q(θ, s)]π
θ

(s|x)g (x)−∑
x

∑
s

p(θ, s)π
θ

(s|x)g (x)

=∑
x

∑
s

[
v(θ, x)q(θ, s)−p(θ, s)

]
π
θ

(s|x)g (x),

which is exactly type θ’s from mimicking θ and report signals truthfully under the M. Therefore,

C̃ weakly increases type θ’s on-path payoff and weakly reduces the other types’ off-path pay-

off. Consequently, the buyer reveals his true type. While payments by the other types remain

unchanged, type θ now pays

p̃(θ) =∑
s

p(θ, s)π
θ

(s)+E[v(θ, x)]−∑
x

v(θ, x)
∑

s
q(θ, s)π

θ
(s|x)g (x)

>∑
s

p(θ, s)π
θ

(s),

which his expected payment under M. This contradicts with M. being optimal.

A.2 Proof of Proposition 1

We complete the arguments in the main text by showing that under Case 2: p(θ) > 0, the seller’s

revenue remains weakly higher under the revised mechanism. Fix type θ. if θ mimics type θ′,
he receives weakly less information and pays weakly higher for each action (buy or do not buy

the good). Thus, his off-path payoff is weakly lower under the revised mechanism. On the other

hand, by revealing his type and buying the good if and only if sg is realized, he obtains:

Ũ (θ) ≡∑
x

[v(θ, x)− p̃(θ)]Q(θ, x)g (x) =∑
x

[v(θ, x)−p(θ)]Q(θ, x)g (x)−p(θ)[1−Q(θ)], (1.9)

which is his payoff under the original mechanism Md . As Md induces truth-telling, it follows

that θ finds it optimal to reveal his type under the revised mechanism. Moreover, by (1.9) and

the fact that the buyer’s payoff is non-negative under Md , Ũ (θ) ≥ 0. As a result, the buyer’s

payoff from buying the good a upon observing sg , given by Ũ (θ)
Q(θ) , is non-negative. Hence, the

buyer buys the good after sg , and accordingly, pays the seller

p̃(θ)Q(θ) = p(θ)Q(θ)+p(θ)[1−Q(θ)], (1.10)
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which is exactly type θ’s expected payment under Md . Thus, the seller’s revenue cannot de-

crease under the revised mechanism.

A.3 Proof of Proposition 2

Part (a): Given that φ(θ, xθ) > 0 ∀θ, the optimal allocation in (P ) is uniquely given by Q(θ, x) =
1x≥xθ . Therefore, if there exists M such that RM = V (P ), (i) M must be deterministic and (ii),

upon observing any signal, type θ knows whether x ≥ xθ or not. Because of (i) and the fact that

the buyer pays the same expected payment under M and M⋆, the buyer pays more to get the

good under M⋆. Because of (ii), the buyer receives weakly less information under M⋆. To sum

up, the buyer pays more to get the good and gets weakly less information under M⋆. Therefore,

if M is incentive compatible with private signals, so is M⋆. Thus, RM⋆ =V (P ).

Part (b):“If": Suppose p⋆(θ, sg ) = minθ{p⋆(θ, sg )}, we now show that M⋆ induces truth-telling

even if the seller does not observe signals. Note that M⋆, as a solution to (P ), induces truth-

telling with public signals. Therefore, it suffices to show that under M⋆, for any type θ and θ′, it

is not beneficial for θ to report θ′ and then either (i) always report sb , (iii) always report sg or (ii)

always misreporting signals. By always reporting sb off-path, θ obtains a zero payoff; hence, (i)

is not beneficial. If (ii) is beneficial, then θ also benefits from mimicking θ and reporting signals

truthfully (type θ always observes sg and pays the least after sg ), which contradicts M⋆ being

incentive compatible with public signals. Now, consider the last deviating behavior. Note that

if type θ, who reports θ′, prefers to misreport sg (buys the good) rather than truthfully sb (and

gets a zero payoff), it must be optimal for him to buy the good (or report sg upon observing this

signal. Hence, if (ii) is beneficial, so is (iii), a contradiction,

Part (b): “Only If": Suppose ∃θ such that p(θ, sg ) > p(θ, sg ). By mimicking θ and always reporting

sg , type θ always gets the good at a lower price p(θ, sg ). Therefore, θ prefers to misreport θ than

truth-telling. Consequently, if the seller offers M⋆ with private signals, she obtains RM⋆ <V (P ).

B SCREENING VS. BUNCHING: OMITTED PROOFS

B.1 Proof of Claim 1

Let

αl ≡max
{

x ′ | x ≤ x̂⋆l : E[v(h, x) | x > x ′] < E[v(l , x) | x > x ′]
}

,

βl ≡min
{

x ′ | x ≥ x̂⋆l : E[v(h, x) | x < x ′] < E[v(l , x) | x > x ′]
}

.

41



If x⋆⋆(l ) ∈ [x,αl ], the seller can do strictly better by offering a threshold disclosure π̃(l ) under

which (i) the threshold is α+
l and (ii) with probability λ, "good news" is sent at α+

l , such that

such that ωπ̃(h, sg ) =ωπ̃(h, sb). Note that λ exists because by definition of αl ,

E[v(h, x) | x >α+
l ] > E[v(L, x) | x >α+

l ],

E[v(h, x) | x >αl ] < E[v(l , x) | x >αl ].

Thus, it must be that x⋆⋆(l ) >αl . By similar arguments, we also have x⋆⋆(l ) <βl . Thus, x⋆⋆(l ) ∈
(αl ,βl ). Hence,

E[v(h, x) | x > x⋆⋆(l )] > E[v(l , x) | x > x⋆⋆(l )],

which implies ωπ
⋆⋆(l )(h, sb) ≥ωπ⋆⋆(l )(l , sg ).

B.2 Proof of Theorem 2

The proof leverages Lemma 10 below, which provides two expressions of the price gap between

two adjacent types under M⋆.

Lemma 10. There exist positive functions λ(θ) and β(θ) such that:

(a) p⋆(θ+, sg )−p⋆(θ, sg ) =
[
E[v(θ+, x) | xθ+ ≤ x <]−p⋆(θ, sg )

]
λ(θ), ∀ θ ≥ θ.

(b) p⋆(θ, sg )−p⋆(θ−, sg ) =
[
E[v(θ,ω) | xθ ≤ x < xθ−]−p⋆(θ, sg )

]
β(θ), ∀ θ ≥ θ+.

Proof of Lemma 10. To examine the ranking of p⋆(·), we start with the expected paymentP(θ) =
p⋆(θ)

∑
x≥xθ µ(x). By its definition (see equations (1.5)),

P(θ+)−P(θ) = ∑
xθ+≤x<xθ

v(θ+, x)µ(x) ∀θ ≥ θ,

P(θ) = ∑
xθ≤x<xθ−

v(θ, x)µ(x).

Using ∑
xθ+≤x<xθ

v(θ+, x)µ(x) =P⋆(θ+)−P⋆(θ) = p⋆(θ+, sg )
∑

x≥xθ+
µ(x)−p⋆(θ, sg )

∑
x≥xθ

µ(x) (1.11)

Part (a). Write the RHS of (1.11) as
∑

x≥xθ+
µ(x)[p⋆(θ+, sg ) − p⋆(θ, sg )] + p⋆(θ, sg )

∑
xθ+≤x<xθ

µ(x).
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Then, we obtain

p⋆(θ+, sg )−p⋆(θ, sg ) =

∑
xθ+≤x<xθ

v(θ+, x)µ(x)−p⋆(θ), sg )
∑

xθ+≤x<xθ
µ(x)∑

x≥xθ+
µ(x)

=
[
E[v(θ+, x) | xθ+ ≤ x < xθ]−p⋆(θ, sg )

] ∑
xθ+≤x<xθ

µ(x)∑
x≥xθ+

µ(x)

∝ E[v(θ+, x) | xθ+ ≤ x < xθ]−p⋆(θ, sg ).

Part (b). Write the RHS of (1.11) as
∑

x≥xθ
µ(x)[p⋆(θ+, sg )−p⋆(θ, sg )]+p⋆(θ+, sg )

∑
xθ+≤x<xθ

µ(x), and

the rest followed by similar arguments.

Armed with Lemma 10, we now show that the highest type pays the lowest price under M⋆. It

follows from Lemma 10 that if for all θ ≥ θ,

E[v(θ+, x) | x(θ+) ≤ x < xθ] ≤ E[v(θ, x) | xθ ≤ x < xθ−], (1.12)

then the sign of [p⋆(θ+, sg )− p⋆(θ, sg )] is decreasing in θ. Moreover, this sign is non-positive

because by (6.2.1) for θ,

E[v(θ+, x) | x(θ+) ≤ x < x(θ)] ≤ E[v(θ, x) | x(θ) ≤ x < x(θ−)] = p⋆(θ, sg ),

implying p⋆(θ+, sg )−p⋆(θ, sg ) ≤ 0, by part (1) of Lemma 10. Therefore,

p⋆(θ+, sg )−p⋆(θ, sg ) ≤ 0 ∀θ ≥ θ. (1.13)

This implies that p⋆(θ, sg ) is the lowest price. Then by Proposition 2, RM⋆ = V (P ). Moreover,

as M⋆ induces truth-telling with private signals, the seller can simply offer a menu of posted

prices and threshold disclosure {π⋆
θ

, p⋆(θ)}θ, where p⋆(θ) = p⋆(θ, sg ).
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B.3 Proof of Theorem 3

Let L be the lowest type being served under an optimal mechanism. Consider the following

relaxed problem (RP L), under which all types mimics L off-path:

(RP L) max
(π,q,U )

∑
θ≥L

[∑
x

∑
s

v(θ, x)q(θ,ωπθ (θ, s))πθ(s|x)µ(x)−U (θ)
]

f (θ)

s.t . U (θ)−U (L) ≥∑
s

∫ ωπL (θ,s)

ωπL (L,s)
q(L, z)d zπL(s) ∀θ > L (IC)

U (L) ≥ 0 (I RL)

q(θ,ω) increases in ω. (MON)

We will show that the solution to this relaxed problem, which features a posted price and a

threshold disclosure, solves the original problem. Obviously, (I RL) and (ICθ→L) bind for all

θ > L under (RP L), reducing the seller’s relaxed problem to

max
q,γ

∑
θ

∑
x

v(θ, x)q(θ,ωπθ (θ, s))πθ(s|x)µ(x) f (θ)−∑
θ

∑
x

∑
s

∫ ωπL (θ,s)

ωπL (L,s)
q(L, z)d zπL(s|x)µ(x) f (θ)

s.t . q(θ,ω) increases in ω.

Fix π, it is a linear problem in q with (MON) being the only constraint. Thus, the optimal allo-

cation is generally unique, given by

q(L,ω) =1s≥ŝl , q(θ, x) = 1∀x∀θ > L.

Fix q(L, s) =1s≥ŝl . The term involving πL in the seller’s objective (revenue) is given by

R(γL) ≡∑
x

s∑
ŝL

v(L, x)πL(s|x) f (L)g (x)

− ∑
θ≥L+

[ s∑
ŝL

[
ωπL (θ, s)−ωπL (L, ŝL)

]− ∑
θ≥L+

ŝL∑
s

max
{
ωπL (θ, s)−ωπL (L, ŝL),0

}]
πL(s|x) f (θ)

=∑
x

s∑
ŝL

v(L, x)πL(s|x) f (L)g (x)

− ∑
θ≥L+

[ s∑
ŝL

[
ωπL (θ, s)−ωπL (L, ŝL)

]− ∑
θ≥L+

ŝL∑
s

[ωπL (θ, s)−ωπL (L, ŝL),0]
]
πL(s|x) f (θ)

=∑
x

s∑
ŝL

v(L, x)πL(s|x) f (L)g (x)− ∑
θ≥L+

s∑
s

[
ωπL (θ, s)−ωπL (L, ŝL)

]
πL(s|x) f (θ)

≡ R(γL).
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R(πL) is an upper bound of R(πL). We now show that this bound is tight. By replacing all signals

s ≥ ŝL with "good news" and all signals s < ŝL with "bad news," R(γL) weakly increases, and R(γL)

reduces to

R(γL) =ωπL (L, sg )
[ ∑
θ≥L+

f (θ)+ f (L)πL(sg )
]
− ∑
θ≥L+

E[v(θ, x)] f (θ),

Let

π⋆⋆L ≡ argmax
πL

ωπL (L, sg )
[ ∑
θ≥L+

f (θ)+ f (L)πL(sg )
]
− ∑
θ≥L+

E[v(θ, x)] f (θ)

By the same arguments used for the binary-type case, π⋆⋆L features a disclosure rule. Next,

we find an optimal payment schedule. As optimal allocation is deterministic, without loss

of generality to focus on posted-price mechanisms. By (I RL), p⋆⋆(L) = ωπ
⋆⋆
L (L, sg ) . Con-

sider type θ who mimics L. Under no uniformly no threshold flip of type order, ωπ
⋆⋆
L (θ, sg ) ≥

ωπ
⋆⋆
L (θ, sg ) ≥ ωπ

⋆⋆
L (L, sg ). Hence, it is optimal for θ to always buy the good after mimicking L.

Hence, by (I R) p⋆⋆(θ) = p⋆⋆(L) for all θ > L. Obviously, this single option of price and informa-

tion {π⋆⋆L , p⋆⋆(L)} satisfies ignored constraints and hence, solves the original problem.

Remark 2. Let V
(
RP θ

)
denote the value of program RP θ in which θ is the lowest type being

served. Under no threshold flip of type order, it is optimal to serve only types above (including) L,

where L solves L ∈ argmaxθV
(
RP 2(θ)

)
.

C RANDOM MECHANISMS: OMITTED PROOFS

This section provides proofs of Claims 2 and 3, which rely on the following lemma.

Lemma 11. If only deterministic mechanisms are allowed, it is optimal to offer a menu {α(θ, x), p(θ)}θ,x

under which each type θ trades with probability α(θ, x) at state x and pays p(θ) for the good.

The proof for Lemma 11 is as follows. If only deterministic mechanisms are allowed, by Propo-

sition 1, it is optimal to offer each type θ receives a posted price p(θ) for the good and a binary-

signal experiment with S = {sg , sb}. Hence, an experiment can be represented by the probability

that signal sg is realized at state x for type θ, α(θ, x).

C.1 Proof of Claim 2

To characterize the optimal deterministic mechanism, or the optima menu {α(θ, x), p(θ)}θ,x ,

consider the following relaxed problem in which (i) only IR condition for θ1 is kept, and (ii) off
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the equilibrium path, θ2 mimics θ1 and buys the good only after sg whereas θ3 mimics θ1 and

always buys the good.

max
{p,α}

∑
θ

∑
x

p(θ)α(θ, x)µ(x) f (θ)

s.t .
∑

x

[
v(θ2, x)−p(θ2)

]
α(θ2, x)µ(x) ≥∑

x

[
v(θ2, x)−p(θ1)

]
α(θ1, x)µ(x) (IC21)∑

x

[
v(θ3, x)−p(θ3)

]≥ E[v(θ3, x)]−p(θ1) (IC21)∑
x

[
v(θ1, x)−p(θ1)

]
α(θ1, x)µ(x) ≥ 0 (I R1)

As trading with θ3 and θ2 generates no rent for others, these types receive efficient allocations:

α(θ3, x2) =α(θ3, x1) = 1,α(θ2, x) = 1x=g .

If α(θ1, x1) > 0, then reduce α(θ1, x1) and increase p(θ1) such that
∑

x p(θ1)α(θ1, x)µ(x) remains

unchanged. By doing so, the seller’s revenue increases. Moreover, no constraints are violated

because (i) the right-hand side of (IC21) decreases (as v(θ3, x1) > 0) and (ii) the right-hand

side of (IC21) and left-hand side of (I R1) remains unchanged (as v(θ2, x1) = v(θ1, x1) = 0).Thus,

α(θ1, x1) = 0.

If α(θ1, x2) < 1, then reduces α(θ1, x2) by ε and increases p(θ3) by [v(θ3, x2)−p(θ2)]ε and p(θ2)

by [v(θ3,x2)−p(θ2)]ε
α(θ1,x2)µ(x2) . By doing so, no constraint is affected while the seller’s revenue increases by

[ f (θ3) + f (θ2)][v(θ3, x2) − p(θ2)]µ(x2)ε− f (θ1)v(θ1, x2)µ(x2)ε = φ(θ1, x2) f (θ1)µ(x2) > 0. Thus,

α(θ1, x2) = 1.

If (I R1) does not bind, increase p(θ1) until it binds. This increases the seller’s revenue while not

violating any constraints. Thus, (I R1) binds and hence, p(θ1) = v(θ1, x2) = 4.

If (IC31) does not bind, increase p(θ3) until it binds. This increases the seller’s revenue while

not violating any constraints. Thus, (I R3) binds and hence, p(θ3) = p(θ1) = 4.

If (IC21) does not bind, increase p(θ2) until it binds. This increases the seller’s revenue while

not violating any constraints. Thus, (IC21) binds, or p(θ2) = p(θ1) = 4.

To sum up, we obtain α(θ3, x2) = α(θ3, x1) = 1, α(θ2, x) = α(θ1, x) = 1x=x2 , and p(θ3) = p(θ2) =
p(θ1) = 5. The seller’s revenue is 4 · [ f (θ3)+ [ f θ2)+ f (θ1)]µ(x2)

] = 10
3 . As p(θ3) = 4, type θ3 buys

the good at any state. Thus, the maximized revenue can be obtained via a posted price of 4 and

full disclosure to all types.
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C.2 Proof of Claim 3

To characterize the optimal deterministic mechanism, or the optima menu {α(θ, x), p(θ)}θ,x ,

consider the following relaxed problem in which (i) only IR condition for θ1 is kept, and (ii) off

the equilibrium path, m mimics θ1 and buys the good only after sg whereas θ3 mimics θ1 and

always buys the good.

max
{p,α}

∑
θ

∑
x

p(θ)α(θ, x)µ(x) f (θ)

s.t .
∑

x

[
v(θ2, x)−p(θ3)

]
α(θ2, x)µ(x) ≥ E[v(θ3, x)]−p(θ2) (IC32)∑

x

[
v(θ2, x)−p(θ2)

]
α(θ2, x)µ(x) ≥∑

x

[
v(θ2, x)−p(θ1)

]
α(θ1, x)µ(x) (IC21)∑

x

[
v(θ1, x)−p(θ1)

]
α(θ1, x)µ(x) ≥ 0 (I Rl )

If α(θ1, x1) > 0, reduce α(θ2,b) and and increase p(θ1) such that p(θ1)
∑

x α(θ1, x)µ(x) remains

unchanged, and increase p(θ2) such that (IC21) remains satisfied. By doing so, no constraints

are affected, whereas the seller’s revenue strictly increases. Thus, α(θ1, x1) = 0.

Note that to ensure that type θ2’s on-path payoff is non-negative, it is necessary that v(θ2, x2) ≥
p(θ2). Hence, if α(θ2, x2) < 1, by increasing α(θ2, x2), we strictly improve the seller’s revenue

while not violating any constraints. Thus α(θ2, x2) = 1.

If α(θ1, x2) < 1. Then, set p(θ1) = v(θ1, x2) = 4, increase α(θ1, x2) by ε and reduce p(m) and p(h)

by ε∑
x α(θ2,x)µ(x) . Under this change, no constraints are violated. Moreover, the seller’s revenue

increases by f (θ1)4ε− f (θ3) ε∑
x α(θ2,x)µ(x) − f (θ2)ε> 0. Thus α(θ1, x2) = 1.

If (I R1) does not bind, we can increase p(θ1) up to it becoming binding, thereby increasing the

seller’s revenue without violating any constraints. Thus, (I R1) binds. Given that α(θ1, x1) = 0,

we thus have p(θ1) = v(θ1, x2).

If (IC32) does not bind, increase p(θ3) until it binds. This increases the seller’s revenue while

not violating any constraints. Thus, (IC21) binds, and hence, p(θ3) = p(θ2).

If (IC21) does not bind, increase p(θ2) until it binds. This increases the seller’s revenue while not

violating any constraints. Thus, (IC21) binds. Given that α(θ2, x2) = α(θ1, x2) = 1, α(θ1, x1) = 0
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and p(θ1) = v(θ1, x2), this implies

[v(θ2, x1)−p(θ2)]α(θ2, x1)µ(x1)+ [v(θ2, x2)−p(θ2)]µ(x2) = [v(θ2, x2)− v(θ1, x2)]µ(x2)

⇔ p(θ2) =
v(θ2, x1)α(θ2, x1)µ(b)+ v(θ2, x2)µ(x2)− [v(θ2, x2)− v(θ1, x2)]µ(x2)

α(θ2, x1)µ(x1)+µ(x2)
. (1.14)

Then, the objective problem of the relaxed problem becomes

[
f (θ3)+ f (θ2)[α(θ2, x1)µ(x1)+µ(x2)]

]v(θ2, x1)α(θ2, x1)µ(x1)+ v(θ2, x2)µ(x2)− [v(θ2, x2)− v(θ1, x2)]µ(x2)

α(θ2, x1)µ(x1)+µ(x2)

≡ H(α(θ2, x1))

Under the specification in Example 3(b), the relaxed problem becomes

max
α(θ2,x1)

H(α(θ2, x1)) ≡ (α(θ2, x1)+3)
(α(θ2, x1)+2)

α(θ2, x1)+1
=α(θ2, x1)+2+

2(α(θ2, x1)+2)

α(θ2, x1)+1

Thus, H ′(α(θ2, x1)) = 1− 1
(α(θ2,x1)+1)2 and H"(α(θ2, x1)) = 2

(α(θ2,x1)+1)3 > 0. Therefore, H(α(θ2, x1))

is a convex function. Moreover, R(0) = R(1) = 6. Thus, α(θ2, x1) = 0 is optimal. This implies

that p(θ3) = p(θ2) = p(θ1) = 4. Hence, a posted price p = 4 and full disclosure is an optimal

deterministic mechanism.

D INFINITE TYPES: OMITTED PROOFS

D.1 Proof of for Proposition 3

We first solve the seller’s benchmark problem with public signals whenΘ= [θ,θ]. With P(θ) and

Q(θ, x) representing the expected payment and allocation over signals, this problem writes:

(P
c
) sup

P,Q

∫
θ
P(θ)dF (θ)

s.t . ∀θ,θ′ :
∑

x
v(θ, x)Q(θ, x)µ(x)−P(θ) ≥∑

x
v(θ, x)Q(θ′, x)µ(x)−P(θ′) (1.15)∑

x
v(θ, x)Q(θ, x)µ(x)−P(θ) ≥ 0. (1.16)

By the Envelope condition, (1.15) implies U ′(θ) =∑
x vθ(θ, x)Q(θ, x)µ(x) ∀θ ≥ θ̃g . By integration

by parts,

U (θ) =U (θ̃g )+
∫ θ

θ̃g

∑
x

vθ(θ′, x)Q(θ′, x)µ(x)dθ′. (1.17)
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Consider a relaxed problem which keeps (2.2) and the partition constraint for the lowest type θ.

Using U (θ) = 0 at optimum, this relaxed problem becomes:

sup
π,q

∫
θ
φc (θ, x)Q(θ, x)µ(x)]dF (θ),

where φc (θ, x) ≡ v(θ, x) − vθ(θ, x) 1−F (θ)
f (θ) . As φc (θ, x) increases in θ and x, it is optimal to se

Q(θ, x) = 1θ≥θx or equivalently, Q(θ, x) = 1x≥xθ . Fix an arbitrary x ∈ X . For any θ ∈ [θx ,θx−],

Q(θ) =Q(θx) and P(θ) =P(θx). Payments are backed out using U (θ̃) = 0 and (2.2), given by:

P(θ) = ∑
x≥xθ

v(θ, x)µ(x)−
∫
θ

∑
x≥xθ′

vθ(θ′, x)µ(x)dθ′

Moreover,∫ θ−x

θx

∑
x≥xθ′

vθ(θ′, x)µ(x)dθ′ =
∫ θ−x

θx

∑
x≥xθx

vθ(θ′, x)µ(x)dθ′ = ∑
x≥xθx

∫ θ−x

θx

vθ(θ′, x)µ(x) = ∑
x≥xθx

[v(θ−x , x)− v(θx , x)]µ(x),

which implies

P(θ) = ∑
x≥xθ

v(θ, x)µ(x)− ∑
θx≤θ

∑
x≥xθx

[v(θx− , x)− v(θx , x)]µ(x).

Therefore, M⋆ for this problem consists of Θx options {π⋆
θ

, p⋆(θ, sg ), p⋆(θ, sb)}θ∈Θx . Then, fol-

lowing similar arguments in the proof of Theorem 2 for the type spaceΘx , we get

p⋆(θx , sg ) = min
θ∈Θ

p⋆(θ, sg )

under the partition flip of type order withinΘx . As a result, M⋆ induces truth-telling even if the

seller does not observe signals. Then, offering M⋆ is equivalent to offering a menu of threshold

disclosures and posted prices {π⋆
θ

, p⋆(θ)}θ∈Θx , where p⋆(θ) = p⋆(θ, sg ). Hence, this menu helps

the seller achieve the upper bound of revenue V (P
c
); hence, it is optimal.

D.2 Proof of for Proposition 4

Suppose it is optimal to exclude all types below L, or q(θ, x) = 1 for all x and θ < L. Then,

the seller’s revenue must be weakly lower than that obtained from selling to the buyer whose

types is distributed by f̂ over Θ, where f̂ (θ) = f (θ) ∀θ ∉ [L,L + ε], f̂ (θ) = 0 ∀θ ∈ [L,L + ε), and

f̂ (L+ε) = ∫ θ=L+ε
θ=L f (θ)dθ. Let (P̂ ) represent the seller’s problem when θ ∼ f̂ and V (P̂ ) the corre-

sponding value. Consider the following relaxed problem of (P̂ ) where all types mimic L +ε off
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the equilibrium path:

(RP L+ε) max
(π,q,U )

∑
θ≥L+ε

∑
x

∑
s

p(θ,ωπθ (θ, s))πθ(s|x)µ(x) f̂ (θ)

s.t . U (θ)−U (L+ε) ≥∑
s

∫ ωπL (θ,s)

ωπL (L+ε,s)
q(L+ε, z)d zπL+ε(s) ∀θ > L+ε (ICθ→L+ε)

U (L+ε) ≥ 0 (I RL+ε)

q(θ,ω) increases in ω. (MON)

By the same arguments as the proof of Theorem 3, a posted price p̂L+ε, associated with a thresh-

old disclosure π̂L+ε, solves this relaxed problem. Note that (π̂L+ε, p̂L+ε) does not necessary solve

the original problem. In case it does, the seller’s revenue is the value of problem (RP L+ε), de-

noted by V ((RP L+ε)). Let Rε represent the seller’s revenue if she offers (π̂L+ε, p̂L+ε) (regardless

of whether it solves the original problem or not). Then,

Rε ≥V (RP L+ε)−E[v(L+2ε, x)]
∫ L+2ε

L+ε
f̂ (θ)dθ

≥V (P̂ )−E[v(L+2ε, x)]
∫ L+2ε

L+ε
f̂ (θ)dθ

Therefore,

lim
ε→0

Rε ≥V (P̂ )− lim
ε→0

E[v(L+2ε, x)]
∫ L+2ε

L+ε
f̂ (θ)dθ =V (P̂ )

On the other hand, lim
ε→0

Rε ≤V (P̂ ). Therefore, lim
ε→0

Rε =V (P̂ ).

D.3 Proof of Proposition 5

Let M be an arbitrary optimal (deterministic) mechanism, which is, without loss of generality,

a menu of trade probabilities and posted prices M = {p(θ),α(x,θ)}x,θ. Let θ̃b ≡ inf{θ | α(θ, x) =
1∀x} represents the lowest type who receives an efficient allocation under M, and θ̃g ≡ inf{θ |
α(θ, x) > 0 for some x} be the lowest type being served. With Θ̃ ≡ {θ | θ ≥ θ̃b}, M must solve the

following problem:

(P ) sup
p,α

∫
θ

p(θ)dF (θ)

s.t . α(θ, x) = 1 ∀x,θ ≥ θ̃b∑
x

[
v(θ, x)−p(θ)

]
α(θ, x)µ(x) ≥∑

x
[v(θ, x)−p(θ′)]α(θ′, x)µ(x) ∀θ,θ′ ∈ Θ̃∑

x

[
v(θ, x)−p(θ)

]
α(θ, x)µ(x) ≥ 0 ∀θ ∈ Θ̃.

50



By IR condition for θ̃g , p(θ̃g ) ≤ v(θ̃g , g ). Consider θ ∈ [θ̃b ,θ]. If p(θ) > v(θ̃g , g ), then θ prefers to

mimic θ̃g and always buy the good at a lower price. Thus, to incentivize θ to reveal his type, it

must be that

p(θ) ≤ v(θ̃g , g ) ∀θ ∈ [θ̃b ,θ].

Suppose v(θ̃b ,b) > v(θ̃g , g ). Then, ∃θ̂ such that for any θ′ ∈ [θ̂, θ̃b],

v(θ′,b) ≥ v(θ̃g , g ) ≥ p(θ).

It then induces θ′ to mimic θ and always buy the good. By doing so, he gets the good a higher

expected surplus at a lower price. Therefore, it must be that

v(θ̃b ,b) ≤ v(θ̃g , g ).

By Envelope condition, for the buyer to report truthfully his type, it is necessary that U ′(θ) =∑
x vθ(θ, x)α(θ, x)µ(x). Then, by integration by parts,

U (θ) =U (θ̃g )+
∫ θ

θ̃g

∑
x

vθ(θ, x)α(θ, x)µ(x)dθ. (1.18)

Consider a relaxed problem that keeps only the IR condition for θ̃g and the necessary envelope

condition for truth-telling. Using (1.18) and the fact that U (θ̃g ) = 0 at optimum, this relaxed

problem reduces to

sup
q

∫
θ
φc (θ, x)q(θ, x)µ(x) f (θ) s.t . q(θ, x) = 1 ∀x,∀θ ≥ θ̃b ,

where φc (θ, x) ≡ v(θ, x)− vθ(θ, x) 1−F (θ)
f (θ) . Solving this point-wise maximization problem yields

q(θ, x) =
1 if θ ≥ min

{
θb , θ̃b

}
1x=g if max

{
θg , θ̃g

}≤ θ ≤ min
{
θb , θ̃b

}
.

Prices are pinned down using binding constraints, given by

p(θ) =
v

(
min

{
θb , θ̃b

}
,b

)
µ(b)+ v

(
max

{
θg , θ̃g

}
, g

)
µ(g ) if θ ≥ min

{
θb , θ̃b

}
v

(
max

{
θg , θ̃g

}
, g

)
if max

{
θg , θ̃g

}≤ θ ≤ min
{
θb , θ̃b

}
Consider θ ≥ min

{
θb , θ̃b

}
and θ′ ∈ [

max
{
θg , θ̃g

}
,min

{
θb , θ̃b

}]
. As v(θ̃b ,b) ≤ v(θ̃g , g ), we have

v
(
min

{
θb , θ̃b

}
,b

)≤ v
(
max

{
θg , θ̃g

}
, g

)
,

51



which implies p(θ) ≤ p(θ′). Thus, this two-option menu of prices and threshold disclosure in-

duces participation and truth-telling. As M solves the original problem, by definition of θ̃b and

θ̃g , it must be that

min
{
θb , θ̃b

}= θ̃b , max
{
θg , θ̃g

}= θ̃g .

Suppose v
(
min

{
θb , θ̃b

}
,b

) < v
(
max

{
θg , θ̃g

}
, g

)
, then p(θ) < p(θ′). Then, it is optimal to set

θ̂ ≡ inf{θ ≥ θg | v
(
min

{
θb , θ̃b

}
,b

) ≤ v(max{θ̂, θ̃g }, g )} as the lowest type being served, a con-

tradiction. Therefore,

v
(
min

{
θb , θ̃b

}
,b

)= v
(
max

{
θg , θ̃g

}
, g

)
.

This implies that all types receive the same price. Moreover, all types θ ≥ min
{
θb , θ̃b

}
always

buy the good regardless of signal realization. Thus, it is optimal to offer full disclosure for all

types.
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Chapter 2

Buyer’s Optimism, Information Design, and

Price Discrimination

1 INTRODUCTION

In markets for experience goods, consumers do not know their willingness to pay prior to con-

sumption, especially if they are newcomers to the market. However, they may form their own

beliefs regarding possible payoffs before making purchasing decisions. This process can po-

tentially induce diversity in consumers’ beliefs. An optimistic buyer, who receives (possibly

biased) good reviews, thinks that his valuation is more likely to be high, whereas a pessimistic

one assigns excessive weights to lower valuations. For example, a student who is about to buy a

new iPad for study purposes might underrate the distractions that an iPad can cause to himself.

Consequently, he is over-optimistic about his valuation for an iPad. On the other hand, there

are many ways by which the seller can provide additional information that helps the buyer cor-

rect his belief. For instance, software suppliers usually offer trial versions of the product to their

consumers. They can also just provide product guides or some kind of informative advertising.

Hence, the seller’s strategies include not only pricing but also information disclosure.

Some natural questions arise in such situations. How could the seller screen the buyer’s degrees

of optimism using price-information bundles? Will the seller practice price and/or information

discrimination? Should the seller offer information free of charge? How does the presence of

information design and/or biased priors shape the optimal selling mechanism?

This paper aims to answer these questions in a simple monopolistic screening setup. Formally,
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our model features a single buyer who faces uncertainty about the product’s match value (as-

sumed to be either high or low), about which the seller can design information. From the seller’s

perspective, the buyer holds a biased belief about the likelihood that the product matches with

him. The buyer’s degree of optimism is his private information (his type). The seller designs a

menu of prices and disclosure policies to maximize her revenue.

Our main result is regarding the interaction of the buyer’s optimism, information design, and

price discrimination. First, we examine the two benchmarks without either biased priors or

information design. The first benchmark assumes that the seller does not control information,

and hence, fails to refine the buyer’s belief. As a result, she designs prices based on the buyer’s

private (ex ante) valuation (calculated based on his biased prior). A posted price is optimal in

such a screening setup. In the second benchmark, the seller can provide information but the

buyer’s belief is equal to the seller’s. If this belief is publicly known, the seller can fully extract

the surplus by charging a price equal to the buyer’s (unconditional) expected valuation. In case

the buyer’s prior belief is his private information, we show that a posted price also maximizes

the seller’s revenue under a mild condition. Overall, neither the diversity in the (biased) priors

nor information design suffices to trigger price discrimination.

We then establish that the optimal mechanism features a menu of information-price bundles

under the simultaneous presence of information design and the buyer’s biasedness. In such a

scenario, the seller can “bet" with the buyer about his posterior valuation (after information

disclosure). This creates a new source of revenue: the fictional surplus due to non-common

priors, apart from the widely known virtual surplus. Information disclosure generates a posi-

tive fictional surplus by allowing for a high trading price with a relatively pessimistic buyer. It,

by contrast, triggers a negative fictional surplus with a relatively optimistic buyer. However, it

does not mean that an optimistic (resp., pessimistic) buyer should receive no (resp., full) infor-

mation disclosure. What determines the optimal mechanism is not only the fictional surplus

gain (trade at high state/high price) but also the virtual surplus loss (no trade at low state) due

to information disclosure.

Balancing this trade-off, the optimal mechanism follows a cut-off structure: optimistic types

(compared to the cut-off, not the seller’s prior) receive no disclosure and always buy the good

at a reduced price; whereas pessimistic types get full information and buy only if his valuation

is high, at the cost of paying a relatively high price (that is exactly his true value). At the cut-off

type, the (marginal) fictional surplus gain is equal to the (marginal) virtual surplus loss due to

full disclosure.
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This finding implies that information and price discrimination are beneficial in screening the

buyer’s degrees of optimism. The optimistic buyer, who cares more about price than informa-

tion, picks the no information/ low price option, whereas the pessimistic one opts to learn the

match value and buy at a higher price. Moreover, despite the non-traditional ingredients in

our model such as non-common priors, the optimal mechanism features the well-known "no

distortion at the top and no rent at the bottom" with sufficiently optimistic types receiving an

efficient allocation and pessimistic ones not marginally gaining from full information.

Our model assumes that information is provided free of charge. It is then natural to ask whether

charging information fees strictly improves the seller’s revenue. We find that this is not the

case. The key is that information fees are always paid regardless of signal realizations, mak-

ing it separable and independent of the buyer’s prior (his type). Then, in a similar vein to the

revenue equivalence theorem, the seller’s revenue can be determined entirely by the allocation

and prices (of the good).1 Therefore, as long as the optimal mechanism can be solved via a

commonly used relaxed problem which replaces incentive compatibility (IC) constraints by its

well-known envelope condition as in our binary-(match) value setting, offering free informa-

tion is optimal. In Section 6.2, we provide an example where there are three possible values

from consumption and information fees are necessary.

1.1 Related literature.

First, our paper is related to the literature in behavioral economics that studies optimal con-

tracts under the presence of consumers’ biases in estimating potential payoffs.2 The previous

literature, however, does not accommodate information design and instead, lets payoff uncer-

tainty be resolved fully and exogenously. Similar to us, Grubb (2009) studies situations where

consumers assign wrong weights to their possible ex post valuations. Relaxing the common

prior assumption in Courty and Li (2000), he incorporates consumers’ overconfidence whose

prior narrowly concentrates around the mean and mainly focuses on characterizing the opti-

mal contract under complete information. By contrast, our model features consumers who put

too much weight on high/low valuations. Similar kinds of "optimism/pessimism" have been

observed in Eliaz and Spiegler (2008) for a monopolistic screening model in which consumers

assign excessive weights to the states of nature associated with their large gains from trade.

1Due to the correlation between the buyer’s prior belief and the additional information, we cannot get rid of

prices (of the good) in the buyer’s marginal rent.
2See Eliaz and Spiegler (2008) for a detailed literature review.
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They find that the diversity in consumers’ degree of optimism is necessary for price discrimina-

tion. Instead, we focus on the combination of consumers’ optimism and information design in

activating price discrimination.

Second, in line with the Bayesian persuasion framework following Kamenica and Gentzkow

(2011), we impose no restrictions on the seller’s information structures. The most related work

is ?, which studies Bayesian persuasion with heterogeneous priors.3 They establish a surprising

result that even when the prior difference is in the direction that benefits the Sender, she may

still prefer to disclose information. The disclosure rule under our optimal mechanism shares

a similar spirit with, however, very different driving forces. In their pure persuasion model,

information is valuable whenever it is possible to design a lottery where the Sender is more

optimistic than the Receiver about more beneficial actions. In our joint price and information

design problem, information disclosure also affects pricing and the buyer’s rent (disclosure is

private). The optimal disclosure rule (as part of the optimal mechanism) trades off the gains

and losses induced for the fictional and virtual surplus.4

Finally, our paper is close to the literature on joint mechanism and information design. Early

contributions include Lewis and Sappington (1994), Johnson and Myatt (2006), Eső and Szentes

(2007). Recent papers allow for general information structures, (see, for example, Li and Shi

(2017), Guo et al. (2022), Smolin (2023), Wei and Green (2023), ? as the most relevant ones to this

paper). All previous works employ the common prior assumption, completely shutting down

the impact of information disclosure (and prices) via the fictional surplus channel. Wei and

Green (2023) find that information design about a payoff-relevant state, which is independent

with the buyer’s private information (e.g., a taste shock), activates reverse price discrimination.

In our model, the buyer’s private information is his (biased) prior belief and more importantly,

non-common priors are, in many cases, necessary for price discrimination. Relatedly, Guo et al.

(2022) considers the buyer holding a private but unbiased prior belief, establishing the optimal-

ity of interval disclosure with binary types and infinite values. Focusing on a binary-value (but

infinite-type) setting in which a take-or-leave offer of price and information is optimal with-

out the buyer’s optimism, we shed light on how non-common priors shape the optimal selling

mechanism. See Section 6.1 for a detailed discussion.

3See also the online appendix ? for a multiple-agent Bayesian persuasion problem with heterogeneous priors.

Guo and Shmaya (2019), in their discussion section, also study how their results extend to cases where the players

share no common prior.
4I thank Odilon Camara for his suggestion on the connection with their paper.
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2 MODEL

Environment: A buyer considers whether to buy a product from a monopolist. His utility from

consumption (valuation), denoted by v , is ex-ante unknown. Moreover, his valuation can be

either high (H) or low (L), depending on whether the product matches his need. Formally,

v ∈ {L, H } with 0 ≤ L < H .5

From the seller’s perspective, the buyer holds a private and biased belief about his valuation,

modelled by his type θ ∈ [0,1]. Specifically, the buyer of type θ thinks that the good fits him with

probability θ. There is a continuum of types, distributed over the interval Θ= [0,1] by F (θ) that

admits a density f (θ).

The seller knows that the product fits the buyer with a subjective probability θS . From her per-

spective, type θ > θS is relatively optimistic with higher θ being more optimistic, whereas type

θ < θS is relatively pessimistic with lower θ being more pessimistic.

We impose the usual monotone hazard rate assumption.

Assumption 4 (Monotone hazard rate). At any θ ∈Θ,
f (θ)

1−F (θ)
increases in θ.

Selling mechanism: The seller designs prices and additional information about the good that

helps the buyer refine his belief privately (only the buyer observes the signal). Information is

modelled using the concept of a statistical experiment E ≡ (S,π) that consists of two parts

• A signal space S, and

• A likelihood function π that maps each state (valuation) to a distribution of signals: π :

v →∆(S).

As the buyer’s type is his prior belief, it correlates with the distribution of signals through the

buyer’s Bayesian updating process.

A selling mechanism is a menu of prices and experiments, denoted by {(p(θ),E(θ))θ}. For now,

we assume that information is provided free of charge. We show that charging information fees

does not improve the seller’s revenue in Section 5.2.

Timing: The timing of interactions is as follows:

1. The seller offers a selling mechanism.

5The results extend to the case with L < 0 < H under some mild conditions on the parameters.
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2. The buyer learns his type θ and decides to accept or reject the offer. In case of acceptance,

he reports a type θ̂.

3. The buyer receives his price-experiment bundle
(
p(θ̂,E(θ̂)

)
.

4. The buyer privately observes a signal s generated from experiment E(θ̂) and decides whether

to buy the good at price p(θ̂.

3 SELLER’S PROBLEM

Given that the buyer’s action space is binary (either buying the good or not), Lemma 12 below

shows that it is without loss of optimality to focus on the binary-signal experiments.

Lemma 12. It is without loss of generality to restrict to binary-signal experiments where the signal

space consists of two signals, “buy" and “not buy".

The proof (omitted) is standard, following the “revelation principle” argument by which it is

without loss of generality to assume that each signal represents a recommended action (See ?).

It then follows from Lemma 12 that an experiment can be represented by trade probabilities,

{q(θ, v)}θ,v , with which signal “buy" is sent to each type θ at each state v . The seller’s problem

thus reduces to finding the optimal menu {p(θ), q(θ, H), q(θ,L)}θ where q satisfies the following

feasibility condition:

∀θ : 0 ≤ q(θ, H), q(θ,L) ≤ 1, (FC )

and as is common in private persuasion problems, the seller faces two kinds of constraints.

First, the obedience constraints (OB) ensure that the buyer, having reported his type truth-

fully, follows the recommended signals. Second, the truth-telling constraints (IC) incentivize

the buyer to report his type truthfully.

Obedience constraints: To make the buyer obedient, his posterior valuation must be (i) higher

than the price of the good after signal “buy", and (ii) lower than the price after signal “not buy".

Formally, for type θ ∈ [0,1],

Eθ[v | θ̂ = θ,“buy"] ≡
θq(θ, H)H + (1−θ)q(θ,L)L

θq(θ, H)+ (1−θ)q(θ,L)
≥ p(θ), (OB b)

Eθ[v | θ̂ = θ,“not buy"] ≡
θ

[
1−q(θ, H)

]
H + (1−θ)

[
1−q(θ,L)

]
L

θ
[
1−q(θ, H)

]+ (1−θ)
[
1−q(θ,L)

] ≤ p(θ). (OB nb)
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where we use the shorthand Eθ[.] to denote the expectation calculated based on type θ’s prior:

Prob(v = H) = θ.

Truth-telling constraints: Note that the seller needs to handle double deviations where the

buyer first lies about his type and then disobeys the signals. Let

π f (θ,θ′) ≡ θq(θ′, H)
[
H −p(θ′)

]+ (1−θ)q(θ′,L)
[
L−p(θ′)

]
,

represent the payoff of type θ buyer who reports θ′ and then follows recommended signals.

With abuse of notation, let π f (θ) ≡π f (θ,θ).

If disobeying the signals, the buyer can either (i) always buy regardless of the signals and ob-

tain Eθ[v]− p(θ′), (ii) never buy regardless of the signals to obtain a zero payoff; or (iii) do the

opposite of the signals and achieve θ
[
1−q(θ′, H)

][
H −p(θ′)

]+ (1− θ)
[
1−q(θ′,L)

][
L−p(θ′)

]
.

Let πd (θ,θ′) represent the payoff for type-θ buyer, who misreports θ′ and then disobeys signals.

Then,

πd (θ,θ′) ≡ max
{
θ

[
1−q(θ′, H)

][
H −p(θ′)

]+ (1−θ)
[
1−q(θ′,L)

][
L−p(θ′)

]
,Eθ[v]−p(θ′),0

}
.

IC constraints write:

∀θ,θ′ : π(θ) ≥ max
{
π f (θ,θ′),πd (θ,θ′)

}
, (IC )

To sum up, the seller’s problem is formally expressed as follows

max
p,q

1∫
0

[
θS q(θ, H)+ (1−θS)q(θ,L)

][
p(θ)− c

]
dF (θ)

s.t . (FC ), (OB b), (OB nb), (IC ).

(P )

It is worth noting that the objective function is calculated based on the seller’s prior, while con-

straints are formulated based on the buyer’s.

4 TWO BENCHMARKS

In this section, we examine the two benchmarks in which (i) the buyer’s belief is unbiased with

θS = θ and (ii) information design is not feasible. We show that in either problem, a take-it-or-

leave-it offer is optimal.

Buyer is unbiased: First, we consider the case when the buyer’s belief coincides with the seller’s

and hence, is no longer the buyer’s private information. In this case, the seller fully extracts the

surplus by charging a price equal to the buyer’s expected value from buying the good. Formally:
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Proposition 6 (No biased priors). Suppose θS = θ and θ is commonly known by everyone. Then,

it is optimal to offer no disclosure and a posted price p = Eθ[v] = θH + (1−θ)L.

A slightly more general case when the buyer’s belief is "private and unbiased" is studied in Sec-

tion 6.1 where we show that a fixed price, associated with full disclosure, is optimal under a mild

condition.

No information design: Next, suppose that information design is not feasible. Without in-

formation control, the seller designs a menu of prices and trade probabilities {p(θ), q(θ)}θ to

screen the buyer’s level of optimism. Because the seller cannot provide information to re-

fine the buyer’s belief, her revenue depends on the buyer’s perspective. Moreover, given that

the buyer is risk-neutral, it is without loss of generality to assume that the buyer’s valuation is

v(θ) = θH + (1−θ)L = L+θ(H −L). The seller’s problem then becomes standard with the buyer

privately knowing his valuation v(θ). Then, a posted price, which equals the ex-ante value of a

cutoff type, is optimal.

Proposition 7 (No information design). It is optimal for the seller to offer a posted price p⋆bm =
θ⋆bm H + (1−θ⋆bm)L, where θ⋆bm is the cutoff type that solves:

θ⋆bm = inf

{
θ | L+θ(H −L)− (H −L)

1−F (θ)

f (θ)
− c ≥ 0

}
. (2.1)

Proof. Formally, the seller’s problem can be written as:

max
p,q

R =
∫
θ

(p(θ)− c)q(θ)dF (θ)

s.t. ∀θ,θ′ : v(θ)q(θ)−p(θ) ≥ v(θ)q(θ′)−p(θ′) (IC )

v(θ)q(θ)−p(θ) ≥ 0. (I R)

Using the standard technique in mechanism design (particularly the necessary envelope con-

dition for truth-telling), we obtain the following relaxed problem of the seller’s problem:

max
q

=
∫
θ

{
v(θ)− v ′(θ)

1−F (θ)

f (θ)
− c

}
q(θ)dF (θ)

Under Assumption 4, the virtual surplus of type θ, given by v(θ)−v ′(θ) 1−F (θ)
f (θ) −c = L+θ(H −L)−

(H −L) 1−F (θ)
f (θ) − c, increases in θ. Thus, the optimal allocation follows the following cutoff rule:

q(θ) =
1 if θ ≥ θ⋆bm

0 otherwise
, where θ⋆bm = inf

{
θ | L+θ(H −L)− (H −L)

1−F (θ)

f (θ)
− c ≥ 0

}
.

This allocation can be implemented using a posted price: p⋆bm = v(θ⋆bm) ≡ Eθ⋆bm
[v].
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5 MAIN RESULTS

In this section, we show that the simultaneous presence of information design and the buyer’s

optimism induces the optimal mechanism featuring both information and price discrimina-

tion.

5.1 Optimal mechanism

To characterize the optimal mechanism, we solve a relaxed problem which considers only nec-

essary conditions for truth-telling and obedience. First, the truth-telling condition (IC ) implies

that for any θ,θ′,

π f (θ) ≥π f (θ,θ′),

⇔ θq(θ, H)[H −p(θ)]+ (1−θ)q(θ,L)
[
L−p(θ′)

]≥ θq(θ′, H)
[
H −p(θ′)

]+ (1−θ)q(θ′,L)
[
L−p(θ′)

]
.

Using the famous Envelope theorem, the marginal rent for the buyer is given by

[π f (θ)]′ = q(θ, H)
[
H −p(θ)

]−q(θ,L)
[
L−p(θ)

]
. (2.2)

It is worth noting that this expression for the buyer’s marginal rent differs from what is com-

monly seen. By the famous revenue equivalence theorem, it should be expressed fully by the

allocation terms. Here, it also involves the payment term p(θ), which is technically due to the

correlation between the ex ante type θ and ex post valuation v .

Using (2.2) and intergration by parts, we obtain
1∫

0
π(θ)dF (θ) =

1∫
0
π′(θ) [1−F (θ)]dθ+π(0). Then,

the seller’s relaxed problem becomes

max
{p,q}

1∫
0

[
θq(θ, H)(H − c)+ (1−θ)q(θ,L)(L− c)−π′(θ)

1−F (θ)

f (θ)

+ (θS −θ)
[
q(θ, H)−q(θ,L)

][
p(θ)− c

]]
dF (θ)−π(0). (2.3)

The following lemma shows that obedience constraints require that trade probabilities increase

in values.

Lemma 13. Under any mechanism that satisfies the obedience constraints, q(θ,L) ≤ q(θ, H) for

any θ.
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Proof of Lemma 13. If only signal "buy" is sent, then q(θ,L) = q(θ, H) = 1. If only signal "not

buy" is sent, then q(θ,L) = q(θ, H) = 0. If each signal is sent with a strictly positive probability,

then by (OB b) and (OB nb),

Eθ[v | θ̂ = θ,“buy"] ≥ p(θ) ≥ Eθ[v | θ̂ = θ,“not buy"],

which implies

Eθ[v | θ̂ = θ,“buy"] ≥ Eθ[v | θ̂ = θ,“not buy"]

⇔
θq(θ, H)H + (1−θ)q(θ,L)L

θq(θ, H)+ (1−θ)q(θ,L)
≥ Eθ[v | θ̂ = θ,“not buy"]

⇔
θ

[
q(θ, H)−q(θ,L)

]
q(θ,L)

≥
Eθ[v | θ̂ = θ,“not buy"]−L

H −Eθ[v | θ̂ = θ,“not buy"]
. (2.4)

Because H ≥ Eθ[v | θ̂ = θ,“buy"] and Eθ[v | θ̂ = θ,“not buy"] ≥ L, the right-hand side of (2.4) is

non-negative. Hence, the left-hand side of (2.4) must be non-negative, which means q(θ, H) ≥
q(θ,L).

The next lemma establishes upper and lower bounds on the price for the good.

Lemma 14. Under any mechanism that satisfies the obedience constraints with q(θ,L) < q(θ, H) ≤
1, then L ≤ p(θ) ≤ H for any θ.

The proof is straightforward. As q(θ,L) < 1, signal "not buy" is sent with a strictly positive prob-

ability. By (OB nb), p(θ) ≥ Eθ[v | θ̂ = θ,“not buy"] ≥ L. In addition, as q(θ, H) > 0, signal "buy" is

sent with a strictly positive probability. By (OB b), p(θ) ≤ Eθ[v | θ̂ = θ,“buy"] ≤ H .

Using the new objective function (2.3), lemmas 13 and 14, and the fact thatπ(0) = 0 at optimum,

we obtain the following relaxed problem:

max
{p,q}

1∫
0

[
θq(θ, H)(H − c)+ (1−θ)q(θ,L)(L− c)−π′(θ)

1−F (θ)

f (θ)

+ (θS −θ)
[
q(θ, H)−q(θ,L)

][
p(θ)− c

]]
dF (θ)

s.t . ∀θ : 0 ≤ q(θ,L) ≤ q(θ, H) ≤ 1

L ≤ p(θ) ≤ H if q(θ,L) < q(θ, H).

(RP )

Delving into the seller’s marginal revenue, it is composed of two components (i) the usual vir-

tual surplus measured by the total surplus minus the buyer’s rent and (ii) the fictional surplus
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due to non-common priors, as follows:

θq(θ, H)(H − c)+ (1−θ)q(θ,L)(L− c)−π′(θ)
1−F (θ)

f (θ)︸ ︷︷ ︸
virtual surplus

+ (θS −θ)
[
q(θ, H)−q(θ,L)

][
p(θ)− c

]︸ ︷︷ ︸
fictional surplus

,

where π′(θ) =
[

q(θ, H)
[
H −p(θ)

]−q(θ,L)
[
L−p(θ)

]]
.

If the buyer is relatively optimistic (i.e., θS−θ ≤ 0), the seller is more likely to garble information,

reducing the difference between q(θ, H) and q(θ,L) and thereby, eroding the negative impact

of fictional surplus. By contrast, if the buyer is relatively pessimistic (i.e., θS −θ ≤ 0), the seller

is more willing to disclose information, increasing the difference between q(θ, H) and q(θ,L),

and thereby, enhancing the positive impact of fictional surplus.

In addition, the seller also needs to consider how information disclosure affects the virtual sur-

plus. To set intuition on its joint impact via the two channels, focus on full information dis-

closure (which is indeed without loss). By offering full information, the seller persuades the

(pessimistic) buyer at a higher price at v = H , improving fictional surplus by

∆F S = (θS −θ)(H − c).

At the same time, full disclosure lead to no purchase at v = L, reducing the virtual surplus (rel-

ative to no disclosure/always sending signals "buy") by

∆V S = (1−θ)(L− c)− (H −L)
1−F (θ)

f (θ)
.

The optimal mechanism trades off fictional surplus gain and the virtual surplus loss, following

a cut-off structure as described in Theorem 4. Formally, let

H (θ) ≡∆F S −∆V S = (θS −θ)(H − c)− (1−θ)(L− c)+ (H −L)
1−F (θ)

f (θ)

represent the net surplus gain from full disclosure. Under Assumption 4, H (θ) decreases in θ.

Hence, there exists θ⋆ such that H (θ) ≥ 0 ⇔ θ ≤ θ⋆. Then:

Theorem 4. The optimal mechanism follows a cutoff rule under which:

• All types θ ∈ (θ⋆,θ] receive no information and a posted price p) = Eθ⋆[v].

• All types θ′ ∈ [0,θ⋆] receive full information and a posted price p ′ = H.
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See Appendix A for a formal proof. By Theorem 4, the optimal menu of price-information bun-

dles consists of two options: (i) types below the cut-off receive full information and a relatively

higher price, and (ii) types above the cut-off get no information but enjoy a lower price. Note

that in general, θ⋆ differs from θS . This implies that it is generally suboptimal to offer full (resp.,

no) disclosure to any type who is pessimistic (resp., optimistic) from the seller’s perspective.

The optimal mechanism is illustrated in the following firgure

θ⋆

0

θ

pessimistic types

optimistic types
- receive no information

- always buy

- obtain some rents

- receive full information

- buy only if v = H

- are fully extracted

Figure 2.1: Optimal mechanism

It is also worth noting that the solution induces the well-known “no rent at the bottom and no

distortion at the top" with the optimistic types receiving an efficient allocation (always trade)

and the pessimistic ones fully extracted (he buys (only if the match value is high) at the price

equal to his true value). To end this section, we provide a simple example for an illustration.

Example 8. θ ∼ U [0,1] and θS = θ2

2 . Valuations are such that: H = 1 and L = c = 0. Then,

θ⋆ ≡ maxθ{θ | H(θ) ≤ 0} = 3−p5
2 . By Theorem 4, under the optimal mechanism, any type θ ≥ 3−p5

2

receives no disclosure and a posted price p = Eθ⋆[v] = 3−p5
2 , whereas any type θ′ < 3−p5

2 receives

full disclosure and a posted price p ′ = H = 1.

5.2 Optimality of zero information fees

The main model assumes that information is provided free of charge. Accordingly, the buyer

can walk away without buying the good and paying anything after information disclosure. In

this section, we show that this assumption is without loss of optimality. Suppose now the seller
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offers a menu of {c(θ), p(θ), q(θ, H), q(θ,L)}θ to screen the buyer where c(θ) type θ’s information

fee. Then, his on-path and off-path payoffs now become:

π̂ f (θ) =−c(θ)+π f (θ),

π̂ f (θ,θ′) =−c(θ′)+π f (θ,θ′),

π̂d (θ,θ′) =−c(θ′)+πd (θ,θ′).

First, as information fees have been paid before information disclosure, the seller faces the

same obedience constraints (OB b) and (OB nb) as in the setup with free information. There-

fore, lemmas (13) and (14) continue to hold. Second, there are also IC constraints:

∀θ,θ′ : π̂(θ) ≥ max
{
π̂ f (θ,θ′), π̂d (θ,θ′)

}
. (ÎC )

Finally, the choice of information fees, c(θ), are subject to interim IR constraints:

∀θ : π̂(θ) ≥ 0. (Î R)

Therefore, the seller’s problem can be written as follows:

max
c,p,q

1∫
0

c(θ)dF (θ)+
1∫

0

[[
θS q(θ,V )+ (1−θS)q(θ,L)

][
p(θ)− c

]]
dF (θ)

s.t . (FC ), (OB b), (OB nb), (ÎC ), and (Î R).

(P̂ )

Let V (P ) (resp., V (P̂ )) represent the value of problem (P ) (resp., (P̂ )). Note that with c(θ) = 0

∀θ, the two problems (P ) and (P̂ ) coincide. Therefore, the value of (P̂ ) is an upper bound of its

counterpart: V (P ) ≤V (P̂ ). Interestingly, as we will show, this upper bound is tight.

The key is that information fees do not affect the buyer’s marginal rent: π̂′(θ) = π′(θ). Conse-

quently, by integration by parts,
∫ 1

0 π̂(θ) = ∫ 1
0 π

′(θ)[1−F (θ)]dθ+ π̂(0). Using this, lemmas (13)

and (14), and the fact that π̂(0) = 0 at optimum, the seller’s relaxed problem with information

fees writes:

max
{p,q}

1∫
0

[
θq(θ, H)(H − c)+ (1−θ)q(θ,L)(L− c)−π′(θ)

1−F (θ)

f (θ)

+ (θS −θ)
[
q(θ, H)−q(θ,L)

][
p(θ)− c

]]
dF (θ)

s.t . ∀θ : 0 ≤ q(θ,L) ≤ q(θ, H) ≤ 1

L ≤ p(θ) ≤ H if q(θ,L) < q(θ, H).

(R̂P )
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Therefore, (R̂P ) coincides with (RP ). As a consequence,

V (P ) ≤V (P̂ ) ≤V (R̂P ) =V (RP ) =V (P ),

where the last equality follows from the fact that a solution of (RP ) solves (P ). Thus, V (P ) =
V (P̂ ). This establishes the optimality of zero information fees.

Proposition 8. The seller does not benefit from using information fees, i.e., V (P ) =V (P̂ ).

6 DISCUSSION

6.1 Alternative modeling

In our model, ex-ante heterogeneity is introduced via non-common priors. One might won-

der whether this could be viewed as a reduced-form version of a model where the buyer, prior

to interacting with the seller, privately receives some information about his valuation. In this

section, we show that this is not true. First, we formally define this alternative setting, called

"model B", as below:

Model B: The buyer faces uncertainty about his valuation v ∈ {L, H }. Both the buyer and the seller

initially share a common prior about the distribution of valuations: Pr ob(v = H) =µ0. Then, the

buyer privately receives a signal θ about his valuation. Upon observing such a signal θ, the buyer

and the seller agree that Pr ob(v = H) = θ.6

We emphasize that in model B, while the parties share a common (posterior) belief, only the

buyer observes his signal θ. In other words, the buyer’s belief is private and unbiased. As a

result, the seller’s maximization problem uses the buyer’s belief (which is also the seller’s) to

formulate the objective function (and constraints), as folows:

max
{p,q}

1∫
0

[
θq(θ, H)+ (1−θ)q(θ,L)

][
p(θ)− c

]
dF (θ)

s.t . (FC ), (OB b), (OB nb), (IC ).

(P̃ )

A striking difference between the seller’s problems in our setting and model B is that in the

latter, the fictional surplus disappears. This can significantly reshape the optimal mechanism.

To illustrate, let us solve model B in a special case with L = c = 0. In this case, the (expected)

6Model B can be seen as the binary-state and infinite-type version of Guo et al. (2022).
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total surplus is θH . The seller can extract all the surplus by offering full disclosure and a price

of H for the good. Therefore, bunching is revenue maximizing.

By contrast, when the seller holds a subjective belief θS , Theorem 4 shows that the optimal

mechanism is, in general, a screening menu of prices and information. Specifically, with L =
c = 0, H (θ) = H

(
θ− 1−F (θ)

f (θ) +θS

)
. Then, the optimal menu of price-information bundles has two

items, separating types above and below the cut-off type θ⋆ = inf
{
θ | θ− 1−F (θ)

f (θ) +θS ≥ 0
}

.

Note that the optimality of bunching in model B holds beyond this special case with L = c = 0.

Formally:

Proposition 9. Consider model B. If
(1−θ)L

H −L
≤

1−F (θ)

f (θ)
, then it is optimal to offer full disclosure

and a fixed price p = H to all types.

The condition stated in Proposition 9 satisfies when, for example, the valuation gap H −L suffi-

ciently large or L ≤ c.

6.2 Multiple valuations

A limitation of our work is its focus on binary valuations. With more than two types, partial dis-

closure could be necessary, which significantly complicates the trade-off between the fictional

surplus gain and the virtual surplus loss (and vice versa) due to information disclosure. Con-

sequently, the characterization of the optimal mechanism becomes challenging and is out of

scope of this paper.

Regarding the optimality of zero information fees, the sort of "revenue-equivalence" argument

holds regardless of the valuation space: as long as local downward deviations are sufficient, in-

formation fees do not affect the buyer’s marginal payoff and thereby, the seller’s revenue. With

more than two values, however, the validity of this "first-order approach", and thereby, the opti-

mality of zero information fees is not guaranteed.7 Indeed, in the following example with three

possible valuations, postive information fees are part of the optimal mechanism.

Example 9. v ∈ {−1,1,3} and θ ∈ {θ1,θ2}. Type θ2’s prior belief is given by µ2:

µ2(−1) =µ2(1) =µ2(3) = 1

3
.

7See ? for an example of binding global and upward IC constraints in a joint mechanism and information design

problem with general state and type space.
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Type θ1’s prior belief is given by µ1:

µ1(−1) = 2

3
, µ1(1) = 0, µ1(3) = 1

3
.

The seller’s belief µS is equal to type θ2’s, that is, µS =µ2. Thus, type θ2 is unbiased, where as θ1 is

pessimistic from the seller’s perspective. The seller does not know the buyer’s true type, but knows

that the two types are likely equal.

Let RM be the seller’s revenue obtained from a menu M ≡ {c(θ), p(θ)q(θ, v)}θ,v . We have:

RM = f (θ2)

[∑
v
µS(v)q(θ2, v)p(θ2)+ c(θ2)

]
+ f (θ1)

[∑
v
µS(v)q(θ1, v)p(θ1)+ c(θ1)

]
= f (θ2)

[∑
v≥0

µ2(v)q(θ2, v)p(θ2)+ c(θ2)

]
+ f (θ1)

[∑
v
µ1(v)q(θ2, v)p(θ1)+ c(θ1)

]
︸ ︷︷ ︸

≡R1
M

+ f (θ1)
[
µS(−1)−µ1(−1)

]
q(θ1,−1)p(θ1)+ f (θ1)

[
µs(1)−µ1(1)

]
q(θ1,1)p(θ1)︸ ︷︷ ︸

≡R2
M

,

where R1
M is the revenue obtained from M under no biasedness µS(v) = µθ(v), and R2

M rep-

resents the fictional surplus due to non-common prior between the seller and type θ1. Note

that R1
M is bounded by the (expected) total surplus from the buyer’s perspective. The seller can

fully extract this surplus by offering the following mechanism, called M⋆. Under M⋆, type θ2

receives q (v,θ2) = 1{v≥1}, and
(
c(θ2), p(θ2)

) = (4
3 ,0

)
; and type θ1 receives q (v,θ1) = 1{v≥1}, and(

c(θ1), p(θ1)
)= (0,3).

Note also thatµs(−1)−µ1(−1) = −1
3 < 0,µs(1)−µ1(1) = 1

3 > 0, 0 ≤ q(θ1, v) ≤ 1, p(θ2) ≤ 3; therefore,

R2
M is maximized at q(θ1,−1) = 0, q(θ1,1) = 1, and p(θ1) = 3. Thus, M⋆ also maximizes R2

M and

hence, is optimal.

Now, suppose that the seller offers type θ2 information free of charge, or c̃(θ2) = 0. Then, to

extract all surplus from type θ2, it is necessary to modify the price for this type to p̃(θ2) = 2. In

turn, this triggers type θ1 to mimic type θ2 because his deviating payoff is µ1(3)
[
3− p̃(θ2)

] =
1
3 > 0. Therefore, it is impossble for the seller to extract the full surplus measured by the buyer’s

prior with zero information fees.

7 CONCLUDING REMARKS

The common prior assumption has been extensively employed in economic theory, often for

technical convenience. Instead of following this routine, we introduce non-common priors in
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a joint mechanism and information design problem. This uncovers a new trade-off (between

the virtual and fictional surplus) for designing information disclosure and how non-common

priors shape optimal mechanisms.

There are several follow-up questions. First, we establish the optimality of free information

when the optimal mechanism can be solved via a standard relaxed problem. A natural question

is then under which environments, this approach remains valid. Another direction is to char-

acterize the optimal mechanism under agents’ optimism about some payoff-relevant state in

other environments such as auctions or collective-decision making.

Alternatively, one could consider a robustness approach in a monopolistic screening environ-

ment. How would the seller design a robustly optimal mechanism when she has little knowl-

edge about the buyer’s prior belief and would like to maximize the worst-case revenue? Such a

question has been studied in both the Bayesian persuasion and mechanism design literatures

separately, but not in their intersection. We leave these potential extensions for future research.

A PROOF OF THEOREM 4

Proof. The proof proceeds by first solving the relaxed problem (RP ). We then verify that its

solution satisfies ignored constraints, and hence, solves the original problem.

Step 1: In this step, we solve the relaxed problem (RP ). Using [π(θ)]′ = [
q(θ, H)

[
H −p(θ)

]−
q(θ,L)

[
L−p(θ)

]]1−F (θ)
f (θ) , (RP ) becomes

max
{p,q}

1∫
0

{
θq(θ, H)(H − c)+ (1−θ)q(θ,L)(L− c)+ (θS −θ)

[
q(θ, H)−q(θ,L)

][
p(θ)− c

]
−

[
q(θ, H)

[
H −p(θ)

]−q(θ,L)
[
L−p(θ)

]]
1−F (θ)

f (θ)

}
dF (θ)

s.t . ∀θ : 0 ≤ q(θ,L) ≤ q(θ, H) ≤ 1

L ≤ p(θ) ≤ H if q(θ,L) < q(θ, H).

Let

R(q(θ, v), p(θ)) ≡θq(θ, H)(H − c)+ (1−θ)q(θ,L)(L− c)+ (θS −θ)
[
q(θ, H)−q(θ,L)

][
p(θ)− c

]
−[

q(θ, H)
[
H −p(θ)

]−q(θ,L)
[
L−p(θ)

]] 1−F (θ)

f (θ)
.
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denote the point-wise objective function. Note that

∂R(q(θ, v), p(θ))

∂p(θ)
=−

(
θ−

1−F (θ)

f (θ)
−θS

)[
q(θ, H)−q(θ,L)

]
.

Let K (θ) ≡ θ−
1−F (θ)

f (θ)
− θS . By Assumption 4,

1−F (θ)

f (θ)
decreases in θ. Therefore, K (θ) in-

creases in θ. Consequently, there exists θ̂ such that K (θ) ≥ 0 ⇔ θ ≥ θ̂. Consider the following

two cases:

Case 1: θ ≥ θ̂. Then, either (i) q(θ,L) = q(θ, H), or (ii) q(θ,L) < q(θ, H), p(θ) = L.

• Case 1(i) q(θ, H) = q(θ,L) = q(θ). the point-wise objective becomes

R(q(θ, v), p(θ)) =
[
θH + (1−θ)L− c − (H −L)

1−F (θ)

f (θ)

]
q(θ)

=
[

L− c + (H −L)
(
θ− 1−F (θ)

f (θ)

)]
q(θ).

Since K (θ) ≡ θ−
1−F (θ)

f (θ)
−θS ≥ 0 with θ ≥ θ̂ and θS ≥ 0, it must be that θ− 1−F (θ)

f (θ) ≥ 0.

Thus, R(q(θ, v), p(θ)) is maximized at

q(θ,L) = q(θ, H) = q(θ) = 1. (2.5)

This solution leads to

R(q(θ, v), p(θ)) = L− c + (H −L)
(
θ− 1−F (θ)

f (θ)

)
≡ R1(θ).

• Case 1(ii): 0 < q(θ,L) < q(θ, H), p(θ) = L. In this case,

R(q(θ, v), p(θ)) =
[
θ(H − c)+ (θS −θ)[L− c]− (H −L)

1−F (θ)

f (θ)

]
q(θ, H)+ (1−θS)(L− c)q(θ,L)

<
[
θ(H − c)+ (θS −θ)[L− c]− (H −L)

1−F (θ)

f (θ)

]
q(θ, H)+ (1−θS)(L− c)q(θ, H)

=
[
θH + (1−θ)L− c − (H −L)

1−F (θ)

f (θ)

]
q(θ, H)

≤θH + (1−θ)L− c − (H −L)
1−F (θ)

f (θ)

=R1(θ).
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Therefore, in case 1, the solution is given by (2.5).

Case 2: θ < θ̂. Then, either (i) q(θ,L) = q(θ, H), or (ii) q(θ,L) < q(θ, H), p(θ) = H .

1. Case 2(i): By similar arguments to Case 1(i), the solution is given by (2.5)

2. Case 2(ii): q(θ,L) < q(θ, H), p(θ) = H . Then,

R(q(θ, v), p(θ)) = θS q(θ, H)(H − c)+
[
θH + (1−θ)L− c − (H −L)

1−F (θ)

f (θ)
−θS(H − c)

]
q(θ,L),

Let

H (θ) ≡ θS(H − c)−θH − (1−θ)L+ c + (H −L)
1−F (θ)

f (θ)

= θS(H − c)− (L− c)− (H −L)
(
θ− 1−F (θ)

f (θ)

)
.

By Assumption 4, 1−F (θ)
f (θ) decreases in θ. Hence, H (θ) decreases in θ. Consequently, there

exists θ⋆ such that H (θ) ≥ 0 ⇔ θ ≤ θ⋆.

First, consider θ > θ⋆, then H (θ) < 0 and

R(q(θ, v), p(θ)) =θS q(θ, H)(H − c)+
[

(1−θs)(L− c)− (H −L)
(
θS −θ+ 1−F (θ)

f (θ)

)]
q(θ,L)

<θS(H − c)+
[

(1−θs)(L− c)− (H −L)
(
θS −θ+ 1−F (θ)

f (θ)

)]
=θH + (1−θ)L− c − (H −L)

1−F (θ)

f (θ)
f (θ)

=R1(θ),

which is what was obtained in Case 2(i).

Second, consider θ ≤ θ⋆, then H (θ) ≥ 0. Therefore, then R(q(θ, v), p(θ)) is maximized at

q(θ,L) = 0 and q(θ, H) = 1, leading to

R(q(θ, v), p(θ)) = θS(H − c) ≡ R2(θ).

For this solution to outperform that in Case 2(i) which is given by (2.5), we need

R2(θ) ≥ R1(θ) ⇔ R2(θ)−R1(θ) = θS(H −c)−θH − (1−θ)L+c + (H −L)
1−F (θ)

f (θ)
≡H (θ) ≥ 0,

(2.6)

which is true with θ ≤ θ⋆.
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To sum up,

• If θ > θ⋆, then in either case 1 or case 2, it is optimal to set q(θ,L) = q(θ, H). In this case,

θ receives no disclosure (he always observes signal "buy"). We choose p(θ) = Eθ⋆[v] ≡
θ⋆H + (1−θ⋆)L for all θ ≥ θ⋆ so that the solution satisfies all constraints in the original

problems (see Step 2 of the proof).

• If θ ≤ θ⋆, then it is optimal to set q(θ,L) = 0, q(θ, H) = 1 and p(θ) = H . In this case, θ

receives full disclosure and is fully extracted (he observes signal "buy" if and only if his

valuation is high).

Step 2: In this step, we show that the menu with two options (i) full disclosure coupled with a

posted price of H for type θ ≥ θ⋆ and (ii) no disclosure associated with a posted price of Eθ⋆[v]

for θ′ > θ⋆ induces truth-telling and obedience. Note that any type choosing the second option

buys only if observing signal "buy" (or v = H) and earns a zero payoff. Consider θ ≤ θ⋆. If he

takes the first option, it is optimal for him not to buy the good and get nothing. Therefore, θ

prefers to reveal his type and buys the good if and only if his value is H . Next, consider θ′ > θ⋆,

by taking the first option, he pays less than his expected valuation to (always) get the good. As a

result, it is optimal for him to reveal his type and obey recommended signals to enjoy a strictly

positive rent.

B PROOF OF PROPOSITION 9

Proof. If L ≤ c, then the seller can extract all the surplus by providing full disclosure and a posted

price p = H to all types. Next, suppose L ≥ c, then we can apply Theorem 4 for a special case

with θS = θ. Note that with θS = θ,

H (θ) = (θS −θ)(H − c)− (1−θ)(L− c)+ (H −L)
1−F (θ)

f (θ)
= (H −L)

1−F (θ)

f (θ)
− (1−θ)(L− c).

Therefore, if (1−θ)(L − c) ≤ (H −L) 1−F (θ)
f (θ) for all θ, H (θ) ≥ 0 for all θ. As a result, full disclosure,

coupled with a posted price equal to H is optimal.
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Chapter 3

Auction Design with Heterogeneous Priors

1 INTRODUCTION

The common knowledge assumptions have been challenged by many papers in the literature

on robust mechanism design (see our detailed discussion in the related literature section). In

an influential work, Chung and Ely (2007) consider an auction environment where the seller

has little idea about each bidder’s belief about the other bidders’ valuations. They show that,

for some specification of the bidders’ beliefs (formally identified by a type space), a dominant-

strategy auction mechanism is revenue-maximizing among all Bayesian incentive compatible

auction mechanisms, even if the seller knows that that type space governs the bidders’ beliefs

(Baysian foundation for a dominant-strategy mechanism). As a consequence, in case the seller

does not know which type space governs their beliefs, a dominant-strategy auction mechanism

is max-min optimal (Maximin foundation).

The interim belief that each bidder of each type must have in this critical type space is special,

and seems very different from what any common-prior type space would imply. Indeed, Chung

and Ely (2007) provide a counterexample such that a dominant-strategy auction mechanism

cannot be Bayesian-founded if the bidders’ type space must be one of the common-prior type

spaces.

A natural question is “how far” this Chung-Ely’s type space is relative to those given by some

common prior. To investigate this question, we examine the class of types spaces which are

induced by (ϵ-) heterogeneous priors. Namely, each player (seller and each bidder) possesses a

prior distribution about the value distribution before their values being drawn, which can be
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ε-different from each other (in the metric similar to the one considered by Madarász and Prat

(2017) and Carroll (2017)). Then, each bidder’s value is drawn, making him Bayesian update his

own prior conditional on his own value. Clearly, with ε= 0, the model reduces to the standard

common-prior case, and hence, no foundation. With a large enough ε, it is natural to think that

the critical type space of Chung-Ely can be captured, and hence a foundation exists. We show

that, in fact, the critical type space of Chung-Ely can be represented by a type space induced by

ϵ-heterogenous priors, for any ε > 0, no matter how small it is. Therefore, with any ε > 0, the

dominant-strategy auction mechanism is Bayesian (and hence Maximin) founded.

This result seems counter-intuitive, given that full surplus extraction is possible when ε = 0

and values are sufficiently correlated according to the common prior (see Crémer and McLean

(1988a)). The reason why a small distance ε> 0 between the priors can disrupt this possibility

is explained via a simple example in Section 4. The basic intuition is that by introducing small

perturbations in the support of the prior beliefs, it becomes possible to significantly upset the

correlation structure and, thereby, the interim beliefs of bidders. Hence, even if a bidder’s prior

is close to the others’ (in particular, to the seller’s), it does not mean that their “interim beliefs”

are close to each other. In fact, they can be so flexible that any small (but positive) heterogeneity

in their priors can result in very different interim beliefs. This gives room to construct a type

space induced by ε-different priors, for any ε > 0, to represent Chung and Ely (2007)’s critical

type space.1

Although the original result of Chung and Ely (2007) suggests that the dominant-strategy ap-

proach would be reasonable in case the seller has very little idea about the bidders’ information

(for example, when there have not been similar items auctioned), it is sometimes informally

argued that, if rich data is available about past similar auctions, it might be more difficult to jus-

tify the dominant-strategy approach, as both the seller and bidders would have a more precise

idea about the true value distribution. In practice, the players typically have some information

about past similar auctions, though they never have an exact common prior. In this sense, it

is important to investigate the “boundary” of Chung-Ely’s argument: With which class of type

spaces (related to which information of the bidders about past similar auctions) the dominant-

strategy approach has a Chung-Ely foundation? The result of our paper contributes to a better

understanding of this question by examining (possibly small) heterogeneity in the players’ pri-

ors.
1In Appendix D, we provide a counterexample in which the dominant-strategy auction mechanism is not

founded when interim beliefs are close enough.
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While the optimal dominant-strategy mechanism is belief-free, it hinges on the (true) joint dis-

tribution of bidders’ valuations. Theorem 6 shows that if the seller is confident that her prior

is ε-close to the true distribution of valuations, the highest revenue guarantee converges to

that under the best dominant-strategy mechanism when the seller knows the true distribu-

tion. Note that if the seller naively offers an optimal dominant mechanism based on her own

prior, even when it is very close to the truth, some bidders may strictly prefer to imitate those

whose values are far from theirs. However, we show that by appropriately reducing the trans-

fers of such a naively optimal dominant-strategy mechanism (by an amount as a function of

ε), incentive compatibility is restored in a stronger sense: it is dominant for bidders to reveal

their values as much as possible (by reporting the value that is closest to their true value in that

mechanism). As a consequence, the highest revenue guarantee can be approximated via this

transfer-reducing mechanism.

1.1 Related literature

This paper contributes to the growing literature on robust mechanism design (see, for exam-

ple, Bergemann and Morris (2005), Chung and Ely (2007), Chen and Li (2018), and Yamashita

and Zhu (2022) as the most relevant ones to this paper). These papers consider the situation

where the agents’ beliefs can be arbitrarily different from each other (and from the principal’s,

if the principal has a prior). For example, as aforementioned, Chung and Ely (2007) identifies

a type space with heterogeneous priors with which one of the optimal Bayesian mechanisms

is a dominant-strategy mechanism. Thus, if the seller has little idea about the bidders’ beliefs,

then the worst-case-minded seller has a justification to offer a dominant-strategy mechanism.

See Chen and Li (2018) for its generalization to non-auction environments. We show that, even

if the seller has a much better idea about the bidders’ beliefs in that their priors are arbitrarily

close to each other and also to the seller’s (and that being their common knowledge), essen-

tially the same conclusion is obtained. In this sense, our result strengthens that of Chung and

Ely (2007).

Our notion of prior perturbations is related to the (various) notions of "local robustness” in the

literature. For example, in Lopomo et al. (2021) where each agent’s type is associated with a set

of "fully overlapping"2 interim beliefs, a mechanism is robust if it is implementable for every

2Roughly speaking, this "fully overlapping" requirement means that nearby types share a sufficiently rich set

of beliefs. A focal special case is when the set is an arbitrarily small neighborhood around a fixed belief. See also

Lopomo et al. (2022) where they derive the necessary and sufficient conditions for full extraction in this setting.
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possible interim belief. They find that robustness is hard to achieve even when this set is arbi-

trarily small. As another example, Ollár and Penta (2017) propose a general form of restrictions

directly on the agents’ interim beliefs, and show that, when the set of possible interim beliefs

is small in an appropriate sense, much more permissive results are possible. Our result shows

that the ex ante belief restriction does not imply their interim restriction, and hence they lead

to very different results. In this sense, our notion of uncertainty may be interpreted as “ex-ante-

local” uncertainty. Jehiel et al. (2012) consider a related notion of local uncertainty in terms of

interim beliefs, but in a generic multi-dimensional interdependent-value environment. They

show that, if the principal’s goal is to implement some belief-invariant social choice function,

then the same kind of an impossibility result is obtained as in Jehiel et al. (2006) (where the lat-

ter paper considers ex post implementation, and in this sense allows for global robustness). Our

environment is with private values, and the seller’s goal is revenue maximization rather than a

social choice function implementation.3

In a single-agent environment, Madarász and Prat (2017) consider a situation where the prin-

cipal is aware that the true distribution of the agent’s type can be ε-different from what the

seller has in mind. Carroll (2017) generalizes their notion of ε-closeness in the context of a

(single-agent) multi-dimensional screening problem.4 As far as we are aware, ours is the first

paper that generalizes their notions of closeness to a multi-agent environment. Importantly,

with multiple agents, it is not only the principal who is uncertain about the true distribution,

but also the agents enjoy uncertainties about the true distributions and the others’ beliefs. On

the other hand, relative to Madarász and Prat (2017) and Carroll (2017), we focus on a single-

good private-value auction, with which the agents’ payoff structures satisfy the single-crossing

conditions.

There has been some work on mechanism design with heterogeneous priors. For example,

in ?, a consumer assigns excessive weights to the states of nature associated with their large

gains from trade. They find that non-common priors can be necessary for price discrimina-

tion. Grubb (2009) studies a situation where a consumer assigns wrong weights to their possi-

ble valuations (narrowly concentrates around the mean), relative to the seller’s prior. He mainly

focuses on characterizing the optimal contract under complete information. Our paper intro-

3Hence, in principle, the seller might find it optimal to use a mechanism that induces a highly belief-dependent

outcome. Put differently, the set of feasible mechanisms in our case is larger than those that implement a belief-

invariant social choice function.
4See also Bergemann and Schlag (2011). Carroll and Meng (2016) considers the local robustness in a single-

agent moral-hazard environment.

76



duces heterogeneous priors in the auction context (i.e., with multiple agents rather than a single

representative agent).

2 AUCTION ENVIRONMENT

A seller wants to sell an indivisible good. There are N risk-neutral bidders with private values.

Each bidder i ∈ {1, . . . , N } knows his own valuation vi ∈ R. An allocation is denoted by (q, p) =
(qi , pi )N

i=1, where qi ∈ [0,1] denotes the probability that bidder i obtains the good, and pi ∈ R
denotes his payment to the seller. An allocation is feasible if

∑
i qi ≤ 1. Given (qi , pi ), i ’s payoff

is given by vi qi −pi .

The players (the seller and the bidders) enjoy heterogeneous priors for the distribution of the

bidders’ values v . Specifically, let g ∈∆(RN ) be the seller’s prior, which has a finite support rep-

resented by {γ,2γ, . . . ,Kγ}N (following Chung and Ely (2007)) for some K ∈N and γ > 0 for no-

tational simplicity. Throughout the paper, we assume that g satisfies the single-crossing virtual

value condition (Chung and Ely (2007)). For each i ̸= j and v , let γi (v) be i ’s virtual valuation:

γi (v) = vi −γ1−Gi (v)

g (v)
,

where Gi (v) =∑
v ′

i≤vi
g (v ′

i , v−i ).

Assumption 5. For each i ̸= j , and each vi , v ′
i , v−i with v ′

i > vi :

γi (vi , v−i ) ≥ 0 ⇒ γi (v ′
i , v−i ) > 0

γi (vi , v−i ) ≥ γ j (vi , v−i ) ⇒ γi (v ′
i , v−i ) > γ j (v ′

i , v−i ).

As shown in Chung and Ely (2007), it is satisfied if g exhibits affiliation and monotone hazard-

rates. In this sense, it may be considered a mild assumption.

As opposed to the standard exact-common-prior model where not only the seller but every

bidder i believes g (and that itself being common knowledge), we allow the possibility that they

enjoy heterogeneous priors: For each i , let hi ∈ ∆(RN ) be bidder i ’s prior, which again has a

finite support for simplicity (but potentially with a different support from g and from h j , j ̸= i ).

Note that bidder i knows his own value vi at the time he plays an auction mechanism. That his

prior is hi implies that his belief about the others’ values is based on hi conditional on his vi .

We assume that the seller has limited knowledge as to “how distant” each bidder i ’s hi could be

from the seller’s prior g . This distance may be interpreted as the level of the seller’s confidence
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in his own information.5

Our notion of distance is based on Madarász and Prat (2017) and Carroll (2017):

Definition 9. Two distributions µ and µ̂ are ε-close to each other if V = supp(µ) and V̂ = supp(µ̂)

can be partitioned into disjoint measurable sets {V 1, ...,V r } and {V̂ 1, ...,V̂ r } respectively such that,

for each k ∈ {1, ...,r }:

1. µ(V k ) = µ̂(V̂ k ), and

2. d(v, v̂) ≤ ε for any (v, v̂) ∈V k × V̂ k ,

where d(v, v̂) represents the Euclidean distance between v and v̂.

A collection of distributions {µ1, . . . ,µK } is ε-close to each other if any pair µi ,µ j are ε-close to

each other as above.

Example 10. We illustrate the closeness of two distributions in the following example with N = 2.

Let g be the distribution represented as follows:

g (v1, v2) v2 = 1 v2 = 2

v1 = 1 1
3

1
6

v1 = 2 1
6

1
3

Table 3.1: Distribution g

and let f be represented as follows:

f (v1, v2) v2 = 1−ε v2 = 1 v2 = 2−ε v2 = 2

v1 = 1−ε 1
3

v1 = 1 1
6

v1 = 2−ε 1
6

v1 = 2 1
3

Table 3.2: Distribution f

5This interpretation implies a related but different question: what if the seller’s prior g is different from the true

value distribution? For now, we assume that the seller is confident in his own g as the true value distribution, but

we study the case where the seller fears the possibility that g is wrong. See Section 6.
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Then, according to the definition above, f and g are (ε
p

2)-close to each other. Figures 1 and 2

illustrate f and g in the (v1, v2)-space.

V1

V2

21

1

2

Figure 3.1: Distribution g

V1

V2

21

1

2

Figure 3.2: Distribution f

The seller believes that (g ,h1, . . . ,hN ) are ε-close to each other for some given ε> 0, and that any

such combination of hi ’s is possible. This uncertainty makes the seller cautious in designing an

auction mechanism.

3 AUCTION MECHANISM

Given the concern about the above prior heterogeneity, the seller can design a “robust” mech-

anism in a certain sense. One of the possible approaches is to design a dominant-strategy auc-

tion mechanism, where each bidder has a dominant action given each vi regardless of the other

bidders’ behavior. Such a mechanism can guarantee some level of expected revenue regardless

of each bidder’s belief about the opponents’ values and their (higher-order) beliefs; in particu-

lar, regardless of each i ’s prior hi .

Another possibility is to try to extract each bidder’s information (about each i ’s hi , for exam-

ple) in order to design a more profitable auction mechanism. Indeed, in the standard exact

common-prior environment where g = hi for all i is common knowledge, if g (= hi ) satisfies a

certain correlation structure, the seller can extract the entire surplus (Cremer-McLean), while

the optimal dominant-strategy mechanism leaves a non-negligible rent to the winning bidder.

Even if hi can be different from g , if the seller knows that they cannot be too far from each other,

it may be natural to expect that better mechanisms than dominant-strategy mechanisms exist.
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3.1 Notation

An auction mechanism is represented by (M , q, p) = (Mi , qi , pi )N
i=1, where: each Mi is a set, M =∏N

i=1 Mi , qi : M → [0,1] with
∑

i qi (m) ≤ 1 for all m ∈ M , and pi : M →R. An interpretation is that,

given mechanism (M , q, p), each bidder is asked to simultaneously choose any mi ∈ Mi ; and

given a chosen vector m = (m1, . . . ,mN ) ∈ M , allocation (qi (m), pi (m))N
i=1 is executed. A feasible

mechanism must contain some elementφi ∈ Mi for each i such that qi (φi ,m−i ) = pi (φi ,m−i ) =
0 for any m−i ∈ M−i , representing the idea of i ’s individual rationality requirement.

3.2 Dominant-strategy auction mechanism

We first introduce dominant-strategy auction mechanisms.

Definition 10. Mechanism (M , q, p) admits a dominant-strategy equilibrium if there existsσi (vi )

for each i , vi ∈R such that, for each mi ,m−i :

vi qi (σi (vi ),m−i )−pi (σi (vi ),m−i ) ≥ vi qi (mi ,m−i )−pi (mi ,m−i )

vi qi (σi (vi ),m−i )−pi (σi (vi ),m−i ) ≥ 0.

MechanismΓ guarantees expected revenue R in dominant strategy ifΓ admits a dominant-strategy

equilibrium σ= (σi )N
i=1 such that ∑

v
[
∑

i
pi (σ(v))]g (v) ≥ R.

Let RD denote the best revenue guarantee in dominant strategy. That is, for any R < RD , there

is a mechanism which guarantees R in dominant strategy.

3.3 Bayesian auction mechanism

In order to define the other standard concept of Bayesian equilibrium, we need further infor-

mation about the bidders’ higher-order beliefs (such as what each bidder believes about the

others’ values, and about the others’ beliefs about it, etc.). In this paper, we consider the sim-

plest possible alternative: Each bidder i believes hi as his first-order belief, and that fact itself

is common knowledge (i.e., trivial higher-order beliefs).6

6Formally, the type space we consider in Definition 11 is in the class of the known-own-payoff-type type space

(Bergemann and Morris (2005)), denoted by (Ti , v̂i , β̂i )N
i=1. For each i , let (i) Ti = supp{vi |∃v−i ; hi (vi , v−i ) > 0}, (ii)
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Given that (hi )N
i=1 is common knowledge among the bidders, a Bayesian equilibrium in a mech-

anism is naturally defined as follows.

Definition 11. Mechanism Γ admits a Bayesian equilibrium given (hi )N
i=1 if there exists σi (vi )

for each i , vi ∈R such that, for each mi :∑
v−i

[vi qi (σi (vi ),σ−i (v−i ))−pi (σi (vi ),σ−i (v−i ))]hi (vi , v−i )

≥ ∑
v−i

[vi qi (mi ,σ−i (v−i ))−pi (mi ,σ−i (v−i ))]hi (vi , v−i ).

Mechanism Γ guarantees expected revenue Rε in Bayesian equlibrium if, for any (hi )N
i=1 such that

(g , (hi )N
i=1) are ε-close to each other, Γ admits a Bayesian equilibrium σ = (σi )N

i=1 given (hi )N
i=1

such that ∑
v

[
∑

i
pi (σ(v))]g (v) ≥ R.

Let R⋆
ε denote the best revenue guarantee in Bayesian equilibrium. That is, for any Rε < R⋆

ε ,

there is a mechanism which guarantees Rε in Bayesian equilibrium.

Obviously, the best revenue guarantee in dominant strategy is weakly lower than that in Bayesian

equilibrium: For any ε,

R⋆
ε ≥ RD .

Recall that, in case g exhibits certain correlation (as specified in Crémer and McLean (1988a))

and ε= 0, the expected revenue in Bayesian equilibrium is very different from that in dominant

strategies (i.e., R⋆
0 > RD ). On the contrary, we show that, as long as ε is strictly positive, no

matter how small it is, the guaranteed revenue in Bayesian equilibrium coincides with that in

dominant strategies (i.e., R⋆
ε = RD ).

v̂i : Ti → R be an identity map (i.e., v̂i (ti ) = ti for all ti ∈ Ti ), and (iii) β̂i : Ti → ∆(T−i ) is consistent with hi in the

sense that:

β̂i (t−i |ti ) = hi (ti , t−i )∑
t ′−i

hi (ti , t ′−i )
.

Our modelling choice may be justified as follows. First, even if one prefers other specifications, they would prob-

ably include this common-knowledge possibility as one of the possible situations; Second, as a related point, our

approach would make the departure from the standard exact-common-knowledge model minimal. Given that our

result is basically a negative result, this minimalistic choice makes the conclusion strongest.
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We prove this claim in Section 5, followed by a motivating example in Section 4, explaining why

the problem with ε> 0 can be very different from that with ε= 0.

4 MOTIVATING EXAMPLE

We employ Example 1 to illustrate the seller’s revenue loss if he adopts the optimal mechanism

without taking into account the possibility of prior heterogeneity. More precisely, imagine that

the seller wrongly assumes that g is the common prior, while each bidder i actually has a dif-

ferent prior hi ̸= g . We will show that the seller’s revenue loss does not vanish even when g and

each hi get closer in the sense of our distance.

Assume that the seller’s benchmark distribution g is as illustrated in Table 3.5. If the seller be-

lieves that g is the common prior, then as in Crémer and McLean (1988a), the optimal mech-

anism is a combination of a second-price auction (SPA) and side-bets, which extracts the full

surplus as his expected revenue ( 5
3 ). The following table corresponds to one such mechanism (it

only shows bidder 1’s allocation; bidder 2’s is symmetric), where “NP” stands for non-participation:

(q1(v), t1(v)) NP v2 = 1 v2 = 2

NP (0,0) (0,0) (0,0)

v1 = 1 (1,0) ( 1
2 , 1

2 − 1
3 ) (0; 2

3 )

v1 = 2 (1,0) (1,1− 1
3 ) ( 1

2 ,1+ 2
3 )

Table 3.3: Outcomes from a SPA and side-bets

where the red parts in the transfers come from the side-bets. Each bidder’s expected payment

is 1
3

(
1
2 − 1

3 +1+ 2
3

)
+ 1

6

(
1− 1

3 + 2
3

)
= 5

6 , and therefore, the expected revenue is 5
3 , which is exactly the

ex-ante total surplus.

Now consider the case where each bidder i ’s prior hi is ε-close to but different from g . One

might conjecture that, if the above mechanism is appropriately perturbed so that the bidders’

participation and incentive constraints are satisfied with strict inequality (more specifically,

with the strictness in the order of ε), then a similar level of expected revenue may be guar-

anteed. In particular, as ε→ 0, that guaranteed revenue converges to the full-surplus revenue

again.

This conjecture is false. To explain the key idea, suppose that each hi coincides with f in Table

3.2, while g is, as assumed by the seller, the true distribution of values. Even though f and g are

ε-close to each other as priors, they are very different in terms of their induced conditional dis-
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tributions, that is, each bidder’s interim belief given his value. Given f (= hi ), bidder i with any

vi essentially knows the other bidder’s value. Therefore, in the above Crémer-McLean mech-

anism, truth-telling (or more precisely, reporting the values closest to their true values) is no

longer an equilibrium.

For example, bidder i with vi = 1 puts probability 1 on bidder −i ’s having v−i = 2−ε, and vice

versa. They play a “ complete-information” equilibrium where bidder −i bids 2 and bidder

i does not participate in the auction. Similarly, bidder i with vi = 2, putting probability 1 on

v−i = 2, does not participate in the auction either. Therefore, as long as g is the true distribu-

tion (which only assigns positive probabilities on vi ∈ {1,2}), no one participates in the auction,

yielding 0 revenue.

Note that this property does not depend on the exact value of ε > 0. Therefore, the seller’s

expected revenue in this mechanism would be far below the first-best surplus.

5 MAIN RESULT

In this section, we show that RD = R⋆
ε for any ε> 0.

Theorem 5. For any ε> 0, we have:

RD = R⋆
ε .

The proof is in Appendix A, and proceeds as follows. The key intuition is that, even if ε(> 0) is

arbitrarily small, it is always possible to find a specific prior hi of each bidder i such that, af-

ter Bayesian updating observing i ’s own value vi , his “interim belief” about the others’ values

is very different from the one where i ’s prior is g (i.e., the case with ε = 0). Moreover, this in-

terim belief structure is such that the seller finds it optimal to offer a dominant-strategy auction

mechanism even if he knows that that hi is each bidder’s prior. This last property is building on

the original work by Chung and Ely (2007), while our more concise proof is building on Chen

and Li (2018).7

Recall that the original result of Chung and Ely (2007) shows that an auction seller finds it opti-

mal to offer a dominant-strategy auction mechanism to bidders if the seller has very little idea

7Specifically, the rationalizing interim beliefs are constructed such that each binding constraint in the seller’s

problem under the class of Bayesian-strategy mechanisms is a weighted sum of binding constraints under

dominant-strategy mechanisms. Moreover, the weights coincide with the optimal Lagrangian multipliers for the

latter, resulting in the two problems sharing the same value.
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as to the bidders’ belief structure, and hence any interim belief structure is deemed possible.

Our result suggests that their result is relevant not only when the seller literally has very little

idea about the bidders’ information, but also when the seller and bidders have close (but het-

erogeneous) priors.

6 POSSIBLE MISSPECIFICATION OF g

So far, the seller assumes that his prior g is the true distribution of the bidders’ valuations,

although he thinks it possible that the bidders’ priors are “ε-different” from g . However, if we

interpret this ε as the seller’s level of confidence in his g , it may also be natural to allow for the

seller to worry about the possibility that g is not the true distribution of valuations.

Formally, let f represent the true distribution of v , the bidders’ value profile. The seller does not

know f , while he thinks that his prior g is a reasonable approximation of f (and each bidder’s

prior hi ). Based on the idea that ε(> 0) represents the seller’s confidence in his g , we assume

that ( f , g , (hi )N
i=1) are ε-close to each other.

To explain the subtlety, consider the optimal dominant-strategy mechanism if g is indeed the

true prior (which guarantees RD ). Typically, some incentive compatibility constraints are bind-

ing in this mechanism. Thus, if f ( ̸= g ) is the true prior with supp( f ) ̸= supp(g ), some bidders

may find it strictly optimal to make a type report that is far from his true type.8

Nevertheless, we show that an appropriately modified version of the mechanism, which we

call a transfer-reducing mechanism, guarantees the same level of expected revenue even if f ̸=
g , as ε vanishes. The key of the construction is, by reducing the transfers of the mechanism

(by an appropriate amount as a function of ε), the mechanism can now make all the incentive

constraints satisfied in a stronger sense, so that even if g and f have (ε-)different supports, each

agent finds it dominant to report the value that is closest to his true value in that mechanism.

Although the revenue must be smaller, as ε→ 0, this revenue loss vanishes.

Definition 12. Mechanism Γ guarantees expected revenue Rε in dominant-strategy equilibrium

in g ’s ε-neighborhood if, for any f that is ε-close to g , Γ admits a dominant-strategy equilibrium

σ= (σi )N
i=1 such that ∑

v
[
∑

i
pi (σ(v))] f (v) ≥ Rε.

8In Appendix B, we observe that such a global deviation under misspecification is the norm rather than the

exception.
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Let RD
ε represent the optimal revenue guarantee in dominant strategy if ( f , g , (hi )N

i=1) are ε-close

to each other.

Theorem 6. RD
ε → RD as ε→ 0.

Madarász and Prat (2017) show that, in a general single-agent mechanism design environment,

a similar approximation result is possible by their profit-participation mechanism even with-

out single-crossing conditions. That is, as the seller’s benchmark distribution converges to the

true distribution, their optimal expected revenues also converge. Its basic idea is to make the

agent “biased in favor of the principal” so that any (even non-local) deviation due to misspeci-

fication only increases the principal’s payoff. Our proof generalizes their result to a multi-agent

environment, but in a single-crossing payoff environment. The single-crossing property seems

important for this continuity result with multiple agents. To explain this, it is worth noting that

(a naive adaptation of) their profit-participating mechanism may not work in our multi-agent

setup. This is because, under that mechanism, each agent might have an incentive to deviate

globally (i.e., a value far from his true one is reported), which in turn distorts other agents’ re-

porting strategies. Consequently, it is not certain that the vanishing revenue loss is obtained.

Our transfer-reducing mechanism prevents such global deviations by ensuring that it is a dom-

inant strategy for agents to report the value closest to their true values.

7 CONCLUSION

In this paper, we consider the private-value auction setting where the true distribution of bid-

ders’ valuations is unknown. The seller and each bidder, however, know its approximation. In

this framework, we have shown that the dominant-strategy mechanism secures the seller with

the highest revenue guarantee. Besides, if the seller is restricted to using a dominant-strategy

mechanism, we have characterized the transfer reducing mechanism that helps the seller to

obtain a vanishing loss as the estimates by her and the bidders get close to the truth.

There are several follow-up questions. Firstly, when restricting to dominant-strategy mecha-

nisms, our proof works only if the bidders’ payoff functions satisfy the single-crossing condi-

tion. Although this property holds for a wide range of mechanism design problems, there are

cases where it does not hold, such as multi-unit auctions. In such situations, our proposed

mechanism may not work.

Another natural direction is to characterize the optimal robust mechanisms in non-auction en-
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vironments9 or with common/interdependent values.10 We leave these potential extensions for

future research.

9Chen and Li (2018) generalize the foundation result of Chung and Ely (2007) to some private-value non-auction

environments. We conjecture that our approach would work in those environments, establishing the worst-case

optimality of dominant-strategy mechanisms.
10Yamashita and Zhu (2022) generalize the foundation result of Chung and Ely (2007) to an interdependent-value

auction environment. We conjecture that our approach would work in those environments. However, they suggest

that general interdependent-value models may not admit the same sort of foundation result, and in those cases, it

is an open question how the approximate worst-case optimal mechanism would look like.
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A PROOF OF THEOREM 5

We construct each bidder i ’s prior, hi , as follows.

For each i , let Vi = {vi | ∃v−i , g (vi , v−i ) > 0} denote the set of i ’s possible values in the true

distribution g , and denote it by Vi = {v1
i , . . . , vm

i , . . . , v M
i } so that vm

i < vm+1
i . Define V̂i = {vi +ε |

vi ∈ Vi } as the “shifted” version of Vi by ε. Also, we denote V−i = {v1
−i , . . . , v l

−i , . . . , vL
−i }, without

any ordering on them (i.e., arbitrary labelling will do). Define hi (·) so that: for each m, l ,

hi (vm
i , v l

−i ) = xi
τ⋆i (v l

−i |vm
i )

τ⋆i (v1
−i |vm

i )

(recall vm
i ∈Vi ), and

hi (vm
i +ε, v l

−i ) = g (vm
i , v l

−i )−hi (vm
i , v l

−i )

(recall vm
i +ε ∈ V̂i ), where

τ⋆i (v−i |vi ) ≡
∑

v̂i≥vi
g (v̂i , v−i )∑

v−i

∑
v̂i≥vi

g (v̂i , v−i )
, xi = min

k,m

τ⋆i (v1
−i |vm

i )

τ⋆i (v l
−i |vm

i )
g (vm

i , v l
−i ).

The following table illustrates our construction:
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hi (., .) v1
−i v2

−i ... vL
−i

v1
i xi xi

τ⋆i (v2
−i |v1

i )

τ⋆1 (v1
−i |v1

i )
... xi

τ⋆i (vL
−i |v1

i )

τ⋆1 (v1
−i |v1

i )

v1
i +ε g (v1

i , v1
−i )−xi g (v1

i , v2
−i )−xi

τ⋆i (v2
−i |v1

i )

τ⋆i (v1
−i |v1

i )
... g (v1

i , vL
−i )−xi

τ⋆i (vL
−i |v1

i )

τ⋆1 (v1
−i |v1

i )

v2
i xi xi

τ⋆i (v2
−i |v2

i )

τ⋆i (v1
−i |v2

i )
... xi

τ⋆i (vL
−i |v2

i )

τ⋆i (v1
−i |v2

i )

v2
i +ε g (v2

i , v1
−i )−xi g (v2

i , v2
−i )−xi

τ⋆i (v2
−i |v2

i )

τ⋆i (v1
−i |v2

i )
... g (v2

i , vL
−i )−xi

τ⋆1 (vL
−i |v2

i )

τ⋆i (v1
−i |v2

i )

... ... ... ... ...

v M
i xi xi

τ⋆i (v2
−i |v M

i )

τ⋆i (v1
−i |v M

i )
... xi

τ⋆i (vL
−i |v M

i )

τ⋆i (v1
−i |v M

i )

v M
i +ε g (v M

i , v1
−i )−xi g (v M

i , v2
−i )−xi

τ⋆i (v2
−i |v M

i )

τ⋆i (v1
−i |v M

i )
... g (v M

i , vL
−i )−xi

τ⋆i (vL
−i |v M

i )

τ⋆i (v1
−i |v M

i )

First, the choice of xi guarantees that hi (v) ≥ 0 for all v ∈ (Vi ∪V̂i )×V−i . It is also immediate that

hi and g are ε-close to each other, because hi (vm
i +ε, v l

−i ) = g (vm
i , v l

−i )−hi (vm
i , v l

−i ), and from

this equation, we can also easily see that
∑

v hi (v) = 1.

Next, we show that under this construction of bidders’ beliefs, R̄⋆
ε ≤ RD . This, combined with

the fact that R̄⋆
ε ≥ RD completes the proof. Note that under V , the shifted valuations {vi +

ε}vi∈V are never realized. Therefore, the seller’s problem under the class of dominant-strategy
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mechanisms is defined entirely on V , as follows:

(P D ) R̄D = sup
(q,p)

Ev∼g [
∑

i
pi (v)] ≡ ∑

v∈V

∑
i

pi (v)g (v)

s.t . ∀i , ∀vi , v ′
i ∈Vi , ∀v−i ∈V−i :

vi qi (v)−pi (v) ≥ 0

vi qi (v)−pi (v) ≥ vi qi (v ′
i , v−i )−pi (v ′

i , v−i )

qi (v) ≥ 0;
∑

i
qi (v) ≤ 1

Let {qD (v), pD (v)}v denote the solution of (P D ). By a standard result, only local downward

IC constraints and IR constraints for the lowest type bind. Therefore, there exist multipliers

{λD
i (v)}v associated with those constraints such that {qD (v), pD (v),λD

i (v)}v maximizes the fol-

lowing Lagrangian function:

L D ≡∑
i ,v

pi (v)g (v)+ ∑
i ,v−i

λD
i (v1

i , v−i )
[
v1

i qi (v1
i , v−i )−pi (v1

i , v−i )
]

+ ∑
i ,v−i

∑
vm

i ≥v2
i

λD
i (vm

i , v−i )
[[

vm
i qi (vm

i , v−i )−pi (vm
i , v−i )]− [

vm
i qi (vm−1

i , v−i )−pi (vm−1
i , v−i )

]]
over the domain (q, p) ∈Q×R where Q≡ {qi (v) ≥ 0;

∑
i qi (v) ≤ 1}.

Note that there are no restrictions imposed on payments. Therefore, at optimum:

∂L D

∂p(v M
i , v−i )

= 0 ⇔λD
i (v M

i , v−i ) = g (v M
i , v−i ),

∂L D

∂p(vm
i , v−i )

= 0 ⇔λD
i (vm

i , v−i ) =λD
i (vm+1

i , v−i )+ g (vm
i , v−i ) ∀1 ≤ m < M

Thus, we have for all (vm
i , v−i ):

λD
i (vm

i , v−i ) = ∑
v̂i≥vm

i

g (v̂i , v−i ) (3.1)

Similarly, the seller’s problem under the class of Bayesian-strategy mechanisms is also defined
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entirely on V , as follows:

(P B ) R̄⋆
ε = sup

(q,p)
Ev∼g [

∑
i

pi (v)] ≡ ∑
v∈V

∑
i

pi (v)g (v)

s.t . ∀i , ∀vi , v ′
i ∈Vi , ∀v−i ∈V−i :∑

v−i

hi (v−i |vi )[vi qi (v)−pi (v)] ≥ 0∑
v−i

hi (v−i |vi )[vi qi (v)−pi (v)] ≥ ∑
v−i

hi (v−i |vi )[vi qi (v ′
i , v−i )−pi (v ′

i , v−i )]

qi (v) ≥ 0;
∑

i
qi (v) ≤ 1

Consider its relaxed problem, denoted by (RP B ) where only local downward IC constraints and

IR constraints for the lowest type are considered and hence, must be binding.

Recall our construction for i ’s prior:

hi (v−i |vm
i ) =

hi (v−i , vm
i )∑

v−i
hi (v−i , vm

i )
≡

xi

τ⋆i (v l
−i |vm

i )

τ⋆i (v1
−i |vm

i )

∑
v−i

xi

τ⋆i (v l
−i |vm

i )

τ⋆i (v1
−i |vm

i )

= τ⋆i (v l
−i |vm

i ) =
∑

v̂i≥vm
i

g (v̂i , v−i )∑
v−i

∑
v̂i≥vm

i
g (v̂i , v−i )

(3.2)

(3.1) and (3.2) imply that:

hi (v−i |vm
i ) = λD

i (vm
i , v−i )∑

v−i
λD

i (vm
i , v−i )

Therefore, each (binding) constraint in (RP B ) is a weighted sum of (binding) constraints in (P D ),

with the weight being the corresponding optimal Lagrangian multiplier for the latter. Then, it

can be verified that these two problems have the same values. Note that the value of (RP B ) is

obviously an upper bound of that under the original problem (P B ). Hence, we obtain: R̄⋆
ε ≤ RD .

Therefore, R̄⋆
ε = RD .

B GLOBAL DEVIATION IN OPTIMAL DOMINANT-STRATEGY MECHANISMS WITH A MIS-

SPECIFIED SUPPORT

Recall the standard properties of the optimal dominant-strategy mechanism under the assump-

tion that g = f :
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1. All the local downward IC constraints bind, i.e, for any k ≥ 2, any v̂−i , and any sk ∈
supp(S):

sk q(sk , v̂−i )−p(sk , v̂−i ) = sk q(sk−1, v̂−i )−p(sk−1, v̂−i )

where sk−1 = max{s ∈ supp(S) | s < sk }.

2. Allocation is monotone, i.e., qi (sk , v−i ) ≤ qi (sk ′
, v−i ) if k < k ′.

If it is possible that f and g are (ε-close to but) different from each other, then global deviations

would typically be relevant.

Proposition 10. Fix ε and g . In the optimal dominant-strategy mechanism assuming g is the

true prior, there exists f that is ε-close to g such that, if v ∼ f , then a bidder does not find it

optimal to report the value that is closest to his true valuation.

Proof. Let S = supp(g ). Let f be such that some i ’s value vi = sk − ε is supported. Then, he

prefers reporting sk−1 to reporting sk , even though sk is closer to vi than sk−1. This is because:

(sk −ε)q(sk , v̂−i )−p(sk , v̂−i ) = sk q(sk , v̂−i )−p(sk , v̂−i )−εq(sk , v̂−i )

≤ sk q(sk−1, v̂−i )−p(sk−1, v̂−i )−εq(sk−1, v̂−i )

= (sk −ε)q(sk−1, v̂−i )−p(sk−1, v̂−i )

where the inequality follows from the local ICk,k−1 constraint and the monotonicity constraint.

Moreover, if q(sk , v̂−i ) > q(sk−1, v̂−i ), the inequality then becomes strict. That is:

(sk −ε)q(sk , v̂−i )−p(sk , v̂−i ) < (sk −ε)q(sk−1, v̂−i )−p(sk−1, v̂−i )

Consequently, the agent whose value is vi = sk −ε strictly prefers to report his valuation as sk−1

instead of his closest type sk .

C PROOF OF THEOREM 6

Let (q⋆(·), p⋆(·)) represent the optimal dominant-strategy mechanism under the assumption

that g is the true prior. Let V = supp(g ), and let Vi = {vi ∈ R | ∃v−i ; (vi , v−i ) ∈ V } denote its i -th

coordinate. We also denote v+
i ≡ min{s ∈Vi | s > vi } and v−

i ≡ max{s ∈Vi | s < vi }.

Fixδ> 0, which is sufficiently small. Theδ-transfer reduction mechanism of (q⋆(·), p⋆(·)) has the

same message space and the winning-probability function as the optimal dominant-strategy

mechanism, but the price is smaller by δ.
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For each vi ∈ Vi , truth-telling is still dominant-strategy incentive compatible, but now in a

stronger sense: for bidder i whose value is δ-close to vi ∈Vi , it is dominant for him to report vi

in the δ-transfer-reduction mechanism. Note that under the original mechanism, for all σ(v−i )

and v ′
i < vi , we have q⋆i (vi ,σ(v−i )) ≥ q⋆i (v ′

i ,σ(v−i )) and:

vi q⋆i (vi ,σ(v−i ))−p⋆i (vi ,σ(v−i )) ≥ vi q⋆i (v ′
i ,σ(v−i ))−p⋆i (v ′

i ,σ(v−i ))

which means:

(vi −δ)q⋆i (vi ,σ(v−i ))− [p⋆i (vi ,σ(v−i ))−δq⋆i (vi ,σ(v−i ))]

≥(vi −δ)q⋆i (v ′
i ,σ(v−i ))− [p⋆i (v ′

i ,σ(v−i ))−δq⋆i (v ′
i ,σ(v−i ))]

By single crossing property and v̂i ≥ vi −δ (v̂i is δ-close to vi ∈Vi ), we thus have:

v̂i q⋆i (vi ,σ(v−i ))− [p⋆i (vi ,σ(v−i ))−δq⋆i (vi ,σ(v−i ))] ≥ v̂i q⋆i (v ′
i ,σ(v−i ))− [p⋆i (v ′

i ,σ(v−i ))−δq⋆i (v ′
i ,σ(v−i ))]

for all σ(v−i ) and v ′
i < vi , i.e.,

vi = argmax
v ′

i≤vi

[
v̂i q⋆i (v ′

i ,σ(v−i ))− [p⋆i (v ′
i ,σ(v−i ))−δq⋆i (v ′

i ,σ(v−i ))]
]

∀σ(v−i ) (3.3)

Note also that under the original mechanism, for allσ(v−i ) and v ′
i > v+

i , we have q⋆i (v ′
i ,σ(v−i )) ≥

q⋆i (v+
i ,σ(v−i )) ≥ q⋆i (vi ,σ(v−i )), and:

v+
i q⋆i (v+

i ,σ(v−i ))−p⋆i (v+
i ,σ(v−i )) = v+

i q⋆i (vi ,σ(v−i ))−p⋆i (vi ,σ(v−i ))

which means:

(v+
i −δ)q⋆i (v+

i ,σ(v−i ))− [p⋆i (v+
i ,σ(v−i ))−δq⋆i (v+

i ,σ(v−i ))]

=(v+
i −δ)q⋆i (vi ,σ(v−i ))− [p⋆i (vi ,σ(v−i ))−δq⋆i (vi ,σ(v−i ))]

By single crossing property and v+
i −δ ≥ v̂i (v̂i is δ-close to vi ∈ Vi ), this implies that for all

σ(v−i ):

v̂i q⋆i (v+
i ,σ(v−i ))− [p⋆i (v+

i ,σ(v−i ))−δq⋆i (v+
i ,σ(v−i ))]

≤v̂i q⋆i (vi ,σ(v−i ))− [p⋆i (vi ,σ(v−i ))−δq⋆i (vi ,σ(v−i ))] (3.4)

Moreover, for all σ(v−i ) and v ′
i > v+

i :

v+
i q⋆i (v ′

i ,σ(v−i ))−p⋆i (v ′
i ,σ(v−i )) ≤ v+

i q⋆i (v+
i ,σ(v−i ))−p⋆i (v+

i ,σ(v−i ))
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which means:

(v+
i −δ)q⋆i (v ′

i ,σ(v−i ))− [p⋆i (v ′
i ,σ(v−i ))−δq⋆i (v ′

i ,σ(v−i ))]

≤(v+
i −δ)q⋆i (v+

i ,σ(v−i ))− [p⋆i (v+
i ,σ(v−i ))−δq⋆i (v+

i ,σ(v−i ))]

By single crossing property and v+
i −δ≥ v̂i (v̂i is δ-close to vi ∈ Vi ), we thus have for all σ(v−i )

and v ′
i > v+

i :

v̂i q⋆i (v ′
i ,σ(v−i ))− [p⋆i (v ′

i ,σ(v−i ))−δq⋆i (v ′
i ,σ(v−i ))]

≤v̂i q⋆i (v+
i ,σ(v−i ))− [p⋆i (v+

i ,σ(v−i ))−δq⋆i (v+
i ,σ(v−i ))] (3.5)

Combining (3.4) and (3.5), we obtain:

vi = argmax
v ′

i≥vi

[
v̂i q⋆i (v ′

i ,σ(v−i ))− [p⋆i (v ′
i ,σ(v−i ))−δq⋆i (v ′

i ,σ(v−i ))]
]

∀σ(v−i ) (3.6)

Then, (3.3) and (3.6) imply that for bidder i whose value is δ-close to vi ∈ Vi , it is dominant for

him to report vi in the δ-transfer-reduction mechanism. We take δ= ε then. Although we omit

the details, it can also be shown that his ex post individual rationality is satisfied.

By construction, the ε-transfer-reduction mechanism collects the same amount of transfer from

each type of each agent less at most ε. Therefore, if g = f , then the expected revenue in the ε-

transfer-reduction mechanism, denoted by R ′
ε(g ), is not lower than RD −Nε:

R ′
ε(g ) ≥ RD −Nε.

Even if f is different from g , it remains true that each bidder with each type finds it dominant

to report his closest type in the same ε-transfer-reduction mechanism. Therefore, denoting by

R ′
ε( f ) the expected revenue of the same ε-transfer-reduction mechanism but with distribution

f , by continuity we obtain:

lim
ε→0

|R ′
ε(g )−R ′

ε( f )| = 0,

and therefore:

lim
ε→0

|R ′
ε(g )− inf

f |ε-close to g
R ′
ε( f )| = 0,

By Theorem 1:

RD = R⋆
ε ≥ inf

f |ε-close to g
R ′
ε( f )
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Therefore:

0 ≤ RD − inf
f |ε-close to g

R ′
ε( f ) ≤ R ′

ε(g )+Nε− inf
f |ε-close to g

R ′
ε( f ),

where the right-hand side converges to 0 as ε→ 0, implying:

inf
f |ε-close to g

R ′
ε( f ) → RD ,

as ε→ 0. We complete the proof by noticing that RD
ε ∈ [inf f |ε-close to g R ′

ε( f ),RD ].

D A COUNTEREXAMPLE WITH SUFFICIENTLY CLOSE INTERIM BELIEFS

This section provides a simple example in which (i) interim beliefs induced by the seller’s and

bidders’ priors are close enough to each other, and (ii) dominant-strategy mechanisms are not

Bayesian founded.

Example 11. There are two bidders i ∈ {1,2}. The seller knows the true prior. Her prior g (v1, v2)

is given by

g (v1, v2) v2 = 1 v2 = 2

v1 = 1 1
3

1
6

v1 = 2 1
6

1
3

Table 3.4: Seller’s prior

Thus, g induces the following interim belief

g (v−i | vi ) v−i = 1 v−i = 2

vi = 1 2
3

1
3

vi = 2 1
3

2
3

Table 3.5: Interim belief induced by g

Moreover, each bidder i ’s interim belief after observing his own valuation, hi (v−i | vi ) is such that

hi (v−i | vi ) ∈ [g (v−i | vi )−ε, g (v−i | vi )+ε] for all i , vi and v−i , for some ε> 0.

In this example, if ε = 0, the seller can fully extract surplus by offering a SPA associated with

side-bets (as explained in the motivating example).
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Now we show that with small ε > 0, the seller can almost fully extract the surplus by reducing

each bidder’s expected payment under the side-bets by ε. The following table corresponds to

this mechanism (it only shows bidder 1’s allocation; bidder 2’s is symmetric), where “NP” stands

for non-participation:

(q1(v), t1(v)) NP v2 = 1 v2 = 2

NP (0,0) (0,0) (0,0)

v1 = 1 (1,0) ( 1
2 , 1

2 −
1+3ε

3
) (0;

2−3ε

3
)

v1 = 2 (1,0) (1,1−
1+3ε

3
) ( 1

2 ,1+
2−3ε

3
)

Table 3.6: Outcomes from a SPA and side-bets

where the red parts in the transfers come from the side-bets. Let xi denote bidder i ’s payment

under side-bets. Let xi (v−i ) denote bidder i ’s payment under the side-bets (the red parts in the

table) when the other bidder’s value is v−i . Bidder i ’s conditional expected payments under the

side bet (after observing vi ) are given by

E[xi | vi = 1] = hi (1 | 1)xi (1)+hi (2 | 1)xi (2)

≤ [gi (1 | 1)−ε]xi (1)+ [gi (2 | 1)+ε]xi (2)

=−(
2

3
−ε)

1+3ε

3
+ (

1

3
+ε)

2−3ε

3

= 0,

E[xi | vi = 2] = hi (1 | 2)xi (1)+hi (2 | 2)xi (2)

≤ [gi (1 | 2)−ε]xi (1)+ [gi (2 | 2)+ε]xi (2)

=−(
1

3
−ε)

1+3ε

3
+ (

2

3
+ε)

2−3ε

3

= 1

3
.

Moreover, note that bidder i ’s interim expected payment, conditional on vi = 1 (resp., vi = 2)

from the SPA is given by 0 (resp.,
1

3
). Therefore, i ’s interim expected payoff from the SPA com-

bined with the side-bets is non-negative. Consequently, it is optimal for bidders to report their

value truthfully. As the reduction in expected payments by bidders is proportional to ε, the

seller’s revenue is close to the full surplus as ε approaches zero, which is strictly higher than

95



that obtained from the best dominant-strategy mechanism.11 Hence, we obtain no foundation

for the use of a dominant-strategy mechanism in this example.

11A second-price auction (without a reserve price) is an optimal dominant-strategy mechanism, which generates

a revenue of 4
3 for the seller, whereas the full expected surplus is 5

3 .
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Chapter 4

First Best Implementation with Costly

Information Acquisition

1 INTRODUCTION

In most mechanism design problems, there is a collection of agents who have exogenously

given private information, and there is a principal who desires to implement a social choice

rule by designing a mechanism which incentivizes the agents to reveal their information.

In many practical problems, however, the agents’ private information is often a consequence

of their own (possibly costly) information acquisition. For example, bidders in an oil-tract auc-

tion (Wilson, 1969) may conduct test drills; bidders in a spectrum auction may conduct market

research; voters in a presidential election may investigate the candidates’ past political activi-

ties; members of a hiring committee may study the job applicant’s background in order to see

whether he is fit for the job.

Importantly, in such situations, a mechanism in place does not only affect each agent’s incen-

tive to report the acquired information truthfully, but also affects his choice of what kind of

information to acquire. In this sense, the properties of desirable mechanisms could potentially

be very different from those which only guarantee truth-telling incentives for a given informa-

tion structure.

Although this issue is already relevant in single-agent environments,1 the degree of complexity

1Mensch (2020) studies a mechanism design problem with a single agent. See also Section 1.1.
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is even higher in multi-agent environments: in principle, flexibility of each agent’s informa-

tion acquisition does not only mean flexibility in terms of his signal’s informativeness about the

payoff-relevant state, but also means flexibility in terms of his signal’s informativeness about

his opponents’ signals. This issue of higher-order information and beliefs distinguishes multi-

agent from single-agent environments. Modeling the dependence of the cost of information

acquisition on higher-order information is a challenging task. In this paper, we assume that

an agent’s information acquisition cost only depends on his signal’s informativeness about the

payoff-relevant state, but not about the other agents’ signals. In particular, it is costless to ac-

quire a signal that is independent from the payoff-relevant state.2 For example, imagine a sit-

uation where agents (e.g., telecom companies who buy spectrum) have to acquire information

from data providers (e.g., market research firms) operating on a competitive market for data.

Each data provider generates signals about the payoff-relevant state (e.g., demand conditions

in the mobile services market). Competition among the data providers forces them to price

their data at the cost of production, which in turn depends on the informativeness of their data.

The agents can then decide to make their signals perfectly correlated by strategically choosing

the same data provider, or less than perfectly correlated by choosing different data providers. In

both cases, the agents will pay the same price for the same informativeness, and hence the cost

of information acquisition will be independent of the correlation structure among signals.3

We consider a model with four or more agents. The principal and the agents share a common

prior about the payoff-relevant state, and none of them has any private information at the be-

ginning. We show that there exists a mechanism which allows the principal to implement any

social choice rule at zero information acquisition cost to the agents. The key idea is that the

mechanism recommends each agent to choose a special information acquisition action, which

satisfies the individually-uninformative-but-aggregately-revealing property of Zhu (2021) (and

each agent finds it optimal to obey this recommended action). The individually-uninformative

part means that each agent’s signal on its own is independent from the payoff-relevant state,

which guarantees that his information cost is zero. The aggregately-revealing part means that

the principal, by observing all the agents’ reports — in fact, any two of them — can correctly

identify the true payoff-relevant state. The fact that only two are enough, together with the fact

2The literature on cost of information proposes and discusses a variety of possible cost functions (see Section

1.1), but it seems to be universally accepted that uninformative signals about the state of the world are costless.
3Of course, one can come up with cases where other cost specifications seem more reasonable (e.g., more pos-

itive correlation is more costly, or less costly). We discuss a range of possible alternative assumptions in our con-

cluding remarks, see Section 5.
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that there are four or more agents, enables the principal to detect any unilateral deviation. It

thus establishes the incentive compatibility of the mechanism.

1.1 Related Literature

In the literature on information acquisition in mechanism design, we usually consider restricted

and/or less flexible spaces of information (see, for example, Bergemann and Välimäki (2002) for

efficient mechanism design, Shi (2012) and Bikhchandani and Obara (2017) for optimal auction

design, and Persico (2004), Gerardi and Yariv (2008), Gershkov and Szentes (2009), and Zhao

(2016) for committee design with information acquisition4).

Mensch (2020) studies mechanism design with a single agent’s flexible and costly information

acquisition, building on the rational inattention framework (Sims (2003)).5 Flexible and costly

information acquisition is also considered by Gleyze and Pernoud (2020) who study a mecha-

nism design problem with transferable utility and private values, in which agents acquire costly

information on their own preferences and the preferences of other agents, and by Ravid et al.

(2020) who study a bilateral trade model with costly information acquisition by the buyer. Flex-

ible but not costly information acquisition is considered by Roesler and Szentes (2017) in the

context of buyer-optimal information in monopoly pricing,6 by Bergemann et al. (2017) and

Brooks and Du (2021) in the context of seller-pessimal information in common-value auctions,

and by Yamashita (2018) in private-value auctions. All these papers feature a single entity, “na-

ture”, who chooses the information structure (of one or multiple agents). In contrast to that, in

our model each agent acquires information in a decentralized manner, which leads to a very

different conclusion.

The information structure we employ was proposed in the context of mechanism design by Zhu

(2021), who studies information disclosure by a mechanism designer. It builds on the idea of

the one-time pad, an unbreakable encryption method (Shannon, 1949).7

4Restricting to the class of conservative rules, Li (2001) solves for the optimal degree of conservatism in com-

mittee design. The optimally chosen conservative rule outperforms the ex post optimal rule.
5Mensch (2020) also considers a multiple-agent extension of his model, but restricts attention to symmetric

mechanisms in an independent private values setting, in which agents can acquire information about their own

values, but cannot acquire any information about others’ values.
6See also Condorelli and Szentes (2020), though they also consider non-information changes of the agent’s pri-

vate information distribution.
7See also Krähmer (2020) and Krähmer (2021) in the context of information disclosure in mechanism design

and strategic communication respectively where the randomization of information structures is allowed to keep
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This key information structure makes the agents’ acquired information statistically dependent.

In quasi-linear environments, Crémer and McLean (1988b) show that the principal can extract

full surplus from the agents who share a correlated prior. Although the extreme positivity of

the results is a common feature of our paper and theirs, the two problems are quite different.

First, our paper does not assume quasi-linearity. Second, their side-bet mechanism exploits an

exogenously given correlated signal structure, and it is not clear if such a signal structure can

be induced in equilibrium given some reasonable space of information acquisition actions.8

In our case, the resulting information structure is an equilibrium outcome, even though each

agent can potentially acquire information independently from the others’ signals.

In non-quasi-linear environments, such as collective decision-making in committees, the first

best outcome is generally not implementable under the commonly imposed restrictions on in-

formation acquisition technologies. For example, Li (2001) and Persico (2004), assuming that

the agents have access to conditionally independent signals, show that the first best outcome is

not attainable. In contrast to the previous results, we show that correlated information acquisi-

tion helps to implement the first best outcome.

There is a growing literature on the cost of flexible information in decision environments (see

for example Sims (2003), Matejka and McKay (2015), Caplin and Dean (2015), and Pomatto

et al. (2020)). Usually the main focus is on the cost of acquiring more or less precise informa-

tion about a payoff-relevant state, and its relationship with a single decision-maker’s optimal

choice. The framework, however, has been applied in multi-player problems, e.g. in coordi-

nation games (Yang (2015); Morris and Yang (2021); Denti (2020)). In particular, Denti (2020)

proposes a model of unrestricted information acquisition in games, in which, as in our paper,

the players can endogenously learn about a payoff-relevant state and actions of other players.

the single agent (sender) uninformative; Kalai et al. (2010), Renou and Tomala (2012), Renault et al. (2014) in the

context of games of communication network. Peters and Troncoso-Valverde (2013) apply this idea in mechanism-

design games with multiple principals, and Liu (2015) applies it in his concept of individually uninformative cor-

relating device. Our construction is most directly related to Zhu (2021).
8Bikhchandani (2010) shows that, indeed, an agent in the Crémer-McLean mechanism may have a strong in-

centive of acquiring information about others.
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2 MODEL

2.1 Setup

There is a principal and I ≥ 4 agents, and a finite set of payoff-relevant states Θ. Each agent i ’s

payoff is denoted ui (d ,θ), when a social decision d ∈ D is selected in state θ.9 For example, in an

auction, d is a vector of bidders’ winning probabilities and their expected payments, and each

ui is quasi-linear in the payment part. Later, each agent’s payoff net his information acquisition

cost is considered as his objective.

At the beginning, neither the principal nor any of the agents know θ. The agents can acquire

costly information about θ by generating private signals, possibly correlated with each other,

whereas the principal cannot acquire any information about θ. Each agent has access to a suf-

ficiently large set of possible signal realizations Si . In principle, Si (in particular, its size) may be

a part of i ’s choice, but assuming exogenous Si is without loss of generality as long as |Si | ≥ |Θ|.

To model information acquisition, we introduce a space of states of nature X = [0,1] with a

typical element x, equipped with a Borel σ-algebra and a uniform probability measure .10 We

assume there is a commonly known measurable function Θ : X →Θ mapping the states of na-

ture to the payoff-relevant states. This function induces a common prior on the payoff-relevant

states as follows: µ0(θ) ≡ ∫ 1
0 1{Θ(x)=θ}d x for each θ ∈Θ. Agent i ’s information acquisition action

is a measurable function σi : X → Si , such that, once x (and hence θ = Θ(x)) is realized, then

i observes si = σi (x). Let Σi denote the set of all such measurable functions, defining i ’s in-

formation acquisition action space. Note that any profile of information acquisition actions σ

induces a joint distribution over payoff-relevant states and signal realizations, which we denote

by α ∈∆(Θ×S). When we want to make its dependence on σ more explicit, we write ασ.

We assume that information acquisition is fully private in the sense that neither the principal

nor any other agent observes which information acquisition action i takes and which signal

realization is observed by agent i . Agent i ’s objective is the net payoff ui (d ,θ)− ci (σi ), where

σi represents i ’s information acquisition action. We assume the information acquisition cost

function of agent i has the following properties:

Assumption 6. Properties of information acquisition cost.

9We can endow the principal with his own payoff function u0(d ,θ), though it is not necessary.
10Taking a richer space of states of nature would not change our results. See also Gentzkow and Kamenica (2017)

who use a similar approach in the context of multi-sender Bayesian persuasion.
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1. ci (σi ) ≥ 0 for any σi .

2. ci (σi ) = 0 if σi andΘ are stochastically independent.

The second property makes sure that agent i pays nothing as long as he learns nothing about

the payoff-relevant state from his signal. This property is usually assumed in the context of

single-player information acquisition.11 For example, in the literature on rational inattention,

the cost of information acquisition is often assumed to be proportional to the reduction in “rel-

ative entropy” (which measures the informativeness of a signal about the state). There, our sec-

ond property is satisfied, because any signal that is stochastically independent from Θ leaves

the relative entropy unchanged, and is therefore costless.

With multiple players, even if a signal is uninformative about the payoff-relevant state, it could

be informative about other players’ signals, which is the key to our result. Our study can be

interpreted as investigating the consequence of this assumption (seemingly quite natural in

single-agent environments) in multi-agent mechanism design environments.

2.2 Mechanism

The principal faces both hidden action and hidden information of each agent. The princi-

pal commits to a mechanism at the ex ante stage in order to control the agents’ incentives.

More specifically, following the literature, we let the principal (i) send a message privately to

each agent before his information acquisition action, and (ii) collect a message privately from

each agent after the agent has observed a signal realization. Formally, a mechanism comprises

(R,ρ; M ,δ) where R = (Ri )I
i=1 and M = (Mi )I

i=1; Ri denotes the set of messages that the princi-

pal can send to each agent i ; Mi denotes the set of messages that each agent i can send to the

principal; ρ ∈ ∆(R) is a distribution over the principal’s messages, and δ : R ×M → D denotes

the decision rule.

The timing of the game is summarized as follows:

t = 0: x ∼U (0,1) is drawn but no one observes it.

t = 1: The principal designs a mechanism (R,ρ; M ,δ).

t = 2: After observing the mechanism and receiving ri ∈ Ri , each agent i privately chooses his

information acquisition action σi ∈Σi .

11See the literature on cost of information, such as Sims (2003), Matejka and McKay (2015), Caplin and Dean

(2015), and Pomatto et al. (2020).

102



t = 3: Each agent i privately observes si =σi (x), and privately sends mi ∈ Mi to the principal.

t = 4: The principal executes d = δ(r,m) where m = (mi )I
i=1.

Because no agent observes the other agents’ actions or information (even noisily) at all, we

consider Nash equilibrium as a solution concept. Then, applying the revelation principle of

Forges (1986), we focus on direct mechanisms where (i) the principal directly recommends an

information-acquisition action to each agent, and each agent directly reports a signal to the

principal, and (ii) each agent finds it optimal to obey the recommended action and truthfully

report his signal.12

Formally, a direct mechanism comprises ((σi )I
i=1, (Si )I

i=1,δ), where the principal recommends

σi ∈ Σi privately to each agent i ,13 and executes δ(s) ∈ D if the agents report s = (si )I
i=1 ∈ S =

×I
i=1Si . A direct mechanism is incentive compatible if it satisfies the following constraints: for

any σ′
i ∈Σi and τi : Si → Si ,∑

θ,si ,s−i

(ui (δ(si , s−i ),θ)ασi ,σ−i (θ, si , s−i ))− ci (σi ) ≥ ∑
θ,si ,s−i

(ui (δ(τi (si ), s−i ),θ)ασ′
i ,σ−i

(θ, si , s−i ))− ci (σ′
i ).

That is, each i must find it optimal to obey the recommended σi and report the realized si

truthfully.

Although the constraints are concisely summarized by the inequalities above, they are actually

rather complicated. First, changing σi affects the joint distribution α of (θ, s) and the agent’s

cost in a non-trivial way since agent i cannot affect agent −i ’s information structure. Second,

an agent may potentially want to make a double deviation, that is, change σi and at the same

time change his reporting strategy.

Remark 3. Here, we do not explicitly impose individual rationality constraints. It is not difficult

to accommodate these constraints: let us require that any feasible direct mechanism must have

an extra message m;
i (a “non-participation” message) so that i ’s message space is now Si ∪ {m;

i },

12The proof proceeds as follows. First, imagine an auxiliary game where there is no principal, but instead, there

is a fictitious player (“player 0”) who is indifferent across all decisions in any state. At first, each agent i plays σi

privately, and then observes the realized signal si privately. Then, (without any communication), player 0 chooses

d ∈ D . Interpreting this as a baseline extensive-form game, it is easy to see that our current game (with the prin-

cipal) is the mediated communication game of this auxiliary game in the sense of Forges (1986) (see also Myerson

(1986a)). Thus, her revelation principle applies.
13We focus on a deterministic recommendation of σ, rather than any stochastic recommendation. Accordingly,

δ is denoted simply by δ(s) instead of δ(r, s). Since first best implementation is achieved with pure recommenda-

tions, our focus on them is without loss of generality.
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and δ(m;
i ,m−i ) is some specific allocation (a “non-participation allocation”) for agent i , for any

given m−i . When the non-participation message is included into the set of messages for each

agent, the individual rationality constraints, both at the ex ante and interim stages, are captured

by the above incentive compatibility constraints.14

3 MAIN RESULT

Fix any function d∗ : Θ→ D , which describes all the economically relevant outcomes in this

environment except for the information acquisition costs. If the principal could observe θ, then

any d∗ is attainable without any information acquisition cost on the agents’ side. In this sense,

one may interpret this d∗ together with zero cost for the agents as the first-best outcome.15

In this section, for any given d∗, we explicitly construct a mechanism that implements d∗ at

zero cost for the agents. That is, the first best outcome can be attained even though the principal

cannot directly observe θ.

Theorem 7. Fix any d∗ : Θ→ D. Under Assumption 6, there exists a mechanism (σ,S,δ) such

that (i)
∑

sα(θ, s)1{δ(s)=d∗(θ)} =µ0(θ) for all θ, and (ii) ci (σi ) = 0 for all i .

Proof. The theorem is proved by construction.

Since Θ is a finite set, we assume without loss of generality that Θ= {1, . . . ,T }. Let K > max{I ,T }

be a prime number. Because is a uniform measure on X = [0,1], we can find a partition of X ,

denoted by {Xθψ}(θ,ψ)∈{1,...,T }×{1,...,K }, satisfying
∫ 1

0 1{x∈Xθψ}d x = 1
K µ0(θ) for any θ and ψ. Define a

measurable function Ψ : [0,1] → {1, . . . ,K } such that, if x ∈ ∪θ∈ΘXθψ, then Ψ(x) = ψ. Immedi-

ately, Ψ is uniformly distributed on {1, . . . ,K } conditional on any realization θ of Θ, hence Ψ is

independent ofΘ.

Now consider the following information acquisition action profile: for each i ∈ {1, . . . I }, Si =
{1, . . . ,K }, andσi (x) =Θ(x)+i ·Ψ(x) mod K for any x ∈ [0,1]. Note that the residual is calculated

as in standard modular arithmetic except when Θ(x)+ i ·Ψ(x) is divisible by K , in which case

we set σi (x) = K instead of 0. The following lemma gives the properties of (S,σ) that we need to

prove the theorem.

14Ex interim individual rationality is guaranteed because agent i can always deviate to τi (·) ≡ m;
i . Ex ante indi-

vidual rationality is guaranteed because agent i can always deviate to a costless σi and then to τi (·) ≡ m;
i .

15For example, one may assume that d∗(θ) is the best decision of the principal given his own preferences in state

θ.
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Lemma 15. The above (S,σ) satisfies:

(i) For any i ∈ {1, . . . , I }, σi is independent ofΘ.

(ii) Conditional on any realization of (si , s j ) such that i ̸= j , the joint distribution of Θ and

(σk )k ̸=i , j is degenerate.

Proof of the lemma. By definition of (S,σ), for each i , we have si = θ+ i ·ψ mod K , where the

random variables Ψ and Θ are independent. Thus the signal profile s = (si )I
i=1 is defined in the

same way as in Zhu (2021).16 Thus, this lemma is directly implied by Lemma 2 in Zhu (2021).

The first property says thatΘ andσi are independent, implying ci (σi ) = 0. The second property

says that, given si , s j with i ̸= j , we can identify the true payoff-relevant state θ and any signal

realization sk without error, that is, there exist θ̂(si , s j ) and ŝk (si , s j ) such that:

Pr
(
Θ= θ̂(si , s j )|si , s j

)= Pr
(
σk = ŝk (si , s j )|si , s j

)= 1.

Let the principal recommend the above σ, and offer the decision rule δ as follows: δ(s) = d∗(θ)

if (i) for any i , j with i ̸= j , we have

θ = θ̂(si , s j );

or if (ii) there is i such that, for any j ,k where i , j ,k are all different, we have

θ = θ̂(s j , sk ).

In any other case, δ(s) is arbitrary.

Clearly, if the agents obey the recommendation and report their signals truthfully, then the

first best outcome is attained. Therefore, we complete the proof by showing that the proposed

mechanism satisfies incentive compatibility. Take any agent i , and suppose that he deviates

to any σ′
i and reports τi (si ) when si is realized. First, his cost of information acquisition in-

creases weakly. Second, his reporting decision does not affect the social decision at all, because

the principal executes δ(s) = d∗(θ̂(s j , sk )) for an arbitrary pair ( j ,k) which does not include i .

Therefore, the mechanism is incentive compatible.
16In fact, our signal profile s coincides with what Zhu (2021) calls “the IUAR disclosure policy, where IUAR is

short for individually uninformative but aggregately revealing.
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3.1 Impossibility results with two and three agents

One could ask whether a result similar to Theorem 7 obtains with two or three agents. The

general answer to this question is no. With three agents, although it is possible to determine

whether some agent has unilaterally deviated or not, it is not possible to identify who the de-

viator is (and hence not possible to identify the true θ). To see that, consider the following

counterexample.

Counterexample 1. Suppose that there are two payoff-relevant states, i.e. Θ= {1,2} and consider

the mechanism with K = 5. Computing si = θ+ iψ mod 5, we obtain:

θ = 1 Agent 1 Agent 2 Agent 3

ψ= 1 2 3 4

ψ= 2 3 5 2

ψ= 3 4 2 5

ψ= 4 5 4 3

ψ= 5 1 1 1

θ = 2 Agent 1 Agent 2 Agent 3

ψ= 1 3 4 5

ψ= 2 4 1 3

ψ= 3 5 3 1

ψ= 4 1 5 4

ψ= 5 2 2 2

Suppose the principal observes an out-of-equilibrium signal realization profile (2,5,4). There are

two unilateral deviations that lead to this profile. First, the true profile might be (2,3,4) in state

θ = 1 with agent 2 deviating. Second, the true profile might be (1,5,4) in state θ = 2 with agent 1

deviating. Hence, the principal cannot identify the deviator, nor can the principal infer the true

state.

Note, however, that if there exists a social decision d ∈ D that can serve as a severe punishment

for all agents for any given θ, then out-of-equilibrium reports can be severely punished by the

principal,17 and a similar first-best implementation result obtains.

With two agents, each agent has much more freedom. The authors work on a separate project

with two agents. There, even under Assumption 6 and even when monetary transfers are avail-

able to the principal, an extremely positive result similar to Theorem 7 does not generally hold.

The optimal mechanism might involve some costly information acquisition.

17Consider e.g. environments with monetary transfers, in which the principal can use large fines to punish agents

for inconsistent reports.
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4 APPLICATIONS

4.1 Full-surplus extraction in common value auctions

Consider the following common value auction environment. The seller (principal) has a single

indivisible good, and there are I ≥ 4 bidders. The value of the good is common to all the bidders,

denoted by θ ∈Θ, where Θ is finite. In fact, the analysis of this section can be straightforwardly

extended to the case of “non-pure” common values where each i ’s valuation is vi (θ). Let µ0(θ)

denote the probability that θ is the bidders’ common value.

Each bidder i ’s payoff is θqi − ti − ci (σi ) if he wins the good with probability qi , pays ti to the

seller, and spends ci (σi ) as his information acquisition cost. In case he does not participate in

the mechanism, his outside-option payoff is 0. The seller’s payoff is revenue,
∑I

i=1 ti .

The first-best expected surplus of this society is the expected common value:∑
θ∈Θ

µ0(θ)θ = E[θ].

There are several cases where the seller can easily earn E[θ]. First, if the seller knows θ, then

he can simply post price θ. Even if the seller does not know θ, if the bidders know θ as their

common knowledge (i.e., as free information), then again the seller can earn E[θ]. Conversely,

if all the bidders are completely uninformed (so that each only knows the common prior µ0),

then again, the seller can post price E[θ].

Notice that, with costly information acquisition as considered in our paper, neither of the above

ideas would work. First, although it might be possible to make every bidder fully learn θ in some

equilibrium, it does not yield E[θ] as long as full information is strictly costly. Second, if the seller

posts price E[θ], then each bidder has a strong incentive of knowing whether the true θ is below

E[θ] or not: If i finds that E[θ|si ] < E[θ] given some signal si , he would not buy the good. As long

as such information is not too costly, the bidder would be better off by acquiring it.

Therefore, with a general information acquisition cost function, the equilibrium information

should be somewhere between full and no information, and it is a priori unclear how the seller

should find the optimal balance of information and rent extraction. Nevertheless, as long as

the cost functions satisfy Assumption 6, Theorem 7 implies that the full-surplus extraction is

possible.
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Corollary 3. Under Assumption 6, there is a mechanism which yields E[θ] as the seller’s expected

revenue (and each bidder earns 0).

It is worth emphasizing that the logic here is very different from that of Crémer and McLean

(1988b). In their paper, the seller exploits an exogenously given correlated signal structure, in

order to construct a side-bet scheme that extracts the entire surplus. In our case, each bidder

can choose any information structure. Indeed, if he prefers, a bidder can choose an information

structure such that his information is independent from all the other bidders’ signals (condi-

tional on the state of the world). The Crémer-McLean lottery scheme, therefore, does not work

here. Also, in their auction, each bidder’s payoff can be strictly negative ex post, while in our

case, it is zero ex post. Indeed, if the seller offered a negative ex post payoff in our auction, bid-

ders would have a strong incentive to get a signal which includes a realization indicative of that

event and then abstain from the auction following that realization.

4.2 First-best implementation in collective decision-making

Consider a committee with a designer (principal) and I ≥ 4 members (agents) deciding whether

to hire or not to hire a job market candidate. Formally, d ∈ D = {h,nh}. The quality of the can-

didate is θ ∈ Θ, which is unobserved ex ante. The designer and all members of the committee

hold a common prior belief µ0 ∈∆(Θ) about the candidate’s quality.

The utility that each member obtains from hiring / not hiring the candidate is defined as fol-

lows:

ui (d ,θ) =
ui (θ), if d = h

0, if d = nh

Without loss of generality, we assume that ui (θ) = kiθ.

Only the committee members can acquire information about the candidate at cost ci (σi ). The

designer aims to maximize the expected sum of all members’ gross utilities.18 That is, ideally,

he wants to hire the candidate if and only if
∑

i kiθ ≥ 0. The first best expected surplus of all

committee members is given by: ∑
θ|∑i kiθ≥0

µ0(θ)
∑

i
kiθ ≡W F B

18The result extends to the case where the designer maximizes expected sum of members’ net utilities (taking

into account the information acquisition costs).
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It is useful to note that the existing literature (see e.g. Li (2001) and Gerardi and Yariv (2008))

typically assumes that the committee members have access to information structures whose re-

alized signals are independently distributed across them, conditional on the state of the world.

Under these restrictions, the first best outcome cannot be implemented. There are two main

forces that prevent the committee from implementing the first best with these restricted infor-

mation structures: free-riding problem and conflict of interest. First, when committee mem-

bers have a conflict of interest, they may prefer not to report their own acquired information

truthfully. Second, even if all members share a common preference, information could be un-

derprovided relative to the social optimum, because it is essentially a public good used to make

a collective decision. For example, Li (2001) suggests that distorting the decision rule away from

the ex post optimal rule (which is optimal under exogenous information) could help to alleviate

the free-riding issue.

In contrast to the previous literature, our results show that with more flexible (even though

still costly) information acquisition the designer can implement the first best outcome. On

the one hand, having access to a wider range of information acquisition technologies enlarges

the set of feasible deviations for the agents. On the other hand, the principal now has more

flexibility in designing information structures recommended to the agents. Given these two

opposing effects, it is not immediately clear a priori whether the first best outcome becomes

more or less difficult to attain. It turns out that the second effect dominates: with a larger set of

feasible mechanisms, the principal is able to incentivize the agents to acquire and report their

information truthfully, no matter what social choice rule the principal is trying to implement.

Indeed, Theorem 7 implies that the first best is implementable as long as Assumption 6 about

the cost functions holds.

Corollary 4. Under Assumption 6, there is a mechanism which yields W F B as the total expected

surplus (the decision is made under full information with no cost).

Our construction helps to resolve both of the issues that prevent first best implementation with

conditionally independent signals. Recall that it costs nothing for an agent to acquire an “indi-

vidually uninformative" signal which is assigned to him under the optimal mechanism. There-

fore, the distorted provision of information is resolved. Moreover, even if committee members

have a conflict of interest, under our mechanism, they cannot do better than being truthful

since any unilateral deviation can be detected by the designer.
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5 CONCLUDING REMARKS

It is quite natural that agents may desire to refine their information in response to a mechanism.

This paper proposes one possible framework, based on a class of information acquisition cost

functions, such that the cost of information depends on the informativeness of each agent’s

signal about the state of the world, but not on its informativeness about other agents’ signals.

We show that such a specification leads to an extremely positive result.

One natural criticism may be that our mechanism induces full information if the signals are

aggregated, even though any single signal is completely uninformative: would it be reasonable

to assume that such σi is costless? Because the answer is necessarily yes under Assumption 6,

the question is essentially whether Assumption 6 itself is reasonable. Assumption 6 is satisfied,

in particular, in any information acquisition environment, in which the cost of information ac-

quisition does not depend on the correlation structure among signals but only depends on their

individual informational content. We argued in Section 1 that there are information acquisition

environments, for which this assumption is indeed a reasonable one. In general, however, the

correlation structure might affect the cost of information acquisition in various ways. On the

one hand, there seem to be cases where more positive correlation is more expensive. For exam-

ple, fix agent 1’s private information, and consider agent 2. If acquiring a positively correlated

information necessarily means that agent 2 must steal (perhaps a part of) agent 1’s informa-

tion, more positive correlation will be more costly. Strulovici (2021), for instance, considers an

environment where hard evidence is scarce in the sense that, if one agent “picks up” a piece of

evidence, then it becomes difficult for the others to get the same or similar evidence. On the

other hand, there are opposite situations, where less correlated signals are more costly. For ex-

ample, suppose that there are 2 agents and 3 newspapers, and σi corresponds to the decision

of which newspapers to buy. Suppose further that newspaper 3 is free, hence both agents read

it and acquire perfectly correlated signals for free. To acquire less correlated signals, at least one

of the agents has to buy additional information (e.g. agent 1 buys newspaper 1 and/or agent 2

buys newspaper 2), hence less correlation can be more costly in this example.

This discussion suggests that we must think more about modelling the microstructure of infor-

mation acquisition, in order to determine which information structures are more costly. Mech-

anism design with such more specific information acquisition cost structures would certainly

be an interesting future direction, and we hope this article could serve as a first step in that

direction.
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