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Overview

In this thesis, I develop new econometric methods to test and relax statistical or equilibrium restrictions
that are commonly assumed in popular industrial organization models including the random coefficient
logit model, entry games, and optimal contracts. I then apply these methods to investigate how the usual
assumptions affect the results obtained in several relevant empirical examples. This thesis is organized
into three chapters.

The first chapter of my thesis is entitled "Testing and Relaxing Distributional Assumptions on Ran-
dom Coefficients in Demand Models”. This chapter is co-authored with two fellow graduate students
Hippolyte Boucher and Gökçe Gökkoca. We provide a method to test and relax the distributional as-
sumptions on random coefficients in the differentiated products demand model initiated by Berry (1994)
and Berry, Levinsohn and Pakes (1995). This model is the workhorse model for demand estimation
with market-level data and it uses random coefficients to account for unobserved preference heterogene-
ity. In this chapter, we provide a formal moment-based specification test on the distribution of random
coefficients, which allows researchers to test the chosen specification (for instance normality) without re-
estimating the model under a more flexible parametrization. The moment conditions (or equivalently the
instruments) chosen for the test are designed to maximize the power of the test when the distribution of
Random Coefficients is misspecified. By exploiting the duality between estimation and testing, we show
that these instruments can also improve the estimation of the BLP model under a flexible parametriza-
tion (here, we consider the case of the Gaussian mixture). Finally, we validate our approach with Monte
Carlo simulations and an empirical application using data on car purchases in Germany.

The second chapter is entitled: "Moment Inequalities for Entry Games with Heterogeneous Types".
This chapter is coauthored with my advisor Christian Bontemps and Rohit Kumar. We develop new
methods to simplify the estimation of entry games when the equilibrium selection mechanism is un-
restricted. In particular, we develop an algorithm that allows us to recursively select a relevant subset
of inequalities that sharply characterize the set of admissible parameters. Then, we propose a way to
circumvent the problem of deriving an easy-to-compute and competitive critical value by smoothing the
minimum function. In our case, it allows us to obtain a pivotal test statistic that eliminates “numeri-
cally” the non-binding moments. We show that we recover a consistent confidence region by letting the
smoothing parameter increase with the sample size. Interestingly, we show that our procedure can easily
be adapted to the case with covariates including continuous ones. Finally, we conduct full-scale Monte
Carlo simulations to assess the performance of our new estimation procedure.
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The third chapter is entitled "Identification and Estimation of Incentive Contracts under Asymmetric
Information: an application to the French Water Sector". This chapter has its roots in a project Christian
Bontemps and David Martimort started many years ago. We develop a Principal-Agent model to repre-
sent management contracting for public-service delivery. A firm (the Agent) has private knowledge of
its marginal cost of production. The local public authority (the Principal) cares about the consumers’ net
surplus from consuming the services and the (weighted) firm’s profit. Contractual negotiation is modeled
as the choice by the privately informed firm within a menu of options determining both the unit-price
charged to consumers and the fixed fee. Our theoretical model characterizes optimal contracting in this
environment. We then explicitly study the nonparametric identification of the model and perform a semi-
parametric estimation on a dataset coming from the 2004 wave of a survey from the French Environment
Institute.
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Résumé

Dans cette thèse, je développe de nouvelles méthodes économétriques pour tester et relaxer les restric-
tions statistiques ou d’équilibre couramment supposées dans des modèles populaires d’organisation in-
dustrielle, tels que le modèle logit à coefficients aléatoires, les jeux d’entrée et les contrats optimaux.
J’applique ensuite ces méthodes pour étudier comment les hypothèses habituelles affectent les résultats
obtenus dans plusieurs exemples empiriques pertinents. Cette thèse contient trois chapitres.

Le premier chapitre de ma thèse s’intitule "Tester et relaxer les hypothèses de distribution sur les
coefficients aléatoires dans le modèle de demande". Ce chapitre est co-écrit avec deux autres doctorants,
Hippolyte Boucher et Gökçe Gökkoca. Nous proposons une méthode pour tester et relaxer les hypothèses
de distribution sur les coefficients aléatoires dans le modèle de demande de produits différenciés initié
par Berry (1994) et Berry, Levinsohn et Pakes (1995). Il s’agit du modèle de référence pour l’estimation
des fonctions de demande avec des données agrégées de marché. Les coefficients aléatoires modélisent
l’hétérogénéité non observée des préférences. Dans ce chapitre, nous proposons un test de spécification
sur la distribution des coefficients aléatoires, qui permet aux chercheurs de tester la spécification choisie
(par exemple la normalité) sans ré-estimer le modèle sous une paramétrisation plus flexible. Les mo-
ments sont choisis pour maximiser la puissance du test lorsque la distribution des coefficients aléatoires
est mal spécifiée. En exploitant la dualité entre l’estimation et le test, nous montrons que ces instruments
peuvent également améliorer l’estimation du modèle BLP sous une paramétrisation plus flexible (nous
étudions le cas du mélange de normales). Enfin, nous validons notre approche avec des simulations de
Monte Carlo et une application empirique sur le marché des voitures en Allemagne.

Le deuxième chapitre s’intitule "Inégalités de Moment pour les Jeux d’Entrée avec Types Hétérogènes".
Ce chapitre a été co-écrit avec Christian Bontemps et Rohit Kumar. Nous développons de nouvelles
méthodes pour simplifier l’estimation des jeux d’entrée en l’absence de restrictions sur le mécanisme de
sélection d’équilibre. En particulier, nous développons un algorithme qui nous permet de sélectionner
de manière récursive un sous-ensemble d’inégalités qui caractérisent de façon minimale l’ensemble des
paramètres admissibles. Ensuite, nous proposons une procédure inférentielle compétitive en lissant la
fonction minimum. Cela nous permet d’obtenir une statistique de test pivotale qui élimine "numérique-
ment" les moments non saturés. Nous montrons que nous récupérons une région de confiance conver-
gente en laissant le lissage diminuer avec la taille de l’échantillon. Aussi, notre procédure peut facilement
être adaptée au cas avec covariables, y compris continues. Enfin, nous menons des simulations de Monte
Carlo pour évaluer les performances de notre nouvelle procédure d’estimation.
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Le troisième chapitre s’intitule "Identification et Estimation des Contrats d’Incitation sous Infor-
mation Asymétrique : une application au secteur de l’eau en France". Nous développons un modèle
principal-agent pour représenter la sous-traitance de gestion pour la prestation de services publics. Une
entreprise (l’Agent) possède une connaissance privée de son coût marginal de production. L’autorité
publique locale (le Principal) se préoccupe du surplus net des consommateurs et du bénéfice de l’entreprise.
La négociation contractuelle est modélisée comme le choix de l’entreprise dans un menu d’options
déterminant le prix unitaire facturé aux consommateurs et le montant fixe. Notre modèle théorique
caractérise la sous-traitance optimale dans cet environnement. Nous étudions ensuite l’identification non
paramétrique du modèle et effectuons une estimation semi-paramétrique sur des données provenant de
l’enquête de l’Institut Français de l’Environnement de 2004.
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Abstract

The BLP demand model for differentiated products is the workhorse model for demand estimation with market-
level data. This model uses random coefficients to account for unobserved preference heterogeneity. The shape
of the distribution of random coefficients matters greatly for many counterfactual quantities, such as the pass-
through of cost. In this paper, we develop new econometric tools to test this distribution and improve its estimation
under a flexible parametrization. First, we develop a formal moment-based specification test on the distribution of
random coefficients. The moment conditions (or equivalently the instruments) chosen for the test are designed to
maximize the power of the test when the RC distribution is misspecified. Second, we show that our instruments can
be successfully used to estimate a flexible distribution of random coefficients. Finally, we validate our approach
with Monte Carlo simulations and an empirical application using data on car purchases in Germany. We also show
that these methods extend to the mixed logit demand model with individual-level data.

Keywords: demand estimation, specification test, random coefficients

JEL codes: C35, C36, L13, C52



1.1 Introduction

The differentiated product demand model initiated by Berry (1994) and Berry, Levinsohn, and Pakes

(1995) has been used in a wide array of empirical studies. It enables researchers to perform demand es-

timation in markets with differentiated products using either macro-level (market shares) or micro-level

(individual purchases) data while allowing for unobserved heterogeneity in preferences as well as price

endogeneity. This unobserved heterogeneity in preferences is modeled through the use of random coef-

ficients (RCs) in the utility function. This framework allows researchers to estimate demand functions,

price elasticities and counterfactual outcomes. Applications of the BLP model have notably studied the

determinants of market power, the welfare effects resulting from a merger or the introduction of a new

good and the economic impact of a tax or a subsidy.1

The informativeness of the empirical analysis depends on how well the model can reproduce the

underlying substitution patterns and approximate the shape of the demand curve, including its slope

and curvature. A recent result in Miravete, Seim, and Thurk (2022) shows that the commonly used

Gaussian RC on price imposes strong restrictions on the demand’s curvature and thus limits the range

of the implied pass-through. The degree of pass-through of taxes and costs is central to answering many

questions in economics such as the impact of tariffs or a cost shock on consumer welfare. However,

estimating a more flexible demand system with a non-Gaussian distribution of random coefficients is

challenging. First, there is a clear trade-off between the degree of flexibility one chooses (for instance,

going from a Gaussian to a Gaussian mixture) and the precision of the estimates one obtains. Therefore, it

is important to be able to test the specification chosen by the researcher on the distribution of the RC (for

instance, a Gaussian RC) and quantify the degree of misspecification before potentially moving to a more

flexible specification. Second, to precisely estimate a more flexible distribution of RC, the researcher

must choose instruments (or equivalently moment conditions) that strongly identify this distribution. The

1The BLP demand model has been widely applied. A non-exhaustive list of examples includes: Barahona, Otero, Otero,
and Kim (2020), Berry, Levinsohn, and Pakes (1995), Crawford, Shcherbakov, and Shum (2019), Dubois, Griffith, and
O’Connell (2018), Durrmeyer (2022), Grennan (2013), Grigolon, Reynaert, and Verboven (2018), Miller, Sheu, and Weinberg
(2021), Miller and Weinberg (2017), Miravete, Moral, and Thurk (2018), Nevo (2000), Petrin (2002), Reynaert (2021).
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instruments used by the current empirical practice work well with the standard Gaussian RC, but their

performance appears to decline as the specification becomes more flexible in the simulation exercises

that we perform.

In this paper, we provide novel econometric tools to address these two challenges. In particular,

we provide a formal moment-based specification test on the distribution of random coefficients, which

allows researchers to test the chosen specification (for instance normality) without re-estimating the

model under a more flexible parametrization. The moment conditions (or equivalently the instruments)

chosen for the test are designed to maximize the power of the test when the distribution of RCs is

misspecified. We also show how these instruments can strengthen the identifying power of the moment

conditions used for estimation, and thus be successful at estimating a flexibly parameterized distribution

of RCs. As an example of a flexible parametric distribution, we consider the Gaussian mixture, which

can approximate arbitrarily well any continuous distribution on the real line.

This paper consists of three main contributions. First, we construct a powerful specification test on

the distribution of random coefficients. The intuition we use is the following. Any given distribution

of RCs generates a structural error, which, if correctly specified, is mean-independent with respect to a

set of exogenous variables. This identifying condition can be transformed into unconditional moments,

which can be used to test whether the chosen distribution of RCs is correctly specified. We formally

define this test and construct instruments that maximize its power against a fixed alternative. In a first

step, we assume that the econometrician knows the fixed alternative and we derive an expression for

the first-best instrument. We call this instrument the most powerful instrument (MPI) and show that

this specific choice of instrument achieves the consistency of the test. In a second step, we provide two

feasible approximations of the MPI that can be derived without the knowledge of the fixed alternative.

We call these feasible MPIs the interval instruments in reference to the way they approximate the MPI.

Second, we consider the case where the researcher wants to test whether the distribution of RCs

belongs to a given parametric family. For instance, the researcher may be interested in testing if the

random coefficient is normally distributed. This is a composite hypothesis, and we must estimate the
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unknown parameters of the distribution in a first step. In a second step, we choose instruments to test

if the distribution evaluated at the estimated parameters is correctly specified. Here, the interval instru-

ments represent a natural choice of instruments as they are designed to detect deviations from the true

distribution of RCs. We study the asymptotic properties of our test when the number of markets, T, goes

to infinity and we prove the asymptotic validity of the test under common assumptions. In particular,

we account for the statistical uncertainty stemming from the first step estimation, and we control for the

magnitude of the approximations that intervene in the estimation of the BLP model. Our asymptotic re-

sults complement previous work by Freyberger (2015) on the asymptotic properties of the BLP estimator

when the number of markets grows to infinity.

Third, we show that our interval instruments can be successfully used to estimate the model, and

particularly so when the distribution of RCs is flexibly parameterized. We do so by exhibiting the con-

nection between the MPI and the classical optimal instruments used for efficient estimation purposes.

Specifically, we show that the MPI devoted to testing the specification of the model at the true parameter

against any local alternative can be rewritten as a linear combination of the optimal instruments. This

relation between the MPI and the optimal instruments helps us understand why the interval instruments,

which approximate the MPI, perform so well in our simulations. So far, the literature has exclusively

exploited instruments that approximate the optimal instruments (Gandhi and Houde (2019), Reynaert

and Verboven (2014)). We refer to these instruments as the traditional instruments. These have been

shown to work well in the usual Gaussian case. However, our simulations show that their performance

declines when we depart from the Gaussian RC.

To evaluate the performance of our test and instruments, we conduct two sets of simulation experi-

ments. First, we compare the performance of the test when using our interval instruments and when using

the instruments commonly adopted by practitioners (Gandhi and Houde (2019), Reynaert and Verboven

(2014)). We show that the test has the correct empirical size and that the interval instruments signifi-

cantly outperform the traditional instruments in terms of power under alternative distributions. Second,

we evaluate the performance of the interval instruments in estimating the model when the distribution of
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RCs is flexibly parametrized, and follows a Gaussian mixture. We show that our instruments outperform

the traditional instruments in terms of the mean squared error. In the case where the RC is a Gaussian

mixture, the three sets of instruments perform equally well.

Finally, we apply the tools developed in this paper to estimate the demand for cars in Germany from

2012 to 2018. The objective of the empirical exercise is to see how well our instruments perform at

estimating a flexible distribution of RCs using a real dataset. Given the importance of price to address

most empirical questions, we increase the flexibility of the model by estimating a Gaussian mixture

for the RC associated with price. Second, we use our specification test to assess how the degree of

misspecification decreases when we increase the flexibility in the distribution of RCs. Third, we use our

results to study how the shape of the RC on price can modify important counterfactual quantities such as

the pass-through. In particular, our empirical results are consistent with the findings in Miravete, Seim,

and Thurk (2022).

Related literature. Our paper contributes to several strands of the literature. First, it contributes to

the literature on the flexible estimation of aggregate demand models for differentiated goods. A few

recent papers have proposed non-parametric and semi-parametric methods to estimate aggregate demand

functions. Compiani (2018) proposes a non-parametric estimator of the demand functions. If relaxing

all the parametric assumptions makes this approach conceptually appealing, it also faces significant

theoretical and practical difficulties (more stringent data requirements, large curse of dimensionality,

limited scope for counterfactual analysis).2 Lu, Shi, and Tao (2021) and Wang (2022) propose semi-

parametric estimators of the distribution of RCs. These approaches are complementary to ours and the

instruments we develop in this paper can be useful to implement their non-parametric IV estimation

procedures, which are known to be rather sensitive to the quality of the instruments (Chetverikov and

2In particular, Compiani (2018) relaxes the Type 1 Extreme Value assumption on the taste shock. However, it is not
clear how restrictive this assumption is. McFadden and Train (2000) shows that a mixed-logit model with flexibly distributed
random coefficients can approximate any discrete choice model derived from random utility maximization. On the other
hand, the Type 1 Extreme Value assumption generates massive computational gains, which allows for studying sophisticated
markets with many products and many characteristics. Thus, the cost-benefit analysis seems to be largely in favor of the logit
specification.
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Wilhelm (2017)). Finally, Ho and Pakes (2014), Tebaldi, Torgovitsky, and Yang (2019) suggest deriving

bounds directly on the counterfactual quantities.

Our paper also contributes to the literature on the non-parametric identification of the distribution

of RCs in demand models (Fox and Gandhi (2011), Fox, il Kim, Ryan, and Bajari (2012), Dunker,

Hoderlein, and Kaido (2022), Wang (2022), Berry and Haile (2014)). First, we slightly extend the

identification result in Wang (2022) to link it directly to the primitives of the model, without assuming

that the demand functions are identified. Second, we provide a practical way of constructing moments

that feature high identifying power with respect to the distribution of RCs.

Third, we contribute to the literature that focuses on the practical estimation of the BLP model. First,

we show that the interval instruments that we construct in this paper can be successfully used to estimate

the distribution of random coefficients, and particularly so under of flexible distribution of RCs. This new

set of instruments complements instruments commonly used by practitioners: Reynaert and Verboven

(2014) and Gandhi and Houde (2019) (see Conlon and Gortmaker (2020) for a review). Moreover, we

provide a new parametrization of the model, which facilitates the estimation when the distribution of RCs

is a Gaussian mixture. This new parametrization complements previous papers that aim at improving the

estimation of the model (Dubé, Fox, and Su (2012), Lee and Seo (2015), Salanié and Wolak (2019)).

Finally, our paper contributes to the literature on the asymptotic properties of the BLP estimator

(Armstrong (2016), Berry, Linton, and Pakes (2004), Freyberger (2015), Ketz (2019)). In particular, we

prove the asymptotic normality and the consistency of the BLP estimator in the large market framework

under less stringent assumptions than the remainder of the literature.

Structure of the paper. In Section 1.2, we recall the baseline BLP model, define the structural error

of the model, and provide conditions under which the distribution of RCs is non-parametrically identi-

fied. In Section 1.3, we present our specification test and derive the most powerful instrument and last

we show how it relates to the classical optimal instruments. In Section 1.4, we construct two feasible

approximations of the MPI. In Section 1.5, we adapt the specification test to the composite hypothesis

case and show its asymptotic validity. In Section 1.6, we conduct Monte Carlo simulations to evaluate
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the consequences of misspecification on quantities of interest, and gauge the performance of our test and

instruments. In Section 1.7, we apply our new tools to estimate the demand for cars in Germany. We

conclude the paper in Section 1.8.

1.2 Model and identification

1.2.1 Indirect utility and moment restrictions

Indirect utility. We first describe the indirect utility function that induces the observed market shares.

Our setting closely follows the one introduced in the seminal paper Berry, Levinsohn, and Pakes (1995).

There are T markets indexed by t = 1, ..., T. There is a continuum of consumers indexed by i. There

are Jt market-specific products in market t. Each consumer chooses a product j ∈ {0, 1, ..., Jt} where

j = 0 corresponds to the outside option. For the sake of exposition and without loss of generality, we

will assume throughout our analysis that the number of products is constant across markets (∀t, Jt = J).

Product j is characterized by a vector of characteristics xjt, which includes the price of the good in most

empirical settings. Consumer i derives an indirect utility uijt from purchasing good j ∈ {0, 1, . . . , J} in

market t:

uijt = x′1jtβ + ξ jt︸ ︷︷ ︸
δjt

+x′2jtvi + εijt, (1.2.1)

with the following:

• x1jt is a vector of product characteristics of dimension K1 associated with product j and for which

there is no preference heterogeneity; β represents preferences for x1jt;

• ξ jt is an unobserved demand shock on product j in market t;

• δjt ≡ x′1jtβ + ξ jt denotes the mean utility for product j, the part of the utility that is common to all

consumers;
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• x2jt is a vector of product characteristics of dimension K2 for which there is preference hetero-

geneity; vi is the associated random coefficient that follows a distribution characterized by density

f and is independent of all the other variables: vi ⊥⊥ (xt, ξt, {εijt}j=1,...J);

• εijt is a preference shock that follows an Extreme Value type I (EV1) distribution independent of

all other variables and across i, j, t.

For individual i in market t, the indirect utility from purchasing the outside option is normalized to

ui0t = εi0t. From the random utility functions in (1.2.1), we can infer the demand functions for each

good j in market t denoted ρjt( f , β). Each consumer chooses the product that maximizes his or her

utility. Let yijt equal 1 if individual i chooses good j = 0, 1, . . . , J in market t = 1, . . . , T. We have the

following:

∀j ̸= 0, ρjt( f , β) ≡ P f ,β(yijt = 1|xt, ξt)

= P f ,β(good j is chosen in market t by individual i|xt, ξt)

= P f ,β(uijt > uikt ∀k ̸= j|xt, ξt)

=
∫

RK2

exp
{

x′1jtβ + ξ jt + x′2jtv
}

1 + ∑J
k=1 exp

{
x′1ktβ + ξkt + x′2ktv

} f (v)dv. (1.2.2)

For the outside option, the demand function is written as follows:

ρ0t( f , β) = P f ,β(yi0t = 1|xt, ξt) =
∫

RK2

1

1 + ∑J
k=1 exp

{
x′1ktβ + ξkt + x′2ktv

} f (v)dv.

Following the EV1 assumption on the idiosyncratic shock on utility, the demand functions take the

usual logit form integrated over the distribution of preference heterogeneity. We assume in this paper that

the observed market shares are equal to the shares generated by the model above at the true distribution

f and the true preference parameter β:

∀j, ∀t, sjt = ρjt( f , β). (1.2.3)
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Moment restrictions. Following the literature, we assume that the unobserved demand shock ξ jt is

mean independent of zjt, a set of instrumental variables, namely, E[ξ jt|zjt] = 0 a.s.. The set zjt tra-

ditionally consists of the exogenous characteristics of all the products on the market as well as cost

shifters, which are meant to instrument for price. Indeed, the price of a good is usually considered

to be an endogenous variable since it is correlated with the unobserved demand shock ξ jt through the

profit maximization problem of firms.3 To estimate the model, the researcher chooses functions of the

instruments zjt to construct a set of unconditional moments. We refer to these functions as estimation

instruments and denote them hE(zjt). Likewise, in our analysis, we study the functions of the instru-

ments that are designed to test the specification of the model. We refer to these instruments as testing

instruments and we denote them hD(zjt), where D stands for detection.

1.2.2 Inverse demand function and structural error

Inverse demand function. For any given distribution of random coefficients f̃ , we define the demand

function ρ ≡ (ρ1(·), ..., ρJ(·)) as the function which maps the vector of mean utilities δ to the vector of

market shares generated by the model under f̃ :

ρ(·, x2t, f̃ ) : RJ → [0, 1]J

δ 7→
∫

RK2

exp {δ + x2tv}
1 + ∑J

k=1 exp
{

δk + x′2ktv
} f̃ (v)dv.

Berry (1994) shows by applying Brouwer’s fixed point that for any (st, x2t) and for any distribution of

random coefficients f̃ (even when f̃ is not the true distribution), there exists a unique δ̃ ∈ RJ such that:

st = ρ(δ̃, x2t, f̃ ).

3To deal with the endogeneity of prices, Berry, Levinsohn, and Pakes (1995) also suggests using exogenous own-product
characteristics as well as exogenous characteristics from other products. The main idea behind the use of these instruments is
to take advantage of the correlation between price and exogenous characteristics implied by profit-maximizing firms. To be
precise, Berry, Levinsohn, and Pakes (1995) suggests using the sum of the characteristics from other products produced by
the same firm and the sum of exogenous characteristics from rival firms’ products as instruments.
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We define the solution to the previous system of equations as the inverse demand functions: ρ−1(st, x2t, f̃ ) =

δ̃. Unfortunately, there is no closed form expression for the inverse demand function, which must be re-

covered numerically.

Structural error. From what precedes, we can uniquely define the structural error ξ jt( f̃ , β̃) generated

by a distribution of random coefficient f̃ and a homogeneous parameter β̃:

ξ jt( f̃ , β̃) = ρ−1
j (st, x2t, f̃ )− x′1jt β̃. (1.2.4)

The non-linear nature of the model is captured by the inverse demand function which enters the expres-

sion of the structural error. The absence of an analytical formula for the inverse demand implies that

there is no closed form expression for the structural error, which complicates the estimation of the BLP

demand model. If we consider a parametric family of distributions F̃ = { f̃ (·|λ̃) : λ̃ ∈ Λ̃}, then the

structural error generated by a specific element in f̃ (·|λ̃) ∈ F̃ and β̃ is defined as follows:

ξ jt( f̃ (·|λ̃), β̃) = ρ−1
j (st, x2t, f̃ (·|λ̃))− x′1jt β̃.

1.2.3 Non-parametric identification

The main objective of this paper is to provide tools to test the specification on the distribution of ran-

dom coefficients and to improve its estimation under a flexible specification. A natural first step is to

study the conditions under which this distribution is non-parametrically identified. The identification of

random coefficients in multinomial choice models has been studied extensively in the literature (Allen

and Rehbeck (2020), Berry and Haile (2014), Dunker, Hoderlein, and Kaido (2022), Fox and Gandhi

(2011), Fox, il Kim, Ryan, and Bajari (2012), Wang (2022)). We summarize some of these findings in

Appendix 1.C.1. In this Section, we build on an important identification result in Wang (2022) to recover

a set of sufficient identifying conditions directly on the primitives of the model. We also show that the

identification result holds with a less stringent exogeneity assumption than in Wang (2022).

In contrast to the rest of the literature, Wang (2022) adopts all the parametric assumptions in the

standard BLP model and looks for a set of sufficient restrictions under which the identification of the
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demand functions implies the identification of the distribution of random coefficients. This approach

allows him to obtain conditions that are less stringent than the rest of the literature. In particular, Wang

(2022) makes no special regressor assumption, no full support assumption, and no continuity assumption

on the covariates. Specifically, he shows that if the demand functions ρ = (ρ1, ..., ρJ) are identified on

an open set of RJ , then the distribution of random coefficients is identified.4 His proof exploits the

real analytic property of the demand functions.5 In this paper, we build on this injectivity result to find

sufficient identifying conditions directly on the primitives of the model (without assuming identification

of the demand functions). We also show using a random permutation of the indices that we only require

the demand shock ξ jt to be mean independent of the instrumental variables zjt across products, but we do

not require this to hold for each product j taken separately. Formally, we only require E[ξ jt|zjt] = 0 a.s.

and not E[ξ jt|zjt] = 0 a.s. for all product j as previously. This is less restrictive, as demand shocks can

now be on average non-zero for certain products and account for unobserved quality inherent to each

product.

Let us formally state the assumptions that we impose to recover the point identification of ( f , β).

Assumption A

(i) Strict exogeneity: E[ξ jt|zjt] = 0 a.s.;

(ii) Completeness: for any measurable function g such that E[|g(st, xt)|] < ∞, if E[g(st, xt)|zjt] =

0 a.s., then g(st, xt) = 0 a.s.;

(iii) The distribution of the data (st, x2t, x1t, zt) is fully observed by the econometrician and market

shares st are generated by the demand model defined in Section 1.2.1 by equations (1.2.1) and (1.2.3);

(iv) Detectable difference in distributions: we say f and f̃ differ (and write f ̸= f̃ ) if there exists

v̄ ∈ RK2 such that F(v̄) ̸= F̃(v̄);

(v) Let xt = (x1t, x2t) then xt is such that P(x′txt is positive definite) > 0 ∀t;

(vi) There exists x̄t ∈ X and an open set D ⊂ RJ such that δt = x̄1tβ0 + ξt varies on D a.s..

4Identification of demand functions can be achieved using Theorem 1 in Berry and Haile (2014).
5In particular, the real analytic property yields that the local identification of ρ on D ⊂ RJ implies the identification of ρ

on RJ From the global identification of ρ, he is then able to show that the random coefficients’ distribution is identified under
a simple rank condition on x2t.
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In A(i), we assume that the instruments are strictly exogenous. Assumption A(ii) is a completeness

assumption that states that the instruments are strongly relevant with respect to (st, xt). This assumption

is typical of semiparametric or nonparametric IV models and is equivalent to a full rank assumption in

a linear IV model. Intuitively, it means that if the inverse demands are different almost surely, then the

instruments will be able to detect the difference. The completeness assumption is a strong assumption

that has been widely used in this literature (Berry and Haile (2014), Dunker, Hoderlein, and Kaido

(2022), Wang (2022)). Assumption A(v) is a standard rank condition. Assumption A(vi) is meant to

ensure that there is enough variation in δt to apply the injectivity result in Wang (2022). This assumption

indicates that there needs to be sufficient variation in product characteristics across markets in the data

to identify f . In practice, product characteristics are very similar from one market to the other and

may not yield sufficient variation. A judicious solution is to create inter-market variation by interacting

product characteristics with demographic variables characterizing each market. Let us now state our

formal identification result.

Proposition 2.1 Under Assumption A, the distribution of random coefficients f and the homogeneous

preference parameters β are non-parametrically identified:

( f̃ , β̃) = ( f , β) ⇐⇒ E[ξ jt( f̃ , β̃)|zjt] = E

[
ρ−1

j (st, x2t, f̃ )− x′1jt β̃

∣∣∣∣zjt

]
= 0 a.s..

The proof is in Appendix 1.B.1. The identification result above entails that under some fairly weak

conditions and in the presence of instruments that generate sufficient variation in the product character-

istics, the observed data identifies the distribution of random coefficients non-parametrically. Formally,

the model is at the true pair ( f , β) if and only if the associated structural error is mean independent of

the instrumental variables zjt. We use this identification result to show the consistency of our test under

a specific choice of instruments that we will characterize thereafter.
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1.3 Detecting misspecification: the most powerful instrument

The aim of this section is to recover the instrument with the greatest ability to detect misspecification

in the distribution of RCs. To do so, we consider a setting in which the econometrician wants to test a

simple hypothesis of the form H0 : ( f , β) = ( f0, β0). The upper bar is used to stress the fact that H0

is a simple hypothesis, in contrast to the composite hypothesis H0 : f ∈ F0 that we study in Section

1.5. Our approach builds on a simple intuition: if the model under H0 is misspecified, then the structural

error will depart from the true demand shock ξ jt, and our goal is to find the best instrument to pin down

this deviation. We proceed as follows. First, we introduce a moment-based test for H0 and we show

its asymptotic validity. Next, we derive an analytical expression for the instrument that maximizes the

power of our test against a fixed alternative Ha : ( f , β) = ( fa, βa). We call this instrument the most

powerful instrument (MPI) and we show how it relates to the classical optimal instruments, derived for

efficient estimation purposes. In Section 1.4, we provide two feasible approximations of the MPI, which

have the critical property of being invariant with respect to the alternative Ha.

1.3.1 A moment-based test

We want to test H0 : ( f , β) = ( f0, β0) against Ha : ( f , β) ̸= ( f0, β0). For any set of testing instruments

hD(zjt), we have the following implication:

H0 : ( f , β) = ( f0, β0) =⇒ H′
0 : E[hD(zjt)ξ jt( f0, β0)] = 0.

We propose to test H0 indirectly through its implication H′
0, which is a set of unconditional moment

conditions. We test H′
0 with a moment-based test. Our test statistic writes as follows:

ST(hD, f0, β0) = TJ

(
1

TJ ∑
j,t

ξ jt( f0, β0)hD(zjt)

)′

Ω̂−1
0

(
1

TJ ∑
j,t

ξ jt( f0, β0)hD(zjt)

)
, (1.3.5)

with Ω̂0 a consistent estimator of Ω0 the asymptotic variance-covariance matrix of 1√
TJ ∑j,t hD(zjt)ξ jt( f0, β0),

that is Ω0 = E[ξ2
jt( f0, β0)hD(zjt)hD(zjt)

′]. We study the asymptotic properties of our test as the number
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of markets, T, goes to infinity. As the focus of this section is on the construction of the most power-

ful instrument, we postpone the treatment of the specific challenges implied by parameter uncertainty

(i.e. when β0 and f0 must be estimated beforehand) and by the numerical approximations involved in

the derivation of the structural error (in practice, the researcher derives a numerical approximation of

ξ jt( f0, β0)) to Section 1.5. Additionally, to keep the results as simple as possible while retaining the key

intuitions, we assume independence of the demand shocks in a given market conditional on zjt. This last

assumption is relaxed in the proofs in Appendix 1.B.2 and in Section 1.5.

Proposition 3.1 Assume that (st, xt, zt) are i.i.d. across markets and consistent with the probability

model defined by equations (1.2.1), (1.2.2) and (1.2.3) evaluated at ( f , β), E[∥ξ jt( f0, β0)hD(zjt)∥2] <

+∞, Ω0 has full rank, and, for k ̸= j, ξ jt ⊥⊥ ξkt|zt. We have the following:

• under H0 : ( f , β) = ( f0, β0), ST(hD, f0, β0)
d−→

T→+∞
χ2
|hD|0 ,

• under H′
a : E

[
hD(zjt)ξ jt( f0, β0)

]
̸= 0, ∀q ∈ R+, P(ST(hD, f0, β0) > q) −→

T→+∞
1,

with | · |0 being the counting norm.

The previous proposition indicates that as long as the testing instruments are functions of zjt, our

test procedure is asymptotically valid for H0. We are testing H0 by virtue of its implication H′
0 :

E
[
hD(zjt)ξ jt( f0, β0)

]
= 0 and, as a consequence, the power properties of our test hinge critically on

the choice of the testing instruments hD(zjt). This is the focus of the next subsection.

1.3.2 The most powerful instrument (MPI)

The choice of testing instruments hD(zjt) is key to maximize the rejection rate of H0 under any alter-

native Ha : ( f , β) ̸= ( f0, β0). To guide our choice of instruments, we first derive the instrument that

maximizes the power of the moment-based test introduced previously when the econometrician tests H0

against a fixed alternative Ha : ( f , β) = ( fa, βa) ̸= ( f0, β0). We refer to this instrument as the most

powerful instrument (MPI). In practice, the researcher is often reluctant to fix the alternative. However,
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the MPI represents a useful first-best solution for which we provide feasible approximations in Section

1.4.

Power criterion. We now introduce the criterion that we use to define the most powerful instrument.

The literature offers many ways to compare the power of competing tests (see Gourieroux and Monfort

(1995) for a comprehensive review). In this paper, we favor the non-local approach developed in Bahadur

(1960). In Bahadur’s perspective, the econometrician chooses the test with the smallest level α needed to

attain a given power against a fixed alternative and for a given number of observations. In other words,

the econometrician chooses the test that minimizes the risk of type I error ceteris paribus. The main

alternative to this approach is to discriminate between two tests based on their power against local alter-

natives.6 In a parametric framework, local strategies are based on the analysis of the power properties of

competing tests under a sequence of local alternatives θT which converges to θ0 at a given rate (usually
1√
T

). The econometrician can compare two competing tests by means of their power functions (or more

precisely, the limits of these power functions when sample sizes go to +∞). This is called the direct

approach. The dual approach, which is known as Pitman’s relative efficiency, consists of comparing the

rates at which the minimal number of observations must increase to ensure a given level of power.

We believe that Bahadur’s non-local approach is better suited for the testing problem we study in this

paper. The comparison criterion, known as the asymptotic slope of the test, is in our case straightforward

to derive, whereas it is not clear how one should derive Pitman’s efficiency criterion when the test con-

cerns non-parametric objects such as distributions. Moreover, we study the properties of our test against

a fixed alternative Ha : ( f , β) = ( fa, βa) as in Bahadur’s case, which is not necessarily local. Finally,

the literature has highlighted many limitations of the local approach. Local criteria are often unable to

discriminate between tests even when these tests lead to different decisions (see Silvey (1959)). In addi-

tion, as shown in Dufour and King (1991), a locally optimal test in a neighborhood of H0 may perform

very poorly away from H0.

6In the interest of conciseness, we voluntarily omit the class of tests that rely on the exact distributions of the test statistic
as, in our case, the exact distribution of our test is unknown. Thus, we rely on asymptotic methods, which is the most common
case in the literature.
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Let us now present the intuition for Bahadur’s comparison approach. From Section 1.3.1, we have:

Under H0: ST ≡ ST(hD, f0, β0)
d→ S with S = χ2

|hD|0 .

Following the same notations as in Gourieroux and Monfort (1995), we denote:

Λ(s) = PH0
(S ≥ s).

The critical value is usually derived using the asymptotic distribution of the test statistic under H0. The

approximate critical region at a given level α is then given by:

CRα = {ST ≥ Λ−1(α)} = {Λ(ST) ≤ α}.

The main idea in Bahadur’s approach entails deriving the level of the test if one takes the value of

the test statistic as the critical value (this is also known as the p-value). Namely:

αT = Λ(ST).

Bahadur suggests preferring the test that displays the lowest level αT at least asymptotically. A formal

analysis of the asymptotic behavior of αT shows that it is better to consider the limit of a transformation

of αT than the limit of αT directly. This gives rise to the concept of the approximate slope of the test.

Definition 1 (Asymptotic slope of the test)

(i) KT = − 2
T log(Λ(ST)) is the approximate slope of the test,

(ii) Under Ha: plim KT = c( fa, βa) is the asymptotic slope of the test,

with plim, the limit in probability when T → +∞.

Under the alternative Ha : ( f , β) = ( fa, βa), consider two sequences of tests based on S1
T and S2

T

with asymptotic slopes c1( fa, βa) and c2( fa, βa) respectively. The test based on S1
T is asymptotically

preferred to the test based on S2
T in Bahadur’s sense if and only if c1( fa, βa) > c2( fa, βa). To derive
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the asymptotic slopes of our test, we apply an important result in Geweke (1981), which states that if

under H0: ST
d−→

T→+∞
χ2

q (with any q ∈ N∗), then 1
T ST

a.s.−→ c( fa, βa) (when the limit exists). In our test,

the limiting distribution is chi-squared. Thus, the asymptotic slope of our test with instrument hD(zjt)

writes:

chD( fa, βa) = plim
1
T

ST(hD, f0, β0) = JE
[
ξ jt( f0, β0)hD(zjt)

]′ Ω−1
0 E

[
ξ jt( f0, β0)hD(zjt)

]
.

Let us note that the asymptotic slope can also be interpreted as a measure of the speed of divergence

of the test statistic in terms of population moments, i.e. speed of divergence ≈ T × chD( fa, βa). An

important remark is that the asymptotic slope allows us to define an envelope on the power that can be

attained by our moment-based test. In the next Proposition, we derive an analytical expression for the

instrument that maximizes the slope of the test against a fixed alternative Ha

Derivation of the most powerful instrument. To construct the MPI, we use the following decompo-

sition of the structural error generated under Ha:

ξ jt( f0, β0) = ξ jt( fa, βa)︸ ︷︷ ︸
true error under Ha

+ ξ jt( f0, β0)− ξ jt( fa, βa)︸ ︷︷ ︸
∆

ξ jt
0,a

,

with ∆
ξ jt
0,a being the correction term due to misspecification under the alternative Ha.

Proposition 3.2 (Most powerful instrument)

Let H be the set of measurable vectorial functions of zjt. Under any fixed alternative Ha : ( f , β) =

( fa, βa), we have the following:(
E
[
ξ jt( f0, β0)

2|zt

])−1
E[∆

ξ jt
0,a|zjt] ∈ argmax

hD∈H
chD( fa, βa).

The proof is given in Appendix 1.B.2. The MPI equals the conditional expectation of the correc-

tion term ∆
ξ jt
0,a divided by a conditional variance term E

[
ξ jt( f0, β0)

2|zjt
]
. For exposition purposes,

we drop the conditional variance term in the subsequent analysis and take the homoskedastic MPI
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h∗D(zjt) = E[∆
ξ jt
0,a|zjt] as the reference MPI.7 Methods have been proposed to estimate the conditional

variance term non-parametrically and could be adapted to our case. However, it is well known that the

conditional variance, which also appears in the formulation of the optimal instruments, is difficult to

model and estimate in practice. In the BLP framework, the large dimension of zjt makes the exercise

even more difficult. Hence, researchers typically ignore this term or impose a restrictive and ad-hoc

structure on the form that it can take (for instance, Reynaert and Verboven (2014)’s approximation of

the optimal instruments in the BLP model ignores the variance term). The homoskedastic MPI, h∗D(zjt),

features other appealing properties including (i) consistency of the associated test and (ii) maximizing

correlation with the structural error under the alternative.8 For simplicity, in what follows, we refer to

the homoskedastic MPI as the MPI.

(i) Consistency. By setting hD equal to h∗D, our moment-based test becomes consistent against any

fixed alternative Ha : ( f , β) = ( fa, βa) ̸= ( f0, β0). Namely, we have the following result:

Proposition 3.3 (Consistency of the test with the MPI) Under Assumption A and the same assumptions

as in Proposition 3.1, we have:

Ha : ( f , β) = ( fa, βa) ̸= ( f0, β0) =⇒ ∀q ∈ R+, P(ST(h∗D, f0, β0) > q) −→
T→+∞

1.

The proof of this result is given in Appendix 1.B.2.

(ii) Correlation with the structural error. Another interesting property of the MPI is to be the func-

tion of zjt that maximizes the correlation with the structural error.

Proposition 3.4 (Correlation between the MPI and the structural error)

Let H be the set of measurable functions of zjt, we have under Ha:

∀α ∈ R∗, α E[∆
ξ jt
0,a|zjt] ∈ arg max

h∈H

∣∣corr(ξ jt( f0, β0), h(zjt))
∣∣ .

7This last expression corresponds to the exact formulation of the MPI under homoskedasticity.
8The consistency of the test also holds when we keep the conditional variance term.
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The proof is given in Appendix 1.B.2. Intuitively, the MPI h∗D(zjt) is designed to fully capture the

exogenous variation contained in the correction term ∆
ξ jt
0,a implied by the misspecification, which yields

the result above.

1.3.3 Connection with the optimal instruments

The optimal instruments from Chamberlain (1987) minimize the asymptotic variance-covariance of the

GMM estimator when the parameter of interest is identified by conditional moment restrictions. We show

that the MPI devoted to testing the specification of the model at the true parameter against any fixed local

alternative can be rewritten as a linear combination of the optimal instruments. This connection between

the MPI and the optimal instruments helps us understand why the feasible approximations of the MPI we

construct in Section 1.4 improve the performance of the BLP estimator in our Monte Carlo simulations

when the distribution of RCs is flexible. In this subsection, we first derive the optimal instruments. Then,

we exhibit the relation between the optimal instruments and the MPI.

The estimation of the model works as follows. The researcher assumes that f belongs to a parametric

family F0 = { f0(·|λ̃) : λ̃ ∈ Λ0} and the objective is to estimate the true parameter θ0 = (β′
0, λ′

0)
′

under this parametric restriction. In the estimation context that we study here, θ0 refers to the true

parameter. For now, let us assume that the model is correctly specified: f ∈ F0 and we shorten the

notations by removing the dependence of the structural error in f0(·|λ̃), which becomes implicit in

this context. Namely, ξ jt( f0(·|λ̃), β̃) becomes ξ jt(θ̃). We further assume that θ0 is point identified

by the following moment restriction: E[ξ jt(θ0)|zjt] = 0 a.s..9 The researcher must choose the set

of instruments hE(zjt) (or equivalently, the unconditional moments) to include in the GMM objective

function:

θ̂ = Argmin
θ̃

TJ

(
1

TJ ∑
j,t

ξ̂ jt(θ̃)hE(zjt)

)′

Ŵ

(
1

TJ ∑
j,t

ξ̂ jt(θ̃)hE(zjt)

)
.

9The identification conditions in the parametric case are less stringent than the conditions for the non-parametric identifi-
cation in Assumption A.
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Optimal instruments in the BLP demand model. Traditionally, the instruments hE(zjt) are chosen

to minimize the asymptotic variance-covariance of the estimator θ̂. The instruments that reach this

objective are called the optimal instruments. The resulting estimator is said to be efficient in the sense

that its asymptotic variance cannot be reduced by using additional moment conditions. There is a large

body of literature on the derivation of optimal instruments in econometric models (Amemiya (1974),

Chamberlain (1987), Newey (1990, 2004)). The BLP estimator θ̂ is a non-linear GMM estimator and

classical results in Chamberlain (1987) and Amemiya (1974) show that the optimal instruments in this

case write:

h∗E(zjt) = E[ξ jt(θ0)
2|zjt]

−1E

[
∂ξ jt(θ0)

∂θ̃

∣∣∣∣zjt

]
,

The corresponding efficiency bound (obtained by setting hE = h∗E) writes:

V∗ = E

[
E

[
∂ξ jt(θ0)

∂θ̃

∣∣∣∣zjt

]
E

[
∂ξ jt(θ0)

∂θ̃

∣∣∣∣zjt

]′
E[ξ jt(θ0)

2|zjt]
−1
]−1

.

For the sake of exhaustivity, we show this result in Appendix 1.B.2. As for the MPI, the formulation

of the optimal instruments above is obtained under the assumption of conditional independence of de-

mand shocks ξ jt in the same market: k ̸= j, ξ jt ⊥⊥ ξkt|zt. In Appendix 1.B.2, we derive the expression

for the optimal instruments under weaker assumptions on the demand shock.10 Consistent with what we

did in the case of the MPI, we drop the conditional variance term E[ξ jt(θ0)
2|zjt]

−1.

Connection between the MPI and the optimal instruments. Let θ0 the true parameter. Under the

parametric assumption f ∈ F0, the simple hypothesis H0 : ( f , β) = ( f0, β0) we studied previously

becomes H0 : θ = θ0. It is straightforward to show that, in the parametric case, the associated MPI

against a fixed alternative Ha : θ = θa writes: h∗D(zjt) = E
[
∆

ξ jt
θ0,θa

|zjt

]
with ∆

ξ jt
θ0,θa

= ξ jt(θ0)− ξ jt(θa).

By taking a Taylor expansion of ξ jt(θa) around θ0, we obtain the following:

∆
ξ jt
θ0,θa

=
∂ξ jt(θ0)

∂θ̃
(θ0 − θa) + o(||θ0 − θa||2) .

10We allow for unrestricted forms of correlation between demand shocks within a given market.
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We see that when θa is in a neighborhood of θ0, the MPI, h∗D(zjt), against this fixed alternative is a

linear combination of the optimal instruments h∗E(zjt):

h∗D(zjt) = E
[
∆

ξ jt
θ0,θa

|zjt

]
≈ E

[
∂ξ jt(θ0)

∂θ̃

∣∣∣∣zjt

]′
︸ ︷︷ ︸

h∗E(zjt)

(θ0 − θa).

It follows that classical optimal instruments can be interpreted as an approximation of the MPI devoted

to testing H0 : θ = θ0 against any fixed local alternative.11 Moreover, let us note that the connection

between the MPI and the optimal instruments holds if we keep the conditional variance term in both

cases.

1.4 A feasible most powerful instrument

The MPI is the most powerful instrument to reject H0 : ( f , β) = ( f0, β0) against a fixed alternative

Ha : ( f , β) = ( fa, βa). Its derivation requires the knowledge of the alternative while in practice the

econometrician typically wants to remain agnostic about the alternative. Moreover, the MPI is defined

as a conditional expectation of a non-linear function with respect to a large dimension vector zjt, and

thus, even if the alternative Ha is known, the MPI can be difficult to compute. In this section, we remain

in the same configuration, where the econometrician wants to test H0 : ( f , β) = ( f0, β0) against a

fixed alternative Ha : ( f , β) = ( fa, βa). However now, we assume that this alternative is unknown

to the econometrician. We provide two feasible approximations of the MPI, which do not depend on

Ha, and that, unlike the MPI, can be computed in practice. To do so, we show that the MPI can be

approximated by a linear combination of known functions of zjt. We call these interval instruments in

reference to the way these functions are derived. Our feasible MPI is simply the vector of the interval

instruments. The cost to incur for feasibility is that the properties we established for the MPI do not

carry over to the feasible MPI. Nevertheless, our Monte Carlo simulations in Section 1.6 show that the

interval instruments perform very well in practice.
11This interpretation of the optimal instruments only holds when the model is well specified i.e. f ∈ F0, and thus, in

general, the optimal instruments shouldn’t be used to test the specification of the model.
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By construction, in the BLP demand model, the correction term writes:

∆
ξ jt
0,a = x′1jt(βa − β0) + ρ−1

j (st, x2t, f0)− ρ−1
j (st, x2t, fa)

= x′1jt(βa − β0) + ∆j(st, x2t, f0, fa).
(1.4.6)

The previous equation shows that the correction term is the sum of a linear part, which is standard, and

a non-linear part which is specific to the BLP demand model.

Linear part. The linear part of the MPI writes: E[x1jt|zjt]
′(βa − β0) = E[x1jt|zjt]

′γ. Thus, for its

linear part, the MPI is a linear combination of the conditional expectation of x1jt with respect to the

exogenous variables with unknown weights. If one is interested in specifically testing that β = β0,

informative instruments simply consist of the variables in E[x1jt|zjt].

Non-linear part. The non-linear part, ∆j(st, x2t, f0, fa), is the part that is implied by the misspecifi-

cation on the distribution of RCs and for which we need to recover a feasible approximation. Equation

(1.4.6) indicates that the non-linear part is the difference between the inverse demand functions generated

by f0 and fa. We now go one step further and derive two analytical approximations of ∆j(st, x2t, f0, fa)

which we then use as building blocks to construct our feasible approximations of the MPIs. The first ap-

proximation is based on a local expansion around f0. The second approximation is based on an identity

that is valid everywhere. The first approximation is more precise locally whereas the second one is more

robust to large deviations from f0.

1.4.1 Local approximation

First, we consider a local approximation of ∆j(st, x2t, f0, fa). This approximation corresponds to the

first order term in the expansion of ∆(st, x2t, f0, fa) “around f0", which is recovered by exploiting the

properties of the inverse demand function, which is both C∞ and bijective in st.
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Proposition 4.1
A first order expansion of ∆(st, x2t, f0, fa) around f0 writes:

∆(st, x2t, f0, fa) =

(
∂ρ(δ0

t , x2t, f0)

∂δ

)−1 ∫
RK2

[
exp{δ0

t + x2tv}
1 + ∑J

k=1 exp
{

δ0
kt + x′2ktv

} − ρ(δ0
t , x2t, f0)

]
fa(v) +R0,

with δ0
t = ρ−1(st, x2t, f0) and R0 = o

(∫
RK2 | fa(v)− f0(v)|dv

)
.

The proof is in Appendix 1.B.3. We first observe that for any density f0, we can construct artificial

market shares s0
t such that ρ−1(st, x2t, fa) = ρ−1(s0

t , x2t, f0). Then, we recover the final result by

taking a Taylor expansion of ρ−1(s0
t , x2t, f0) around st and showing that the remainder is bounded.12

This approximation is local by design: it works best when fa is a local deviation from f0, even if it

can be used more generally. To make this expression useful in practice, we must still overcome two

difficulties. The distribution fa is unknown to the econometrician. In addition, some variables such

as δ0
jt are endogenous. However, notice that the previous expression may be particularly useful if the

econometrician is interested in testing H0 against a fixed and known alternative as we did in the previous

section.

Discretizing the integral. To solve for the fact fa is unknown to the econometrician, we replace the

integral in which fa appears by a finite Riemann approximation. Namely,

∫
R

exp
{

x′2jtv
}

1 + ∑J
k=1 exp

{
δ0

kt + x′2ktv
} fa(v)dv ≈

L

∑
l=1

ωl( fa)
exp{x′2jtvl}

1 + ∑J
k=1 exp{δ0

kt + x′2ktvl}
,

with {vl}l=1,...,L the points chosen in the domain of definition of fa, and {ωl( fa)}l=1,...,L the associated

weights.13 We provide more details on how to choose the points in Appendix 1.C.4. It is important

to observe that in the Riemann approximation, only the weights depend on the alternative fa. This

approximation can also be interpreted as approaching a continuous distribution with a discrete one, where

12The expansion is taken around st because s0
t depends on fa and is thus unknown to the researcher.

13In the usual Riemann sum, the weights correspond to density evaluated at point vl : fa(vl) times the width of the interval
around vl .
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each point in {vl}l=1,...,L represents a specific consumer type with an associated probability wl( fa). The

non-linear part of the MPI can thus be approximated as follows:

E[∆j(st, x2t, f0, fa)|zjt] ≈
L

∑
l=1

ωl( fa) E[πj,l(st, xt)|zjt],

with πj,l(st, xt) =

(
∂ρ(δ0

t , x2t, f0)

∂δ

)−1 [ exp{δ0
t + x2tvl}

1 + ∑J
k=1 exp

{
δ0

kt + x′2ktvl
} − ρ(δ0

t , x2t, f0)

]
j

.

Approximating the conditional expectation. Ideally, we would like to estimate the conditional ex-

pectation of πj,l(st, xt) with respect to zjt. The endogenous variables are {δ0
jt}j=1,....,J , and the potential

endogenous variables in {x2jt}j=1,...,J , which often include prices. In practice, computing the condi-

tional expectation is challenging because the dimension of zjt can be very large and the functions πj,l(·)

are highly non-linear and non-separable in the endogenous variables. This makes it unappealing to use

standard non-parametric estimation methods.14 In the same spirit as Reynaert and Verboven (2014), we

first project the endogenous variables on the space spanned by a relevant subset of zjt. We mark the

projected endogenous variables with a hat and we plug them into our functions πj,l(·). Namely, we have

the following approximation for every interval instrument l:

E[πj,l(st, xt)|zjt] ≈ π̂j,l(zjt) =

(
∂ρ(δ̂0

t , x̂2t, f0)

∂δ

)−1 [
exp{δ̂0

t + x̂2tvl}
1 + ∑J

k=1 exp
{

δ̂0
kt + x̂′2ktvl

} − ρ(δ̂0
t , x̂2t, f0)

]
j

.

We show in Appendix 1.C.2 that this strategy yields an estimator of the conditional expectation that

converges faster to a first order approximation of the conditional expectation.

Test procedure. From what precedes, the MPI (for its non-linear part) can be approximated as fol-

lows: h∗D(zjt) ≈ ∑L
l=1 ωl( fa) π̂j,l(zjt). As we don’t know the weights ωl( fa), we propose to take

14For instance, a Sieve nonparametric estimator of the conditional mean. The dimension of zjt makes this approach of little
relevance in practice.

35



the vector π̂j(zjt) = (π̂j,1(zjt), ..., π̂j,L(zjt))
′ as our testing instruments. We call them interval in-

struments in reference to the way we divide the support into several intervals to construct this approx-

imation. Following the test procedure presented in Section 1.3.1, we perform a moment based test

for H0 : E
[
π̂j(zjt)ξ jt( f0, β0)

]
= 0. Under the same assumptions as in Proposition 3.1 and setting

hD(zjt) = π̂j(zjt), we have the following:

Under H0 : ST(hD, f0, β0)
d−→

T→+∞
χ2

L.

This approach has the advantage of being feasible since we can construct the vector of interval in-

struments π̂j(zjt), while remaining completely agnostic about fa. The price to pay is that we lose the

optimality properties of the MPI. We further discuss the properties of the feasible MPI in Appendix

1.C.7. Moreover, the infeasible MPI, h∗D(zjt), is of dimension one and its test statistic is distributed as

χ2
L asymptotically. In contrast, the feasible MPI is of dimension L and its asymptotic distribution is a χ2

L.

This increase in the number of degrees of freedom may lead to some loss of power. An alternative ap-

proach would consist in letting the researcher choose the weights {ω̂l}l=1,...,L and recover an instrument

of dimension one. However, for this approach to work well and retain good power properties, the econo-

metrician must choose the weights so that they approximately match the real weights {wl( fa)}l=1,...,L.

This requires a good prior knowledge of the cumulative distribution function of the alternative distribu-

tion fa. Nevertheless, our Monte Carlo simulations in Section 1.6 show that the feasible MPIs that we

propose perform very well in practice.

1.4.2 Global approximation

Second, we consider a global approximation that is based on an identity which is valid everywhere and

not only when f is close to fa. Simple algebraic operations (see Appendix 1.B.3) allow us to derive the

following expression for ∆j(st, x2t, f0, fa). Let δ0
jt = ρ−1

j (st, x2t, f0) and δa
jt = ρ−1

j (st, x2t, fa). We
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have:

∆j(st, x2t, f0, fa) = log


∫

RK2

exp{x′2jtv}
1+∑J

k=1 exp{δa
kt+x′2ktv}

fa(v)dv∫
RK2

exp{x′2jtv}

1+∑J
k=1 exp

{
δ0

jt+x′2ktv
} f0(v)dv

 .

As for the local approximation, we cannot directly exploit this formula as some quantities such as fa

and δa
jt are unknown and some variables such as δ0

jt are endogenous. To remedy these two difficulties,

we apply the same methods as previously described: we discretize the integral, and we project the

endogenous variables onto the space spanned by a relevant subset of zjt. To solve for the fact that the

mean utility δa
jt under the alternative is unknown, we replace it with the mean utility under the null

δ0
jt. This should not alter the approximation too much given that δa

jt only enters the expression at the

denominator within a sum, which averages out the differences between δa
jt and δ0

jt across products. In

the end, we are able to provide the following approximation for the non-linear part of the MPI:

E[∆j(st, x2t, f0, fa)|zjt] ≈ log

(
L

∑
l=1

ω̄l( fa) ˆ̄πj,l(zjt)

)
with ˆ̄πj,l(zjt) =

exp{x′2jtvl}
1+∑J

k=1 exp{δ̂0
kt+x′2ktvl}∫

RK2

exp{x′2jtv}

1+∑J
k=1 exp

{
δ̂0

jt+x′2ktv
} f0(v)dv

,

where {ω̄l( fa)}l=1,...,L correspond to the unknown weights and the ˆ̄πj,l(zjt) are set of global interval

instruments. The MPI can thus be approximated by the logarithm of a weighted sum of known functions

of zjt. As we did previously, we use ˆ̄πj(zjt) = ( ˆ̄πj,1(zjt), ..., ˆ̄πj,L(zjt))
′ as instruments to test H0. All

the weights are positive and sum to one, which entails that the non-linear part of the correction term is

an increasing function of our instruments. This approximation is said to be global because contrary to

the first approximation we study, it does not require f0 to be close to fa. Nevertheless, if fa is close to f0,

then the fraction κ inside the logarithm is close to 1 and the well-known approximation log(κ) ≈ κ − 1

allows us to directly rewrite the MPI as a linear combination of our instruments.

Overall, the feasible MPIs that we derive in this section allows us to approximate the most powerful

instrument against a fixed alternative while remaining agnostic about this alternative.
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1.4.3 Feasible MPIs for estimation

In the estimation framework, the researcher stipulates that f belongs to a parametric family F0 =

{ f0(·|λ̃) : λ̃ ∈ Λ0} and wants to estimate the true parameter θ0 = (β′
0, λ′

0)
′ under this parametric

restriction. From the connection between the MPI and the local instruments that we present in Section

1.3.3, we can infer that good estimation instruments hE(zjt) ought to approximate the MPI devoted to

testing H0 : θ = θ0 against any local alternative. If we have an initial estimator of θ0, we can directly

use the interval instruments presented previously to approximate the MPI devoted to testing H0 : θ = θ0

against an unknown alternative. The fact that the feasible MPIs do not depend on the alternative is

key for estimation. Moreover, the transformation of the MPI into a vector of instruments of dimension

L ≥ |λ0| is necessary for estimation as the number of instruments must be greater than the dimension

of the parameter to estimate.15 In Appendix 1.C.5, we propose a version of the interval instruments that

does not require a first step estimate of θ0 and that can be computed directly from the logit specification.

1.5 Composite hypothesis

In the traditional estimation procedure, which encompasses almost all the applications of the BLP

model, the econometrician must make a parametric assumption on the distribution of random coeffi-

cients to estimate the model. Formally, the econometrician assumes f belongs to a parametric family

F0 = { f0(·|λ̃) : λ̃ ∈ Λ0}, where λ̃ is a parameter that must be estimated. In applied work, researchers

typically assume that f is normally distributed. This parametric choice is rarely grounded in economic

theory and, if too restrictive, is likely to impose arbitrary restrictions on some key counterfactual quan-

tities such as the pass-through. In this section, we develop a formal specification test for H0 : f ∈ F0.

In comparison to the test in Section 1.3.1, we must now estimate the parameters of the distribution

θ0 = (β′
0, λ′

0)
′ in a first step, which generates parameter uncertainty. Moreover, we propose a rigorous

treatment of the numerical approximations involved in the derivation of the structural error ξ jt(θ̃). We

organize this section as follows. First, we define the pseudo-true value associated with a given spec-

15The linear parameter β0 has its own instruments, which are simply the variables in x1jt.
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ification and the first stage estimator. Second, we define our test procedure and its implementation in

practice. Finally, we study the asymptotic properties of our test.

1.5.1 Pseudo-true value and first stage estimator

To estimate the BLP model, researchers must make three choices. They must choose the parametric

family F0, the instruments hE(zjt) to estimate the model, and a weighting matrix W, which weights the

different moments included in the objective function. Given these three choices, we can define the BLP

pseudo-true value θ(F0, hE, W) ≡ θ0 = (β′
0, λ′

0)
′ as follows:16

θ(F0, hE, W) ∈ Argmin
θ̃

E
[
ξ jt( f0(·|λ̃), β̃)hE(zjt)

]′ WE
[
hE(zjt)ξ jt( f0(·|λ̃), β̃)

]
.

If the model is well-specified ( f ∈ F0) and the pseudo-true value is unique, then the pseudo-true value is

the true value: θ0 = θ. Under misspecification, θ0 is a parameter whose value depends on (F0, hE, W).

For exposition purposes, we omit this dependence in the subsequent analysis. Moreover, here we remain

general and do not impose that W must be equal to the usual optimal weighting matrix. It is often the

case in practice, that the researchers choose the identity matrix or regularize the weighting matrix.

First stage estimator θ̂. The first stage estimator is an empirical counterpart of the BLP pseudo-true

value defined previously. The minimization is done with respect to sample analogs. Additionally, we

know that there is no closed form expressions for the structural error ξ jt( f0(.|λ̃), β̃), and thus, we must

use a feasible counterpart ξ̂ jt( f0(.|λ̃), β̃) instead.

θ̂(F0, hE, Ŵ) ≡ θ̂ = Argmin
θ̃

(
∑
j,t

ξ̂ jt( f0(.|λ̃), β̃)hE(zjt)

)′

Ŵ

(
∑
j,t

ξ̂ jt( f0(.|λ̃), β̃)hE(zjt)

)
. (1.5.7)

The construction of the feasible structural error ξ̂ jt( f0(.|λ̃), β̃) requires the following 3 numerical ap-

proximations:

16Our definition of a pseudo-true value is closely related to the approach in White (1982) in the context of maximum
likelihood. In his case, the pseudo true value minimizes the Kullback-Leibler distance between the assumed likelihood and
the true likelihood, whereas in our case, the pseudo-true value minimizes a weighted sum of population moments.
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1. The econometrician does not observe a continuum of consumers as in the theoretical model but

only empirical averages ŝjt over the nt individuals in market t.

ŝjt =
1
nt

nt

∑
i=1

yijt, (1.5.8)

where yijt ∈ {0; 1} are i.i.d. choices over the i = 1, . . . , nt.

2. There is no closed form for ρj(., x2t, f0(·|λ̃)), the integral has to be computed through numerical

integration. A prominent example is Monte Carlo integration:

ρ̂j(δ, x2t, f0(|λ̃)) =
1
R

R

∑
r=1

exp{δj + x′2jtvr}

1 + ∑Jt
k=1 exp{δk + x′2ktvr}

, (1.5.9)

with vr iid draws from f0(·|λ̃).

3. There is no analytical way to recover the inverse of the demand functions ρ−1(st, x2t, f0(·|λ̃)).

The most popular way to derive the inverse demand is by solving the following contraction:

C : (·, st, x2t, f0(·|λ̃)) : δ 7→ δ + log(st)− log(ρ(δ, x2t, f0(·|λ̃))).

This solution has given rise to the popular nested fixed point GMM procedure.17

In Section 1.5.3, we explicitly state the assumptions that allow us to neglect these approximations

asymptotically.

1.5.2 Test procedure

Under Assumption A, and assuming hE(zjt) and W are such that the pseudo-true value θ0 is unique, the

following equivalence holds:

H0 : f ∈ F0 ⇐⇒ H0 : ( f , β) = ( f0(·|λ0), β0)

⇐⇒ E[ξ jt( f0(·|λ0), β0)|zjt] = 0 a.s..

17Another solution that has gained traction in the literature is the MPEC procedure (Dubé et al. (2012)) that replaces the
BLP inversion at each step of the minimization by imposing equilibrium constraints on the minimization program.
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The pseudo true value reduces the dimensionality of the problem by allowing us to move from a

composite hypothesis H0 : f ∈ F0 to the simple hypothesis H0 : ( f , β) = ( f0(·|λ0), β0) studied

previously. As we did in Section 1.2, we propose a moment-based test of H0.18 Under H0, for every set

of testing instruments hD(zjt), the following moment conditions must hold:

H0 : f ∈ F0 ⇐⇒ H0 : ( f , β) = ( f0(·|λ0), β0) =⇒ H′
0 : E

[
ξ jt( f0(·|λ0), β0)hD(zjt)

]
= 0.

We now develop a procedure to test H′
0. In comparison to the test in Section 1.3.1, we must now

account for the fact that the pseudo-true value needs to be estimated to derive the test statistic, which

generates parameter uncertainty. Moreover, we propose a rigorous treatment of the numerical approxi-

mations involved in the derivation of the structural error.

Test statistic. For any choice of testing instruments hD(zjt), our objective is to test H′
0 : E[ξ jt( f0(·|λ0), β0)hD(zjt)] =

0 where θ0 = (β′
0, λ′

0)
′ is the pseudo-true value associated with the parametric family F0.19 In order to

test H0, we consider the following Wald test statistic:

ST(hD,F0, θ̂) = TJ

(
1

TJ ∑
j,t

ξ̂ jt( f0(·|λ̂), β̂)hD(zjt)

)′

Σ̂

(
1

TJ ∑
j,t

ξ̂ jt( f0(·|λ̂), β̂)hD(zjt)

)
.

where Σ̂ is a weighting matrix chosen by the econometrician and θ̂ = (β̂, λ̂) is a consistent estimator of

θ0. The number of markets T is the dimension that we let grow to infinity to the asymptotic properties

18Other testing approaches could have been considered. First, one could use the previous equivalence to directly test H0

via an integrated conditional moment test. We do not follow this route for at least two reasons. First, this test will contain
no information on the nature of the misspecification (it could be completely unrelated to the distribution of RC). Second, in
practice the dimension of zjt is often very large, which substantially reduces the power of this kind of test. Another testing
approach would have entailed testing H0 : f ∈ F0 against a larger class of densities that encompasses F0. For instance, if F0

is the family of normal distributions, encompassing families are mixtures of Gaussians with a larger number of components.
We do not follow this route for two reasons. First, it is not desirable to restrict the alternative to a class of distributions that
encompass the null as the econometrician does not know a priori the misspecification. Second, estimating the BLP model
with a more flexible parametrization is challenging. An advantage of our test procedure is that it doesn’t require estimating
the model with a more flexible parametrization.

19Remember that under an alternative specification, the pseudo true value also depends on the estimation instruments
hE(zjt) and the weighting matrix.
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of our test. We motivate this choice in Appendix 1.C.3. Under some regularity conditions that we make

explicit in the following section, the asymptotic distribution of the test statistic under H′
0 is as follows:

ST(hD,F0, θ̂)
d→ Z′ΣZ, (1.5.10)

with
1√
T

T

∑
t=1

J

∑
j=1

ξ̂ jt( f0(·|λ̂), β̂)hD(zjt)
d→ Z ∼ N (0, Ω̃0). (1.5.11)

Σ is the probability limit of Σ̂. We make Ω̃0 explicit in the next subsection (in particular, the derivation

of Ω̃0 takes into account parameter uncertainty ). Given that Σ̂ is chosen by the econometrician and it

is possible to derive a consistent estimator of Ω̃0, the econometrician can always simulate the asymp-

totic distribution of the test statistic. In some polar cases, which we present hereafter, the asymptotic

distribution of our test statistic is pivotal chi-square distribution that does not require to be simulated.

Two polar cases. For the sake of exposition, let us now describe two polar cases where the asymptotic

distributions are pivotal chi-square distributions, which do not require to be simulated. Denote by | · |0
the counting norm.

1. Sargan-Hansen J test: If the set of estimation instruments and the set of testing instruments are

the same (hE = hD), if Ŵ is the 2-step GMM optimal weighting matrix and if Σ̂ = Ŵ−1, then

our test boils down to the usual Sargan-Hansen J test and we have under H′
0:

ST(hD,F0, θ̂)
d→ χ2

|hE|0−|θ|0 .

2. Non-redundant hD and hE: if Ω̃0 has full rank and if the econometrician sets Σ̂ = ˆ̃Ω−1
0 , then

our test statistic has the following asymptotic distribution under H′
0:20

ST(hD,F0, θ̂)
d→ χ2

|hD|0 .
20If Ω0 is singular, one can always use directly the asymptotic distribution in 1.5.10 or apply the singularity-robust proce-

dure proposed in Andrews and Guggenberger (2019).
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Choice of the testing instruments. As previously indicated, the power properties of our test hinge crit-

ically on the choice of testing instruments hD(zjt). We established that the MPI and its feasible coun-

terparts, the interval instruments, feature attractive properties in testing H0 : ( f , β) = ( f0(·|λ0), β0)

against any fixed alternative. Thus, it is natural to use these instruments for the specification test above.

In particular, we show that the consistency of the test with the MPI carries over to the general specifica-

tion test above in Appendix 1.B.5.

1.5.3 Asymptotic validity

We now study the asymptotic properties of our test when the number of markets T goes to infinity. To

establish the asymptotic validity and consistency of our test, we exploit classical results on the asymp-

totic normality of the non-linear GMM estimator (Hansen (1982), Newey (1990)) as well on the large-T

asymptotics of the BLP estimator (Freyberger (2015)). The main challenge here is to control the mag-

nitude of the approximations that intervene in the derivation of the structural error so that they can be

neglected asymptotically. Contrary to Freyberger (2015), we do not assume the convergence of any mo-

ments ex-ante and we allow for the approximation error between demand and observed market shares to

be non-zero.

Assumption B

(i) (st, xt, zt)T
t=1 are i.i.d. across markets and are consistent with the probability model defined by

equations (1.2.1), (1.2.2) and (1.2.3) evaluated at ( f , β);

(ii) Strong Exogeneity: E[ξ jt( f , β)|zjt] = 0 a.s.;

(iii) Finite moment conditions: x2t has bounded support and x1t has finite 4th moments.

In B(i), we assume that the data are i.i.d. across markets, an assumption which we could relax

slightly (technically, only certain moments need to be identical across markets), and that the data are

generated by the BLP demand model at a given pair ( f , β). In B(ii), we assume exogeneity of our

instrumental variables. Let us stress that to show the asymptotic validity of our specification test, we
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do not require ( f , β) to be non-parametrically identified, as we just need parametric identification under

H0. In particular, we do not need all the assumptions in A. B(iii) is a necessary condition to recover

the asymptotic normality of the BLP estimator. x1t having finite 4th moments is standard. x2t having

bounded support has two purposes. First, it implies that the structural error has a finite 4th moment,

Compiani (2018) makes the same assumption on price for this purpose. Second, it ensures that the

mapping used in the nested fixed point algorithm is a proper smooth contraction, which allows us to

prove that the NFP algorithm converges (without truncating the contraction mapping as in Berry (1994)

and Berry et al. (1995)) and control for the NFP approximation bias.

Assumption C

F0 is such that :

(i) λ0 belongs to the interior of Λ0 with Λ0 compact;

(ii) λ̃ 7→ ρ(δ, x2t, f0(·|λ̃)) is well defined and continuously differentiable on Λ0.

In C(i), we assume that, for any given DGP, the associated pseudo-true-value λ0 associated with the

family F0 lies in a compact space Λ0. This condition is standard in establishing the consistency and

asymptotic normality of M-estimators. Second in C(ii), we impose that the demand function and its

derivative with respect to λ should both be well defined and continuous.

Next, we impose conditions on the instruments that are used for estimation hE(zjt) and for testing

hD(zjt) and on the BLP estimator itself.

Assumption D

For a given F0 that satisfies Assumption C and for some weighting matrix W and Σ, the following

conditions must hold:

(i) Finite moments for instruments: hE(zjt) and hD(zjt) are not perfectly colinear and have finite 4th

moments;

(ii) Global identification of θ0: ∃!θ0 such that ∀θ̃ ̸= θ0:
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E

[
∑

j
ξ jt( f0(·|λ̃), β̃)hE(zjt)

′
]

WE

[
∑

j
hE(zjt)ξ jt( f0(·|λ̃), β̃)

]
> E

[
∑

j
ξ jt( f0(·|λ0), β0)hE(zjt)

′
]

WE

[
∑

j
hE(zjt)ξ jt( f0(·|λ0), β0)

]
;

(iii) Local identification: Γ(F0, θ0, hE) = E
[
∑j hE(zjt)

∂ξ jt( f0(·|λ0),β0)

∂θ′

]
and Γ(F0, θ0, hD) have full

column rank;

(iv) W and Σ are symmetric positive definite and Ŵ P→ W, Σ̂ P→ Σ;

(v) θ̂ minimizes objective function (1.5.7) and satisfies the FOC of the minimization problem:(
∑
j,t

∂ξ̂ jt( f (·|λ̂), β̂)

∂θ
hE(zjt)

)′

Ŵ

(
∑
j,t

ξ̂ jt( f (·|λ̂), β̂)hE(zjt)

)
= 0.

Assumption D restricts the class of instruments which can be used for estimation and for testing.

More specifically, D(i) and D(iii) are common regularity conditions necessary to establish asymptotic

results whereas D(ii) is an identification condition which ensures that the pseudo true value θ0 is uniquely

defined, which is critical to show the consistency of the BLP estimator. Finally, Assumptions D(iv) and

D(v) impose regularity conditions on the weighting matrix as well as on the BLP estimator itself.

The next assumptions ensure that the numerical approximations involved in the derivation of the

structural error do not interfere with the asymptotic theory.

Assumption E

(i) Let nt be the number of individuals in market t, (nt)T
t=1 is i.i.d. and independent from all other

variables. First it must be that ∀t
√

TE(n−1/2
t ) →

T→+∞
0. Second observed market share ŝt in market t

must write:

ŝjt =
1
nt

nt

∑
i=1

yijt,

with (yijt)
nt
i=1 i.i.d. draws generated by the BLP demand model at a given pair ( f , β) conditional on

(xt, ξt).

(ii) Let R be the number of simulations, then the simulated demand for product j writes:

ρ̂jt(δ, x2t, f0(·|λ̃)) =
1
R ∑

r

exp{δj + x′2jtvr}
1 + ∑k exp{δk + x′2ktvr}

,
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where vr
iid∼ f0(·|λ̃), and T

R →
T→+∞

0.

(iii) Let H be the stopping time for the contraction (which depends on T) and ϵ the fixed Lipschitz con-

stant of the contraction mapping used to invert the demand function, then it must be that
√

TϵH →
T→+∞

0.

A sufficient condition for E(i) to hold is that the minimum number of individuals observed in any

market is of higher order than the total number of markets. This condition can be checked in practice.21

Assumptions E(ii) and E(iii) can also be checked in practice and are more manageable because R and H

are chosen by the researcher and can always be increased so that these assumptions hold.

Given our assumptions, we derive the asymptotic distribution of our test statistic under the null, and

show that the test is consistent.

Theorem 5.1 Let θ̂ = θ̂(F0, Ŵ, hE) be the BLP estimator associated with distributional assumption

F0, weighting matrix Ŵ, estimating instruments hE. Under assumptions B-E,

• Under H′
0 : E

[
ξ jt( f0(·|λ0), β0)hD(zjt)

]
= 0,

ST(hD,F0, θ̂)
d→

T→+∞
Z′ΣZ, Z ∼ N (0, Ω̃0),

where Ω̃0 =

(
I|hD|0 G

) Ω(F0, hD) Ω(F0, hD, hE)

Ω(F0, hD, hE)
′ Ω(F0, hE)


I|hD|0

G′

 ,

Ω(F0, hD, hE) = cov
(

∑
j

ξ jt( f (.|λ0), β0)hD(zjt), ∑
j

ξ jt( f (.|λ0), β0)hE(zjt)

)
,

G = −Γ(F0, θ0, hD)
[
Γ(F0, θ0, hE)

′WΓ(F0, θ0, hE)
]−1 Γ(F0, θ0, hE)

′W.

• Under H′
a : E

[
hD(zjt)ξ jt( f0(.|λ0), β0)

]
̸= 0,

∀q ∈ R+, P(ST(hD,F0, θ̂) > q) →
T→+∞

1.

21Note that by making stronger assumptions on the higher moments and the support of the observed characteristics, it is
possible to find milder conditions on the number of individuals relative to the number of markets.
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The proof of Theorem 5.1 is in Appendix 1.B.4 and comprises three main steps. First, we show

that under the assumptions in E, the numerical approximation becomes asymptotically negligible. Sec-

ond, we show the consistency and asymptotic normality of the BLP estimator. Finally, we derive the

asymptotic distribution of the test statistic, taking into account parameter uncertainty (θ0 is estimated

and not observed). The apparent complexity of the asymptotic variance-covariance matrix Ω0 is a direct

consequence of parameter uncertainty.

1.6 Monte Carlo experiments

In this section, we conduct three distinct sets of Monte Carlo experiments. First, we implement a simple

simulation exercise to assess the effects of incorrectly specifying the distribution of random coefficients

on quantities of interest such as price elasticities or cross-price elasticities, which are known to play a

key role in shaping the counterfactuals. In a second set of Monte Carlo experiments, we study the fi-

nite sample performances of the specification test developed in Section 1.5 with different sets of testing

instruments. We first examine the size of our test in finite sample. Then, we investigate the power prop-

erties of our test under alternative specifications (with alternatives including Gaussian mixtures, gamma

distributions and local alternatives). We show that our test with the interval instruments significantly

outperforms the traditional J-test with the usual instruments. Finally, in the last Monte Carlo exercise,

we study the performance of the interval instruments to estimate the parameters of the model by means

of comparison with the commonly used instruments in the literature.

1.6.1 Simulation design

For the sake of exposition, we will keep the same simulation design for all the simulation experiments.

The simulation design closely follows the simulation design used in Dubé et al. (2012), Reynaert and

Verboven (2014). The market includes J = 12 products, which are characterized by 3 exogenous product

attributes xa, xb and xc that follow a joint normal distribution. The price p is endogenous and depends on

the observed and unobserved characteristics and on some cost shifters c1 and c2. Consumer heterogeneity
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is present only in xc, and the random coefficient vi associated with xc follows various distributions

depending on the simulation exercise. The sample size T varies between 50, 100 and 200 markets. We

can summarize the DGP as follows:

uijt = 2 + xajt + 1.5xbjt − 2pjt + xcjtvi + ξ jt + εijt ξ jt ∼ N (0, 1), εijt ∼ EV1,

and


xa,j

xb,j

xc,j

 ∼ N




0

0

0

 ,


1 −0.8 0.3

−0.8 1 0.3

0.3 0.3 1



 ,

pjt = 1 + ξ jt + ujt +
c

∑
k=a

xkjt + c1jt + c2jt with uj,t ∼ U[−4,−2], c1jt ∼ U[2, 4] and c2jt ∼ U[3, 5].

Market shares are generated by integrating over 20, 000 consumers. This allows us to essentially remove

the approximation error between the observed and theoretical market shares.

1.6.2 Counterfactuals under an alternative distribution

We now present a simple exercise to illustrate how the misspecification of random coefficients can af-

fect the estimation of quantities of interest such as price elasticities and cross-price elasticities. To do

so, we simulate data using the simulation design introduced above and we take various distributions for

the random coefficient vi (respectively: Gaussian mixture, Uniform, Chi-square, Exponential, Student,

Gamma). We ensure that all the distributions have the same mean and variance (3 and 3, respectively).

For each distribution, we simulate T = 100 markets of data and we estimate the model either assuming

no heterogeneity (simple logit) or assuming that vi is normally distributed. We replicate the same exer-

cise 500 times for each distribution. This allows us to recover the mean estimate for the parameters as

well as to construct 95% “confidence bins” (by trimming the observations below the 2.5% quantile and

above the 97.5% quantile). We plot the true densities and their estimated counterparts under the normal
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and logit assumptions in Figure 1.1. We observe that the estimated logit parameters and the estimated

means of the normal distributions always coincide and are close to 3 for all the distributions. However,

there is some variation between the different specifications. For instance, the estimated means are larger

with the exponential distribution. The estimated variances also vary from one specification to the other.

The estimated variances for the exponential distribution are smaller, while they are larger for the student

distribution.

Figure 1.1: True densities and estimated densities under normal and logit specifications
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In a second stage, we simulate N = 5, 000 draws from the true distributions as well as from the

estimated logit and normal approximations to compute the demand, the price-elasticity and the cross-

price elasticity for the product j∗ with the highest value for xc.22 The cross-price elasticity is arbitrarily

taken for product j = 1 with respect to pj∗ . We derive the quantities of interest for 100 equally spaced

values of pj∗ ranging in ]0, 10[. We plot the elasticities in Figure 1.2 and cross-price elasticities in Figure

22The expressions for both price-elasticities and the cross-price elasticities are in Appendix 1.D.1.
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1.3 generated by the true distribution as well as those generated by the logit and normal approximations,

respectively. We proceed similarly with the demand functions. We see in Figure 1.9 in Appendix).

One can observe that, as expected, the logit specification poorly replicates the substitution patterns.

In particular, it consistently overstates the magnitude of the elasticities and cross-elasticities with respect

to the true ones. The absence of consumer heterogeneity on characteristic c implies that consumers can

“renounce’ more easily to product j∗ when its price increases. By introducing some heterogeneity, the

normal approximation somewhat attenuates this issue. However, significant discrepancies in the shape of

elasticities and cross-price elasticities remain. As most counterfactual analyzes rely on the substitution

patterns generated by the model, these differences will inevitably create significant biases.

Figure 1.2: Price elasticities
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Figure 1.3: Cross-price elasticities
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1.6.3 Finite sample performance of the specification test

We now study the empirical size and power of our test under different sample sizes and for different sets

of testing and estimating instruments. Once again, the data are generated according to the simulation

design exhibited previously for various distributions of vi. The assumption made throughout the simula-

tions is H0 : f ∈ F0, where F0 is the family of normal distributions. In other words, we always assume

that the random coefficient is normally distributed and we test this hypothesis. We set the nominal size

to 5%. We study the finite sample performances of the specification test that we presented in Section

1.5 using different sets of estimation and testing instruments. For estimation, we take the instruments

commonly adopted by practitioners: the differentiation instruments of Gandhi and Houde (2019) and

the ”optimal” instruments of Reynaert and Verboven (2014). Both of these sets are approximations of

the classical optimal instruments. Second, we compare the performance of the test when performing the

standard Sargan-Hansen J test (i.e. when we use the same instruments for testing and estimation) and
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when we use the global and local approximations of the MPI that we constructed in Sections 1.4.2 and

1.4.1. We denote the latter tests as I Local and I Global respectively. The BLP estimator is computed

following the NFP GMM procedure described in Section 1.5.1. For the optimization, only an analytic

Jacobian is provided. We ensure that the number of tested restrictions is of the same magnitude across

the different sets of instruments. More details on the exact sets of instruments and on the estimation

procedure for this specific set of simulations are given in Appendix 1.D.2.

Empirical size

The size is the probability of rejecting the null hypothesis when the null is true, so we compute the

empirical size by counting and averaging the number of times we reject the null for nominal size 5% over

the 1, 000 simulations when the random coefficient vi is normally distributed. Below in Table 1.1, we

report the empirical sizes of the test with the different sets of instruments described above for the different

sample sizes T ∈ {50, 100, 200} and for different distributions of the RC such that vi ∼ f ∈ F0.

Table 1.1: Empirical size for nominal size 5% (1000 replications)

Number of markets T=50 T=100 T=200

Estimation instruments “Differentiation” “Optimal’ “Differentiation” “Optimal’ “Differentiation” “Optimal’

Test type J I Global I local J I Global I local J I Global I local J I Global I local J I Global I local J I Global I local

vi ∼ N (−1, 0.52) 0.294 0.083 0.091 0.145 0.078 0.063 0.138 0.078 0.058 0.094 0.084 0.047 0.08 0.052 0.053 0.064 0.05 0.04

vi ∼ N (0, 0.752) 0.293 0.084 0.085 0.148 0.081 0.071 0.137 0.061 0.06 0.1 0.059 0.05 0.074 0.053 0.045 0.062 0.048 0.036

vi ∼ N (1, 12) 0.287 0.084 0.083 0.142 0.084 0.073 0.142 0.055 0.054 0.098 0.053 0.047 0.079 0.042 0.03 0.058 0.035 0.025

vi ∼ N (2, 22) 0.288 0.087 0.077 0.145 0.071 0.072 0.138 0.069 0.051 0.099 0.053 0.056 0.077 0.044 0.041 0.069 0.037 0.044

vi ∼ N (3, 32) 0.287 0.089 0.071 0.137 0.075 0.066 0.145 0.074 0.06 0.098 0.06 0.061 0.076 0.044 0.037 0.061 0.046 0.046

We observe that with a moderate sample size (T = 50, J = 12), all the tests are over-sized. This

is within expectations and due to the approximations inherent to the estimation of the BLP models as

described in Section 1.5 and the relatively large number of instruments used for estimation and testing

purposes.23 However, we notice that the Sargan-Hansen J tests are much more over-sized than the
23The number of over-identifying restrictions lies between 6 and 8. The Sargan-Hansen J tests are known to suffer from

size distortions as the number of instruments increases.
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tests with the interval instruments: the rejection rate is above 25% for the Sargan-Hansen J test with

differentiation instruments vs around 8% for the I test. Increasing the sample size improves the tests’

empirical levels and shifts them towards the nominal level, which is a good indication of the asymptotic

validity of our test. Even with a relatively large number of markets (T = 200), the Sargan-Hansen J tests

remain slightly oversized (rejection rate is still slightly above 5%). On the other hand, for the test with

interval instruments, the empirical size appears to match the nominal level for all but two configurations,

where it seems to be slightly undersized.

Empirical power

Power is the probability of rejecting the null hypothesis under an alternative. We compute the empirical

power by counting and averaging the number of times we reject the null for the test of nominal size 5%

over the 1000 simulations when the distribution of random coefficients is misspecified. The simulation

setup remains the same as previously with the only modification being that the true distribution of vi is

now either a mixture of normals or a Gamma. We report the power against the different alternatives in

the subsequent tables. The main takeaway from our results is that the test with the interval instruments as

testing instruments (I global and I local) largely outperforms the traditional Sargan-Hansen J-test against

all the alternative distributions considered in our simulations.

Power against Gaussian mixture alternatives. We simulate data with the random coefficients dis-

tributed according to the Gaussian mixtures described below. We plot the true distributions in Figure

1.4. We report the results in Table 1.2. We observe that the test with the interval instruments has great

power against all the mixtures tested. The rejection rates go to 1 very quickly in comparison to the

Sargan-Hansen J tests.

v = Dv1 + (1 − D)v2, P(D = 1) = p, P(D = 0) = 1 − p,

v1 ∼ N
(
−
√

3p
1 − p

+ 2, 1

)
v2 ∼ N

(√
3(1 − p)

p
+ 2, 1

)
,
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with p ∈ {0.1; 0.2; 0.3; 0.4; 0.5}.

Figure 1.4: Densities, Gaussian mixture alternatives
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Table 1.2: Empirical power, Gaussian mixture alternatives (1000 replications)

Number of markets T=50 T=100 T=200

Estimation instruments “Differentiation” “Optimal’ “Differentiation” “Optimal’ “Differentiation” “Optimal’

Test type J I Global I Local J I Global I Local J I Global I Local J I Global I Local J I Global I Local J I Global I Local

Mixture 1 0.533 0.991 0.987 0.719 0.989 0.989 0.604 1 1 0.967 1 1 0.829 1 1 1 1 1

Mixture 2 0.626 0.996 0.998 0.613 0.997 0.998 0.723 1 1 0.905 1 1 0.933 1 1 1 1 1

Mixture 3 0.629 0.992 0.995 0.43 0.996 0.997 0.741 1 1 0.7 1 1 0.941 1 1 0.977 1 1

Mixture 4 0.601 0.983 0.982 0.275 0.981 0.981 0.713 1 0.999 0.368 1 1 0.921 1 1 0.672 1 1

Mixture 5 0.56 0.907 0.904 0.157 0.9 0.906 0.635 0.993 0.995 0.124 0.995 0.996 0.855 1 1 0.146 1 1

Power against Gamma alternatives. We simulate data with the random coefficients distributed ac-

cording to the Gamma distribution described below. We plot the true distributions in Figure 1.5. We

report the results in table 1.3. We observe that the test with interval instruments has great power against

all the Gamma distributions tested except for the first one, which we can see on the plot has a distribution

that is relatively close to a normal distribution. Even for the first Gamma distribution, it still outperforms

the traditional sets of instruments. For all the other Gamma distributions, the rejection rates go to 1

very quickly in comparison to the Sargan-Hansen J-tests. This confirms the superiority of the interval
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instruments in detecting misspecification in the distribution of random coefficients. In Appendix 1.D.2,

we also study the power properties of our test against local alternatives.

v ∼ Γ(2, k) with k ∈ {0.25, 0.5, 0.75, 1, 1.5}

Figure 1.5: Densities, Gamma alternatives
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Table 1.3: Empirical power, Gamma alternatives (1000 replications)

Number of markets T=50 T=100 T=200

Estimation instruments “Differentiation” “Optimal’ “Differentiation” “Optimal’ “Differentiation” “Optimal’

Test type J I Global I Local J I Global I Local J I Global I Local J I Global I Local J I Global I Local J I Global I Local

Gamma 1 0.293 0.106 0.093 0.142 0.082 0.074 0.154 0.083 0.073 0.094 0.092 0.08 0.118 0.155 0.139 0.066 0.156 0.138

Gamma 2 0.516 0.747 0.752 0.14 0.781 0.77 0.562 0.983 0.978 0.095 0.982 0.98 0.492 1 1 0.08 1 1

Gamma 3 0.607 0.96 0.962 0.157 0.963 0.969 0.693 0.998 1 0.156 1 1 0.922 1 1 0.161 1 1

Gamma 4 0.622 0.97 0.99 0.207 0.962 0.995 0.748 0.999 1 0.263 1 1 0.933 1 1 0.412 1 1

Gamma 5 0.687 0.991 0.999 0.371 0.988 0.999 0.812 1 1 0.585 1 1 0.976 1 1 0.865 1 1

1.6.4 Finite sample performance of interval instruments for estimation

In our last simulation exercise, we evaluate the performance of our interval instruments in estimating the

parameters associated with the RC when the distribution of random coefficients is flexibly parametrized.
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To do so, we simulate data with a distribution of random coefficients following a mixture of Gaussians

and we estimate the parameters of this mixture. We provide a method to estimate the parameters when

the distribution of the RC is a mixture in Section 1.C.6 of the Appendix. In particular, we provide

a new parametrization of the model, which yields substantial practical gains and may be of interest

to researchers independent of the rest of the paper. The simulation design remains the same as pre-

viously. We assume that the random coefficient vi is distributed according to the following mixture:

vi ∼ Di N (−2, 0.5) + (1 − Di) N (4, 0.5) with P(Di = 1) = 0.25. Thus, there are 5 parameters

associated with the distribution of RC: the means and variances of each component of the mixture and

the mixing probability. Our objective is to compare the performance of the global and local interval

instruments with the instruments commonly used by practitioners: the differentiation instruments from

Gandhi and Houde (2019) and the “optimal instruments” from Reynaert and Verboven (2014). In Table

1.4, we report the empirical biases and the square root of the MSE for the estimators of the non-linear pa-

rameters for each set of instruments and for the different sample sizes. In Appendix 1.D.3, we report the

same information for the linear parameters (see Tables 1.14, 1.15, and 1.17) as well as the distribution of

the empirical distribution of the non-linear estimates. Table 1.4 allows us to directly compare the perfor-

mances of the three sets of instruments in estimating the non-linear parameters. We first observe that for

all the sets of instruments, the empirical biases and
√

MSE of the estimators decrease when the sample

size increases, which is reassuring. Furthermore, it appears clearly that the differentiation instruments

perform worse than the ”optimal instruments” and the interval instruments. The empirical
√

MSE of the

estimators with the differentiation instruments is up to 12 times larger than with the interval instruments

and up to 6 times larger than with the ”optimal instruments”. We reach the same conclusions when we

study empirical biases. The interval instruments appear to perform better than the ”optimal instruments”

even if the difference is less significant than with the differentiation instruments. For the sake of concise-

ness, we do not report the results obtained with a mixture of 3 components but the observations we make

with two components are even more exacerbated. In Appendix 1.D.3, as a means of comparison, we

perform the same exercise when the distribution of random coefficients is a simple Gaussian and here,

we do not observe any significant differences between the different sets of instruments, which confirms
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that the interval instruments make a difference when the distribution of RCs is flexible.

Table 1.4: Estimation non-linear parameters of the mixture (1000 replications)

Instruments Differentiation ”Optimal” Interval Global Interval Local

Parameter β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL

Sample size true -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25

T=50, J=12
bias 0.214 0.184 -0.022 -0.045 0.027 0.076 0.059 0.026 -0.111 0.01 0.017 0 -0.045 0.004 0.005 -0.006 -0.005 -0.039 -0.001 0.003

√
MSE 0.633 0.734 0.281 0.35 0.075 0.361 0.483 0.212 0.281 0.036 0.277 0.391 0.227 0.259 0.024 0.251 0.34 0.214 0.244 0.019

T=50, J=20
bias 0.189 0.347 0.022 -0.081 0.025 0.074 0.11 0.028 -0.089 0.01 0.013 0.042 -0.018 -0.003 0.004 0.019 0.033 -0.023 0.01 0.003

√
MSE 0.566 0.887 0.184 0.291 0.059 0.328 0.563 0.163 0.228 0.033 0.248 0.415 0.166 0.22 0.021 0.228 0.38 0.15 0.184 0.018

T=100, J=12
bias 0.233 0.226 0.02 -0.066 0.027 0.054 0.037 0.019 -0.066 0.007 0.004 -0.012 -0.027 0.005 0.002 0 0 -0.028 0.007 0.001

√
MSE 0.592 0.703 0.256 0.305 0.072 0.279 0.4 0.154 0.211 0.028 0.167 0.282 0.157 0.201 0.013 0.127 0.225 0.143 0.164 0.005

T=100, J=20
bias 0.198 0.423 0.047 -0.101 0.025 0.074 0.107 0.033 -0.074 0.01 -0.009 -0.005 -0.008 -0.009 0.001 -0.003 0.004 -0.01 0.004 0.001

√
MSE 0.552 0.89 0.164 0.27 0.055 0.311 0.52 0.129 0.194 0.034 0.115 0.264 0.115 0.169 0.005 0.104 0.226 0.103 0.125 0.004

T=200, J=12
bias 0.184 0.167 0.011 -0.049 0.019 0.026 0.011 0.021 -0.061 0.004 -0.006 -0.027 -0.015 -0.001 0.001 0.002 -0.007 -0.016 0.006 0.001

√
MSE 0.466 0.601 0.176 0.262 0.053 0.184 0.313 0.113 0.172 0.018 0.088 0.219 0.108 0.164 0.003 0.091 0.174 0.099 0.123 0.003

1.7 Empirical application

The objective of the empirical exercise is twofold. First, we want to verify how well our instruments

perform at estimating a flexible distribution of RCs using a real data set. Second, we want to study how

the shape of the distribution of RCs can modify key counterfactual quantities such as the price elasticities

or the pass-through, and check whether the results we obtain are consistent with the findings in Miravete

et al. (2022). To do so, we estimate demand for cars using data on new car registrations in Germany from

2012 to 2018.24 There are many reasons to focus on the car market. First, cars are highly differentiated

products, which makes the BLP framework particularly adapted to this market. As a result, the BLP

demand model has been widely applied to study the car industry (e.g., Berry et al. (1995), Grigolon

et al. (2018), Petrin (2002)) and one can easily compare our results with previous results obtained in the

literature under different specifications. Second, there are many policy-relevant questions related to this

market. In particular, the role of road transport in air pollution is significant and many countries have

24The dataset was kindly provided to us by Kevin Remmy https://kevinremmy.com/research/.
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implemented tax policies to reduce the CO2 emissions generated by car transportation.25 An important

strand of the literature has investigated the performance of these different taxation schemes (Alberini

and Horvath (2021), Allcott and Wozny (2014), D’Haultfœuille, Givord, and Boutin (2014), Durrmeyer

(2022), Durrmeyer and Samano (2018), Gillingham and Houde (2021), Grigolon et al. (2018), Huse and

Koptyug (2022), Kunert (2018)). Other policy-relevant questions include the impact of import tariffs

(Miravete et al. (2018)) and the determinants of market power (Berry et al. (1995), Grieco, Murry, and

Yurukoglu (2022)). To answer these questions, the researcher must often estimate the demand for cars.

The credibility of the implied analysis depends critically on how well the model can reproduce the

underlying substitution patterns and the shape of the demand curve. To this end, it is essential to have a

demand system that is sufficiently flexible, and particularly so with respect to the random coefficient on

price. In this section, we use our instruments to estimate a Gaussian mixture as the random coefficient

associated with price. Moreover, we use our test to assess how moving from the usual Gaussian RC to

the Gaussian mixture decreases the degree of misspecification. Finally, we compare the counterfactual

quantities under a Gaussian mixture and the traditional specifications (Gaussian RC and logit). In line

with the findings in Miravete et al. (2022), our results indicate that the Gaussian mixture yields higher

pass-through rates and curvatures.

1.7.1 The Data

The data set includes state-level new car registrations, publicly available by the German Federal Motor

Transport Authority (KBA) from 2012 to 2018. This gives us 112 markets defined by state-year pairs.

Data on car characteristics and price are scraped from General German Automobile Club and include

horsepower, engine type, size, weight, fuel cost, CO2 emission, number of doors, segment, and body

type. The data set is at a granular level where every car is uniquely identified by its manufacturer and

its type key code (HSN/TSN) that is defined according to the characteristics of the car. Following the

25In 2017, road transport was responsible of approximately 19% of total greenhouse has emis-
sions in EU-28 Retrieved from https://www.eea.europa.eu/data-and-maps/indicators/

transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-12

on October 21, 2022.
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literature, we aggregate products with the same brand, model, engine type, and body combination (e.g.

BMW-1 Series-Diesel-Hatchback).26 Likewise, we follow the literature and define the market size as the

number of households in the market. To construct market shares, we simply divide new car registrations

of a given product by the market size. The data set is complemented by information on demographics

such as the number of households or the average income per household at the state-year level and yearly

average gas price data from ADAC.27

Summary statistics. The shares of products sold by engine type are presented in Table 1.5. We focus

our analysis on combustion engine vehicles as in our sample period electric-vehicle cars constitute a

small market share (always less than 5% of the sold vehicles) and can be seen as a distinct market.

Between diesel and gasoline cars, we observe that the market share for diesel cars decreases over time,

starting from 2016. The timing is in line with the emissions scandal, known as the Dieselgate, which

started in September 2015.

Table 1.5: Shares (%) of new registrations by engine type

Year

Fuel Type 2012 2013 2014 2015 2016 2017 2018

Diesel 46.8 46.1 46.3 46.4 43.9 36.2 30.0

Gasoline 52.6 52.9 52.6 52.3 54.4 60.8 66.5

Battery EV 0.1 0.2 0.3 0.4 0.3 0.7 1.1

Hybrid EV 0.5 0.8 0.7 0.6 1 1.4 1.6

Plug-in hybrid EV 0 0 0.1 0.3 0.4 0.9 0.9

Table 1.6 provides sales-weighted averages for prices and observed characteristics. We observe that

the difference in fuel consumption and resulting fuel costs steadily ranks diesel above gasoline. However,

26In aggregating the products from the HSN/TSN level, we use the characteristics of the car with the highest sales.
27State level income https://ec.europa.eu/eurostat/web/products-datasets/-/nama_10r_

2hhinc
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the average price of diesel cars sold is higher than gasoline cars. This implies a potential trade-off in

terms of the costs of car ownership at the time of purchase. With a fixed mileage in mind, a consumer

with high sensitivity to fuel costs might be willing to pay a higher price for a more fuel-efficient car. We

also observe that the horsepower and the size of the newly registered cars increase over time.

Table 1.6: Summary Statistics (Sales weighted)

Year

2012 2013 2014 2015 2016 2017 2018

Diesel

Price/income 0.74 0.72 0.73 0.72 0.71 0.69 0.68

Size (m2) 8.31 8.31 8.32 8.36 8.42 8.48 8.53

Horsepower (kW/100) 1.09 1.07 1.11 1.11 1.14 1.16 1.21

Fuel cost (euros/100km) 7.90 7.18 6.63 5.53 4.94 5.25 5.83

Fuel cons. (Lt./100km) 5.19 4.98 4.89 4.73 4.61 4.61 4.71

CO2 emission (g/km) 136.19 130.50 127.69 123.58 120.42 120.49 123.27

Nb. of products/market 133 138 146 150 151 149 143

Gasoline

Price/income 0.46 0.46 0.46 0.46 0.46 0.45 0.43

Size (m2) 7.23 7.27 7.28 7.30 7.36 7.46 7.53

Horsepower (kW/100) 0.79 0.78 0.80 0.82 0.85 0.88 0.91

Fuel cost (euros/100km) 9.48 8.61 8.11 7.27 6.69 7.06 7.40

Fuel cons. (Lt./100km) 5.76 5.47 5.40 5.31 5.25 5.34 5.38

CO2 emission (g/km) 135.80 128.18 125.27 122.89 121.22 122.86 123.26

Nb. of products/market 157 171 179 185 186 193 188

Note: Provided statistics are sales weighted averages across products. Total number of markets (State*Year) is 112 .

Inter-market variation. Our dataset contains both geographical variation and time variation, as we

observe the sales in every state in Germany over the period 2012-2018. States in Germany differ sig-

nificantly in terms of income per inhabitant, population density and average distance driven.28 It is

28For the population density 2019 (inh/km2): 69 (Mecklenburg-Vorpommern) to 4118 (Berlin) (from Federal Sta-
tistical Office of Germany (Destatis)), GDP per capita 2019: 28.9k (Mecklenburg-Vorpommern) to 67k (Hamburg)
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fundamental to take this inter-market variation into account in our empirical specification for two rea-

sons. First, our model postulates that consumers’ preferences are the same across markets. However,

we observe that the market shares vary from one state to the other even if the choice set remains the

same. This feature of the data can only be explained if we let the preferences vary from one market to

the other. Second, in Section 1.2.3, we saw that there needs to be sufficient variation in the product char-

acteristics across markets to identify the distribution of RCs. By interacting product characteristics with

state demographics, we achieve both objectives: we shift the preferences to a more common representa-

tion and we create variation in the product characteristics across markets. To choose which interaction

terms to include in the utility function, we first create market specific sales-weighted characteristics for

the following variables: price, fuel cost, size, horsepower, height, gasoline dummy, and foreign dummy

(equal to one if the manufacturer of the car is not German). Then, we regress these quantities on the

demographics of interest: average income, population density, and a time trend. Last, we select the in-

teraction terms that explain the best the variation in sales-weighted characteristics (namely, the variables

with a p-value below 1e−10). The results of these regressions are presented in Table 1.7. They suggest

that income shifts positively the preferences for price, size, and horsepower (i.e. higher income is asso-

ciated with larger cars, and higher horsepower). In contrast, income shifts negatively the preferences for

foreign status, height, and gasoline status.29 Although weaker, a similar pattern is observed for the effect

of population density on car characteristics.

(retrieved from https://www.ceicdata.com/en/germany/esa-2010-gdp-per-capita-by-region/

gdp-per-capita-bremen on 05 November 2022). For average driving distance in 2019: 13079 km (Mecklenburg-
Vorpommern) to 9531 (Berlin) retrieved from https://de.statista.com/statistik/daten/studie/

644381/umfrage/fahrleistung-privater-pkw-in-deutschland-nach-bundesland/ on 19 Septem-
ber 2022.

29In the main analysis, we use price/income to capture the income effect.
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Table 1.7: Linear regressions of sales-weighted car characteristics on demographic characteristics

Income(/1000) Population density (/100) Time trend

Price(×1000) 0.138∗∗ 0.069∗ 0.286∗

(0.013) (0.011) (0.059)

Fuel cost (euros/100km) -0.0069 -0.0036 0.3587∗∗

(0.0063) (0.0056) (0.0296)

Size(m2) 0.0058∗∗ 0.0018∗ 0.0176∗

(0.00079) (0.00070) (0.00371)

Horsepower (KW/100) 0.0028∗∗ 0.0012∗ 0.0129∗∗

(0.00028) (0.00025) (0.00132)

Foreign −0.0050∗∗ −0.0014∗ 0.0295∗∗

(0.00052) (0.00046) (0.00246)

Height(m) −0.00051∗∗ −0.00043∗∗ 0.00181∗

(0.000061) (0.000054) (0.000286)

Gasoline −0.0067∗∗ −0.0024∗ 0.0131∗

(0.00059) (0.00053) (0.00280)

Note: * p-value lower than 0.01, ** p-value lower than 1e−10.

Instruments for the endogeneity of price. To instrument for price, we use a combination of variables

on the intensity of competition and cost shifters. To measure the intensity of competition, we consider

the number of competing products of the same class and engine type in a given market, and the number

of competing products of the same engine type in a given market. As for cost shifters, we use three

complementary datasets: the mean hourly labor cost, the price of steel (interacted with the weight of the

car), and exchange rates between Germany and the country of assembly.

1. Labor cost: we use the mean nominal hourly labor cost per employee in the manufacturing sector

of the country of assembly of the models. The data on labor costs come from International Labor

Organization Statistics (ILOSTAT).30

30Retrieved from https://www.ilo.org/ilostat-files/Documents/Excel/INDICATOR/LAC_4HRL_
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2. Price of steel: we collect the price of steel futures in January of each year.

3. Exchange rates: we construct the exchange rates between Germany and the country of assembly

of each car model using exchange rate data from OECD.31

1.7.2 Empirical specification

The indirect utility of consumer i, purchasing product j in market t (defined as a state-year pair) is given

by:

uijt = x′1jtβ + ξ∗jt︸ ︷︷ ︸
δjt

+x′2jtαi + εijt.

The mean utility δjt = x′1jtβ+ ξ∗jt captures homogeneous preferences. The variables in x1jt consist of the

product characteristics for which we assume that there is no preference heterogeneity and the interaction

terms that explain the best the geographical variation observed in Table 1.7.32

The demand shock on product j is decomposed as follows:

ξ∗jt = Brandj + Statet + Yeart + ξ jt,

where Brandj is a brand fixed effect that captures the unobserved quality of the brand of product j,

Statet captures state specific demand shocks that are fixed across time and products and Yeart captures

year-specific demand shocks. Therefore, Statet and Yeart play a role in explaining the variation in the

overall demand for cars (or equivalently, in the share of the outside option).

The variables in x2jt are the product characteristics that display preference heterogeneity and which we

augment with a RC. In our specification, we include the price, the size, and the gasoline dummy in

x2jt. We estimate the model assuming different specifications for the distribution of RCs. First, we esti-

mate the model without any consumer heterogeneity. Second, we assume that all the RCs are normally

ECO_CUR_NB_A_EN.xlsx
31Retrieved from https://data.oecd.org/conversion/exchange-rates.htm
32The choice of the variables that display preference heterogeneity is based on our understanding of the car market and

follows current empirical practices for this specific market. However, we understand the limitations of this approach, and we
are working on an iterative procedure to select the variables that display consumer heterogeneity.
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distributed. Finally, we consider a Gaussian mixture on price to increase flexibility with respect to the

preferences on price. For each different specification, we perform the specification test developed in Sec-

tion 1.5 to see how the degree of misspecification evolves as we increase flexibility on the distribution of

RCs.

1.7.3 Estimation

Estimation conditional logit (no heterogeneity). First, we estimate the logit model, and we report

the results in Table 1.8.33 As expected, we find a negative effect of price and fuel cost on the utility. The

interaction terms indicate that the utility derived from size, horsepower, foreign status and gasoline all

decrease with income. Moreover, we observe that the aversion to fuel cost decreases over time, which

is likely an artifact implied by increasing fuel cost over the years. In contrast, the utility derived from

horsepower appears to increase with time. However, these time effects are smaller in comparison with

the heterogeneity due to income. To facilitate the interpretation of these results, we consider a household

with a e47,000 income in 2018. This corresponds to the mean income in 2018. For this household,

the implied effect of size on the utility is negative, whereas a positive utility is derived from higher

horsepower, the car’s brand being German, height, and gasoline engines.

33In Appendix 1.E, we provide results for baseline specifications including the simple conditional logit and the nested logit
(with and without state and year fixed effects).
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Table 1.8: Logit estimation

Baseline × Income (/1000) × Pop. density(/100) × Time trend

Homogeneous Preferences β̂ S.E β̂ S.E β̂ S.E β̂ S.E

Price/income -2.4 1.3e-01 - - - - - -

Fuel Cost -0.25 8.6e-03 - - - - 0.014 1.7e-03

Size(m2) 0.15 4.2e-02 -0.0055 8.5e-04 - - - -

Horsepower(KW/100) 2.7 1.8e-01 -0.019 2.4e-03 - - -0.081 7e-03

Foreign 0.18 7.1e-02 -0.017 1.4e-03 - - - -

Height(m) 3.5 2.3e-01 -0.0015 4.6e-03 -0.036 4.7e-03 - -

Gasoline 1.1 6.3e-02 -0.011 1.2e-03 - - - -

Note: Brand, Year and State FE’s are included.

Estimation with Gaussian random coefficients. We now increase the flexibility in the traditional

manner, by assuming that the RCs on the price, the size and the gasoline indicator follow a Gaussian

distribution. We report the estimates obtained under this new specification in Table 1.9. The signs for

the homogeneous preference parameters in x1jt remain the same and the magnitude of the effects do not

change significantly. The sign associated with the mean effect of price remains negative. In contrast,

the sign on the mean effects of the size and the gasoline dummy are inverted with respect to the logit

specification. This last observation illustrates an important empirical finding: average effects are not

invariant to the introduction of preference heterogeneity. In other words, the logit estimates do not

necessarily match the means, when we introduce a Gaussian RC. Moreover, the three RCs display high

variances and particularly so for the gasoline dummy, which indicate a high level of heterogeneity with

respect to these three characteristics.34

34The estimation is performed using the parametrization proposed in Ketz (2019), which avoids boundary issues at 0 for
the variances of the RCs.
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Table 1.9: Traditional BLP (Gaussian RC)

Baseline × Income (/1000) × Pop. density(/100) × Time trend

Homogeneous Preferences β̂ S.E β̂ S.E β̂ S.E β̂ S.E

Price/income - - - - - - - -

Fuel Cost -0.29 5.1e-03 - - - - 0.031 9.2e-04

Size(m2) - - -0.0053 3.1e-04 - - - -

Horsepower(KW/100) 0.77 1.5e-02 0.0078 6.8e-04 - - -0.12 5.6e-03

Foreign 0.21 5.4e-02 -0.019 1.1e-03 - - - -

Height(m) 3.4 1.1e-02 -0.0088 1.2e-03 -0.032 3.6e-04 - -

Gasoline - - -0.0028 8.6e-04 - - - -

Gaussian RC β̂ S.E σ̂ S.E

Price/income -2.4 2e-02 0.96 5.9e-03 - - - -

Size(m2) -0.37 1.5e-02 0.43 3.6e-03 - - - -

Gasoline -2.3 4.4e-02 4 4.1e-04 - - - -

Note: Brand, Year and State FE’s are included.

Estimation with a Gaussian mixture on the price. Finally, we increase the flexibility of the model,

by replacing the Gaussian RC on the price variable with a Gaussian mixture of 2 components. We focus

on the price as the literature shows that the distribution of price sensitivity is absolutely key for many

quantities of interest in IO, including the price elasticities and the pass-through. We report the estimates

obtained under this new specification in Table 1.10. The results point out the presence of two distinct

modes in the distribution of the RC associated with price. The two modes reveal the presence of two

groups of consumers: the first one with high price sensitivity (with the mean component at -9.6) and the

second one with low price sensitivity (with the mean component at -2.5). Moreover, the distribution is

heavily asymmetric with the probability of the first mode being 0.9, which entails that the majority of

consumers are highly sensitive to price. This last feature is completely absent in the logit and Gaussian

specifications, which seem to capture only the first mode of the distribution as we can see in Figure

1.6. Once again the homogeneous parameters are relatively unchanged with respect to the previous
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specifications. The Gaussian RC on the gasoline still displays a high variance (the standard deviation of

the RC equals 2.8).

Table 1.10: Estimation Gaussian mixture on Price

Baseline × Income (/1000) × Pop. density(/100) × Time trend

Homogeneous Preferences β̂ S.E β̂ S.E β̂ S.E β̂ S.E

Price/income - - - - - - - -

Fuel Cost -0.23 5.8e-03 - - - - 0.026 1e-03

Size(m2) - - -0.0055 3.7e-04 - - - -

Horsepower(KW/100) 1.8 3.6e-02 -0.0016 1.1e-03 - - -0.1 7e-03

Foreign 0.26 6.1e-02 -0.021 1.2e-03 - - - -

Height(m) 3.5 1.1e-02 -0.012 1.2e-03 -0.032 3.7e-04 - -

Gasoline - - -0.026 1.3e-03 - - - -

Gaussian RC β̂ S.E σ̂ S.E

Size(m2) 0.5 1.9e-02 0.1 6.7e-02 - - - -

Gasoline -0.45 3.8e-03 2.8 9.1e-03 - - - -

Gaussian Mixture β̂1 S.E σ̂1 S.E β̂2 S.E σ̂2 S.E

Price/income -9.6 1.8e-02 0.1 1.8e-03 -2.5 1.8e-02 0.35 5.2e-04

Probability 0.9 6.8e-05

Note: Brand, Year and State FE’s are included.

In Figure 1.6, we plot the estimated distribution of random coefficients under the three specifications

we consider. We observe little to no variation in the homogeneous parameters from one specification

to the other. The main difference comes from the introduction of the Gaussian mixture on price, which

reveals the presence of a large group of highly price sensitive consumers.
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Figure 1.6: Estimated distributions of RCs in the three specifications

0.00

0.25

0.50

0.75

1.00

−12 −8 −4 0
x

de
ns

ity

Price/income

0.00

0.25

0.50

0.75

1.00

−2 0 2
x

de
ns

ity

Fuel cost (euro/100km)

0.00

0.25

0.50

0.75

1.00

−2 0 2
x

de
ns

ity

Size (m^2)

0.00

0.25

0.50

0.75

1.00

0 2 4
x

de
ns

ity

Horsepower (KW/100)

0.00

0.25

0.50

0.75

1.00

−2 0 2
x

de
ns

ity

Foreign

0.00

0.25

0.50

0.75

1.00

2 4 6
x

de
ns

ity

Height (m)

0.00

0.25

0.50

0.75

1.00

−15 −10 −5 0 5
x

de
ns

ity

Gasoline

0.00

0.25

0.50

0.75

1.00

−14 −12 −10 −8
x

de
ns

ity

Constant

Random coefficients specification Logit Gaussian Gaussian mixture

Specification Test. By increasing the flexibility on the distribution of RCs, we recover less precise

estimates and the model becomes more difficult to estimate. Thus, it is important to show that the

additional flexibility substantially reduces the misspecification of the model. To quantify the degree of

misspecification accross the different models, we keep the same set of estimation instruments across the

different specifications of RCs and we report the value of the associated Sargan-Hansen J statistics in

each case. Moreover, for every model, we follow the procedure developed in Section 1.5 to test if the

distribution of RCs on price is well specified. We use the global interval instruments and we denote this

test “Interval test”. We report the values of the test statistics and the degrees of freedom of the chi-square

under the null in Table 1.11. We observe an important decrease in the Sargan-Hansen J statistic when we

transition from the logit to the Gaussian RC. However, the decrease in the Sargan-Hansen J statistic is

much larger when we transition from the Gaussian RC on price to the Gaussian mixture, which indicates

that the Gaussian mixture performs much better than the simple Gaussian at capturing the underlying

heterogeneity in price sensitivity. The interval test displays a similar behavior, with the largest decrease
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in the test statistic stemming from the transition from the Gaussian RC to the Gaussian mixture.

Table 1.11: Evolution of misspecification with flexibility

Instruments Logit Gaussian RC Gaussian mixture

Test Stat. Critical val. DF Stat. Critical val. DF Stat. Critical val. DF

J test 2755.7 40.1 27 2341.7 36.4 24 950.3 33.9 21

Interval test 1331.9 14.1 7 999.4 14.1 7 244.0 14.1 7

1.7.4 Counterfactual quantities

The objective of this subsection is to illustrate how changes in the distribution of the RC associated

with price affect many counterfactual quantities of interest in empirical IO, such as the price elasticities,

the marginal costs faced by car manufacturers, and the pass-through of cost. In order to compare our

empirical results with the findings in Miravete et al. (2022), we also calculate the demand curvature

under the different specifications. They show that a large demand curvature is necessary to recover a

pass-through larger than one.

In the following, we study the effect of different specifications on the price elasticities, demand curva-

ture, marginal costs and mark-ups, and finally on the pass-through. To recover marginal costs and mark-

ups, we assume that multi-product firms pricing under Bertrand-Nash pricing. For the pass-through, we

calculate the new equilibrium prices using fixed point iterations and, following the literature, study the

effect of increasing the marginal costs of each product by 1% and recomputing the marginal cost. In

Appendix 1.E, we provide details on the calculation of counterfactual quantities. In our computations,

we use the year 2018, which is the last year of our sample.

Summary of results. We report the median values for the five counterfactual quantities of interest in

Table 1.12. Several remarks are in order. First, the Gaussian mixture yields a much lower price elasticity

than the two other specifications. This is related to the emergence of a group of highly price sensitive

consumers in the mixture specification, which we fail to detect with the logit and Gaussian RC speci-

fications. Moreover, the low price elasticities that we recover in the Gaussian and logit specifications,

69



generate unreasonably low marginal costs (even negative ones as we can see in Figure 1.7) and excessive

mark-ups. In contrast, this problem does not appear with the Gaussian mixture. Finally, to link our

results with the findings in Miravete, Seim, and Thurk (2022), we now focus on the demand curvature

and the pass-through of cost. As expected, the logit displays a curvature and a pass-through equal to

1. In contrast, we can see that the Gaussian mixture displays a larger demand curvature than the other

two specifications. This comes from the skewness that the mixture induces in the distribution of price

sensitivity. This last feature implies that the Gaussian mixture yields a pass-through much greater than

1 (1.5 on average). Unfortunately, the negative marginal costs we recover with the Gaussian RC prevent

us from computing the pass-through in this case.35

Table 1.12: Median counterfactual quantities under different specifications on RCs

RC distribution on price Logit Gaussian Gaussian Mixture

Own price-elasticity -1.2 -1.1 -2.6

Demand curvature 1.0 1.2 1.3

Marginal cost 9,366 1,929 20,105

Mark-up 24,048 29,572 11,066

Pass-through 1.0 - 1.5

In Figure 1.7, we plot the empirical distributions of the counterfactual quantities. We can see in

the plot featuring the distribution of marginal costs that the logit and Gaussian specifications generate

negative marginal costs for some of the cars. This is an indication that the price elasticities implied by

these specifications are too low in absolute value.

35Our algorithm to compute the new equilibrium prices after the change in cost does not converge.
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Figure 1.7: Empirical distribution of counterfactual quantities under different specifications
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Finally, in Figure 1.8, we plot the elasticity functions implied by the different specifications for the

15 most popular cars in our sample. We observe important differences in the elasticities. The Gaussian

mixture generates lower price elasticities than the other two specifications. We do the same exercise with

the demand curves in Appendix 1.E.
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Figure 1.8: Estimated elasticities under different specifications
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1.8 Conclusion

In this paper, we develop novel econometric tools to parsimoniously increase the flexibility of the dis-

tribution of random coefficients in the BLP demand model initiated by Berry et al. (1995). Specifically,

we construct a formal moment-based specification test on the distribution of random coefficients, which

allows researchers to test the chosen specification without having to re-estimate the model under a more

flexible parametrization. The moment conditions (or equivalently the instruments) are designed to maxi-
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mize the power of the test when the distribution of RC is misspecified. By exploiting the duality between

estimation and testing, we show that these instruments can also improve the estimation of the BLP model

under a flexible parametrization. Our Monte Carlo simulations confirm that the interval instruments we

develop in this paper outperform the traditional instruments both for testing and estimating purposes.

Finally, we apply these new tools to flexibly estimate the demand for cars in Germany. We show that

these tools can be applied to the equally popular mixed logit demand model with individual-level data.

In future work, we plan to see if we can generalize these instruments to other non-linear moment-

based models, as well as to the general problem of testing distributional assumptions in structural mod-

els. From a broader perspective, our paper is part of an existent discussion on the most effective way to

model unobserved preference heterogeneity in structural models. Most empirical frameworks feature a

clear trade-off between the degree of flexibility one chooses and the precision of the estimates one ob-

tains. It is thus critical to understand how misspecification on the unobserved heterogeneity affects the

counterfactual quantities of interest. In the case of the BLP demand model, our paper and others show

that misspecification in the distribution of random coefficients substantially distorts the substitution pat-

terns as well as the shape of the demand curve and, thus, is likely to significantly alter the counterfactual

quantities.
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1.A Extension to the mixed logit demand model

The main difference between the BLP demand model and the mixed logit model is that the latter one

assumes that the econometrician observes individual data. Let us consider the baseline mixed logit model

with no endogeneity and consumer level data.36 We observe the choices of N consumers. The indirect

utility function of consumer i making choice j ∈ {0, 1, . . . , J} is given by:

uij = x′1ijβ0 + x′2ijvi + εij, (1.A.12)

where

• εij is a preference shock that follows a type I extreme value distribution independent of all other

variables and across i, j;

• x1ij is a vector of product characteristics interacted with consumer characteristics of dimension K1

which display no preference heterogeneity;

• x2ij is a vector of product characteristics interacted with consumer characteristics of dimension K2

which display preference heterogeneity;

• vi is a vector of random coefficients of dimension K2 which jointly follows a distribution charac-

terized by a density f ;

Each consumer chooses the product that maximizes his or her utility. For any couple ( f̃ , β̃), demand

for product j from consumer i writes:

∀j ̸= 0, ρj(xi, f̃ , β̃) =
∫

RK2

exp{x′1ij β̃ + x′2ijv}

1 + ∑J
k=1 exp

{
x′1ik β̃ + x′2ikv

} f̃ (v)dv. (1.A.13)

For the outside option, we have:

for j = 0, ρj(xi, f̃ , β̃) =
∫

RK2

1

1 + ∑J
k=1 exp

{
x′1ik β̃ + x′2ikv

} f̃ (v)dv. (1.A.14)

36In the mixed logit case, the absence of endogenous variables is not an unrealistic assumption as the econometrician can
always model unobserved product quality by incorporating product fixed effects into the utility function.
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Structural error. As we did in the case of the BLP demand model, we can define the structural error

generated by (β̃, f̃ ) as follows. Let yij equal to 1 if individual i chooses good j = 0, 1, . . . , J, the

structural error writes:

ξij( f̃ , β̃) = yij − ρj(xi, β̃, f̃ ).

By construction, at the true ( f , β), we have E[ξij(β, f )|xi] = E[yij|xi]− ρj(xi, β, f ) = 0 a.s..The

notation xi refers to (xij)j=1,...,J .

Most powerful instrument and approximations. As in the aggregate demand model, we want to

derive the instruments with the greatest ability to detect misspecification in the distribution of RCs.

Given that the model displays no endogeneity, the set of exogenous variables is simply xi. Our objective

is to find the functions of xi, which provides the most detection power against a wrong distribution. With

this objective in mind, we consider a situation where the econometrician has a candidate ( f0, β0) and

wants to test H̄0 : ( f , β) = ( f0, β0) against Ha : ( f , β) ̸= ( f0, β0). We proceed as in the BLP case

and we derive the instrument that maximizes the power of the associated moment based test. Second, we

propose feasible approximations of the MPI that do not depend on the fixed alternative.

For any set of testing instruments hD(xi), we have the following implication:

H0 : ( f , β) = ( f0, β0) =⇒ H′
0 : E[hD(xi)ξij( f0, β0)] = 0.

We propose to test H0 indirectly through its implication H′
0, which is a set of unconditional moment

conditions. We test H′
0 with a moment-based test and the test statistic writes as follows:

SN(hD, f0, β0) = NJ

(
1

NJ ∑
i,j

ξij( f0, β0)hD(xi)

)′

Ω̂
−1
0

(
1

NJ ∑
i,j

ξij( f0, β0)hD(xi)

)
, (1.A.15)

with Ω̂0 a consistent estimator of Ω0 the asymptotic variance-covariance matrix of 1
NJ ∑i,j ξij( f0, β0)hD(xi)

under H0:

Ω0 = E

[(
1√

J ∑
j

ξij( f0, β0)hD(xi)

)(
1√

J ∑
j

ξij( f0, β0)hD(xi)

)′]
.
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Assuming that (xi, yi) are i.i.d. across individuals and consistent with the probability model defined by

equations (1.A.12,1.A.13, 1.A.14) evaluated at ( f , β), E[∥ξij( f0, β0)hD(xi)∥2] < +∞, and Ω0 has full

rank, we can show:

• under H0 : ( f , β) = ( f0, β0), SN(hD, f0, β0)
d−→

T→+∞
χ2
|hD|0 ,

• under H′
a : E

[
hD(xi)ξ jt( f0, β0)

]
̸= 0, ∀q ∈ R+, P(SN(hD, f0, β0) > q) −→

T→+∞
1,

with | · |0 being the counting norm. The proof is almost identical to the proof of Proposition 3.1 and

thus, we omit it. Following the same steps as the proof of Proposition 3.2, the expression for the Most

Powerful Instrument (that maximizes the slope of the test) writes:

h∗D(xi) = E[ξij( f0, β0)
2|xi]

−1∆(xi, f0, β0, fa, βa),

where each component j of the correction term ∆(xi, f0, β0, fa, βa) writes:

∆(xi, f0, β0, fa, βa)j = ρj(xi, β0, f0)− ρj(xi, βa, fa)

=
∫

R

[
ρj(xi, β0, f0)−

exp{x′1ijβa + x′2ijv}

1 + ∑J
k=1 exp

{
x′1ikβa + x′2ikv

}] fa(v).

Several remarks are in order. First, contrary to the BLP case, the correction term ∆
ξ j
0,a is a function

of the exogenous variables xi, and thus we don’t need to compute its conditional expectation as in the

BLP model. The conditional variance term can be estimated, even if it is challenging in practice. For the

sake of exposition, we drop this term in the rest of the analysis. As we did for the BLP case, we propose

two feasible approximations of the MPI, which don’t require the knowledge (βa, fa) and, which can be

computed in practice.

• Local approximation. First, we provide a local approximation, which is accurate when f0 is

close to the true density fa. To derive this local approximation, we need to impose additional

restrictions on β0 and βa so that ∥βa − β0∥ = O
(∫

RK2 | f0(v)− fa(v)|dv
)
. This is the purpose

of Assumption 1
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Assumption 1 We assume that β0 = β∗
0 and βa = β∗

a where (β∗
0, β∗

a) are both pseudo true

values, which maximize the conditional expectation of their respective population log-likelihoods.

Namely,

β∗
0 = argmax

β̃∈RK1

E
[
L(xi, yi, β̃, f0)

∣∣xi
]

with L(xi, yi, β̃, f0) =
J

∑
j=0

1{yij = 1} log(ρj(xi, β̃, f0))

β∗
a = argmax

β̃∈RK1

E
[
L(xi, yi, β̃, fa)

∣∣xi
]

with L(xi, yi, β̃, fa) =
J

∑
j=0

1{yij = 1} log(ρj(xi, β̃, fa))

Now we can derive the following first order approximation of the ∆j(xi, f0, β0, fa, βa) around f0.

Proposition 1.1
Under Assumption 1, a first order expansion of ∆j(xi, f0, β0, fa, βa) around f0 writes:

∆j(xi, f0, β0, fa, βa) =
∫

RK2

exp{x′1ijβ0 + x′2ijv}

1 + ∑J
k=1 exp

{
x′1ikβ0 + x′2ikv

} ( f0(v)− fa(v))dv +
∂ρj(xi, β, fa)

∂β̃

∣∣∣∣
β=β0

(βa − β0) +R0

with R0 = o
(∫

RK2 | f0(v)− fa(v)|dv
)
.

The proof is in Appendix 1.B. Building on this approximation, we can discretize the integrals as

we did in the BLP case to circumvent the fact that we do not know fa.

E[∆j(xi, f0, fa)|xi] ≈
L

∑
l=1

ω̄1l( fa)

[
ρj(xi, β0, f0)−

exp{x′1ijβ0 + x′2ijvl}

1 + ∑J
k=1 exp

{
x′1ikβ0 + x′2ikvl

}]︸ ︷︷ ︸
π1,j,l(xi)

+
L

∑
l=1

ω̄2l( fa)
∂

∂β

{
exp{x′1ijβ0 + x′2ijvl}

1 + ∑J
k=1 exp

{
x′1ikβ0 + x′2ikvl

}}︸ ︷︷ ︸
π2,j,l(xi)

,

with {vl}l=1,...,L L points chosen in the domain of definition of fa, and ω̄l( fa) the unknown

weights associated with each point. The local interval instruments, in the mixed logit case, write:

(π1,j,l(xi), π2,j,l(xi)).
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• Global approximation. As we did, in the BLP case, we can also write a global approximation

of the corection term. To do so, we replace the unknown βa by a known substitute β0.37 To

circumvent the fact that fa is unknown, we replace the integral with a finite sum. Namely, we

have:

E[∆j(xi, f0, fa)|xi] ≈
L

∑
l=1

ωl

[
ρj(xi, β0, f0)−

exp{x′1ijβ0 + x′2ijvl}

1 + ∑J
k=1 exp

{
x′1ikβ0 + x′2ikvl

}]︸ ︷︷ ︸
π̄j,l(xi)

with {vl}l=1,...,L L points chosen in the support of fa, and ωl( fa) the unknown weights associated

with each point. The local interval instruments, in the mixed logit case, write: (π̄1,j,l(xi))

Composite hypothesis. In practice, as in the BLP model, the researcher must make a parametric as-

sumption on the distribution of random coefficients to estimate the model. Formally, the econometrician

assumes f belongs to a parametric family F0 = { f0(·|λ̃) : λ̃ ∈ Λ0}, where λ̃ is a parameter that

must be estimated. In applied work, researchers typically assume that f is normally distributed. The

researcher may be interested in testing the validity of the specification. The mixed logit is often esti-

mated by conditional MLE. To test the validity of the specification, the research must follow the same

steps as the ones highlighted in Section 1.5. First, the researcher must estimate a pseudo-true value

θ0 = (β′
0, λ′

0)
′ ∈ R|θ|0 , which maximizes the conditional expectation of their respective population

log-likelihoods under H0 : f ∈ F0. Namely:

θ0 = argmax
θ̃∈R|θ|0

E
[
L(xi, yi, β̃, f0(·|λ̃))

∣∣xi
]

with L(xi, yi, β̃, f0(·|λ̃)) =
J

∑
j=0

1{yij = 1} log(ρj(xi, β̃, f0(·|λ̃))

Next, we test H′
0 : E[hD(xi)ξij( f0(·|λ̃), β0)] = 0 with the moment based test exhibited above. To

derive the asymptotic distribution of SN(hD, f0(·|λ̂, β̂), we must now take into account the parameter

uncertainty stemming from the first stage estimation. As in the BLP demand model, the integrals must

37in our simulations, we find that the homogeneous parameters are usually close to each other even when the distributions
are somewhat distant from each other.
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be numerically computed to recover the theoretical probabilities implied by the model, and compute

the conditional likelihood. Thus, one must also take into account the numerical approximations in the

derivation of the asymptotic distribution.

1.B Proofs

1.B.1 Identification

In this subsection, we prove that under Assumption A, the distribution of random coefficients f is non-

parametrically point identified.

Proof. Proof of Proposition 2.1

We want to show that under Assumptions A, the following implication holds:

( f̃ , β̃) = ( f , β) ⇐⇒ E[ξ jt( f̃ , β̃)|zjt] = 0 a.s.

⇐⇒ E

[
ρ−1

j (st, x2t, f̃ )− x′1jt β̃

∣∣∣∣zjt

]
= 0 a.s..

Step 1: First, we show that for any random permutation of indexes j → j′, the following equivalence

holds:

E[ξ jt|zjt] = 0 a.s. ⇐⇒ E[ξ jt|zj′t] = 0 a.s. ∀ j′.

As the new indexation is done exogenously, we have for any j′:

E[ξ jt( f̃ , β̃)|zjt] = E[ξ jt( f̃ , β̃)|zjt, j → j′] ≡ E
j′
[ξ j′t( f̃ , β̃)|zj′t] a.s.,

with j → j′ indicates index j has been changed into j′. Consequently, we have:

E[ξ jt( f̃ , β̃)|zjt] = 0 a.s. ⇐⇒ ∀j′ E
j′
[ξ j′t( f̃ , β̃)|zj′t] = 0 a.s.

This last equivalence allows us to come back to the exogeneity condition assumed in Berry and Haile

(2014) and in Wang (2022): ∀k, E
[
ξ jt
∣∣zjt, j = k

]
= 0 a.s.. The only difference being that here j′ is
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determined completely randomly. Intuitively, the exogeneity condition required for non-parametric iden-

tification of the demand functions is stronger than the one needed for the non-parametric identification

of the distribution of RC.

Step 2: We now need to show the following equivalence:

( f̃ , β̃) = ( f , β) ⇐⇒ ∀j′, E
j′
[ξ j′t( f̃ , β̃)|zj′t] = 0 a.s..

Given the random permutation j → j′, which is market dependent, we must redefine our matrices and

vectors as follows: x̂t = Mtxt with (Mt)i,k = 1{i = jt, k = j′t}. Likewise ŝt = Mtst. Mt is a random

matrix. It is straight forward to show the direct implication.

( f̃ , β̃) = ( f , β) =⇒ ∀j′, E
j′

[
ρ−1

j′ (ŝt, x̂2t, f̃ )− x′1j′t β̃

∣∣∣∣zj′t

]
= E

j′
[ξ j′t( f , β)|zj′t] = 0 a.s.

The reverse implication is much more intricate to prove and we will exploit other results in the

literature. We want to show:

( f̃ , β̃) ̸= ( f , β) =⇒ ∃j′
∣∣∣∣ E

j′

[
ρ−1

j′ (ŝt, x̂2t, f̃ )− x̂′1jt β̃

∣∣∣∣zj′t

]
= 0 a.s. does not hold.

Case 1: First, let us assume that f̃ = f and β̃ ̸= β, then we have:

ρ−1(ŝt, x̂2t, f̃ )− x̂1t β̃ = ρ−1(ŝt, x̂2t, f )− x1tβ︸ ︷︷ ︸
ξ̂t( f ,β)

+x̂1t(β − β̃)

By assumption, we have: P(x′1tx1t dp) > 0. Mt is symmetric, idempotent and full rank. As a

consequence,

P(x̂′1t x̂1t dp) = P(x′1tMtx1t dp) = P(x′1tx1t dp) > 0

Therefore, we have ∀ γ ̸= 0 ∈ RK,

P(γ′ x̂′1t x̂1tγ > 0) > P(x̂′1t x̂1t dp) > 0 ⇐⇒ P(∥x̂1tγ∥2 > 0) > 0

⇐⇒ P(x̂1tγ ̸= 0) > 0
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Thus, ∃j′ | x′1j′t(β − β̃) = 0 a.s. does not hold. To conclude, there exists j′ such that:

E
j′
[ρ−1

j′ (ŝt, x̂2t, f )− x′1j′t β̃|zj′t] = E
j′
[ξ j′t( f , β)|zj′t]︸ ︷︷ ︸

=0

+ E
j′
[x′1j′t(β − β̃)|zj′t]︸ ︷︷ ︸

= 0 a.s does not hold from the completeness

Case 2: Now let us assume that f̃ ̸= f and we want to show that ∀β̃ ∈ Rk, ∃j′ such that:

E
j′

[
ρ−1

j′ (ŝt, x̂2t, f̃ )− x′1j′t β̃

∣∣∣∣zjt

]
= 0 a.s. does not hold.

First, let us observe that ∀j′,

E
j′

[
ρ−1

j′ (ŝt, x̂2t, f̃ )− x′1j′t β̃
∣∣zj′t

]
= E

j′

[
ξ j′t( f , β)

∣∣zj′t
]

︸ ︷︷ ︸
=0

+E
j′

[
ρ−1

j′ (ŝt, x̂2t, f̃ )− ρ−1
j′ (ŝt, x̂2t, f )− x′1j′t(β̃− β)

∣∣zj′t
]
.

As a consequence, we need to show that ∃j′ such that E
j′

[
ρ−1

j′ (ŝt, x̂2t, f̃ )− ρ−1
j′ (ŝt, x̂2t, f )− x′1j′t(β̃−

β)

]
= 0 a.s. does not hold. From the completeness condition, a sufficient condition is: ∃j′ such that

ρ−1
j′ (ŝt, x̂2t, f̃ )− ρ−1

j′ (ŝt, x̂2t, f )− x′1j′t(β̃ − β) = 0 a.s. does not hold.

Let γ = (β̃− β). By contradiction, it can be easily be shown that ρ(δ̂t, x̂2t, f )− ρ(δ̂t + x̂1tγ, x̂2t, f̃ ) ̸=

0 =⇒ ∃j′ ρ−1
j′ (ŝt, x̂2t, f̃ ) ̸= ρ−1

j (ŝt, x̂2t, f ) + γ′x1j′t. Indeed, assume that ρ(δ̂t, x̂2t, f ) − ρ(δ̂t +

x̂1tγ, x̂2t, f̃ ) ̸= 0 and ∀j′ ρ−1
j′ (ŝt, x̂2t, f̃ ) = ρ−1

j′ (ŝt, x̂2t, f )+γ′x1j′t. Then, we have: ρ(ρ−1(ŝt, x̂2t, f̃ ), x̂2t, f̃ ) =

ρ(ρ−1(ŝt, x̂2t, f ) + x̂1tγ, x̂2t, f̃ ) = ρ(δ̂t + x̂1tγ, x̂2t, f̃ ) ̸= ρ(δ̂t, x̂2t, f ) = ŝt. Therefore, we have a con-

tradiction.

Hence, the next step is to show that ∀γ, f̃ ̸= f =⇒ ρ(δ̂t, x̂2t, f0)− ρ(δ̂t + x̂1tγ, x̂2t, f ) = 0 a.s.

does not hold.
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To this end, we are going to exploit the identification result shown by Wang (2022). Following the

notations in this paper, we define µi = x̂1tΓ + x̂2tvi = x̂tv with vi = (Γ, vi). Here Γ is a degenerate

random variable characterized by constant c such that P(Γ = c) = 1. Let Gµ|x̂t the distribution of µi|x̂t

under f † = (c = 0, f ) and Gµ̃|x̂t the distribution of µi|x̂t under f̃ † = (c = γ, f̃ ). The following result

is shown in Wang (2022): for any ˆ̄xt ∈ Supp(x̂t),

∃j′ | ρj′(δ̂t, Gµ| ˆ̄xt
)− ρj′(δ̂t, Gµ̃| ˆ̄xt

) = 0 on open set D ⊂ RJ =⇒ Gµ| ˆ̄xt
= Gµ̃| ˆ̄xt

.

Thanks to the real analytic property of the demand functions ρ, Wang (2022) does not require a full

support assumption on δ̂t.

Fix the value of x̂t as follows: x̂t = M̄t x̄t = ˆ̄xt. By assumption, there exists x̄t ∈ Supp(xt) such that

x̄′t x̄t is dp and δt = x̄1tβ + ξt varies on an open set D̄ almost surely.These properties naturally transmit

to ˆ̄xt. The chosen permutation M̄t doesn’t matter. Given the result in Wang (2022), in order to prove that

ρ(δ̂t, x̂2t, f0)− ρ(δ̂t + x̂1tγ, x̂2t, f ) = 0 a.s. does not hold, we just need to prove that ∀γ, f̃ ̸= f =⇒

Gµ̃| ˆ̄xt
̸= Gµ| ˆ̄xt

. By definition (see assumption A (iv)), f̃ ̸= f =⇒ ∃v∗ ∈ RK2 F̃(v∗) ̸= F(v∗). Take

x∗ = (0K1 , ˆ̄x2tv∗)′ = ˆ̄xt(0K1 , v∗)′:

Gµ| ˆ̄xt
(x∗) = P(xtvi ≤ x∗|xt = ˆ̄xt) = P((x′txt)

−1x′txtvi ≤ (x′txt)
−1x′t x̄t(0K1 , v∗)′|xt = ˆ̄xt).

= (1K1 , P(vi ≤ v∗|xt = ˆ̄xt))
′ = (1K1 , F(v∗))′

The last equality comes from independence of vi and xt. Likewise, Gµ̃| ˆ̄xt
(x∗) = (1{γ > 0}, F̃(v∗))′

Therefore, ∃x∗, ∀γ Gµ̃| ˆ̄xt
(x∗) ̸= Gµ| ˆ̄xt

(x∗). Following the result in Wang (2022), we have that for

all γ ∈ RK1 , ρ(δ̂t, x̂2t, f )− ρ(δ̂t + x̂1tγ, x̂2t, f̃ ) = 0 a.s. does not hold, which in turn implies that for

all γ ∈ RK1 , ∃j′ ρ−1
j (ŝt, x̂2t, f̃ )− ρ−1

j (ŝt, x̂2t, f ) + x̂′1jtγ = 0 a.s. does not hold.

To conclude: ∀β ∈ Rk, there exists j′ such that:

ρ−1
j′ (ŝt, x̂2t, f̃ )− ρ−1

j′ (ŝt, x̂2t, f )− x′1j′t(β̃ − β) = 0 a.s. does not hold,

which is what we wanted to show.
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In Section 1.5, we used the following equivalence between the composite hypothesis and the pseudo-

true value to construct the specification test.

Corollary 2.1 Under Assumption A, and assume hE(zjt) and W are such that the pseudo-true value θ0

is unique, then we have:

H0 : f ∈ F0 ⇐⇒ H0 : ( f , β) = ( f0(·|λ0), β0).

Proof. Proof of Corollary 2.1

Let us assume that under specification F0, instruments hE(zjt) and weighting matrix W , the pseudo

true value is unique.

• Under H0 : f ∈ F0 and there exists λ such that f = f0(·|λ). By the mean independence

assumption on the unobserved quality ξ jt, we have at the true θ = (β, λ):

ξ jt( f0(.|λ), β) = ρ−1
j (st, x2t, f0(.|λ))− x′1jtβ = ξ jt =⇒ E[

(
ξ jt( f0(.|λ), β)hE(zjt)] = 0.

Thus, θ is solution to the previous minimization problem and as the solution is unique: θ0 = θ. As

a consequence, ξ jt( f0(.|λ0), β0)) = ξ jt and E[ξ jt( f0(.|λ0), β0)|zjt] = 0 a.s..

• Under an alternative specification: f /∈ F0, we know from the Proposition 2.1 that ∀θ̃ = (β̃, λ̃),

E

[
ρ−1

j (st, x2t, f0(.|λ̃))− x′1jt β̃

∣∣∣∣zjt

]
= 0 a.s. does not hold.

In particular, the last equation doesn’t hold at the true value θ̃ = θ0.

1.B.2 Detecting misspecification: the most powerful instrument

Proof of Proposition 3.1.
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• Under H0 : ( f , β) = ( f0, β0). By assumption, the data are i.i.d. across markets, E[∥ξ jt( f0, β0)hD(zjt)∥2] =

1
J E[∑j∥ξ jt( f0, β0)hD(zjt)∥2] < +∞, the CLT applies:

1√
TJ ∑

j,t
hD(zjt)ξ jt( f0, β0) =

1√
TJ ∑

j,t
hD(zjt)ξ jt −→

T→+∞
N (0, Ω̃0),

with:

Ω̃0 = E

[(
1√

J

J

∑
j=1

hD(zjt)ξ jt

)(
1√

J

J

∑
j=1

hD(zjt)ξ jt

)′]

=
1
J

E

[
J

∑
j=1

hD(zjt)hD(zjt)
′ξ2

jt +
J

∑
j=1

∑
k ̸=j

hD(zjt)hD(zkt)
′ξ jtξkt

]

=
1
J

E

[
J

∑
j=1

hD(zjt)hD(zjt)
′ξ2

jt

]
+

1
J

J

∑
j=1

∑
k ̸=j

E

hD(zjt)hD(zkt)
′ E[ξ jtξkt|zjt, zkt]︸ ︷︷ ︸

=0


= E

[
hD(zjt)hD(zjt)

′ξ2
jt

]
= Ω0.

Third line comes from ξ jt ⊥⊥ ξkt|zt. By assumption, Ω0 has a full rank. Thus, we have by the

CMT:

ST(hD, f0, β0) = TJ

(
1

TJ ∑
j,t

ξ jt( f0, β0)hD(zjt)

)′

Ω̂−1
0

(
1

TJ ∑
j,t

ξ jt( f0, β0)hD(zjt)

)
d−→

T→+∞
χ2
|hD|0 .

• Under H′
a : E

[
hD(zjt)ξ jt( f0, β0)

]
̸= 0. The data are i.i.d. across markets, by the law of large

numbers: 1
TJ ∑j,t hD(zjt)ξ jt( f0, β0)

P→ E
[

1
J ∑j hD(zjt)ξ jt( f0, β0)

]
. It follows by the continuous

mapping theorem:

ST(hD, f0, β0)

T
P→JE

[
1
J ∑

j
hD(zjt)ξ jt( f0, β0)

]′
Ω−1

0 E

[
1
J ∑

j
hD(zjt)ξ jt( f0, β0)

]
= J E

[
hD(zjt)ξ jt( f0, β0)

]′ Ω−1
0 E

[
hD(zjt)ξ jt( f0, β0)

]︸ ︷︷ ︸
κ(hD, f0,β0)
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Under H′
a, κ(hD, f0, β0) is strictly positive because Ω0 is positive definite. Thence,

∀q ∈ R, lim
T→∞

P(ST(hD, f0, β0) > q) = lim
T→∞

P

(
S(hD, f0, β0)− q

T
> 0

)
= P(Jκ(hD, f0, β0) > 0)

= 1,

where the second equality holds because convergence in probability implies convergence in distribution.

Proof of Proposition 3.2. To shorten notations, let ξ jt0 ≡ ξ jt( f0(·|λ0), β0), ξ jta ≡ ξ jt( fa, βa) and ξt0

and ξta their stacked versions over j. Likewise, we define hD(zt) = (hD(z1t), ..., hD(zJt))
′. Under

Ha : ( f , β) = ( fa, βa), the asymptotic slope of the test writes:

chD( fa, βa) = E

(
∑

j
ξ jt0hD(zjt)

)′

E

((
∑

j
ξ jt0hD(zjt)

)(
∑
j′

ξ j′t0hD(zj′t)

)′)−1

E

(
∑

j
ξ jt0hD(zjt)

)
= E(ξ ′t0hD(zt))E(hD(zt)

′ξt0ξ ′t0hD(zt))
−1E(hD(zt)

′ξt0)

= E(∆ξt
0,a

′
hD(zt))E(hD(zt)

′E(ξt0ξ ′t0|zt)hD(zt))
−1E(hD(zt)

′∆ξt
0,a).

Third line comes from E(∆ξt
0,a

′
hD(zt)) = E((ξt0 − ξta)′hD(zt)) = E(ξ ′t0hD(zt)) because ξta is

the true structural error. Then the slope of the test taking h∗D(zt) = E(ξt0ξ ′t0|zt)−1E(∆ξt
0,a|zt) is equal

to:

ch∗D( fa, βa) = E
(

E(∆ξt
0,a|zt)

′E(ξt0ξ ′t0|zt)
−1E(∆ξt

0,a|zt)
)

To finish the proof, we must show that for any set of instruments hD, we have: ch∗D
( fa, βa) ≥ chD( fa, βa).

Denote h̃D(zt) = E(ξt0ξ ′t0|zt)1/2hD(zt) and h̃∗D(zt) = E(ξt0ξ ′t0|zt)1/2h∗D(zt).With these new
notations, we have:

ch∗D( fa, βa)− chD( fa, βa) = E
(
h̃∗D(zt)

′h̃∗D(zt)
)
− E

(
h̃∗D(zt)

′h̃D(zt)
)

E
(
h̃D(zt)

′h̃D(zt)
)−1

E
(
h̃D(zt)

′h∗D(zt)
)

= G′

E
(
h̃∗D(zt)′h̃∗D(zt)

)
E
(
h̃∗D(zt)′h̃D(zt)

)
E
(
h̃D(zt)′h̃∗D(zt)

)
E
(
h̃D(zt)′h̃D(zt)

)
G

= G′E
(

H̃H̃′)G ≥ 0,
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with H̃ = (h̃∗D(zt), h̃D(zt))′ and G =
(

1,−E
(
h̃∗D(zt)′h̃D(zt)

)
E
(
h̃D(zt)′h̃D(zt)

)−1
)′

.

Special case: when we assume for k ̸= j, ξ jt ⊥⊥ ξkt|zt, and take Ω̂0 = 1
JT ∑j,t ξ2

jt0hD(zjt)hD(zjt)
′ as

our weighting matrix (as we do for illustrations purposes in the main text), we find that the slope under

Ha writes:

chD( fa, βa) = E(∆
ξ jt
0,ahD(zjt))

′E(hD(zjt)hD(zjt)
′E(ξ2

jt0|zjt))
−1E(hD(zjt)∆

ξ jt
0,a).

Using the same arguments as previously, one can show that a maximizer of the slope of the test is

obtained by taking h∗D(zjt) = E(ξ2
jt|zjt)

−1E(∆
ξ jt
0,a|zjt).

Proof of Proposition 3.3.

Under Assumption A, Proposition 2.1 implies the following:

Ha : ( f , β) = ( fa, βa) ̸= ( f0, β0) =⇒ E[ξ jt( f0, β0)|zjt] ̸= 0 a.s.

=⇒ E[ξ jt( f0, β0)|zjt]
2 > 0 a.s.

=⇒ E
[
E[ξ jt( f0, β0)|zjt]

2] > 0

=⇒ E
[
E[ξ jt( f0, β0)E[ξ jt( f0, β0)|zjt]|zjt]

]
> 0

=⇒ E
[
ξ jt( f0, β0)E[ξ jt( f0, β0)|zjt]

]
> 0

=⇒ H′
a : E

[
ξ jt( f0, β0)E[∆

ξ jt
0,a|zjt]︸ ︷︷ ︸

h∗D(zjt)

]
̸= 0.

Under the same assumptions as 3.1, we have the following:

H′
a : E

[
ξ jt( f0, β0)h∗D(zjt)

]
̸= 0 =⇒ ∀q ∈ R+, P(ST(h∗D,F0, θ̂) > q) → 1.
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Proof of Proposition 3.4.

Let H the set of measurable functions of zjt, we want to show under H̄a:

∀α ∈ R∗, αE[∆
ξ jt
0,a|zjt] ∈ arg max

h∈H
corr(ξ jt( f0, β0), h(zjt)).

We proceed in 2 steps. First, we derive the upper bound by showing that for any h ∈ H, we have:

corr
(
ξ jt( f0, β0), h(zjt)

)
≤

√√√√var
(

E[∆
ξ jt
0,a|zjt]

)
var(ξ jt( f0, β0))

.

To do so, we use the definition of the conditional expectation and the Cauchy Schwarz inequality.

First notice that we have: E[∆
ξ jt
0,a|zjt] = E[ξ jt( f0, β0)|zjt]. By definition of the conditional expectation,

we have for any h ∈ H,

E[h(zjt)ξ jt( f0, β0)] = E[h(zjt)E[ξ jt( f0, β0)|zjt]].

It follows that:

∣∣cov
(
h(zjt), ξ jt( f0, β0)

)∣∣ = cov
(
h(zjt), E[ξ jt( f0, β0)|zjt]

)
≤
√

var(h(zjt))var
(
E[ξ jt( f0, β0)|zjt]

)
.

The inequality comes from the Cauchy Schwarz inequality. The result follows by using the definition of

the correlation coefficient.

Second, we show that the upper bound is reached by taking for any α ∈ R∗, h∗D(zjt) = αE[∆
ξ jt
0,a|zjt].

cov
(

ξ jt( f0, β0), αE[∆
ξ jt
0,a|zjt]

)
= α cov

(
∆

ξ jt
0,a, E[∆

ξ jt
0,a|zjt]

)
= α var

(
E[∆

ξ jt
0,a|zjt]

)
.

Consequently,

corr
(
ξ jt( f0, β0), h∗D(zjt)

)
=

α√
α2

√√√√var
(

E[∆
ξ jt
0,a|zjt]

)
var(ξ jt( f0, β0))

=⇒
∣∣corr

(
ξ jt( f0, β0), h∗D(zjt)

)∣∣ =
√√√√var

(
E[∆

ξ jt
0,a|zjt]

)
var(ξ jt( f0, β0))

.
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Connection with optimal instruments

In the parametric case and assuming that the model is well specified ( f ∈ F0) the BLP parameter θ0 is

identified by the following non-linear conditional moment restriction E[ξ jt(θ0)|zjt] = 0. The derivation

of the optimal instruments in this context has been studied by Amemiya (1974). For an arbitrary choice

of hE(zjt), the GMM estimator with the 2-step efficient weighting matrix has the following asymptotic

distribution:

√
T(θ̂ − θ0)

d→ N
(

0, (Γ(F0, θ, hE)
′Ω(F0, hE)

−1Γ(F0, θ, hE))
−1
)

,

with the same notations as previously:

Ω(F0, hE) = E

[(
∑

j
ξ jt(θ)hE(zjt)

)(
∑

j
hE(zjt)ξ jt(θ)

)′]

Γ(F0, θ0, hE) = E

[
∑

j
hE(zjt)

∂ξ jt(θ0)

∂θ̃′

]
.

For the sake of exposition, we will assume that unobserved demand shock ξ jt is independent across

observations, namely: E
[
ξ jt(θ0)ξ j′t(θ)|zt

]
= 0 for j ̸= j′. The general case extends naturally. The

optimal instrument h∗E(zjt) are chosen to minimize the asymptotic variance covariance matrix. We derive

the form of the optimal instruments in the context of BLP by applying well known results in Chamberlain

(1987) and Amemiya (1974)

Lemma 2.2 Optimal instruments in the BLP model.

In our setting and assuming f ∈ F0, the optimal instruments h∗E(zjt) write:

h∗E(zjt) = E[ξ jt(θ0)
2|zjt]

−1E

[
∂ξ jt(θ0)

∂θ̃

∣∣∣∣zjt

]
.

and the corresponding efficiency bound (obtained by setting hE = h∗E) writes:

V∗ = E

[
∑

j
E

[
∂ξ jt(θ0)

∂θ̃

∣∣∣∣zjt

]
E

[
∂ξ jt(θ0)

∂θ̃

∣∣∣∣zjt

]′
E[ξ jt(θ)

2|zjt]
−1
]−1
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Proof. To shorten the notations, we denote: σ2(zjt) = E[ξ jt(θ0)
2|zjt] and d(zjt) = E

[
∂ξ jt(θ0)

∂θ̃

∣∣∣∣zjt

]
.

Likewise, we define:

Ω0(hE) = E

[
∑

j
E[ξ jt(θ0)

2|zjt]hE(zjt)hE(zjt)
′
]

.

We want to prove that for any set of instruments hE(zjt) that V∗(zjt)− Γ0(hE)
′Ω0(hE)

−1Γ0(hE) matrix

is semi definite positive.

V∗(zjt)− Γ0(hE)Ω0(hE)
−1Γ0(hE)

′ =

= E

[
∑

j
d(zjt)d(zjt)

′σ2(zjt)

]
− E

[
∑

j

∂ξ jt(θ0)

∂θ̃
hE(zjt)

′
]

Ω0(hE)
−1E

[
∑

j
hE(zjt)

∂ξ jt(θ0)

∂θ̃

′]

= E

[
∑

j
d(zjt)d(zjt)

′σ−2(zjt)

]
− E

[
∑

j
d(zjt)hE(zjt)

′
]

E

[
∑

j
σ2(zjt)hE(zjt)hE(zjt)

′
]

E

[
∑

j
hE(zjt)d(zjt)

′
]

= E

[
D̃(zjt)

′D̃(zjt)

]
− E

[
D̃(zjt)

′H̃E(zjt)

]
E

[
H̃E(zjt)

′H̃E(zjt)

]−1

E
[
H̃E(zjt)

′D̃(zjt)
]

.

The second line comes from law of iterated expectations. The third line is a matricial way to rewrite the

second line. D̃(zjt) a matrix which stacks d(zjt)/σ(zjt) over the set of products (each line corresponds

to one product j). Likewise, let H̃E(zjt) a matrix which stacks hE(zjt)σ(zjt) over the set of products

(each line corresponds to one product j). Now let us define the following matrices.

X̃ =

(
D̃(zjt) H̃E(zjt)

)
and M̃ =

(
I|θ0| −E

[
D̃(zjt)

′H̃E(zjt)

]
E

[
H̃E(zjt)

′H̃E(zjt)

]−1
)′

We have: V∗(zjt)− Γ0(hE)Ω0(hE)
−1Γ0(hE) = M̃′E[X̃′X̃]M̃.

The matrix above is clearly semi definite positive.
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1.B.3 Feasible most powerful instrument

Local approximation of the MPI

Proof of Proposition 4.1. First, we define s0
t = ρ(δt, x2t, f0(.|λ0)) with δt the true mean utility. From

lemma 2.4 ρ−1 is C∞ and in particular, ρ−1 is C1. Thus, the Taylor expansion of ρ−1(s0
t , x2t, f0(.|λ0))

around st writes:

ρ−1(s0
t , x2t, f0(.|λ0)) = ρ−1(st, x2t, f0(.|λ0)) +

∂ρ−1(st, x2t, f0(.|λ0))

∂s

∣∣∣∣
s=st

(s0
t − st) + o

(
||s0

t − st||
)

δt = ρ−1(st, x2t, f0(·|λ0)) +
∂ρ−1(st, x2t, f0(·|λ0))

∂s

∣∣∣∣
s=st

(s0
t − st) + o

(
||s0

t − st||
)

We now derive an expression for the first derivative of the inverse function. We make use of lemma

2.5: for any δ ∈ RJ , ∂ρ(δ,x2t, f )
∂δ is invertible.

∂ρ(ρ−1(st, x2t, f0(·|λ0)), x2t, f0(.|λ0))

∂s
= IJ ⇐⇒ ∂ρ−1(st, x2t, f0(·|λ0))

∂s

(
∂ρ(ρ−1(st, x2t, f0(·|λ0)), x2t, f0(·|λ0))

∂ρ−1(st, x2t, f0(·|λ0))

)
= IJ

⇐⇒ ∂ρ−1(st, x2t, f0(·|λ0))

∂s
=

(
∂ρ(δ0

t , x2t, f0(·|λ0))

∂δ

)−1

with δ0
t = ρ−1(st, x2t, f0(.|λ0)).Consequently,

ρ−1(st, x2t, f0(.|λ0))− δt︸ ︷︷ ︸
∆(st,x2t, f0, fa)

= −
(

∂ρ(δ0
t , x2t, f0(.|λ0))

∂δ

)−1

(s0
t − st) + o

(
||s0

t − st||
)

(1.B.16)

with δ0
t = ρ−1

j (st, x2t, f0(.|λ0))

Now let us show that there exists a constant M such that ||s0
t − st|| ≤ Mτ( f0(.|λ0) − fa). with

τ( f0 − fa) =
∫

RK2 | f0(v|λ0)− fa(v)|dv. Norms are equivalent in a finite vectorial space and without

loss of generality, we will derive the results with the L1 norm. By definition:

s0
t − st =

∫
RK2

exp{δt + x2tv}
1 + ∑J

k=1 exp
{

δkt + x′2jkv
} ( f0(v|λ0)− fa(v))dv
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Taking the L1 norm of this vector:

||s0
t − st||1 =

J

∑
j=1

∣∣∣∣ ∫
RK2

exp{δjt + x′2jtv)

1 + ∑J
k=1 exp

{
δkt + x′2jkv

} ( f0(v|λ0)− fa(v))dv
∣∣∣∣

≤
J

∑
j=1

∫
RK2

∣∣∣∣ exp{δjt + x′2jtv)

1 + ∑J
k=1 exp

{
δkt + x′2jkv

}∣∣∣∣︸ ︷︷ ︸
≤1

| f0(v|λ0)− fa(v)|dv.

≤ J
∫

RK2
| f0(v|λ0)− fa(v)|dv = Jτ( f0(.|λ0)− fa).

This proves the statement. As a consequence, we have: ||s0
t − st||1 = O(τ( f0(.|λ0) − fa)) and

o
(
||s0

t − st||
)
= o(τ( f0(.|λ0)− fa)) .

The problem with the term s0
t − st is that it is an expression of δt which we do not know under

misspecification. As we want to be able to compute this approximation of the error term, it is not

convenient in practice to have an expression which depends on δt. On the other hand, we know δ0
t and

thus, the simple idea that we exploit is to take a Taylor expansion of the term above around δ0
t . First, let

us remark that from equation 1.B.16, we have that:

||δt − δ0
t || = ||δt − ρ−1(st, x2t, f0(.|λ0)|| = O(||s0

t − st||) = O(τ( f0(.|λ0)− fa)).

Now let us take the Taylor expansion of s0
t − st around δ0

t :

s0
t − st =

∫
RK2

exp{δ0
t + x2tv}

1 + ∑J
k=1 exp

{
δ̃kt + x′2jkv

} ( f0(v|λ0)− fa(v))dv

+
∫

RK2

∂

∂δ′

{
exp{δ0

t + x2tv}
1 + ∑J

k=1 exp
{

δ0
kt + x′2jkv

}}(δt − δ0
t )( f0(v|λ0)− fa(v))dv

︸ ︷︷ ︸
B

+ o
(
||δt − δ0

t ||
)

.

From what precedes, we know that o
(
||δt − δ0

t ||
)
= o(τ( f0(.|λ0)− fa)). Now, let us show that

term B in the previous expansion is also o(τ( f0(.|λ0)− fa)). Again taking the L1 norm:
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||B||1 =
J

∑
j=1

∣∣∣∣ J

∑
l=1

∫
RK2

∂

∂δl

{ exp{δ0
jt + x′2jtv}

1 + ∑J
k=1 exp

{
δ̃kt + x′2jkv

}}(δlt − δ0
lt)( f0(v|λ0)− fa(v))dv

∣∣∣∣
≤

J

∑
j=1

J

∑
l=1

∫
RK2

∣∣∣∣ ∂

∂δl

{ exp{δ0
jt + x′2jtv}

1 + ∑J
k=1 exp

{
δ0

kt + x′2jkv
}}∣∣∣∣︸ ︷︷ ︸

≤1

|δlt − δ̃lt|| f0(v|λ0)− fa(v)|dv

≤ J2τ( f0(.|λ0)− f )O(τ( f0(.|λ0)− fa)) = O(τ( f0(.|λ0)− fa)
2) = o(τ( f0(.|λ0)− fa)) .

Thus, ||B||1 = o(τ( f0(.|λ0)− fa)) and by combining all the results together, we get the final result.

When f0(.|λ0) gets ‘’close “ to fa, we have the following approximation:

∆(st, x2t, f0, fa) =

(
∂ρ(δ0

t , x2t, f0(.|λ0))

∂δ

)−1 ∫
RK2

exp{δ0
t + x2tv}

1 + ∑J
k=1 exp

{
δ0

kt + x′2jkv
} ( fa(v)− f0(v|λ0))dv

+ o(τ( fa − f0(.|λ0))) ,

with δ0
t = ρ−1(st, x2t, f0(.|λ0)) and τ( fa − f0(.|λ0)) =

∫
RK2 | fa(v)− f0(.|λ0)(v)|dv .

Global approximation of the MPI

Lemma 2.3 Analytical expression for ∆j(st, x2t, f0, fa). Let δ0
jt = ρ−1

j (st, x2t, f0) and δa
jt = ρ−1

j (st, x2t, fa).

We have the following:

∆j(st, x2t, f0, fa) = log


∫

RK2

exp{x′2jtv}
1+∑J

k=1 exp{δa
kt+x′2ktv}

fa(v)dv∫
RK2

exp{x′2jtv}

1+∑J
k=1 exp

{
δ0

jt+x′2ktv
} f0(v)dv

 .
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Proof of Lemma 2.3.

1 =
ρj(δt, x2t, fa)

ρj(δ
0
t , x2t, f0)

⇐⇒ 1 =

∫
RK2

exp{δjt+x′2jtv}
1+∑J

k=1 exp{δa
kt+x′2ktv}

fa(v)dv∫
RK2

exp{δ0
jt+x′2jtv}

1+∑J
k=1 exp{δ0

kt+x′2ktv}
f0(v)dv

⇐⇒
exp{δ0

jt}
exp{δa

jt}
=

∫
RK2

exp{x2tv}
1+∑J

k=1 exp{δa
kt+x′2ktv}

fa(v)dv∫
RK2

exp{x′2jtv}

1+∑J
k=1 exp

{
δ0

jt+x′2ktv
} f0(v)dv

⇐⇒ ∆j(st, x2t, f0, fa) = log


∫

RK2

exp{x′2jtv}
1+∑J

k=1 exp{δa
kt+x′2ktv}

fa(v)dv∫
RK2

exp{x′2jtv}

1+∑J
k=1 exp

{
δ0

jt+x′2ktv
} f0(v)dv

 .

Approximation of the MPI in the mixed logit case

Proof of Proposition 1.1. By definition, we have:

gj(xi, ·, f ) : RK1 → [0, 1]

β̃ 7→
∫

RK2

exp
{

x′ij1β̃ + x′2ijv
}

1 + ∑J
k=1 exp

{
x′ik1β̃ + x′2ikv

} f (v)dv

g is C∞ on RK1 . Thus, we can take a first order Taylor expansion of gj(xi, ., fa) around β0:

gj(xi, βa, fa) = gj(xi, β0, f0) +
∂gj(xi, β̃, f0)

∂β̃

∣∣∣∣
β̃=β0

(βa − β0) + o(||βa − β0||)

This yields immediately,

gj(xi, β0, f0)− gj(xi, βa, fa) =
∫

RK2

exp{x′1ijβ0 + x′2ijv}

1 + ∑J
k=1 exp

{
x′1ikβ0 + x′2ikv

} ( f0(v)− fa(v))dv+

∂gj(xi, β̃, fa)

∂β̃

∣∣∣∣
β̃=β0

(βa − β0) + o(||βa − β0||)

99



Finally, we need to show ||βa − β0|| = o
(∫

RK2 | f0(v)− fa(v)|dv
)
. From Assumption 1 by defi-

nition of β∗
0 and β∗

a , we have f0 = fa ⇒ β∗
0 = β∗

a . Going further it can be shown using the Kullback

divergence that for any e1 > 0 such that
∫

RK2
| f0(v)− fa(v)|dv < e1 there exists some e2 > 0 such

that ||β∗
0 − β∗

a || < e2. In other words if
∫

RK2
| f0(v)− fa(v)|dv is small then ||β∗

a − β∗
0|| is also small,

thus any small o of ||βa − β0|| = ||β∗
a − β∗

0|| can be replaced by a small o of
∫

RK2
| f0(v)− fa(v)|dv

even if the two quantities are not proportional. Consequently

gj(xi, β0, f0)− gj(xi, βa, fa) =
∫

RK2

exp{x′1ijβ0 + x′2ijv}

1 + ∑J
k=1 exp

{
x′1ikβ0 + x′2ikv

} ( f0(v)− fa(v))dv+

∂gj(xi, β̃, fa)

∂β̃

∣∣∣∣
β̃=β0

(βa − β0) + o
(∫

RK2
| f0(v)− fa(v)|dv

)

1.B.4 Specification Test: composite hypothesis

In this section, we prove theorem 5.1, which is the main asymptotic result of the paper. The section is

organized as follows. First, we establish the equivalence between the moment condition around which we

build our test E
[
∑j ξ jt( f0(·|λ0), β0)hD(zjt)

]
= 0 and the one characterizing H′

0 : E
[
ξ jt( f0(·|λ0), β0)hD(zjt)

]
=

0. Then, we introduce the notations used in the proofs and we decompose ξ̂ according to the BLP ap-

proximations. Second we provide technical lemmas which prove that under the assumptions in E, the

BLP approximations vanish asymptotically. Third, we prove that the BLP estimator is consistent and

asymptotically normal. Finally, we prove the main theorem and we show that under the null the test is

pivotal in the 2 polar cases described in the main text.

Equivalence between moment conditions

Let hD(zjt) our detection instruments. For conciseness, we omit the dependence in f0 and denote

ξ jt( f0(·|λ0), β0) = ξ jt(θ0). We want to prove that the following two moment conditions are equiv-

alent:
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E
[
ξ jt(θ0)hD(zjt)

]
= 0 ⇐⇒ E

[
J

∑
j=1

ξ jt(θ0)hD(zjt)

]
= 0

Let Rt a categorial random variable which exogenously selects a product j with probability 1
J . For-

mally, we have (ξ jt(θ0), zjt) ⊥⊥ Rjt. By construction, we have:

E
[
ξ jt(θ0)hD(zjt)

]
=

J

∑
k=1

E [ξkt(θ0)hD(zkt)Rkt] =
J

∑
k=1

E [ξkt(θ0)hD(zkt)]E[Rkt]

=
1
J

E

[
J

∑
k=1

ξkt(θ0)hD(zkt)

]

Second line results from independence of (ξ jt(θ0), zjt) and Rjt. This proves the result.

Notations

In the proofs, we will adopt the following notations. If the derivations are done under the parametric

assumption H0 : f ∈ F0 then we omit the dependence in f0 and interchangeably use ξ jt( f0(.|λ), β) and

ξ jt(θ). We also omit the dependence of the BLP pseudo true value in W and hE(zjt)
38. Then define the

following objectives of the GMM minimization

Q̂T(θ̃) =

(
1
T ∑

j,t
ξ̂ jt(θ̃)hE(zjt)

)′

Ŵ

(
1
T ∑

j,t
ξ̂ jt(θ̃)hE(zjt)

)

QT(θ̃) =

(
1
T ∑

j,t
ξ jt(θ̃)hE(zjt)

)′

Ŵ

(
1
T ∑

j,t
ξ jt(θ̃)hE(zjt)

)

Q(θ̃) = E

[
∑

j
ξ jt(θ̃)hE(zjt)

]′
WE

[
∑

j
ξ jt(θ̃)hE(zjt)

]
38The BLP pseudo true value depends on W and hE(zjt) when the model is misspecified
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We also define the following moments

ĝT(θ̃, h) =
1
T ∑

jt
ξ̂ jt(θ̃)h(zjt)

gT(θ̃, h) =
1
T ∑

jt
ξ jt(θ̃)h(zjt)

g(θ̃, h) = E

[
∑

j
ξ jt(θ̃)h(zjt)

]

And recall the definition of Γ(F0, θ̃, h) which is used interchangeably with Γ(θ̃, h)

Γ̂T(θ̃, h) =
1
T ∑

j,t
h(zjt)

∂

∂θ
ξ̂ jt(θ̃)

′

ΓT(θ̃, h) =
1
T ∑

j,t
h(zjt)

∂

∂θ
ξ jt(θ̃)

′

Γ(θ̃, h) = E

[
∑

j
h(zjt)

∂

∂θ
ξ jt(θ̃)

′
]

Furthermore, unless specified, all limits are taken with respect to T; Additionally, we denote by the

expression X = oP(Tκ) a random variable or statistic which is asymptotically degenerate of order Ta, ie

X = oP(Tκ) ⇔ ∀e > 0 P(|X|T−κ > e) →
T→∞

0, and denote by X = Op(Tκ) a random variable which

is (bounded in probability) of order Tκ, ie ∀e1 > 0∃e2 > 0, ∃TN : ∀T ⩾ TN P(|X|T−κ > e2) < e1.

Properties of oP and OP random variables are used throughout these proofs.

Feasible Structural Error and BLP approximations

We now decompose the difference between the true structural error ξ jt(θ̃) and the feasible structural

error ξ̂ jt(θ̃) in terms of the different approximations involved in the derivation of the feasible structural

error ξ̂ jt(θ̃). In market t given an assumption F0, a parameter λ̃, market shares st and product character-

istics with preference heterogeneity x2t there exists a unique δt ∈ RJ such that st = ρ(δt, x2t, f0(·|λ̃))

(Brouwer’s fixed point theorem, see Berry (1994)) so that δt = ρ−1(st, x2t, f0(·|λ̃)). There is no closed

form for ρ−1(st, x2t, f0(·|λ̃)) so the NFP algorithm is used. Denote as C the contraction used to find the
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mean utilities which solve the demand equal market share constraint

C(·, st, x2t, f0(·|λ̃)) : δ ∈ RJ 7→ δ + log(st)− log(ρ(δ, x2t, f0(·|λ̃)))

So that for some starting mean utility δ0 ∈ B ⊂ RJ where B is bounded, the mean utility obtained via

NFP at the limit is equal to the unique vector which solves the constraint

δt( f0(·|λ̃)) = ρ−1(st, x2t, f0(·|λ̃)) = lim
H→∞

C(H)(δ0, st, x2t, f0(·|λ̃))

Similarly the error generated by ( f0(·|λ̃, β̃)) can be obtained from NFP at the limit

ξt( f0(·|λ̃), β̃) = δt( f0(·|λ̃))− x1t β̃ = lim
H→∞

C(H)(δ0, st, x2t, f0(·|λ̃))− x1t β̃

This way we obtain a vector of mean utilities for each market t. There are 3 approximations to consider,

market shares are not truly observed, the demand integral has to be simulated, and the contraction is

never taken to its limit, so define ξ̂( f0, λ̃)) δ̂( f0, λ̃)) and Ĉ for some starting value δ0

ξ̂t( f0(·|λ̃), β̃) = Ĉ(H)(δ0, ŝt, x2t, f0(·|λ̃))− x1jt β̃, δ̂( f0, λ̃)) = Ĉ(H)(δ0, ŝt, x2t, f0, λ̃))

Ĉ : δ 7→ δ + log(ŝt)− log(ρ̂(δ, x2t, f0(·|λ0)))

Consequently we decompose the difference between the error generated by ( f0(·|λ̃), β̃) and its feasible
approximation into 3 differences

ξ jt( f0(·|λ̃), β̃)− ξ̂ jt( f0(·|λ̃), β̃) = δjt( f0(·|λ̃))− δ̂jt( f0(·|λ̃))

= lim
H→∞

C(H)
j (δ0, st, x2t, f0(·|λ̃)))− Ĉ(H)

j (δ0, ŝt, x2t, f0(·|λ̃))

= lim
H→∞

C(H)
j (δ0, st, x2t, f0(·|λ̃)))− C(H)

j (δ0, st, x2t, f0(·|λ̃))

+ C(H)
j (δ0, st, x2t, f0(·|λ̃)))− C(H)

j (δ0, ŝt, x2t, f0(·|λ̃))

+ C(H)
j (δ0, ŝt, x2t, f0(·|λ̃))− Ĉ(H)

j (δ0, ŝt, x2t, f0(·|λ̃))

≡ ρ−1
j (st, x2t, f0(·|λ̃))− Dj(ρ, st, λ̃)

+ Dj(ρ, st, λ̃)− Dj(ρ, ŝt, θ̃)

+ Dj(ρ, ŝt, θ̃)− Dj(ρ̂, ŝt, θ̃)

In the fourth line, we simply introduce shortened notations for the same objects.
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Technical Lemmas

The 1st and 2nd lemma establish the smoothness of ρ−1 and the invertibility of the Jacobian matrix of

ρ with respect to δ. In the 3rd lemma, we derive the Lipschitz constant of the contraction and we prove

that it is bounded away from 0 and 1. The 4th lemma ensures that for key moments and quantities the

BLP approximations can be ignored uniformly asymptotically.

Lemma 2.4 ρ−1 is C∞

Proof. We know that the demand function ρ is C∞ and invertible on RJ . Moreover,∀δ ∈ RJ , ∂ρ(δ,x2t, f )
∂δ ̸=

0. As a consequence, ρ−1 : [0, 1]J → RJ the inverse demand function is also C∞.

Lemma 2.5 For any δ ∈ RJ , ∂ρ(δ,x2t, f )
∂δ is invertible.

Proof. ∂ρ
∂δ is a J × J matrix such that

(
∂ρ
∂δ

)
j,k

is:

∂ρj (δt, x2t, f )
∂δkt

=


∫
Tjt(v) (1 − Tkt(v)) f (v)dv i f j = k

−
∫
Tjt(v)Tkt(v) f (v)dv i f j ̸= k

with Tjt(v) ≡
exp{δjt+x′2jtv}

1+∑J
j′=1

exp{δj′t+x′
2j′tv}

One can easily check that ∂ρ
∂δ is strictly diagonally dominant. Indeed for each row j:

∣∣∣∣∂ρj (δt, x2t, f )
∂δkt

∣∣∣∣− ∑
k ̸=j

∣∣∣∣∂ρj (δt, x2t, f )
∂δkt

∣∣∣∣ = ∫
Tjt(v)

(
1 −

J

∑
k=1

Tkt(v))

)
︸ ︷︷ ︸

>0

f (v)dv > 0

Lemma 2.6 (Contraction Mapping Lipschitz Constant)

Given parametric assumption F0, under assumptions B-E, assume that starting mean utility δ0 is in B

where B is compact, then without loss of generality there exists some (a, ā) ∈ R2 with ā > a such that
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for any b ∈ B for any j = 1, . . . , J a ⩽ bj ⩽ ā, furthermore denote by X the compact support of x2jt.

Then on B the map C(·, st, x2t, f0(·|λ̃0)) is a contraction with Lipschitz constant

ϵ = max
j=1,...,J

sup
a∈B,b∈[0;ā−a]J ,x2∈X ,λ̃∈Λ0

1 −

∫ exp{aj+bj+x′2jv}

(1+∑k exp{ak+bk+x′2kv})
2 f0(v|λ̃)dv∫ exp{aj+bj+x′2jv}

1+∑k exp{ak+bk+x′2kv} f0(v|λ̃)dv

which is in (0; 1)

Proof. This proof is inspired by the proof of the Theorem in Appendix 1 of Berry et al. (1995). Let
Cj(·) ≡ C(·, st, x2t, f0(·|λ̃0)), we first determine the partial derivative of Cj(·)

∂Cj(a)
∂aj

= 1 − 1
ρj(a, x2t, f0(·|λ̃))

∫ exp{aj + x′2ktv}(1 + ∑J
k=1 exp{ak + x′2ktv})− exp{2(aj + x′2ktv)}

(1 + ∑J
k=1 exp{ak + x′2ktv})2

f0(v|λ̃)dv

=
1

ρj(a, x2t, f0(·|λ̃))

∫ exp{2(aj + x′2jtv)}

(1 + ∑J
k=1 exp{ak + x′2ktv})2

f0(v|λ̃)dv

∂Cj(a)
∂aj′

=
1

ρj(a, x2t, f0(·|λ̃))

∫ exp{aj + x′2jtv} exp{aj′ + x′2j′tv}

(1 + ∑J
k=1 exp{ak + x′2ktv})2

f0(v|λ̃)dv

Note that for any j = 1, . . . , J all partial derivatives of Cj(·) are strictly positive and that the sum of
its derivatives evaluated in a equals

J

∑
k=1

∂Cj(a)
∂ak

=
1

ρj(a, x2t, f0(·|λ̃))

∫ exp{aj + x′2jtv}∑J
k=1 exp{ak + x′2ktv}

(1 + ∑J
k=1 exp{ak + x′2ktv})2

f0(v|λ̃)dv

=
1

ρj(a, x2t, f0(·|λ̃))

∫ exp{aj + x′2jtv}(1 + ∑J
k=1 exp{ak + x′2ktv} − 1)

(1 + ∑J
k=1 exp{ak + x′2ktv})2

f0(v|λ̃)dv

= 1 −

∫ exp{aj+x′2jtv}
(1+∑J

k=1 exp{ak+x′2ktv})2
f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
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For any (a1, a2) ∈ B2 let ã = (||a1 − a2||∞, . . . , ||a1 − a2||∞) ∈ RJ then

Cj(a1)− Cj(a2) = Cj(a2 + a1 − a2)− Cj(a2) ⩽ Cj(a2 + ã)− Cj(a2)

⩽
∫ ||a1−a2||J∞

0J

∂Cj(a2 + b)
∂a

db

⩽ ||a1 − a2||∞ sup
a∈B,b∈[0;ā−a]J

J

∑
k=1

∂Cj(a + b)
∂ak

⩽ ||a1 − a2||2 max
j=1,..J

sup
a∈B,b∈[0;ā−a]J ,x2∈X ,λ̃∈Λ0

J

∑
k=1

∂Cj(a + b)
∂ak

≡ ||a1 − a2||2 ϵ

where the 1st inequality holds because Cj(·) is increasing in all its inputs, the 2nd inequality holds

by the fundamental theorem of calculus and by the total derivative formula, the 3rd and 4th inequalities

hold by properties of norms.

We now prove that sup
a∈B,b∈[0;ā−a]J ,λ̃∈Λ0

∑J
k=1

∂Cj(a+b)
∂ak

∈ (0; 1) which will imply that ϵ ∈ (0; 1). To

do so we have to prove that ∑J
k=1

∂Cj(a,st,x2t, f0(·|λ̃))
∂ak

is continuous in (a, x2t, λ̃) and takes values in (0; 1)

almost surely, this way because B, X and Λ0 are compact by Weierstrass’ Extreme Value Theorem the

sum of partial derivatives will also take values in a compact which is inside (0; 1), then the supremum

will become a maximum which can be attained and which is inside (0; 1). The sum of partial derivatives

is almost surely in (0; 1) because
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∫ exp{aj + x′2jtv}

(1 + ∑J
k=1 exp{ak + x′2ktv})2

f0(v|λ̃)dv − ρj(a, x2t, f0(·|λ̃))

=
∫ exp{aj + x′2jtv}

(1 + ∑J
k=1 exp{ak + x′2ktv})2

f0(v|λ̃)dv −
∫ exp{aj + x′2jtv}

1 + ∑J
k=1 exp{ak + x′2ktv}

f0(v|λ̃)dv

=−
∫ exp{aj + x′2jtv}∑J

k=1 exp{ak + x′2ktv}

(1 + ∑J
k=1 exp{ak + x′2ktv})2

f0(v|λ̃)dv < 0

⇒

∫ exp{aj+x′2jtv}
1+∑J

k=1 exp{ak+x′2ktv}
f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
< 1

⇒
J

∑
k=1

∂Cj(a, x2t, f0(·|λ̃))
∂ak

= 1 −

∫ exp{aj+x′2jtv}
1+∑J

k=1 exp{ak+x′2ktv}
f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
> 0

⇒−

∫ exp{aj+x′2jtv}
1+∑J

k=1 exp{ak+x′2ktv}
f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
< 0

⇒
J

∑
k=1

∂Cj(a, x2t, f0(·|λ̃))
∂ak

= 1 −

∫ exp{aj+x′2jtv}
1+∑J

k=1 exp{ak+x′2ktv}
f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
< 1

Continuity of the sum of the partial derivatives in (a, x2t) is trivial, continuity in λ̃ also holds because
f0(·|λ̃) must be continuously differentiable via Assumption D. ∀e1 > 0, ∃e2 : ∀(λ1, λ2) : ||λ1 −
λ2||2 ⩽ e2 implies | f0(v|λ1)− f0(v|λ2)| < e1 for all v which in turn implies

∀x2 ∈ X , ∀a ∈ B
∣∣∣∣∣
∫ exp{aj + x′2jv}

1 + ∑J
k=1 exp{ak + x′2kv}

( f0(v|λ1)− f0(v|λ2))dv

∣∣∣∣∣
⩽
∫ exp{aj + x′2jv}

1 + ∑J
k=1 exp{ak + x′2kv}

| f0(v|λ1)− f0(v|λ2)|dv

⩽e1

Thus both λ̃ 7→ ρj(a, x2t, f0(·|λ̃)) and λ̃ 7→
∫ exp{aj+x′2jtv

(1+∑J
k=1 exp{ak+x′2ktv})2

f0(v|λ̃)dv are continuous and so

is their ratio.

Lemma 2.7 (Uniform Convergence of Objective Function wrt BLP Approximations)
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Given parametric assumption F0, under assumptions B-E and ∀h which satisfies D

sup
θ̃∈Θ0

√
T||ĝT(θ̃, h)− gT(θ̃, h)||2

P→ 0

sup
θ̃∈Θ0

||Γ̂T(θ̃, h)− ΓT(θ̃, h)||2
P→ 0

sup
θ̃∈Θ0

|Q̂T(θ̃)−Q(θ̃)| P→ 0

Proof. Parts of this proof are inspired from Freyberger (2015). We prove the 3 statements of the Lemma

in order

1. Using the properties of the sup, the fact that ∀(A, B) rv, ∀e > 0, ∀α ∈ (0, 1), P(A + B > e) ⩽

P(A > αe) + P(B > (1 − α)e) and the previous decomposition of the difference between ξ and

ξ̂ we can find an upper bound on the probability that that the difference between ĝT(·) and gT(·)

is above a deviation: For any e1 > 0

P(sup
θ̃

√
T||ĝT(θ, h)− gT(θ, h)||2 > e1) = P(sup

θ̃

√
T

1
T
||∑

j,t
(ξ̂t( f0(·|λ̃), β̃)− ξt( f0(·|λ̃), β̃))h(zjt)||2 > e1)

⩽ P(sup
λ̃

√
T|| 1

T ∑
j,t
(ρ−1(st, x2t, f0(·|λ̃0))− Dj(ρ, st, λ̃))h(zjt)||2 >

e1

3
)

+ P(sup
λ̃

√
T|| 1

T ∑
j,t
(Dj(ρ, st, λ̃)− Dj(ρ, ŝt, λ̃))h(zjt)||2 >

e1

3
)

+ P(sup
λ̃

√
T|| 1

T ∑
j,t
(Dj(ρ, ŝt, λ̃)− Dj(ρ̂, ŝt, λ̃))h(zjt)||2 >

e1

3
)

Then we can prove that each element of the upper bound converges to 0

(a) By properties of contractions and using Lemma 2.6 we have

|ρ−1(st, x2t, f0(·|λ̃0))− Dj(ρ, st, λ̃)| ⩽ ϵH|ρ−1(st, x2t, f0(·|λ̃0))− δ0| ⩽ ϵHκ

for some constant κ which exists due to the compactness of Λ0, X and B. Thus using the
iid nature of the data ??(i), the speed of the NFP algorithm Assumption E(iii), the triangle
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inequality, Markov inequality and Cauchy-Schwarz inequality the 1st element converges to 0

P(sup
λ̃

√
T|| 1

T ∑
j,t
(ρ−1(st, x2t, f0(·|λ̃0))− Dj(ρ, st, λ̃))h(zjt)||2 >

e1

3
)

⩽ P(
√

TϵHκ|| 1
T ∑

j,t
h(zjt)||2 >

e1

3
) ⩽ P(

√
TϵH 1

T ∑
j,t
||h(zjt)||2 >

e1

3
)

⩽
3κ

e1

√
TϵH ∑

j

√
E(||h(zjt)||22) →

T→∞
0

(b) Note that Dj is continuously differentiable in s ∈ (0; 1) so that it is uniformly continuous in

s. Indeed C is C∞ in s so that

∂D(ρ, st, λ̃)

∂s
=

H

∏
h=1

∂C(C(h−1)(δ0, st, x2t, f0(·|λ̃)), st, x2t, f0(·|λ̃))
∂s

Next because Λ0 is compact it can be covered by some finite union of closed balls in RK2 ,
ie Λ0 ⊂ ∪N

c=1ΛN
0,c with ∀c = 1, . . . , N ΛN

0,c = {λ̃ : ||λ̃ − λc||2 ⩽ rN}, λc ∈ Λ0 and
rN →

N→∞
0. Consequently

P(sup
λ̃

1√
T
||∑

j,t
(Dj(ρ, st, λ̃)− Dj(ρ, ŝt, λ̃))hE(zjt)||2 >

e1

3
)

⩽ P( max
c=1,...,N

sup
λ̃∈ΛN

0,c

1√
T
||∑

j,t
(Dj(ρ, st, θ̃)− Dj(ρ, ŝt, θ̃))hE(zjt)||2 >

e1

3
)

⩽
N

∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t
|Dj(ρ, st, λ̃)− Dj(ρ, ŝt, λ̃)| ||hE(zjt)||2 >

e1

3
)

⩽
N

∑
c=1

P(
1√
T
||∑

j,t
(Dj(ρ, st, λc)− Dj(ρ, ŝt, λc))hE(zjt)||2 >

e1

9
)

+
N

∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t
|Dj(ρ, st, λ̃)− Dj(ρ, st, λc)| ||hE(zjt)||2 >

e1

9
)

+
N

∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t
|Dj(ρ, ŝt, λc)− Dj(ρ, ŝt, λ̃)| ||hE(zjt)||2 >

e1

9
)

where the last inequality was obtained using the triangle inequality. Then by uniform conti-

nuity of Dj in s it follows that ∃e2 > 0 such that ∀c 1√
T
||∑j,t(Dj(ρ, st, λc)−Dj(ρ, ŝt, λc))hE(zjt)||2 >

e1
9 implies 1√

T
||∑j,t(st − ŝt)||2 > e2 thence letting P∗ = P(·|nt, xt, ξt)
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P∗(
1√
T
||∑

j,t
(Dj(ρ, st, λc)− Dj(ρ, ŝt, λc))hE(zjt)||2 >

e1

9
) ⩽ P∗(

1√
T
||∑

j,t
(st − ŝt)||2 > e2)

⩽
J ∑t E∗(||st − ŝt||2)

e2
√

T
=

J ∑t E∗
(√

∑j(sjt − ŝjt)2
)

e2
√

T
⩽

J ∑t

√
∑j E∗

(
(sjt − ŝjt)2

)
e2
√

T

⩽
J ∑t

√
∑j E∗

(
( 1

nt
∑nt

i=1 yijt − E∗(yijt))2
)

e2
√

T
=

J ∑t

√
∑j Var∗( 1

nt
∑nt

i=1 yijt)

e2
√

T

⩽
J ∑t

√
∑j

1
nt

Var∗(yijt)

e2
√

T
⩽

J3/2

e2

1√
T

∑
t

1√
nt

where Markov inequality, Jensen inequality, the fact that yijt ∈ {0; 1}, that εijt is iid extreme-
value type 1 distributed across i, j and t, and the fact that nt is iid and independent of all other
variables have been used. Then taking the expectations and summing over N on both sides
implies by Assumption E(i)

N

∑
c=1

P(
1√
T
||∑

j,t
(Dj(ρ, st, λc)− Dj(ρ, ŝt, λc))hE(zjt)||2 >

e1

9
) ⩽

J3/2N
e2

√
TE(n−1/2

t ) →
T→∞

0

Next using continuity of Dj in λ̃ it must be that for any e1 > 0 there exists some N such that
∀λ̃ ∈ ΛN

0,c such that ||λ̃ − λc||2 ⩽ rN implies

1√
T

∑
j,t
|Dj(ρ, st, λ̃)− Dj(ρ, st, λc)| ||hE(zjt||2 ⩽

e1

9

because rN →
N→∞

0. By definition of the supremum it also implies that

sup
λ̃∈Λ0,c

1√
T

∑
j,t

|Dj(ρ, st, λ̃)− Dj(ρ, st, λc)| ||hE(zjt||2 ⩽
e1

9

The contraposition is that

sup
λ̃∈Λ0,c

1√
T

∑
j,t
|Dj(ρ, st, λ̃)− Dj(ρ, st, λc)| ||hE(zjt||2 >

e1

9

implies ∀λ̃ ∈ ΛN
0,c ||λ̃ − λc||2 > rN which is impossible by definition of ΛN

0,c. Conse-
quently

N

∑
c=1

P( sup
λ̃∈Λ0,c

1√
T

∑
j,t
|Dj(ρ, st, λ̃)− Dj(ρ, st, λc)| ||hE(zjt||2 >

e1

9
)

⩽
N

∑
c=1

P(∩λ̃∈ΛN
0,c
||λ̃ − λc||2 > rN) = 0
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Similarly

N

∑
c=1

P( sup
λ̃∈Λ0,c

1√
T

∑
j,t
|Dj(ρ, ŝt, λ̃)− Dj(ρ, ŝt, λc)| ||hE(zjt||2 >

e1

9
) = 0

(c) With the same arguments as in (b)

P(sup
λ̃

1√
T
||∑

j,t
(Dj(ρ, ŝt, λ̃)− Dj(ρ̂, ŝt, λ̃))hE(zjt)||2 >

e1

3
)

⩽
N

∑
c=1

P(
1√
T
||∑

j,t
(Dj(ρ, ŝt, λc)− Dj(ρ̂, ŝt, λc))hE(zjt)||2 >

e1

9
)

+
N

∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t
|Dj(ρ, ŝt, λ̃)− Dj(ρ, ŝt, λc)| ||hE(zjt)||2 >

e1

9
)

+
N

∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t
|Dj(ρ̂, ŝt, λc)− Dj(ρ̂, ŝt, λ̃)| ||hE(zjt)||2 >

e1

9
)

=
N

∑
c=1

P(
1√
T
||∑

j,t
(Dj(ρ, ŝt, λc)− Dj(ρ̂, ŝt, λc))hE(zjt)||2 >

e1

9
)

where Dj(ρ, st, λc) = C(H)(δ0, st, x2t, f0(·|λc)). Dj is C∞ in ρ ∈ (0; 1), moreover ρj(δt, x2t, f0(·|λ̃))

and ρ̂j(δt, x2t, f0(·|λ̃)) are continuously differentiable in Λ0. Therefore there exists some

e2 > 0 such that

1√
T

∑
j,t

|Dj(ρ, ŝt, λc)− Dj(ρ̂, ŝt, λc)| ||hE(zjt)||2 >
e1

9

implies sup
a∈B

1√
T ∑j,t ||ρ(a, x2t, f0(·|λc) − ρ̂(a, x2t, f0(·|λc))||2 > e2, and as B is compact

we can cover it by Ñ closed balls BÑ
b = {a ∈ B : ||a − ab|| ⩽ rÑ} with ab ∈ B for any

b = 1, . . . , Ñ so that
N

∑
c=1

P(
1√
T

∑
j,t
|Dj(ρ, ŝt, λc)− Dj(ρ̂, ŝt, λc)| ||hE(zjt)||2 >

e1

9
)

⩽
N

∑
c=1

P(sup
a∈B

1√
T

∑
j,t
||ρ(a, x2t, f0(·|λc)− ρ̂(a, x2t, f0(·|λc))||2 > e2)

⩽ ∑
c,b

P( sup
a∈BÑ

b

1√
T

∑
j,t
||ρ(a, x2t, f0(·|λc)− ρ̂(a, x2t, f0(·|λc))||2 > e2)

=∑
c,b

P(
1√
T

∑
j,t
||ρ(ab, x2t, f0(·|λc)− ρ̂(ab, x2t, f0(·|λc))||2 > e2)

111



where the last equality was obtained reusing arguments from (b). As a consequence let

Fjt(v) =
exp{abj+x′2jtv}

1+∑k exp{abk+x′2ktv}
and P∗(·) = P(·|xt, ξt) then using Markov inequality and

Cauchy-Schwarz inequality

P∗(
1√
T

∑
j,t

||ρ(ab, x2t, f0(·|λ̃))− ρ̂(ab, x2t, f0(·|λ̃))||2 > e2)

⩽
J ∑t E∗(||ρ̂(ab, x2t, f0(·|λ̃))− ρ(ab, x2t, f0(·|λ̃))||2)

e2
√

T

⩽
J ∑t

√
∑j E∗

(
( 1

R ∑R
r=1 Fjt(vR)− E∗(Fjt(vR)))2

)
e2
√

T
=

J ∑t

√
∑j Var∗( 1

R ∑R
r=1 Fjt(vr))

e2
√

T

⩽
J3/2

e2

√
T
R

where the fact that vr are iid draws from f0(·|λ̃) independent from all other variables has
been used. It follows by taking the expectation and summing over N and Ñ that

P(sup
λ̃

1√
T

∑
j,t

|Dj(ρ, ŝt, λ̃)− Dj(ρ̂, ŝt, λ̃)| hE(zjt)||2 →
T→∞

0

by Assumption E(i).

2. The 2nd statement is not formally proven as it largely builds on the proof of the 1st statement. To

see why recall that

Γ̂T(θ̃, h)− ΓT(θ̃, h) =
1
T ∑

jt
h(zjt)

∂

∂θ
(ξ̂(θ̃)− ξ jt(θ̃))

′

More precisely let e′j = (0 . . . 0 1︸︷︷︸
j-th coordinate

0 . . . 0) then

∂ξ jt(θ̃)

∂β
= −x1jt,

∂

∂λ
ξ jt(θ̃) = −e′j

(
∂ρ(δt(λ̃), x2t, f0(·|λ̃))

∂δ

)−1 ∫ exp{δjt(λ̃) + x′2jtv}

1 + ∑J
k=1 exp{δkt(λ̃) + x′2ktv}

∂

∂λ
f0(v|λ̃)dv

Thus the columns of the matrix Γ̂T(θ̃, h) − ΓT(θ̃, h) associated to the derivative in β are equal

to 0. Furthermore using an uniform continuity argument
∣∣∣∣ ∂ξ̂ jt(θ̃)

∂λ − ∂ξ jt(θ̃)

∂λ

∣∣∣∣ > e1 is implied by

||δ̂t(λ̃)− δt(λ̃)||2 > e2 for some e2 > 0. Using the compactness of Λ0 and Assumption E it is

straightforward that sup
λ̃

||Γ̂T(θ̃, h)− ΓT(θ̃, h)||2
P→ 0 for any h which satisfies the conditions in

Assumption D.
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3. The 3rd statement follows from the 1st. Indeed using Cauchy-Schwarz and properties of the
supremum

sup
θ̃∈Θ0

|Q̂T(θ̃)−QT(θ̃)| =|(ĝT(θ̃, hE)− gT(θ̃, hE))
′Ŵ(ĝT(θ̃, hE)− gT(θ̃, hE))

− 2(ĝT(θ̃, hE)− gT(θ̃, hE))
′ŴgT(θ̃, hE))|

⩽ sup
θ̃∈Θ0

||(ĝT(θ̃, hE)− gT(θ̃, hE))||22µ̄(Ŵ)

+ 2 sup
θ̃∈Θ0

||(ĝT(θ̃, hE)− gT(θ̃, hE))||2 sup
θ̃∈Θ0

||gT(θ̃, hE))||2µ̄(Ŵ)

where µ̄(·) maps a square matrix towards its maximum eigenvalue. By D(iv) and definition of

the L2 matrix norm, µ̄(Ŵ)
P→ µ̄(W). Then we apply Jennrich’s ULLN: the data is iid, Θ0 is

compact, and gT(θ̃, hE) = ∑j ξ jt( f0(·|λ̃), β̃)hE(zjt) has an enveloppe with finite absolute 1st

moment because ξ jt( f0(·|λ̃), β̃) = ρ−1(st, x2t, λ̃) − x′1jt β̃ and ρ−1(·) has a maximum because

it is continuous and its input are in a compact and because β̃ is in a compact and x1jt has finite

4th moments, see Assumption B; Thus by the CMT sup
θ̃∈Θ0

||gT(θ̃, hE))||2
P→ sup

θ̃∈Θ0

||g(θ̃, hE)||2;

Finally using the 1st statement we have ||(ĝT(θ̃, hE)− gT(θ̃, hE))||2
P→ 0 therefore by the CMT

sup
θ̃∈Θ0

|Q̂T(θ̃)−QT(θ̃)|
P→ 0

Asymptotic Properties of the BLP estimator

Lemma 2.8 (Consistency of BLP Estimator)

Given parametric assumption F0 and under assumptions B-E,

θ̂
P→ θ0

.

Proof. We prove consistency using arguments for the consistency of M-estimators. For any e1 > 0 such

that |θ̂ − θ0| > e1 then by Assumption D(iii) there exists some e2 > 0 such that Q(θ̂)−Q(θ0) > e2 as
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θ0 is the unique minimizer of the objective. Thence for any e1 > 0, ∃e2 > 0 such that

P(|θ̂ − θ0| > e1) ⩽ P(Q(θ̂)−Q(θ0) > e2)

= P(Q̂T(θ0)−Q(θ0) +Q(θ̂)− Q̂T(θ̂) + Q̂T(θ̂)− Q̂T(θ0) > e2)

⩽ P(Q̂T(θ0)−Q(θ0) +Q(θ̂)− Q̂T(θ̂) > e2)

⩽ P(Q̂T(θ0)−Q(θ0) > (1 − α)e2) + P(Q(θ̂)− Q̂T(θ̂) > αe2)

where α ∈ (0; 1), the 2nd inequality comes from the fact that Q̂T(θ̂)− Q̂T(θ0) is almost surely negative

by definition of θ̂, and the 3rd inequality is obtained by utilizing properties of indicator functions. Then

by a direct implication of Lemma 2.7 the right-hand-side converges to 0.

Lemma 2.9 (Asymptotic Normality of BLP Estimator)

Given parametric assumption F0, under assumptions B-E and under H0 : f ∈ F0

√
T(θ̂ − θ0) =

(
Γ′(θ0, hE)WΓ(θ0, hE)

)−1 √TΓ′(θ0, hE)WgT(θ0, hE) + oP

Furthermore under H0; f ∈ F0

√
T(θ̂ − θ0)

d→N (0, (Γ′(θ0, hE)WΓ(θ0, hE))
−1Γ′(θ0, hE)WΩ(F0, hE)WΓ(θ0, hE)

(Γ′(θ0, hE)WΓ(θ0, hE))
−1)

Proof. We prove asymptotic normality using arguments from M-estimators asymptotics. From Taylor’s

theorem there exists some θ̃ such that ||θ̃ − θ0||2 ⩽ ||θ̂ − θ0||2 and

ĝT(θ̂, hE) = ĝT(θ0, hE) + Γ̂T(θ̃, hE)(θ̂ − θ0)

⇒
√

TΓ̂′
T(θ̂, hE)ŴĝT(θ̂, hE) =

√
TΓ̂′

T(θ̂, hE)ŴĝT(θ0, hE) + Γ̂′
T(θ̂, hE)ŴΓ̂T(θ̃, hE)

√
T(θ̂ − θ0) = 0

⇔
√

T(θ̂ − θ0) = −
(
Γ̂′

T(θ̂, hE)ŴΓ̂T(θ̃, hE)
)−1 √

TΓ̂′
T(θ̂, hE)ŴĝT(θ0, hE)

where the 1st implication is due to the FOC Assumption D(v). Then, we apply the CMT to (A, B) 7→

(A′BA)−1A′B which is a continuous mapping if A and B are full rank so that when taking A =
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Γ̂T(θ̂, hE) and B = Ŵ we obtain:

√
T(θ̂ − θ0) = −

(
Γ′(θ0, hE)WΓ(θ0, hE)

)−1 √TΓ′(θ0, hE)WgT(θ0, hE) + oP

To prove that plim Γ̂T(θ̂, hE) = plim Γ̂T(θ̃, hE) = Γ(θ0, hE) we make the following decomposition

Γ̂T(θ̂, hE)− Γ(θ0, hE) = Γ̂T(θ̂, hE)− ΓT(θ̂, hE) + ΓT(θ̂, hE)− Γ(θ̂, hE) + Γ(θ̂, hE)− Γ(θ0, hE)

where the 1st difference is oP by Lemma 2.7, the 3rd difference is oP by the CMT and the consis-

tency of θ̂, see Lemma 2.8, and the 2nd difference is oP by Jennrich’s ULLN. The ULLN can be

applied if and only if ∑j hE(zjt)
∂ξ jt(θ)

∂θ has an enveloppe with finite 1st absolute moments: ξ jt(θ) =

ρ−1(st, x2t, f0(·|λ))− x′1jtβ and
∂ξ jt(θ)

∂β = x1jt with x1jt has finite moments of order 4 by Assumption

B(iv), whereas
∂ξ jt(θ)

∂λ = ∂ρ−1(st,x2t, f0(·|λ̃))
∂λ and ρ−1 is C∞ with arguments (st, x2t, λ) which take values

in a compact thus ∂ρ−1

∂λ has bounds.

Thence plim Γ̂T(θ̂, hE) = plim Γ̂T(θ̃, hE) = Γ(θ0, hE) which is full rank by Assumption D(ii),

plim Ŵ = W which is full rank by Assumption D(iv), and by Lemma 2.7 plim
√

T(ĝT(θ0, hE) −

gT(θ0, hE)) = 0 so we can apply the aforementioned CMT and by the CLT which can be applied

because g(θ0, hE) = 0 under the null

√
T(θ̂ − θ0) =−

(
Γ′(θ0, hE)WΓ(θ0, hE)

)−1 √TΓ′(θ0, hE)WgT(θ0, hE) + oP

d→N (0, (Γ′(θ0, hE)WΓ(θ0, hE))
−1Γ′(θ0, hE)WΩ(F0, hE)WΓ(θ0, hE)

(Γ′(θ0, hE)WΓ(θ0, hE))
−1)

Asymptotic distribution of the test statistic

Proof of Theorem 5.1

Proof. This proof leans heavily on the proof of Lemma 2.9. By Taylor’s theorem there exists θ̃ such that
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||θ̃ − θ0||2 ⩽ ||θ̂ − θ0||2
√

TĝT(θ̂, hD) =
√

TĝT(θ0, hD) + Γ̂T(θ̃, hD)
√

T(θ̂ − θ0)

= (I|hD|0 − Γ(θ0, hD)(Γ′(θ0, hD)WΓ(θ0, hD))
−1Γ′(θ0, hD)W)

√
T

gT(θ0, hD)

gT(θ0, hE)

+ oP

≡ (I|hD|0 G)
√

T

gT(θ0, hD)

gT(θ0, hE)

+ oP

The second equality is obtained by relying on the proof of Lemma 2.9 to express
√

T(θ̂ − θ0) as a

function of moments, by relying on Lemma 2.7 so that plim
√

TĝT(θ0, hD) = plim
√

TgT(θ0, hD) and

plim Γ̂T(θ̃, hD) = plim ΓT(θ0, hD), and by using the CMT.

• Under H0 : f ∈ F0 then E
[
∑j hD(zjt)ξ jt(θ0)

]
= 0 by LIE. So using the CLT and Slutsky’s

Lemma we obtain
√

TĝT(θ̂, hD)
d→ Z ∼ N (0, Ω0)

where

Ω0 =

(
I|hD|0 G

) Ω(F0, hD) Ω(F0, hD, hE)

Ω(F0, hD, hE)
′ Ω(F0, hE)


I|hD|0

G′


with

Ω(F0, hD) = E

[(
∑

j
ξ jt( f (.|λ0), β0)hD(zjt)

)(
∑

j
hD(zjt)ξ jt( f0(.|λ0), β0)

)′]

Ω(F0, hD, hE) = E

[(
∑

j
ξ jt( f (.|λ0), β0)hD(zjt)

)(
∑

j
hE(zjt)ξ jt( f0(.|λ0), β0)

)′]
G = −Γ(θ0, hD)

[
Γ(θ0, hE)

′WΓ(θ0, hE)
]−1 Γ(θ0, hE)

′W

Thence by the continuous mapping theorem:

S(hD,F0, θ̂) = ĝT(θ̂, hD)
′Σ̂ĝT(θ̂, hD)

d→ Z′ΣZ
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• Under H′
a : E

[
∑j hD(zjt)ξ jt( f0(·|λ0), β0)

]
̸= 0, we have by Lemma 2.7, by consistency of

θ̂
P→ θ0 and the CMT:

ĝT(θ̂, hD) = gT(θ0, hD) + oP

Thus by Assumption D(iv) and the CMT

S(hD,F0, θ̂)

T
P→ E

[
∑

j
hD(zjt)ξ jt( f0(·|λ0), β0)

]′
ΣE

[
∑

j
hD(zjt)ξ jt( f0(·|λ0), β0)

]
︸ ︷︷ ︸

κ(hD,F0,θ0)

Under H′
a, κ(hD,F0, θ0) is strictly positive because Σ is positive definite. Thence,

∀q ∈ R lim
T→∞

P(S(hD,F0, θ̂) > q) = lim
T→∞

P

(
S(hD,F0, θ̂)− q

T
> 0

)
= P(κ(hD,F0, θ0) > 0)

= 1

where the 2nd equality holds because convergence in probability implies convergence in distribu-

tion.

Application of Theorem 5.1 to the 2 polar cases

1. Sargan-Hansen J test

If hD = hE, with W and Σ are set to be equal to the GMM 2-step optimal weighting matrix

Σ = W = E

[(
∑

j
ξ jt( f0(·|λ0), β0)hE(zjt)

)(
∑

j
ξ jt( f0(·|λ0), β0)hE(zjt)

)′ ]−1

= Ω(F0, hE)
−1

Then under H0:

S(hD,F0, θ̂)
d→ χ2

|hE|0−|θ|0

Proof. By applying theorem 5.1, we have:

S(hD,F0, θ̂)
d→ Z′ΣZ with Z ∼ N (0, Ω0)
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If hD = hE and W = Ω(F0, hE)
−1 then Ω0 simplifies to

Ω0 = Ω(F0, hE)− Γ(θ0, hE)
[
Γ(θ0, hE)

′Ω(F0, hE)
−1Γ(θ0, hE)

]−1
Γ(θ0, hE)

′

= Ω(F0, hE)
1/2MΩ(F0,hE)−1/2Γ(θ0,hE)

Ω(F0, hE)
1/2

with MΩ(F0,hE)−1/2Γ(θ0,hE)
≡ I|hE|0 − PΩ(F0,hE)−1/2Γ(θ0,hE)

is the orthogonal projection on the

space orthogonal to Ω(F0, hE)
−1/2Γ(θ0, hE). Let Z̃ ∼ N (0, I|hE|0), we have by definition:

Z = Ω(F0, hE)
1/2MΩ(F0,hE)−1/2Γ(θ0,hE)

Z̃ =⇒ Σ1/2Z = MΩ(F0,hE)−1/2Γ(θ0,hE)
Z̃

=⇒ Z′ΣZ = Z̃′MΩ(F0,hE)−1/2Γ(θ0,hE)
Z̃

Second line comes from symmetry and idempotence of MΩ(F0,hE)−1/2Γ(θ0,hE)
. Orthogonal projec-

tions have eigenvalues equal to either 0 or 1 with the number of eigenvalues equal to one corre-

sponding to the rank of the space it projects into, which in our case is |hE| − |θ|0. If we denote by

V the matrix of eigenvectors of MΩ(F0,hE)−1/2Γ(θ0,hE)
then note that V′Z̃ ∼ N (0, I|hE|0) so that

Z′ΣZ =
|hE|0−|θ|0

∑
k=1

(V′Z̃)2
k ∼ χ2

|hE|0−|θ|0

2. Non-redundant hD and hE

If Ω0 is full rank and if the econometrician sets Σ = Ω−1
0 , then our test statistic has the following

asymptotic distribution under H0:

S(hT,F0, θ̂)
d→ χ2

|hD|0

One sufficient condition for Ω0 being full rank is (ξ jt( f (·|λ0), β0))
J
j=1 is independent across j

and (hE(zjt), hD(zjt)) not being perfectly colinear.

Proof. The asymptotic result is direct; (ξ jt( f0(·|λ0), β0))
J
j=1 being independent across j and
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(hE(zjt), hD(zjt)) not being perfectly colinear implies that

Ω(F0, hE, hD) = ∑
j

E
[
ξ jt( f0(·|λ0), β0)

2hE(zjt)hD(zjt)
′
]

⇒ Ω0 = ∑
j
(I|hD|0 G)Var

ξ jt( f0(·|λ0), β0)

hD(zjt)

hE(zjt)



I|hD|0

G′


Thus Ω0 is positive definite because it is the sum of positive definite matrices.

1.B.5 Properties of the MPI in the composite specification test: f ∈ F0

Proposition 2.10 (Consistency of the test for the composite test with the MPI) Under Assumption A and

Assumptions B-E

Ha : f /∈ F0 =⇒ ∀q ∈ R+, P(S(h∗D,F0, θ̂) > q) → 1.

Proof of Proposition 2.10.

From corollary 2.1. Under Assumption A,

Ha : f /∈ F0 =⇒ E[ξ jt( f0(·|λ0), β0)|zjt] ̸= 0 a.s

=⇒ E[ξ jt( f0(.|λ0), β0)|zjt]
2 > 0 a.s

=⇒ E
[
E[ξ jt( f0(.|λ0), β0)|zjt]

2] > 0

=⇒ E
[
E[ξ jt( f0(.|λ0), β0)E[ξ jt( f0(.|λ0)|zjt]|zjt]

]
> 0

=⇒ E
[
ξ jt( f0(.|λ0), β0)E[ξ jt( f0(.|λ0)|zjt]

]
> 0

=⇒ ∀α ̸= 0 H′
a : E

[
ξ jt( f0(.|λ0), β0) αE[∆

ξ jt
0,a|zjt]︸ ︷︷ ︸

h∗D(zjt)

]
̸= 0.

From theorem 5.1, under Assumptions B-E,

H′
a : E

[
ξ jt( f0(.|λ0), β0)h∗D(zjt)

]
̸= 0 =⇒ ∀q ∈ R+, P(S(h∗D,F0, θ̂) > q) → 1.
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1.C Additional results and comments

1.C.1 Literature on the identification of the distribution of RC

In this section, we briefly summarize some recent findings on the identification of random coefficients

in multinomial choice models. In their seminal paper, Berry and Haile (2014) shows the identification

of the demand functions ρ in a framework that encompasses the BLP model but their result does not

entail identification of the random coefficients’ distribution per se. To achieve their identification result,

they require a completeness condition on the instruments as well as additional conditions (eg: connected

substitutes) to ensure invertibility of the demand functions. They also need to impose that at least one of

the product characteristic has a coefficient that is not random and that is equal to 1. Notice that in BLP

model, the structure implied by the logit shock guarantees invertibility of the demand functions.

Fox et al. (2012) provides conditions under which the distribution of random coefficients is identified

in a mixed logit model with micro-level data and no endogeneity. Their identification result requires

continuous characteristics in x2t and rules out interaction terms (eg polynomial terms of x2jt). Moreover,

their result is restricted to distributions of random coefficients with a compact support - excluding for

instance a normally distributed random coefficient.

Fox and Gandhi (2011) investigates the identification of the joint distribution of random coefficients

vi and idiosyncratic shocks εijt in aggregate demand models without endogeneity. They also consider

a setting where endogeneity is introduced in a very restrictive way. They show identification under a

special regressor assumption and finite support of the unobserved heterogeneity. The special regressor

assumption assumes that a variable in x1t has full support and has an associated coefficient that is either 1

or -1. This special regressor assumption is very common in the literature on the identification of random

coefficients (see Ichimura and Thompson (1998), Berry and Haile (2009), Matzkin (2007) and Lewbel

(2000)). Their framework does not nest the standard BLP model as ϵijt and vi are both assumed to have

a finite support but it is more general in other dimensions. They do not exploit the logit distributional

assumption on εijt, they do not impose independence between vi and εijt, their identification argument

can be extended to the case where multiple goods are purchased.
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In a setting much closer to ours, Dunker et al. (2022) studies the identification of the distribution of

random coefficients in endogenous aggregate demand models which includes the BLP model as a special

case (in particular, no parametric assumption is made on the idiosyncratic shock εijt). They make a clever

use of the Radon transform to identify f . The price they have to incur for flexibility is that they need to

make stringent assumptions on the product characteristics: variables in xt are required to be continuous

and to satisfy a joint full support assumption. The idea is to exploit the variation in the covariates in

order to trace out the distribution of rc f . Unfortunately, these requirements are rarely met in real data

sets.

In contrast to the rest of the literature, Wang (2022) adopts all the parametric assumptions assumed

in the standard BLP model and looks for the set of minimal assumptions under which the distribution

of random coefficients is identified. This approach allows him to obtain sufficient conditions which

are much less stringent than the rest of the literature (no special regressor assumption, no full support

assumption, no continuity assumption). To be more specific, he shows that if the demand functions are

identified on an open set of RJ39, then the distribution of random coefficients is identified. His proof

astutely exploits the real analytic property of the demand functions40.

1.C.2 Feasible MPI: conditional expectation

In this subsection, we briefly motivate our approach of approximating the conditional expectation by first

projecting the endogenous variables on a relevant subset of the exogenous variables. The problem we

encounter can be summarized as follows. We want to compute E[g(x1t, x2t)|zjt], where g is highly non-

linear, x1t are endogenous variables and x2t are exogenous variables. Moreover, zjt has a large dimension

(in the BLP model, its order of magnitude the number of products× number of characteristics). Our

approach consists in first projecting the endogenous variables x1t on a relevant subset of zt, before

plugging them into g(x1t, x2t). The traditional approach consists in using a non-parametric estimator

39which can be achieved using theorem 1 in Berry and Haile (2014)
40In particular, the real analytic property yields that the local identification of ρ on D ⊂ RJ implies identification of ρ on

RJ . From global identification of ρ, he is then able to show that the random coefficients’ distribution is identified under a
simple rank condition on x2t
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of E[g(x1t, x2t)|zjt]. However, given the dimension of zjt, this approach is likely to yield poor results

in practice because of the huge curse of dimensionality. In contrast, we know that some endogenous

variables in x1t only depend on a subset of zjt, which we denote z̃1jt, then we can use this to our advantage

to construct a more precise estimator of E[[g(x1t, x2t)|zjt]. First, x̂1t = E[x1t|z̃jt] will be much more

accurately estimated as we only condition on ẑ1jt (for instance, the price usually depends on its own

cost shifters and its own product characteristics, while the dependence with respect to characteristics of

other goods is much weaker and can be ignored empirically). For exposition, we further assume that

dim(x1t) = 1. We take a second order Taylor expansion of E[g(x1t, x2t)|zjt] around x̂1t.

E[g(x1t, x2t)|zjt] = E[g(x̂1t, x2t)|zjt] + E

[
∂g(x̂1t, x2t)

∂x1
(x1t − x̂1t)

∣∣zjt

]
+ E

[
∂2g(x̃1t, x2t)

∂x2
1

(x1t − x̂1t)
2∣∣zjt

]

= g(x̂1t, x2t) +
∂g(x̂1t, x2t)

∂x1
E[(x1t − x̂1t)|zjt]︸ ︷︷ ︸

=0

+E

[
∂2g(x̃1t, x2t)

∂x2
1

(x1t − x̂1t)
2∣∣zjt

]

with x̃1t ∈ [x1t; x̂1t]. Our approach yields an estimator that converges faster to g(x̂1t, x2t), which is

a first order approximation of E[g(x1t, x2t)|zjt].

1.C.3 Choice of the large-T asymptotics

In this paper, we study the asymptotics of our test when the number of markets T grows to infinity. We

could also study the asymptotic properties of the BLP estimator and of the test when J grows to infinity

and T stays fixed. We do not pursue this route for several reasons. First, from an economic point of

view, a market with a number of products that grows to infinity is hardly conceivable in industries with

imperfect competition and barriers to entry. Second, from a theoretical point of view there is a tension

between the identification of demand which require all market shares to be strictly positive, see Berry and

Haile (2014), and the large market asymptotics which require all market shares to tend to 0 as J grows to

infinity, see Berry et al. (2004). At the same time it is well established that a many (weak) instruments

problem can easily occur in a BLP model with a fixed number of markets and many products especially

when using the traditional BLP instruments, see Armstrong (2016).
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Consequently only markets with perfect competition and a careful choice of instruments could some-

how fit the assumptions necessary for the BLP model to yield consistent estimators and valid tests with

large J. Yet in the majority of empirical IO papers the markets have imperfect competition, sometimes

oligopolies, and use the traditional BLP instruments. Thus we establish our theory with a large number

of independent markets, which is a natural setting for empirical IO papers and which is not plagued with

the aforementioned theoretical problems.

1.C.4 Construction of the interval instruments in practice

We now provide more details on how to construct the interval instruments in practice. The procedure to

construct the interval instruments is as follows:

1. Given (F0, Ŵ, hE), the researcher derives the BLP estimator θ̂

2. Then the researcher chooses L points (vl)
L
l=1 ∈ RL in the presumed support of f0(·|λ̂).

3. Finally, the researcher can construct a set of L interval instruments based on the approximations

of the MPI that we develop in sections 1.4.2 and 1.4.1.

• Global approximation: {πj,l(zjt)}l=1,...,L interval instruments, which are such that:

E
[
∆j(st, x2t, f0, fa)|zjt

]
≈ log

(
L

∑
l=1

ωl πj,l(zjt)

)
with πj,l(zjt) =

exp{x′2jtvl}
1+∑J

k=1 exp{δ̂0
kt+x′2ktvl}∫

RK2

exp{x′2jtv}

1+∑J
k=1 exp

{
δ̂0

jt+x′2ktv
} f0(v)dv

with δ̂0
t the linear projection of δ0

t on zjt (or a carefully chosen subset of zjt).

• Local approximation: {π̄j,l(zjt)}l=1,...,L interval instruments such that

E[∆j(st, x2t, f0, fa)|zjt] ≈
L

∑
l=1

ω̄l π̄j,l(zjt)

with π̄j,l(zjt) =

(
∂ρ(δ̂0

t , x2t, f0)

∂δ

)−1 [
exp{δ̂0

t + x2tvl}
1 + ∑J

k=1 exp
{

δ̂0
kt + x′2ktvl

} − ρj(δ̂
0
t , x2t, f0)

]

with δ̂0
t the linear projection of δ0

t on zjt (or a carefully chosen subset of zjt).
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Choice of the L points in the domain of fa The researcher doesn’t know a priori the support of

the true density fa. Thus, he/she must choose points in the domain of definition of fa. If this choice

coincides with points of the support where | f0(·|λ0) − fa| is large, then this choice generates more

informative instruments. In practice, one can take points in the high density regions of f0(·|λ0) (eg

if F0 is the Gaussian family, then one can take points around the mean λ0). The choice of of the

number of instruments N obeys a usual bias variance tradeoff. On the one hand, a large L allows to

better approximate the MPI and thus increases the detection ability of the instruments. On the other

hand, it is well-known that a larger number of instruments can induce finite sample bias and can distort

asymptotic distributions of estimators and tests such as the over-identification test.41 Moreover, we

observe in our simulations, that when one takes points in the support that are too close to each other,

the implied instruments suffer from high levels of colinearity. For these reasons we advise not to use

too few or too many interval instruments, in our simulations and application we use between 6 and 10

instruments (in every dimension). We leave a formal analysis of the optimal choice of L and of the

general approximations properties of the interval instruments for future work.

1.C.5 Feasible MPIs for estimation

In the estimation framework, the researcher assumes that f ∈ F0 = { f0(·|λ̃) : λ̃ ∈ Λ0} and wants

to estimate the true parameter θ0 = (β′
0, λ′

0)
′ under this parametric restriction. From the connection

between the MPI and the local instruments that we present in Section 1.3.3, we infer that good testing

instruments hE(zjt) ought to approximate the MPI devoted to test H0 : θ = θ0 against any local alter-

native. If we have an initial estimator of θ0, we can directly use the interval instruments presented in

Section 1.4 to approximate the MPI devoted to test H0 : θ = θ0. However, this approach requires to

estimate θ̂ in a first step. Here, we present an alternative approach based on the global approximation of

the MPI we derived in Section 1.4.2, which has the advantage of not requiring a first stage estimate of

θ0. it is straightforward to show that for any true parameter θ0 and any alternative θa, we can rewrite the

global approximation of the non-linear part of the MPI as follows:
41See Roodman (2009) for a review on the effect of many possibly weak moments on estimation and testing.
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E[∆j(st, x2t, θ0, θa)|zjt] ≈ log

(
L

∑
l=1

¯̄ωl(θ0, θa) ˆ̄̄πj,l(zjt)

)
with ˆ̄̄πj,l(zjt) =

exp{x′2jtvl}

1 + ∑J
k=1 exp

{
ˆ̄δ0
jt + x2jkvl

}
and ¯̄ωl(θ0, θa) =

ω̄l(θa)∫
RK2

exp{x′2jtv}

1+∑J
k=1 exp

{
δ0

jt+x′2jkv
} f0(·|λ0)(v)dv

, with ˆ̄δ0
jt projected first stage estimates of δ0

jt, which can be obtained, for example, under the logit

specification. ˆ̄̄πj,l(zjt) do not depend on f0 and can be used for estimation.

1.C.6 Estimation procedure when the distribution of RC is a mixture

In this section, we present a procedure to estimate the BLP model when the distribution of RC is

parametrized as a mixture. Namely, we perform the estimation under H0 : f ∈ F0 with F0 the family

of Gaussian mixtures with L components. The pdf of a Gaussian mixture writes as follows:

∀x ∈ R , f0(x|λ0) =
L

∑
l=1

pl0 fl(x|λl0)
L

∑
l=1

pl0 = 1 L ⩾ 1

where fl0(·|λl0) is the pdf of a N (µl0, σ2
l0).

As long as the means are different (µl0 ̸= µl′0 ∀l ̸= l′), the gaussian mixture is uniquely charac-

terized by the vector λ0 = (p10, . . . , pL0, µ10, . . . , µL0, σ2
10, . . . , σ2

L0) up to permutations of indexes42.

The objective of our procedure is to estimate the parameters of the model θ0 = (β0, λ0) where λ0 char-

acterizes the mixture. In general, the problem of estimating a density by a mixture is solved through

the use of the well-known Expectation-Maximization (EM) algorithm. In our case, the application of

this algorithm is made difficult by two main obstacles. First, we do not observe directly the random

coefficients. Second, we do not have individual choice data which would have enabled us to construct

a likelihood as in Train (2008). As an alternative, we propose to adapt the BLP estimation procedure

to estimate the parameters of a mixture of gaussians instead of the single normal distribution. The mix-

ture affects the derivation of the market shares. The random coefficient vi is now a gaussian mixture.
42If for some l ̸= l′ we have µl0 = µl′0 then the Gaussian mixture becomes observationally equivalent to an infinite

number of other Gaussian mixtures
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Hence, vi = ∑L
l=1 1{Di = l}vil where (vil)

n
i=1 are iid and have density fl0(·|λl0) known up to λl0 for

l = 1, . . . , L, and where (Di)
n
i=1 are iid categorically distributed with pmf P(Di = l) = pl0. For all

market t and product j, the demand functions are as follows:

ρj(δt, x2t, f0(.|λ0)) = P(j chosen in market t by i|x1t, x2t, ξt)

=
∫

R

exp{x′1jtβ0 + x′2jtv + ξ jt}

1 + ∑J
j′=1 exp{x′1j′tβ0 + x′2j′tv + ξ j′t}

f0(v|λ0)dv

=
L

∑
l=1

pl0

∫
R

exp{δjt + x′2jtv}

1 + ∑J
j′=1 exp{δj′t + x′2j′tv}

fl0(v|λl0)dv

Reparametrization. The parameter λ associated with the mixture consists of the means, the standard

deviation and the probability of each component. As highlighted by Ketz (2019) in the simple Gaussian

case, the way we parametrize the model can greatly affect the asymptotic properties of the estimator

as well as the quality of the estimation. In particular, he shows that the standard deviations σ should

be reparametrized in order to avoid boundaries issues when σ close to 0. We follow this parametriza-

tion and perform the minimization with respect to {(+/−)
√

σl}L
l=1 instead and (σl)

L
l=1 directly. An

additional difficulty in the case of mixtures concerns the estimation of the probabilities associated to

each component. These probabilities must all be between 0 and 1 and their sum must be equal to 1. To

smoothly integrate these constraints, we perform the optimization with respect to γ = (γ2, . . . , γL) with

p = (p1, p2, . . . , pL) = ( 1
1+∑L

l=2 exp{γl)
, exp{γ2)

1+∑L
l=2 exp{γl)

, . . . , exp{γL)

1+∑L
l=2 exp{γl)

).

Estimation details. Apart from the modification in the computation of the market shares and the new

parametrization of the model, the estimation procedure with a mixture follows closely the traditional

one and the parameters of interest are estimated by minimizing a GMM criterion. Let Q(θ) the GMM

objective function:

Q(θ) = ξ̂(θ)′hE(Z)WhE(Z)′ξ̂(θ)

We now describe the derivation of the Gradient that we provide to the minimization program.
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∂Q
∂θ

= 2

[
∂ξ̂(θ)

∂θ

]′
hE(Z)WhE(Z)′ξ̂(θ)

Where ∂ξ̂(θ)
∂β = −x1 and where by the implicit function theorem we have ρ̂j(δt, x2t, λ)− sjt = 0 ∀j, t

which implies:

∂ξ̂(θ)

∂λ
=

∂δ̂(θ)

∂λ
= −

[
∂ρ̂(δ, x2, λ)

∂δ

]−1 ∂ρ̂(δ, x2, λ)

∂λ

• ∂ρ
∂δ is a JT × JT diagonal by block matrix such that:

∂ρj (δt, x2t, λ)

∂δkt
=

 ∑l pl
∫
Tjlt(v) (1 − Tklt(v)) ϕl(v)dv i f j = k

−∑l pl
∫
Tjlt(v)Tklt(v)ϕl(v)dv i f j ̸= k

with Tjlt(v) ≡
exp{δjt+x′2jtvl}

1+∑J
j′=1

exp{δj′t+x′
2j′tvl}

• ∂ρ
∂λ is a JT × (3L − 1) matrix such that:

∂ρj (δt, x2t, λ)

∂µl
= pl

∫
Tjlt

(
x2jt − ∑

j′
Tj′ltx2j′t

)
ϕ(v)dv

∂ρj (δt, x2t, λ)

∂σl
= pl

∫
Tjlt

(
x2jt − ∑

j′
Tj′ltx2j′t

)
vϕ(v)dv

∂ρj (δt, x2t, λ)

∂γl
=

L

∑
l′=1

ζ(l, l′)
∫

Tjlt

With ζ(l, l′) = − exp{γl)
1+∑k ̸=1 exp{γk)

× exp{γl′ )
1+∑k ̸=1 exp{γk)

+ 1{l = l′} exp{γl)
1+∑k ̸=1 exp{γk)

= −pl × pl′ + 1{l =

l′}pl
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1.C.7 Properties of the feasible approximations of the MPI

So far, we have studied the properties of the MPI, which is an ideal instrument that cannot be derived

in practice. Nevertheless, in light of the previous results, the MPI provides a useful upper bound on the

power that can be reached using our specification test. More precisely, the asymptotic slope reached

by the MPI can be interpreted as a power envelope on our specification test. Ideally, we want our

specification test, with the approximated MPIs as instruments, to achieve slopes close to the ones reached

by the MPI. We now distinguish 2 situations.

First, we consider the case where the econometrician tests H0 : ( f , β) = ( f0, β0) against the a known

alternative overH̄a : ( f , β) = ( fa, βa). This situation is not interesting in practice as the econometrician

usually doesn’t know the true alternative and doesn’t want to specify an alternative. Nevertheless, it

illustrates that in this specific case, we can (in theory) derive a consistent estimator of the MPI. Indeed,

in this particular case, we can directly derive an analytical expression for the correction term ∆
ξ jt
0,a either

using its definition or the expression in 1.4.2. Next, we must to compute the conditional expectation

of our the correction term with respect to zjt. This step is quite challenging because the dimension

of zjt is large and because the correction term is heavily non-linear and non-separable with respect to

the endogenous variables. In theory, a solution is to perform a Sieve non-parametric estimation of the

conditional mean and under standard regularity conditions recover a consistent estimator of E[∆
ξ jt
0,a|zjt].

Unfortunately, the rate of converge will be extremely slow given the dimension of zjt and we don’t

recommend to do this in practice. Instead, we suggest to use the global approximation and to project the

endogenous variables on the space spanned by a relevant subset of zjt. As we show in Appendix 1.C.2,

this strategy yields an estimator which converges faster to a first order approximation of the MPI.

Second, we consider the more realistic situation where the econometrician tests H0 : ( f , β) =

( f0, β0) against an unspecified alternative. In this case, we use the interval instruments that we developed

in Section 1.4 as an approximation of the MPI. Due to the different layers of approximations which

intervene in the construction of these instruments and the absence of knowledge of fa, it is quite difficult

to establish conditions under which these instruments can reach the optimal slope of the MPI. A thorough
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analysis of the properties of these instruments is beyond the scope of this paper and may constitute an

interesting starting point for future research. In spite of the lack of theoretical analysis, our Monte Carlo

exercises show that the interval instruments perform really well in finite sample.

1.D Monte Carlo experiments

1.D.1 Counterfactuals under an alternative distribution

For the simulation exercise presented in Section 1.6.2, we use the following expressions for own- and

cross-price elasticities for product j ∈ {1, 2, ..., J}. For the sake of simplicity, we drop the market index,

t, in the following expressions.

• Own-price elasticity:

η
j
j =

pj

sj

∂sj

∂pj
=

pj

sj

∫
−α

1 −
exp{δj + xcjvi}

1 + ∑J
j′=1 exp{δj′ + xcj′vi}

 exp{δj + xcjvi}
1 + ∑J

j′=1 exp{δj′ + xcj′vi}︸ ︷︷ ︸
sij

fθ(v)dv

• Cross-price elasticity (k ̸= j):

ηk
j =

pk
sj

∂sj

∂pk
=

pk
sj

∫
α

 exp{δj + xcjvi}
1 + ∑J

j′=1 exp{δj′ + xcj′vi}

 exp{δk + xckvi}
1 + ∑J

j′=1 exp{δj′ + xcj′vi}
fθ(v)dv

where α = 2 and δj = 2 + xaj + 1.5xbj − 2pj + ξ j in the DGP.

Demand functions. In Figure 1.9, we plot the demand functions generated under the different specifi-

cations (logit and gaussian) of the true densities.
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Figure 1.9: Demand function
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1.D.2 Finite sample performance of the test

Practical implementation of the test. For each setting, we estimate the model for 1000 replications.

Minimization is performed with nloptr ( algorithm: NLOPT-LD-LBFGS). We provide an analytical

gradient. The Threshold for the outer loop is 1e-9 while the threshold for the inner loop is 1e-13. We use

squarem and a C++ implementation for the computation of the market shares to speed up the contraction.

We also parallelize the contraction over markets using 7 independent cores. Now we formally describe

the instruments included in each test.

Power against local alternatives. We now assess the local power properties of our test by assuming

that the random coefficient vi is distributed according to a local alternative. Namely, we assume vi ∼
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(
1 − 1√

T

)
N (2, 1) + 1√

T
Y where Y is an alternative distribution including exponential, Chi-square,

Student, Uniform. We ensure that Y has mean 2 and variance 1. The results are reported in 1.13.

First, we can observe that except for the uniform local alternative, our test appears to have non-trivial

power against all the other local alternatives. For the exponential and chi-square distributions, it is clear

that our test with interval instruments outperforms the Sargan-J test with traditional instruments. For

the student local alternative, the results seem quite unstable for small sample sizes but as T increases,

interval instruments also seem to perform better. For the uniform alternative, it appears that we don’t

have power against this local alternative.

Table 1.13: Empirical power, local alternatives (1000 replications)

Number of markets T=50 T=100 T=200

Test type J I J I Local J I Local J I J I Local J I Local

Exponential 0.266 0.704 0.227 0.677 0.222 0.869 0.272 0.868 0.236 0.982 0.394 0.975

Chi-square 0.217 0.219 0.134 0.174 0.13 0.167 0.096 0.151 0.099 0.171 0.086 0.15

Student 0.212 0.139 0.33 0.436 0.115 0.115 0.127 0.093 0.082 0.13 0.134 0.312

Uniform 0.198 0.1 0.126 0.074 0.107 0.062 0.095 0.051 0.073 0.049 0.084 0.044

1.D.3 Finite sample performance of Interval instruments for estimation

Practical implementation of the estimation procedure. To assess the performance of our instruments

in estimating the non-linear parameters with a flexible distribution of random coefficients, we simulate

data with a distribution of random coefficients following a mixture of gaussians and we estimate the

parameters of this mixture. For each setting, we estimate the model for 1050 replications. We select the

replications with an objective function below a certain threshold (in order to avoid local minima). Mini-

mization is performed with nloptr (algorithm: NLOPT-LD-LBFGS). We provide an analytical gradient,

which we describe subsequently. The Threshold for the outer loop is 1e-9 while the threshold for the

inner loop is 1e-13. We use squarem and a C++ implementation for the computation of the market shares

to speed up the contraction. We also parallelize the contraction over markets using 7 independent core.
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Before we formally define the different sets of instruments, let us present the estimation procedure when

the distribution of random coefficients is assumed to be a mixture.

Instruments Now we formally describe the instruments present in each different sets used for estima-

tion.

• Differentiation instruments: differentiation instruments + exogenous characteristics (polynomial

terms) + cost shifters (20 instruments)

• Optimal instruments are computed in two stages. The first stage instruments consist of differen-

tiation instruments and exogenous characteristics (polynomial terms). Second stage instruments

consist of polynomial terms of exogenous characteristics and the approximation of optimal instru-

ments proposed in Reynaert and Verboven (2014) (approximation of E

[
∂ρ−1

j (st,x2t,λ)
∂λ

∣∣∣∣zt

]
). The

set called optimal instruments includes 15 instruments.

• Interval Instruments are computed in two stages. The first stage instruments consist of differentia-

tion instruments and exogenous characteristics (polynomial terms). Second stage instruments are

the interval instruments couples with some exogenous characteristics. A total of 23 instruments.

The points in the support to compute the interval instruments are chose as follows: we take equally

spaced points in the interval {β3L − 0.5(β3H − β3L), β3H + 0.5(β3H − β3L)}.

Comparison of the performance between the different sets of instruments. We now report the

mean biases and the empirical
√

MSE of the estimates for each set of instruments and for different

sample sizes. We also plot the distributions of estimates for the non-linear parameters for the different

sets of instruments. First, we plot the distribution of estimates obtained when the set of differentiation

instruments from Gandhi and Houde (2019) is used with a sample of T = 200 markets and J = 12

products. We observe that despite a relatively large sample, the differentiation instruments perform rather

poorly in estimating the non-linear parameters associated with the mixture of Gaussians. In particular,
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the estimates of the standard deviation parameters associated to each component are very dispersed and a

large portion of the estimates are bunched at zero. Second, we plot the distribution of non-linear estimates

obtained with the optimal instruments from Reynaert and Verboven (2014). They tend to perform better

than the differentiation instruments as we can see that the estimates are more concentrated around the

true value. Yet, it is important to emphasize that the optimal instruments display large failure rates

caused by perfect colinearity of the instruments. Finally, we plot the distribution of estimates for the non

linear parameters when we use the interval instruments developed in Section 1.4. It appears clearly that

the interval instruments yield a more concentrated distribution of estimates than the two other sets of

instruments. For the sake of conciseness, we do not report the results with a mixture with 3 components

but the observations we make with two components are even more exacerbated.

Table 1.14: Estimation mixture with “differentiation” instruments (1000 replications)

Parameter β0 α β1 β2 β3L σ3L β3H σ3H pL

Sample size true 2 -2 1.5 1 -2 0.5 4 0.5 0.25

T=50, J=12
bias -0.12 0.022 -0.016 -0.018 0.214 0.184 -0.022 -0.045 0.027

√
MSE 0.308 0.06 0.215 0.215 0.633 0.734 0.281 0.35 0.075

T=50, J=20
bias -0.064 0.011 -0.01 -0.011 0.189 0.347 0.022 -0.081 0.025

√
MSE 0.231 0.044 0.165 0.166 0.566 0.887 0.184 0.291 0.059

T=100, J=12
bias -0.058 0.01 -0.012 -0.012 0.233 0.226 0.02 -0.066 0.027

√
MSE 0.204 0.041 0.147 0.148 0.592 0.703 0.256 0.305 0.072

T=100, J=20
bias -0.04 0.006 -0.007 -0.007 0.198 0.423 0.047 -0.101 0.025

√
MSE 0.165 0.032 0.117 0.116 0.552 0.89 0.164 0.27 0.055

T=200, J=12
bias -0.038 0.007 -0.003 -0.003 0.184 0.167 0.011 -0.049 0.019

√
MSE 0.152 0.03 0.11 0.11 0.466 0.601 0.176 0.262 0.053
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Table 1.15: Estimation mixture with “Optimal” instruments(1000 replications)

Parameter β0 α β1 β2 β3L σ3L β3H σ3H pL

Sample size true 2 -2 1.5 1 -2 0.5 4 0.5 0.25

T=50, J=12
bias -0.09 0.016 -0.012 -0.013 0.076 0.059 0.026 -0.111 0.01

√
MSE 0.296 0.057 0.234 0.232 0.361 0.483 0.212 0.281 0.036

T=50, J=20
bias -0.046 0.007 0 0.001 0.074 0.11 0.028 -0.089 0.01

√
MSE 0.225 0.044 0.178 0.176 0.328 0.563 0.163 0.228 0.033

T=100, J=12
bias -0.041 0.007 -0.004 -0.003 0.054 0.037 0.019 -0.066 0.007

√
MSE 0.202 0.039 0.157 0.158 0.279 0.4 0.154 0.211 0.028

T=100, J=20
bias -0.029 0.004 -0.003 -0.003 0.074 0.107 0.033 -0.074 0.01

√
MSE 0.153 0.03 0.126 0.124 0.311 0.52 0.129 0.194 0.034

T=200, J=12
bias -0.029 0.005 -0.001 -0.001 0.026 0.011 0.021 -0.061 0.004

√
MSE 0.136 0.026 0.111 0.111 0.184 0.313 0.113 0.172 0.018

Table 1.16: Estimation mixture with Global Interval instruments(1000 replications)

Parameter β0 α β1 β2 β3L σ3L β3H σ3H pL

Sample size true 2 -2 1.5 1 -2 0.5 4 0.5 0.25

T=50, J=12
bias -0.154 0.029 -0.043 -0.045 0.017 0 -0.045 0.004 0.005

√
MSE 0.341 0.067 0.257 0.258 0.277 0.391 0.227 0.259 0.024

T=50, J=20
bias -0.092 0.017 -0.02 -0.021 0.013 0.042 -0.018 -0.003 0.004

√
MSE 0.245 0.048 0.19 0.19 0.248 0.415 0.166 0.22 0.021

T=100, J=12
bias -0.07 0.013 -0.017 -0.019 0.004 -0.012 -0.027 0.005 0.002

√
MSE 0.2 0.039 0.161 0.161 0.167 0.282 0.157 0.201 0.013

T=100, J=20
bias -0.047 0.008 -0.006 -0.007 -0.009 -0.005 -0.008 -0.009 0.001

√
MSE 0.158 0.031 0.13 0.129 0.115 0.264 0.115 0.169 0.005

T=200, J=12
bias -0.039 0.007 -0.004 -0.003 -0.006 -0.027 -0.015 -0.001 0.001

√
MSE 0.141 0.027 0.109 0.109 0.088 0.219 0.108 0.164 0.003
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Table 1.17: Estimation mixture with Local Interval instruments(1000 replications)

Parameter β0 α β1 β2 β3L σ3L β3H σ3H pL

Sample size true 2 -2 1.5 1 -2 0.5 4 0.5 0.25

T=50, J=12
bias -0.134 0.025 -0.023 -0.024 -0.006 -0.005 -0.039 -0.001 0.003

√
MSE 0.307 0.059 0.26 0.259 0.251 0.34 0.214 0.244 0.019

T=50, J=12
bias -0.084 0.016 -0.024 -0.025 0.019 0.033 -0.023 0.01 0.003

√
MSE 0.245 0.047 0.188 0.186 0.228 0.38 0.15 0.184 0.018

T=50, J=12
bias -0.075 0.015 -0.018 -0.016 0 0 -0.028 0.007 0.001

√
MSE 0.199 0.039 0.159 0.16 0.127 0.225 0.143 0.164 0.005

T=50, J=12
bias -0.039 0.007 -0.011 -0.011 -0.003 0.004 -0.01 0.004 0.001

√
MSE 0.162 0.032 0.129 0.129 0.104 0.226 0.103 0.125 0.004

T=50, J=12
bias -0.037 0.007 -0.008 -0.007 0.002 -0.007 -0.016 0.006 0.001

√
MSE 0.136 0.026 0.11 0.109 0.091 0.174 0.099 0.123 0.003

Figure 1.10: Distribution of estimates for non-linear parameters with “Differentiation” instruments (T =

200, J = 12)
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Figure 1.11: Distribution of estimates for non-linear parameters with “Optimal” instruments (T =

200, J = 12)
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Figure 1.12: Distribution of estimates for non-linear parameters with “Global Interval” instruments (T =

200, J = 12)
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Figure 1.13: Distribution of estimates for non-linear parameters with “Local interval” instruments (T =

200, J = 12)
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Estimation with a single Gaussian

Table 1.18: Estimation with a single Gaussian (1000 replications)

Instruments Differentiation ”Optimal” Interval Global Interval Local

Parameter β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3

Sample size true 2 -2 1.5 1 1.5 0.5 2 -2 1.5 1 1.5 0.5 2 -2 1.5 1 1.5 0.5 2 -2 1.5 1 1.5 0.5

T=50, J=12
bias -0.16 0.032 -0.031 -0.028 -0.032 -0.004 -0.09 0.018 -0.016 -0.014 -0.018 -0.003 -0.15 0.03 -0.028 -0.026 -0.03 -0.004 -0.15 0.03 -0.028 -0.026 -0.03 -0.001

√
MSE 0.292 0.057 0.212 0.209 0.138 0.069 0.27 0.053 0.214 0.211 0.138 0.067 0.288 0.056 0.212 0.209 0.138 0.066 0.286 0.056 0.212 0.209 0.138 0.064

T=50, J=20
bias -0.091 0.018 -0.022 -0.022 -0.015 0.001 -0.047 0.009 -0.013 -0.013 -0.006 0.001 -0.084 0.017 -0.021 -0.021 -0.013 0 -0.086 0.017 -0.021 -0.021 -0.014 0.002

√
MSE 0.209 0.041 0.159 0.16 0.106 0.05 0.199 0.039 0.16 0.161 0.106 0.05 0.206 0.041 0.16 0.16 0.106 0.052 0.208 0.041 0.159 0.16 0.106 0.052

T=100, J=12
bias -0.088 0.017 -0.001 0 -0.027 0.001 -0.052 0.01 0.007 0.007 -0.02 0.001 -0.082 0.016 0 0.001 -0.026 0.001 -0.074 0.014 -0.016 -0.016 -0.013 0.001

√
MSE 0.199 0.039 0.146 0.145 0.1 0.045 0.189 0.037 0.148 0.147 0.099 0.047 0.197 0.039 0.146 0.146 0.1 0.044 0.185 0.036 0.151 0.152 0.099 0.044

T=100, J=20
bias -0.043 0.009 -0.011 -0.012 -0.006 -0.001 -0.021 0.004 -0.007 -0.008 -0.002 -0.001 -0.04 0.008 -0.011 -0.012 -0.006 -0.001 -0.035 0.007 -0.01 -0.009 -0.004 0

√
MSE 0.145 0.028 0.115 0.114 0.075 0.035 0.141 0.028 0.115 0.114 0.075 0.035 0.145 0.028 0.115 0.114 0.076 0.035 0.14 0.027 0.116 0.115 0.076 0.035

T=100, J=20
bias -0.038 0.007 -0.012 -0.012 -0.004 0.001 -0.017 0.003 -0.006 -0.007 -0.001 0 -0.032 0.006 -0.009 -0.01 -0.004 0 -0.033 0.006 -0.009 -0.01 -0.004 0.001

√
MSE 0.132 0.026 0.11 0.11 0.073 0.032 0.127 0.025 0.109 0.109 0.069 0.032 0.129 0.026 0.109 0.109 0.069 0.032 0.129 0.026 0.109 0.109 0.069 0.031

137



1.E Empirical application

1.E.1 First stage regression: instruments on price

In Table 1.19 we present the first stage regression for the endogenous variable, price. The explanatory

variables include exogenous characteristics as well as the excluded instruments we presented in 1.7. We

find that the excluded instruments are jointly significant with an F-stat of 467.41. As expected, we see

that the steel futures price and its interaction with the weight of the car correlate positively with the

price. We also see that the higher the exchange rate between the Euro and the local currency at the

place of assembly, the lower the price of the car as the cost of production decreases. Moreover, we

also see that if the location places a role as the European (country of assembly) dummy is negatively

correlated with price. This could point to shipping expenses that are reflected in the price. Note that the

effect of the labor costs is not as strong and not of the expected sign. Although we control for missing

labor costs in the data with a missing dummy variable, it could still be causing a bias for the coefficient.

Finally, the correlation between the competition-related instruments and the price shows that the degree

of competition across cars of the same class matters.
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Table 1.19: First stage regression for price

Price/income

Labor costs (hourly) −0.0002∗∗

(0.0001)

Steel (futures) price −0.0001∗∗∗

(0.00001)

Steel (futures) price * Weight 0.00003∗∗∗

(0.00000)

# Cars by engine-type 0.001∗∗∗

(0.0001)

# Cars by engine-type and class −0.002∗∗∗

(0.00004)

Exchange rate (non European) −0.0002∗∗∗

(0.00002)

Europe dummy −0.018∗∗∗

(0.003)

Horsepower 0.527∗∗∗

(0.003)

Gasoline −0.057∗∗∗

(0.003)

Fuel cost −0.003∗∗∗

(0.001)

Size 0.037∗∗∗

(0.002)

Foreign −0.008∗∗∗

(0.003)

Height 0.062∗∗∗

(0.009)

Observations 38,999

R2 0.896

Adjusted R2 0.896

F Statistic 5,167.373∗∗∗ (df = 65; 38933)

Note:Brand, Year and State FE’s are included.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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1.E.2 Baseline specifications: logit and nested logit

Table 1.20 shows the results from the logit and nested logit specifications. We define the nests by the

class of the car, therefore limiting the substitution between the cars that belong to the same class within

a nest.43 We observe that the estimates are stable across specifications.

43Car classes in the data are: Mini, small, lower-middle, middle, upper-middle, luxury.
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Table 1.20: Estimation results - Logit and Nested Logit

OLS IV

(1) (2) (3) (4) (5)

Price/income −0.354∗∗∗ −2.907∗∗∗ −2.356∗∗∗ −2.729∗∗∗ −2.615∗∗∗

(0.041) (0.133) (0.124) (0.053) (0.052)

log(within market shares) 0.420∗∗∗ 0.407∗∗∗

(0.006) (0.006)

Fuel Cost −0.210∗∗∗ −0.138∗∗∗ −0.247∗∗∗ −0.074∗∗∗ −0.126∗∗∗

(0.008) (0.006) (0.009) (0.004) (0.006)

Size(m2) 0.031 0.001 0.158∗∗∗ −0.001 0.104∗∗∗

(0.038) (0.040) (0.041) (0.025) (0.026)

Horsepower(KW/100) 0.136 3.151∗∗∗ 2.511∗∗∗ 2.586∗∗∗ 2.431∗∗∗

(0.089) (0.183) (0.172) (0.080) (0.078)

Foreign 0.351∗∗∗ 0.083 0.120∗ −0.106∗∗ −0.101∗∗

(0.064) (0.073) (0.070) (0.046) (0.044)

Height(m) 0.870∗∗∗ 1.505∗∗∗ 3.487∗∗∗ 1.121∗∗∗ 2.270∗∗∗

(0.216) (0.197) (0.228) (0.125) (0.145)

Gasoline 1.399∗∗∗ 0.625∗∗∗ 1.118∗∗∗ 0.190∗∗∗ 0.422∗∗∗

(0.055) (0.061) (0.063) (0.039) (0.041)

Fuel cost × income 0.020∗∗∗ −0.002∗∗ 0.014∗∗∗ −0.002∗∗∗ 0.007∗∗∗

(0.002) (0.001) (0.002) (0.001) (0.001)

Size × income −0.005∗∗∗ −0.002∗∗∗ −0.006∗∗∗ 0.0003 −0.002∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Horsepower × income 0.009∗∗∗ −0.026∗∗∗ −0.017∗∗∗ −0.027∗∗∗ −0.024∗∗∗

(0.002) (0.002) (0.002) (0.001) (0.001)

Horsepower × time −0.084∗∗∗ −0.068∗∗∗ −0.083∗∗∗ −0.038∗∗∗ −0.045∗∗∗

(0.006) (0.007) (0.007) (0.004) (0.004)

Foreign × income −0.019∗∗∗ −0.015∗∗∗ −0.016∗∗∗ −0.008∗∗∗ −0.008∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Height × income −0.006 0.032∗∗∗ −0.002 0.016∗∗∗ −0.003

(0.004) (0.004) (0.005) (0.003) (0.003)

Height × density −0.037∗∗∗ −0.003∗∗∗ −0.037∗∗∗ −0.001∗∗∗ −0.021∗∗∗

(0.004) (0.0003) (0.004) (0.0002) (0.003)

Gasoline × income −0.016∗∗∗ −0.003∗∗∗ −0.010∗∗∗ 0.0004 −0.003∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Gasoline × Post 2015 −0.024 −0.019

(0.019) (0.012)

Constant −7.937∗∗∗ −12.482∗∗∗ −11.171∗∗∗ −9.144∗∗∗ −8.506∗∗∗

(0.167) (0.149) (0.167) (0.092) (0.102)

State FE/ Year FE Yes No Yes No Yes

Observations 39,888 39,888 39,888 39,888 39,888

R2 0.385 0.217 0.272 0.686 0.709

Adjusted R2 0.384 0.216 0.271 0.686 0.709

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Brand FE’s are included.
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1.E.3 Counterfactual quantities under different specifications

We define quantities of interest and derive them under the different specifications considered previously.

For exposition purposes, we omit the dependence of the market shares in δt, x2t and f , and simply write

sj(p) instead of ρj(δt, x2t; f ), where p is the price vector.

Price elasticities. For the calculation of the price elasticities one can refer to 1.D.1 that writes the

quantities for the simulation exercise.

Demand curvature. The demand curvature is defined using second derivative of demand as fol-

lows: η2
j (p) = sj(p)

∂2sj(p)
∂p2

j

(
∂sj(p)

∂pj

)−2
.

Marginal costs and mark-ups. To recover the marginal costs and the implied mark-ups, we need

to make additional assumptions on the supply side. Following the literature, we consider that each multi-

product firm f ∈ F sets prices for its own products in accordance with a Bertrand-Nash equilibrium. The

profit of each firm writes:

Π f (p) = ∑
t

∑
j∈J f

(
pj − cj

)
Mtsjt(p)

where J f is the set of goods produced by firm f , cj is the marginal cost for good j, Mt is the market size

and sj(p) is the market share of product j. The first-order condition with respect to price pj writes:

∑
t

Mt sjt(p) + ∑
t

Mt ∑
j′∈J f

(
pj′ − cj′

) ∂sj′(p)
∂pj

= 0.

We gather all the FOCs and rewrite them in matricial form:

s(p) + (∆(p)) (p − c) = 0.

where ∆(p) = ∑t Mt
∂sj′ (p)

∂pj
if j′ and j are produced by the same firm and equals to zero otherwise.

∆(p) is known as the ownership matrix. Assuming that the prices are in equilibrium, one can recover

the marginal costs using the following equation:

c = p − (∆(p))−1 s(p). (1.E.17)
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The mark-up for product j simply writes: pj − cj.

Pass-through The pass-through of cost is defined as follows. Let us assume that the marginal cost

for product j goes from cj to c′j (with c′j > cj), then the cost pass-through equals αj =
p′j−pj

c′j−cj
, where p′j is

the new equilibrium price. We calculate the new equilibrium price using Eqn. 1.E.17 using fixed point

iteration. The pass-through corresponds to the proportion of the cost increase that is transmitted to the

price.

Table 1.21: Counterfactual quantities under different specifications on RCs (20 most popular cars)

Counterfactual quantity Price elasticity Curvature Marginal cost Mark-up Pass-through

Car Manufacturer Logit Gaussian Mixture Logit Gaussian Mixture Logit Gaussian Mixture Logit Gaussian Mixture Logit Gaussian Mixture

Golf Volkswagen -1.09 -0.95 -3.03 1.00 1.14 1.21 1260 -9670 15436 24098 35028 9922 0.92 - 1.30

Polo Volkswagen -0.74 -0.70 -2.50 1.00 1.15 1.09 -6643 -14366 9073 23819 31542 8103 1.05 - 1.09

Passat Volkswagen -1.43 -1.21 -2.27 1.00 1.17 1.57 9488 -1033 17826 24631 35153 16294 1.02 - 2.65

Corsa PSA -0.66 -0.63 -2.28 1.00 1.14 1.07 -8432 -11246 8410 24088 26902 7246 1.02 - 1.12

Fiesta Ford -0.62 -0.60 -2.18 1.00 1.15 1.07 -8983 -10806 7657 23487 25310 6847 1.03 - 1.10

Tiguan Volkswagen -1.32 -1.14 -2.28 1.00 1.17 1.55 6831 -2919 16211 24118 33868 14738 1.01 - 2.62

Golf Volkswagen -1.17 -1.03 -3.12 1.00 1.18 1.27 3128 -7932 16582 23828 34888 10374 0.99 - 1.41

up! Volkswagen -0.53 -0.52 -1.92 1.00 1.14 1.05 -11231 -17703 4594 23278 29749 7453 1.04 - 0.96

Tiguan Volkswagen -1.34 -1.15 -3.09 1.00 1.19 1.38 7051 -4117 19186 23842 35009 11706 1.01 - 1.66

1er-Reihe BMW -1.16 -1.03 -3.09 1.00 1.18 1.28 3845 -769 19179 25138 29753 9805 0.99 - 1.39

Octavia Volkswagen -1.23 -1.08 -2.33 1.00 1.17 1.50 4629 -4504 15464 24211 33345 13377 1.01 - 2.34

A4 Volkswagen -1.56 -1.30 -2.26 1.00 1.19 1.56 13209 1995 20260 25865 37079 18814 1.01 - 2.66

Clio Renault -0.73 -0.70 -2.49 1.00 1.16 1.10 -6240 -8684 9817 23120 25563 7063 1.03 - 1.17

T-Roc Volkswagen -0.87 -0.81 -2.80 1.00 1.17 1.14 -3645 -12275 11578 23798 32427 8575 1.06 - 1.16

Kuga Ford -1.16 -1.03 -3.09 1.00 1.18 1.28 3654 -518 18214 23684 27856 9124 1.03 - 1.39

Golf Volkswagen -1.10 -0.99 -2.34 1.00 1.16 1.44 1548 -7284 13678 23929 32762 11799 0.96 - 2.13

A-Klasse Daimler -1.28 -1.10 -3.07 1.00 1.19 1.35 6608 562 20662 25066 31112 11013 1.01 - 1.56

Golf Volkswagen -1.05 -0.94 -2.33 1.00 1.16 1.42 417 -8115 13135 24177 32710 11460 0.72 - 2.11

Golf Volkswagen -1.18 -1.05 -3.15 1.00 1.18 1.27 3202 -8230 16705 23921 35353 10418 0.98 - 1.40

Octavia Volkswagen -1.05 -0.95 -3.02 1.00 1.17 1.21 380 -8835 14808 23862 33077 9433 0.78 - 1.30
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Figure 1.14: Estimated demand functions under different specifications
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Chapter 2

Moment Inequalities for Entry Games with

Heterogeneous Types

co-authored with Christian Bontemps and Rohit Kumar
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Abstract

Following Bresnahan and Reiss (1991a), Bresnahan and Reiss (1991b) and Berry (1992), entry games

have become a popular model in the empirical industrial organization literature. They enable researchers

to study different features of an industry with easy-to-obtain data on entry. In this paper, we provide new

tools to simplify the estimation of entry games when the equilibrium selection mechanism is unrestricted.

In particular, we develop an algorithm that allows us to recursively select a relevant subset of inequal-

ities and compute the theoretical upper bounds on the probability of each outcome (without having to

simulate them). We also propose a new testing procedure that is asymptotically pivotal by smoothing

the set defined by the moment inequalities. We show that this new estimation procedure can seamlessly

accommodate covariates, including continuous ones. We conduct full-scale Monte Carlo simulations to

assess the performance of our new estimation procedure.

Keywords: empirical entry games, moment inequalities, core determining class, smoothing.



2.1 Introduction

In the wake of the seminal contributions by Bresnahan and Reiss (1991a), Bresnahan and Reiss (1991b)

and Berry (1992), entry games have become a popular model in the empirical industrial organization

literature (IO). They allow researchers to study the determinants of firm profitability and the degree of

competition from data on entry, which is usually easy to collect. Entry games can also serve as a building

block to multi-stage games involving for instance price competition (Eizenberg (2014), Ciliberto, Murry,

and Tamer (2021)). Among the most influential applications, one can mention the analysis of competi-

tion, market structure and regulation in various industries including airlines (Ciliberto and Tamer (2009),

Berry (1992)), retailers (Cleeren, Verboven, Dekimpe, and Gielens (2010), Aradillas-Lopez and Rosen

(2022), Andrews, Berry, and Jia (2004), Grieco (2014)...), motels (Mazzeo (2002)) and fast food restau-

rants (Toivanen and Waterson (2005)).

This paper provides a novel estimation strategy for static entry games of complete information, which

significantly simplifies the estimation procedure when no restrictions are imposed on the equilibrium se-

lection mechanism. It is a well-known difficulty that in the absence of a known equilibrium selection

mechanism, the estimation is substantially complicated by the presence of multiple equilibria. Namely,

there are regions in the space of unobservable shocks in which the entry game predicts multiple equi-

libria and yet the econometrician only observes one outcome. Without additional information on the

equilibrium selection mechanism, the model is said to be incomplete and the econometrician cannot

rely on standard estimation techniques. To tackle this problem, the literature proposes various solutions,

which can be divided in two distinct categories. The first approach consists in restricting the equilib-

rium selection mechanism so as to complete the model. There are various ways of proceeding. The

econometrician can impose an order of entry (Mazzeo (2002), Cleeren, Verboven, Dekimpe, and Gie-

lens (2010)...). Bjorn and Vuong (1984) suggests to randomly draw an equilibrium out of the multiple

potential equilibria. Grieco (2014) and Bajari, Hong, and Ryan (2010) explicitly model the equilibrium
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selection mechanism. Building on the vast literature related to set identification initiated by Manski

(1995), the second generic solution consists in characterizing the set of parameters which can generate

the observed data without restricting the equilibrium selection mechanism (among prominent examples

of this approach in the context of games, see Ciliberto and Tamer (2009), Beresteanu, Molchanvb, and

Molinari (2012), Galichon and Henry (2011), Bontemps and Kumar (2020), Aradillas-Lopez and Rosen

(2022), Chesher and Rosen (2019), Magnolfi and Roncoroni (2022)). Despite the risk of misspecifica-

tion implied by incorrect restrictions on the equilibrium selection mechanism, heretofore, the empirical

literature has largely favored the first approach due to the relative simplicity of its implementation. The

second family of solutions is less restrictive but its implementation faces major theoretical and practical

challenges. First, even in seemingly harmless games, characterizing the sharp identified set (the set of

admissible parameters, which satisfy all the inequalities implied by the model) can be a grueling task.

(i) The number of inequalities generated by the model increases exponentially with the number of play-

ers and can quickly become overwhelming1. (ii) Except for a few toy models, there are no closed form

expressions for the theoretical bounds implied by the model and one must resort to simulation methods,

which mechanically induce biases. Additionally, the estimation of the identified set also poses many

challenges. (i) The exact asymptotic distribution of the test statistic under the null depends on the set of

binding moments, which is unknown to the econometrician. This seriously complicates the derivation of

the critical value. The methods proposed in the literature either rely on simulation methods, which are

computationally intensive2, or upper bounds, which are conservative. Moreover, the finite sample perfor-

mance of these methods is known to decrease steadily with the inclusion of many moment inequalities,

which mechanically inflate the critical value. (ii) The presence of exogenous covariates (and in particu-

lar, continuous ones) complicates even more the estimation as the identified set is now characterized by

conditional moment inequalities that must be converted into unconditional ones. (iii) Finally, the esti-

1For classical entry games, with N players, the total number of inequalities is 22N

2sub-sampling, bootstrap or simulation of the asymptotic distribution and these methods even if they mitigate the inferen-

tial loss, still yield conservative critical values
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mation of confidence region for the structural parameters is based on a test inversion over a grid, which

can quickly become very large if the dimension of the structural parameter θ increases. Therefore, the

objective of this paper is to remove or mitigate most of the difficulties exposed above, and thus, facilitate

and encourage the estimation of static entry games in empirical work, while remaining agnostic about

the equilibrium selection mechanism.

We now briefly summarize the main methodological improvements that we initiate in the paper. The

baseline model we study is a generic static entry game with types, which corresponds to a generalization

of entry games where some players are pooled together according to their characteristics. By regrouping

some of the competitors in a same category, we can substantially increase the number of potential en-

trants, while keeping the number of parameters to estimate low3. The first part of the paper addresses the

challenges related to identification. Each candidate parameter induces a graph on the set of outcomes,

which is such that there is a link between two outcomes if their equilibrium regions overlap. To reduce

the number of inequalities that sharply characterize the identified set, we leverage this graph over the set

of outcomes induced by each candidate parameter θ. The novelty in this paper is to provide a systematic

way of deriving the graph and inferring the subset of relevant inequalities. As for the computation of

the theoretical bounds, we show how to derive them by exploiting the inclusion-exclusion formula and

observing that intersection regions are cubes, for which the bounds can be easily derived4. In the second

part of the paper, we tackle the issues related to estimation. To mitigate the inferential loss due to the

inability to recover the exact asymptotic distribution in the context of moment inequalities, we develop

an alternative approach which consists in smoothing the identified set in order to recover a test statistic

with a known and pivotal asymptotic distribution. The smoothed set that we estimate is an outer set of

the sharp identification set, which we make converge to the sharp identified set by letting the amount

of smoothing decrease with the sample size. The general philosophy of this approach can be linked to

3Thus, the introduction of types help reduce the size of grid that we need to explore in the estimation
4allowing the theoretical probabilities to be easily derived by integrating over cubes
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the common bias variance trade off which appears in most econometric problems. We provide a gen-

eral guideline on how to optimally choose the smoothing parameter. Last but not least, we show that

this smoothing procedure facilitates the inclusion of covariates into the model, which represents a major

improvement with respect to the rest of the literature.

Related literature While this paper focuses essentially on the estimation of entry games, some of the

tools we develop in this paper apply more broadly to the estimation of models characterized by moment

inequalities. In this sense, this paper contributes to the rich literature on conditional and unconditional

moment inequalities, which includes, among others, contributions by Chernozhukov, Hong, and Tamer

(2007), Rosen (2008), Beresteanu and Molinari (2008), Andrews and Soares (2010), Bontemps, Magnac,

and Maurin (2012), Romano, Shaikh, and Wolf (2014), Chernozhukov, Chetverikov, and Kato (2018b),

Andrews and Shi (2013), Armstrong and Chan (2016), Armstrong (2014), Molchanov and Molinari

(2014), Bugni, Canay, and Shi (2017),Cox and Shi (2022), Chen, Christensen, and Tamer (2018), Kita-

mura and Stoye (2018), Kaido, Molinari, and Stoye (2019), Andrews, Roth, and Pakes (Forthcoming),

Cho and Russell (2018), Gafarov (2019), Berry and Compiani (2022).

Structure of the paper. The remainder of the paper is organized as follows. Section 2 describes the

general set-up as well as the standard assumptions we impose on the model. In section 3, we characterize

the identified set and we present a practical approach to the selection of relevant inequalities and the

derivation of the theoretical bounds. In section 4, we present our novel estimation strategy which builds

on smoothing the identified and we compare our approach with more conventional procedures. In section

5, we provide some Monte Carlo simulations to assess the performance of our estimation procedure in

comparison to alternative strategies proposed in the literature. The proofs are given in the Appendix.
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2.2 The model

We consider a flexible entry game model in the spirit of the models already developed in the literature

(Berry (1992), Aradillas-Lopez and Rosen (2022) and Cleeren, Verboven, Dekimpe, and Gielens (2010)

among others). We pool similar competitors in categories of players (which we refer to as a types or

formats). In this setup, profit functions are heterogeneous across types and homogeneous within each

type.5 As we will see later, there is a trade-off between the accuracy of the inference procedure and the

flexibility of the model. Pooling the different competitors in types results in a substantial decrease in the

number of parameters to estimate while keeping a large number of potential entrants. For example, in the

airline industry, marginal Low Cost Airlines are not present in all the markets and it seems reasonable to

consider that the market structure depends more on how Low Cost Airlines are exploiting direct flights

between two cities rather than which Low cost airline is exploiting these lines. Similarly, in the retail

industry, firms of the same format have the same business model and people go shopping at the local

hypermarket or one of the closest hard-discounters, whatever their specific brand. Also, models with

discrete outcomes like the one of Aradillas-Lopez and Rosen (2022) (known as ordered response games)

have a similar structure to the general setup we study in this model and the methods below can be adapted

to this case. Finally, we assume that the types of firms are predetermined and not endogenously chosen.

If there is free-entry, this assumption is not restrictive and results like the ones in Mazzeo (2002) can be

derived similarly. We now describe our model in greater detail and we study its equilibrium structure.

2.2.1 Payoff for entering firms

In a given market m, the profit of an entering firm of type t depends on the number of entering firms Nt,m

of each type, t = 1, . . . , T, gathered into one vector Nm = (N1,m, N2,m, . . . , NT,m). It also depends on a

5We want to emphasize that traditional entry games in which all the players have different profit functions are simply a

special case of this model in which all types can have at most 1 player (hence, in this specific case, each type represents a

single player).
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vector of dimension d market and type characteristics Xt,m and a firm profit shock εt,m, which is market

and type specific, drawn from a parametric distribution Fη(·), η ∈ Λ ⊂ Rq and independent from the

characteristics. Formally, we have for each market m:

∀t ∈ {1, . . . , T},

Πt,m = πt(Xt,m, Nt,m, N−t,m; ω) + εt,m,

in which the function πt is parametrized by parameter ω ∈ Rq′ and N−t,m denotes the vector of

the number of entering firms of type t′ ̸= t in market m. Observe that we keep the possibility to get

heterogeneous reactions on a type t firm’s profit with respect to the potential entry of different types of

firms. In the following parameter θ denotes the q + q′ vector of parameters gathering ω and η. θ0 is the

unknown true value.

Now, we impose some restrictions on the profit function that are consistent with economic theory.

Assumption 2 The profit is decreasing with respect to the number of competitors, i.e., ∀t ∈ T ,

πt(Xm, Nt,m, N−t,m; ω) is strictly decreasing in Nt,m and weekly decreasing in any Nt′,m, t′ ̸= t.

Assumption 2 uses the fact that more competitors are worse for economic profitability of a firm of

a given type t. Also, firms enter if their long run profit is weakly positive, otherwise receive a zero

payoff. We assume that firms have complete information and thus observe all the profit shocks of their

competitors when they decide to enter or not, contrary to the econometrician.6 Also, when making their

decisions, they do not observe the decisions of the other firms, and thus all make simultaneous moves.

We focus on pure strategy Nash Equilibria (NE hereafter), like most of the literature (Berry (1992),

Ciliberto and Tamer (2009), Bontemps and Kumar (2020) or Aradillas-Lopez and Rosen (2022)). As it

is well known, different equilibria concepts can be considered (mixed strategy or correlated equilibria),

6Grieco (2014) and Bajari, Hong, Krainer, and Nekipelov (2006) provide identification and estimation strategies to tackle

games of incomplete information.
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and the solutions proposed in this paper can be adapted to these settings by modifying the set of mo-

ment inequalities which are derived (see, in particular, Beresteanu, Molchanov, and Molinari (2011) or

Magnolfi and Roncoroni (2022)).

Additionally, we assume the following boundary conditions:

Assumption 3

• ∀t ∈ T , πt(Xt,m, 0, N−t,m; ω) = +∞.

• ∀t ∈ T , limNt→+∞ πt(Xt,m, Nt, N−t,m; ω) = −∞.

• The distribution of the profit shocks ε, Fη(·), is absolutely continuous on RT with full support and

mean 0.

Assumption 3 is standard. The first two ones are only a normalization to calculate for the first

one the probability of no entry for a given type given the number of entrants of the other types and to

ensure the finiteness of N for the second one. The third one ensures that for any X the probability to

observe no entry is always strictly positive. Less restrictive assumptions can be made to ensure the same

requirements like in Aradillas-Lopez and Rosen (2022) but ours is not very restrictive. In the remaining

of the paper, we refer to the following model to illustrate our results. As a pedagogical example of our

general model, we consider this simple 2-type game with linear profit functions and no covariates.

Example 1 Profit functions of firms of type 1 and 2 write as follows, omitting the subscript m for the

ease of the exposition:

Π1 = β1 − δ1,1N1 − δ2,1N2 + ε1

Π2 = β2 − δ1,2N1 − δ2,2N2 + ε2

where

• Nt is the number of firms of type t = 1, 2, active in the markets

• εt unobserved heterogeneity for types t = 1, 2,
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• θ = (β1, β2, δ1,1, δ2,1, δ1,2, δ2,2) is the parameter of interest which we seek to identify. δ’s capture

competition effects within each type and between types.

Such a model satisfy Assumptions 2 and 3.

We allow a maximum of 3 potential entrants of each type t = 1, 2. Unobserved shocks are normally

distributed and uncorrelated. ε1

ε2

 ∼ N


0

0

 ,

1 0

0 1


 .

The competitive effect is driven by the vector of parameters δt which ensure that intra-format and inter-

format competition can differ and that the competitive effect may differ across type (a testable assump-

tion).7

2.2.2 Equilibrium Structure

To lighten the notations, we also drop the market index m from now on. An outcome y = (N1, ...., NT)

is a NE if each type t number of entrants Nt is a best response to the other types’ number of entrants,

N−t. We recall that we assume free entry without loss of generality. Therefore, for each type t, we have:

• First, it is profitable for any type t firm which is entering to operate in such a market structure, i.e.,

πt(X, Nt, N−t; ω) + εt ≥ 0.

• Second, an additional entrant of the same type would lead to negative profit for any type t firm,

i.e.,

πt(X, Nt + 1, N−t; ω) + εt < 0.

As a result, we have the following necessary condition for N = (N1, ...., NT) to be a Pure Strategy

Nash Equilibrium.

7In the pictures drawn across the text, the values chosen for the parameters are β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and

δ12 = δ21 = 0.5
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Proposition 2.1 An outcome Y = (N1, ...., NT) is a NE of our game if and only if: ∀t ∈ T ,

−πt(X, Nt, N−t; ω) ≤ εt ≤ −πt(X, Nt + 1, N−t; ω). (2.2.1)

In the following, we denote this region Rω(X, Y).

It is possible to find instances of the generic game we study for which there exists one or more

regions in the space of unobserved heterogeneity which cannot sustain any pure strategy NE8. If this is

the case, the model is said to be incoherent. Chesher and Rosen (2019) provides various ways to tackle

this issue. In our case, we abstract away from this issue by assuming that the data can only be generated

by a coherent model (meaning that if a given θ yields an incoherent model, then it cannot belong to the

identified set).

It is well-known that for a given shock εt, the game may generate multiple equilibria. Equivalently,

the equilibria regions Rω(X, Y) of different outcomes Y may overlap.

Figure 2.1 displays the equilibrium regions (R(N1, N2)) for our leading example.9. We can see

that Rω(1, 0) overlaps with Rω(0, 1), i.e., for such a draw of profit shocks, either (1, 0) or (0, 1) is

an outcome but we can’t say which one is the realized one. In other words, we have multiplicity of

equilibria, that is, there are regions of realizations of ε which do not predict a single outcome. We call

them, with an abuse of language, multiple equilibria regions. In the absence of a known equilibrium

selection mechanism, there is no longer a one-to-one mapping between the set of observed outcomes

and the regions of profit shocks, which prevents the econometrician from using the usual identification

and estimation procedures. The model is said to be incomplete.

The most straightforward way to circumvent the multiplicity issue is to impose restrictions on the

equilibrium selection mechanism so as to ensure equilibrium uniqueness in each region of the space of

unobserved heterogeneity. This is by far the approach that has gained the most traction in the empirical

8Berry (1992) proves the existence of a PSNE for every value of ε, X, θ in entry games with homogeneous competition

where the profit functions are only affected by the total number of competitors entering the market and not their identity
9In the graph, we omit the X in the notations as there are no covariates in this example.
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Figure 2.1: Equilibrium structure for β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.5
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literature. There are various ways of restricting the equilibrium selection mechanism: Mazzeo (2002)

and Cleeren, Verboven, Dekimpe, and Gielens (2010) impose an order of entry over types, Bajari, Hong,

and Ryan (2010) explicitly models the equilibrium selection mechanism as a parametric function that can

be estimated10. By constraining the equilibrium selection mechanism, the econometrician forces each

region of the space of unobserved heterogeneity to yield a unique equilibrium. We say that imposing an

equilibrium selection completes the model. The econometrician is then able to associate a well-defined

probability to each observed outcome.

In our example, if we impose that firms of type 1 always decide first (i.e. before firms of type 2), then

the predictions of the model are unique as illustrated in Figure 2.2. As a result, a likelihood can be derived

and we are back to the standard procedure. However, this strategy suffers from a huge specification risk.

Another alternative, exploited in Berry (1992) in particular, is to look for a combination of outcomes that

are invariant in the regions of multiple equilibria. Berry (1992) shows that the number of active firms is

constant at the equilibrium. Furthermore, Cleeren, Verboven, Dekimpe, and Gielens (2010) shows that,

with two types and additional mild restrictions on the profit function, this remains valid. However, it

is linked to particular interaction structures and it is impossible to generalize this property to more than

two types unless imposing strong restrictions on the horizontal positioning of the different types.

Another important strand of the literature leverages recent developments in the moment inequality

literature to characterize the set of parameters that can generate the observed data without restricting

the equilibrium selection. The idea is to exploit the inequalities implied by the model while abstaining

from making assumptions about the equilibrium selection mechanism. Furthermore, this method allows

the selection mechanism to differ from one market to the other. This strategy has been extensively

studied by econometricians ( Andrews, Berry, and Jia (2004),Ciliberto and Tamer (2009), Beresteanu,

Molchanvb, and Molinari (2012), Galichon and Henry (2011), Bontemps and Kumar (2020)). Andrews,

10their setup is slightly different to ours: mixed strategies are allowed but no types are considered and stochastic shocks

are action dependent
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Figure 2.2: Equilibrium structure for β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.5 when firms

of type 1 enter first.
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Berry, and Jia (2004) suggests deriving an upper bound on the probability of each individual outcome.

Ciliberto and Tamer (2009) improves upon Andrews, Berry, and Jia (2004) by computing lower bounds

on the probability of each outcome. Galichon and Henry (2011) proposes a sharp characterization of

the identified set which exhausts all the moments implied by the model by deriving a theoretical upper

bound on each subset of the set of outcomes Y . Beresteanu, Molchanvb, and Molinari (2012) generates

the set of moment inequalities required to sharply characterize the identified set but, as we show below,

it becomes quickly numerically intractable. Bontemps and Kumar (2020) proposes, in a entry model á

la Berry, a selection among this set of inequalities by looking for the adjacent vertex of a convex set

and using only the inequalities related to this vertex. In the next section, we show how we select our

inequalities by exploiting our specific structure.

2.3 Deriving the smallest set of moment inequalities

First, let us introduce a few additional notations. Y is the ordered set of possible outcomes of the game.11

and X the support of the exogenous covariates X. For any subset A of Y (A ∈ P(Y)), Pθ(A|X) denotes

the conditional probability of y ∈ A given X for a value θ and we denote it P0(A|X) when θ = θ0,

the true unknown value. We define the identified set for θ, ΘI , as the collection of parameters which are

observationally equivalent to the true value θ0, i.e.,

ΘI =
{

θ ∈ Rq+q′ , ∀y ∈ Y , Pθ(Y = y|X) = P0(Y = y|X), Xa.s.
}

.

Observe that ΘI might be a true set or a point. Our procedure does not depend on the true nature of

the set. Now, we characterize the identified set by a collection of inequalities.

11In our example, Y = {(0, 0), (1, 0), . . . , (3, 3)}, i.e., 16 possible outcomes.
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2.3.1 A sharp characterization of the identified set

Following Proposition 2.1, for any x ∈ X , an outcome y ∈ Y is a possible equilibrium of the game

if and only if the unobserved shock lies in Rω(x, y). Given that there exist multiple equilibria regions,

the probability of ε to be in Rω(x, y) is an upper bound on the probability to observe the outcome y.

Therefore, we get that for any θ ∈ ΘI , the following inequality holds:

∀x ∈ X , ∀y ∈ Y , P0(Y = y|X = x) ≤
∫
Rω(x,y)

dFη(ε). (2.3.2)

The inequality in (2.3.2) can be extended to any subset A ⊂ Y and following the propositions

in Beresteanu, Molchanvb, and Molinari (2012) and Galichon and Henry (2011) in particular, we can

characterize the identified set by a countable number of conditional moment inequalities:

ΘI = {θ ∈ Θ | ∀A ∈ Y , P0(Y ∈ A|X) ≤ Pη(ε ∈ Rω(X, A)) X a.s.}. (2.3.3)

We call P0(Y ∈ A|X) ≤ Pη(ε ∈ Rω(X, A)) the (conditional moment) inequality generated by

A. Unfortunately, this characterization of the identified set is hardly exploitable as such by the econo-

metrician. Even for the simplest games, the number of inequalities characterizing the sharp identi-

fied set can already be overwhelming. For example, when X is finite, the number of inequalities is

card(P(Y)) × card(X ). In the pedagogical example that we consider and if we assume that the ex-

ogenous cost shifter is degenerate (card(X ) = 1), the number of inequalities is already card(P(Y)) =

216 = 65536 which is tractable. With 5 players and three types, a case compatible with the retail or the

airline industry, the number of inequalities increases to 2125 which is untractable.

Furthermore, with the exception of simple cases, it is not clear how to compute the theoretical bounds

implied by the model without making use of simulation methods that necessarily induce biases. For the

sake of clarity, let us abstract from the additional layer of difficulty induced by the exogenous covariates

X and perform the identification analysis as if we condition on a given realization X = x. We postpone

the discussion on the inclusion of the covariates to the section on inference. Accordingly, to lighten the
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notations, we omit the X in the rest of this section and the inequalities have to be interpreted as X almost

surely. We now propose simple solutions to substantially simplify the characterization of the identified

set.

2.3.2 Selection of the Inequalities

The set of inequalities in (2.3.3) characterizes sharply the identified set. Any parameter in the identified

set satisfies these inequalities and reversely. However, in order to be implementable, one needs to derive

the regions Rω(A) for any set of outcomes (y1, . . . , yk). Though Proposition 2.1 gives closed form

expressions when A is a single outcome, calculating the regions Rω(A) for subsets A composed by

several outcomes requires to know whether the different regions Rω(y) for y ∈ A are multiple equilibria

regions and how they overlap with other multiple equilibria regions. In other words, characterizing the

set of inequalities requires to know the structure of the multiple equilibria regions. One could bypass this

issue by considering outer sets (that is, to exploit only a subset of the inequalities implied by the model).

Andrews, Berry, and Jia (2004) compute the outer-set defined by upper bounds on single outcomes

while Ciliberto and Tamer (2009) study the outer-set characterized by upper and lower bounds on single

outcomes. However, deriving these lower bounds require to know the multiple equilibria structure or to

simulate them.

As exhibited previously, the number of inequalities in (2.3.3) can be very large. Even in cases where

brute force would be possible, the inference procedure would be challenging, in particular to get com-

petitive critical values. Luckily, a lot of these inequalities are redundant in the sense that they are implied

by the knowledge of other inequalities. Notice that it is a different notion than the redundancy used in

the GMM literature.12 To be more specific, we provide a definition to be self-contained.

Definition 2 (Redundancy of a moment inequality) Let A ∈ P(Y), we say that A yields a redundant

12See, for example, Breusch, Qian, Schmidt, and Wyhowski (1999).
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inequality if there exist A1 ∈ P(Y) and A2 ∈ P(Y) not empty such that

P0(Y ∈ Ai) ≤ Pη(ε ∈ Rω(Ai)), i = 1, 2 ⇒ P0(Y ∈ A) ≤ Pη(ε ∈ Rω(A)).

For instance, in our leading example, A = {(1, 0), (2, 1)} yields a redundant inequality because

these two outcomes do not have regions Rω(y) that overlap, so

Rω((1, 0)) ∩ Rω((2, 1)) = ∅.

Therefore if P0(Y = (1, 0)) ≤ Pη(ε ∈ Rω(1, 0)) and P0(Y = (2, 1)) ≤ Pη(ε ∈ Rω(2, 1)),

P0(Y ∈ A) = P0(Y = (1, 0))+ P0(Y = (2, 1)) ≤ Pη(ε ∈ Rω(1, 0))+ Pη(ε ∈ Rω(2, 1)) = Pη(ε ∈ Rω(A)).

Here, we propose an algorithm that determines the multiple equilibria structure for a given parameter

θ. This algorithm allows us in the same procedure to eliminate the redundant inequalities and to calculate

(or bound) the probabilities of the different regions Rω(A), A ∈ P(Y). Before detailing it, we explain

how we eliminate redundant inequalities by sufficient conditions. It has been explained in the literature

(Galichon and Henry (2011), Beresteanu, Molchanov, and Molinari (2011), Chesher and Rosen (2017),

Bontemps and Kumar (2020), Luo and Wang (2017)) that eliminating redundant inequalities, or, equiva-

lently, determining a core determining class is linked to the graph structure of the model. The graph Γ(θ)

generated by the model is defined as a graph linking the outcomes yi ∈ Y such that there exists an edge

between two elements y1 and y2 if their equilibrium regions Rω(y1) and Rω(y2) overlap. Following

the terminology used in graph theory, a subset A is connected in the graph Γ(θ) if and only if there exists

a path between every pair of elements in A.

Proposition 3.1 (Sufficient condition for redundancy) If a subset A ⊂ Y is not connected in the graph

Γ(θ), then A yields a redundant inequality.

The proof is simple and therefore omitted.

In our trade-off between feasibility and efficiency, we decide to eliminate as many redundant inequal-

ities as possible to get the smallest set of inequalities to test. Observe, however, that adding redundant
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inequalities might improve the small sample properties of the estimated identified set (in terms of volume

for example). For a given parameter θ, the core determining class is a subset of P(Y) that exhausts all

the inequalities used to define ΘI in (2.3.3). Let us underline that the core determining class is not unique

and can vary in size depending on the conditions that are used to eliminate inequalities. Luo and Wang

(2017) provides conditions to find the smallest core determining class in the context of entry games.

The novelty in our paper is to provide a simple way to derive a core determining class of inequalities by

directly deriving the graph Γ(θ).

2.3.3 Our algorithm to determine a core determining class

In this part, we show how our algorithm allows us to eliminate moment inequalities and to calculate the

upper bound of P(Y ∈ A) for each selected element A of P(Y). Remark that, in some special case like

in Mazzeo (2002) and Cleeren, Verboven, Dekimpe, and Gielens (2010), it is possible to predetermine the

graph Γ(θ). However, the restrictions imposed on the two-type model of Cleeren, Verboven, Dekimpe,

and Gielens (2010) are difficult to generalize to more types without assuming much stronger restrictions,

especially on the horizontal differentiation between the different types. We now state a necessary and

sufficient condition for two equilibrium regions Rω(y1) and Rω(y2) to overlap.

Proposition 3.2 (Overlapping equilibrium regions) Two outcomes y1 = (N1, ..., NT) and y2 = (N̄1, ..., N̄T)

have their equilibrium regions Rω(y1) and Rω(y2) which overlap if and only if ∀t ∈ T ,13

max (−πt(Nt, N−t; ω),−πt(N̄t, N̄−t; ω)) < min (−πt(Nt + 1, N−t; ω),−πt(N̄t + 1, N̄−t; ω))

(2.3.4)

The proof is straightforward given the fact that the regions Rω(y1) are cubes in RT. It can be

generalized to any set of outcomes.

13Remember that, by convention, we have that ∀t ∈ T , πt(0, N−t; ω) = −∞ and limNt→+∞ πt(Nt, N−t; ω) = +∞.
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Proposition 3.3 (Characterization of the intersection regions) For any element A of P(Y), when it is

non-empty, the intersection region ∩
yk∈A

Rω(yk) is defined in each dimension t in T as follows:

max
yk∈A

− πt(yk; ω) ≤ εt < min
yk∈A

− πt(y+k ; ω),

with yk = (Nt,k, N−t,k) and y+k = (Nt,k + 1, N−t,k).

Our algorithm is executed as follows.

Stage 1: Compute the regions Rω(y) for all single outcomes of Y . Collect the moment inequalities

generated from (2.3.2).

Stage 2: Check all the pairs (K = 2) to see if the two outcomes y1 and y2 of each pair have their equilib-

rium regions Rω(y1) and Rω(y2) that overlap using condition (2.3.4). Draw an edge between

these outcomes (for the graph Γ(θ)) if it is the case and eliminate all moment inequalities

generated from pairs for which this is not the case.

For the remaining pairs A = (y1, y2), compute the sharp upper bound of P(Y ∈ A):

P(Y ∈ A) ≤ Pη(ε ∈ Rω(y1)) + Pη(ε ∈ Rω(y2))− Pη(ε ∈ Rω(y1) ∩Rω(y2)).

Add these moment inequalities to the set of inequalities generated by the single outcomes

(2.3.2).

Stage 3: K = 3. We now check all triplets (y1, y2, y3) given that their equilibrium regions might overlap

if and only if they overlap two by two. In other words, we focus on the remaining pairs to select

our "triplet candidates". Again, if the three regions overlap we have a connected subset of three

elements, otherwise we do not keep the triplet and do not consider the moment inequality

generated by an eliminated triplet.
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For the remaining connected subsets of four elements A = (y1, y2, y3), compute the sharp

upper bound of P(Y ∈ A):

P(Y ∈ A) ≤ Pη(ε ∈ Rω(y1)) + Pη(ε ∈ Rω(y2)) + Pη(ε ∈ Rω(y3))

− Pη(ε ∈ Rω(y1) ∩Rω(y2))− Pη(ε ∈ Rω(y1) ∩Rω(y3))− Pη(ε ∈ Rω(y2) ∩Rω(y3))

+ Pη(ε ∈ Rω(y1) ∩Rω(y2) ∩Rω(y3)).

Stage 4: K = 4. Check now for all connected subsets of four elements given that each subset of three

elements must be in the remaining connected subsets of three elements and so forth

The algorithm stops when there are no longer connected subsets of K = l + 1 elements. Remark that

it allows us to derive all the components Hi of Γ(θ).14 For each component, we have a moment equality.

Keeping it as an inequality is however sufficient to have a sharp characterization of the set. Given that

the region corresponding to the outcome (0, 0) does not overlap with any other region Rω(y), we have

at least two components.

The algorithm stops within a finite number of steps, each of them being polynomial in the number

of types, given the fact that profit of a type t firm is strictly decreasing in the number of active firms of

this type and tends to −∞ when Nt tends to infinity. When a subset A = (y1, . . . , yK) of K elements is

selected by the algorithm, the sharp upper bound for the probability of Y ∈ A can be derived using the

expression:

Pη(ε ∈ Rω(A)) = Pη(ε ∈ ∪
yi∈A

Rω(yi))

=
K

∑
k=1

Pη(ε ∈ Rω(yk)) +
K

∑
i=2

(−1)i−1 ∑
Ai⊂A & card(Ai)=i

Pη(ε ∈ ∩
yk∈Ai

Rω(yk)).

If this subset is a component of the graph Γ(θ), it generates an equality. An important remark here is

that these intersection regions are also T-cubes and thus integrating over these regions is straightforward.

14The components of a graph are subgraphs {Hi}k
i=1 such that each Hi is connected and Hi is not connected to Hj for

i ̸= j.
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Application to our example Figure 2.3 displays the resulting graph for our example. In this case there

are no connected subsets of three elements. The identified set can therefore be characterized sharply by

14 inequalities related to the single outcomes which are not (0, 0) and (3, 3), 9 inequalities generated by

the selected pairs and 7 equalities generated by the 7 components (including (0, 0) and (3, 3)).

(0,0) (0,1)

(1,0)

(0,2)

(1,1)

(2,0)

(0,3)

(1,2)

(2,1)
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(1,3)

(2,2)

(1,3)

(2,3)

(3,2)

(3,3)

Figure 2.3: Γ(θ) for β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.5

Remarks on the algorithm

• The cost to check whether a subset of p elements is connected is low because it is just comparing

the maximum of p quantities with the minimum of p other quantities following Proposition 3.3.

• The collection of all connected subsets constitutes a core determining class C(θ), i.e. the core

determinig class generates moment inequalities that sharply characterizes the identified set ΘI .

However, it might not be the smallest class (see the Monte Carlo section).

• One advantage of our sequential algorithm is that it allows the researcher to stop the procedure

after a few iterations. This can prove useful in practice if the set of connected subsets is too large

and it also allows to measure the effect on the identified set of going one iteration further in the

collection of connected subsets.
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• If one wants to compute the minimum probability of any subset, one needs to execute the algorithm

until the end to determine all the possible multiplicities. This is the reason why Ciliberto and Tamer

(2009) derives the lower bound for each probability of a single outcome using simulation methods.

However, simulating these bounds induces simulation noise that is often (wrongly) ignored in the

inference procedure.

2.4 Inference on the full vector

Given the knowledge of P0(Y = y|X) (for simplicity, in this section, we denote this vector P0(X)), the

last section allows us to test that parameter θ is in the identified set ΘI by exploiting the conditional

moment inequalities generated by a subset of P(Y), called C(θ, X). In general, the core determining

class that we exhibited previously depends on θ and on X. Calling pθ,X the number of elements in

C(θ, X), the moment inequality generated by any member Aj of C(θ, X) can be rewritten in a simple

form:

q⊤j P0(X) ≤ Cθ,j(X),

in which qj is a card(Y)× 1 vector of zeros and ones, the ones corresponding to the outcomes present

in Aj and Cθ,j(X) = Pη(ε ∈ Rω(X, Aj)). Calling Dθ,X the stacked version of the q⊤j s and Cθ(X) the

stacked version of the Cθ,j(X)s, we get:

θ ∈ ΘI ⇐⇒ Dθ,XP0(X) ≤ Cθ(X), X a.s.

⇐⇒ E
(

Cθ,j(X)− q⊤j 1(Y = y)|X
)
≥ 0, ∀ j = 1, . . . , pθ,X X a.s.

(2.4.5)

We have a collection of conditional moment inequalities mj(X, θ) which are linear in E(1(Y = y)|X).

Moreover, for a given X = x, the condition Dθ,xP ≤ Cθ(x) in (2.4.5) defines a convex set A(θ, x) in

which P0(X = x) should lie for θ to be in the identified set.

When we turn to inference, P0(X) is no longer observed but must be estimated in a first stage. The

objective of this section is to provide an inferential procedure that is asymptotically valid (each point in
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ΘI should be in the confidence region with a probability that is asymptotically greater than one minus

the nominal level of the test) and consistent (each point outside θI should be rejected with probability

that goes to one). In contrast to the classical setup in which the true parameter is uniquely defined by

conditional moment equalities, here we must repeat a test over a grid of candidates θ. Therefore, it is

critical for the testing procedure to remain simple to implement while being sufficiently powerful to avoid

estimating unnecessarily large confidence regions. In this section, we propose a new estimation method

that seems to satisfy these requirements. Furthermore, explanatory variables create additional issues

when they are taken into account (curse of dimensionality). In most empirical applications, researchers

have suggested to discretize the covariates at the cost of changing the original model. We will show that

one key advantage of our method is that it can smoothly handle the introduction of covariates with a

slight correction of the test statistic.

In the following, we assume we observe an i.i.d. sample of n outcomes (X1, Y1), . . . , (Xn, Yn) in

independent markets. We first study the inference procedure in the absence of covariates and we show

how to adapt the procedures to include covariates.

2.4.1 Inference without covariates

First, we focus on the case where there are no covariates. In the case, the identified set ΘI is characterized

by the following collection of moment inequalities:

θ ∈ ΘI ⇐⇒ E
(

Cθ,j − q⊤j 1(Y = y)
)
≥ 0, ∀ j = 1, . . . , pθ (2.4.6)

Let Pn be the empirical frequency vector of outcomes:

Pn =
1
n

n

∑
i=1

1(Yi = y),

in which the inequality 1(Yi = y) should be interpreted term by term, i.e.,

1(Yi = y) =
[
1(Yi = y1), 1(Yi = y2), . . . , 1(Yi = ycard(Y))

]⊤
.
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Our empirical analogue of the moment inequalities is:

mn,j(Y, θ) =
1
n

n

∑
i=1

mj(Yi, θ) = Cθ,j − q⊤j Pn j = 1, . . . , pθ

which should be the estimates of positive quantities. Also, we denote Σn = diag(Pn)− P⊤
n Pi, i.e., a

consistent estimator of Var(1(Y = y)).

Existing procedures

Various test statistics have been proposed in the literature to test moment inequality restrictions similar to

the ones in Equation (2.4.6). Andrews and Soares (2010) proposes different test statistics and the GMS

procedure to calculate accurate critical values. Andrews and Barwick (2012) study the performance of

these different values and provide guidance about the tuning parameters involved in the procedure. In a

more recent work, Chernozhukov, Chetverikov, and Kato (2018b) proposes a test statistic easy to com-

pute with a critical value which is valid whatever the correlation structure of the moments involved.15.

Their approach is particularly suited for cases such as games, which display a very large number of in-

equalities. Contrary to alternatives such as subsampling or general moment selection, the critical value,

which is based on a moderate deviation inequality for self-normalized sums, is straightforward to com-

pute and increases (in absolute value) slowly in the number of moments. This property is particularly

attractive as we need to repeat the testing procedure for each point in the grid but still be competitive.

Minimum test statistic To be more specific, let ξn(θ) be defined as the minimum over the studentized

moments:

ξn(θ) = min
j=1,...,pθ

√
n(Cθ,j − q⊤j Pn)√

q⊤j Σnqj

= min
j=1,...,pθ

√
nmn,j(Y, θ)√

Vn,j
,

15For papers applying this procedure, see for instance Bontemps and Kumar (2020),Chesher and Rosen (2019)
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When θ does not belong to the identified set, the quantity above should diverge to −∞. When θ ∈ ΘI ,

the asymptotic distribution of ξn(θ) can be derived 16 and it is equal to

min
j∈J (θ)

q⊤j Z√
q⊤j Σ0qj

,

in which Z follows a normal distribution with variance Σ0 and J (θ) is the collection of indices j corre-

sponding to the binding moments. This asymptotic distribution depends on the number and the identity

of the binding moments, as expected. In the following, p∗ denotes the number of binding moments, i.e.,

the cardinal of J (θ).

A critical value can be computed after a first step estimation of the set of binding moments J (θ) like

in the GMS procedure of Andrews and Soares (2010). Simulation methods (bootstrap and/or subsam-

pling techniques) can be also considered to improve the accuracy of the critical value. Chernozhukov,

Chetverikov, and Kato (2018b) proposes the following one:

c∗(α) =
Φ−1(α/p)√

1 − Φ−1(α/p)2/n
(2.4.7)

where Φ(·) is the c.d.f. of the standard normal distribution (Φ−1(·) is its inverse). The advantage of

this critical value is that it is easy to compute, quite competitive and it decreases at a rate of the order

−
√

log(p/α), i.e., does not diverge too quickly when the number of moments is high. Under some

mild regularity assumptions, satisfied in our framework, Chernozhukov, Chetverikov, and Kato (2018b)

shows that the confidence set CRn(1 − α) induced by c∗(α) is asymptotically valid,

CRn(1 − α) = {θ ∈ Θ | ξn(θ) ≥ c∗(α)}.

Proposition 4.1 The confidence set generated by c∗(α) is asymptotically valid.

lim inf
n→∞

inf
θ∈ΘI

Pr(θ ∈ CRn) ≥ 1 − α.

Proof: See Theorem 4.1. of Chernozhukov, Chetverikov, and Kato (2018b). In our framework, all

moment inequalities are trivially bounded. ■
16See Bontemps and Kumar (2020), Proposition 9.
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Applying methods in the convex set theory. Alternatively, one can exploit the equivalence between

checking the moment inequalities and testing that P0 belongs to the convex set A(θ). Convexity is an

attractive feature that has been exploited in the set identification literature by Beresteanu, Molchanov,

and Molinari (2011) or by Bontemps and Kumar (2020) for games with multiple equilibria. In particular,

the authors use the support function

δ∗(q; A(θ)) = sup
P∈A(θ)

q⊤P.

Following Rockafellar (1997),

P0 ∈ A(θ) ⇐⇒ min
q

δ∗(q; A(θ))− q⊤P0 ≥ 0.

In other words, the support function embeds all the moment inequalities.

Classical reformulation of the problem above shows that the program is strictly equivalent to testing

that the (euclidian) distance between P0 and A(θ) is equal to 0. Therefore, we can also consider test

statistic based on generalized distance:

dΩ(P0, A(θ)) = min
P,MP≤Cθ

(P0 − P)⊤Ω−1(P0 − P). (2.4.8)

As A(θ) is a convex set, the distance can be easily computed from quadratic solvers under linear con-

straints. However, the asymptotic distribution of dΩ(Pn, A(θ)) is still a complicated distribution because

it depends on whether the true probability vector P0 is inside the set or lies on an exposed face or an edge

of the convex set. One can work with conservative critical values that are easy to compute like the critical

value proposed by Cox and Shi (2022) for a conditional version of the test or use the old literature on

inequality testing and the upper bound proposed by some of the authors (see ? for a review of the existing

procedures). Kitamura and Stoye (2018) propose simulation methods that are valid in our framework.

The smoothed-min approach

As illustrated above, the difficulty in the traditional moment inequality approach is to recover the exact

asymptotic distribution of the test statistic, which depends on the set of binding moments. In the case
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of games, the set of binding moments depends on whether the true vector P0 lies inside, on an exposed

face of a given order or is a vertex. While computationally intensive methods 17 often display better

approximation properties of the exact asymptotic distribution, the implementation difficulties make these

methods unappealing for the estimation of games. On the other hand, the usage of upper bounds on the

asymptotic or exact distribution of the test statistic results in conservative confidence regions.

Here, we propose a new statistical procedure where the asymptotic distribution of the test statistic

is a standard normal. The general idea is to estimate a smooth outer set of ΘI that asymptotically

converges to the true identified set ΘI . The advantage of manipulating a smooth outerset is that we can

replace a set of moment inequalities by one moment binding moment inequality for which we know the

asymptotic distribution. This approach completely removes the inferential loss caused by the inability

to derive the exact asymptotic distribution by introducing a small and manageable identification loss

through smoothing, which we make vanish asymptotically. The resulting confidence regions have the

right size asymptotically. Last but not least, we will see in the next section how this smoothing procedure

facilitates the introduction of covariates in the model.

The Boltzmann operator Let us now introduce our new estimation strategy. An important remark is

that this strategy is valid for the vast majority of models defined by moment inequalities (modulo some

mild regularity assumptions that we make explicit) beyond the context of entry games that we study in

this paper. From what precedes, the sharp identified is such that:

θ ∈ ΘI ⇐⇒ min
j=1,...,pθ

Emj(Y, θ) ≥ 0.

⇐⇒ min{0, min
j=1,...,pθ

Emj(Y, θ)} = 0
(2.4.9)

The second equivalence transforms p moment inequalities into one equality. However, we cannot ex-

ploit directly an empirical counterpart of min{0, min
j=1,...,pθ

Emj(Y, θ)} because deriving the asymptotic

17Even if they don’t eliminate the inferential loss.
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distribution of such a statistic is difficult. What we propose is to replace the minimum by a smooth ap-

proximation, what allows us to recover asymptotic normality through a standard Taylor expansion. For

z = (z1, z2, ..., zp) ∈ Rp, we have that a smooth approximation of the minimum between the elements

of z and 0 writes:

gρ(z) =
∑

p
j=1 zj exp(−ρzj)

1 + ∑
p
j=1 exp(−ρzj)

,

in which ρ, the smoothing parameter, controls the level of approximation. gρ(·) is known as the Boltz-

mann operator. This function is also used in machine-learning and numerical optimization. In the ap-

pendix, we show that other smooth approximations of the minimum such as the LogSumExp could also

be used. A nice property of this approximation is that it is possible to control for the difference be-

tween the minimum and its approximation. Following Chernozhukov, Kocatulum, and Menzel (2015),

we have: ∣∣min(0, z1, z2, . . . , zp)− gρ(z)
∣∣ ≤ 1

ρ
W
(

p − 1
e

)
,

where W(·) is the Lambert function. In particular, W(x) is bounded by log x when x > e. The minimum

is simply the limit of gρ(z) when ρ → +∞. For simplicity, in what follows, we define mθ ≡ E[m(Y, θ)]

and we omit the dependence of p in θ.

A smooth outer set. For exposition, it is useful to first study the effect of replacing the minimum

function by a smooth approximation. We define an outer set Θo
I(ρ) as follows:

Θo
I(ρ) =

{
θ ∈ Rdim(θ)| gρ(mθ) =

∑
p
j=1 mθ,je−ρmθ,j

1 + ∑
p
j=1 e−ρmθ,j

≥ 0

}
. (2.4.10)

The next proposition shows that Θo
I(ρ) contains the true identified set ΘI .

Proposition 4.2 The following statements hold

(i) For any ρ > 0, ΘI ⊂ Θo
I(ρ)

(ii) limρ→+∞ dH(ΘI , Θo
I(ρ)) = 0, where dH is the Hausdorff distance used in set theory.
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See the proof in the Appendix. These properties indicate that the smoothing mechanically induces

an identification loss. If we were to use an empirical counterpart of gρ(mθ) while holding ρ fixed, we

would estimate an outer set of Θ. Now the idea is to decrease the level of smoothing at a certain speed

in order to estimate the true identified set while keeping asymptotic normality.

A pivotal test statistic. We define our smooth test statistic as follows:

ξn(θ) =
√

n
gρn(mθ,n)√

∇gρn(mθ,n)TΣn∇gρn(mθ,n)

with ∇gρn(·) the gradient of gρn(·) that we define in the appendix and Σn a consistent estimator of Σ0.

Our confidence region of confidence level 1 − α is defined as follows:

CRn(1 − α) = {ξn(θ) ≥ zα}

in which zα is the α-quantile of the standard normal distribution.

In order to show asymptotic validity of our test statistic, we are going to further assume that the

moments we consider are asymptotically normal.

Assumption 4 (Asymptotic normality of the moments) Let us assume that:

√
n(mθ,n − mθ)

d→ N (0, Σ0)

with Σ0 definite positive.

This last assumption is almost always satisfied from an application of the usual CLT. In the case of

games, Assumption 4 is satisfied:

√
n(mθ,n − mθ) = QT

θ

(
1
n

n

∑
i=1

1(Yi = y)− E(1{Y = y})
)

d→ QT
θ N (0, Σ0)

with Σ0 = diag(P0)− P0P⊤
0 .

The next proposition describes the asymptotic behavior of the test statistic.
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Proposition 4.3 Let ρn a divergent sequence of positive numbers such that ρn = O (nα), 0 < a < 1/2,

then there are 3 different cases:

• θ ∈ int(ΘI) (θ ∈ ΘI and J0 = card(J (θ)) > 0, i.e. the number of binding moments is larger

than 0):

Pr(ξn(θ) > zα) →
n→+∞

1

• θ ∈ ∂ΘI (θ ∈ ΘI and J0 = card(J (θ)) > 0, i.e. the number of binding moments is larger than

0). Then our test statistic is asymptotically distributed as a standard normal:

ξn(θ)
d→ N (0, 1)

• θ /∈ ΘI : Pr(ξn(θ) > zα) →
n→+∞

0

The proof of this proposition is in the appendix. The Proposition shows that our procedure is con-

sistent: the econometrician rejects with probability that goes to 1 when θ /∈ ΘI . Second, it has asymp-

totically the exact size and it is therefore not conservative when at least one moment is binding. Finally,

in constrast with many other procedures, the test statistic and the critical value are straightforward to

derive. Proposition 4.3 builds on the following asymptotic expansion of the smooth test statistic.

Proposition 4.4 (Asymptotic expansion of the test statistic) Let ρn a divergent sequence of positive

number such that ρn = O (nα), 0 < a < 1/2, then

√
ngρn(mθ,n) =

√
ngρn(mθ) + Γ0(θ)

√
n(mθ,n − mθ) + op(1)

with Γ0(θ) ≡ limρ→∞ ∇gρ(mθ).

The proof is in the appendix. The constraint on the speed of ρ implies that the smoothing cannot be

faster than the standard square-root speed of convergence.
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Standardization of the moments ex-ante. As an alternative to ξn(θ) we can consider a modified test

statistic in which we standardize the moment mθ by its variance. Namely, let m̃θ,n = diag(Σn)−1/2mθ,n.

The new test statistic writes:

ξ̃n(θ) =
√

n
gρn(m̃θ,n)

∇gρn(m̃θ,n)TΩn∇gρn(m̃θ,n)

with Ωn a consistent estimator of the correlation matrix Ω0 = diag(Σ0)
−1/2Σ0diag(Σ0)

−1/2. In the

appendix, we show that ξ̃n(θ) has the same asymptotic behavior as ξn(θ). The advantage of ξ̃n(θ) over

ξn(θ) is to have a procedure that is robust to the unit of measurement of all the moments mθ,j.

Choice of ρn. Let us now discuss the choice of the smoothing parameter ρn, which is a critical choice

in practice. In order for our strategy to work, we require the smoothing parameter ρn to diverge at a

certain speed, namely, we want ρn = O (nα) with 0 < α < 1/2. Remember that if we keep ρ fixed,

gρ(mθ,n) would a consistent estimator of gρ(mθ) and not min{0, mθ,1, ..., mθ,p} anymore. In turn, this

implies that we are estimating consistently the outer set Θo
I(ρ) defined in equation (2.4.10), whereas our

goal is to estimate consistently the sharp identified set ΘI . On the other hand, we cannot let the amount

of smoothing decrease too fast (here we require ρn to increase at a lower speed than the parametric

convergence rate) otherwise we lose the asymptotic normality of our estimator. Intuitively, when ρn

increases too rapidly, gρn gets closer to the minimum function and thus the higher order terms in the

Taylor expansion don’t vanish asymptotically. The bounds we provide on the speed of divergence ρn are

not very informative on the choice of ρn in practice. Our goal is now to provide more precise guidelines

on ρn.

Interestingly, these two forces appear in the mean value Taylor expansion exhibited in the proof of

Proposition 4.4. ∀n ∈ N∗, ∃m̃θ,n ∈ [mθ,n, mθ] such that the following expansion holds:

√
ngρn(mθ,n) =

√
ngρn(mθ)︸ ︷︷ ︸

Identification bias

+∇gρn(mθ)
√

n(mθ,n − m0)︸ ︷︷ ︸
First order approximation

+
ρn√

n
√

n(mθ,n − mθ)
⊤ Hρn(m̃θ,n)

ρn

√
n(mθ,n − mθ)︸ ︷︷ ︸

Rest in Taylor’s expansion
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The smooth test statistics consists of three components. The identification bias term corresponds to

the loss implied by the use of a smooth approximation of the minimum instead of the minimum directly

(to be precise, the identification bias is equal to
√

ngρn(mθ)− min
j

mθ,j with the second term equal to

0 under H0 : θ ∈ ΘI). The first-order approximation is the component that is normally distributed and

from which we derive the asymptotic distribution of the test statistic. The rest of the Taylor expansion

corresponds to the discrepancy between the first-order approximation and the smoothing function. It can

be interpreted as a measure of the non-normality of the estimator. The approach that we propose to chose

ρn consists in quantifying the biases induced by the two opposite forces in finite sample and chose ρn

to minimize the bias implied by these two forces. One can easily check that the bias of our estimator is

equal to:

E
[√

ngρn(mθ,n)
]
=

√
ngρn(mθ)︸ ︷︷ ︸

Identification bias

+
ρn√

n
E

[√
n(mθ,n − mθ)

⊤ Hρn(m̃θ,n)

ρn

√
n(mθ,n − mθ)

]
︸ ︷︷ ︸

Bias implied by the rest in Taylor’s expansion

The next proposition provides an upper bound on the small sample bias on the absolute value of these

two terms and a choice of ρn to minimize this upper bound.

Proposition 4.5 (Choice of ρn)

|E
[√

ngρn(mθ,n)
]
| ≤ (p − J0)

1
ρn

e−1

1 + J0
+

ρn√
n

K0

with K0 > 0 a constant that we make explicit in the appendix and that increases with the number of

binding moments and the variance of the moments. Thus, the choice ρ∗n that minimizes this upper bound

is equal to:

ρ∗n = n1/4

√
(p − J0)e−1

(1 + J0)K0
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We see that the "optimal" choice of ρn increases with the number of non-binding moments and

decreases with the number of binding moments and the variance of these moments. Let us observe that

the optimal speed of divergence α∗ = 1
4 is also contained in (0, 1/2)

2.4.2 Inference with covariates

We now move to the case with covariates. Following Equation 2.4.5, in the presence of covariates, the

identified is characterized by a collection of moment inequalities.

θ ∈ ΘI ⇐⇒ E
(

Cθ,j(X)− q⊤j 1(Y = y)|X
)
≥ 0, ∀ j = 1, . . . , pθ,X X a.s.

⇐⇒ mj(X, θ) ≡ E
(
mj(Y, X, θ)|X

)
≥ 0, ∀ j = 1, . . . , pθ,X X a.s.

ΘI is defined by a collection of conditional moment inequalities mj(X, θ) that are linear in E(1(Y =

y)|X). The presence of covariates poses several theoretical and practical issues. First, the algorithm to

select the inequalities and the approach to compute the theoretical bounds developed in section 2.3.3 re-

main the same but have to be performed for each element x ∈ X (and for each θ), which can significantly

increase the computational burden especially if the dimension of X is large and/or if X is continuous.

More fundamentally, if X is continuous, the set is sharp identified set is characterized by an infinite num-

ber of inequalities. Second, conditional moments are non-parametric objects that are harder to estimate

than unconditional moments and which display non-standard asymptotic properties. In particular, we

lose the asymptotic normality and the parametric rate of convergence of the estimator of mj(X, θ). We

now propose different methods to alleviate the two difficulties mentioned above and more generally to

facilitate the estimation of models defined by conditional moment inequalities.

First, we tackle the problem of deriving the core determining class for each x ∈ X as we want to

avoid repeating the algorithm introduced in section 2.3.3 for each x ∈ X (we already must do it for each

θ). To keep things tractable numerically, we suggest to make the following separability assumption for

our profit functions:
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Assumption 5 (Additively separable profit shifters)

πt(X, Nt, N−t; ω) = κt(X; ω1) + ϕt(Nt, N−t; ω2), ∀t = 1, . . . , T.

The next proposition states that, with the profit structure assumed in Assumption 5, the core deter-

mining class remains the same for all x ∈ X .

Proposition 4.6 (Invariant core determining class) Under Assumptions 2, 3, 5, we have:

∀x ∈ X , C(θ, x) = C(θ).

It implies that under assumption 5, the core determining class only needs to be computed once for

each candidate θ (as opposed to deriving the core determining for every combination of x and θ). The

intuition for this result is that under additive separability of the covariates in the profit functions, the

covariates only translate the equilibrium structure in the space of unobserved shocks and the graph Γ(θ)

remains the same.

From now on, we assume Assumption 5 and we denote the core determining class C(θ) since it does

not depend on X. pθ is its cardinal. In what follows, we omit the dependence of p in θ.

Existing procedure

Following (2.4.5), ΘI is characterized by p conditional moment inequalities that should be positive

almost surely in X. As we established previously, conditional moment inequalities are much more diffi-

cult to tackle than unconditional ones. Various methods have been proposed to estimate confidence sets

in models defined by conditional moment inequalities (Andrews and Shi (2013), Armstrong and Chan

(2016), Armstrong (2014) among others) and theoretical econometricians have suggested to directly

apply these methods to the case of entry games.

The leading method (proposed in Andrews and Shi (2013)) consists in transforming the conditional

moment inequalities into unconditional ones. More precisely, Andrews and Shi (2013) considers a col-
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lection G of non-negative functions of X, denoted g(X).

θ ∈ ΘI =⇒ mj,g(X, θ) =
(

Cθ,j(X)− q⊤j E(1(Y = y)|X)
)

g(X) ≥ 0 a.s. , j = 1, ...p, ∀g ∈ G

These functions allow us to transform the conditional moment inequalities into unconditional ones as

follows:

Θ̄I = {θ ∈ Θ | E
[
mj,g(Y, X, θ)

]
≥ 0, ∀j ∈ {1, . . . , p}, ∀g ∈ G}.

Under high level conditions on G, the outer set defined above coincides with the sharp identified set.

The choice of G is critical: as an example, they suggest to use a countable family of hypercubes. For

the estimation, they integrate these unconditional moments into either a Cramer Von Mises (CvM) or a

Kolmogorov Smirnov (KS) type of statistic. Finally, they adapt the GMS procedure to derive the critical

value.

The inference strategy in Andrews and Shi (2013) is extremely challenging numerically. The econo-

metrician must first choose the family G. For each g ∈ G, the econometrician must compute a test

statisitc estimate the set of binding moments following the GMS procedure. Next, the econometrician

is required to integrate the family of moments over a certain measure µ and to simulate the asymptotic

distribution under the null. Moreover, this procedure involves many tuning parameters (choice of inte-

gration functions, choice of the measure, choice of the test statistic, choice of the parameter to select the

binding moments ...). To our knowledge, a few papers only used it for real empirical applications.

Researchers often favor an approach based on discretizing the support of continuous variables (even

if it results in a modification of the initial model and thus of the identified set) or picking particular g(·)

functions in G above and exploiting the critical value in Chernozhukov, Kocatulum, and Menzel (2015).

For example, Aradillas-Lopez and Rosen (2022) use the density of X as weighting function.
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The smooth-min approach

Let us now introduce our new estimation strategy. An important remark is that this strategy is valid for

the vast majority of models defined by moment inequalities (modulo some mild regularity assumptions

that we make explicit) beyond the context of entry games that we study in this paper. We build our

approach on the following characterization of the sharp identified set:

Proposition 4.7

θ ∈ ΘI ⇐⇒ mj(X, θ) ≥ 0, ∀ j = 1, . . . , p X a.s

⇐⇒ min{0, min
j=1,...,p

mj(X, θ)} = 0 X a.s.

⇐⇒ E

[
min{0, min

j=1,...,p
mj(X, θ)}

]
= 0

⇐⇒ E

[
min{0, min

j=1,...,p
mj(X, θ)}g(X)

]
= 0

for any choice of weighting function g(·) that is positive, smooth, and that does not vanish on the support

of X

The characterization of ΘI in Proposition 4.7 is extremly useful as it transforms p conditional mo-

ment inequalities into one unconditional moment equality without losing any identification power.18

If we knew mj(X, θ), we could directly use a CLT and use a standard one-sided t-test. However,

mj(X, θ) = E
(
mj(Y, X, θ)|X

)
is unknown and must be estimated non-parametrically in a first stage.

Given that we must take into account the first stage estimation in the derivation of the asymptotic

distribution, it becomes convenient to once again use a smooth approximation of the minimum func-

tion. Again, our smooth-min approach allows us to recover an asymptotically normal estimator for

E

[
min{0, min

j=1,...,p
mj(X, θ)}

]
. We will see that our test will yield a consistent test under mild con-

ditions that is easy to implement. Our testing approach is very reminiscent of Zheng (1996) which

18In particular, there is no need to consider a countable family of weighting function. In practice, we choose g = 1 but we

could choose g equal to the density of X
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proposes a consistent specification test on conditional moment equalities by also taking the expectation

of the conditional expectation of the residuals.

In what follows, we denote mθ(X) the true conditional moment inequality and m̂θ(X) a consistent

non-parametric estimator. Moreover, let W = (Y, X) and we denote m(W, θ) the moment function.

An important simplification that occurs in practice is that, in many cases, the conditional moment is a

function of E(Y|X), which implies that the econometrician only needs to estimate E(Y|X) once for

every candidate θ. For instance, this simplification occurs in the case of the entry game we study in this

paper:

mθ,j(X) = Cθ,j(X)− q⊤j E(1(Y = y)|X) ∀j = 1, ..., p

A smooth outer set. As previously, we consider the Boltzmann operator as our smoothing operator.

Before defining our formal test, it is useful to first study the effect of replacing the min by a smooth

approximation on the identified set. We define an outer set Θo
I(ρ) as follows:

Θo
I(ρ) = {θ ∈ Rdim(θ) |E[gρ(mθ(X))] ≥ 0}

It is straightforward to show that Θo
I(ρ) contains the true identified set.

θ ∈ ΘI =⇒ gρ(mθ(X)) ≥ 0, Xa.s =⇒ E
[
gρ(mθ(X))

]
≥ 0.

A pivotal test statistic. We can now define our smooth test statistic as follows.

ξn(θ) =
√

n
1
n ∑n

i=1 gρn(m̂θ(Xi))√
Vn

with Vn a consistent estimator of the variance of gρn(m̂θ(Xi)) that we will make explicit later on.

As for the case without covariates, we let the smoothing decrease with n. The confidence region of level

1 − α is simply define as follows.:
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CRn(1 − α) = {ξn(θ) ≥ zα}

in which zα is the α-quantile of the standard normal distribution. Therefore, in contrast with most of

the existing methods, here the critical value is straightforward to derive, which is a key consideration in

practice.

If the general idea is the same as in the case without covariates, the main difficulty here comes from

the fact that we plugg-in a non-parametric estimator into the test statistic (instead of a parametric es-

timator). Here, the non-parametric rate affects the derivation of the asymptotic distribution. This type

of problem has been extensively studied in the literature on semi-parametric estimation (Newey (1994),

Ai and Chen (2003), Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018a),

Ackerberg, Chen, Hahn, and Liao (2014)) and a key regularity condition to recover a square-root asymp-

totic distribution is for gρn to be "differentiable" with respect to the first stage non-parametric estimator.

We now derive the asymptotic distribution of
√

n
(

1
n ∑n

i=1 gρn(m̂θ(Xi))− E
[
gρn(mθ(X))

])
. In partic-

ular, we exploit some existing results in the literature on semi-parametric estimation (Ackerberg, Chen,

Hahn, and Liao (2014) and Newey (1994)). Before we state the result, we list some regularity conditions

on the non-parametric estimator that we require to derive the asymptotic distribution.

In this paper, we consider a kernel based non-parametric estimator for mθ(·) and we make following

assumptions on the smoothness of kernel as well as the density and the moment functions. We could

have considered other non-parametric estimators as well (for instance a series estimator). We now state

additional regularity assumptions on the kernel estimator that allows us to prove mean square differentia-

bility and stochastic equicontinuity (see the appendix) that are sufficient conditions to recover asymptotic

normality of our estimator.

Assumption 6 Supp(X) = X is compact and f0(·), the p.d.f. of X is bounded away from zero as well

as bounded above.
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1. The kernel K(·) is differentiable of order β with bounded derivatives, K(·) is zero outside the

bounded set,
∫

K(u)du = 1 and there is positive integer m such that for j < m,∫
ujK(u)du = 0.

2. The density f0(·) and regression function mθ(·) both are continuously differentiable of order d

with bounded derivatives in an open set containing X .

Under assumptions 6, we are able to derive the following linear expansion.

Proposition 4.8 (Asymptotic expansion with covariates) Let Wi = (Yi, Xi). Under assumption 6, there

exists m̃θ(·), such that

√
n

(
1
n

n

∑
i=1

gρn(m̂θ(Xi)− E[gρn(mθ(Xi))]

)
=

√
n

(
1
n

n

∑
i=1

gρn(mθ(Xi)) + α(Wi)− E[gρn(mθ(Xi))]

)

+
ρ√
n

n

∑
i=1

(m̂θ(Xi)− mθ(Xi))
⊤ Jρn(m̃θ(Xi))(m̂θ(Xi)− mθ(Xi)) + op(1),

with α(Wi) =
∂gρn (mθ(Xi)

∂m

⊤
(mθ(Wi)− mθ(Xi))

Several remarks are in order. First, α(·) is the adjustment term that arises because of the first stage

estimation of mθ(·). Second, the 2nd order term in the expansion is of order Op(ρn1/2−2γ) and thus,

constrains the rate of divergence of ρ toward +∞ in order this term to go to 0 asymptotically. It is linked

to the non-parametric convergence rate of m̂θ(·), γ > 1/4.

Building on proposition 4.8, we can show that the confidence region is asympptotically valid and

consistent.

Proposition 4.9 Let ρn = cnα with α < 2γ − 1
2 and c > 0 a constant, let Vn an estimator of the

asymptotic variance of gρ(mθ(Xi)) + α(Wi), let m̂θ a non-parametric estimator satisfying Assumption

6. Then, CRn(1 − α) is asymptotically valid and consistent, i.e.,

• Asymptotic validity: lim inf
n→∞

inf
θ∈ΘI

Pr(θ ∈ CRn(1 − α)) ≥ 1 − α.

• Consistency: ∀θ /∈ ΘI , Pr(θ ∈ CRn(1 − α)) → 0.

See the proof in the appendix.
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2.5 Monte Carlo simulations

We perform Monte Carlo simulations to evaluate the relative performance of the different procedures

proposed in this paper of the identified set as well as the different estimation procedures.

2.5.1 Simulations without covariates

Simulation Design The simulation design directly follows the example introduced in this paper for

different sample sizes. Profit functions of firms of type 1 and 2 write as follows:

Π1 = β1 − δ1,1N1 − δ2,1N2 + ε1

Π2 = β2 − δ1,2N1 − δ2,2N2 + ε2,

in which

• Ni is the number of firms of type i=1,2

• εi for i = 1, 2 is the profit shocks. We assume that they are i.i.d., each of them drawn from a

standard distribution

In our DGP, we have β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.5. To make the exposition

easier, we assume that the econometrician knows β1 and β2 and that δ11 = δ22 as well as δ12 = δ21.

This is of course, unrealistic but allows us to simplify the exposition of the results. The general case does

present the same type of conclusions. In the multiple equilibria regions, we assume that a firm of type

1 always decides first and, therefore, we pick the equilibrium with the highest number of type 1 firms.

Observe that following Cleeren, Verboven, Dekimpe, and Gielens (2010), we know that in the multiple

equilibria regions, N1 + N2 is invariant.

The graph related to the equilibrium structure is given in Figure 2.4. Therefore, we can sharply

characterize the identified set from 9 inequalities derived from each single outcome, completed by 4

inequalities derived from pairs of outcomes (the links in the graph) and one inequality related to the
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component of outcomes with N1 + N2 = 3, i.e., a total of 14 inequalities. Among these fourteen

inequalities, 5 are equalities (we have five components).

The sample size is n = 1, 000. The number of Monte Carlo replications is 1,000. For each sample,

we compute the decision to reject or not θ ∈ ΘI for a 5% level of significance. The grid tested is

composed by values from 1 to 2 with a tick of 0.02 for δii and values from 0.4 to 1.4 with a tick of 0.02

for δij, i.e., 2601 points tested in total. We report the mean across simulations of the lowest value and

highest value for the two parameters tested. We also report the mean number of points not rejected as

well as the coverage rate of the true value θ0. Given the DGP, we can calculate P0 which is

P0 = [0.021, 0.074, 0.256, 0.047, 0.131, 0.421, 0.012, 0.034, 0.0004]⊤.

Different procedures evaluated Following Section 2.3, we can derive different sets of inequalities to

test our candidates θ. We now detail them.

• core. Here, we select the set of inequalities which corresponds to the core determining class C(θ)

that we derived by gathering all the connected subsets as shown in section 2.3.3, applying our

algorithm.

• core+. Here, we add to the previous set of inequalities, the five equalities satisfied by the model.

It is not necessary. In fact, if P1 ≤ Q1 and P2 ≤ Q2 with P1 + P2 = 1 and Q1 + Q2 = 1, then

P1 = Q1 and P2 = Q2. Nevertheless, we decide to add these five inequalities to reinforce the

equality requirement.

• core∗. Here, we add to the previous set of inequalities, four out of the five equalities satisfied by

the model. The fifth one be redundant, we wonder what would be the impact of ignoring one of

them (we drop the last one related to the outcome (2, 2).

• min−max set of inequalities which corresponds to an upper bound and a lower bound on the

probability of each individual outcome
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• min−max+. Here we add the three equalities related to the non-single components to the min

max inequalities.

Let us emphasize that for all these sets of inequalities, we derive the exact bounds implied by the

model as opposed to the rest of the literature, which except in simple cases, simulates the bounds. Thus,

the min-max strategy, which has been exploited in earlier work (like in Ciliberto and Tamer (2009) for

example) can already be understood as an enhanced version of the min-max strategy.

Concerning the critical value, we used Equation (2.4.7) with the number of inequalities tested (la-

beled CCK, p∗ =). In some cases, we were able to refine this maximum number of binding moment

inequalities exploiting the geometry of the set A(θ). We also use Liu and Xie (2020) (label "cauchy")

who propose to aggregate the p-values of the different inequalities/equalities tested into one single test

statistic. Interestingly, the critical value they propose is valid for any correlation structure.

Finally, we also smooth from each set of inequalities following our methodology and we present the

results for different values of ρ.

We display the results in Table 2.1 and 2.2. Let us first focus on the first set of results. Except for

the case min−max+ with the smallest amount of degrees of freedom, the size is controlled for the

true value. Following the specific geometry, we know that 10 out of 14 inequalities are binding at the

maximum. Given that firm of type 1 always enter first, P0 is a kink of the convex set A(θ) and, therefore,

these 10 equalities are indeed biding with θ = θ0. Interestingly, despite the fact that testing these fourteen

inequalities is equivalent to testing these fourteen inequalities completed by the 5 equalities (i.e. adding

the "opposite" inequalities for five of them), the small sample properties are much better in the latter

case. One of the message is to include these equalities explicitly in the testing procedure. Deleting one

of the redundant one (core∗ CCK, p∗ =13) does not help.

The min max procedure seems competitive. We recall that computing the minimum of the probabil-

ity of a single outcome requires to run our algorithm to the end, which could require a lot of numerical

evaluations in more complicated DGPs, or to simulate it (like in Ciliberto and Tamer, 2009) and incor-
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porate an additional noise in the testing procedure. Adding equalities to the min-max procedure seems

to work well.

Finally, the aggregation of all test into one dilutes power and does not provide a competitive alterna-

tive.

In Table 2.2, we evaluate the same set of equalities/inequalities with our smooth min function gρ(·n)

with three values of ρ, 1, 5 and 10. Again, for these procedures, the test statistic is asymptotically pivotal.

We consider two versions, one in which we compte the moments Cθ,j − q⊤j Pn for each j, one in which

we standardize each of these moments before incorporating them in the calculation of the test statistic.

First, as expected, higher values of ρ lead to smaller but valid confidence regions, which are competitive

with respect to the best procedures of Table 2.1. Second, it is better to normalize before aggregating,

because it avoids the results to be driven by the moment of the highest variance.

We change the DGP for the results displayed in Table 2.3 and 2.4 by considering uniform profit

shocks instead of normally distributed ones. The impact on the data is to get smaller multiple equilibria

regions.19 The results remain qualitatively the same. And so, for the same DGP for which we allocate

randomly the outcome in the multiple equilibria regions (Table 2.5 and 2.6).

2.5.2 Simulations with covariates

We know consider the case with covariates, in a similar setting than above. Here, X follows uniform

distribution on [0, 1]. Given X the profit of both types is equal to:

Π1 = β1 + βXX − δ1,1N1 − δ2,1N2 + ε1

Π2 = β2 + βXX − δ1,2N1 − δ2,2N2 + ε2,

19For the values chosen, the total area of multiplicity is around 6% against 15% for the DGP with normal shocks. Here the

new equilibrium probabilities are

P0 = [0.104, 0.078, 0.135, 0.151, 0.047, 0.333, 0.036, 0.094, 0.021]⊤.
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In our DGP, we have β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.5, like before, and βX = 1.

In a first step, the shocks are normally distributed like before.

We compare two strategies. Remember that for our specification, the core determining class does

not depend on the realization of X. As a result, one necessary condition for θ to be in the identified set

is that the unconditional probability vector (estimated at the standard rate) should belong to a convex

set which is the Aumann expectation of A(θ, X) (see Beresteanu and Molinari (2008)). Therefore, after

having calculated the expectation of the quantities involved in the case without covariate (with respect

to X), we can perform the same procedure than before in Table 2.1. Results are displayed in Table 2.7.

Alternatively, we can apply our smooth procedure and the results are displayed in Table 2.8.

First, the size properties are less good than in the case without covariates. When ρ is too large, the

smooth "approximation" is not competitive. The same hierarchy than without the covariates still holds.

The results seem to depend on the "size" of the multiple equilibria regions. They are better with the

uniform shocks, see Table 2.9. Alternative estimators for the variance calculation of the quantity Vn in

4.9 should be perhaps considered. It is left for future research.

2.6 Conclusion

In this paper, we develop a new method to estimate entry games with multiple equilibria, which may or

may be not point identified. First, we propose an algorithm which allows us to characterize the equilib-

rium structure in polynomial time (in the number of types). This algorithm permits to derive a compet-

itive core determining class and to calculate the bounds used for the moment inequalities generated by

this class.

Then, we propose to circumvent the problem of deriving a competitive critical value but easy-to-

derive by smoothing the minimum function. The smooth min or max functions have been used in applied

mathematics. In our case, it allows us to obtain a pivotal test statistic which automatically eliminates
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"numerically" the non binding moments. Obviously, there is a trade-off between high values of the

smoothing parameter to get close to the true identified set and accuracy of the normal approximation.

Values of ρ = 5 seem to be competitive though they should be confirmed with more simulations.

Interestingly, our procedure can easily be adapted to the case with covariates, either by testing the

unconditional probability vector or by adapting our asymptotic distribution to a non parametric estimator

of the conditional probability vector. The square-root speed of convergence of our statistic is recovered.

Monte Carlo simulations, study the properties of our procedure and underline the fact that adding redun-

dant moments in the procedure may improve the small sample properties and that size properties of our

test are very sensitive to the plug-in of the empirical variance.

Many pending questions remain. First, we are currently working on generalizing this testing proce-

dure to any model defined by conditional moment inequalities. Then, inference methods on subvectors

have been proposed in very general settings. It would be worth investigating whether the specific struc-

ture of entry games would allow an improvement in the application of these techniques. Finally, we plan

to evaluate our strategy on real data.

Tables of results
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Figure 2.4: Γ(θ) for β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.75
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Table 2.1: Coverage rate and confidence region - normal shocks

Coverage min δ11 max δ11 min δ12 max δ12 Nb. points

core CCK, p∗ =10 0.98 1.39 1.58 0.55 1.00 133

core CCK, p∗ =14 0.99 1.38 1.58 0.54 1.02 148

core+ CCK, p∗ =15 0.95 1.41 1.57 0.63 0.99 105

core∗ CCK, p∗ =13 0.95 1.41 1.57 0.62 1.04 123

core Cauchy 1.00 1.16 1.75 0.41 1.40 976

min−max CCK, p∗ =11 0.90 1.38 1.60 0.63 1.02 139

min−max CCK, p∗ =18 0.94 1.38 1.61 0.62 1.05 163

min−max Cauchy 1.00 1.00 2.00 0.40 1.40 2257

min−max+ CCK, p∗ =17 0.89 1.41 1.57 0.63 0.97 97

min−max+ CCK, p∗ =24 0.93 1.41 1.58 0.63 0.99 108

β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.75
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Table 2.2: Coverage rate and confidence region - normal shocks - Pivotal tests

Coverage min δ11 max δ11 min δ12 max δ12 Nb. points

Smooth-core NS ρ =1 1.00 1.00 1.73 0.40 1.40 1716

Smooth-core NS ρ =5 1.00 1.08 1.65 0.43 1.40 1170

Smooth-core NS ρ =10 1.00 1.25 1.62 0.50 1.40 719

Smooth-core STD ρ =1 1.00 1.00 1.82 0.40 1.40 1811

Smooth-core STD ρ =5 1.00 1.24 1.64 0.41 1.31 667

Smooth-core STD ρ =10 1.00 1.34 1.60 0.51 1.07 273

Smooth-core+ NS ρ =1 1.00 1.00 1.72 0.40 1.40 1659

Smooth-core+ NS ρ =5 1.00 1.19 1.64 0.44 1.40 912

Smooth-core+ NS ρ =10 1.00 1.31 1.61 0.52 1.40 561

Smooth-core+ STD ρ =1 1.00 1.00 1.75 0.40 1.40 1440

Smooth-core+ STD ρ =5 1.00 1.30 1.61 0.54 1.32 421

Smooth-core+ STD ρ =10 1.00 1.37 1.58 0.61 1.06 171

Smooth-min−max NS ρ =1 1.00 1.00 2.00 0.40 1.40 2547

Smooth-min−max NS ρ =5 1.00 1.01 1.85 0.45 1.40 1749

Smooth-min−max NS ρ =10 1.00 1.19 1.75 0.51 1.40 1114

Smooth-min−max STD ρ =1 1.00 1.00 1.99 0.43 1.40 2014

Smooth-min−max STD ρ =5 1.00 1.23 1.69 0.57 1.40 825

Smooth-min−max STD ρ =10 0.99 1.33 1.62 0.62 1.26 380

Smooth-min−max+ NS ρ =1 1.00 1.00 1.97 0.40 1.40 2237

Smooth-min−max+ NS ρ =5 1.00 1.20 1.68 0.48 1.40 1031

Smooth-min−max+ NS ρ =10 1.00 1.31 1.63 0.54 1.40 647

Smooth-min−max+ STD ρ =1 1.00 1.00 1.82 0.45 1.40 1645

Smooth-min−max+ STD ρ =5 1.00 1.31 1.63 0.58 1.39 500

Smooth-min−max+ STD ρ =10 0.98 1.38 1.59 0.63 1.10 188

β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.75192



Table 2.3: Coverage rate and confidence region - unif. shocks

Coverage min δ11 max δ11 min δ12 max δ12 Nb. points

core CCK, p∗ =10 0.98 1.29 1.72 0.47 1.08 398

core CCK, p∗ =14 0.99 1.28 1.74 0.45 1.10 448

core+ CCK, p∗ =15 0.95 1.31 1.68 0.56 0.99 231

core∗ CCK, p∗ =13 0.96 1.23 1.68 0.46 1.13 517

core Cauchy 0.98 1.01 1.94 0.45 1.40 1273

min−max CCK, p∗ =11 0.94 1.29 1.68 0.56 1.04 248

min−max CCK, p∗ =18 0.95 1.27 1.70 0.54 1.07 303

min−max Cauchy 0.99 1.00 2.00 0.40 1.40 2028

min−max+ CCK, p∗ =17 0.93 1.32 1.67 0.56 0.99 221

min−max+ CCK, p∗ =24 0.94 1.30 1.68 0.55 1.01 251

β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.75

193



Table 2.4: Coverage rate and confidence region - unif. shocks - Pivotal tests

Coverage min δ11 max δ11 min δ12 max δ12 Nb. points

Smooth-core NS ρ =1 1.00 1.00 2.00 0.54 1.40 2063

Smooth-core NS ρ =5 1.00 1.00 1.90 0.56 1.40 1753

Smooth-core NS ρ =10 0.99 1.03 1.79 0.58 1.40 1418

Smooth-core STD ρ =1 1.00 1.00 1.93 0.40 1.40 2369

Smooth-core STD ρ =5 1.00 1.12 1.73 0.47 1.30 1026

Smooth-core STD ρ =10 1.00 1.25 1.67 0.54 1.08 459

Smooth-core+ NS ρ =1 1.00 1.00 1.99 0.55 1.40 2012

Smooth-core+ NS ρ =5 1.00 1.01 1.83 0.57 1.40 1554

Smooth-core+ NS ρ =10 0.99 1.16 1.74 0.59 1.37 954

Smooth-core+ STD ρ =1 1.00 1.00 1.91 0.45 1.40 1943

Smooth-core+ STD ρ =5 1.00 1.20 1.71 0.56 1.26 681

Smooth-core+ STD ρ =10 0.96 1.30 1.64 0.61 1.05 291

Smooth-min−max NS ρ =1 1.00 1.00 2.00 0.40 1.40 2597

Smooth-min−max NS ρ =5 1.00 1.00 2.00 0.42 1.40 2269

Smooth-min−max NS ρ =10 1.00 1.05 1.98 0.47 1.40 1788

Smooth-min−max STD ρ =1 1.00 1.00 2.00 0.40 1.40 2293

Smooth-min−max STD ρ =5 1.00 1.10 1.80 0.53 1.40 1253

Smooth-min−max STD ρ =10 0.99 1.25 1.69 0.59 1.23 551

Smooth-min−max+ NS ρ =1 1.00 1.00 2.00 0.40 1.40 2563

Smooth-min−max+ NS ρ =5 1.00 1.05 1.93 0.46 1.40 1793

Smooth-min−max+ NS ρ =10 1.00 1.18 1.78 0.51 1.37 1077

Smooth-min−max+ STD ρ =1 1.00 1.00 2.00 0.42 1.40 2189

Smooth-min−max+ STD ρ =5 1.00 1.20 1.73 0.56 1.30 781

Smooth-min−max+ STD ρ =10 0.97 1.31 1.65 0.61 1.07 321

β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.75

194



Table 2.5: Coverage rate and confidence region - unif. shocks -interior point

Coverage min δ11 max δ11 min δ12 max δ12 Nb. points

core CCK, p∗ =10 0.99 1.29 1.73 0.46 1.08 408

core CCK, p∗ =14 0.99 1.28 1.74 0.45 1.10 458

core+ CCK, p∗ =15 0.96 1.31 1.68 0.55 0.99 234

core∗ CCK, p∗ =13 0.97 1.21 1.68 0.45 1.16 551

core Cauchy 0.98 1.01 1.92 0.46 1.40 1150

min−max CCK, p∗ =11 0.96 1.28 1.69 0.54 1.05 277

min−max CCK, p∗ =18 0.97 1.26 1.71 0.52 1.08 335

min−max Cauchy 0.99 1.00 2.00 0.40 1.40 2002

min−max+ CCK, p∗ =17 0.96 1.31 1.67 0.55 0.99 235

min−max+ CCK, p∗ =24 0.97 1.30 1.68 0.54 1.01 267

Smooth-core NS ρ =1 1.00 1.00 2.00 0.54 1.40 2062

Smooth-core NS ρ =5 1.00 1.00 1.90 0.56 1.40 1758

Smooth-core NS ρ =10 1.00 1.03 1.79 0.57 1.40 1433

Smooth-core STD ρ =1 1.00 1.00 1.92 0.40 1.40 2318

Smooth-core STD ρ =5 1.00 1.12 1.72 0.47 1.30 992

Smooth-core STD ρ =10 1.00 1.25 1.66 0.54 1.08 460

Smooth-core+ NS ρ =1 1.00 1.00 1.99 0.55 1.40 2010

Smooth-core+ NS ρ =5 1.00 1.01 1.83 0.57 1.40 1559

Smooth-core+ NS ρ =10 0.99 1.16 1.74 0.58 1.37 967

Smooth-core+ STD ρ =1 1.00 1.00 1.90 0.47 1.40 1879

Smooth-core+ STD ρ =5 0.99 1.20 1.70 0.57 1.25 658

Smooth-core+ STD ρ =10 0.96 1.30 1.64 0.61 1.05 289

Smooth-min−max NS ρ =1 1.00 1.00 2.00 0.40 1.40 2598

Smooth-min−max NS ρ =5 1.00 1.00 2.00 0.41 1.40 2283

Smooth-min−max NS ρ =10 1.00 1.05 1.98 0.46 1.40 1816

Smooth-min−max STD ρ =1 1.00 1.00 2.00 0.40 1.40 2298

Smooth-min−max STD ρ =5 1.00 1.09 1.80 0.52 1.40 1284

Smooth-min−max STD ρ =10 1.00 1.23 1.69 0.58 1.24 597

Smooth-min−max+ NS ρ =1 1.00 1.00 2.00 0.40 1.40 2564

Smooth-min−max+ NS ρ =5 1.00 1.04 1.93 0.45 1.40 1810

Smooth-min−max+ NS ρ =10 1.00 1.17 1.78 0.51 1.38 1101

Smooth-min−max+ STD ρ =1 1.00 1.00 2.00 0.42 1.40 2192

Smooth-min−max+ STD ρ =5 1.00 1.20 1.73 0.55 1.31 806

Smooth-min−max+ STD ρ =10 0.99 1.30 1.66 0.60 1.08 347

β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.75
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Table 2.6: Coverage rate and confidence region - normal. shocks -interior point

Coverage min δ11 max δ11 min δ12 max δ12 Nb. points

core CCK, p∗ =10 0.99 1.39 1.59 0.49 1.01 162

core CCK, p∗ =14 1.00 1.38 1.59 0.49 1.02 178

core+ CCK, p∗ =15 0.95 1.41 1.59 0.60 0.99 115

core∗ CCK, p∗ =13 0.96 1.40 1.59 0.59 1.07 145

core Cauchy 0.99 1.16 1.78 0.42 1.40 974

min−max CCK, p∗ =11 0.94 1.35 1.61 0.60 1.06 201

min−max CCK, p∗ =18 0.96 1.35 1.62 0.59 1.09 230

min−max Cauchy 1.00 1.00 2.00 0.40 1.40 2193

min−max+ CCK, p∗ =17 0.93 1.41 1.59 0.60 0.99 115

min−max+ CCK, p∗ =24 0.96 1.41 1.59 0.59 1.00 126

Smooth-core NS ρ =1 1.00 1.00 1.73 0.40 1.40 1689

Smooth-core NS ρ =5 1.00 1.09 1.66 0.41 1.40 1165

Smooth-core NS ρ =10 1.00 1.25 1.63 0.46 1.40 736

Smooth-core STD ρ =1 1.00 1.00 1.80 0.40 1.40 1736

Smooth-core STD ρ =5 1.00 1.24 1.65 0.40 1.25 625

Smooth-core STD ρ =10 1.00 1.34 1.61 0.49 1.05 290

Smooth-core+ NS ρ =1 1.00 1.00 1.72 0.40 1.40 1631

Smooth-core+ NS ρ =5 1.00 1.20 1.64 0.43 1.40 905

Smooth-core+ NS ρ =10 1.00 1.31 1.62 0.49 1.40 566

Smooth-core+ STD ρ =1 1.00 1.00 1.72 0.40 1.40 1349

Smooth-core+ STD ρ =5 1.00 1.30 1.61 0.54 1.26 376

Smooth-core+ STD ρ =10 1.00 1.37 1.59 0.60 1.04 171

Smooth-min−max NS ρ =1 1.00 1.00 2.00 0.40 1.40 2561

Smooth-min−max NS ρ =5 1.00 1.02 1.86 0.42 1.40 1789

Smooth-min−max NS ρ =10 1.00 1.20 1.75 0.47 1.40 1150

Smooth-min−max STD ρ =1 1.00 1.00 1.99 0.42 1.40 2010

Smooth-min−max STD ρ =5 1.00 1.22 1.69 0.55 1.40 873

Smooth-min−max STD ρ =10 1.00 1.31 1.64 0.60 1.27 438

Smooth-min−max+ NS ρ =1 1.00 1.00 1.97 0.40 1.40 2255

Smooth-min−max+ NS ρ =5 1.00 1.21 1.69 0.45 1.40 1050

Smooth-min−max+ NS ρ =10 1.00 1.31 1.64 0.51 1.40 664

Smooth-min−max+ STD ρ =1 1.00 1.00 1.81 0.44 1.40 1639

Smooth-min−max+ STD ρ =5 1.00 1.31 1.64 0.57 1.39 530

Smooth-min−max+ STD ρ =10 0.99 1.37 1.60 0.61 1.13 222

β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.75
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Table 2.7: Coverage rate and confidence region - normal. shocks - with covariates

Coverage min δ11 max δ11 min δ12 max δ12 Nb. points

core CCK, p∗ =10 0.98 1.37 1.63 0.65 0.95 113.00

core+ CCK, p∗ =15 0.88 1.37 1.59 0.66 0.90 78.00

core∗ CCK, p∗ =13 0.93 1.35 1.59 0.65 0.91 97.00

min−max+ CCK, p∗ =17 0.83 1.38 1.59 0.66 0.89 73.00

min−max+ CCK, p∗ =24 0.85 1.37 1.59 0.65 0.90 81.00

Smooth-core P0 ρ = 1 1.00 1.00 1.99 0.40 1.40 2196.00

Smooth-core P0 ρ =5 1.00 1.18 1.70 0.54 1.14 563.00

Smooth-core P0 ρ =10 1.00 1.30 1.63 0.61 0.99 233.00

Smooth-core+ P0 ρ =1 1.00 1.00 1.84 0.42 1.40 1626.00

Smooth-core+ P0 ρ =5 0.90 1.23 1.65 0.60 1.08 343.00

Smooth-core+ P0 ρ =10 0.89 1.33 1.60 0.64 0.96 141.00

Smooth-min−max P0 ρ =1 1.00 1.00 1.98 0.44 1.40 2019.00

Smooth-min−max P0 ρ =5 0.90 1.15 1.68 0.59 1.34 758.00

Smooth-min−max P0 ρ =10 0.90 1.28 1.63 0.64 1.05 264.00

Smooth-min−max+ P0 ρ =1 1.00 1.00 1.85 0.47 1.40 1711.00

Smooth-min−max+ P0 ρ =5 0.90 1.23 1.64 0.61 1.10 364.00

Smooth-min−max+ P0 ρ =10 0.90 1.33 1.60 0.65 0.95 144.00

β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.75
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Table 2.8: Coverage rate and confidence region - normal. shocks -interior point

Coverage min δ11 max δ11 min δ12 max δ12 Nb. points

Smooth-core h0 ρ =1 1.00 1.00 2.00 0.40 1.40 2204.00

Smooth-core h0 ρ =5 0.98 1.35 1.76 0.59 1.35 599.00

Smooth-core+ h0 ρ =1 0.95 1.00 1.89 0.44 1.40 1655.00

Smooth-core+ h0 ρ =5 0.63 1.38 1.70 0.66 1.26 332.00

Smooth-min−max h0 ρ =1 1.00 1.00 1.98 0.48 1.40 1975.00

Smooth-min−max h0 ρ =5 0.89 1.26 1.80 0.64 1.40 830.00

Smooth-min−max+ h0 ρ =1 0.99 1.00 1.92 0.51 1.40 1726.00

Smooth-min−max+ h0 ρ =5 0.67 1.37 1.70 0.68 1.33 406.00

β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.75
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Table 2.9: Coverage rate and confidence region - unif. shocks -interior point

Coverage min δ11 max δ11 min δ12 max δ12 Nb. points

core CCK, p∗ =15 0.97 1.28 1.70 0.55 0.96 256.00

Minmax CCK, p∗ =11 0.93 1.25 1.68 0.55 1.01 263.00

Minmax CCK, p∗ =18 0.96 1.23 1.70 0.53 1.03 308.00

min−max+ CCK, p∗ =17 0.94 1.28 1.68 0.56 0.96 237.00

min−max+ CCK, p∗ =24 0.96 1.27 1.69 0.55 0.97 264.00

Smooth-core P0 ρ =1 1.00 1.00 2.00 0.40 1.40 2300.00

Smooth-core P0 ρ =5 1.00 1.15 1.84 0.50 1.33 1124.00

Smooth-core P0 ρ =10 0.99 1.26 1.72 0.56 1.08 460.00

Smooth-core+ P0 ρ =1 1.00 1.00 2.00 0.43 1.40 2122.00

Smooth-core+ P0 ρ =5 0.99 1.20 1.76 0.56 1.24 744.00

Smooth-core+ P0y ρ =10 0.98 1.30 1.67 0.61 1.03 304.00

Smooth-min−max P0 ρ =1 1.00 1.00 2.00 0.40 1.40 2366.00

Smooth-min−max P0 ρ =5 1.00 1.07 1.81 0.52 1.39 1308.00

Smooth-min−max P0 ρ =10 0.99 1.23 1.69 0.59 1.12 490.00

Smooth-min−max+ P0-rho=y1 1.00 1.00 2.00 0.42 1.40 2288.00

Smooth-min−max+ P0 ρ =5 1.00 1.17 1.74 0.55 1.24 792.00

Smooth-min−max+ P0 ρ =10 0.98 1.29 1.66 0.61 1.02 317.00

Smooth-core h0 ρ =1 1.00 1.00 2.00 0.40 1.40 2290.00

Smooth-core h0 ρ =5 1.00 1.19 1.95 0.48 1.39 1434.00

Smooth-core h0 ρ =10 0.90 1.33 1.84 0.56 1.21 673.00

Smooth-core+ h0 ρ =1 1.00 1.00 2.00 0.41 1.40 2134.00

Smooth-core+ h0y ρ =5 0.97 1.23 1.88 0.54 1.36 1055.00

Smooth-core+ h0y ρ =10 0.71 1.37 1.78 0.61 1.15 445.00

Smooth-min−max h0 ρ =1 1.00 1.00 2.00 0.41 1.40 2325.00

Smooth-min−max h0 ρ =5 1.00 1.12 1.93 0.55 1.40 1441.00

Smooth-min−max h0 ρ =10 0.85 1.31 1.80 0.63 1.30 691.00

Smooth-min−max+ h0 ρ =1 1.00 1.00 2.00 0.42 1.40 2259.00

Smooth-min−max+ h0 ρ =5 0.98 1.22 1.85 0.58 1.36 1024.00

Smooth-min−max+ h0 ρ =10 0.74 1.36 1.75 0.65 1.15 414.00

β1 = 3, β2 = 2, δ11 = δ22 = 1.5 and δ12 = δ21 = 0.75
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2.A Extension

2.A.1 Inference with the LSE smoothing function

Instead of using the Boltzmann operator as a smoothing function, we could have used the LogSumExp

(LSE) function. This function is also used in machine-learning and numerical optimization. In this

section, we keep the same notations as previously: mθ ≡ E[m(Y, θ)] and we omit the dependence of p

in θ.

For z = (z1, z2, ..., zp) ∈ Rp, the LSE smooth approximation gρ(·) of the minimum function is as

follows:

gρ(z) = −ρ−1 log
( p

∑
j=1

exp(−ρzj)
)

,
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in which ρ, the smoothing parameter, controls the level of approximation. A nice property of this approx-

imation is that it is possible to control for the difference between the minimum and its approximation

through the following inequality:

0 ≤ min
1≤j≤p

zj − gρ(z) ≤ ρ−1 log(p). (2.A.11)

This inequality is straightforward to derive and the upper bound is reached when all the elements in z

are equal. The minimum is simply the limit of gρ(z) when ρ → +∞.

As we did with the Boltzmann operator, we can show that a smooth outer set Θo
I(ρ) of the identified

set ΘI writes as follows:

We know collect the set Θo
I(ρ) of parameters θ such that

Θo
I(ρ) =

{
θ ∈ Rq+q′ | gρ(mθ) = −ρ−1 log

(
1 + ∑

p
j=1 exp(−ρmθ,j)

p + 1

)
≥ 0

}
. (2.A.12)

Uncentered test statistic. Similarly to what we did with the Boltzmann operator, let us define our

smooth test statistic as follows:

ξn(θ) =
√

n
gρn(mθ,n)√

∇gρn(mθ,n)TΣn∇gρn(mθ,n)

with ∇gρn(·) the gradient of gρn(·) that we define in the appendix and Σn a consistent estimator of

Σ0. Under the assumption that the moments are normally distributed, we can show that the uncentered

statistic has the following asymptotic expansion

Proposition 1.1 (Asymptotic expansion of the test statistic.) Let ρn a divergent sequence of positive

number such that ρn = O (nα), 0 < a < 1/2, then

√
ngρn(mθ,n) =

√
ngρn(mθ) + Γ0(θ)

√
n(mθ,n − mθ) + op(1)

with Γ0(θ) ≡ limρ→∞ ∇gρ(mθ).

207



The proof is in the appendix. The constraint on the speed of ρn implies that the smoothing cannot

be faster than the standard square-root speed of convergence. Contrary to the Boltzmann case, here the

term
√

ngρn(mθ) does not vanish asymptotically and thus we need to recenter our test statistic. This is

why we favor the Boltzmann operator over the LSE smothing function.

Let p∗ the number of binding moments and p̂∗n a consistent estimator of p∗. Namely, for τn = n−β

and 0 < β < 1
2 ,

p̂∗n =
p

∑
j=1

1

 mθ,j√
σ2

n,j

< τn

 . (2.A.13)

p̂∗n is obtained collecting the number of empirical moments which are "close to 0", with σn,j a

consistent estimator of Var(mθ,j). Our re-centered test statistic writes:

ξ̃n(θ) =
√

n
gρn(mθ,n)− 1

ρn
log
(

1+p
1+ p̂∗n

)
√
∇gρn(mθ,n)TΣn∇gρn(mθ,n)

The confidence region associated with the re-centered test statistic simply writes:

CRn(1 − α) = {θ ∈ Rq+q′ , ξ̃n(θ) ≥ zα}, (2.A.14)

Next, we derive the asymptotic distribution of the re-centered test statistic and we show that our

procedure yields valid confidence region with asymptotically the exact size when at least one moment is

binding. Moreover, our procedure is consistent: the econometrician rejects with probability that goes to

1 when θ /∈ ΘI . The next proposition describes the asymptotic behavior of the test statistic.

Proposition 1.2 Let ρn a divergent sequence of positive numbers such that ρn = O (nα), 0 < a < 1/2

and let p̂∗n an estimator of the number of binding moments, p∗, defined in Equation (2.A.13). Then there

are 3 different cases:

• θ ∈ int(ΘI) (θ ∈ ΘI and J0 = card(J (θ)) > 0, i.e. the number of binding moments is larger

than 0):

Pr(ξ̃n(θ) > zα) →
n→+∞

1
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• θ ∈ ∂ΘI (θ ∈ ΘI and J0 = card(J (θ)) > 0, i.e. the number of binding moments is larger than

0). Then our test statistic is asymptotically distributed as a standard normal:

ξ̃n(θ)
d→ N (0, 1)

• θ /∈ ΘI : Pr(ξ̃n(θ) > zα) →
n→+∞

0

The proof of this proposition is in the appendix. With the LSE smoothing function, our procedure

is also very simple (even if unlike with the Boltzmann smoother, we need to estimate the number of

non-binding moments). The test statistic and the critical value are straightforward to derive.

Remarks. We achieve this subsection with two remarks.

• As we did with the Boltzmann operator, it is possible to modify the test statistic by standardizing

the empirical moments by the estimated variance.

• Second, we can still compute confidence regions based on ξn(θ) instead of the re-centered version.

This would avoid to estimate the number of binding moments but leads to conservative procedure.

2.A.2 Alternative solutions for the choice of ρn

As an alternative approach, we can take ρn large to "kill" the identification bias and take into account

the second-order term in the asymptotic distribution. One of the drawbacks is that here, the asymptotic

distribution is no longer pivotal and we need to resort to simulation methods.
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2.B Proof of Propositions

Selection of the moment inequalities

Proof of proposition 3.1

We want to prove the following statement: if A is not connected in Γ(θ), then A generates a redundant

moment.

To show this, we are going to use the equivalent definition of connectedness. A subset A ⊂ Y is

connected in Γ(θ) if and only if for every partition in 2 subsets A1 and A2 of A, there exists at least one

element y1 ∈ A1 and y2 ∈ A2 that have overlapping equilibrium regions Rω(X, y1) and Rω(X, y2).

Assume that A is not connected in Γ(θ), then there exists A1 and A2 such that A = A1 ∪ A2 and

A1 and A2 are such that Rω(X, A1) ∩Rω(X, A2) = ∅. First, let us consider the moment inequalities

generated by A1 and A2 separately. We have

P0(Y ∈ A1|X) ≤ Pη(ε ∈ Rω(X, A1)) and P0(Y ∈ A2|X) ≤ Pη(ε ∈ Rω(X, A2)).

By combining these 2 inequalities, we have:

P0(Y ∈ A1|X) + P0(Y ∈ A2|X) ≤ Pη(ε ∈ Rω(X, A1)) + Pη(ε ∈ Rω(X, A2))

⇐⇒ P0(Y ∈ A1 ∪ A2|X) ≤ Pη(ε ∈ Rω(X, A1)) + Pη(ε ∈ Rω(X, A2))− Pη(ε ∈ Rω(X, A1) ∩Rω(X, A2))

⇐⇒ P0(Y ∈ A|X) = P0(Y ∈ A1 ∪ A2|X) ≤ Rω(X, A1) ∪Rω(X, A2)) = Pη(ε ∈ Rω(X, A).

The second line in the expression above comes from the fact that A1 and A2 are disjoint and thus P0(Y ∈

A1 ∪ A2) = P0(Y ∈ A1) + P0(Y ∈ A2). What’s more, by assumption Rω(A1) ∩Rω(A2) = ∅ and

as a consequence, Pη(ε ∈ Rω(A1) ∩Rω(A2)) = 0. The last line stems from the inclusion-exclusion

formula. This proves our result. ■
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Proof of proposition 3.2

From proposition 2.1, we know that an outcome y1 = (N1, ...., NT) is a NE of this game if and only if:

∀t ∈ T ,

−πt(X, Nt, N−t; ω) ≤ εt ≤ −πt(X, Nt + 1, N−t; ω).

This system of 2T inequalities defines a region Rω(X, y1) in the space of unobserved heterogeneity.

Analogously, we can define a region Rω(X, y2) in the space of unobserved heterogeneity where y2 =

(N̄1, ..., N̄τ) is a NE of this game. Rω(X, y1) and Rω(X, y2) are T-cubes in RT. Hence, these regions

have a non-empty intersection if and only if for each dimension (which here corresponds to a type), the

projections of these cubes have a non-empty intersections. Formally,

Rω(X, y1) ∩Rω(X, y2) ̸= ∅ ⇐⇒ ∀t ∈ T , Proj(Rω(X, y1)|et) ∩ Proj(Rω(X, y2)|et) ̸= ∅

Once again, by definition of Rω(X, y1), Proj(Rω(X, y1)|et) = [−πt(X, Nt, N−t; ω) ≤ εt ≤ −πt(X, Nt +

1, N−t; ω)[. Likewise, Proj(Rω(X, y2)|et) = [−πt(X, N̄t, N̄−t; ω) ≤ εt ≤ −πt(X, N̄t + 1, N̄−t; ω)[

Furthermore, from basic analysis results on sets in R, [a, b[ ∩ [c, d[ ̸= ∅ ⇐⇒ a < d and c < b,

which applied to our two regions, proves the result. ■

Inference without covariates

Boltzmann operator as smoothing function

For z = (z1, z2, ..., zp) ∈ Rp, we have a smooth approximation of the minimum function:

gρ(z) =
∑

p
j=1 zj exp(−ρzj)

1 + ∑
p
j=1 exp(−ρzj)

,

in which ρ, the smoothing parameter, controls the level of approximation. We consider a set-up in which

we have p moment inequalities. The identified set is defined as follows

ΘI = {θ ∈ Θ | for j = 1, ..., p, E[mj(W, θ)] ≥ 0}
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For simplicity, we define mθ ≡ E[m(W, θ)]. A special case of moment inequalities is the case of

games in which the jth is defined as follows:

mθ,j = hθ,j(P0) = Cθ,j − q⊤j P0.

In matricial form:

hθ,j(P0) = Cθ − QP0.

We denote Gρ,θ(P0) = gρ(hθ(P0))

Preliminary results:

• Gradient. A closed-form expression for the gradient is:

∇gρ(mθ) = w (2.B.15)

where for each element j = 1, ..., p:

wj =
e−ρmθ,j

(
1 − ρmθ,j + ρgρ(mθ)

)
1 + ∑

p
j=1 e−ρmθ,j

,

In the case of games, we have:

∇Gθ,ρ(P0) =
∂hθ(P0)

∂P
∇gρ(hθ(P0))

= −Q⊤∇gρ(hθ(P0))

= −
p

∑
j=1

wjqj

• Hessian. Let Hρ(mθ) = ∇⊤∇gρ(mθ) the Hessian. We have for any element hj,k of Hρ:

hj,k = ρ

 e−ρmθ,j wk + e−ρmθ,k wj

1 + ∑
p
j′=1 e−ρmθ,j′

− 1{j = k}

wj +
e−ρmθ,k

1 + ∑
p
j′=1 e−ρmθ,j′

 (2.B.16)
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In matricial form:

Hρ(mθ) = ρ
1

1 + ∑
p
j′=1 e−ρmθ,j′

(
e−ρmθ wT + we−ρmθ

T −
(

diag(w)(1 +
p

∑
j′=1

e−ρmθ,j′ ) + diag(e−ρmθ)

))
(2.B.17)

One can easily check that the Hessian is symmetric. In the case of games, we have Hρ,θ(P0) =

∇⊤∇Gθ,ρ(P0) that writes as follows:

Hρ,θ(P0) =
∂

∂P
Gθ,ρ(P0)

⊤

= −∂hθ(P0)

∂P
∇⊤∇gρ(mθ)Q

= Q⊤Hρ(mθ)Q

• Limits population moments: we now derive useful convergence results with population moments

that we will use later on. First, let us define γ = min{mθ,1, ..., mθ,2}. We define

J (θ) =
{

j ∈ {1, . . . , p} |mθ,j = min{0, γ}
}

and J0 = card(J (θ)). Finally, let 1p = (1, ..., p)′ the vector of indices. Then, we have the

following results:

lim
ρ→∞

∇gρ(mθ) ≡ Γ0(θ) =
{1p ∈ J (θ)}
1{γ ≥ 0}+ J0

.

In the case of games:

lim
ρ→∞

∇Gθ,ρ(P0) = −Q⊤Γ0(θ).

Likewise, we can show that:

lim
ρ→∞

Hρ(mθ)

ρ
= H0(θ) ≡ 2Γ0(θ)Γ0(θ)

⊤ − 2diag(Γ0(θ))

This matrix is diagonal dominant with all of its diagonal term negative and thus it is negative

definite. Finally, we have:

lim
ρ→∞

Hθ,ρ(P0)

ρ
= Q⊤H0(θ)Q

The proofs are straightforward and thus omitted.
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• Limits empirical moments: we now derive useful convergence results with empirical moments

that we will use later on. Let us assume that mn,θ is a
√

n-consistent estimator of mθ as stated in

Assumption 4.

We further assume that ρn is such that ρn = cnα with 0 < α < 1
2 .

Proposition 2.1 If we assume that all the moments are finite, then we have the following results:

• ∥∇gρn(mθ,n)− Γ0(θ)∥
P→ 0

• ∥Hρn (mθ,n)
ρn

− H0(θ)∥
P→ 0

Proof. • First consider the case where γ ≥ 0 (i.e. θ /∈ ΘI).

First, we want to show that e−ρnmθ,n
P→ {1p ∈ J (θ)}

∀j, e−ρnmθ,n,j = e−ρn(mθ,j+Op

(
1√
n

)
)
= e−ρnmθ,j

(
1 + Op

(
ρn√

n

))

=


1 + Op

(
ρn√

n

)
if mθ,j = 0

Op(
1
nb ) for any b > 0 if mθ,j > 0

P→


1 if mθ,j = 0

0 if mθ,j > 0

Likewise, let us show that for any j, ρnmθ,n,je−ρnmθ,n,j P→ 0. We have that:

ρnmθ,n,j = ρnmθ,j + Op

(
ρn√

n

)
=


Op

(
ρn√

n

)
if mθ,j = 0

Op (ρn) if mθ,j > 0

From what precedes:

e−ρnmj,n,θ =


1 + Op

(
ρn√

n

)
if mθ,j = 0

Op(
1
nb ) for any b > 0 if mθ,j > 0

214



Consequently, we have:

ρnmj,n,θe−ρnmθ,j,n =


Op

(
ρn√

n

)
if mθ,j = 0

Op(
1
nb ) for any b > 0 if mθ,j > 0

Let Yn = e−ρnmθ,n and Zn = ρnmθ,n,je−ρnmθ,n,j . By a simple application of the continuous map-

ping theorem to the random variables Yn and Zn we can show the following results:

(i) ∑
p
j′=1 e−ρmθ,n,j′ P→ J0

(ii) e−ρmθ,n

1+∑
p
j′=1

e
−ρm

θ,n,j′
P→ {1p∈J (θ)}

1+J0

(iii) ∀j, ρnmθ,n,j
e−ρmθ,n,j

1+∑
p
j′=1

e
−ρm

θ,n,j′
P→ 0

(iv) ρngρn(mθ,n) =
∑

p
j=1 ρnmθ,n,je

−ρmθ,n,j

1+∑
p
j′=1

e
−ρm

θ,n,j′
P→ 0

Therefore, by combining these different results, we have:

(v) wj(mθ,n)
P→ 1{j∈J (θ)}

1+J0

(vi) ∇gρn(mθ,n)
P→ Γ0(θ)

(vii) Hρn (mθ,n)
ρn

P→ H0(θ)

• Second, we consider the case where γ < 0 (i.e. θ /∈ ΘI).

Let us show that:

gρn(mn,θ)
P→ γ
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gρn(mθ,n) =
∑

p
j=1 mθ,n,je−ρnmθ,n,j

1 + ∑
p
j=1 e−ρnmθ,n,j

=
∑

p
j=1 mθ,je−ρnmθ,j(1 + Op(

1√
n ))

1 + ∑
p
j=1 e−ρnmθ,j(1 + Op(

1√
n ))

=
∑

p
j=1 mθ,je−ρn(mθ,j−γ)(1 + Op(

1√
n ))

eρnγ + ∑
p
j=1 e−ρn(mθ,j−γ)(1 + Op(

1√
n ))

=
op(1) + ∑j∈J (θ) γ(1 + Op(

1√
n ))

op(1) + ∑j∈J̄ (θ)(1 + Op(
1√
n ))

P→ γ

The third line comes from multiplying the numerator and the denominator by eρnγ. Fourth line

comes from the fact that for j /∈ J (θ), (mθ,j − γ) > 0.

By similar arguments: we can show that:

(i) e−ρnmθ,n

1+∑
p
j=1 e−ρnmθ,n,j

P→ Γ0(θ) =
{1p∈J (θ)}

J0

(ii) ∇gρn(mθ,n)
P→ Γ0(θ) =

{1p∈J (θ)}
J0

(iii) Hρn (mθ,n)
ρn

P→ H0(θ)

Proof of proposition 4.2

(i) First proposition is straightforward:

Following Equation (2.4.9), if θ ∈ ΘI , for any j = 1, . . . , p,

mθ,j = Emj(Y, θ) ≥ 0.

Therefore, gρ(mθ) =
∑

p
j=1 mθ,je

−ρmθ,j

1+∑
p
j=1 e−ρmθ,j

that is a weighted sum of the components of mθ is necessarily

greater or equal than 0.
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(ii) TBD

■

Proof of Proposition 4.4

Proof. For all n ∈ N∗, gρn is infinitely differentiable. Thus, by the mean value Taylor expansion,∀n ∈
N∗, ∃m̃θ,n ∈ [mθ,n, mθ] such that the following expansion holds:
√

ngρn(mθ,n) =
√

ngρn(mθ) +
√

n(gρn(mθ,n)− gρn(mθ))

=
√

ngρn(mθ)︸ ︷︷ ︸
An

+∇gρn(mθ)
√

n(mθ,n − mθ)︸ ︷︷ ︸
Bn

+
ρn√

n
√

n(mθ,n − mθ)
⊤ Hρn(m̃θ,n)

ρn

√
n(mθ,n − mθ)︸ ︷︷ ︸

Cn

we have:

• For the term Bn we have:

Bn = ∇gρn(mθ)
⊤√n(mθ,n − mθ)

= Γ0(θ)
⊤√n(mθ,n − mθ) + (∇gρn(mθ)− Γ0(θ))

⊤√n(mθ,n − mθ)

= Γ0(θ)
⊤√n(mθ,n − m0) + o(1)Op(1)

Third line comes from Assumption 4 and the simple convergence of ∇gρn(mθ)

• Finally, for the term Cn, we have:

Cn =
ρn√

n
√

n(mθ,n − mθ)
⊤ Hρn(m̃θ,n)

ρn

√
n(mθ,n − mθ)

=
ρn√

n

(√
n(mθ,n − mθ)

⊤H0(θ)
√

n(mθ,n − mθ) +
√

n(mθ,n − mθ)
⊤(

Hρn(m̃θ,n)

ρn
− H0(θ))

√
n(mθ,n − mθ)

)
=

ρn√
n

Op(1) +
ρn√

n
op(1) = Op(

ρn√
n
) = op(1)

Third line is implied by the fact that m̃θ,n = mθ,n + Op(1/
√

n). Thus, from Proposition 2.1, we have:
Hρn (m̃θ,n)

ρn
− H0(θ) = op(1). Moreover, by assumption

√
n(mθ,n − mθ) = Op(1) and H0(θ) is clearly

bounded. This shows the result.
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Proof of Proposition 4.3

Proof. From Proposition 4.4

√
ngρn(mθ,n) =

√
ngρn(mθ) + Γ0(θ)

√
n(mθ,n − mθ) + op(1)

Let us consider the three different cases

(i) θ ∈ ∂ΘI .
√

ngρn(mθ) =
√

n
∑

p
j=1 mθ exp(−ρnmθ)

1+∑
p
j=1 exp(−ρnmθ)

=
√

n ∑j/∈J (θ) mθ exp(−ρnmθ)

1+∑
p
j=1 exp(−ρnmθ)

→
n→+∞

0

because for j /∈ J (θ), mj(θ) > 0.

Thus, directly from the CLT and the continuous mapping theorem, we have:

√
ngρn(mθ,n)

d→ Γ0(θ)
⊤N (0, Σ0) = N (0, Γ0(θ)

⊤Σ0Γ0)

Because θ ∈ ∂ΘI , Γ0(θ) ̸= 0 and thus Γ0(θ)
⊤Σ0Γ0 > 0.

From Proposition 2.1: gρn(mθ,n)
P→ Γ0(θ). By assumption, Σn

P→ Σ0

Therefore, by the CLT, ∇gρn(mθ,n)
TΣn∇gρn(mθ,n)

P→ Γ0(θ)
⊤Σ0Γ0 and we can apply Slutsky’s

lemma to conclude.

(ii) θ ∈ int(ΘI). In this case, we can rewrite ξn(θ) as follows:

ξn(θ) =
√

n
gρn(mθ,n)√

∇gρn(mθ,n)TΣn∇gρn(mθ,n)

=
∑

p
j=1 mθ,n,je−ρmθ,n,j

1 + ∑
p
j=1 e−ρnmθ,n,j

/

√
∇̄gρn(mθ,n)TΣn∇̄gρn(mθ,n)

1 + ∑
p
j=1 e−ρnmθ,n,j

=
√

n
∑

p
j=1 mθ,n,je−ρnmθ,n,j√

∇̄gρn(mθ,n)TΣn∇̄gρn(mθ,n)

with ∇̄gρn(mθ,n)j ≡ e−ρmθ,n,j
(
1 − ρnmθ,n,j + ρngρn(mθ,n)

)
the numerator of ∇gρn(mθ,n). We

define c = min
j

mθ,j and J̃ (θ) =

{
j ∈ argmin

j
mθ,j

}
and J̃0 = card(J̃ (θ)). For the exposition,
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let us assume that J̃0 = 1 with j∗ the minimum (we can show the result in the general case). By

standard arguments, we can show that:

ξn(θ) =
√

n
ce−ρnc(1 + op(1))√

e−2ρncc2ρ2
nσ2

0j(1 + op(1))

=

√
n

ρn
σ−1

0j∗
(1 + op(1))√
(1 + op(1))

Consequently, ρn√
n ξn(θ)

P→ σ−1
0j∗ . Therefore,

Pr(ξn(θ) > zα) = Pr(
ρn√

n
ξn(θ)−

ρn√
n

zα > 0) →
n→+∞

1

Last line uses the fact that by assumption we have ρn√
n →

n→+∞
0.

(iii) θ /∈ ΘI =⇒ γ < 0. If the moment conditions satisfy the CLT of Assumption 4, then we have

from Proposition 2.1:

– gρn(mn,θ)
P→ γ

– ∇gρn(mθ,n)
P→ Γ0(θ) =

{1p∈J (θ)}
J0

Therefore, by the continuous mapping theorem, ξn(θ)√
n =

gρn (mθ,n)

∇gρn (mθ,n)TΣn∇gρn (mθ,n)

P→ γ
Γ0(θ)⊤Σ0Γ0(θ)

<

0

Pr (ξn(θ) ≥ zα) = Pr
(

ξn(θ)√
n

− zα√
n
− γ

Γ0(θ)⊤Σ0Γ0(θ)
≥ − γ

Γ0(θ)⊤Σ0Γ0(θ)

)
≤ Pr

(∣∣∣∣ξn(θ)√
n

− zα√
n
− γ

Γ0(θ)⊤Σ0Γ0(θ)

∣∣∣∣ ≥ − γ

Γ0(θ)⊤Σ0Γ0(θ)

)
→

n→∞
0

Last line comes from the fact that gρn (mθ,n)

∇gρn (mθ,n)TΣn∇gρn (mθ,n)

P→ γ
Γ0(θ)⊤Σ0Γ0(θ)
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Important remark: The proof above indicates that the asymptotic distribution exhibited in Proposi-

tion 4.3 remains valid if one replaces gρn(mθ,n) in ξn(θ) by any consistent estimator of Γ0(θ). For

instance, one could use: exp(−ρnmθ,n)
1+∑j=1 p exp(−ρnmθ,n,j)

instead.

Proof Asymptotic distribution when the moments are standardized

Remember that the standardized version of the test statistic writes:

ξ̃n(θ) =
√

n
gρn(m̃θ,n)

∇gρn(m̃θ,n)TΩn∇gρn(m̃θ,n)

With Ωn a consistent estimator of the correlation matrix Ω0 = diag(Σ0)
−1/2Σ0diag(Σ0)

−1/2.

Proposition 2.2 Let ρn a divergent sequence of positive numbers such that ρn = O(nα), 0 < α < 1/2.

Let us further assume that ∀j, σj,θ > 0. Then there are 3 different cases:

• θ ∈ int(ΘI) (θ ∈ ΘI and J0 = card(J (θ)) > 0, i.e. the number of binding moments is larger

than 0):

Pr(ξ̃n(θ) > zα) →
n→+∞

1

• θ ∈ ∂ΘI (θ ∈ ΘI and J0 = card(J (θ)) > 0, i.e. the number of binding moments is larger than

0). Then our test statistic is asymptotically distributed as a standard normal:

ξ̃n(θ)
d→ N (0, 1)

• θ /∈ ΘI : Pr(ξ̃n(θ) > zα) →
n→+∞

0

Proof. The proof is very similar to the one in the non-normalized case. Under assumption ?? and by the

continuous mapping theorem (exploiting the fact that σθ,j is positive so Diag(Σ0)
−1/2 is well defined),

the following holds:

diag(Σn)
−1/2√n(mθ,n − mθ)

d→ N (0, diag(Σ0)
−1/2Σ0diag(Σ0)

−1/2) = N (0, Ω0)

Now let us consider the 3 different cases:
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• θ ∈ ∂ΘI: By the same arguments as in the proof of Proposition 4.4

√
ngρn(m̃θ,n) = Γ0(θ)diag(Σn)

−1/2√n(mθ,n − mθ) + op(1)

Thus, we have that
√

ngρn(m̃θ,n)
d→ Γ0(θ)

⊤N (0, Ω0)

By standard arguments, we have:

√
n

gρn(m̃θ,n)

∇gρn(m̃θ,n)TΩn∇gρn(m̃θ,n)
d→ N (0, 1)

• θ ∈ Int(ΘI): same argument as in Proposition 4.3

• θ /∈ ΘI: same argument as in Proposition 4.3

Proof of Proposition 4.5

We have that the finite sample bias is equal to:

E
[√

ngρn(mθ,n)
]
=

√
ngρn(mθ)︸ ︷︷ ︸

Identification bias

+
ρn√

n
E

[√
n(mθ,n − mθ)

⊤ Hρn(m̃θ,n)

ρn

√
n(mθ,n − mθ)

]
︸ ︷︷ ︸

Bias implied by the Taylor expansion’s rest

No let us find an upper bound on both terms:

• identification bias: under H0 : θ ∈ ΘI , the identification bias corresponds to the difference

between the approximation of the minimum and the minimum:
√

ngρn(mθ) =
√

n(gρn(mθ)−
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min{0, mθ,1, ..., mθ,p}., this bias is equal to:

|Identification bias| =
√

ngρn(mθ) =
∑j/∈J (θ) mθ,je−ρmj

1 + J0 + ∑j/∈J (θ) e−ρmj

≤
∑j/∈J (θ) mθ,je−ρmj

1 + J0

≤ (p − J0)

1
ρn

e−1

1 + J0

Third line comes from the fact that xe−ρnx is maximized at x = 1
ρn

.

• Bias implied by the Taylor expansion’s rest. Now we want to provide an upper bound on the

rest of the Taylor expansion.

– First, let us study the asymptotic behavior of the rest. We can show that:

ρn√
n
√

n(mθ,n − mθ)
⊤ Hρn(m̃θ,n)

ρn

√
n(mθ,n − mθ) =

ρn√
n
√

n(mθ,n − mθ)
⊤H0(θ)

√
n(mθ,n − mθ) + op

(
ρn√

n

)

We have to compute E
[

ρn√
n

√
n(mθ,n − mθ)

⊤H0(θ)
√

n(mθ,n − mθ)
]
. Given that

√
n(mθ,n −

mθ)
d→ N (0, Σ0), we have by the continuous mapping theorem:

√
n(mθ,n − mθ)

⊤H0(θ)
√

n(mθ,n − mθ)
d→ ZTΣ1/2

0 H0(θ)Σ1/2
0 Z =

p

∑
j=1

λjχ
2

with Z ∼ N (0, Ip) and (λj, ..., λp) the eigen values of Σ1/2
0 H0(θ)Σ1/2

0 . As a consequence,

E

[
ρn√

n
√

n(mθ,n − mθ)
⊤H0(θ)

√
n(mθ,n − mθ)

]
=

ρn√
n

p

∑
j=1

λj + op

(
ρn√

n

)
.

Let us observe that H0 is negative definite and thus the eigen values of Σ1/2
0 H0(θ)Σ1/2

0 will

be negative.
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– Second, let us try to find an upper bound on the bias. We have:

∣∣∣∣E( ρn√
n
√

n(mθ,n − mθ)
⊤ Hρn(m̃θ,n)

ρn

√
n(mθ,n − mθ)

)∣∣∣∣
=

∣∣∣∣E(tr
(

ρn√
n
√

n(mθ,n − mθ)
⊤ Hρn(m̃θ,n)

ρn

√
n(mθ,n − mθ)

))∣∣∣∣
≤ ρn√

n
E

∣∣∣∣tr(√n(mθ,n − mθ)
√

n(mθ,n − mθ)
⊤ Hρn(m̃θ,n)

ρn

)∣∣∣∣
≤ ρn√

n
E

∣∣∣∣tr (√n(mθ,n − mθ)
√

n(mθ,n − mθ)
⊤
)

tr
(

Hρn(m̃θ,n)

ρn

)∣∣∣∣
≤ ρn√

n

√
E tr

(√
n(mθ,n − mθ)

√
n(mθ,n − mθ)⊤

)2
E tr

(
Hρn(m̃θ,n)

ρn

)2

.

Second line uses tr(AB) = tr(BA). Third line uses properties on the trace: trace(AB)2 ≤
tr(A2)tr(B2) ≤ tr(A)2tr(B)2. Last line obtained from Cauchy Schwarz

– Third, observe that the bias can also be estimated by simulations methods

• Choice of ρn In the end, we obtain that an upper bound on the absolute value bias (identification

bias+ Taylor rest) is of the from:

Bias ≤ (p − J0)

1
ρn

e−1

1 + J0
+

ρn√
n

K0

with K0 > 0 a constant that increases with the number of binding moments and the variance of the

moments. Thus, we want to choose ρn to minimize this upper bound and we find:

ρn = n1/4

√
(p − J0)e−1

(1 + J0)K0
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LSE as smoothing function

Preliminary results:

Before expanding the test-statistic gρ(·), we need a few lemmas to characterize the higher order deriva-

tives of

gρ : mθ 7→ gρ(mθ).

Lemma 1 The function gρ : mθ 7→ gρ(mθ) is infinitely differentiable in any mθ ∈ Rp. Furthermore,

• we have a close form expression for the gradient:

∇gρ(mθ) = w, (2.B.18)

in which

wj =
exp(−ρmθ,j)

1 + ∑
p
j=1 exp(−ρmθ,j)

.

• as well as for the Hessian:

Hρ(mθ) = ∇gρ(mθ)∇⊤ = ρ
(
−diag(w) + wwT

)
. (2.B.19)

The proof is straightforward and thus omitted. Observe that the Hessian in mθ is equal to ρ times a

bounded matrix (for instance an upper bound is simply 2Ip.

we now derive useful convergence results that we will use later on. Assume that moments mθ,n satisfy

the CLT of Assumption 4.

First, let us define γ = min{mθ,1, ..., mθ,2}. We define

J (θ) =
{

j ∈ {1, . . . , p} |mθ,j = min{0, γ}
}

and J0 = card(J (θ)). Finally, let 1p = (1, ..., p)′ the vector of indices.

224



Lemma 2 The following results hold:

lim
ρ→∞

∇gρ(mθ) = Γ0(θ) =
{1p ∈ J (θ)}
1{γ ≥ 0}+ J0

and assume that ρn is a diverging sequence of numbers such that ρn = O(nα) with α ∈]0, 1/2[.∥∥∇gρ(mθ,n)− Γ0(θ)
∥∥

2
P−→

ρ→∞
0.

Proof Let’s prove the first claim:

• If γ > 0, then for any j, mθ,j > 0[
∇gρ(mθ)

]
j =

exp(−ρmθ,j)

1 + ∑
p
j=1 exp(−ρmθ,j)

−→
ρ→∞

0

• If γ ≤ 0, then:[
∇gρ(mθ)

]
j =

exp(−ρmθ,j)

1 + ∑
p
j=1 exp(−ρmθ,j)

=
exp(−ρ(mθ,j − γ))

exp(ργ) + ∑
p
j=1 exp(−ρ(mθ,j − γ))

−→
ρ→∞

{1p ∈ J (θ)}
1{γ = 0}+ J0

For the second claim:∥∥∇gρ(mθ,n)− Γ0(θ)
∥∥

2 ≤
∥∥∇gρ(mθ,n)−∇gρ(mθ)

∥∥
2 +

∥∥∇gρ(mθ)− Γ0(θ)
∥∥

2 , (2.B.20)

=
∥∥Hρ(m̃θ,n)(mθ,n − mθ)

∥∥
2 +

∥∥∇gρ(mθ)− Γ0(θ)
∥∥

2 , (2.B.21)

in which m̃θ,n is a point in the segment [mθ,n, mn].

Following, Lemma 1, the first term is bounded by∥∥Hρ(m̃θ,n)(mθ,n − mθ)
∥∥

2 ≤ ρn√
n

H̄
√

n(mθ,n − mθ)

As the moment are by assumption asymptotically normal, we have:∥∥Hρ(m̃θ,n)(mθ,n − mθ)
∥∥

2 ≤ ρn√
n
× Op(1),

and it tends to 0 in probability given the speed of divergence of ρn.

The second term in (2.B.21) tends trivially to 0 in probability from the definition of Γ0(θ). ■
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Proof of proposition 1.1

Proof. For all n ∈ N∗, gρn is infinitely differentiable. Thus, by the mean value Taylor expansion,∀n ∈
N∗, ∃m̃θ,n ∈ [mθ,n, mθ] such that the following expansion holds:

√
ngρn(mθ,n) =

√
ngρn(mθ) +

√
n(gρn(mθ,n)− gρn(mθ))

=
√

ngρn(mθ)︸ ︷︷ ︸
An

+∇gρn(mθ)
√

n(mθ,n − m0)︸ ︷︷ ︸
Bn

+
ρn√

n
√

n(mθ,n − mθ)
⊤ Hρn(m̃θ,n)

ρn

√
n(mθ,n − mθ)︸ ︷︷ ︸

Cn

we have:

• For the term Bn we have:

Bn = ∇gρn(mθ)
⊤√n(mθ,n − mθ)

= Γ0(θ)
⊤√n(mθ,n − mθ) + (∇gρn(mθ)− Γ0(θ))

⊤√n(mθ,n − mθ)

= Γ0(θ)
⊤√n(mθ,n − mθ) + o(1)Op(1)

Third line comes from Assumption 4 and the simple convergence of ∇gρn(mθ) shown in Lemma

• Finally, for the term Cn, we have:

Cn =
ρn√

n
√

n(mθ,n − mθ)
⊤ Hρn(m̃θ,n)

ρn

√
n(mθ,n − mθ)

=
ρn√

n
Op(1) = op(1)

Second line is implied by the fact that mθ,n − mθ,n = Op(1/
√

n) and Hρn (m̃θ,n)
ρn

is bounded. This shows the

result.

226



Proof of proposition 1.2

Step 1

To establish this result, let us first show that the expansion in Proposition 1.1 can be rewritten as

follows:

gρn(mθ,n) =
√

n min{γ, 0} −
√

n log
(

1{γ ≥ 0}+ p∗

1 + p

)
+ Γ0(θ)

⊤√n(mθ,n − mθ) + op(1)

(2.B.22)

with p∗ = J0 the number of binding moments. Also remember that γ = min
j=1,...,p

mθ. To show this, it is

sufficient to start from the expansion exhibited in 4 and to show:

√
ngρn(mθ) =

√
n min{γ, 0} −

√
n log

(
1 + p∗

1 + p

)
+ op(1)

First, let us assume that γ ≥ 0, then

gρn(mθ) =
−1
ρn

log

(
1 + ∑

p
j=1 exp(−ρnmθ,j)

p + 1

)

=
−1
ρn

log

(
1 + ∑

p
j=1 exp(−ρnmθ,j)

p + 1

)

=
−1
ρn

log

(
1 + p∗

1 + p
+

∑j/∈J (θ) exp(−ρnmθ,j)

p + 1

)

=
−1
ρn

log
(

1 + p∗

1 + p

)
− 1

ρn
log

(
1 +

∑j/∈J (θ) exp(−ρnmθ,j)

1 + p∗

)

We can show that the second term tends to zero at any polynomial rate. Take η = minj/∈J (θ) mθ,j.

By definition of J (θ), η > 0. Therefore,

∑
j/∈J (θ)

exp(−ρnmθ,j) ≤ p exp(−ρnη).
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The last term tends to 0 when n tends to infinity and, using x − x2/2 ≤ log(1 + x) ≤ x in a neighbor-

hood of 0, we obtain:

Wn − W2
n/2

ρn
≤ 1

ρn
log

(
1 +

∑j/∈J (θ) exp(−ρnmθ,j)

1 + p∗

)
≤ Wn

ρn
,

with Wn = p
p+1 exp(−ρnη).

Therefore, for any b > 0,

1
ρn

log

(
1 +

∑j/∈J (θ) exp(−ρnmθ,j)

1 + p∗

)
= o(1/nb),

Thus,
√

ngρn(mθ) = −
√

n log
(

1 + p∗

1 + p

)
+ op(1)

Next, let us assume that γ < 0. Then,

gρn(mθ) =
−1
ρn

log

(
1 + ∑

p
j=1 exp(−ρnmθ,j)

p + 1

)

= γ +
−1
ρn

log

(
exp(ρnγ) + ∑

p
j=1 exp(−ρn(mθ,j − γ))

p + 1

)

= γ +
−1
ρn

log

(
p∗

1 + p
+

exp(ρnγ)∑j/∈J (θ) exp(−ρn(mθ,j − γ))

p + 1

)

= γ +
−1
ρn

log
(

p∗

1 + p

)
− 1

ρn
log

(
1 +

∑j/∈J (θ) exp(−ρn(mθ,j − γ))

1 + p∗

)

By the same argument as previously, the third term is o(1/nb) for any b > 0. Thus, we have the first

result.

Step 2

Next, we show that the estimation of p∗ does not change the expansion exhibited in (2.B.22). Re-

member the definition of p̂∗n

p̂∗n =
p

∑
j=1

1

 mθ,j√
σ2

j

< τn

 .
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Using the expansion, we can rewrite it with p̂∗n as follows

√
n

(
gρn(mθ) +

1
ρn

log

(
1 + p̂∗n
1 + p

))
+

√
n

ρn
log

(
1 + p∗

1 + p̂∗n

)
=

√
n min{γ, 0}+ Γ0(θ)

⊤√n(mθ,n − mθ) + op(1).

We need to show that the second term of the left hand side of the equality above tends to 0 in probability.

Observe that

Pr(
√

n
ρn

log

(
1 + p∗

1 + p̂∗n

)
̸= 0) = Pr( p̂∗n ̸= p∗).

Then, we calculate the probability for a binding moment to not be selected:

Pns = Pr((Z/
√

n + oP(1/
√

n)) > τn)

= 1 − Φ(
√

nτn + oP(1))

≤ K
1√
nτn

exp(−nτ2
n /2)following classical result on the upper tail of the N(0, 1)

Similarly the probability for a non-binding moment (its expectation is denoted µ > 0) to be selected

is equal to

Ps = P((Z/
√

n + µ + oP(1/
√

n)) < τn)

= Φ(
√

n(τn − µ) + oP(1))

τn tending toward 0 and µ being positive, the quantity inside Φ(·) tends to −∞. The probability tends

to 0 at any polynomial rate.

As a result, for any b > 0,

nbP0( p̂∗n ̸= p∗) P−→
n→∞

0.

Therefore, the following expansion holds:
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√
n

(
gρn(mθ) +

1
ρn

log

(
1 + p̂∗n
1 + p

))
=

√
n min{γ, 0}+ Γ0(θ)

⊤√n(mθ,n − mθ) + op(1).

(2.B.23)

Step 3

• θ ∈ ∂ΘI (min{γ, 0} = 0), Then from expansion 2.B.23 and by a direct application of the central

limit theorem and the continuous mapping theorem:

√
n

(
gρn(mθ) +

1
ρn

log

(
1 + p̂∗n
1 + p

))
d→ Γ0(θ)N (0, Σ0)

From lemma 2.B and the continuous mapping theorem, we have that ∇gρn(mθ,n)
⊤Σn∇gρn(mθ,n)

P→

Γ0(θ)
⊤Σ0Γ0(θ)

Thus, by Slutsky,

ξ̃n(θ)
d→ N (0, 1)

• θ /∈ ΘI . Then from expansion 2.B.23 and by standard arguments:

ξ̃n(θ)

n
P→ γ

Γ0(θ)⊤Σ0Γ0(θ)
< 0

Thus,

Pr
(
ξ̃n(θ) ≥ zα

)
= Pr

(
ξ̃n(θ)√

n
− zα√

n
− γ

Γ0(θ)⊤Σ0Γ0(θ)
≥ − γ

Γ0(θ)⊤Σ0Γ0(θ)

)
≤ Pr

(∣∣∣∣ ξ̃n(θ)√
n

− zα√
n
− γ

Γ0(θ)⊤Σ0Γ0(θ)

∣∣∣∣ ≥ − γ

Γ0(θ)⊤Σ0Γ0(θ)

)
→

n→∞
0

• θ ∈ Int(ΘI) (tbd)

■
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Inference with covariates

Proof of proposition 4.6

To show this, we just need to prove that the graph generated by Γ(θ, X) remains the same for all X ∈ X .

The graph Γ(θ, X) is such that there exists an edge between two elements y1 and y2 if their equilibrium

regions Rω(X, y1) and Rω(X, y2) overlap. Now from proposition 3.2, we know that this is the case if

∀t ∈ T , such that 0 ≤ Nt, N̄t ≤ a: −πt(X, Nt, N−t; ω) < −πt(X, N̄t + 1, N̄−t; ω)

−πt(X, N̄t, N̄−t; ω) < −πt(X, Nt + 1, N−t; ω).

From the decomposition in Assumption 5. The previous conditions become: −κt(Nt, N−t; ω2) < −κt(N̄t + 1, N̄−t; ω2)

−κt(N̄t, N̄−t; ω2) < −κt(Nt + 1, N−t; ω2).

These conditions do not depend on X. ■

The smoothed min approach

For the moment, we prove Propositions 4.8 and 4.9 in the special case related to entry games, where

mθ,j(X) = Cθ,j(X) − qT
j E[1(Y = y)|X]. Moreover, let us define: Gθ,ρ(x, h0) = gρ(Cθ(X) −

QE[1(Y = y)|X = x]). We are working on extending the proof to the more general case.

Let us consider the kernel estimator of h0(X) = E[1(Y = y)|X],

ĥ0(x) = ∑n
i=1 Kσ(x − Xi)1{Yi = y}

∑n
i=1 Kσ(x − Xi)

,

where σ is the bandwidth and Kσ(x) = 1
σd K

( x
σ

)
. Lets also define f̂0(x) = 1

n ∑n
i=1 Kσ(x − Xi) and

ŵ0(x) = 1
n ∑n

i=1 Kσ(x − Xi)1{Yi = y}. Under assumption 6, we have

√
n||ĥ0 − h0||2

P→ 0 and
√

n|| f̂0 − f0||2
P→ 0,
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where ∥ · ∥ is a Sobolev norm, for non-negative integer k, defined as

∥ f ∥ = max
j≤k

max
x∈X

∥∥∥∥∂j f (x)
∂xj

∥∥∥∥ .

Then, from Newey and McFadden (1994) Lemma 8.9, we have

∥ f0 − E( f̂0)∥ = O (σm) ,

if m + k < α. Similar result holds for ĥ0. For the variance term, following Newey and McFadden

(1994), we have

∥ f̂0 − E( f̂0)∥ = OP

[(
ln n

nσd+2k

) 1
2
]

.

Similar result holds for ŵ0.

Lemma 3 Under assumption 6, we have

∥∥∥ĥ0 − E(ĥ0)
∥∥∥ = OP

[(
ln n

nσd+2k

) 1
2
]

.

Lemmas

The next two lemmas verify technical conditions for kernel estimator which are needed to derive asymp-

totic distribution.

Lemma 4 (Mean Square Differentiability) Under assumption 6, we have uniformly over smoothing

parameter ρ > 0

√
n

[∫ ∂Gθ,ρ(x, h0)

∂h

⊤
(ĥ0(x)− h0(x))dx − 1

n

n

∑
i=1

α(Wi)

]
P→ 0.

Proof:
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We have

∫ ∂Gθ,ρ(x, h0)

∂h

⊤
(ĥ0(x)− h0(x))dx

=
∫ ∂Gθ,ρ(x, h0)

∂h

⊤ (
∑n

i=1 Kσ(x − Xi)1{Yi = y}
∑n

i=1 Kσ(x − Xi)
− h0(x)

)
dF0(x)

=
n

∑
i=1

∫ Kσ(x − Xi)

∑n
i=1 Kσ(x − Xi)

∂Gθ,ρ(x, h0)

∂h

⊤
(1{Yi = y} − h0(x))︸ ︷︷ ︸

α(w)

dF0(x)

=
∫

α(w)dF̃(w)

=
1
n

n

∑
i=1

∫ Kσ(x − Xi)
1
n ∑n

i=1 Kσ(x − Xi)

∂Gθ,ρ(x, h0)

∂h

⊤
[−h0(x) I]︸ ︷︷ ︸

β(x)

 1

1{Yi = y}


︸ ︷︷ ︸

Zi

dF0(x),

where distribution F̃ is mix of empirical conditional measure and density f0. The random variable X

follows density f0(·) and conditional on X = x, 1{Yi = y} is distributed with empirical measure with

points mass Kσ(x−Xi)
∑n

i=1 Kσ(x−Xi)
. So, we just need to show that

√
n
[∫

α(w)dF̃(w)−
∫

α(w)dF̂(w)

]
P→ 0,
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where F̂ is just empirical distribution. We have

√
n
[∫

α(w)dF̃(w)−
∫

α(w)dF̂(w)

]
=

1√
n

n

∑
i=1

[∫ Kσ(x − Xi)
1
n ∑n

i=1 Kσ(x − Xi)
β(x)dF0(x)− β(Xi)

]
Zi

=
1√
n

n

∑
i=1

[∫ Kσ(x − Xi)

f0(x)
β(x) f0(x)dx − β(Xi)

]
Zi

+
1√
n

n

∑
i=1

[∫ Kσ(x − Xi)( f0(x)− f̂0(x))
f̂0(x)

β(x)dx

]
Zi

=
1√
n

n

∑
i=1

[∫ Kσ(x − Xi)

f0(x)
β(x) f0(x)dx − β(Xi)

]
Zi

+
√

n

∫ ( f0(x)− f̂0(x))β(x)


1
n ∑n

i=1 Kσ(x − Xi)Zi

f̂0(x)
−

 1

h0(x)


dx


+
√

n

∫ ( f0(x)− f̂0(x))β(x)

 1

h0(x)

dx


︸ ︷︷ ︸

=0

=
1√
n

n

∑
i=1

[∫ Kσ(x − Xi)

f0(x)
β(x) f0(x)dx − β(Xi)

]
Zi

+
√

n
∫ ∂Gθ,ρ(x, h0)

∂h

⊤
( f0(x)− f̂0(x))(h0(x)− ĥ0(x))dx.

For the first term, we will use Chebyshev’s inequality and show its expectation and variance converge to
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zero. Let γ0(x) = E(Zi|X = x), then∥∥∥∥√nE

[{∫
Kσ(x − Xi)β(x)dx − β(Xi)

}
Zi

]∥∥∥∥
=

√
n
∥∥∥∥∫ {∫ β(x + σu)K(u)du

}
γ0(x) f0(x)dx −

∫
β(x)γ0(x) f0(x)dx

∥∥∥∥
=

√
n
∥∥∥∥∫∫ β(x)K(u)γ0(x − σu) f0(x − σu)du dx −

∫
β(x)γ0(x) f0(x)dx

∥∥∥∥
=

√
n
∥∥∥∥∫ β(x)

{∫
[ f0(x − σu)γ0(x − σu)− f0(x)γ0(x)]K(u)du

}
dx
∥∥∥∥

⩽
√

n
∫

∥β(x)∥
∥∥∥∥∫ [ f0(x − σu)γ0(x − σu)− f0(x)γ0(x)]K(u)du

∥∥∥∥dx ⩽ C
√

nσm
∫

∥β(x)∥dx,

where last bound, for some constant C, follows from Taylor expansion of f0(x − σu), γ0(x − σu) and

assumption (6)(1). Therefore,
∥∥√nE

[{∫
β(x)Kσ (x − Xi)dx − β (Xi)

}
Zi
]∥∥ ⩽ C

√
nσm → 0.

Also, by almost everywhere continuity of β(x), β(x + σu) → β(x) for almost all x. Also, on the

bounded support of K(u), for small enough σ, β(x + σu) ⩽ sup∥v∥⩽ε β(x + v), so by the dominated

convergence theorem,
∫

β(x + σu)K(u)du →
∫

β(x)K(u)du = β(x) for almost all x. The bounded-

ness of K(u) and dominated convergence theorem gives

E

[∥∥∥∥∫ β(x)Kσ (x − Xi)dx − β (Xi)

∥∥∥∥4
]
→ 0,

so by the CauchySchwartz inequality, E
[
∥Zi∥2 ∥∥∫ β(x)Kσ (x − Xi)dx − β (Xi)

∥∥2
]

→ 0. Mean

square differentiability condition follows from the Chebyshev inequality, since the mean and variance of

n−1/2 ∑n
i=1 [

∫
β(x)Kσ (x − Xi)dx − β (Xi)] Zi go to zero.
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The second term in the expression is bounded, uniformly over ρ, by∣∣∣∣∣√n
∫ ∂Gθ,ρ(x, h0)

∂h

⊤
( f0(x)− f̂0(x))(h0(x)− ĥ0(x))dx

∣∣∣∣∣
≤

√
n
∫ ∣∣∣∣∣∂Gθ,ρ(x, h0)

∂h

⊤
( f0(x)− f̂0(x))(h0(x)− ĥ0(x))

∣∣∣∣∣dx

≤
√

n∥ f0(x)− f̂0(x)∥
∫ ∣∣∣∣∣∂Gθ,ρ(x, h0)

∂h

⊤
(h0(x)− ĥ0(x))

∣∣∣∣∣dx

≤
√

n∥ f0(x)− f̂0(x)∥
∫ ∣∣∣∣∣∂Gθ,ρ(x, h0)

∂h

⊤
(h0(x)− ĥ0(x))

∣∣∣∣∣dx

≤
√

n∥ĥ0 − h0∥∥ f̂0 − f0∥
∫

∑
i

∂Gθ,ρ(x, h0)

∂hi
dx

= |X |
√

n∥ĥ0 − h0∥∥ f̂0 − f0∥.

√
n∥ĥ0 − h0∥∥ f̂0 − f0∥, which converges to zero in probability. ■

Lemma 5 (Stochastic Equicontinuity) Under assumption 6, we have uniformly over smoothing param-

eter ρ > 0

√
n

[
1
n

n

∑
i=1

∂Gθ,ρ(Xi, h0)

∂h

⊤
(ĥ0(Xi)− h0(Xi))−

∫ ∂Gθ,ρ(x, h0)

∂h

⊤
(ĥ0(x)− h0(x))dF0(x)

]
P→ 0.

Proof: It is easy to see that

ĥ0(x)− h0(x) =
ŵ0(x)
f̂0(x)

− h0(x)

=
ŵ0(x)− h0(x) f̂0(x)

f̂0(x)

=
ŵ0(x)− h0(x) f̂0(x)

f̂0(x)

[
f̂0(x)
f0(x)

+ 1 − f̂0(x)
f0(x)

]

=
ŵ0(x)− h0(x) f̂0(x)

f0(x)︸ ︷︷ ︸
I

+
(ĥ0(x)− h0(x))( f̂0(x)− f0(x))

f0(x)︸ ︷︷ ︸
I I

.
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Based on this, we divide the problem into two sub-problems I and II. For the sub-problem I, we need to

show20

√
n

 1
n

n

∑
i=1

∂Gθ,ρ(Xi,h0)

∂h

⊤

f0(Xi)
(ŵ0(Xi)− h0(Xi) f̂0(Xi))−

∫ ∂Gθ,ρ(x, h0)

∂h

⊤
(ŵ0(x)− h0(x) f̂0(x))dx


=

√
n

 1
n

n

∑
i=1

∂Gθ,ρ(Xi,h0)

∂h

⊤

f0(Xi)
[−h0(Xi) I]

 f̂0(Xi)

ŵ0(Xi)

−
∫ ∂Gθ,ρ(x, h0)

∂h

⊤
[−h0(x) I]

 f̂0(x)

ŵ0(x)

dx


=

√
n

[
1
n

n

∑
i=1

β(Xi)

f0(Xi)

1
n

n

∑
j=1

Kσ(Xi − Xj)Zj −
1
n

n

∑
j=1

EX

[
β(X)

f0(X)
Kσ(X − Xj)Zj

]]

=
√

n

[
1
n2

n

∑
i=1

n

∑
j=1

β(Xi)

f0(Xi)
Kσ(Xi − Xj)Zj −

1
n

n

∑
j=1

EX

[
β(X)

f0(X)
Kσ(X − Xj)Zj

]

− 1
n

n

∑
i=1

EX,Z

[
β(Xi)

f0(Xi)
Kσ(Xi − X)Z

]
+ E

[
β(Xi)

f0(Xi)
Kσ(Xi − Xj)Zj

] ]

+
√

n

[
1
n

n

∑
i=1

EX,Z

[
β(Xi)

f0(Xi)
Kσ(Xi − X)Z

]
− E

[
β(Xi)

f0(Xi)
Kσ(Xi − Xj)Zj

] ]
We will apply Lemma 6 from Newey and McFadden (1994) to verify that first bracket converges to 0 in

probability, uniformly over ρ. It is easy to see that uniformly over ρ, we have

E

[∥∥∥∥ β(Xi)

f0(Xi)
Kσ(Xi − Xi)Zi

∥∥∥∥] = E

∥∥∥∥∥∥
∂Gθ,ρ(Xi,h0)

∂h

⊤

f0(Xi)
[−h0(Xi) I]Kσ(0)Zi

∥∥∥∥∥∥


= Kσ(0)E


∥∥∥∥∥∥∥

∂Gθ,ρ(Xi,h0)

∂h

⊤

f0(Xi)
[−h0(Xi) I]

 1

1{Yi = y}


∥∥∥∥∥∥∥


≤ Kσ(0)E


∥∥∥∥∥∥∥

∂Gθ,ρ(Xi,h0)

∂h

⊤

f0(Xi)

 1

1


∥∥∥∥∥∥∥


≤ CKσ(0),

20We used the notation β(x) =
∂Gθ,ρ(x,h0)

∂h

⊤
[−h0(x) I] and Zi =

 1

1{Yi = y}
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where second last bound uses the fact that −1 ≤ 1{Yi = yk} − h0,k(Xi) ≤ 1 and
∂Gθ,ρ(Xi,h0)

∂h ≥ 0.

Similarly, uniformly over ρ, we have

E

[∥∥∥∥ β(Xi)

f0(Xi)
Kσ(Xi − Xj)Zj

∥∥∥∥2
]
= E


∥∥∥∥∥∥

∂Gθ,ρ(Xi,h0)

∂h

⊤

f0(Xi)
[−h0(Xi) I]Kσ(Xi − Xj)Zj

∥∥∥∥∥∥
2

≤ ME


∥∥∥∥∥∥∥

∂Gθ,ρ(Xi,h0)

∂h

⊤

f0(Xi)
[−h0(Xi) I]

 1

1{Yj = y}


∥∥∥∥∥∥∥

2


≤ ME


∥∥∥∥∥∥∥

∂Gθ,ρ(Xi,h0)

∂h

⊤

f0(Xi)

 1

1


∥∥∥∥∥∥∥


≤ CM,

where M is bound on the kernel.

Second big bracket will converge in probability to zero if

E

[∥∥∥∥EX,Z

[
β(Xi)

f0(Xi)
Kσ(Xi − X)Z

]∥∥∥∥2
]
→ 0,

by Chebyshev’s inequality. It is easy to see that

EX,Z

[
β(Xi)

f0(Xi)
Kσ(Xi − X)Z

]
= EX

 ∂Gθ,ρ(Xi,h0)

∂h

⊤

f0(Xi)
Kσ(Xi − X) [h0(X)− h0(Xi)]


=

∂Gθ,ρ(Xi,h0)

∂h

⊤

f0(Xi)
[EX(Kσ(Xi − X)h0(X))− h0(Xi)] ,

and clearly EX(Kσ(Xi − X)h0(X)) → h0(Xi) as σ converges to zero. ■

Let mn1(z) =
∫

mn(z, z̃)dF0(z̃), mn2(z) =
∫

mn(z̃, z)dF0(z̃), and µ =
∫

mn(z, z̃)dF0(z̃)dF0(z).

The following lemma is taken from Newey (1994).
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Lemma 6 (V-Statistic Convergence) If Z1, Z2, . . . are i.i.d. then

n−2
n

∑
i=1

n

∑
j=1

mn
(
Zi, Zj

)
− n−1

n

∑
i=1

[mn1 (Zi) + mn2 (Zi)] + µ

= OP

E [∥mn (Z1, Z1)∥]
n

+

(
E
[
∥mn (Z1, Z2)∥2

])1/2

n

 .

Proof of Proposition 4.8

We are interested in deriving the asymptotic distribution of

√
n

(
1
n

n

∑
i=1

Gθ,ρ(Xi, ĥ0)− E
[
Gθ,ρ(Xi, h0)

])
.

Our proof proceeds in two steps. First, we exploit results in Ackerberg, Chen, Hahn, and Liao (2014),

which allow us to recover the form of the adjustment term due to a noisy estimate of h0. Second, we

build upon Newey (1994) to derive the asymptotic distribution.

Step 1: (Derivation of the adjustment term α(Wi)). Wi = (Xi, Yi). In comparison to the more general

case treated in Ackerberg, Chen, Hahn, and Liao (2014), the derivation of the adjustment term simplifies

because Gθ,ρ(Xi, h0) depends on h0 only through the values it takes h0(Xi). For the sake of thorough-

ness, we follow and reproduce some developments and borrow some of their notations. For more details,

we refer the interested reader to Ackerberg, Chen, Hahn, and Liao (2014). Under H0,

E[Gθ,ρ(Xi, h0)] ≥ 0,

and h0 = (h0,1, ..., h0,L) consist of L = card(Y) − 1 nuisance functions, which are identified by the

following conditional moment restrictions:

E [ρl(Wi, h0,l(Xi))|Xi] = 0 a.s Xi for l = 1, ...L

where ρl(Wi, h0,l(Xi)) = 1{Yi = yl}− h0,l(Xi). The last function is directly inferred from ∑Y 1{Yi =

yl} = 1 almost surely. Every nuisance function hl is assumed to lie in the space Hl, which is a linear
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subspace of the space of integrable functions with respect to X. Finally, we define

kl(Xi, h0,l) = E [ρl(Wi, h0,l(Xi))|Xi] .

One can easily show that the regularity conditions (p 922) of Ackerberg, Chen, Hahn, and Liao (2014)

are satisfied. In our case, k depends only on h through h(Xi). Thus, the pathwise derivative with respect

to hl evaluated at h0 in the direction vl ∈ Vl ≡ Hl − {h0,l}

∂kl(Xi, θ, h0,l)

∂hl
[vl] =

∂E[ρl(Wi, h0,l(Xi) + τvl(Xi))

∂τ

∣∣∣∣
τ=0

=
E [ρl(Wi, h0,l(Xi))|Xi]

∂hl
vl(X) = −vl(X).

with the second derivative being the ordinary derivative. Following Ackerberg, Chen, Hahn, and Liao

(2014) the Riesz representation theorem implies that there is a unique u∗
l ∈ Vl (set of measureable

functions of X) such that ∀vl ∈ Vl,

∂E[Gθ,ρ(Xi, h0)]

∂hl
[vl] = E [u∗

l (Xi)vl(Xi)] (2.B.24)

Now let us show that the adjustment term is equal to α(Wi) = ∑L
l=1 u∗

l (Xi)ρl(Wi, h0(Xi)). To do this,

we follow the same reasoning as the one developed for the proof of proposition 1 in Newey (1994).

Without loss of generality, we assume L = 1. As shown in Newey (1994), the adjustment term of the

sum corresponds to the sum of the adjustment terms.

Consider a path {Fτ(w)} of the distribution of random variable W. Let hτ be the function indexed by

τ such that Eτ [ρ(Wi, hτ(Xi))|X] = 0 where Eτ[.|X] denotes the conditional expectation taken under

Fτ(w) with the corresponding score S(w). From the definition of u∗(Xi):

∂

∂τ
E[Gθ,ρ(Xi, hτ)] = E

[
u∗(Xi)

∂

∂τ
k(Xi, hτ)

]
=

∂

∂τ
E [u∗(Xi)k(Xi, hτ)] .

Now by assumption on hτ, we have that for any square integrable function w(Xi),

Eτ [w(Xi)ρ(Wi, hτ(Xi))] = 0.
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By differentiating with respect to τ, we have:

∂

∂τ
Eτ[w(Xi)ρ(Wi, h0(Xi))] +

∂

∂τ
E [w(Xi)k(Xi, hτ)] = 0.

By combining the 2 previous equations, we have:

∂

∂τ
E[Gθ,ρ(Xi, hτ)] = − ∂

∂τ
Eτ [u∗(Xi)ρ(Wi, h0(Xi))] = Eτ [−u∗(Xi)ρ(Wi, h0(Xi))S(Wi)] .

Following equation (3.9) in Newey (1994), we have that the adjustment term writes α(Wi) = −u∗(Xi)ρ(Wi, h0(Xi)).

Observe that we also have have that E[α(Wi)] = 0. Now let us derive u∗(Xi) by exploiting the structure

of our model. The same applies for the pathwise derivative of m, which depends only on h through

h(Xi):
∂E[Gθ,ρ(Xi, h0)|Xi]

∂h
[v] =

∂Gθ,ρ(Xi, h0)

∂h
[v] =

∂Gθ,ρ(Xi, h0)

∂h
v(Xi).

From the Riesz representation equation 2.B.24, we have that for any v,

E

[
∂E[Gθ,ρ(Xi, h0)|Xi]

∂h
[v]− u∗(Xi)v(Xi)

]
= E

[(
∂Gθ,ρ(Xi, h0)

∂h
− u∗(Xi)

)
v(Xi)

]
The last equality holds for any v and in particular for v(Xi) =

∂Gθ,ρ(Xi,h0)

∂h − u∗(Xi). Thus, we have:

E

[(
∂Gθ,ρ(Xi, h0)

∂h
− u∗(Xi)

)2]
= 0

Thus, u∗(Xi) =
∂Gθ,ρ(Xi,h0)

∂h almost surely. This yields the result:

α(Wi) =
∂Gθ,ρ(Xi, h0)

∂h

⊤
(1{Yi = y} − h0(Xi)).

Step 2: (Derivation of the asymptotic distribution). By the mean-value Taylor expansion of Gθ,ρ(Xi, ĥ0)

around Gθ,ρ(Xi, h0), there exists h̃ ∈ H such that:
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1√
n

n

∑
i=1

Gθ,ρ(Xi, ĥ0)

=
1√
n

n

∑
i=1

Gθ,ρ(Xi, h0) +
√

n
1
n

n

∑
i=1

∂Gθ,ρ(Xi, h0)

∂h

⊤
(ĥ0(Xi)− h0(Xi))

+
ρ√
n

n

∑
i=1

(ĥ0(Xi)− h0(Xi))
⊤ Jρ(Xi, h̃)(ĥ0(Xi)− h0(Xi))︸ ︷︷ ︸

Op(ρn1/2−2γ) by ??(i)

=
1√
n

n

∑
i=1

Gθ,ρ(Xi, h0) +
√

n

[
1
n

n

∑
i=1

∂Gθ,ρ(Xi, h0)

∂h

⊤
(ĥ0(Xi)− h0(Xi))−

∫ ∂Gθ,ρ(x, h0)

∂h

⊤
(ĥ0(x)− h0(x))dx

]
︸ ︷︷ ︸

op(1) by Lemma 5

+
∫ ∂Gθ,ρ(x, h0)

∂h

⊤
(ĥ0(x)− h0(x))dx +

ρ√
n

n

∑
i=1

(ĥ0(Xi)− h0(Xi))
⊤ Jρ(Xi, h̃)(ĥ0(Xi)− h0(Xi))

=
1√
n

n

∑
i=1

[
Gθ,ρ(Xi, h0) + α(Wi)

]
+

ρ√
n

n

∑
i=1

(ĥ0(Xi)− h0(Xi))
⊤ Jρ(Xi, h̃)(ĥ0(Xi)− h0(Xi))

+
√

n

[∫ ∂Gθ,ρ(x, h0)

∂h

⊤
(ĥ0(x)− h0(x))dx − 1

n

n

∑
i=1

α(Wi)

]
︸ ︷︷ ︸

oP(1) by Lemma 4

+op(1)

■

Proof of Proposition 4.9

Step 1: By the mean-value Taylor expansion of Gθ,ρn(Xi, ĥ0) around Gθ,ρn(Xi, h0), there exists h̃ ∈ H

such that:
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1√
n

n

∑
i=1

Gθ,ρn(Xi, ĥ0)

=
1√
n

n

∑
i=1

Gθ,ρn(Xi, h0) +
√

n
1
n

n

∑
i=1

∂Gθ,ρn(Xi, h0)

∂h

⊤
(ĥ0(Xi)− h0(Xi))

+
ρn√

n

n

∑
i=1

(ĥ0(Xi)− h0(Xi))
⊤ Jρn(Xi, h̃)(ĥ0(Xi)− h0(Xi))︸ ︷︷ ︸

Op(ρnn1/2−2γ) by ??(i)

=
1√
n

n

∑
i=1

Gθ,ρn(Xi, h0) +
√

n

[
1
n

n

∑
i=1

∂Gθ,ρn(Xi, h0)

∂h

⊤
(ĥ0(Xi)− h0(Xi))−

∫ ∂Gθ,ρn(x, h0)

∂h

⊤
(ĥ0(x)− h0(x))dx

]
︸ ︷︷ ︸

op(1) uniformly over ρn by Lemma 5

+
∫ ∂Gθ,ρn(x, h0)

∂h

⊤
(ĥ0(x)− h0(x))dx +

ρn√
n

n

∑
i=1

(ĥ0(Xi)− h0(Xi))
⊤ Jρn(Xi, h̃)(ĥ0(Xi)− h0(Xi))

=
1√
n

n

∑
i=1

[
Gθ,ρn(Xi, h0) + α(Wi)

]
+

ρn√
n

n

∑
i=1

(ĥ0(Xi)− h0(Xi))
⊤ Jρn(Xi, h̃)(ĥ0(Xi)− h0(Xi))

+
√

n

[∫ ∂Gθ,ρn(x, h0)

∂h

⊤
(ĥ0(x)− h0(x))dx − 1

n

n

∑
i=1

α(Wi)

]
︸ ︷︷ ︸

oP(1) uniformly over ρn by Lemma 4

+op(1)

with α(Wi) =
∂Gθ,ρn (Xi,h0)

∂h

⊤
(1{Yi = y} − h0(Xi)), Jρn(xi, h̃) such that

∂2Gθ,ρn (xi,h̃)
∂h∂h⊤ = ρJρ(xi, h̃) and

for any (xi, h̃), ||Jρn(xi, h̃)||∞ ≤ 2m. So, we have

√
n

(
1
n

n

∑
i=1

Gθ,ρn(Xi, ĥ0)− E
[
Gθ,ρn(Xi, h0)

])
=

√
n

(
1
n

n

∑
i=1

Gθ,ρn(Xi, h0) + αn(Wi)− E
[
Gθ,ρn(Xi, h0)

])
+ Op(ρn1/2−2γ) + op(1).

Step 2: From triangular array CLT, we have

√
n

(
1
n

n

∑
i=1

Gθ,ρn(Xi, h0) + αn(Wi)− E
[
Gθ,ρn(Xi, h0)

]) d→ N (0, V0),
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with V0 = lim
n→∞

Var
[[

Gθ,ρn(Xi, h0) + αn(Wi)
]]

as long as Lyapunov condition is satisfies or

1

n
δ
2

E

[
|Gθ,ρn(Xi, h0) + αn(Wi)− E

[
Gθ,ρn(Xi, h0)

]
|2+δ

Var(Gθ,ρn(Xi, h0) + αn(Wi))
1+ δ

2

]
→ 0,

for some δ > 0. It is easy to check that this holds as

Gθ,ρn(Xi, h0) + αn(Wi) = −ρ−1 log
(1 + ∑

p
j=1 exp(ρ(q⊤j h(Xi)− Cθ,j))

1 + p

)
+

∂Gθ,ρn(Xi, h0)

∂h

⊤
(1{Yi = y} − h0(Xi))

≤ log(p + 1)
ρ

+ 2.

Similarly, we can show that it is also bounded below. Since |Gθ,ρn(Xi, h0) + αn(Wi)| is bounded, Lya-

punov condition is automatically satisfied.

Step 3: Let Vn be a consistent estimator for V0. Now, we show asymptotic validity and consistency.

Under H0, θ ∈ ΘI ,

θ ∈ ΘI =⇒ Gθ,ρn(Xi, h0) ≥ 0 a.s =⇒ E
[
Gθ,ρn(Xi, h0)

]
≥ 0 ∀n.

(i) Asymptotic validity:

Pr

(
√

n
1
n ∑n

i=1 Gθ,ρn(Xi, ĥ0)√
Vn

≥ zα

)

=Pr

(
√

n
E
[
Gθ,ρn(Xi, h0)

]
√

Vn
+
√

n
1
n ∑n

i=1 Gθ,ρn(Xi, ĥ0)− E
[
Gθ,ρn(Xi, h0)

]
√

Vn
≥ zα

)

≥Pr

(
√

n
1
n ∑n

i=1 Gθ,ρn(Xi, ĥ0)− E
[
Gθ,ρn(Xi, h0)

]
√

Vn
≥ zα

)

=Pr

(
√

n
1
n ∑n

i=1 Gθ,ρ(Xi, h0) + α(Wi)− E
[
Gθ,ρ(Xi, h0)

]
+ oP(1)√

Vn
≥ zα

)
→

n→∞
1 − α

244



(ii) Consistency:

θ /∈ ΘI =⇒ E
[

lim
n→∞

Gθ,ρn(Xi, h0)
]
= γ < 0

=⇒ 1
n

n

∑
i=1

Gθ,ρn(Xi, ĥ0)
P→ γ

=⇒
1
n ∑n

i=1 Gθ,ρn(Xi, ĥ0)√
Vn

− γ√
V0

P→ 0

Second line: from the asymptotic distribution in step 2: 1
n ∑n

i=1 Gθ,ρn(Xi, ĥ0) = E
[
Gθ,ρn(Xi, h0)

]
+

op(1). Thus,

Pr

(
√

n
1
n ∑n

i=1 Gθ,ρn(Xi, ĥ0)√
Vn

≥ zα

)

= Pr

(
1
n ∑n

i=1 Gθ,ρn(Xi, ĥ0)√
Vn

− zα√
n
− γ√

V0
≥ − γ√

V0

)

≤ Pr

(∣∣∣∣∣ 1
n ∑n

i=1 Gθ,ρn(Xi, ĥ0) + log(p)/ρn√
Vn

− zα√
n
− γ√

V0

∣∣∣∣∣ ≥ − γ√
V0

)
→

n→∞
0.

■

2.C Uniformity
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Chapter 3

Identification and Estimation of Incentive

Contracts under Asymmetric Information: an

Application to the French Water Sector

co-authored with Christian Bontemps and David Martimort
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Abstract

We develop a Principal-Agent model to represent management contracting for public-service delivery. A firm (the

Agent) has private knowledge of its marginal cost of production. The local public authority (the Principal) cares

both about the consumers’ net surplus from consuming the services and the (weighted) firm’s profit. The contrac-

tual negotiation is modeled as the choice by the privately informed firm within a menu of options determining both

the unit price charged to consumers and the fixed fee. Our theoretical model characterizes optimal contracting

in this environment. We then explicitly study the nonparametric identification of the model and perform a semi-

parametric estimation on a dataset coming from the 2004 wave of a survey from the French environment Institute

(IFEN, Institut Français de l’Environnement).

Keywords: Principal-Agent, optimal contracts, structural model, nonparametric estimation, Instrumental Variable

Quantile Regression.

JEL codes: C12, C15, D82.



3.1 Introduction

The increasing participation of the private sector in public service delivery is often motivated by the need

to expand access to services, increase or update existing delivery networks, and operate public utilities

more efficiently. As many services provided by public utilities are associated with health, environmental

or household income considerations (gas, electricity, water, transportation), there is a broad consensus on

the need for public regulation of these utilities. In particular, industries such as water, gas and electricity

usually meet the conditions for a local natural monopoly (large fixed costs and constant or declining

marginal cost), so that protecting consumers from large price increases is often advocated as the main

reason behind public regulation of utilities in these industries.

Private-sector participation in public utilities may take very different forms: private ownership of net-

works and facilities, centralized or local regulation by a public or independent authority, or contracting-

out utility operations to private companies. In the latter case, typical arrangements are lease or conces-

sion contracts which can be renegotiated over time between a local community and a private company in

charge of operating the public utility. Although contracting out seems an interesting way of promoting

public-private partnerships for public utilities because it combines flexibility with legal commitment,

it can deteriorate consumer welfare if the arrangement concerning utility pricing is not carefully spec-

ified. A major reason behind the difficulty to design an optimal pricing rule for the utility is the fact

that common information on the operator’s ability to manage the utility efficiently is rare. For example,

the operator’s technical know-how and expertise may not correspond exactly to the actual state of the

facilities (based on past maintenance). Such a situation of asymmetric information on the operator’s

efficiency in a contract-based relationship has been studied extensively in the literature on incentives and

regulation (Salanié (2005), Laffont and Martimort (2009), Laffont and Tirole (1993)).

In the standard theory of contracts, agents (operators in our case) are indexed by a private-information

parameter that ultimately determines their actions, within a contract-based relationship with a “principal”

(the local community). Whether this parameter denotes an unobservable action (moral hazard) or an un-

known characteristic of the agent (adverse selection), the principal is assumed to have prior information

used to design an optimal contract (in most cases, maximizing social welfare). The range of industries
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in which production, marketing, and regulation activities are subject to contract-based relationships be-

tween economic agents is sufficiently large to guarantee an increasing number of empirical applications

for such a theory.

The first approach in the literature on econometric estimation of delegated management models with

asymmetric information was based on reduced-form models, or structural versions with restrictive para-

metric restrictions on the technology and the distribution of the private parameter. Examples of this first

generation of models with asymmetric information include Wolak (1994), Thomas (1995), Ivaldi and

Martimort (1994), Brocas, Chan, and Perrigne (2006),Gagnepain and Ivaldi (2002). See Chiappori and

Salanie (2000) for references on reduced-form estimation of models with asymmetric information, and

Lavergne and Thomas (1997) for a survey on structural and reduced-form models. Most empirical ap-

plications confirm the fact that neglecting asymmetric information in the estimation of structural models

yields biased estimates of, e.g., marginal cost or consumer price elasticity. However, it is also true that

specification crucially matters for this type of structural models, as misspecification is likely to affect es-

timates of agents’ preferences or production technology as much as neglecting asymmetric information

altogether.

The second approach is more recent in the literature and proposes a way round this problem, in

a series of articles based on nonparametric approaches. The move from parametric to nonparametric

methods for estimating structural models with asymmetric information followed the development of

structural models of auctions, with which they share some common features, as well as the literature

on nonparametric identification (D’Haultfœuille and Février (2020) , Luo, Perrigne, and Vuong (2018)

among others).

Structural models of delegated management with asymmetric information share common features

with models of auctions or nonlinear pricing. The structural equations are nonlinear in an unobserved

heterogeneity component (the private-information parameter) whose distribution is explicitly part of

the solution to the underlying economic model. Moreover, endogenous selection of companies may

also occur because of individual-rationality or incentive-compatibility constraints, in a way similar to

auction participants or consumers in nonlinear pricing problems. For instance, Luo, Perrigne, and Vuong
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(2018) propose a nonparametric identification method for models of nonlinear pricing, whose estimating

equations closely resemble the ones associated with structural models of management delegation.

We propose in this paper a new method to estimate optimal contracts under asymmetric information,

which relaxes most assumptions considered in the literature. More precisely, we rely extensively on non-

parametric techniques to derive the distribution of the private information type and functional estimates

of the model. The paper discusses the nonparametric identification of the structural model under several

assumptions regarding unobserved heterogeneity. The estimation method is applied to the case of del-

egated management of water utilities in France. The advantage of considering such an industry for our

empirical application lies in the fact that contracts between local communities and private firms for the

operation of water utilities in France exist for a long time, under various modes that make the application

of the theory of contracts particularly relevant. In the case we consider, the local community manager

has incomplete information on the efficiency of the (private) operator of the water utility, before signing

the delegation contract. The optimal contract is a second-best solution that depends on marginal social

surplus for water, marginal cost of water supply, as well as on the distribution of the private type. A

particular aspect of the model is the existence of two sources of unobserved heterogeneity (to the econo-

metrician). Beside the usual private parameter, the econometrician does not observed an heterogeneity

term associated with the social surplus and which is community-specific.

The paper is organized as follows. Section 3.2 presents the French water sector. Section 3.3 presents

a theoretical principal-agent model of contract-based regulation between the local community and the

operator of the water utility in a context of information asymmetry. This model is tailored to the speci-

ficities of the sector under scrutiny. The system of equations describing the optimal contract are first

derived. Those equations summarize the optimality of the behaviors of the municipality and the opera-

tor. They serve as the basis for the estimation procedure. In Section 3.4, we discuss the conditions for

nonparametric identification of the structural model. Two different cases are considered, depending on

the assumptions on unobserved heterogeneity. Section 3.6 introduces the empirical application to the

French water utilities with a particular focus on residential water pricing rules. Some counterfactuals are

presented in Section 3.7. Section 3.8 discusses alternative modeling of optimal contracting relationships
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and illustrates some specificities of our approach. Finally, Section 3.9 concludes.

3.2 The French Water Sector

3.2.1 Governance

As in other countries throughout the world, the provision of water services in France is a regulated activ-

ity, although it has always been fully decentralized at the local level since the 1789 French Revolution.

The need for regulation comes from the fact that each water network is indeed a public monopoly, with

high fixed costs and low variable costs, as well as a declining (long-run) average cost curve. In each urban

area of significant size equipped with such a water network, a local authority (a single city or a group

of cities) has full responsibility to contract with an operator for providing water to the corresponding

population.

In terms of size, water utilities represent no less than 1% of French national GDP. Yet, modes of gov-

ernance significantly differ across networks. Water utilities in charge of supply, distribution and sewage

activities may indeed be public (the so-called “régies municipales") or private (“gestation déléguée").1

Delegation of utility operation to a private company is sometimes viewed as improving efficiency al-

though, empirical studies are not really conclusive as to the relative efficiency of a management mode or

the other.2

When the service is delegated to the private sector, various kinds of contracts (“concession", “af-

fermage", “gérance"...) rule the details of this public-private partnership related to water production

and distribution, maintenance, and quality supervision.3 For the so-called régies intéressées, the opera-

1As a matter of comparison, ownership is mostly public in Germany and Italy, while it remains mixed in Spain. In Great

Britain, water utilities are always run by private companies under the aegis of an independent national regulator (OFWAT). In

the U.S., water utilities operate under rate-of-return regulation. The fact that State commission for public utilities may differ

in their mandates gives rise to fairly heterogeneous rates of return.
2See Bhattacharyya, Harris, Narayanan, and Raffiee (1995), Bhattacharyya, Parker, and Raffiee (1994) and Estache and

Rossi (1999) among others.
3In France, the public authority itself is in charge of verifying the quality of the service.
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tor does not own the network and is paid as a fraction of the benefits of the service that accrues to the

municipality. For a contract d’“affermage" , the operator is again paid directly by consumers but the

cost of maintaining and renewing assets remains borne by the municipality. If the contract is a lease

contracts “concession", the operator must cover the costs of building and maintaining the infrastructure

which are given back to the municipality at the end of the contract. The operator is directly paid through

consumers’ bills (the so-called “redevance"). By 2007, although private arrangements only concerned

39 % of water services, its share presented 72 % of the overall population. By 2008, 28% of networks

were under public management. At the same time, the private sector is highly concentrated with three

large companies sharing the market: Veolia Eau France, 39%, Lyonnaise des Eaux, 19 %, Saur, 11% and

others companies or joint agreements among big ones amounting to less than 3 %. Veolia is the leading

firm in the private sector. The smallest company Saur is more present in rural areas. It is also interesting

to notice that public management is more frequent in small municipalities.

Given the high concentration in the sector, practitioners, medias and even politicians have sometimes

complained that the market may not be so competitive after all, leaving inexpert municipalities in a weak

bargaining position in front of big private players and subject to corruptive behavior. As a result, the Loi

Sapin was enacted in 1993 to improve transparence and competitive biding while the 1995 Loi Mazeaud

was designed to improve control on the operator. The competitive bidding generally relies on a two-

step procedure. First the public authority chooses an operator through tender, whose criteria need not

be publicized. Then a winner is selected after negotiation within those operators having made the best

offers.

3.2.2 Pricing

Importantly, heterogeneity is a key aspect of the sector both on the demand and the cost sides. Networks

are disconnected from one municipality to the other and vary significantly in terms of length, age, and

thus leakages. For instance, although leakages amount only to 3% in Paris, they may reach up to 40% in

some rural areas to average overall 21,9%. More maintenance helps reducing leakages and save water

resource. Even though existing infrastructures are often old, the replacement rate for years 2006-2008
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remained rather small with only 0,6% of the networks being renewed over that period.4

Given the specificities of each network, the operator managing the service may learn over time the

state of the network. Private information over the cost of providing the service is thus pervasive. It in-

troduces a fundamental asymmetry between municipalities and operators. This asymmetry is also partly

due to the difficulties in assessing how costs, including labor costs, overhead costs, and maintenance

investments, are allocated between water supply, distribution or sewage treatment, especially when more

than one of these three operations are shared by the same operator.5

Such heterogeneity explains also significant disparities in consumption prices, with an average bill of

183 euros per inhabitant by 2008 which slightly increases over time as a means to finance an improving

quality or new investments.

As far as pricing is concerned, water is billed with two-part tariffs; a usual feature of pricing in

network industries.6 The fixed fee helps to cover fixed cost while the ariable part that depends on

consumption aims at paying for variable costs. Fixed fees vary significantly across networks, but on

average are equal to 32 euros which represents around 20% of the bill for an average consumption of

120 m3.

3.3 Theory

Our theoretical model of the contractual relationship between municipalities (sometimes referred to as

“principals" in the sequel) and service providers (the “agent’) fits the actual contractual practices re-

viewed in Section 3.2. In particular, informational asymmetries, heterogeneity and the form of pricing

are key ingredients of any formal description of the sector.

4See Commissariat Général au Developpement Durable (2010).
5For a discussion of cost in the French stare sector, see Garcia and Thomas (2001).
6Hall (2000).
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3.3.1 Preliminaries

We first set up the stage before entering into more details into the characterization of an optimal contract

in the environment under scrutiny.

Demand side. We consider a population of heterogeneous municipalities that differ in terms of the

consumers’ surplus that prevails locally. More precisely, we assume that there exists a shift parameter ε,

common knowledge for contracting parties (although not observed by the econometrician), such that the

surplus in a municipality characterized by ε writes as S(q, ε), where S(q, ε) is increasing and concave in

the consumption q and increasing in ε. This parameter ε allows to take into account heterogeneity on the

demand side.

In a given municipality, aggregate demand for water at price p is then denoted as D(p, ε) = (S′
q)

−1(p, ε)

with D′
p(p, ε) = 1

S′′
qq(D(p,ε),ε) < 0) for any realization of ε. Of course, the following identity holds

p = S′
q(D(p, ε), ε).

Supply side. The cost function of the service operator is parameterized as θC0(q), where q is the amount

produced and θ is an efficiency parameter that enters multiplicatively. We assume that the function C0

is strictly increasing and convex. Observe that this cost function satisfies the usual Spence-Mirrlees

assumption; an operator with a more efficient technology (θ lower) also produces at a lower marginal

cost. As usual in the screening literature, this assumption ensures that different operators can be sorted

according to their marginal cost of producing the service and choose accordingly to produce under dif-

ferent contractual terms.

Information. In this paper, we are instead interested in the case where the cost parameter θ is the

firm’s private information. This parameter is distributed according to a common knowledge atomless

distribution F, with a positive density function f on a bounded support Θ = [θ, θ̄]. In accordance

with the screening literature,7 we impose the familiar monotone hazard rate property8 that ensures fully

separation allocations at an optimal contract.
7Guesnerie and Laffont (1984) and Laffont and Martimort (2009) ( Chapter 3).
8See Bagnoli and Bergstrom (2006).

254



Assumption 1 (MHR)
d
dθ

(
F(θ)
f (θ)

)
≥ 0, ∀θ ∈ Θ.

Contracts. The contract between the municipality and the firm stipulates not only a price p per unit

of water produced but also an upfront subsidy A under the form of (per capita) subscription fees paid

by consumers to access the service. That subsidy distributes the overall surplus between the consumers

and the operator. Implicit in this specification of the contract is the idea that controlling the unit price

amounts to controlling demand and thus the production that meets this demand.9

Following the incentive regulation literature, we will envision the result of contractual negotiations

between the firm and the municipality as the choice of an item by the privately informed party within

a menu of options. Two equivalent approaches might be used to model this choice. The first one re-

lies on the so-called Revelation Principle10that states that there is no loss of generality in looking for

contracts that are direct and truthful mechanisms of the kind {A(θ̂, ε), p(θ̂, ε)}θ̂∈Θ. Note that we index

the contract by the demand shock ε which is commonly known by contracting parties. With such direct

communication, the operator picks a subsidy/unit price according to his efficiency parameter by commu-

nicating information on its cost parameter. The mechanism is incentive compatible when each operator

ends up preferring the option targeted to his own type.

An alternative approach based on the so-called Taxation Principle11 gives up the abstract direct

communication process underlying the Revelation Principle and focuses instead on the true economic

choice made by the privately informed party. Facing a nonlinear scheme A(p, ε)12 linking the value

of the subscription fee to the actual per unit price chosen by the firm, the firm chooses optimally at

9See Baron (1988) for a general formulation of regulatory mechanisms relying on such approach. It is only incidentally

different from the standard approach that focuses on the direct control of quantities that is developed in Baron and Myerson

(1982) and Laffont and Tirole (1993).
10See Myerson (1982) and Laffont and Martimort (2009) for a textbook approach.
11See for instance Rochet (1985).
12Without fear of confusion and for the sake of simplifying presentation, we slightly abuse notations here by denoting

similarly the fixed fee viewed as a function of the agent’s type in a direct mechanism and viewed as a function of the price

in an indirect scheme. Notice also that the nonlinear scheme A(·, ε) is again indexed on the commonly observable variable ε

that characterizes the relationship under scrutiny.
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which price it stands to produce.13 Again, this choice can be viewed as a metaphor for more complex

negotiation procedures where firms and public authorities negotiate over both the fixed fee and the unit

price charged to consumers. We will favor this second approach since it relates to actual observables

available to us (price, quantity, fees) that will be used in our econometric analysis.

Objective functions of the contracting parties. With our previous notations at hand, the expression of

the firm’s profit becomes:

U (θ, ε, p, A) = A + pD(p, ε)− θC0(D(p, ε)).

Following Baron and Myerson (1982), a municipality maximizes a welfare function which includes

not only consumers’ net surplus from consuming the service but also the firm’s profit weighted by some

parameter γ ∈ [0, 1[. This parameter can be viewed as an index of the firm’s bargaining power at the

stage of tenders or during contract negotiations. It can also be inherited from how local political forces

interact as argued in Baron (1989).14 The corresponding welfare function W(·) can thus be written as:

W(θ, ε, p, A) = S(D(p, ε), ε)− A − pD(p, ε) + γU (θ, ε, p, A).

Using the expression of the fixed fee as a function of the firm’s profit, the latter definition becomes:

W(θ, ε, p, A) = S(D(p, ε), ε)− θC0(D(p, ε))− (1 − γ)U (θ, ε, p, A).

This latter expression stresses the rent/efficiency trade-off faced by the local government in designing the

regulatory contract. On the one hand, the principal would like to charge a price p(θ, ε) close to p∗(θ, ε)

as defined in (3.3.1) so that the overall surplus is maximized. On the other hand, the principal would

also like to reduce the firm’s informational rent which is viewed as socially costly. Under asymmetric

information, rents and outputs are linked altogether through incentive compatibility conditions and this

leads to an important trade-off between the conflicting objectives of promoting efficiency and extracting

rents.
13Of course, any incentive compatible direct mechanism {A(θ̂, ε), p(θ̂, ε)}θ̂∈Θ can be transformed into a nonlinear scheme

by setting A(p, ε) = A(θ̂, ε) if p = p(θ̂, ε) and A(p, ε) = −∞ otherwise.
14See also Gagnepain, Ivaldi, and Martimort (2013) for a model of the French transportation sector that relies on a similar

specification of the preferences of local authorities.
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Remark 1 The expressions of the objective functions above can easily be extended to account for some

fixed cost F in the operatopr’s cost function. Suppose indeed that the operator’s profit can be written as

U (θ, ε, p, A) = A′ + pD(p, ε)− θC0(D(p, ε))− F. for some fixed-fee A′. Setting A ≡ A′ − F then

amounts to having the principal pays for the fixed-cost in the first place, which is basically an accounting

convention.

Benchmark. Had θ been common knowledge, efficiency would require to produce a quantity q∗(θ, ε) =

D(p∗(θ, ε), ε) such that the marginal social value of production is equal to marginal cost:

S′
q(q

∗(θ, ε), ε) = p∗(θ, ε) = θC′
0q(q

∗(θ, ε)). (3.3.1)

Then, the firm’s operates if A∗(θ, ε) extracts revenues from the service:

A∗(θ, ε) = −p∗(θ, ε)D(p∗(θ, ε), ε) + θC0(D(p∗(θ, ε), ε)). (3.3.2)

Remark 2 In the empirical part of our analysis, the two functions S(·, ε) and C0(·) will depend on a

set of explanatory variables. For example, the treatment made for making the water drinkable has an

impact on the unit cost. This treatment is however observed in the data. For the exposition, we omit the

dependance in the explanatory variables without loss of generality for the results derived in the analysis

of the theoretical model.

3.3.2 Optimal Contract

Incentive compatibility constraints. Let define the firm’s information rent U(θ, ε) and an optimal

price15 respectively as:

U(θ, ε) = max
p

A(p, ε) + pD(p, ε)− θC0(D(p, ε)) (3.3.3)

and

p(θ, ε) = arg max
p

A(p, ε) + pD(p, ε)− θC0(D(p, ε)). (3.3.4)

15Or at least, a selection within the best-response correspondence.
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From (3.3.3), U(θ, ε) is the maximum of a family of decreasing linear functions in θ. As such it is

decreasing, convex in θ and absolutely continuous so that one can write:

U(θ, ε) = U(θ̄, ε) +
∫ θ̄

θ
C0 (D(p(x, ε), ε)) dx. (3.3.5)

At any point of differentiability in θ (i.e., almost everywhere), we get:

U′
θ(θ, ε) = −C0 (D(p(θ, ε), ε)) . (3.3.6)

Because U(θ, ε) is convex in θ, C0 (D(p(`, ε), ε)) is non-decreasing in θ, which in turn implies:

p(θ, ε) is non-increasing in θ. (3.3.7)

This condition expresses the fact that firms endowed with less efficient technologies produce lower vol-

umes at higher prices . From this monotonicity, it also follows that p(θ, ε) is almost everywhere differ-

entiable in θ.

Let us turn now to the expression of the nonlinear schedule A(p, ε) that plays an important role in

our empirical analysis. By a standard duality argument of (generalized) convex analysis, we may first

rewrite:16

A(p, ε) + pD(p, ε) = min
θ

U(θ, ε) + θC0(D(p, ε)).

From which, it also follows that A(p, ε) is absolutely continuous in p and thus such that

A(p, ε) + pD(p, ε) =A(p(θ̄, ε), ε) + p(θ̄, ε)D(p(θ̄, ε), ε)

+
∫ p

p(θ̄,ε)
ϑ(p, ε)C′

0q (D(p, ε)) D′
p(p, ε)dp

(3.3.8)

where ϑ(p, ε) = minθ U(θ, ε) + θC0(D(p, ε)) is an assignment function17 (a selection within the best-

response monotonically increasing p (thus almost everywhere differentiable) and such that ϑ(p(θ, ε), ε) ≡

θ.

At any point of differentiability in p = p(θ, ε), we thus have also:

A′
p(p(θ, ε), ε) = −

(
p(θ, ε)− θC′

0q (D(p(θ, ε), ε))
)

D′
p(p(θ, ε), ε)− D(p(θ, ε), ε). (3.3.9)

16See for instance Basov (2005) Chapter 7).
17See Nöldeke and Samuelson (2005).
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Participation constraints. The firm chooses to always operate the service irrespectively of its costs

when it at least breaks even. For a fixed ε, this participation constraint can be written as:

U(θ, ε) ≥ 0 ∀θ.

As usual in the incentive regulation literature,18 this constraint is binding for the worst type θ̄ at the

optimal contract. Otherwise reducing uniformly the fixed fee by some small amount would improve

the principal’s expected payoff while maintaining incentive compatibility. From this observation, an

immediate manipulation of (3.3.5) yields the following expression of the firm’s information rent as:

U(θ, ε) =
∫ θ̄

θ
C0 (D(p(x, ε), ε) dx. (3.3.10)

Observe that the rent left to the operator is greater as prices are lower. The intuition is a standard one.

By pretending being slightly less efficient, an operator with efficiency parameter θ can produce the same

quantity than this slightly less efficient type θ + dθ but at a lower marginal cost. To induce this operator

to report truthfully his type he must be given an extra fee that equals the corresponding cost saving

dθC0 (D(p(θ + dθ, ε), ε)) ≈ dθC0 (D(p(θ + dθ, ε), ε)) . The right-hand side of (3.3.10) expresses how

those marginal information rents just pill up over all supra-marginal types.

Optimal contracts. Under asymmetric information, an optimal contract maximizes the expected welfare

of the municipality subject to incentive and participation constraints. From our observations above, that

incentive feasible set can be summarized by constraints (3.3.7) and (3.3.10). As usual, the monotonicity

condition (3.3.7) will be omitted in a first step and checked ex post on the solution to the so relaxed

problem. Formally, this relaxed problem can be written as:

max
{p(·,ε),U(·,ε)}

∫ θ

θ
[S(D(p(θ, ε), ε))− θC0 (D(p(θ, ε), ε))− (1 − γ)U(θ, ε)] dF(θ) subject to (3.3.10).

Using (3.3.10) and integrating by parts yields the following expression of the expected rent left to the

operator: ∫ θ

θ
U(θ, ε)dF(θ) =

∫ θ

θ

F(θ)
f (θ)

C0 (D(p(θ, ε), ε)) dF(θ).

18See Armstrong and Sappington (2007), Baron and Myerson (1982) and Laffont and Tirole (1993) among others.
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This expression can be incorporated into the maximand above before proceeding to pointwise optimiza-

tion. This last step leads to the following expression of the price per-unit of consumption p(θ, ε).

p(θ, ε) =

(
θ + (1 − γ)

F(θ)
f (θ)

)
C′

0q (D(p(θ, ε), ε)) . (3.3.11)

The corresponding volume that is supplied q(θ, ε) is then defined as:

S′
q(q(θ, ε), ε) = p(θ, ε). (3.3.12)

Equation (3.3.11) indicates that the price is now above marginal costs and, as a result of (3.3.12).

Equilibrium quantities are also lower than at the first best. Increasing the unit price above marginal cost

reduces the demand addressed to the operator. It thus reduces the latter’s information rent. Formally,

everything happens as if the cost parameter was now replaced by a virtual cost parameter H(θ, γ) which

is greater:

H(θ, γ) = θ + (1 − γ)
F(θ)
f (θ)

.

This expression first illustrates the rent/efficiency trade-off that arises under asymmetric information

and, second, how this trade-off is modified as parameters of the model change. Indeed, the virtual cost

parameter is greater as the public authority is more concerned by rent extraction (i.e., γ lower) and as

the types distribution is more front-loaded, in the sense of having a greater hazard rate F(θ)/ f (θ).

Turning now to sufficient conditions for optimality, observe that Assumption 1 ensures that p(θ, ε)

so defined by (3.3.11) is non-decreasing in θ as requested by condition (3.3.7). Hence, the solution of

the relaxed problem really characterizes the optimal contract. When we get to our empirical analysis, we

will actually check on our estimated distribution that it indeed satisfies Assumption 1.

3.4 Nonparametric Identification

In this section, we study the nonparametric identification of our model. It is indeed important to figure

what are the structural functions that can be fully recovered from the available data. In our dataset, we

observe for each local community, the unit price p, the quantity consumed q and the fixed fee A. We
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also observe some explanatory variables W and Z which are related to respectively the cost function

C0(q, W) and the surplus function S(q, Z, ε). The vectors W and Z do not have any variable in common

in our case but the results are unchanged when the reverse holds as long as there are some exclusion

restrictions, i.e., there exists an explanatory variable in Z which is not part of W and an explanatory

variable in W which is not part of Z. Our purpose is to identify the production technology C0(q, W),

the distribution F(θ) of the types θ, the consumers surplus function S0(q, Z, ε), and the weight γ of the

firm’s profit in the principal’s objective.

A scale normalization Multiplying θ by a positive scalar λ and dividing the cost function by the same

value would give the same equilibrium outcome. θ and the marginal cost are therefore identified up to a

scale and we first need to impose a normalization for the distribution of θ, by assuming that a prespecified

quantile is equal to a given value. Standard normalizations are θ equal to 1 or the median of θ equal to 1.

In the latter case, the function C′
0q(q, W) is then interpreted as the marginal cost function for the median

type firm, given the observed characteristics W.

Assumption 2 [Normalization]

Median(θ) = 1.

3.4.1 The Simple Case Without Heterogeneity

As a starting point, we omit explanatory variables (no W and no Z)and unobserved heterogeneity (i.e.

ε ≡ 0), simplifying notations accordingly. For exposition purposes, it is important to know what are the

identifying power of the first-order conditions (3.3.9), (3.3.11) and (3.3.12) and what do the additional

assumptions help us identify. The system of first-order conditions reduces in this case to19

p = H(θ, γ)C′
0q (q) , (3.4.13)

S′ (q) = p, (3.4.14)

A′(p) = −q −
(

p − θC′
0q(q)

)
D′

p(p). (3.4.15)

19We omit, in the notations, the dependance of p and q in θ for the clarity of exposition.
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First, let us observe that equation (3.4.14) directly identifies S′(q) on the support of the equilibrium

quantities and hence provides the expression of D′
p(p) = ∂

∂p
(
S′−1) (p) that we insert into (3.4.15).

Finally, (3.4.15) provides information about the operator’s price-cost margin

p − θC′
0q(q)

p
=

A′(p) + q
pD′

p(p)
.

This is so because the terms on the right-hand side are either observed (q = D(p) and p) or derived

directly from the observations (A′(p) and D′(p)).

Making the dependence of the price-cost margin on θ explicit, we define a price-cost margin r(θ, γ)

as:

r(θ, γ) =
p(θ)− θC′

0q(q(θ))

p(θ)
=

1

1 + θ f (θ)
(1−γ)F(θ)

(3.4.16)

where the last equality immediately follows from (3.4.13). Thus, the price-cost margin only depends

on the efficiency parameter θ and the bargaining power γ. In the sequel, we shall assume that different

operators can be perfectly sorted according to that price-cost margin. Formally, we require that there is

a one-to-one mapping between price-cost margins and efficiency parameters, i.e., r(θ, γ) is a monotoni-

cally decreasing transformation of θ which always lies between 0 and 1 and is worth 0 at θ, i.e., for the

most efficient type who produces efficiently:

Assumption 3 (MPCM)
d
dθ

(
F(θ)

θ f (θ)

)
≥ 0, ∀θ ∈ Θ.

This assumption is actually stonger than Assumption 1 and is satisfied for all standard parametric

distributions.

To give a bit more intuition about the role played by Assumption 3, let us come back to (3.4.15)

which can be rewritten as:

A′(p(θ)) = −D(p(θ)) (1 + r(θ)εD(p(θ))) (3.4.17)

where we denote the demand elasticity by εD(p) = − pD′(p)
D(p) . Assuming also that demand is more elastic

at greater price, i.e., εD(p) is increasing with p, it is straightforward to check by differentiating (3.4.17)
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that Assumption 3 ensures that −A′(p(θ))/D(p(θ)) is increasing in θ, or alternatively that A(p) is

quasi-concave in p.

Equipped with this one-to-one relationship between cost-price margins and efficiency parameters, we

now let G(·) (resp. g(·)) be the cumulative distribution function (resp. probability density function) of

that margin. Of course, we have G(r(θ, γ)) = F(θ) and by differencing the last equality with respect to

θ, we also get g(r) = f (θ)θ′r(r, γ) where θ(r, γ) denotes the inverse function of r(θ, γ). Reintroducing

the last two equalities into (3.4.16), we obtain after some manipulations:

(1 − γ)
θr(r, γ)

θ(r, γ)
=

r
1 − r

g(r)
G(r)

.

For exposition, let us assume that we impose the normalization θ = 1.20 As r = 0 when θ = θ = 1,

we can solve the latter differential equation and get:

θ(r, γ)1−γ = exp
[∫ r

0

s
1 − s

g(s)
G(s)

ds
]

. (3.4.18)

The density function for θ is then derived from f (θ) = g(r)
θ̇(r)

:

f (θ) = (1 − γ)
1 − r

rθ
G(r). (3.4.19)

Observe that the last expression gives the density of the types as a function of the c.d.f. of the price cost

margin. Reintroducing (3.4.18) into (3.4.13) and observing that θ = (1 − r(θ, γ))H(θ, γ) lead to

C′
0q(q) =

p
H(θ, γ)

=
p(1 − r)

exp
[

1
1−γ

∫ r
0

s
1−s

g(s)
G(s)ds

] .

Therefore, when γ is known or predetermined from some additional source of information, the model

is thus identified since the marginal cost and the distribution of the firms’ types are identified up to the

standard normalization.
20If we use the normalization related to the median, Equation (3.4.18) below becomes

θ(r, γ) = θ exp
[

1
1 − γ

∫ r

0

s
1 − s

g(s)
G(s)

ds
]

.

θ is determined to ensure that Median(θ) = 1.
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Instead, when γ is not known, only θ1−γ is identified. Consequently, for any β in [0, 1[, the two

sets (θ, C′
0q(q), γ) and (θ

1−γ
1−β , C′

0q(q)θ
γ−β
1−β , β) are observationally equivalent. We thus need additional

assumptions or information to identify the model. It is worth noting that the conclusions of this section

do not depend on the existence of observed explanatory variables. Adding an explanatory variable in

either the cost function or the surplus one does not change the previous results. Observe also that we can

exploit the bounds on β to bound the distributions of interest. In particular

C′
0q(q) ≤

p
H(θ, γ)

=
p(1 − r)

exp
[∫ r

0
s

1−s
g(s)
G(s)ds

] ,

and

f (θ) ≤ 1 − r
rθ

G(r), on [1;+∞[.

3.4.2 Full Identification of the Model with Explanatory Variables and Hetero-

geneity

We now consider the full model with explanatory variables, Z and W, that appears respectively in the

surplus function and the cost function.

Identification of the Marginal Surplus Function under Completeness Assumption

• In a first step, we assume that the marginal cost function is separable and additive in both the ex-

planatory variables, Z,21 and the unobserved heterogeneity term, ε, i.e. S′
q(q, Z, ε) = S′

0(q) + βZZ + ε,

Equation (3.3.12) can be written

p = S′
0(q) + βZ + ε, (3.4.20)

with [ε|Z, W] = 0.

21The separability in Z does not play any role in the identification result. This is nevertheless the model we estimate in the

empirical application.
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The equilibrium quantity q being endogenous, Equation (3.4.20) is a typical nonparametric instru-

mental regression like the one studied in Florens, Johannes, and Van Bellegem (2012).22 Following

Theorem 3 in Florens, Johannes, and Van Bellegem (2012), we recover the identification of the primi-

tives of the model under a condition of completeness of W with respect to q. Observe that here, in the

partial linear regression like the one in (3.4.20), we need additional regularity conditions than the com-

pleteness assumption due to the linear part βZZ (see Florens, Johannes, and Van Bellegem (2012))23.

The completeness assumption is nevertheless the most restrictive assumption though relatively standard

in this literature. The set of instruments W is complete for q if, for any measurable function ∆S in L1,

E[∆S(q)|W] = 0 a.s. ⇒ ∆S(q) = 0 a.s.

Sufficient conditions for completeness can be found in Newey and Powell (2003), Chernozhukov and

Hansen (2005), and Andrews (2011). It can be replaced by weaker concepts like the bounded com-

pleteness in Chernozhukov and Hansen (2005), Blundell, Chen, and Kristensen (2007), D’Haultfoeuille

(2011), and Andrews (2011).24

• We now consider the non-separable case,

p = S′
q(q, Z, ε),

with [ε|Z, W] = 0. Let V be indeed a given c.d.f., i.e. an injective function from R to [0, 1]. Let

ε̃ = V−1 ◦ Φ(ε), where Φ(·) denotes the c.d.f. of ε, and S̃(q, Z, ε̃) = S(q, Z, Φ−1 ◦ V(ε̃)). The

equilibrium quantities A, p and q are invariant to this transformation.

The distribution of the parameter ε is therefore non identifiable as such and we therefore need to

normalize the distribution of ε. The standard one is to assume that it is uniformly distributed, i.e. ε ∼

U[0; 1]. It is worth noting, that this normalization does not restrict the economic interpretation of our

22See also Newey and Powell (2003), Blundell, Chen, and Kristensen (2007), Darolles, Fan, Florens, and Renault (2011)

and Ai and Chen (2003) for additional references.
23It is required that the conditional expectations of Z, q and any L2 function of q given W are in L2(RdimW) and that the

matrix E
[
E(Z|W)E(Z|W)⊤

]
is full rank.

24See also Chen et al. for a general discussion. This assumption is however not testable as recently shown by Canay,

Santos, and Shaikh (2013).
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model. The value of ε does not have an interpretation in its own and is only an index of the position of

the firm in a demand ranking. We therefore identify the marginal surplus (given Z) of any quantile of

the distribution of ε, like the marginal surplus of the median local community, given Z.

The identification arises from the monotonicity constraints implied by the economic model (see, for

example Chesher (2007), or Chernozhukov and Hansen (2005)). For a given rank α ∈ [0, 1]:

P
(

p ≤
(

S′
q(q, α, Z)

)
|Z, W

)
= Eq|Z,WP

(
S′

q(q, ε, Z) ≤
(

S′
q(q, α, Z)

)
|q, Z, W

)
= Eq|Z,WP(ε ≤ α|q, Z, W) due to the monotonicity in ε

= P(ε ≤ α|Z, W) = α

(3.4.21)

Equation (3.4.21) derived above can be reexpressed as a conditional moment restriction:

E
(

1{p ≤ S′
q(q, α, Z)} − α|Z, W

)
= 0. (3.4.22)

This is a standard quantile IV equation and we need essentially an assumption of completeness of W

with respect to q to identify any quantile of the marginal surplus function given Z. The following result

summarizes the main conclusion if this section.

Proposition 1 If W is complete with respect to q the marginal surplus function given Z is identified.

3.4.3 Identification of the marginal cost function and the distribution of types

We now prove that the marginal cost function is identified without the knowledge of γ when there is

unobserved heterogeneity of the demand function. Assume initially that we do not have explanatory

variables for the marginal cost.

We consider the points (qi, pi) of the quantities consumed and marginal prices paid for all the con-

tracts (see Figure 3.1). For the most efficient firms, θ = θ, the marginal price equation (3.3.11) reveals

that the marginal cost function for the lower type θC′
0q(q) can be estimated using the lower envelope

of the points in the space (q, p) between the quantity ql
θ which corresponds to the most efficient firm

contracting with the lowest demand city (the contract which has the lowest price) and the quantity qu
θ
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which corresponds to the most efficient firm contracting with the highest demand city (i.e. the contract

with the highest quantity). This is the dashed curve in the figure.

Similarly, for the less efficient firms, θ = θ, the marginal prices are equal to kC′
0q(q) where k is

equal to the limit of θ + (1 − γ)/ f (θ) on the upper bound, when it exists. This function is therefore the

upper envelope between the minimum quantity among all contracts ql
θ

(i.e. the quantity of the contract

of the less efficient firm contracting with the local community with the lowest surplus) and the quantity

corresponding to the maximum price qu
θ

(the quantity consumed in the local community with the highest

surplus which contracts with the less efficient firm).

If qu
θ
≥ ql

θ and if k is finite, we can estimate the ratio of the two extreme costs with the same quantity

q and therefore estimate C′
0q(q) up to a scale between the minimum and the maximum quantities of the

population of contracts. We need to have sufficient heterogeneity in ε. If there are explanatory variables

W, we can use the same argument conditionally on W.

Alternatively, if k is infinite, or if there is not enough heterogeneity, we can use a moment equation

like the one used for estimating the surplus function in (3.4.21). Using the monotone property of H(θ) =

θ + (1− γ) F(θ)
f (θ) in θ, we can indeed write for any quantile α ∈]0, 1[, θα being the corresponding quantile

of θ,

P
(

p ≤ H(θα, γ)C′
0q(q, W)|Z, W

)
= α. (3.4.23)

Again, C′
0q(q, W) is identified through (3.4.23) up to a scale under an assumption of completeness

of Z. We can in a first step normalize H(θ0.5, γ) to 1 before changing the scale to ensure that the median

of θ is equal to 1.

Once C′
0q(q, W) is known up to a scale, we obtain θ from (3.3.9) and estimate the scale to ensure

Median(θ) = 1. The marginal cost function is therefore identified. The knowledge of θ provides the

identification of F(θ) and f (θ).

Proposition 2 If Z is complete with respect to q the marginal cost function given W, C′
0q(q, W) and the

distribution of types are identified.
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Figure 3.1: The set of contracts in the (q × p) space.
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3.4.4 Identification of γ

Once, all the functions are identified, H(θ, γ) is known from (3.3.11). We can now identify the bargain-

ing weight γ using

H(θ, γ) = θ + (1 − γ)
F(θ)
f (θ)

.

Identification when γ is not unique It is worth noting that the identification strategy does not require

the unicity of γ across the cities as long as the distribution of γ is exogeneous. Assume that γ varies

across cities, its c.d.f being denoted by Γ(·), and that the observed heterogeneity Z and W are both

complete with respect to q as required in Proposition 1 and 2. The equilibrium equations are not changed

and we identify similarly S′
q(q, Z).

Equation (3.4.23) is now modified as we have to condition on γ. For any quantile α ∈]0, 1[,

P
(

p ≤ H(θα, γ)C′
0q(q, W)|Z, W, γ

)
= α. (3.4.24)

For any γ ∈ [0, 1[, the function H(·, γ) is a one-to-one mapping from [θ, θ[ to [θ, limθ→θ θ + (1 −

γ) F(θ)
f (θ) [.

Let θ(k, γ) = maxθ∈Θ {H(θ, γ) ≤ k}. For any γ, θ(θ, γ) = θ and θ(·, ·) is increasing in k and

decreasing in γ. Therefore

P
(

p ≤ kC′
0q(q, W)|Z, W, γ

)
= F(θ(k, γ)),

and, integrating with respect to gamma,

P
(

p ≤ kC′
0q(q, W)|Z, W

)
=
∫

F(θ(k, γ))dΓ(γ) = r(k). (3.4.25)

r(k) is increasing in k and maps [θ, limθ→θ θ + F(θ)
f (θ) [ into [0, 1[. We have therefore derived the same

structure of quantiles than in the case where γ is unique. Again, we can identify the marginal cost up

to a scale before deriving θ from (3.3.9). Once θ is known, we can rescale it to meet our normalization

Median(θ) = 1. H(θ, γ) is therefore identified from H(θ, γ) = p/C′
0q(q, W).

Finally the distribution of γ is identified from

H(θ, γ) = θ + (1 − γ)
F(θ)
f (θ)

.
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3.5 Simulations and Estimation Procedure

In this section, we expose the different steps of our estimation strategy. Some Monte Carlo simulations

are also displayed to assess the sample properties of the proposed estimator.

The results are based on ns = 100 replications of samples of size n = 1000. In this scenario the

marginal cost function is a linear function C′
0q(q, W) = q+W, where W ∼ U[0,1]. θ the type of the firm

follows a Beta distribution up to a location-scale transformation, i.e. (θ − 1)/5 ∼ B(2, 5) and therefore

Θ = [1, 6]. S′
0(q, Z) = 15 − 5q + Z, where Z ∼ U[0,1] and γ = 0.3. The unobserved heterogeneity ε

is drawn from a centered uniform distribution.

We display for the estimated functions the integrated square bias, integrated variance and integrated

mean square error based on 100 simulations. Let f̂s(·) be the estimated function of f (·) for simulation s.

Let x1, ..., x99 be the 99 percentiles of the variable x in the population. We define f (x) = 1
ns

∑ns
s=1 f̂s(x).

The integrated square bias is estimated by ISB = ∑99
i=1

(
f (xi)− f (xi)

)2
, the integrated square

variance by ISV = ∑99
i=1

1
ns

∑ns
s=1

(
f̂s(xi)− f (xi)

)2
. Finally the integrated Mean Square Error IMSE

is estimated by IMSE = ∑99
i=1

1
ns

∑ns
s=1

(
f̂s(xi)− f (xi)

)2
.

3.5.1 Estimation of the marginal surplus function

We assume that the marginal surplus is separable and additive in both the explanatory variables, Z and

the unobserved heterogeneity ε like in Equation (3.4.20):

p = S′
q(q) + βZZ + ε. (3.5.26)

We apply Ai and Chen (2003) to estimate the marginal surplus using cubic spline approximation.

This is attractive as S′
q(q) can be forced to be decreasing by imposing that the sequence of coefficients

related to the spline approximation is also decreasing.

1. We choose the cubic splines B4(t) as basis for our sieve estimation and renormalize q on [0, 1] (q∗ is
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the normalized quantity) for the choice of the knots (G denotes the c.d.f. of q):

S′
q ◦ G−1(q∗) = ϕ(q∗) =

2k−1

∑
l=−3

B4(2kq∗ − l)

= Pq∗βKn ,

where Kn = 2dn + 4 is the number of parameters that are estimated. dn is a tuning parameter which

drives the approximation of the true (normalized) marginal surplus function.

2. We then project the moment equation

m(Z, W, βKn , βZ) = E
[

p − Pq∗βKn − βZZ|Z, W
]

on a basis of the square-integrable function of Z, W, pj(Z, W), j = 1, . . . , Jn, where Jn tends slowly

to infinity as n → ∞. We denote by PJn(Z, W) = (p1(Z, W), . . . , pJn(Z, W)) and

P = (PJn(Z1, W1), . . . , PJn(Zn, Wn).

An empirical estimator of m(Z, W, βKn , βZ) is therefore:

m̂(Z, W, βKn , βZ) =
n

∑
j=1

(
pj − Pq∗j

βKn − βZZj

)
PJn(Zj, Wj)

(
P′P
)− PJn(Z, W).

We can now compute the (empirical) distance function Q̂(βZ, βKn) as:

Q̂(βZ, βKn) =
1
n

n

∑
i=1

m̂(Zi, Wi, βKn , βZ)m̂(Zi, Wi, βKn , βZ).

We could have used another metric but it appears that the result are not very sensitive to the choice of

the metric.

3. Finally, we estimate the parameters βZ and βKn by minimizing the penalized criterion:

Q̂(βZ, βKn) + λn(d0 + d2).

The second term in the expression above is a penalization term added to control for the ill-posedness

where d0 =
∫ 1

0 ϕ(q∗)2dq∗ and d2 =
∫ 1

0 ϕ′′(q∗)2dq∗. d2 is controlling for the oscillations of the

estimated marginal surplus (if the monotonicity is not imposed in the estimation step). λn is a tuning

parameter which controls for the strength of the penalisation term.
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Table 3.1 displays the integrated square bias, the integrated variance and the integrated MSE for

various choices of dn, Jn and λn.

The results are quite good except for small values of λn for which the integrated variance increases a

lot. The MSE decreases with the improvement of the sieve approximation (Kn) and the size of the basis

used to project the conditional moment on (Jn).

3.5.2 Estimation of the marginal cost function

We estimate the marginal cost function using the SMD procedure of Chen and Pouzo (2009) which

is, among additional contributions, a generalization of Ai and Chen (2003) to the case of nonsmooth

moments. It is therefore particularly attractive here as we estimate the marginal cost function by quantile

IV methods. The marginal cost function C′
0q(q) is estimated by another spline approximation. This is a

similar procedure than the one explained above. Here the moment condition is

E
[
1{
(

p ≤ λα(Pq∗δJn + βWW)
)
} − α|Z, W

]
= 0,

for a choice of 10 quantiles (from 0.05 to 0.95) plus the median that is imposed to be equal to one (in a

first step). λα is an increasing sequence of parameter which corresponds to the value H(θα, γ) for the

α-quantile of the firm type, θα.

From the estimation of the marginal cost, we can now estimate θ in (3.3.9) as all the other quantities

can be derived from the first two functions that have been estimated. We finally renormalize θ and the

marginal cost function to ensure that the median is equal to 1.

Table 3.2 and 3.3 reports for respectively the estimated marginal cost and distribution of types the

integrated square variance, mean bias and MSE for various choices of dn, Jn and λn.

The integrated squared bias is higher than for the estimation of the marginal surplus as the estimation

is now based on quantile IV methods. However, the variance is smaller and not very sensitive to the

tuning parameters.
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Table 3.1: Monte Carlo Study - Integrated MSE of Sieve IV estimator of S′
q(q)

λn

Kn = 4 Kn = 5

Jn − Kn 0.2 0.1 0.01 0.001 1e-4 1e-5 0.2 0.1 0.01 0.001 1e-4 1e-5

1 0.005 0.002 0.001 0.016 0.016 0.034 0.006 0.002 0.002 0.016 0.015 0.059

0.230 0.221 0.294 0.974 3.392 4.881 0.256 0.205 0.283 0.955 4.319 9.399

0.235 0.223 0.295 0.990 3.408 4.915 0.262 0.207 0.284 0.971 4.334 9.457

3 0.008 0.004 0.010 0.028 0.014 0.007 0.010 0.001 0.006 0.020 0.009 0.159

0.280 0.221 0.327 1.049 1.730 2.356 0.260 0.230 0.277 0.847 2.618 2.939

0.288 0.225 0.337 1.077 1.745 2.363 0.271 0.231 0.283 0.867 2.628 3.098

6 0.014 0.003 0.019 0.020 0.033 0.030 0.015 0.016 0.024 0.012 0.011 0.051

0.204 0.171 0.275 0.477 0.602 0.656 0.195 0.179 0.292 0.556 0.884 0.900

0.219 0.174 0.294 0.497 0.635 0.686 0.210 0.195 0.316 0.568 0.895 0.950

11 0.009 0.018 0.011 0.014 0.036 0.017 0.026 0.015 0.033 0.016 0.022 0.031

0.132 0.141 0.194 0.269 0.329 0.325 0.121 0.111 0.193 0.294 0.380 0.432

0.141 0.159 0.205 0.283 0.365 0.342 0.147 0.126 0.226 0.309 0.401 0.463

λn

Kn = 7 Kn = 11

Jn − Kn 0.2 0.1 0.01 0.001 1e-4 1e-5 0.2 0.1 0.01 0.001 1e-4 1e-5

1 0.004 0.003 0.008 0.027 0.010 0.324 0.002 0.004 0.018 0.031 0.100 0.056

0.194 0.219 0.306 0.809 4.223 8.404 0.033 0.049 0.201 0.988 2.477 6.113

0.198 0.222 0.313 0.835 4.233 8.729 0.036 0.053 0.219 1.019 2.578 6.169

3 0.009 0.014 0.001 0.003 0.131 0.172 0.002 0.005 0.026 0.078 0.042 0.210

0.205 0.181 0.306 0.940 2.023 5.660 0.023 0.044 0.198 0.757 2.168 6.379

0.214 0.195 0.307 0.943 2.153 5.831 0.025 0.049 0.224 0.835 2.210 6.589

6 0.012 0.000 0.012 0.029 0.043 0.032 0.004 0.007 0.038 0.030 0.036 0.063

0.146 0.157 0.298 0.664 1.117 1.477 0.029 0.038 0.177 0.586 1.385 2.182

0.158 0.158 0.310 0.693 1.160 1.509 0.033 0.045 0.215 0.616 1.421 2.245

11 0.025 0.015 0.028 0.027 0.039 0.026 0.008 0.015 0.024 0.041 0.046 0.020

0.120 0.135 0.192 0.356 0.532 0.623 0.031 0.050 0.146 0.325 0.725 0.887

0.146 0.150 0.219 0.384 0.571 0.649 0.039 0.065 0.170 0.366 0.772 0.907

Note: for each value of (λn, Kn, Jn) we report in each cell, the integrated squared bias, integrated variance and

integrated MSE (divided by 100).
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Table 3.2: Monte Carlo Study - Integrated MSE of Sieve IV estimator of C′
0q(q)

λn

Kn = 4 Kn = 5

Jn − Kn 0.2 0.1 0.01 0.001 1e-4 1e-5 0.2 0.1 0.01 0.001 1e-4 1e-5

1 0.19 0.14 0.18 0.12 0.18 0.13 0.14 0.12 0.14 0.17 0.13 0.16

0.42 0.24 0.36 0.48 0.54 0.29 0.30 0.26 0.28 0.32 0.26 0.32

0.61 0.39 0.54 0.59 0.72 0.41 0.44 0.39 0.42 0.50 0.39 0.49

3 0.11 0.16 0.12 0.12 0.15 0.17 0.14 0.17 0.13 0.13 0.14 0.16

0.34 0.41 0.27 0.33 0.34 0.44 0.35 0.34 0.26 0.28 0.18 0.18

0.45 0.57 0.39 0.45 0.49 0.61 0.48 0.51 0.39 0.41 0.32 0.34

6 0.11 0.12 0.18 0.11 0.11 0.10 0.10 0.10 0.09 0.12 0.07 0.09

0.21 0.24 0.28 0.21 0.25 0.21 0.19 0.24 0.21 0.23 0.13 0.19

0.32 0.36 0.46 0.32 0.36 0.31 0.29 0.34 0.30 0.35 0.20 0.28

11 0.16 0.11 0.13 0.11 0.11 0.07 0.08 0.07 0.08 0.07 0.10 0.08

0.23 0.18 0.23 0.38 0.24 0.24 0.14 0.12 0.21 0.16 0.22 0.20

0.39 0.30 0.36 0.49 0.35 0.30 0.21 0.20 0.28 0.23 0.32 0.28

λn

Kn = 7 Kn = 11

Jn − Kn 0.2 0.1 0.01 0.001 1e-4 1e-5 0.2 0.1 0.01 0.001 1e-4 1e-5

1 1.02 0.78 1.09 0.84 1.26 0.71 2.06 1.97 1.88 2.15 2.09 2.40

0.95 0.69 1.20 0.79 1.04 0.82 0.99 0.66 0.96 0.80 0.74 1.08

1.97 1.47 2.30 1.64 2.30 1.53 3.05 2.63 2.83 2.94 2.83 3.48

3 0.73 0.70 0.74 0.97 0.69 0.83 1.54 1.85 2.03 1.65 1.87 1.81

0.56 0.76 0.91 0.75 0.57 0.92 0.81 0.97 0.84 0.66 1.24 0.86

1.29 1.46 1.66 1.72 1.26 1.75 2.34 2.82 2.86 2.30 3.11 2.67

6 0.64 0.50 0.53 0.53 0.51 0.52 1.05 0.82 1.08 1.08 1.37 1.19

0.55 0.44 0.56 0.32 0.52 0.47 0.64 1.66 1.26 0.82 0.59 0.60

1.18 0.94 1.09 0.85 1.02 0.98 1.69 2.48 2.34 1.90 1.96 1.79

11 0.40 0.42 0.66 0.40 0.38 0.58 0.67 0.89 0.72 0.75 0.90 0.88

0.40 0.39 0.91 0.41 0.33 0.42 0.75 0.67 1.40 0.80 1.29 0.53

0.80 0.80 1.57 0.80 0.71 1.00 1.42 1.57 2.11 1.55 2.18 1.41

Note: for each value of (λn, Kn, Jn) we report in each cell, the integrated squared bias, the integrated

variance and the integrated MSE (divided by 100).
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Table 3.3: Monte Carlo Study - Integrated MSE of the nonparametric estimator of F(θ)

λn

Kn = 4 Kn = 5

Jn − Kn 0.2 0.1 0.01 0.001 1e-4 1e-5 0.2 0.1 0.01 0.001 1e-4 1e-5

1 0.03 0.03 0.04 0.04 0.05 0.08 0.04 0.05 0.04 0.05 0.08 0.11

0.03 0.03 0.04 0.05 0.16 0.23 0.03 0.03 0.04 0.06 0.19 0.41

0.07 0.06 0.08 0.09 0.21 0.31 0.07 0.08 0.08 0.11 0.27 0.51

3 0.03 0.03 0.04 0.04 0.06 0.05 0.04 0.04 0.04 0.06 0.07 0.08

0.03 0.03 0.04 0.05 0.08 0.12 0.04 0.04 0.03 0.06 0.15 0.15

0.06 0.06 0.07 0.09 0.14 0.17 0.08 0.07 0.08 0.12 0.22 0.23

6 0.04 0.03 0.03 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.06 0.06

0.03 0.03 0.03 0.04 0.04 0.05 0.04 0.03 0.03 0.04 0.06 0.08

0.07 0.06 0.06 0.08 0.08 0.09 0.08 0.07 0.07 0.09 0.12 0.14

11 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.04

0.02 0.03 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.04 0.05 0.04

0.05 0.06 0.06 0.07 0.08 0.07 0.07 0.07 0.07 0.09 0.09 0.09

λn

Kn = 7 Kn = 11

Jn − Kn 0.2 0.1 0.01 0.001 1e-4 1e-5 0.2 0.1 0.01 0.001 1e-4 1e-5

1 0.05 0.05 0.05 0.06 0.10 0.20 0.08 0.08 0.07 0.07 0.12 0.25

0.04 0.03 0.04 0.05 0.22 0.37 0.03 0.02 0.03 0.06 0.21 0.38

0.09 0.08 0.09 0.11 0.32 0.57 0.11 0.10 0.11 0.13 0.33 0.63

3 0.06 0.05 0.07 0.07 0.09 0.15 0.07 0.07 0.07 0.07 0.16 0.44

0.03 0.03 0.04 0.07 0.14 0.33 0.03 0.03 0.03 0.05 0.19 0.42

0.09 0.08 0.11 0.14 0.23 0.49 0.10 0.10 0.10 0.13 0.36 0.87

6 0.06 0.06 0.05 0.06 0.08 0.11 0.08 0.07 0.07 0.08 0.16 0.37

0.03 0.03 0.04 0.05 0.10 0.15 0.02 0.03 0.03 0.05 0.16 0.24

0.09 0.08 0.09 0.11 0.18 0.26 0.10 0.10 0.10 0.13 0.32 0.61

11 0.06 0.05 0.05 0.06 0.09 0.08 0.06 0.06 0.08 0.09 0.14 0.22

0.03 0.02 0.04 0.04 0.06 0.07 0.03 0.03 0.03 0.05 0.14 0.18

0.09 0.08 0.09 0.10 0.15 0.15 0.09 0.09 0.11 0.13 0.28 0.39

Note: for each value of (λn, Kn, Jn) we report in each cell, the integrated squared bias, integrated

variance and integrated MSE (divided by 100).
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3.5.3 Estimation of the weight parameter γ and the parametric component

Finally we present in Table 3.4 the same results for the parameters involved in the simulation. We only

report them for λn = 0.2 or 0.1 and Jn −Kn = 3 as the MSE is of the same order of magnitude across the

different cases.25 βZ is the coefficient related to the parametric component in the marginal surplus, βW

to the component in the marginal cost and γ is the bargaining weight (assumed here unique) estimated

from the following equation:

H(θ, γ) = θ + (1 − γ)
F(θ)
f (θ)

.

Table 3.4: Monte Carlo Study - Estimated bias, variance and MSE of the parameters of the model,

Jn − Kn = 3.

λn

Kn = 4 Kn = 5 Kn = 7 Kn = 11

γ Bias 0.010 0.059 -0.038 -0.056 -0.074 -0.033 -0.034 -0.034

Variance 0.035 0.039 0.028 0.028 0.030 0.030 0.028 0.023

MSE 0.035 0.042 0.001 0.001 0.001 0.001 0.001 0.001

βZ Bias 0.008 0.001 0.016 0.003 0.011 0.002 0.003 0.005

Variance 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000

MSE 0.001 0.001 0.005 0.006 0.009 0.003 0.002 0.001

βW Bias -0.012 -0.011 -0.008 -0.005 -0.002 0.007 -0.007 -0.011

Variance 0.009 0.011 0.005 0.004 0.003 0.005 0.001 0.004

MSE 0.009 0.011 0.005 0.004 0.003 0.005 0.001 0.004

Note: for each value of (λn, Kn) we report in each cell, the mean bias, the variance and the MSE.

The estimation of γ is much noisier than for the other parameters but this is still good. In the

estimation procedure, we use Kn = 7 and λn = 0.1.

25The full results are available upon request.
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3.6 Empirical Application

We apply the estimation method detailed above to the case of water utilities in France. We first present

the data set, before estimating our structural model of regulation. The counterfactuals are presented in

the next section.

3.6.1 The Data

The production and distribution of water to households in France are decided at a local level. A survey

has been conducted by the French environment institute (IFEN, Institut Français de l’Environnement)

amongst local municipalities in metropolitan France.26 All municipalities with a population of more than

10000 are in the survey and the sampling rate is decreasing with the population. The sample is therefore

representative from the population of French local communities (36203 local municipalities in 2004).

We select the observations for which the chosen mode is either operating through a public company

(régie) or through a private operator with a lease contract (this is the majority of the cases). Then we

select the typical contracts, i.e. the two-part tariff contracts (around 95% of the observations). We also

merge our dataset with an administrative dataset which reports the median income in a given municipal-

ity. For anonymity reasons, it is not reported for city size less than 150 inhabitants. Our sample does not

contain such small villages. In the end, we have 3959 observations which each represent one munici-

pality. Table 3.5 presents the management mode of municipalities ranked according to their population.

When delegation is the chosen mode, it is in most of the cases conducted by one of the three major firms

of the sector: Veolia-Environnement, Lyonnaise des Eaux-Suez Environnement, and Saur-Cise Veolia

is the leading firm in the private sector, Saur is more present in rural areas. Observe also that public

management is more frequent in small municipalities.

In our dataset, we observe the fix fee of the contract A and the variable part p paid by meter-cube

consumed. The overall quantity q is also observed. The characteristics of the network are also given

(length and density, quality of the water used as an input, treatment applied before distribution...). Some

26Corsica and overseas departments are excluded from our study.
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Table 3.5: Management mode by municipality sizes

Population N of the different municipalities

400 ≤ N 1 000 ≤ N 2 000 ≤ N 3 500 ≤ N 10 000 ≤ N

N < 400 N < 1 000 N < 2 000 N < 3 500 N < 10 000

Number n of municipalities

n 813 652 490 356 1210 636

Public 0.53 0.47 0.42 0.33 0.3 0.27

Delegation 0.47 0.53 0.58 0.67 0.7 0.73

Providers in the delegation mode

Veolia 0.33 0.32 0.37 0.4 0.44 0.49

Suez 0.15 0.2 0.21 0.2 0.24 0.23

Saur 0.36 0.33 0.29 0.27 0.15 0.07

Other 0.16 0.15 0.13 0.13 0.17 0.2
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additional information related to the local municipality (population, median income, size of the city,

local weather measures) are also recorded. We present in Table 3.6 some descriptive statistics of these

variables. For continuous variables, we present the median and the 1st and 3rd quartiles (Q1 and Q3)

which are respectively robust measures of the location and the dispersion of the empirical distribution.

For the two qualitative variables related to the quality of the water and the treatment (they are both

recoded with three modalities), we report the empirical frequencies. The fix fee represents around one

quarter of the transfer paid to the provider. The variable part is around 1.25 euro per m3. The total bill

charged to the consumer is much higher than what is charged by the firm. First, there are taxes paid

to the local water agencies and to the state (value added tax). Then, mechanically, the amount given

to the entity in charge of the waste collection is charged proportionally to the quantity consumed. This

discrepancy between the prices is taken into account in our analysis.

The price paid by the consumer is generally lower in a local municipalities which are publicly man-

aged. On the other hand, private firms have a higher probability to operate in more dense cities and to

distribute water which requires heavier treatment to be drinkable.

Finally, we also collect variables which characterize the environment of a given city, i.e. number of

houses, temperature, amount of rain, having in mind that water can be used for watering gardens.

3.6.2 Estimation of the model

We now follow the estimation strategy that is exposed in Section 3.5.

Fitting with Real-World Practices

In the real world, the observed per-unit prices paid by consumers are in fact affected by various taxes.

Indeed, we can decompose the price p paid by consumers as:

p = (p1 + p2)(1 + τ)

where p1 is the price received by the producer, p2 is a price paid to another party to finance waste

water and τ is an ad-valorem tax imposed by the State. In the sequel, we will take a partial equilibrium
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Table 3.6: Descriptive statistics of the main variables

All mode Public Delegation

median Q1 Q3 median Q1 Q3 median Q1 Q3

q per household 119.05 98.46 143.55 116.28 96.15 142.79 120.99 99.82 144.37

Fixed fee firm 33.62 19.86 53.84 27 15.54 46.74 37.86 22.63 59.26

Fixed fee 45.2 23.42 77.11 37.83 18.64 66.19 49.23 27 86.29

Fixed fee firm, tax incl. 35.01 20.96 56.35 28.3 16.07 48.87 40.12 23.96 62.59

Fixed fee, tax incl. 47.61 24.82 81 39.38 19.45 69 51.88 28.89 91.02

variable price firm 1.25 1.01 1.53 1.11 0.88 1.35 1.35 1.09 1.62

variable price 2.14 1.48 2.68 1.82 1.17 2.36 2.31 1.76 2.8

variable price, tax incl. 2.24 1.54 2.82 1.89 1.21 2.48 2.42 1.85 2.96

Transfert firm 189.73 155.22 231.96 167.2 133.33 198.23 205.28 170.8 248.95

Bill, tax incl. 323.11 246.01 401.19 272.68 190.74 341.86 353.78 284.34 432.92

Population 2412 540 6383 1214 368 4757 3616 776 7509

Median income 23943 20222 28858 23129 19730 27687 24457 20546 29790

Household size 2.61 2.41 2.78 2.57 2.39 2.75 2.63 2.42 2.8

% of Houses 71.29 53.97 82.38 71.3 55.28 82.38 71.27 52.7 82.38

% of Secondary res 4.39 1.67 12.61 5.88 2.04 15.81 3.64 1.51 10.26

% of Pop under 20 25.03 22.13 27.63 24.55 21.39 27 25.31 22.49 27.99

Temperature 25.1 23.6 26.3 25.1 23.6 26.3 25.1 23.6 26.4

Rain (mm) 194 151 223 200.5 151 251 190 149 212

Sunshine (in h) 581 547 665 591 547 669 579 535 665

Population density 138.87 40.88 480.6 80.37 25.93 261.26 184.27 56.89 631.4

Network characteristics

network length (in km) 35 14 70 26 9 60 40 18 75

Nb connections 1024 264 2507 600 199 1950 1380 347 2805

Total tank volume 0 0 350 0 0 500 0 0 200

Nb of sensors 1 1 3 1 1 3 1 1 3

Frequency Frequency Frequency

Basic treatment 0.52 0.53 0.51

High treatment 0.22 0.13 0.27

Deep water 0.72 0.77 0.68

Superficial water 0.28 0.23 0.32280



approach, taking p2 and τ as given (which may vary across municipalities) and we will sometimes denote

p = P(p1).

Taking into account this specification of the prices, we can rewrite the agent’s and the principal’s

objectives respectively as:

U (θ, ε, p1, A) = A + p1D(P(p1), ε)− θC0(D(P(p1), ε))

and

W(θ, ε, p, p1, A) = S(D(P(p1), ε), ε)− A − P(p1)D(P(p1), ε) + γU (θ, ε, p1, A)

or

W(θ, ε, p, p1, A) = S(D(P(p1), ε), ε)− θC(D(P(p1), ε))+ (p1 − P(p1))D(P(p1), ε)− (1−γ)U (θ, ε, p1, A)

The fact that P(p1) ̸= p1 creates a discrepancy between consumers expenditures and producer’s

revenues. Yet, the optimization of the principal’s problem proceeds as above and the system (3.4.13)-

(3.4.14)-(3.4.15) should now be replaced by the new set of optimality conditions:

S′ (q) = p, (3.6.27)

p1 −
τD(p)
D′

p(p)
= H(θ, γ)C′

0q (q) , (3.6.28)

A′(p)(1 + τ) = −q −
(

p1 − θC′
0q(q)

)
D′

p(p)(1 + τ). (3.6.29)

3.6.3 Estimation of the demand function

The individual demand function is estimated with different specification though we keep working with

the log-log model in the following.

log(D(p, Z, ε)) = βp log p + β′
ZZ + ε.

As usual in the case of a system of simultaneous equations, equilibrium quantities and prices are

co-determined and, hence, p is endogenous. To circumvent this issue , we instrument p by a vector W
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of exogenous cost shifters (E[ε|Z, W] = 0) and we estimate the demand parameters by a simple IV

regression. The instruments are the following: treatment of the water and characteristics of the water

pumped before treatment. These variables increase the cost of distribution by requiring more advanced

techniques to make the water drinkable but are independent from the demand shocks. The results are

presented in Table 3.7, with standard errors in parenthesis.

The price elasticity is estimated at -0.171 (0.073), which is in the usual intervals estimated for resi-

dential water in France (see Reynaud (2003)). Observe that it is the total price charged to the consumer,

p, which is used here, not the one charged to the firm, p1.

Except for the percentage of the houses, the control variables have the expected sign. Richer cities

consume more water and the climate conditions matter. Finally, everything else equal, cities with more

secondary residences consume less. The Sargan test is not rejected with a p-value of 6%.

3.6.4 Estimation of the cost function

In our data, the size of the different cities vary a lot. Therefore, we make the following assumption about

the cost function:

C(qtot, W, N) = C0(qtot/N)Nα exp(β⊤
WW),

in which N is the number of households of the city and W, the other control variables (quality of the

water, density of the network, treatment). In the following, q = qtot/N denotes the mean quantity per

household consumed. α measures the return to scale to deliver the same quantity of water per household

in a bigger city. We should expect α to be lower than one. Fundamentally, we make the assumption

that the technology is the same across all providers but that they differ from one city to another through

the observed heterogeneity, i.e., quality of the water pumped before treatment, density of the network,

level of chemical treatment and through θ which measures the efficiency of the firm in charge of the

distribution of the water.

As explained above, Equation 3.6.28 rearranged to take into account the price paid to the other
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Table 3.7: Demand estimation

Dependent variable:

q log(q)

(1) (2)

p −8.837∗

(4.560)

log(p) −0.171∗∗

(0.073)

income 1.314∗∗∗ 0.012∗∗∗

(0.120) (0.001)

household size 31.682∗∗∗ 0.204∗∗∗

(3.729) (0.031)

% of houses −0.320∗∗∗ −0.003∗∗∗

(0.050) (0.0004)

% secondary res −0.655∗∗∗ −0.007∗∗∗

(0.095) (0.001)

temperature 2004 1.631∗∗∗ 0.014∗∗∗

(0.401) (0.003)

rain 2004 −0.059∗∗∗ −0.001∗∗∗

(0.010) (0.0001)

sunshine 2001 0.009∗∗∗ 0.0001∗∗∗

(0.003) (0.00002)

pop 0-20 −0.864∗∗∗ −0.005∗∗

(0.241) (0.002)

constant 40.895∗ 4.141∗∗∗

(23.661) (0.159)

Observations 3,690 3,690

R2 0.229 0.249

Adjusted R2 0.228 0.248

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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stakeholders and the tax implies that for any quantile λ ∈]0, 1[, we have:

P

(
p1 − τ

D(p, Z, ε)

∂D/∂pD(p, Z, ε)
≤ H(θλ, γ)C′

0(q)Nα−1 exp(β⊤
WW)|Z, W, N

)
= λ, (3.6.30)

with θλ being the corresponding quantile of θ and p1 and p are the prices charged respectively by the

firm and the other stakeholders, before tax. C′
0q(q, W) is identified up to a scale under an assumption of

completeness of Z. In practice, we first estimate log C′
0q(q, N, W) before changing the scale to ensure

that the median of θ is equal to 1 for publicly managed firms. Equation 3.6.30 can also be expressed as

a conditional moment condition:

E

(
1
{

p1 − τ
D(p, Z, ε)

∂D/∂pD(p, Z, ε)
≤ H(θλ, γ)C′

0(q)Nα−1 exp(β⊤
WW)

}
− λ|Z, W, N

)
= 0.

This conditional moment equality can be easily be transformed into a moment equality to estimate

the marginal cost function and the quantiles H(θλ, γ) through a GMM procedure. As it has been high-

lighted in the literature, in practice, the global minimization of the GMM criterion is arduous due to the

discontinuous indicator function 1{·}. Following ?, we smooth the indicator function in order to facili-

tate the minimization. In the estimation, 10 quantiles are used27. We run simultaneously the estimation

for both the private and the public providers assuming that they face the same marginal cost but that each

type of firm has its own distribution of θ. We run the estimation 10 times with different starting values

and select the estimates which yield the lowest objective function. The results are presented in Table 3.8.

Observe that, as expected, α̂ = 1 − 0.1035 < 1. Again, the estimates have the expected signs

because more treatments increase the cost of the m3 of water. Pumping deep water is less costly, because

on average this water is cleaner.

Estimation of the distribution of types

In this part, we estimate the types θ taking into account the fact that there is no asymmetric information

for public firms and that empirical evidence suggest that γ = 0 when the city designs its menu of

27The quantiles are 0.05,0.15,0.25,...
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Table 3.8: GMM estimation of C′
0q(q, W)

estimate standard error

constant -2.9621 4.7e-02

log(q) 0.7806 3.1e-03

log(N) -0.1035 5.1e-04

basic treatment 0.7625 3.6e-03

high treatment 1.1660 3.6e-03

deep water -0.6762 2.9e-03

population density 0.0002 3.1e-07

contracts. As a matter of fact, it is politically risky to give a higher rent to the private operator. Having

at hand, the estimate of the marginal cost function, we do the following:

1. From the estimates of C′
0q(q), we estimate the values θ for the public firms using Equation (3.6.28)

with θ in replacement of H(θ, γ).

2. We readjust our estimates to fit with the normalization that the median of the θ is equal to 1. C′
0q(q)

represents the variable cost function for a median public firm.

3. We estimate

H(θ) = θ +
F(θ)
f (θ)

,

from Equation (3.6.28).

4. We invert the expression above to recover θ from the observation of H(θ). Let G(·) (resp. g(·))

the cumulative distribution function (resp. p.d.f) of the h = H(θ). Standard arguments allow us

to back cast θ by expliciting the inverse mapping from h = H(θ) to θ well-known in the literature

on auctions (see, for example Guerre, Perrigne, and Vuong (2000)). θ(h) = h − 1
G(h)

∫ h
h G(x)dx.
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Table 3.9 compare our estimates of the distribution of the type within each population of publicly

managed and private firms. The distribution of private types (see Figure 3.2) taking into account the

observed heterogeneity and the asymetric information is shifted toward the left and, also, more concen-

trated.

Table 3.9: Estimation of the distribution of types

1 2

1% 0.21 0.01

5% 0.41 0.07

15% 0.63 0.23

25% 0.83 0.35

50% 1.35 0.70

75% 2.00 1.14

85% 2.45 1.45

95% 3.61 2.22

99% 5.20 3.51

3.7 Counterfactuals

In this part, we run two counterfactuals of interest.

3.7.1 Complete versus Asymmetric Information

3.7.2 Private versus Public Ownership

Upper bound on the value of investment. Denote now by Fpr and Fpu the cumulative distributions of

cost parameters under the private and the public scenario respectively. By investing an amount I ex ante

(i.e., before the realization of the cost parameters), a private firm can shift the types distribution from Fpu
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Figure 3.2: Density of the types public/private
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to Fpr. As argued by Riordan (1990), Laffont and Tirole (1993) (Chapters 3 and 17) and Schmidt (1996),

asymmetric information and the prospects of getting some information rent under private ownership

is here the sole engine of investment. Instead, a public firm because it earns no rent under complete

information won’t invest. The terms of the trade-off are clear. By relying on private firms, the types

distribution is shifted to the left while the counterpart of such efficiency gains is that information rent

should be given up and prices end up above marginal costs.

Following Riordan (1990), we assume that this investment is non-verifiable, so that although whether

it is incurred or not is perfectly anticipated by the local authority at the time of designing the contract,

this contract cannot directly influence that decision. Such investment is meant for all the know-how,

organizational and technological innovations, and expertise that may be done and that can hardly be

explicitly included into a contract.

Our purpose in this section is to get an upper bound on the investment incurred by private firms.

Given the contracting scenario so depicted, investment takes place whenever the following incentive

constraint holds:

Eε

(∫ θ

θ
( fpr(θ)− fpu(θ))Upr(θ, ε)dθ

)
≥ I.
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Integrating by parts the left-hand side, we may rewrite this incentive constraint as:

Eε

(∫ θ

θ
(Fpr(θ)− Fpu(θ))C(D(ppr(θ), ε), ε)dθdG(ε)

)
≥ I.

The left-hand side above is the firm’s expected gains when shifting the type distribution towards from

Fpu to Fpr when the regulator anticipates that the investment is incurred and, as a result, offers a con-

tract inducing the output profile D(ppr(θ), ε) that prevails under a scenario of private ownership. Of

course, this term is positive whenever Fpr(θ) ≥ Fpu(θ) ≥ 0 for all θ, a first-order stochastic dominance

condition that holds from our previous empirical findings. The right-hand side is just the investment

outlay.

Our previous econometric analysis allows us to compute the upper bound on any such investment

because all terms on the left-hand side have been previously derived.

3.8 Alternative Formulations

This section discusses alternative formulation for the contracting environment and how our identification

procedure applies or not. While Section 3.8.1 highlights environment where our basic identification

strategy would still be useful, Section 3.8.3 shows the importance of the kind of contracts observed

(relying on fixed fees and per-unit of consumption prices) to get such positive results.

3.8.1 Non-Separability in the Cost Function

Let us now suppose that the cost function is no longer separable and can be more generally written as

C(q, θ), i.e., costs are not necessarily linear in θ. We assume that C(q, θ) is increasing and concave

in q with on top C′
θ > 0 (operators with lower types produce at lower costs) and the Spence-Mirrlees

condition C′′
qθ > 0 (those operators also produce at lower marginal costs) being satisfied. It is routine to

check tha the system (3.3.9)-(3.3.11)-(3.3.12) now becomes:

A′
p(p(θ, ε), ε) = −

(
p(θ, ε)− C′

q (D(p(θ, ε), ε), θ)
)

D′
p(p(θ, ε), ε)− D(p(θ, ε), ε). (3.8.31)
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p(θ, ε) = C′
q (D(p(θ, ε), ε), θ) + (1 − γ)

F(θ)
f (θ)

C′′
qθ ((D(p(θ, ε), ε)) , θ) , (3.8.32)

S′
q(D(p(θ, ε), ε), ε) = p(θ, ε), (3.8.33)

3.8.2 Identification of a More General Specification

We now prove the identification of this more general model with non-separability in both the surplus

and cost functions (Equations (3.8.31)-(3.8.32)-(3.8.33)). First, observe that the identification of the

marginal surplus is similar in this general model to what we have done above.

For the marginal cost function, we need an additional normalization like for the surplus function.

We shall assume that θ is assumed to be uniformly distributed on [0, 1] and we therefore identify the

marginal cost function (given W) for the α-th quantile firm in an efficiency ranking (ranked from the

most efficient , α = 0, to the less efficient, α = 1).

Equation (3.8.31) identifies c′q (q, α, W) for any quantile α of θ under an assumption of completeness

of Z̃ in q. We can indeed derive a moment condition similarly than what have been done in the seprable

case earlier. We are indeed able to know, after having derived the marginal surplus function for any

quantile of ε the quantity d = p(θ, ε)− A′
p(p(θ,ε),ε)−D(p(θ,ε),ε)

D′
p(p(θ,ε),ε) , which is equal to the marginal cost (given

W) for some (unknown) quantile of θ. Moreover the monotonicity of the marginal cost in θ (given W)

ensures that (see above for a similar derivation):

P
((

c′q(α, q, W) ≤ d
)
|Z, W

)
= α. (3.8.34)

The completeness assumption ensures therefore the identification of any marginal cost function.

Coming back now to Equation (3.8.32), the only unknown quantity is now γ and we also recover the

identification of the bargaining power in the non-separable case.

3.8.3 Contracting on Outputs

The fact that the model can be fully identified (at least when γ = 0) might seem quite surprising at first

glance. Indeed, the literature on the structural estimations of incentive contracts has repeatedly failed to
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obtain such joint identification of cost functions and types distributions because the data available to the

econometrician do not provide enough information. The key difference between our model and those

of the existing literature, especially D’Haultfœuille and Février (2020) and Luo, Perrigne, and Vuong

(2018), comes actually from the set of contracting variables available under different scenarios that fit

with specific institutional environments.

In the regulatory context under scrutiny, for instance, consumers adopt a competitive behavior, ex-

pressing individual demand for water at the stipulated unit price while the operator stands ready to supply

aggregate demand at that a market clearing price. Instead, had the principal being a single big customer

dealing directly with the operator, contracting on the quantity bought would be a feasible option. This is

such scenario that is analyzed in D’Haultfœuille and Février (2020).

To facilitate comparison with Section 3.3.1, let us thus assume that contracts are based only on the

operator’s quantity. In this hypothetical scenario where output could be directly contracted upon, a

nonlinear contract might now specify a payment T(q) to the operator if he offers a volume q.28 For the

sake of simplifying exposition, we also assume in this section that there is no fluctuations in demand

(i.e., ε ≡ 0) and γ = 0. Under those conditions, we already know from Section 3.4.1 that our base

model is actually identified.

Theoretical results. Mimicking some of the earlier steps of our above analysis, we can rewrite the

operator’s information rent and optimal supply respectively as:

U(θ) = max
q

T(q)− θC0(q) (3.8.35)

and

q(θ) = arg max
q

T(q)− θC0(q). (3.8.36)

From there, it again follows from incentive compatibility that U(·) is absolutely continuous and admits

28Observe that, even in this output scenario, the principal still does not observe costs. Otherwise, he could retrieve from

the joint observation of costs and outputs information on the agent’s type. See Laffont and Tirole (1993) for a theoretical

model where such cost observation is available and yet, because of an extra moral hazard variable, asymmetric information

still matters. Perrigne and Vuong (2011) for the corresponding empirical study.

290



an integral representation as:

U(θ) =
∫ θ̄

θ
C0 (q(x)) dx (3.8.37)

where again, we take into account that the operator’s participation constraint is binding at θ̄ for the

optimal contract. Observe that this rent is again greater as the operator is requested to produced more.

Under asymmetric information, an optimal contract maximizes the expected welfare of the munici-

pality subject to incentive and participation constraints. From our above observations, that incentive fea-

sible set can be summarized by constraints (3.8.37) and a monotonicity condition (namely q(θ) weakly

decreasing in θ) that will be omitted in a first step and checked ex post on the solution to the solution of

the so relaxed problem. Formally, this relaxed problem can be written as:

max
{q(·),U(·)}

∫ θ

θ
[S(q(θ))− θC0 (q(θ))− U(θ)] dF(θ) subject to (3.8.37).

Using (3.8.37), integrating by parts as we did above and optimizing pointwise leads to the following

expression of the optimal output q(θ):

S′
q(q(θ)) =

(
θ +

F(θ)
f (θ

)
C′

0q (q(θ)) . (3.8.38)

The structural model is then defined also by appending to that optimality condition for the principal’s

problem a second optimality condition related to the agent’s problem, namely:

T′
q(q(θ)) = θC′

0q (q(θ)) . (3.8.39)

From an economic viewpoint, whether outputs as here or prices as in our base line model are the

relevant contracting variables leads to the same optimal outputs. The principal’s optimality condition

(3.8.38) is similar to that obtained in our base model (3.3.11) (for γ = 0) and downward output dis-

tortions also follow from replacing cost parameter by their virtual counterparts. Since optimal outputs

in the two models are the same, the agent’s information rents, consumer’s net surpluses and welfares

are also identical. This economic equivalence should come at no surprise. Whether the demand side

of the market adopts a “command and control" approach to specify how much should be supplied to

satisfy aggregate needs or whether individual consumers are left to express demand is equivalent since

that demand side is not the source of any informational asymmetry.
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Differences in the scope for identification. Although economically equivalent, the two contracting

scenarios differ not only in terms of the set of observables that are available to the econometrician but

also in terms of the possibilities left for identification. In other words, whether prices or quantities are

controlled gives two alternative implementations of the same allocation which are equivalent from the

point of view of the players in the regulatory game which are equally informed on cost and surplus

functions and distribution functions.

Yet, those two implementations differ from the perspective of the econometrician. The econometri-

cian must infer from market conduct some information that is common knowledge among players. At a

rough level, this outside observer faces a much harder signal extracting problem. In the scenario where

quantities are directly controlled, no information on marginal surplus can be learned from the firm’s

choices. Instead, when only prices are controlled, information on marginal surplus gets communicated

to outside observer. This simple fact allows identification of the model.

More precisely, for the output scenario, the only observables are the output q and the overall payment

T(q). As in our base model, S′
q and C′

0q are not observed in the data so that the principal’s optimality

condition (3.8.38) cannot be used to retrieve information either on types or on their distribution. On top,

per-unit consumption prices are by construction not observed, a key difference with our base model.

Defining an implicit per-unit consumption price for this output scenario as p(θ) = S′
q(q(θ)), we

may follow a procedure similar to that developed in our base model and introduce a fictitious price-

cost margin. Accordingly, we thus rewrite the principal’s optimality condition (3.8.38) as a familiar

condition:
p(θ)− θC′

0q (q(θ))

p(θ)
= r(θ, 0).

Even if such price is not observed, one could hope as in our base line model to retrieve the relevant

information from the agent’s optimality condition (3.8.39). However, this step is no longer possible

here because the agent’s optimality condition (3.8.39) now refers only to the marginal nonlinear price

T′
q(q(θ)) and not on the price as in our baseline scenario. Indeed, this marginal nonlinear price T′

q(q(θ))

always differs from the per-unit consumption price p(θ) = S′
q(q(θ)) under asymmetric information,
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there is always a wedge between T′
q(q(θ)) and p(θ) = S′

q(q(θ)), as:

p(θ)− T′
q(q(θ)) =

F(θ)
f (θ)

C′
0q (q(θ)) > 0.

Thus, the agent’s optimality condition does not bring new information on marginal surplus at the equi-

librium point, making it impossible to identify this function.

In response to such impossibility, different alleys have been pursued in the literature. Luo, Perrigne,

and Vuong (2018) consider a model of “false moral hazard"29 where costs, which results from innate

types but also no verifiable effort variables, can be observed. Such observation of course brings ex-

tra information. Although positive results are now obtained, the analysis remains complex because the

additional effort variable that characterizes such model must also be disentangled from innate types.

Developing an approach tailored to the specificities of their data set, D’Haultfœuille and Février (2020)

work with some discrete heterogeneity on the demand side while still assuming that such information

is observed by the econometrician.30 Three points are in this case sufficient to recover identification.

Finally, Luo, Perrigne, and Vuong (2018) consider a nonlinear pricing model with fixed quantity which

de facto determines marginal surplus at the equilibrium point. Let us conclude this section by pointing

out an alternative route. Indeed, parametric assumptions on both the surplus function and the cost func-

tion, or the cost function and the firms’ types could help identifying the model but, of course, at a risk of

misspecification as these assumptions cannot be tested.

3.9 Conclusion

In this paper, we consider a principal-agent model à la Baron-Myerson. We show that the contract nego-

ciation can be modeled by a choice within a menu of options of a two-part tariff scheme. Interestingly,

we show that the model is non parametrically identified from the observation of the tariff (fixed fee and

per unit price) and the quantity consumed.

29In the parlance of the incentive literature, see Laffont and Martimort (2009) (Chapter 7).
30This is in striking contrast with our assumption in the base line model that such heterogeneity is actually not observed.
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We apply our methodology to the distribution of water in France, in which we quantify the amount

of asymmetric information and its impact on the per-unit price charged.

Some analysis remain to be done. First, we would like to design a more flexible approach than

the parametric estimates, borrowing from the recent literature on nonparametric quantile IV. Then, we

proved that we the dsitribution of the γs could be identified. However it relies on the estimation of

derivatives. We need to find a stable way to estimate it.
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