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Abstract

We study the feasibility and profitability of predation in a dynamic envi-

ronment, using a parsimonious infinite-horizon, complete information setting

in which an incumbent repeatedly faces potential entry. When a rival enters,

the incumbent chooses whether to accommodate or predate it; the entrant

then decides whether to stay or exit. We show that there always exists a

Markov perfect equilibrium, which can be of three types: accommodation,

monopolization, and recurrent predation. We then analyze and compare the

welfare effects of different antitrust policies, accounting for the possibility

that recurrent predation may be welfare improving.
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1 Introduction

Predatory behavior arises when a firm adopts an aggressive strategy –e.g., by charg-

ing low prices, expanding output, launching an extensive advertising campaign, or

introducing fighting brands– intended to prevent entry or induce exit.1 That a firm

intentionally engages in such behavior is highly controversial. Chicago school schol-

ars such as Bork (1978, p. 154) claim that predatory behavior is “a phenomenon

that probably does not exist.”2 The U.S. Supreme Court summarized these views in

Matsushita as a “consensus among commentators that predatory pricing schemes

are rarely tried, and even more rarely successful.”3 Other scholars however, includ-

ing Bolton, Brodley, and Riordan (2000) and Edlin (2012), find instead evidence of

predatory behavior in a variety of industries.

After years of little enforcement in the area of predatory pricing, there is now

a renewed interest in predatory behavior due to the concern that big tech giants

may drive small rivals out of the market.4 For example, the U.S. House Judiciary

Committee’s Antitrust Subcommittee on the state of competition in the digital

economy states in a 2020 report that “[p]redatory pricing is a particular risk in

digital markets.”5 This concern has led policymakers, politicians, and academics to

call for a reform of antitrust laws, and in particular for a more effective treatment of

predation. The U.S. House Judiciary recommends changes in the standard of proof

for predatory pricing cases in order to strengthen antitrust enforcement. Similar

calls were made by Khan (2017) and by the Stigler Committee on Digital Platforms.6

One reason for Bork’s claim that predation “probably does not exist” is that,

following the prey’s exit, the predator will quickly face a new entrant and will

therefore be unable to recoup the losses incurred during the predatory episode. But

1For instance, at the turn of the 20th century, the American Sugar Refining Company (ASRC)
responded to entry with extended periods of below cost pricing; it also reacted to entry by the
leading U.S. coffee roaster by entering and waging a price war in the coffee roasting market; see
Genesove and Mullin (2006). In the early 1970’s, Maxwell House reacted to Folger’s entry into
several cities in the East coast of the U.S. with low prices, extensive promotions and advertising,
and a fighting brand of regular coffee; see Hilke and Nelson (1989).

2Easterbrook (1981) raises similar doubts and writes “there is no sufficient reason for antitrust
law or the courts to take predation seriously.”

3Matsushita Elec. Indus. Co. v. Zenith Radio Corp., 475 U.S. 574, 589 (1986).
4A case in point is the European Commission’s 2019 decision that Qualcomm abused its dom-

inant position by offering targeted below-cost prices to eliminate Icera, its main competitor at
the time in the leading edge segment of the UMTS chipset; see Case AT.39711 – Qualcomm
(predation), 2019/C 375/07.

5See U.S. House Judiciary (2020). In the same vein, Khan (2017) argues that Amazon and Uber
engage in predatory behavior, and Oremus (2021) argues that several services of big tech giants,
such as Facebook Bulletin, Google Photos, Apple TV Plus, and Amazon subscription service,
which are offered for free or for low prices, may be predatory and intended to drive smaller rivals
out of business.

6The Stigler Committee states that “Predatory pricing law should be modified so that it will
be better able to combat anticompetitive pricing by digital platforms and other firms.” See Stigler
Committee (2019), p. 97.
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as Edlin (2012) points out, entry cannot be presumed. Moreover, if a potential

entrant expects the incumbent to be aggressive once it enters, it may prefer to

stay out of the market. In turn, the incumbent’s reaction to entry depends on its

expectations about future entrants’ behavior.

Another controversy concerns the welfare effects of predation. Scholars such as

Areeda and Hovenkamp (2002) and Posner (2001) argue that predatory behavior

potentially harms consumers by reducing competition once the prey exits. Others,

however, point out that the benefit to consumers during the predatory phase is a

sure thing, whereas the resulting harm is speculative, as the prey may not exit and,

even if it does, the threat of new entry may induce the incumbent to maintain its

aggressive strategy.7 The welfare effects of predation are thus a priori ambiguous.8

Analyzing the role of incumbents and entrants’ expectations, as well as assess-

ing the overall welfare impact of predation, requires a fully dynamic framework.

We therefore consider an infinite horizon, perfect information game in which an

incumbent, I, faces a sequence of potential entrants. We impose only minimal as-

sumptions on the firms’ payoffs. In every period, the game starts in one of two

states. In the monopoly state, I is initially alone in the market but, with positive

probability, a potential entrant E is born and decides whether to enter. In the

competitive state, I already faces a rival E and decides whether to predate, which

reduces E’s profit if it stays in the market; having observed I’s decision, E decides

whether to stay. In both states, E’s decision affects I’s profit (which is lower if E

is active) and determines the state of the next period.

We first characterize the Markov Perfect equilibria (MPE) of this game and show

that three types of equilibria can emerge: (i) accommodation, where there is no

predation and the first newborn E enters and stays forever; (ii) recurrent predation,

where every newborn E enters but immediately exits due to predation;9 and (iii)

monopolization, where every newborn E stays out because it expects entry to trigger

predation and with it, its immediate exit. Which type of equilibrium emerges

depends on three considerations. First, predation may be unsuccessful; indeed, I’s

predatory behavior may fail to induce an active E to exit, or a newborn E to stay

out. Second, even if successful, predation may be too costly. As anticipated by Edlin

(2012), this depends crucially on firms’ expectations about their rivals’ behavior,

7This view is summarized by Judge Breyer, who wrote: “[T]he antitrust laws very rarely reject
such beneficial ‘birds in hand’ for the sake of more speculative (future low-price) ‘birds in the
bush”. See Barry Wright Corp. v. ITT Grinnell Corp., 724 F.2d 227, 234 (1st Cir. 1983).

8For instance, Scherer (1976) argues that the overall welfare effect of predation depends on
considerations such as the relative costs of the dominant and fringe firms, the minimal scale of
entry, the incumbent’s behavior in case of exit, and whether fringe firms are driven out entirely.

9For an example of recurrent predation, see Scott-Morton (1997), who studies the British ocean
shipping industry at the turn of the 20th century, and documents in Table V 14 cases where entry
triggered predatory pricing, followed by exit in 6 cases.
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which can give rise to multiple equilibria.10 Indeed, if E expects accommodation

in the future, it may not exit when I predates in the current period, which makes

predation unprofitable. By contrast, if E expects predation in the future, it exits

whenever I predates, which strengthens I’s incentive to predate; as a result, a

predatory equilibrium can exist regardless of the probability of future entry. Finally,

the impact of predation on competition depends on whether hit-and-run entry (one

period of entry, followed by one period of predation and exit) is profitable for E.

We then discuss the policy implications of our analysis. The U.S. and EU treat-

ments of predation have been heavily influenced by Areeda and Turner (1975), who

argue that below-cost pricing should be deemed predatory. Indeed, in Matsushita

the U.S. Supreme Court defined predatory pricing as “either (i) pricing below the

level necessary to sell their products, or (ii) pricing below some appropriate measure

of cost.”11 In Brooke Group, however, the Court added a recoupment requirement

and held that a plaintiff must also prove that “the competitor had a reasonable

prospect of recouping its investment in below-cost prices.”12 In the EU, the Court

of Justice held in AKZO that “Prices below average variable costs [...] by means of

which a dominant undertaking seeks to eliminate a competitor must be regarded as

abusive,” and that “prices below average total costs [...], but above average variable

costs, must be regarded as abusive if they are determined as part of a plan for

eliminating a competitor.”13

Our analysis does not support the emphasis on price-cost comparisons, as below-

cost pricing is neither necessary nor sufficient for successful predation. If entry costs

are high relative to I’s cost, I can deter entry even by pricing above average cost.

Conversely, pricing below marginal cost in the short-run may not enable I to drive

E out of the market it if expects large enough profits in the long-run. By contrast,

the “prospect for recoupment” plays a crucial role in our analysis, which shows how

10In particular, Edlin writes “Whether predation is a successful strategy depends very much
on whether predator and prey believe it is a successful strategy.” Our analysis confirms Edlin’s
intuition and identifies conditions under which multiple equilibria indeed arise. Importantly, since
our game features sequential moves, the multiplicity of equilibria is rooted in the dynamics of the
model and as in Besanko et al. (2010) and Besanko, Doraszelski, and Kryukov (2014), it is due
to firms’ expectations regarding the value of continued play and the fact that there may be more
than one such play that is consistent with rational expectations.

11See Matsushita at 585, n. 8. The Court recalled this definition in Cargill, where it refers
explicitly Areeda and Turner; see Cargill, Inc. v. Monfort of Colorado, Inc., 479 U.S. 104, 117
(1986).

12See Brooke Group Ltd. v. Brown & Williamson Tobacco Corp., 509 U.S. 209, 225–26 (1993).
Although the Brooke Group test has proven difficult to meet (see e.g., Hemphill (2001)), numer-
ous predatory pricing cases have survived summary judgment in U.S. courts, while others have
survived dismissal, which suggests that predation cases may be successfully litigated in the U.S.;
see Hemphill and Weiser (2018).

13Case C-62-86, AZKO Chemie BV v Commission [1991], ECR I-3359, at paragraphs 71-72 .
At paragraph 44 of Tetra-Pak II, the Court further clarified that proof of recoupment was not
needed (Case C-333/94 P, Tetra Pak International SA v Commission [1996], ECR I-5951).
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it depends on the likelihood of exit and of future entry.

Our analysis also does not support a complete ban on predation, even if such

a ban were enforceable. The reason is that the benefit of low prices during the

predatory episode may outweigh the harm from monopoly incurred between exit and

new entry, suggesting that legal rules intended to identify and mitigate predation

should take into account dynamic considerations. This leads us to consider two

rules that do so and are meant to be easier to enforce. The first rule, suggested by

Williamson (1977) and Edlin (2002), curbs the incumbent’s response to entry. The

second rule, suggested by Baumol (1979), curbs instead the incumbent’s response

to exit. Either rule can be used to implement a ban on predation – the original

intent of their proponents – and thus constitutes an alternative to the Areeda-

Turner test. An adequate combination of the two rules, however, can do better

when aggressive behavior is socially desirable, by fostering entry and extending

the phases of aggressive behavior under recurrent predation. The latter can even

provoke its social desirability.

In the rest of the paper, we proceed as follows. First, we relate our analysis

to the literature on predatory behavior. We then present our model in Section 2

and characterize the equilibrium in Section 3. We discuss antitrust intervention in

Section 4 and provide concluding remarks in Section 5. In Appendix A we illustrate

the assumed payoff structure within a standard Stackelberg duopoly. All proofs are

in Appendix B.

Related Literature

There is an extensive theoretical literature on predatory behavior. In an early

survey, Ordover and Saloner (1989) distinguish three strands.14 The first is the

“deep pocket” or “long purse” theory, in which the predator seeks to deplete the

resources of a financially constrained rival (see, e.g., Telser, 1966, and Bolton and

Scharfstein, 1990). The second strand is “predation for reputation,” in which the

predator wishes to appear tough in order to deter future entrants (see, e.g., Kreps

and Wilson, 1982, and Milgrom and Roberts, 1982). The third strand is based on

signaling; there the predator’s goal is to convince the entrant that staying in the

market would be unprofitable, in order to induce it to exit (see, e.g., Roberts, 1986,

and Fudenberg and Tirole, 1986) or acquire it at a low price (see, e.g., Saloner,

1987).

This early literature relies directly or indirectly on information problems: the

deep pocket theory hinges on capital market imperfections that are typically based

on some form of asymmetric information, and in the reputation and signalling theo-

14For a more recent survey, see, e.g., Kobayashi (2010).
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ries, the prey is uninformed about market conditions. More recently, Fumagalli and

Motta (2013) propose an alternative theory that relies on scale or scope economies:

by supplying early buyers at a loss, an incumbent prevents a (possibly more ef-

ficient) rival from reaching a viable scale, which in turn enables the incumbent

to exploit the remaining buyers.15 As in much of the earlier literature, they focus

on the interaction between an incumbent and a single entrant in a finite-horizon

setting.

By contrast, our paper is closer to another strand of the predation literature,

which also uses infinite-horizon, complete information settings but focuses instead

on learning curve dynamics. Cabral and Riordan (1994) study a setting in which, in

each period, two firms compete for a buyer. Winning the current competition lowers

future costs due to a learning curve effect; this induces the firm to price aggressively,

in order to lower its own future costs and prevent the rival from doing so. When a

firm gains a sufficiently large cost advantage over the rival, the latter exits, which

further encourages investments in cost-reduction. Their model, as ours, can give

rise to multiple equilibria with and without predatory-like behavior, and below-cost

pricing is neither a necessary nor sufficient indication of predatory behavior. They

also find that predation has ambiguous welfare effects; in particular, by fostering

learning and reducing costs, it may benefit consumers even in the long run.16 An

important difference between their paper and ours is that they do not allow for

recurrent entry, which plays a key role in our setting.

Besanko, Doraszelski, and Kryukov (2014,2019) build on Cabral and Riordan

(1994), using numerical simulations that allow for re-entry. They show that preda-

tory motives constitute an important driver of competition and compare the equilib-

rium outcomes with that of a social planner. Their analysis also highlights the fact

that predatory pricing can either harm or benefit consumers, and that blunt pricing

conduct restrictions can lead to substantial welfare losses. Besanko, Doraszelski, and

Kryukov (2020) adapt the definitions of predation from Ordover and Willig (1981)

and Cabral and Riordan (1997) to a Markov-perfect industry-dynamics framework

and construct sacrifice tests. These tests disentangle an illegitimate profit sacrifice

stemming from predatory pricing from a legitimate effort to increase cost efficiency

through aggressive pricing.

We focus instead on the debate about the plausibility of predation under per-

sistent threat of entry and its implications for antitrust enforcement. We thus also

abstract from learning curve effects (in addition to abstracting from asymmetric

information, financial constraints, and scale economies) and show that firms’ ex-

15A similar insight obtains when multiple buyers face some form of mis-coordination.
16Cabral and Riordan (1997) consider a two-period Cournot variant in which, conversely, pre-

dation may harm consumers in the short-run, as the predator’s aggressive behavior may be offset
by the prey’s softer reaction.
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pectations about the future behavior of rivals suffice to give rise to predation.17 In

essence, we adopt a similar approach to Asker and Bar-Isaac (2014) and use an

infinite horizon, perfect information Markovian framework. Instead of studying ex-

clusion within a vertical context as they do, we study exclusion within a horizontal

context. Moreover, we adopt a sequential-move setting that minimizes the scope for

multiple equilibria, as firms always make their decisions under complete information

about their competitive environment. We characterize the conditions under which

predation deters entry, thereby leading to monopolization, and the conditions under

which newborn rivals keep entering and the incumbent fights them. Finally, we use

our framework to assess the welfare effect of current and alternative legal rules.

2 The model

Consider an infinite-horizon, discrete time setting in which an incumbent I faces

a sequence of potential entrants denoted by E. In each period, the game starts in

one of two states: (i) a monopoly state, M, in which I is initially the only firm in

the market, but E may enter; or (ii) a competitive state, C, in which I and E are

both initially in the market, but E may exit. When a newborn E does not enter or

an existing E exits, it dies but a new E (possibly an E that exited earlier) may be

born in future periods. All firms face the same discount factor δ ∈ (0, 1).

The timing and profits are as follows:

• In stateM, a potential entrant E is born with probability β and decides whether

to enter. If E was not born, or was born but decided not to enter, I obtains the

monopoly profit πmI and the next period starts again in state M. If instead E

enters, it incurs a one-time entry cost k > 0, I and E obtain the competitive profits

πcI and πcE − k, and the next period starts in state C.18

• In state C, I first decides whether to predate or to accommodate. Having observed

I’s decision, E decides whether to stay or to exit. If I predates and E exits,

I’s profit is πpI and the next period starts in state M. If E stays despite being

predated, the profits of I and E are πpI and πpE, and the game remains in state C.
17For an early exploration, see Appendix A of Milgrom and Roberts (1982), where they consider

an infinitely repeated version of Selten’s chain store paradox. By assumption, the stage game
in their model is infinitely repeated, and hence, their model features infinitely many markets,
each is contested only once. They show that their game admits uncountably many pure-strategy
equilibria, including equilibria in which predation prevents entry on arbitrary numbers of instances.
By contrast, we consider a dynamic game with infinite horizon, where the stage game in each period
depends on whether there was entry in previous periods and whether the entrant has stayed in
the market or exited. In our setting, only three pure-strategy equilibria can arise. We characterize
the conditions on the key drivers that determine the type of equilibrium (namely, monopolization,
predation or accommodation) that can arise.

18An alternative interpretation of the stochastic process is that entry cost is either k with
probability β, or is prohibitively costly with probability 1− β.
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If I accommodates and E stays, I and E obtain the same competitive profits as in

state M, πcI and πcE, except that now E does not incur the entry cost, k, and the

game remains in state C. If instead E exits, I’s profit is πcI and the next period

starts in state M.

Table 1 provides a summary of the firms’ profits:

E enters E stays out

State M πcI , πcE − k πmI , 0

E stays E exits

State C I accommodates πcI , πcE πcI , 0

I predates πpI , πpE πpI , 0

Table 1: Profits

We naturally assume that πmI > πcI > max {πpI , π
p
I}: in state M, I obtains a

higher profit when it is alone in the market; and in state C, I obtains a higher profit

under accommodation than under predation.19 Also, to rule out uninteresting cases,

we make the following assumptions:

πcE > (1− δ) k and πpE < 0.

If the first assumption is violated, E’s discounted sum of competitive profits falls

short of the entry cost even if E is always accommodated. Hence, entry is blockaded.

If the second assumption is violated, E never exits the market once it has already

entered, so predating an existing entrant is impossible. These assumptions are quite

natural. Moreover, our stylized approach is sufficiently flexible to allow for product

differentiation, price and quantity competition, multi-product firms and (mixed)

bundling, and so forth. A more special assumption we make is that I’s profit in

state M if entry occurs is equal to its profit in state C. We make this assumption

for expositional simplicity (it economizes on notation), but show in Appendix A

that it holds in a classic Stackelberg model.20 Furthermore, in that model we can

either have πpI > 0 (in which case I’s price is above average cost) or πpI < 0 (in

which case I’s price is below average cost) under predation.

19While one might assume realistically that I also obtains a higher profit when it operates alone
in the market in state C (πcI > πcI and πpI > πpI), the analysis does not rely on these assumptions.

20More generally, the assumption could also hold in a model in which I has only a limited
number of options (e.g., build a new plant or not) and the same option turns out to be optimal
under monopoly and under competition (which in our model is sequential as I chooses its strategy
before E).
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Our setting is very parsimonious. In particular, E must simply decide whether

to be in the market or not, and I needs to make a decision only in state C, namely,

whether to predate or accommodate E; in state M, I has no decision to make.

The “length” of a period can be interpreted as the time lag before I can react to

a change in its environment. Consider for instance a continuous time version, in

which I can only choose to either behave unaggressively or aggressively, and cannot

switch instantaneously. That is, if either entry or exit occurs at time t, I cannot

adjust its behavior until time t+τ .21 Assuming that “fighting” is sufficiently costly,

I will behave normally until entry occurs, and will then either stick to this behavior,

or fight E as soon as possible, that is, after a time lag τ . Assuming that E, as a

new entrant, is more agile and can react at once, E will exit as soon as predation

occurs, and I will be able to revert to its pre-entry strategy after the time lag τ .

3 Equilibrium analysis

We focus on pure-strategy Markov Perfect equilibria (MPE). That is, firms adopt

stationary Markovian strategies that depend only on payoff-relevant history.22 A

Markov strategy for I is the decision to either predate or accommodate in state C.
Likewise, a Markov strategy for a newborn E is the decision to either enter or stay

out in state M, and a mapping from I’s action into the decision to either stay in

the market or exit in state C.23

Three possible types of equilibria may emerge. If I accommodates in state C,
we get an accommodation equilibrium, as the viability assumption πcE > (1− δ) k
ensures that (i) in state C, E stays forever, as its per-period profit, πcE, is positive,

and (ii) in state M , the first newborn E enters the market, as the per-period profit

21The assumption that reacting to entry takes time is realistic. For example, when Icera entered
the UMTS baseband chipsets in October 2008, Qualcomm reacted only in July 2009 (by offering
certain quantities of three of its UMTS chipsets to “two of its key customers, Huawei and ZTE,
below cost, with the intention of eliminating Icera”); see Case AT.39711 –Qualcomm (predation),
2019/C 375/07, Paragraph 1. Likewise, when Vanguard entered the Dallas-Forth Worth to Kansas
City route at the end of January 1995, American Airlines responded only in June-July 1995 (by
adding six daily non-stop flights into this route in order to “stand up against Vanguard’s service
in the market”); see United States of America v. AMR Corporation, American Airlines, Inc., and
AMR Eagle Holding Corporation, (April 2001): Summary Judgement Decision No. 99-1180-JTM.
A third example is Sierra Redi-Mix which, in response to D&S Redi-Mix entry into the concrete
market in Sierra Vista, Arizona in December 1969, reacted only in August 1970 (when it “heavily
subsidized” Cashway to compete with D&S Redi-Mix and cause D&S Redi-Mix to “suffer severe
cash flow problems”); see D&S Redi-Mix v. Sierra Redi-Mix and Contracting Co., 692 F.2d 1245
(9th Cir. 1982).

22See Maskin and Tirole (1988).
23We focus on pure strategies to streamline the exposition. Allowing for mixed strategies would

not change the qualitative insights. In particular, whenever a mixed-strategy equilibrium exists,
there also exists a pure-strategy equilibrium that either yields the same equilibrium path or entails
more exclusion.
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covers the amortization of the entry cost. If instead I predates in state C, the non-

viability assumption πpE < 0 ensures that E exits at once in state C.24 In state M,

a newborn E then enters for one period if its one-period profit, πcE, covers the entry

cost k, so we get an equilibrium with recurrent predation; otherwise a newborn E

stays out of the market, so we get a monopolization equilibrium.

With our first proposition, we establish existence and show that the type of

equilibrium depends on two key parameters: E’s profit under accommodation, πcE,

and I’s “cost-benefit ratio” of predation,

λ ≡ πcI − π
p
I

πmI − πcI
.

Its numerator reflects the profit sacrifice incurred in a predation period, πcI − π
p
I ,

and its denominator the monopolization benefit obtained in a subsequent period,

πmI − πcI .
Specifically, using the thresholds

π̂cE ≡ −
1− δ
δ

πpE(> 0), λ ≡ (1− β) δ

1− (1− β) δ
(> 0) and λ ≡ δ

1− δ
(> λ) ,

we have:

Proposition 1 (equilibrium outcomes) The (pure-strategy) Markov perfect equi-

librium outcomes are as follows:

(i) Accommodation: I accommodates entry, and the first newborn E enters

and stays forever; such an equilibrium exists if and only if either πcE ≥ π̂cE or

λ ≥ λ.

(ii) Recurrent predation: I predates in case of entry, and newborn E’s enter

for only one period; such an equilibrium, which features hit-and-run entry,

exists if and only if πcE ≥ k and λ ≤ λ.

(iii) Monopolization: I predates in case of entry, and newborn E’s stay out;

such an equilibrium exists if and only if πcE ≤ k and λ ≤ λ.

Proof. See Appendix B.1.

When E expects accommodation in the future, it anticipates a gross profit of

πcE from the next period onward. If this profit is large enough, namely πcE ≥ π̂cE, E

24Note that in and of itself, the assumption that πpE < 0 is not sufficient to ensure that predation
is successful as E may stay in the market if it expects to be accommodated in future periods. But
if I predates whenever in state C, E cannot make profit in any period and is therefore better off
exiting.

9



is willing to stay in the market even if I were to predate it in the current period.25

Accommodation is then self-sustainable, as predation does not induce E to exit. If

instead πcE < π̂cE, deviating to predation would trigger exit, but is unprofitable if the

cost-benefit ratio is too low, namely λ ≥ λ: as predation yields a monopolization

benefit as long as no other entrant appears, the total expected discounted value of

this benefit obtained from next period on is λ (πmI − πcI), which is then lower than

the short-run sacrifice, πcI − π
p
I .

When E expects predation in the future, it exits as soon as possible to avoid

losses. However, if πcE ≥ k, a one-period profit covers the entry cost; the equilibrium

thus features recurrent phases of hit-and-run entry followed by predation and exit.26

For such an equilibrium to exist, I must be willing to predate, which amounts

to λ ≤ λ, as the total expected discounted value of the monopolization benefit

(between phases of hit-and-run entry) is again equal to λ (πmI − πcI).
Finally, when E expects predation but πcE ≤ k, hit-and-run entry is unprofitable;

predation is therefore more attractive for I, as it generates a monopolization benefit

forever. As a result, the monopolization equilibrium arises for a larger range of the

cost-benefit ratio, namely, λ ≤ λ.

The above thresholds on the ratio λ can be regarded as recoupment tests, as

they amount to assessing whether in equilibrium I’s benefit from predation is less

than, or exceeds its cost. The benefit depends critically on whether the dominant

firm expects to become only a temporary monopoly until a new entrant is born, or

a permanent one. Which threshold (λ for temporary monopoly or λ for permanent

monopoly) becomes relevant depends on whether hit-and-run entry is profitable for

the typical E. This challenges the recommendation adopted by the U.S. House

Judiciary (2020) to override several decisions of the U.S. Supreme Court, and to

clarify that “proof of recoupment is not necessary to prove predatory pricing or

predatory buying”.27

In Figure 1 we display the equilibrium outcomes as a function of E’s profit πcE
– in the relevant range πcE > (1 − δ)k – and of I’s cost-benefit ratio of predation

λ. Accommodation is an equilibrium whenever predation is sufficiently costly for I

25To see why, note that πcE ≥ π̂cE is equivalent to δ
πc
E

1−δ ≥ −π
p
E , implying that the future gain

from accommodation exceeds the current loss from predation.
26The existence of hit-and-run entry depends on our assumption that I cannot react immediately

to entry – it can do so only in the next period, when the state changes fromM to C. As mentioned
above, this assumption is consistent with real-life examples from predatory cases. The assumption
is also consistent with Spence (1983), who argues that two assumptions are required for hit-and-
run entry: (i) the incumbent’s response time is longer than the time it takes the entrant to recover
its sunk cost of entry, and (ii) demand responds instantaneously to price changes or to price
differentials. Both of these assumptions are satisfied in our model.

27See U.S. House Judiciary (2020). The quoted decisions are Matsushita (cf. footnote 3), Brooke
Group (cf. footnote 12), and Weyerhaeuser Co. v. Ross-Simmons Hardwood Lumber Co., 549
U.S. 312 (2007).
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(a) π̂cE > k (b) π̂cE < k

Figure 1: Equilibrium outcomes
A: Accommodation; P: Predation; M: Monopolization

(λ ≥ λ) and/or entry is sufficiently profitable for E (πcE ≥ π̂cE). Recurrent predation

is instead an equilibrium when predating is sufficiently beneficial for I (λ ≤ λ)

and hit-and-run entry is profitable for E (πcE ≥ k). Finally, monopolization is an

equilibrium if predation is relatively beneficial for I (λ ≤ λ) and hit-and-run entry

is unprofitable for E (πcE ≤ k). Interestingly, these findings tend to support the

above-mentioned concerns of monopolization by Big Tech, as increasing exploitation

of network effects and multi-sidedness, combined with the role of data, tend to boost

the profit from predation (thus reducing λ) and raise entry barriers (thus increasing

k).28

As mentioned in the Introduction, Bork and Easterbrook have expressed skepti-

cism about predation, based on the argument that, once the prey exits, new entry

would render predation unprofitable. Proposition 1 offers a more nuanced view. It

does confirm the intuition that predation is less likely when entry is easy. In our

model, this is the case when the likelihood that a new entrant is born, β, is high

(i.e., close to 1) and the entry cost, k, is low. In terms of Figure 1, the horizontal

line λ = λ shifts downward as β increases and the vertical line πcE = k shifts inward

as k decreases; as a result, accommodation arises for a wider set of parameters,

and constitutes the unique equilibrium in the limit case where β = 1 (implying

λ = 0) and k = 0. However, outside this limit case, predation arises whenever it is

not too costly (namely, when the cost-benefit ratio λ is sufficiently low): recurrent

predation then constitutes an equilibrium whenever β < 1 (even if k = 0), and mo-

nopolization constitutes instead an equilibrium whenever πcE ≤ k (even if β = 1).

28Khan (2017) moreover notes that the particular high price of Amazon’s stock (and the fact
that it reported losses for the first seven years, as well as more recently) suggests that its investors
are particularly patient (thus increasing δ).
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This suggests that, although Bork’s and Easterbrook’s skepticism is justified in the

limit, predation remains a valid concern in general.

Moreover, as anticipated by Edlin (2012), Proposition 1 shows that the role of

firms’ expectations about their rival’s behavior can lead to a multiplicity of equilib-

ria, in which accommodation may coexist with temporary or permanent exclusion.

This occurs in two instances.29 If λ < λ, even temporary exclusion is profitable

for I. In this case, exclusion (temporary if πcE ≥ k, and permanent otherwise) can

always arise, because if E expects predation in the future, then it exits whenever I

predates, which in turn induces I to do so. Yet accommodation can also arise when

πcE ≥ π̂cE, because if E expects accommodation in the future, then it would stay in

the market even if I were to deviate to predation.

If instead λ ∈
[
λ, λ
]
, exclusion is profitable for I only when it is permanent, that

is, when hit-and-run entry is not profitable: πcE ≤ k. In this case, monopolization

can indeed arise, because if I expects future E’s to exit in case of predation, it has

an incentive to do so whenever a new E enters, which in turn deters entry. Yet

accommodation can also arise, because if I anticipates entry in the future, then

it does not find it profitable to predate, as the benefit of a temporary monopoly

position does not compensate the short-run sacrifice. It is worth noting that, in the

range where πcE ≤ k and λ ≤ λ, the monopolization equilibrium exists regardless

of the probability β that a potential entrant arrives: I is willing to predate even

when β → 1, as potential entrants, anticipating predation, prefer to stay out. This

challenges Bork’s or Easterbrook’s views that (potential) entry diminishes, if not

nullifies the scope for predation.

We conclude this section by noting that the incumbent always prefers predatory

equilibria:30

Proposition 2 (profitable predation) I prefers the predatory equilibria when-

ever they coexist with the accommodation equilibrium, and the monopolization equi-

librium whenever it coexists with the predation equilibrium.

Proof. See Appendix B.2.

The intuition is straightforward and relies on the observation that, in any preda-

tory equilibrium, I could always secure the accommodation payoff by never pre-

dating. Hence, by revealed preferences, predation must be more profitable for I

whenever it arises in equilibrium.

29Another (non-generic) instance arises when πcE = k, implying that E is indifferent between
staying or exiting when it expects predation in the future. The monopolization and predation
equilibria then coexist if λ ≤ λ.

30In the boundary (and, thus, non-generic) case where λ = λ (resp., λ = λ), I is indifferent
between accommodation and monopolization (resp., recurrent predation). From here on, we focus
on generic situations.
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4 Policy implications

As mentioned in the Introduction, designing an appropriate policy for predation in-

volves two main difficulties. The first difficulty is that the welfare effects of preda-

tory behavior are in general ambiguous, because intense competition during the

predatory phase may be pro-competitive and outweigh the anticompetitive effect

when the prey exits. Hence, whether antitrust laws should outright prohibit preda-

tion is unclear. We address this issue in Subsection 4.1.

The second main difficulty is that in many, or even most, real-life cases it is

unclear whether a given strategy is legitimate and reflects healthy competition, or

is predatory and intended to induce a rival to exit. Recognizing this difficulty,

several legal rules have been proposed to identify predatory behavior.31 The most

well-known legal rule, proposed by Areeda and Turner (1975), deems prices below

average variable cost as predatory. Although the U.S. and EU antitrust approaches

to predatory pricing build on it, this rule has been criticized on several grounds.

First, a static price-cost comparison may lead to substantial type I and type II

errors. Type I errors (wrongly condemning the innocent) may arise because pricing

below cost may be desirable regardless of the impact on rivals, for instance, to move

down the learning curve, to signal high quality to consumers via an introductory

offer, or to attract consumers and sell them other products. Conversely, type II

errors (failing to convict the guilty) may arise because a price above average variable

cost may suffice to induce a weaker – or financially fragile – rival to exit.32 Second,

even if at first glance the Areeda-Turner rule may appear simple to enforce, in

reality average variable costs are often difficult to measure, especially when firms

have large common costs. Third, the rule is static and overlooks the dynamic nature

of predatory pricing.

Our analysis is consistent with these criticisms of the Areeda-Turner rule. In

Proposition 1 we show that recurrent predation occurs if and only if πcE ≥ k and

λ ≤ λ. The first condition is independent of I’s profit, and the second can hold

even if πpI > 0, that is, when I’s price is above its average total cost, and thus,

above average variable cost. As already noted, the second condition supports the

use of appropriate recoupment tests, adequately accounting for the dynamic nature

of predation; the caveat is that these tests suffer from measurement difficulties as

well.

The controversy around the Areeda-Turner rule has led scholars to propose

31For an early overview and assessment of these rules, see, e.g., Joskow and Klevorick (1979).
32For instance, according to Edlin (2002), in the late 1990s American Airlines succeeded in

driving Vanguard Airlines out of the Kansas City-Dallas Fort Worth route by lowering its fares
by over twenty-five percent and increasing the frequency of its flights. The DOJ sued American
Airlines for predatory pricing but lost because American Airlines’ fares were found to be above
cost. In our analysis, predatory behavior is consistent with either above-cost or below-cost pricing.
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rules that avoid the difficulty of measuring the alleged predator’s cost and examine

instead its reaction to entry or exit, which is arguably easier to observe and measure.

Another advantage of these rules is that they avoid the need to conduct recoupment

tests which have proven hard to meet,33 nor consider the expectations of the alleged

predator and prey, which are often impossible to establish in court. Finally, as we

show below, these rules can also be useful when predation is welfare-improving. We

study two such rules in Subsections 4.2 and 4.3, and then a more general policy

that combines the two rules in Subsection 4.4.

For the purpose of the analysis, we assume that regulators (e.g., competition

agencies) rely on a given welfare criterion, and denote by wm, wc, and wp the

per-period welfare under monopoly, competition, and predation. It is natural to

assume that wm < min{wc, wp}, so that in the short-term both competition and

predation increase welfare relative to monopoly. The comparison between wc and

wp is a priori less clear, as in the latter case I is alone in the market but behaves

aggressively. Finally, we assume that in case of entry, welfare is wc − αk, where

α ∈ [0, 1] denotes the share of the entry cost that regulators take into account in

the welfare criterion.34

To assess the equilibrium level of welfare, we will assume that states M and

C prevail according to their long-run probabilities of occurrence, which we denote

by µC and µM. In an accommodation equilibrium, state C eventually prevails with

probability 1, so total discounted welfare is

WA ≡ wc

1− δ
. (1)

In a monopolization equilibrium, stateM eventually prevails with probability 1, so

total discounted welfare is

WM ≡ wm

1− δ
. (2)

Finally, in a recurrent predation equilibrium, expected welfare is (1− β)wm +

β (wc − αk) in state M and wp in state C. As state C occurs if and only if a

new E was born in the previous period, the long-run probabilities of statesM and

C satisfy

µC = βµM,

33The U.S. House Judiciary (2020) notes that “Since the recoupment requirement was intro-
duced, successful predatory pricing cases have plummeted.”

34Many jurisdictions, including the U.S., the UK, and the EU, focus on consumer surplus
(OECD, 2012, p. 27). In that case, α = 0. Other countries, including Canada and Norway,
pursue instead a total welfare standard that assigns an equal weight to consumer surplus and
profits (OECD, 2012, p. 27), in which case α = 1. Australia places a larger weight on consumer
surplus than on profits (OECD, 2012, p. 66-67), which corresponds to 0 < α < 1.
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which, using µC + µM = 1, yields:

µM =
1

1 + β
and µC =

β

1 + β
.

Total expected discounted welfare in the long run is thus given by:

W P ≡ µM [(1− β)wm + β(wc − αk)] + µCw
p

1− δ

= WA +
(1− β) (wm − wc) + β (wp − wc − αk)

(1 + β) (1− δ)
. (3)

As wm < wc, W P can exceed WA only if β is sufficiently large and wp > wc + αk;

that is, if new entrants are born with large enough probability and the per-period

welfare under predation is sufficiently larger than that under accommodation, gross

of (welfare relevant) fixed cost of entry.

A policy intervention may influence the equilibrium in three ways. First, it may

affect the path of a given type of equilibrium –in particular the duration of the

hit-and-run and predation phases. Second, it may affect the type of equilibrium

that may arise. Third, when multiple types of equilibria exist with and without it,

the rule could potentially, and somewhat artificially, serve as a coordination device,

inducing a switch from one type of equilibrium (under laissez-faire) to another

(under policy intervention). To avoid this latter effect, we shall adopt the following

selection criterion:

Assumption A: When multiple equilibria co-exist under a rule, the equilibrium

most profitable for the incumbent is selected.

From Proposition 2, this selection criterion amounts to favor predation over ac-

commodation (and monopolisation over recurrent predation in the boundary cases

where both types of predatory equilibria coexist). It can therefore be motivated in

two ways. One motivation is simply that the equilibrium preferred by the incum-

bent, who acts as a leader in each period of competition, becomes focal.35 Alterna-

tively, and given the objective of studying policies designed to fight predation, this

selection rule can be seen as precisely maximizing the scope for predation.

Under Assumption A, laissez-faire yields accommodation when this constitutes

the unique equilibrium in the baseline setting, recurrent predation when this consti-

tutes the unique predatory equilibrium in the baseline setting, and monopolization

whenever there exists such an equilibrium in the baseline setting. From Propositions

1 and 2, we thus have:

35Cooper et al (1993) find experimental evidence that the outcome preferred by a first mover is
focal and is played 90% of the time.
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Corollary 1 (equilibrium selection) Laissez-faire yields monopolization if πcE ≤
k and λ ≤ λ, recurrent predation if πcE > k and λ ≤ λ, and accommodation

otherwise.

Proof. Follows directly from Assumption A and Propositions 1 and 2.

The resulting equilibrium outcomes are shown in Figure 2.36

Figure 2: Equilibrium selection
A: Accommodation; P: Predation; M: Monopolization

4.1 Banning Predation

To assess the effect of a complete ban on predation, we compare the equilibrium

welfare levels with those in a counterfactual where predation is no longer possible

in state C.37 It follows that, on the equilibrium path, a newborn E eventually enters

the market in stateM and stays forever; total discounted welfare is therefore WA.

When laissez-faire yields accommodation, predation is a non-issue, and a ban

is therefore irrelevant. When instead laissez-faire yields a predatory equilibrium, a

ban forces a switch to accommodation. Building on this, and comparing welfare

under predation and accommodation, leads to:

36As already mentioned, allowing for mixed strategies never generates more exclusion – see
Footnote 23. It follows that mixed-strategy equilibria could be selected under Assumption A only
when featuring the same equilibrium path as the most predatory equilibrium in pure strategies (i.e.,
when differing from that equilibrium only by introducing randomization off the equilibrium path)
– the only caveat is for the non-generic case λ ≤ λ, where I is indifferent between accommodation
and predation; in that case, a mixed-strategy equilibrium, in which E always enters and I predates
with some probability, could possibly be selected instead of the recurrent predation pure-strategy
equilibrium.

37Under the current legal rules, a ban on predation is largely theoretical, given the practical
difficulty to determine whether a given strategy is legitimate or predatory. The “dynamic” legal
rules considered below may however help enforce a ban.
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Proposition 3 (banning predation) Compared with laissez-faire, a ban on pre-

dation:

(i) is undesirable when laissez-faire yields recurrent predation and

(1− β)wm + β (wp − αk) > wc;

(ii) is otherwise desirable whenever relevant.

Proof. See Appendix B.3.

A ban has an effect only if a predatory equilibrium arises under laissez-faire. In

case of monopolization, E never enters and I becomes a permanent monopolist. A

ban on predation is then clearly socially desirable, as in each period it increases

welfare from the monopoly to the competitive level.

In case of recurrent predation, “ hit-and-run” phases (one period of entry, fol-

lowed by one period of predation and exit) alternate with monopoly phases. Com-

pared with accommodation, in hit-and-run phases a social entry cost αk is incurred

in the first period, and welfare changes from wc to wp in the second period; in

monopoly phases, welfare decreases from wc to wm. It follows that accommodation

is strictly preferable so long as welfare under competition, wc, exceeds a weighted

average of welfare in monopolization periods, wm, and in predatory periods, wp−αk,

with weights reflecting the relative frequency of these periods. In particular, as en-

try occurs every time a new entrant is born in case of recurrent predation, and at

most once in case of accommodation, a ban is more likely to be desirable when the

entry cost k is large.

Proposition 3 is consistent with Cabral and Riordan (1997), who also show that

a ban on predation may not be desirable.38. An important difference is that in their

model, the incumbent’s output expansion during the predatory phase lowers its cost

due to a learning curve effect. As a result, consumers may benefit from predation

even once the prey has exited. By contrast, in our model consumers benefit from

predation only during the predatory phase.

Proposition 3 is also related to Atad and Yehezkel (2024). They consider an

infinite-horizon model of platform competition between an incumbent platform and

an entrant and examine the welfare effects of a ban on negative prices, which they

interpret as predatory. They show that the ban decreases consumer surplus when

imposed on both platforms, but raises consumers surplus when imposed only on the

incumbent platform.39

38This is also indicated by Besanko et al. (2014)
39Proposition 3 is also related to the debate on “resale-below-cost” (RBC). See OECD (2007)

for an overview of this debate, and Chen and Rey (2012, 2019) for analyses of the impact of RBC
laws on competition and welfare.
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4.2 Curbing the Response to Entry

In this section we consider a legal rule proposed by Williamson (1977) and Edlin

(2002) to identify and mitigate predatory behavior. Unlike that of Areeda and

Turner, this rule is not cost-based; rather, it is intended to limit temporarily the

incumbent’s ability to aggressively react to entry. Specifically, Williamson (1977)

proposed an “output restriction rule” stipulating that “the dominant firm cannot

increase output above the pre-entry level” for a period of 12 − 18 months. Edlin

(2002) proposed a closely related rule requiring that “ if an entrant prices twenty

percent below an incumbent monopoly, the incumbent’s prices will be frozen for

twelve to eighteen months,” but added that “[T]he exact operationalization of the

rule (twenty percent threshold and twelve to eighteen months duration) could vary

by industry or be decided on a case-by-case basis.” Although Edlin’s proposal differs

from that of Williamson in terms of specifics, in our parsimonious model the two

are isomorphic.

To explore the implications of these proposals, we consider a Williamson-Edlin

defined as follows: in the event of entry, I’s strategy is “ frozen” for TWE periods.

I and E thus obtain πcI and πcE − αk in the period of entry, and πcI and πcE in each

of the ensuing freeze periods. Once the freeze is over, the state switches to C, and

I is free to predate if it wishes. In other words, the rule protects the entrant from

predation for TWE additional periods. Increasing TWE progressively extends the

entrant’s protection from laissez-faire (TWE = 0) to a complete ban on predation

(TWE →∞).

Under the Williamson-Edlin rule, a newborn entrant can secure a minimal dis-

counted profit given by

(πcE − k) + δπcE + ....+ δTWEπcE =
πcE

ψ (TWE)
− k,

where

ψ (T ) ≡ 1− δ
1− δT+1

(4)

is strictly decreasing in T , from 1 for T = 0 to 1− δ for T =∞. By expanding the

duration of the hit-and-run phases, the Williamson-Edlin rule thus also enhances

their profitability. Specifically, when πcE ≥ k, entry is viable even without a freeze

(i.e., for TWE = 0). By contrast, if πcE < k, the minimal freeze duration that makes

entry viable is positive and equal to

TMWE(πcE) ≡ ψ−1(
πcE
k

).

Building on these observations leads to:
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Proposition 4 (Williamson-Edlin rule) The Williamson-Edlin rule affects the

equilibrium outcome as follows:

(i) If laissez-faire yields accommodation, the rule is irrelevant.

(ii) If laissez-faire yields recurrent predation, the rule modifies it by enabling E to

stay in the market during the TWE periods of the freeze before exiting.

(iii) If laissez-faire yields monopolization, the rule is ineffective unless TWE >

TMWE(πcE), in which case it induces a switch to accommodation if λ > λ, and

to (modified) recurrent predation otherwise.

Proof. See Appendix B.4.

A first insight from Proposition 4 is that, as in the case of a ban on predation,

the Williamson-Edlin rule is irrelevant when laissez-faire yields accommodation.

Indeed, the rule has no bite on the equilibrium path as I never predates anyway,

and it has no bite either on the continuation equilibrium path that follows a one-

period deviation to predation by I in state C. Hence, the rule does not affect the

sustainability of accommodation, which remains self-sustainable whenever entry is

sufficiently profitable for E (i.e., πcE ≥ π̂cE), and remains otherwise sustainable

whenever predation is too costly for I (i.e., λ ≥ λ).

The Williamson-Edlin rule however increases the duration and profitability of

hit-and-run phases for the entrant, which encourages entry and reduces the scope for

monopolization.40 Specifically, hit-and-run entry becomes viable for a larger range

of parameters, namely, whenever πcE ≥ ψ(TMWE)k. A long enough freeze induces

E to enter even if it expects I to predate at the end of the freeze. Hence the

equilibrium switches from monopolization to recurrent predation if inducing exit

remains profitable (i.e., if λ < λ), and to accommodation otherwise. In addition,

by extending the length of the hit-and-run entry phases, the rule increases the

frequency of the periods of competition. In particular, as TWE → ∞, the first

newborn E enters and competes forever, and the rule thus de facto replicates a ban

on predation.

By contrast, the rule does not affect I’s incentive to predate. This is obvious

in the case of monopolization: as I expects no future entry regardless of the rule,

it is willing to predate whenever λ ≤ λ, as before. But this is also true in the face

of recurrent entry, where I remains willing to predate whenever λ ≤ λ. This is

because, in the limit case where predation is barely sustainable, the monopolization

40In a model in which I can choose between more than two actions, the rule may also induce
I to choose a more competitive action in state M in order to be in a better competitive position
following entry.
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benefit is the same as in an accommodation equilibrium, where it is unaffected by

the rule.

We illustrate these findings in Figure 3a below. The Williamson-Edlin rule leaves

unchanged the horizontal boundaries below which the predatory equilibria exist

(i.e., λ = λ for monopolization and λ = λ for recurrent predation), as well as the

vertical boundary beyond which accommodation is self-sustainable (i.e., πcE = π̂cE).

By contrast, the rule shifts inward the vertical boundary beyond which hit-and-run

entry is viable, which becomes πcE = ψ(TWE)k, with ψ(TWE)k decreasing from k

when TWE = 0 to (1− δ) k as TWE → ∞. Thus the region where monopolization

can arise shrinks, and disappears altogether as T → ∞. Specifically, if monop-

olization arises under laissez-faire, it is progressively replaced by accommodation

when λ ∈
(
λ,λ
]
, and by recurrent predation when λ ≤ λ. In both cases welfare is

enhanced, as it is lowest under monopolization.

4.3 Curbing the Response to Exit

Baumol (1979) proposed a legal rule intended to curb the incumbent’s response

to exit rather than to entry. The idea is to reduce the scope for recoupment, by

forbidding the incumbent to increase its price or restrict its output once the prey

exits. Although Baumol advocated a “ quasi-permanent” constraint,41 we allow for

more flexibility and consider the following rule: if E exits, then I’s strategy is

frozen for TB periods. As TB increases, the rule becomes stricter, from laissez-

faire (for TB = 0) to Baumol’s original proposal (for TB → ∞). As we shall see,

although this rule does not formally nest a complete ban on predation as a special

case, recoupment becomes impossible when TB →∞, and thus I never predates in

equilibrium; hence, the outcome is equivalent to that of a complete ban.

Extending the freeze increases I’s cost of predation both by expanding the phase

of aggressive action during which its profit is low, and by postponing the benefit of

monopoly, i.e., the recoupment phase. We show in Appendix B.5 that, as a result,

the cost-to-benefit ratio λ is multiplied by 1/φ (TB), where

φ (T ) ≡ δT
1− δ

1− δT+1

(
= δTψ (T )

)
is strictly decreasing in T , from 1 for T = 0 to 0 for T = ∞. Hence, as TB

increases, predation is less likely to be profitable. Specifically, monopolization is

no longer profitable when TB > TMB (λ) in case of monopolization and TB > T PB (λ)

41Baumol explains his proposal as follows: “Under such an arrangement, the established firm
would be put on notice that its decision to offer service at a low price is tantamount to a declaration
that this price is compensatory, and thus, that it can be expected, in the absence of exogenous
changes in costs or demands, to offer the service at this price for the indefinite future.”
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otherwise, where

T PB (λ) ≡ φ−1(
λ

λ
) and TMB (λ) ≡ φ−1(

λ

λ
).

Building on these observations leads to:

Proposition 5 (Baumol rule) The Baumol rule affects the equilibrium outcome

as follows:

(i) If laissez-faire yields accommodation, the rule is irrelevant.

(ii) If laissez-faire yields recurrent predation, the rule induces a switch to accom-

modation if TB > T PB (λ), otherwise it only modifies the equilibrium by forcing

I to predate for TB additional periods in case of exit.

(iii) If laissez-faire yields monopolization, the rule induces a switch to accommo-

dation if TB > TMB (λ), otherwise it is ineffective.

Proof. See Appendix B.5.

As the previous rules, the Baumol rule is again irrelevant when laissez-faire yields

accommodation. Furthermore, following a deviation to predation by I in state C,
the rule either has no bite (if E stays), or it reduces the benefit of the deviation

(if E exits), by forcing I to remain aggressive for TB additional periods. Hence,

accommodation remains self-sustainable whenever entry is sufficiently profitable

(i.e., πcE ≥ π̂cE).

Extending the freeze under the Baumol rule discourages predation and can

induce a switch to accommodation. Specifically, the rule induces a switch away

from monopolization when TB > TMB (λ) and away from recurrent predation when

TB > T PB (λ). Relatedly, however, when the recurrent predation equilibrium sur-

vives, the rule still affects welfare by the frequency of the predation periods.

By contrast, the Baumol rule does not affect the type of predatory equilibria that

may arise. This is because the rule has no impact on the profitability of hit-and-run

entry in either predatory equilibrium, as E expects immediate predation in state C
anyway. This is in contrast to the Williamson-Edlin rule which, by extending the

duration of hit-and-run entry phases, can induce a switch from monopolization to

recurrent predation.

We illustrate these findings in Figure 3b below. Introducing the Baumol rule

shifts down by a factor of φ (TB) (≤ 1) the horizontal boundary λ = λ below which

monopolization is profitable, and the horizontal boundary λ = λ below which recur-

rent predation is profitable. As a result, the equilibrium may switch from predation
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(namely, monopolization when πcE < k and recurrent predation otherwise) to ac-

commodation, as depicted by the horizontal dashed lines. In particular, as TB →∞,

φ (TB)→ 0 and accommodation becomes the unique equilibrium for all values of λ.

(a) Williamson-Edlin (b) Baumol

Figure 3: Impact of the Williamson-Edlin and Baumol rules
A: Accommodation; P: Predation; M: Monopolization

4.4 Policy choice

Both the Williamson-Edlin and Baumol rules include laissez-faire as a special case

(namely, TWE = TB = 0). Conversely, long enough freezes can de facto replicate

a ban on predation. Specifically, if laissez-faire yields monopolization, a ban can

be implemented with any TWE > TMWE(πcE) or TB > TMB (λ). If instead laissez-faire

yields recurrent predation, a ban can be implemented with any TB > T PB (λ). Under

the Williamson-Edlin rule, recurrent predation survives but, as TWE → ∞, the

frequency of predatory episodes goes to 0, de facto replicating the effect of a ban.

We now consider a generalized freeze rule that includes the Williamson-Edlin

and Baumol rules as special cases. By that rule, I’s strategy is “ frozen” for TWE

periods in the event of entry in state M, and for TB periods in the event of exit in

state C.
As expected welfare is lowest under monopolization, the relevant comparison

is between accommodation (which may sometimes be achieved under laissez-faire,

and always implementable by long enough freezes), and recurrent predation. In the

former case, expected welfare is WA, given by (1); in the latter case, we show in

Appendix B.6 that it is given by (with the subscript F referring to the freeze rule):

W P
F (TWE, TB) ≡ WA +

(1− β)(wm − wc) + β[(TB + 1)(wp − wc)− αk]

[1 + β(1 + TWE + TB)](1− δ)
. (5)
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As wm < wc, recurrent predation can be socially desirable only if wp > wc. Its

social value is then increasing in TB and exceeds WA if TB is large enough, namely:

TB > TWB ≡
(1− β) (wc − wm)− β(wp − wc − αk)

β (wp − wc)
. (6)

Obviously, if recurrent predation is already desirable under laissez-faire (i.e.,

W P ≥ WA), introducing a post-entry freeze TB > 0 makes it further desirable

– indeed, it follows from (3) and (6) that TWB is then negative; otherwise, a long

enough post-exit freeze is warranted. By contrast, introducing a post-entry freeze

TWE > 0 cannot make recurrent predation socially desirable when it is not already

so, and actually decreases welfare when recurrent predation is socially desirable.

Building on this and ignoring integer issues in the specification of freezes leads

to the following:42

Proposition 6 (policy choice) The optimal freeze policy is as follows:

(i) If wc < wp, λ ≤ λ and T PB (λ) > TWB , recurrent predation is socially desirable;

the optimal freezes are then:

TB = T PB (λ) and TWE =

{
0 if πcE > k,

TMWE(πcE)+ if πcE ≤ k

(ii) Otherwise, a ban on predation (e.g., TWE = +∞ and/or TB = +∞) is socially

optimal whenever relevant.

Proof. See Appendix B.6.

Both types of freezes can be used to de facto replicate a ban. Yet, their impact

is different, and to some extent independent. A long enough post-entry freeze TWE

eventually allows E to profitably enter even if πcE < k, but has no impact on the

profitability of predation for I. By contrast, a post-exit freeze TB has no impact

on E’s decision to enter or to exit, but decreases the thresholds λ, determining the

boundary of the profitability of monopolization for I, and λ, determining that of

recurrent predation.43 Together with Propositions 4 and 5, this implies in particular

that any freeze policy is irrelevant when laissez-faire yields accommodation.

When wc ≥ wp, accommodation is socially desirable – a ban is therefore optimal.

When instead wp > wc, recurrent predation is socially desirable when the post-exit

freeze TB is long enough, namely, longer than TWB . Recurrent predation is profitable

42The notation T+ stands for the “right-sided limit” of T .
43Both freezes reduce I’s profit, however.
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for I only if λ ≤ λ, however, in which case it remains profitable as long as the post-

exit freeze is short enough, namely, TB ≤ T PB (λ). Furthermore, if πcE < k, then the

post-entry freeze must be long enough to encourage entry, namely, TWE > TMWE(πcE).

As welfare W P
F (TWE, TB) is increasing in TB for TB > TWB but decreasing in TWE,

the best policy for recurrent predation is to set TB equal to T PB (λ) and TWE slightly

above TMWE(πcE), and that policy dominates a ban if and only if TB > T PB (λ).

Proposition 6 also shows that, other than to replicate a ban, the Williamson-

Edlin rule is used only to ensure the profitability of entry, and only when recurrent

predation generates higher welfare than accommodation. Furthermore, its use is

always accompanied by the use of the Baumol rule. By contrast, the Baumol rule

may have stand-alone value other than to replicate a ban. This can be the case

in two situations. In the first, predation already arises under laissez-faire and is

socially desirable (i.e., W P > WA). It is then optimal to extend the phase of

aggressive play by the incumbent, subject to the constraint that predation remains

profitable. In the second situation, predation is undesirable under laissez-faire (i.e.,

W P < WA), but becomes desirable only once to a long enough post-exit freeze is

imposed.44

Edlin et al. (2019) assess the implications of legal rules for predatory behavior,

by running a series of lab experiments in which an incumbent and an entrant interact

over four periods – the incumbent is alone in the first period, but a competitor can

enter the market and stay in the following periods. Specifically, they consider a ban

on below-cost pricing, a Baumol rule forbidding the incumbent to raise its prices if

the entrant exits, and an Edlin rule that allows the incumbent to lower its price by

at most 20% in case of entry. In their setting, the entrant has a higher cost than the

incumbent, so above-cost predation is feasible. They find that, as expected, a ban

of below-cost pricing has little effect on market outcomes. By contrast, the Baumol

and Edlin rules encourage entry, as in our model. Compared with laissez-faire, the

Baumol rule induces incumbents to set higher prices in case of entry, whereas the

Edlin rule induces them to set lower pre-entry prices, in order to retain their ability

to compete effectively if entry occurs, albeit post-entry prices are higher than under

laissez-faire.45 These effects are not present in our parsimonious model, in which the

incumbent cannot strategically tailor its price before or post-entry. Interestingly,

Edlin et al. find that with this additional degree of freedom, the Edlin rule fosters

entry more than the Baumol rule, and also generates highest consumer surplus

44This happens when TWB ∈ (0, TPB (λ)), in which case predation becomes desirable only for
TB ∈ (TWB , TPB ].

45Gilo and Spiegel (2018) consider excessive price regulation, where a low post-entry price may
indicate that the incumbent was charging an excessive pre-entry price, in which case the incumbent
pays a fine. They show that, similarly to the Williamson-Edlin rule, such regulation induces the
incumbent to lower its pre-entry price.
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(when a ban is included in the policy maker’s choice set), with the Baumol rule

being a close second. By contrast, overall welfare is lowest under the Edlin rule,

and is similar under a ban on below-cost pricing and under the Baumol rule to that

under laissez-faire.46

5 Conclusion

Following recent concerns about increasing concentration, raising markups, and the

increasing power of big tech giants, there have been calls to reform antitrust laws,

and in particular to have a more effective treatment of predation. Using a perfect

information, infinite-horizon setting with persistent threat of entry, we show that

the scope for predation depends not only on variables such as costs and revenues,

or the probability of potential entry in the future, but also on mutual expectations

about the rival’s behavior.

Our analysis highlights the importance of adopting appropriate recoupment

tests, properly accounting for dynamic considerations and, in particular, for the

likelihood of actual entry in the future – which, in turn, depends on incumbents’

reaction as expected by the entrant. Moreover, it highlights that predation does

not hinge on whether the incumbent’s profit is positive or negative. Thus the price-

average cost comparisons that play a key role in antitrust policy in U.S. and EU

may be misguided.

We use our framework to study the optimal design of “dynamic” legal rules,

by which freezes are imposed on the incumbent’s strategy following a rival’s entry

and/or exit. The informational requirements associated with their enforcement are

minimal: it suffices to specify the period of time during which the incumbent is

prevented from reacting to drastic changes in the competitive environment such as

entry or exit. Finally, while the commonly discussed policy to ban predation does

not account for the possibility that recurrent predation may be welfare improving, a

suitable combination of these rules can allow and even bolster such an improvement.

46Welfare is lowest under the Edlin rule because entry leads to duplication of fixed costs and
implies that some output is supplied by the higher-cost entrant.
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Appendix

A Example: Stackelberg duopoly

To illustrate the assumed payoff structure, consider the following linear Stackelberg

duopoly. I and E produce a homogeneous product and compete by setting quan-

tities. The inverse demand function is p = 1 − Q, where Q = qI + qE denotes the

aggregate output. Both marginal costs are normalized to 0 and the fixed costs are

fI < 1/8 and fE < 1/16.

In state M, given I’s output qI , E’s output, qE, is given by the Cournot best-

response:

R (qI) ≡ arg max
qE
{(1− qI − qE) qE − fE} =

1− qI
2

.

If in equilibrium a newborn E enters with probability η ∈ [0, 1], the overall proba-

bility of entry is βη and the resulting expected profit for I is

βη(1− qI −
1− qI

2
)qI + (1− βη) (1− qI) qI − fI =

(
1− βη

2

)
(1− qI) qI − fI .

This payoff is maximal at qI = qm = 1/2, regardless of the probability of entry.47 If

E does not enter, I earns the monopoly profit

πmI =
1

4
− fI .

If E enters, it incurs an entry cost k and produces qE = R
(
ql
)

= 1/4; the resulting

profits for I and E are then

πcI =
1

8
− fI ,

and πcE − k, where

πcE =
1

16
− fE.

In state C, if I accommodates entry, the Stackelberg equilibrium yields again

the output levels qI = 1/2 and qE = 1/4. The resulting profits of I and E are thus

given by πcI and πcE. Alternatively, I can predate by expanding its output to such

an extent that E incurs a loss if it stays in the market. As our stylized model relies

on a binary decision, to fix ideas suppose that I can only choose between using

its existing plants with total output qm, or activating an additional plant, thereby

47This comes from the fact that, in this linear model, the monopoly quantity coincides with the
quantity chosen by a Stackelberg leader.
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expanding its total output to some qpI ∈ (qp
I

(fE) , 1), where48

qp
I

(fE) ≡ max

{
1− 2

√
fE,

1

2
+

√
2

4

}
(> qmI ) .

The condition qpI < 1 ensures that E’s response is positive: qpE = R (qpI ) > 0. If E

stays, its profit is therefore

πpE =

(
1− qpI

2

)2

− fE < 0,

where the inequality follows from the condition qpI > 1−2
√
fE. If E exits, I’s profit

is

πpI = (1− qpI ) q
p
I − fI < πcI (< πmI ) ,

where the first inequality follows from the condition qpI > 1/2 +
√

2/4. If instead E

stays, I’s profit is

πpI = (1− qpI − q
p
E) qpI − fI < πpI ,

where the inequality stems from qpE = R (qpI ) > 0.

Per-period consumer surplus is Q2/2, where Q denotes total output. Hence,

consumer surplus under monopoly, competition and (successful) predation is thus

given by:

CSm =
1

8
, CSc =

9

32
, CSp =

(qpI )
2

2
.

In line with the spirit of our stylized model, let us assume that the welfare

criterion W is of the form W ≡ CS+αΠ, where α ∈ [0, 1] denotes the weight placed

on the industry profit Π ≡ πI +πE. In state C, per-period welfare is therefore given

by:

wm = CSm + απmI =
1 + 2α

8
− αfI ,

wc = CSc + α (πcI + πcE) =
9 + 6α

32
− α (fI + fE) ,

and

wp = CSp + απpI =

(
1

2
− α

)
(qpI )

2 + αqpI − αfI .

The expressions for state M are similar, except that when entry occurs, welfare is

wc − αk rather than wc.

By construction, welfare under predation coincides with that under monopoly

48The lower bound qp
I

(fE) is decreasing in fE and ranges from 1/2 +
√

2/4 ' 0.85 (for(
3− 2

√
2
)
/32 ' 0.005 ≤ fE < 1/16 = 0.0625) to 1 (for fE = 0).
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for qpI = qm:

wp|qpI=qm =
1 + 2α

8
− αfI = wm.

Moreover, it increases with output:

∂wp

∂qpI
= qpI − 2α

(
qpI −

1

2

)
> 1− qpI > 0,

where the first inequality stems from α ≤ 1 and the second from qpI < 1. It follows

that welfare is higher under predation than under monopoly:

wp > wm. (7)

As the assumption fE < 1/16 ensures that πcE > 0, we have:

wc − wm = CSc + α (πcI + πcE)− wm > CSc + απcI − wm =
5− 4a

32
> 0, (8)

where the last inequality stems from α < 1. If in addition hit-and-run entry is

profitable (πcE ≥ k), then the same reasoning implies that it is socially desirable;

indeed, we then have:

wc + wp − αk
2

− wm ≥ CSc + απcI − wm

2
> 0,

where the first inequality stems from (7) and the working assumption πcE ≥ k, and

the second one from (8).

Summing-up, this linear Stackelberg duopoly model provides a micro-foundation

for the profit and welfare values used in our stylized setting. Specifically, for any

(fI , fE) ∈ [0, 1/8) × (0, 1/16) and any qpI ∈ (qp
I

(fE) , 1), the equilibrium profits

satisfy the assumptions πmI > πcI > πpI (> πpI), min {πcI , πcE} > 0 > πpE and wm <

min {wc, wp}. The two variables of interest used in Figures 1-3 (E’s competitive

profit, πE, and the cost-benefit ratio, λ) are respectively driven by fE and qpI :
49

πcE =
1

16
− fE and λ = 1− 8qpI (1− qpI ) .

It follows that, through appropriate choices of fE ∈ (0, 1/16) and qpI ∈ (qp
I

(fE) , 1),

πcE can take any value in (0, 1/16) and λ can take any value in (λ̂ (fE) , 1), where

λ̂ (fE) ≡ max{1− 16
√
fE(1− 2

√
fE), 0}.50

49πcE is clearly strictly decreasing in fE , whereas λ is strictly increasing in qpI in the relevant

range qpI > qp
I
: dλ/dqpI = 16qpI − 8 > 0, where the inequality stems from qpI >

(
qp
I
≥ qm =

)
1/2.

50The lower bound λ̂ (fE) is decreasing in fE for fE < 1/16 and ranges from 0 (for fE ≥(
3− 2

√
2
)
/32) to 1 (for fE = 0).
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This micro-foundation is sufficiently flexible to allow for arbitrary positions of

the key boundaries determining the existence of the different types of equilibria. Re-

garding the horizontal boundaries, an appropriate choice of δ ∈ (0, 1) can yield any

positive value for λ(= δ/ (1− δ)) and, for any given λ and associated δ, an appropri-

ate choice of β ∈ (0, 1) can generate any value for λ (= (1− β) δ/ [1− (1− β) δ]) be-

tween 0 and λ. As for the vertical boundaries, any k between 0 and πcE/ (1− δ) (> πcE)

is admissible – k can thus lie either below or above πcE, implying that either type

of predatory equilibrium can arise. Finally, we can either have πpI > 0 (for fI small

enough, for any given qpI ∈ (qp
I
, 1)) or πpI < 0 (if qpI is large enough, for any fI > 0);51

hence, I’s predatory price can either be above or below average cost.52

B Proofs

B.1 Proof of Proposition 1

We consider the three types of equilibria in turn.

B.1.1 Accommodation

Consider a candidate equilibrium in which I never predates. E then enters in state

M, as πcE > (1− δ) k, and stays in the market in state C, as πcE > 0. Therefore, I’s

equilibrium continuation values in states M and C, V A
M and V A

C , satisfy:

V A
M = (1− β)

(
πmI + δV A

M
)

+ β
(
πcI + δV A

C
)

and V A
C = πcI + δV A

C ,

which leads to:

V A
M =

βπcI + (1− β) (1− δ) πmI
[1− (1− β) δ] (1− δ)

and V A
C =

πcI
1− δ

. (9)

To complete the characterization, it suffices to check that I has no incentive to

deviate to predation in state C. Following such a deviation, if E stays it obtains a

profit of πpE in the current period and, anticipating accommodation in the future, it

expects a profit of πcE in every following period. Hence, E’s expected continuation

value from staying is given by

πpE +
δπcE

1− δ
.

51For example, if fI = 0, then πPI > 0 for any qpI < 1; if instead qpI = 1, then πPI < 0 for any
fI > 0.

52In this simple example, in which predation takes the form of costless output expansion, pre-
dation is socially beneficial whenever it is costly for I (i.e., πpI < πcI and wp > wc). Introducing an
additional fixed cost fpI of expanding output from qmI to qpI would allow for πpI < πcI and wp < wc

(proofs available upon request).

29



It follows that, if πcE ≥ π̂cE, the deviation does not induce E to exit and is therefore

unprofitable for I, as πcI > πpI . In other words, accommodation is self-sustainable

in that case.

If instead πcE < π̂cE, I’s deviation to predation does induce E to exit. Using (9),

the effect of the deviation on I’s payoff is given by:

(
πpI + δV A

M
)︸ ︷︷ ︸

Value following deviation

−
(
πcI + δV A

C
)︸ ︷︷ ︸

Value on the equilibrium path

= πpI − π
c
I +

(1− β) δ (πmI − πcI)
1− (1− β) δ

= (πmI − πcI) (λ− λ) ,

where the last equality stems from the definitions of λ and λ. As πmI > πcI , the

deviation is unprofitable if and only if λ ≥ λ.

B.1.2 Predation

Now consider a candidate equilibrium in which I predates in state C. E then exits

in state C, as πpE < 0, but a newborn E enters (for one period) in state M as long

as πcE ≥ k. I’s continuation values, V P
M and V P

C , therefore satisfy:

V P
M = (1− β)

(
πmI + δV P

M
)

+ β
(
πcI + δV P

C
)

and V P
C = πpI + δV P

M.

Solving yields:

V P
M =

(1− β) πmI + β (πcI + δπpI )

(1 + βδ) (1− δ)
and V P

C =
(1− β) δπmI + βδπcI + [1− (1− β)δ]πpI

(1 + βδ) (1− δ)
.

(10)

To check that this is indeed an equilibrium, consider a one-period deviation of

I to accommodation in state C. As πcE > 0, E stays in the market during the

deviation period, but exits next period when I reverts to predation, as πpE < 0.

Using (10), the effect of the deviation on I’s payoff is:

(
πcI + δV P

C
)︸ ︷︷ ︸

Value following deviation

−
(
πpI + δV P

M
)︸ ︷︷ ︸

Value on the equilibrium path

= πcI − π
p
I −

δ [(1− β) (πmI − πcI) + πcI − π
p
I ]

1 + βδ

=
[1− (1− β)δ](πmI − πcI)

1 + βδ
(λ− λ) .

The deviation is therefore unprofitable if and only if λ ≤ λ.

B.1.3 Monopolization

Finally, consider a candidate equilibrium in which I predates in state C, and new-

born E’s do not enter in state M, which requires that πcE ≤ k. I’s continuation
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values, V M
M and V M

C , then satisfy:

V M
M = πmI + δV M

M and V M
C = πpI + δV M

M .

Solving yields:

V M
M =

πmI
1− δ

and V M
C = πpI +

δπmI
1− δ

. (11)

Using these expressions, the net effect of a one-period deviation to accommoda-

tion in state C on I’s payoff is:

(
πcI + δV M

C
)︸ ︷︷ ︸

Value following deviation

−
(
πpI + δV M

M
)︸ ︷︷ ︸

Value on the equilibrium path

= πcI − π
p
I − δ ((πmI − πcI) + (πcI − π

p
I ))

= (1− δ) (πmI − πcI)
(
λ− λ

)
.

The deviation is therefore unprofitable if and only if λ ≤ λ.

B.2 Proof of Proposition 2

We show below that, whenever a predatory equilibrium coexists with the accom-

modation equilibrium, I obtains higher continuation values (in both states) in the

predatory equilibrium. We first consider the case where predation is recurrent,

before turning to the case where it leads to monopolization.

B.2.1 Predation vs. accommodation

First consider state M. Using (9) and (10), we have:

V P
M − V A

M =
1

1− δ
[
(1− β) πmI + β (πcI + δπpI )

1 + βδ
− βπcI + (1− β) (1− δ) πmI

1− (1− β) δ
]

=
βδ

(1− δ) (1 + βδ)

(1− β)δ(πmI − πcI)− [1− (1− β)δ](πcI − π
p
I )

1− (1− β) δ

=
βδ (πmI − πcI)

(1− δ) (1 + βδ)
(λ− λ) ≥ 0,

where the inequality follows because a predation equilibrium exists only if λ ≤ λ.

Similarly, in state C:

V P
C − V A

C =
1

1− δ
{(1− β) δπmI + βδπcI + [1− (1− β) δ]πpI

1 + βδ
− πcI}

=
(1− β) δ (πmI − πcI)− [1− (1− β)δ] (πcI − π

p
I )

(1− δ) (1 + βδ)

=
[1− (1− β) δ] (πmI − πcI)

(1− δ) (1 + βδ)
(λ− λ) ≥ 0.
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Hence, in both states I prefers the recurrent predation equilibrium over the

accommodation equilibrium whenever they coexist.

B.2.2 Monopolization vs. accommodation

Consider state M. Using (9) and (11), and recalling that πmI > πcI , we have:

V M
M − V A

M =
1

1− δ
[πmI −

βπcI + (1− β) (1− δ) πmI
1− (1− β) δ

]

=
β (πmI − πcI)

(1− δ) [1− (1− β) δ]
> 0.

Similarly, in state C:

V M
C − V A

C =
(1− δ) πpI + δπmI − πcI

1− δ

=
δ(πmI − πcI)− (1− δ)(πcI − π

p
I )

1− δ
= (πmI − πcI)

(
λ− λ

)
≥ 0,

where the inequality follows because a monopolization equilibrium exists only if

λ ≤ λ.

Hence, in both states I prefers the monopolization equilibrium over the accom-

modation equilibrium whenever they coexist.

B.3 Proof of Proposition 3

By construction, a ban on predation has no effect when laissez-faire already yields

accommodation (i.e., λ > λ, or πcE > k and λ > λ). By contrast, a ban is always

socially desirable when laissez-faire yields monopolization (i.e., λ ≤ λ and πcE ≤ k),

as welfare is higher under competition than under monopoly (i.e., wc > wm).

Finally, when laissez-faire yields recurrent predation (i.e., λ ≤ λ and πcE > k), a

ban on predation changes total expected welfare from W P to WA. The conclusion

then follows directly from (3).

B.4 Proof of Proposition 4

We first consider the three types of equilibria under the Williamson-Edlin rule,

before drawing the implications for the impact of the rule.
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B.4.1 Accommodation

In an accommodation equilibrium, I never predates in state C. Hence, the Williamson-

Edlin rule has no bite on the equilibrium path, and on any continuation equilibrium

path that follows a one-period deviation by either firm. It has therefore no impact

on E’s incentives to enter, and no impact either on I’s deviation incentives. Hence

an accommodation equilibrium exists under the same condition as before.

B.4.2 Predation

Consider now a recurrent predation equilibrium. As before, when I predates in state

C, E exits as πpE < 0. For the equilibrium to exist, a newborn E must be willing

to enter in state M, which is the case if it covers its cost of entry during the entry

period and the TWE subsequent periods of freeze:

k ≤
(
1 + δ + ...+ δTWE

)
πcE =

1− δTWE+1

1− δ
πcE ⇐⇒ πcE ≥

1− δ
1− δTWE+1︸ ︷︷ ︸

ψ(TWE)

k.

As ψ (T ) is strictly decreasing in T and tends to 0 as T goes to infinity, this inequality

amounts to

TWE ≥ TMWE (πcE) ≡ ψ−1
(
πcE
k

)
.

As a newborn E enters and remains in the market during the TWE periods of

freeze, I’s continuation values, V̂ P
M and V̂ P

C , now satisfy:

V̂ P
M = (1− β)(πmI + δV̂ P

M) + β(
1− δTWE+1

1− δ
πcI + δTWE+1V̂ P

C ) and V̂ P
C = πpI + δV̂ P

M.

Solving yields:

V̂ P
M =

(1− β)πmI + β 1−δTWE+1

1−δ πcI + βδTWE+1πpI
1− δ + βδ(1− δTWE+1)

,

V̂ P
C =

(1− β) δπmI + βδ 1−δ
TWE+1

1−δ πcI + [1− (1− β) δ] πpI
1− δ + βδ(1− δTWE+1)

.

To ensure that recurrent predation is an equilibrium, I’s equilibrium payoff, πpI +

δV̂ P
M, must exceed its corresponding payoff under a deviation to accommodation in

state C, πcI + δV̂ P
C , which amounts to:

πcI−π
p
I ≤ δ(V̂ P

M−δV̂ P
C ) = δ

(1− δ)(1− β) (πmI − πcI) + [1− δ + βδ(1− βδTWE)] (πcI − π
p
I )

1− δ + βδ(1− δTWE+1)
.

33



Rearranging terms yields:

λ =
πcI − π

p
I

πmI − πcI
≤ (1− β)δ

1− (1− β)δ
= λ

as before. To see why, note that in the boundary case where I is indifferent between

predating or not in state C, the continuation values satisfy

V̂ P
C = πcI + δV̂ P

C =
πcI

1− δ
and V̂ P

M = (1− β)(πmI + δV̂ P
M) + β

πcI
1− δ

.

As TWE affects none of these relations, it has also no impact on either the continu-

ation values or the equilibrium conditions.

B.4.3 Monopolization

For a monopolization equilibrium to exist, a newborn E should not find it profitable

to enter and stay in the market during the TWE periods of freeze; hence, we must

have πcE ≤ ψ(TWE)k, or TWE ≤ TMWE (πcE). As newborn E’s do not enter, the

Williamson-Edlin rule has no bite on the equilibrium path. Furthermore, following

a one-period deviation to accommodation by I in state C, the rule has again no bite

on the continuation equilibrium path, as the deviation induces E to stay. Therefore,

as before, the deviation is unprofitable if and only if λ ≤ λ.

B.5 Proof of Proposition 5

We first consider the various types of equilibria that arise under the Baumol rule,

before drawing the implications for the impact of the rule.

B.5.1 Accommodation

In an accommodation equilibrium, I never predates and E thus never exits. Hence,

the Baumol rule has no bite on the equilibrium path, and does not affect either E’s

incentive to enter (as E expects accommodation and thus plans to stay forever).

Suppose now that I deviates and predates in state C. If E stays, the rule has

again no bite and E thus expects accommodation in the future. It follows that E

is willing to stay as long as πcE ≥ π̂cE, as before; in other words, the rule has no

impact on the self-sustainability of accommodation.

If instead E exits, which always occurs when πcE < π̂cE and can also occur in

the boundary case πcE = π̂cE, the rule forces I to keep behaving aggressively for TB

periods. The net effect of the deviation on I’s payoff is thus (using the fact that,
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along the equilibrium patch, the continuation values are V A
M and V A

C , as before):[
(1− δTB+1)πpI

1− δ
+ δTB+1V A

M

]
︸ ︷︷ ︸

Value following deviation

−
[

(1− δTB+1)πcI
1− δ

+ δTB+1V A
C

]
︸ ︷︷ ︸

Value on the equilibrium path

=
(1− β)δTB+1(πmI − πcI)

1− (1− β)δ
− (1− δTB+1)(πcI − π

p
I )

1− δ

=
(1− δTB+1)(πmI − πcI)

1− δ
[φ (TB)λ− λ] ,

where λ =
πc
I−π

p
I

πm
I −π

c
I
, λ = (1−β)δ

1−(1−β)δ , and φ(T ) = δT 1−δ
1−δT+1 is lower than 1 and decreas-

ing in T . Hence, the deviation is unprofitable, implying that the accommodation

equilibrium survives if and only if λ ≥ φ (TB)λ; as φ(T ) is decreasing in T , this

amounts to

TB ≥ T PB ≡ φ−1(
λ

λ
).

B.5.2 Predation

If in equilibrium I predates in state C, then E exits, just as before. For recurrent

predation to arise, a newborn E must be willing to enter the market for one period,

which requires πcE ≥ k. As the rule requires I to keep predating for T periods, I’s

continuation values, Ṽ P
M and Ṽ P

C , are such that:

Ṽ P
M = (1− β)(πmI + δṼ P

M) + β(πcI + δṼ P
C ) and Ṽ P

C =
1− δTB+1

1− δ
πpI + δTB+1Ṽ P

M.

Solving yields:

Ṽ P
M =

(1− β)(1− δ)πmI + β(1− δ)πcI + βδ(1− δTB+1)πpI
[1− δ + βδ(1− δTB+1)](1− δ)

,

Ṽ P
C =

(1− β)(1− δ)δTB+1πmI + β(1− δ)δTB+1πcI + [1− (1− β)δ](1− δTB+1)πpI
[1− δ + βδ(1− δTB+1)](1− δ)

.

Predation is an equilibrium if it is immune to I deviating for one period to

accommodation in state C. The effect of such a deviation on I’s payoff is:

(πcI + δṼ P
C )︸ ︷︷ ︸

Value following deviation

− Ṽ P
C︸︷︷︸

Value on the equilibrium path

= πcI −
β(1− δ)δTB+1πcI

1− δ + βδ(1− δTB+1)

− (1− β)(1− δ)δTB+1πmI + [1− (1− β)δ](1− δTB+1)πpI
1− δ + βδ(1− δTB+1)

=
[1− (1− β)δ](1− δTB+1) (πmI − πcI)

1− δ + βδ(1− δTB+1)

35



× [
πcI − π

p
I

πmI − πcI
− (1− δ)δTB

1− δTB+1

(1− β)δ

1− (1− β)δ
]

=
[1− (1− β)δ](1− δTB+1) (πmI − πcI)

1− δ + βδ(1− δTB+1)
[λ− φ (TB)λ] .

Hence, the deviation is unprofitable if and only λ ≤ φ (TB)λ, which amounts to

TB ≤ T PB .

B.5.3 Monopolization

For a monopolization equilibrium to exist, hit-and-run entry must be unprofitable:

πcE ≤ k. I’s continuation values, Ṽ M
M and Ṽ M

C , then satisfy:

Ṽ M
M = πmI + δṼ M

M and Ṽ M
C =

1− δTB+1

1− δ
πpI + δTB+1Ṽ M

M .

Solving yields:

Ṽ M
M =

πmI
1− δ

and Ṽ M
C =

1− δTB+1

1− δ
πpI +

δTB+1

1− δ
πmI .

By deviating to accommodation in state C, I postpones predation by one period;

the resulting effect on I’s payoff is thus:

(πcI + δṼ M
C )︸ ︷︷ ︸

Value following deviation

− Ṽ M
C︸︷︷︸

Value on the equilibrium path

= πcI − (1− δ)
(

1− δTB+1

1− δ
πpI +

δTB + 1

1− δ
πmI

)
= (1− δTB+1)(πmI − πcI)[λ− φ (TB)λ],

where the second equality follows from λ =
πc
I−π

p
I

πm
I −π

c
I
, λ = δ

1−δ , and φ(T ) = δT 1−δ
1−δT+1 .

Hence, the deviation is unprofitable if and only if λ ≤ φ (TB)λ. As φ (TB) is

strictly decreasing with TB and tends to 0 as TB goes to infinity, it follows that

monopolization remains sustainable as long as

TB ≤ TMB ≡ φ−1(
λ

λ
).

B.6 Proof of Proposition 6

We first compute total discounted expected welfare under the generalized freeze

rule. As before, welfare is equal to WA = wc

1−δ under accommodation and equal to

WM = wm

1−δ under monopolization. Turning to recurrent predation, let FWE
τ , for

τ ∈ {1, ..., TWE}, denote the state corresponding to period τ of the freeze following

entry, and FBτ , for τ ∈ {1, ..., TB}, denote the state corresponding to period τ of
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the freeze following exit. The sequence of states upon entry is thus

M→ FWE
1 → . . .→ FWE

T → C → FB1 → . . .→ FBT →M.

Let µM and µC as before denote the long-run equilibrium probabilities of states

M and C. Noting that the freeze states have the same probability as state C (as

they follow the same sequence), the long-run probabilities satisfy µC = µMβ and

(1 + TWE + TB)µC + µM = 1, leading to:

µC =
β

1 + β(TWE + TB + 1)
and µM =

1

1 + β(TWE + TB + 1)
. (12)

Expected welfare is (1−β)wm+β(wc−αk) in stateM, wc in states {FWE
1 , · · · ,

FWE
TWE
}, and wp in states {C,FB1 , · · · ,FBTB}. Hence, total expected discounted wel-

fare can be expressed as:

W P
F (TWE, TB) ≡ µM

(1− β)wm + β(wc − αk)

1− δ
+ µC

TWEw
c + (TB + 1)wp

1− δ

=
(1− β)wm + β[(TWE + 1)wc + (TB + 1)wp − αk)]

[1 + β(1 + TWE + TB)](1− δ)
= WA + ∆(TWE, TB),

where

∆(TWE, TB) ≡ (1− β)(wm − wc) + β[(TB + 1)(wp − wc)− αk]

[1 + β(TWE + TB + 1)](1− δ)
.

The denominator of ∆(·) is positive and increasing in both freezes, whereas its

numerator may be positive or negative, and depends only on TB. Hence, whether

recurrent predation is socially desirable relative to accommodation is entirely driven

by the sign of the numerator, and is independent of TWE. Whenever recurrent

predation is socially desirable (i.e., ∆ > 0), however, the level of welfare it generates

is decreasing in TWE. Therefore, TWE should be kept as low as possible.

Moreover, recalling that wc > wm, closer inspection of the numerator reveals

that accommodation dominates recurrent predation whenever wc ≥ wp. In that

case, a ban on predation is optimal and can be achieved by setting TWE and/or TB

large enough.

From now on, we focus on the case where wp > wc. The numerator of ∆(·)
is then increasing in TB and positive if TB is large enough, namely, if and only if

TB > TWB , where TWB is given by (6). Furthermore, this positive impact more than
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offsets that on the denominator. Indeed,

∂∆(TWE, TB)

∂TB
= β

(1 + βTWE)(wp − wc) + (1− β)(wc − wm) + βαk

[1 + β(TWE + TB + 1)]2(1− δ)
> 0,

implying that it is then socially desirable to increase TB as much as possible.

The freezes must ensure, however, that a newborn E enters in state M, and

that I predates in state C. In stateM, a newborn E is willing to enter if and only

if k ≤
(
1 + δ + ...+ δTWE

)
πcE, which amounts to:

πcE ≥ ψ (TWE) k,

where ψ (T ) = 1−δ
1−δT+1 decreases from 1 to 1 − δ as T increases from 0 to +∞. As

πcE > (1− δ) k by assumption, it follows that E is willing to enter if TWE is large

enough. In particular, if πcE ≥ k, then E is always willing to enter, so TWE = 0

(i.e., no freeze after entry) ensures entry and maximizes W P
F (TWE, TB) whenever

recurrent predation is socially desirable. If instead πcE < k, then conditionally on

recurrent predation being desirable, the optimal duration of freeze following entry

is the smallest TWE for which E is willing to enter, namely, TWE = TMWE (πcE) =

ψ−1 (πcE/k).

In state C, I’s continuation values, V̄M and V̄C, satisfy:

V̄M = (1− β)
(
πmI + δV̄M

)
+ β(

1− δTWE+1

1− δ
πcI + δTWE+1V̄C),

V̄C =
1− δTB+1

1− δ
πpI + δTB+1V̄M.

Solving yields:

V̄M =
(1− β)(1− δ)πmI + β(1− δTWE+1)πcI + βδTWE+1(1− δTB+1)πpI

[1− δ + βδ(1− δTWE+TB+1)](1− δ)
,

V̄C =
(1− β)(1− δ)δTB+1πmI + β(1− δTWE+1)δTB+1πcI + [1− (1− β)δ](1− δTB+1)πpI

[1− δ + βδ(1− δTWE+TB+1)](1− δ)
.

I is willing to predate if and only if V̄C ≥ πcI + δV̄C, or:

0 ≤ (1− δ)V̄C − πcI

=
(1− β)(1− δ)δTB+1(πmI − πcI) + [1− (1− β)δ](1− δTB+1)(πpI − πcI)

1− δ + βδ(1− δTWE+TB+1)
,

which amounts to λ ≤ φ (TB)λ, as before.53 Recalling that φ(T ) decreases from 1

53In particular, this incentive condition does not depend on TWE . This is because, as already
noted in Section B.4.2, in the boundary case where I is indifferent between predating or not in
state C, TWE affects neither I’s continuation values nor the equilibrium conditions.
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to 0 as increases from 0 to +∞, it follows that I is never willing to predate if λ > λ;

if instead λ ≤ λ, then I would be willing to predate under laissez-faire, and remains

willing to do so as long as TB ≤ T PB (λ) = φ−1(λ/λ)(≥ 1). As we have seen, TB

should be set as large as possible when recurrent predation is socially desirable; it

follows that recurrent predation is socially optimal if and only if T PB (λ) > TWB , in

which case it is optimal to set TB = T PB (λ).

Summing-up, the optimal policy is a ban on predation (e.g., TWE = +∞ and/or

TB = +∞) and laissez-faire, if it yields accommodation –unless wp > wc together

with λ ≤ λ and T PB (λ) > TWB , in which case it is optimal to impose a freeze after

exit of TB = T PB (λ) periods, together with a freeze after entry of TMWE (πcE) periods

if πcE < k, and no freeze after entry otherwise.
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