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Abstract

The use of expectiles in risk management has recently gathered remarkable mo-
mentum due to their excellent axiomatic and probabilistic properties. In particular,
the class of elicitable law-invariant coherent risk measures only consists of expectiles.
While the theory of expectile estimation at central levels is substantial, tail estima-
tion at extreme levels has so far only been considered when the tail of the underlying
distribution is heavy. This article is the first work to handle the short-tailed setting
where the loss (e.g. negative log-returns) distribution of interest is bounded to the
right and the corresponding extreme value index is negative. This is motivated by the
assessment of long-term market risk carried by low-frequency (e.g. weekly) returns of
equities that show evidence of being generated from short-tailed distributions. We
derive an asymptotic expansion of tail expectiles in this challenging context under a
general second-order extreme value condition, which allows to come up with two semi-
parametric estimators of extreme expectiles, and with their asymptotic properties in
a general model of strictly stationary but weakly dependent observations. We also
extend the applicability of the proposed method to the regression setting. A simula-
tion study and a real data analysis from a forecasting perspective are performed to
compare the proposed competing estimation procedures.

JEL Codes: C13, C14, C18, C53, C58
Keywords: Expectiles, Extreme values, Second-order condition, Short tails, Weak

dependence

1 Introduction

The class of expectiles, introduced by Newey and Powell (1987), defines useful descriptors
ξτ of the higher (τ ≥ 1

2) and lower (τ ≤ 1
2) regions of the distribution of a random

variable X through the asymmetric least squares minimization problem

ξτ = argmin
θ∈R

E(ητ (X − θ)− ητ (X)), (1.1)

where ητ (x) = |τ −1{x ≤ 0}|x2, with 1{·} being the indicator function and τ ∈ (0, 1) the
asymmetry level. Expectiles are well-defined, finite and uniquely determined as soon the
first moment of X is finite. They generalize the mean, found for τ = 1/2, in the same way
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quantiles generalize the median: Koenker and Bassett (1978) showed that the τth quantile
qτ of X solves the asymmetric L1 minimization problem

qτ ∈ argmin
θ∈R

E(ϱτ (X − θ)− ϱτ (X)),

where ϱτ (x) = |τ − 1{x ≤ 0}| |x| is the so-called quantile check function. Expectiles have
received renewed attention for their ability to quantify tail risk in statistical decision the-
ory at least since the contribution of Taylor (2008). They depend on the tail realizations of
X and their probability, while quantiles only depend on the frequency of tail realizations,
see Kuan et al. (2009). Most importantly, Ziegel (2016) showed that expectiles are the
only coherent law-invariant measure of risk which is also elicitable in the sense of Gneiting
(2011), meaning that they abide by the intuitive diversification principle (Bellini et al.,
2014) and that their prediction can be performed through a straightforward principled
backtesting methodology. These merits and good properties have motivated the develop-
ment of procedures for expectile estimation and inference over the last decade. A key, but
difficult, question in any risk management setup is the estimation of the expectile ξτ at
extreme levels, which grow to 1 as the sample size increases. This question was first tack-
led in Daouia et al. (2018, 2020) under the assumption that the underlying distribution is
heavy-tailed, that is, its distribution function tends to 1 algebraically fast. The latest de-
velopments under this assumption have focused on, among others, bias reduction (Girard
et al., 2022), accurate inference (Padoan and Stupfler, 2022), and handling more complex
data in regression (Girard et al., 2021, 2022) or time series (Davison et al., 2023) setups.

The problem of estimating extreme expectiles outside of the set of heavy-tailed models
is substantially more complicated from a statistical standpoint. The contribution of the
present paper is precisely to build and analyze semiparametric extreme expectile estima-
tors in the challenging short-tail model, in which the extreme value index is known to be
negative. This requires employing a dedicated extrapolation relationship for population
extreme expectiles. Only Mao et al. (2015) have initiated such a study at the population
level. Differently from Mao et al. (2015), we first derive an asymptotic expansion of ex-
treme expectiles without resorting to an unnecessary restriction about the link between
the extreme value index and second-order parameter as in Mao et al. (2015). Based on
this asymptotic expansion, we present and study two different extreme value estimators
of tail expectiles. The first one builds upon the Least Asymmetrically Weighted Squares
(LAWS) estimator of expectiles, namely the empirical counterpart of ξτ in (1.1), obtained
at intermediate levels τ = τn → 1 with n(1 − τn) → ∞ as the sample size n → ∞. The
short-tail model assumption allows then to come up with an expectile estimator extrapo-
lated to the far tail at arbitrarily extreme levels τ = 1 − pn such that (1 − τn)/pn → ∞
as n → ∞, in a semiparametric way. The second extrapolating estimator directly relies
on the asymptotic expansion of ξτ that involves the expectation of X, the endpoint of
its distribution, the quantile analog qτ and the extreme value index, by plugging in the
empirical mean and semiparametric Generalized Pareto (GP) quantile-based estimators of
the tail quantities. We also discuss the extension of our LAWS approach to the extremal
expectile regression problem, whereby X is assumed to depend upon a finite-dimensional
covariate Z and an estimate of the extreme regression expectile ξτ (z) of the conditional
distribution of X given Z = z is sought. We prove the asymptotic normality of a two-step
LAWS estimator built on residuals of location-scale regression models under the assump-
tion that the residuals are sufficiently close (in an appropriate sense) to the unobserved
innovations of the model.

Our estimation theory for the extreme expectiles of the marginal distribution of a sta-
tionary time series is valid in a general setting of weakly dependent observations, covering
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very popular time series models such as ARMA models, a wide class of linear time series,
and (G)ARCH processes. We explore various theoretical and practical features of extreme
expectile estimation for short-tailed data, and explain why this statistical problem is more
difficult than extreme quantile estimation. In particular, the extreme expectile ξτ is in-
trinsically less spread than its quantile analog qτ , even at asymmetry levels τ ≈ 1 where it
remains much closer to the center of the distribution than qτ . This implies that any semi-
parametric extreme value procedure for extreme expectile estimation should be expected
to suffer at least from a worse bias than for extreme quantile estimation. In the extreme
expectile regression setup, we show that our residual-based approach is valid in reasonably
well-behaved location-scale models such as linear regression models whose error term has
a continuously differentiable probability density function on its support. Importantly, this
class of location-scale models does not exclude popular time series, in the sense that the
covariate vector is allowed to contain lagged values of the response and/or of model error.

The problem of estimating extreme expectiles for bounded distributions appears nat-
urally in the context of productivity analysis. When analyzing the productivity of firms,
one may define their economic efficiency in terms of their ability of operating close to the
geometric locus of the optimal production that can be viewed as an extreme expectile (Ko-
kic et al., 1997). Another field of application, that we explore here, is the use of extreme
expectile estimation for the assessment of long-term market risk carried by short-tailed
financial data; long-term risk management makes a crucial use of low-frequency data, in-
cluding in regulatory circles1. Our approach is motivated by the surprising finding that
weekly returns of equities, commodities, or cryptocurrencies may indeed have short-tailed
distributions, while standard models in both theoretical and empirical work assume heavy
tails for any frequency of financial data. This is illustrated in Section 4 where we argue
that Bitcoin and Netflix weekly loss returns data may be considered as short-tailed. It
would thus be incorrect to assess their tail risk based on the traditional belief that the tail
of losses is necessarily heavy when the mathematical theory of extreme values does not
allow to reject short or light-tailedness. It is therefore important, both from a theoretical
and a practical perspective, to construct an appropriate and fully data-driven estimation
procedure for short-tailed data. Our methods and data have been incorporated into the R
package ExtremeRisks, freely available on CRAN.

The paper is organized as follows. In Section 2, we explain in detail the short tail
distributional assumption on X, state our asymptotic expansion linking extreme expectiles
and quantiles, construct our two classes of extreme expectile estimators and study their
asymptotic properties. A simulation study examines their finite-sample performance in
Section 3, and two time series of real Bitcoin and Netflix data are analyzed in Section 4.
Section A of the Appendix contains all necessary lemmas and mathematical proofs and
Section B gives further simulation results.

2 Main results

2.1 Connection between extreme expectiles and quantiles

Let F : x 7→ P(X ≤ x) be the distribution function of the random variable of interest
X and F = 1 − F be its survival function. Define the associated quantile function by
qτ = inf{x ∈ R |F (x) ≥ τ} and the tail quantile function U by U(s) = q1−s−1 , s > 1.
Differently from existing literature on extreme expectile estimation, we focus on the case

1See, for example, the weekly financial statements of the European Central Bank at https://www.ecb.
europa.eu/press/pr/wfs/html/index.en.html.
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when the distribution of X is short-tailed, or equivalently, when its extreme value index
(EVI) γ is negative. According to Theorem 1.1.6 on p.10 of de Haan and Ferreira (2006),
this corresponds to assuming that there is a positive function a such that

∀z > 0, lim
s→∞

U(sz)− U(s)

a(s)
=
zγ − 1

γ
, with γ < 0.

This assumption can be informally rewritten as

∀z > 0, U(sz) ≈ U(s) + a(s)
zγ − 1

γ
when s is large. (2.1)

This means that extreme values ofX at the far tail (represented by U(sz)) can be recovered
by extrapolating in-sample large values (represented by U(s)) if the scale function a(s) and
the shape parameter γ can be consistently estimated. The theory of the resulting extreme
value estimators is usually developed under the following second-order refinement of the
short-tailed model assumption above, which will be our main condition throughout (see
de Haan and Ferreira, 2006, Equation (2.3.13) p.45):

Condition C2(γ, a, ρ, A) There exist γ < 0, ρ ≤ 0, a positive function a(·) and a measurable
function A(·) having constant sign and converging to 0 at infinity such that, for all z > 0,

lim
s→∞

1

A(s)

(
U(sz)− U(s)

a(s)
− zγ − 1

γ

)
=

∫ z

1
vγ−1

(∫ v

1
uρ−1du

)
dv.

This condition enables one to control the bias incurred by using the approximation (2.1)
and represented by the function A. Under this condition, the right endpoint x⋆ = sup{x ∈
R |F (x) < 1} of X is necessarily finite (see de Haan and Ferreira, 2006, Theorem 1.2.1
p.19), that is, X is bounded to the right. This justifies calling this model a short-tailed
(or bounded) model.

Suppose now that E|min(X, 0)| < ∞ and that condition C2(γ, a, ρ, A) is satisfied, so
that E|X| < ∞ and expectiles of X are well-defined and finite. First, we motivate an
asymptotic expansion of extreme expectiles that will be instrumental in our subsequent
theory of extreme expectile estimation. Recall that the τth expectile ξτ satisfies

ξτ − E(X) =
2τ − 1

1− τ
E((X − ξτ )1{X > ξτ}), (2.2)

see Equation (12) in Bellini et al. (2014). Writing E((X − x)1{X > x}) as an integral of
the quantiles of X above x and using condition C2(γ, a, ρ, A) justifies the approximation

E((X − ξτ )1{X > ξτ}) ≈
F (ξτ )a(1/F (ξτ ))

1− γ
as τ ↑ 1

(see Lemma A.2(ii) in the Appendix for a rigorous statement), and therefore

lim
τ↑1

a(1/F (ξτ ))F (ξτ )

1− τ
= (x⋆ − E(X))(1− γ). (2.3)

The convergence a(s)/(x⋆ − U(s)) → −γ as s → ∞ (see de Haan and Ferreira, 2006,
Lemma 1.2.9 p.22) then suggests

lim
τ↑1

(x⋆ − ξτ )F (ξτ )

1− τ
= (x⋆ − E(X))(1− γ−1). (2.4)
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The approximations F (ξτ )/(1−τ) ≈ F (ξτ )/F (qτ ) ≈ (x⋆−ξτ )−1/γ/(x⋆−qτ )−1/γ motivated
by the regular variation property of x 7→ F (x⋆ − 1/x) (see de Haan and Ferreira, 2006,
Theorem 1.2.1.2 p.19) finally entail

lim
τ↑1

x⋆ − ξτ

(x⋆ − qτ )1/(1−γ)
= [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ). (2.5)

Consequently, extreme expectiles can be extrapolated from their quantile analogs, in con-
junction with endpoint and tail index estimation. Analyzing the asymptotic properties
of extreme expectile estimators built in this way will require quantifying the difference
between the ratio (x⋆ − ξτ )/(x

⋆ − qτ )
1/(1−γ) and its limit in (2.5). This is the focus of our

first main result below.

Proposition 1. Suppose that E|min(X, 0)| < ∞ and condition C2(γ, a, ρ, A) holds with
ρ < 0, and let x⋆ be the finite right endpoint of F . Then

x⋆ − ξτ = [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ)(x⋆ − qτ )
1/(1−γ)

×

(
1− [(x⋆ − E(X))(1− γ−1)]−1/(1−γ)(x⋆ − qτ )

1/(1−γ)(1 + o(1))

+
γ[(x⋆ − E(X))(1− γ−1)]−ρ/(1−γ)

ρ(γ + ρ)(1− γ − ρ)
A((1− τ)−1(x⋆ − qτ )

1/(1−γ))(1 + o(1))

)
as τ ↑ 1. In particular

x⋆ − ξτ = [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ)(x⋆ − qτ )
1/(1−γ)

×
(
1 + O((1− τ)−γ/(1−γ)) + O(|A((1− τ)−1/(1−γ))|)

)
.

The additional condition ρ < 0 in Proposition 1 is very mild and satisfied in all
standard short-tailed models, see Beirlant et al. (2004, Table 2.2 p.68). This result is an
extension, tailored to our general semiparametric GP setting and extended second-order
regular variation assumption C2(γ, a, ρ, A), of Proposition 3.4 in Mao et al. (2015). The
latter result is formulated under a different, nonstandard second-order regular variation
condition on F whenX belongs to the domain of attraction of a Generalized Extreme Value
distribution. It is readily checked by straightforward but tedious calculations that their
quantities c, γ, ρ and A(s) respectively correspond to (with the notation of Lemma A.3
in Section A.1) C1/γ , −1/γ, −ρ/γ and −C−ρ/γA(s−1/γ)/(γ(γ + ρ)) of the present paper.
In particular, when their asymptotic expansion applies, it coincides with ours, but we lift
an unnecessary restriction on the second-order parameter ρ that features in their result.

An immediate consequence of Equation (2.5) is that (x⋆− ξτ )/(x⋆− qτ ) → ∞ as τ ↑ 1,
that is, extreme quantiles are closer to the endpoint of a short-tailed distribution than
extreme expectiles. It is therefore unsurprising that the bias due to the approximation
of tail expectiles by their quantile analogs under the second-order framework, which is
asymptotically proportional to A((1 − τ)−1(x⋆ − qτ )

1/(1−γ)), converges more slowly to 0
than the corresponding bias term in the heavy-tailed setting, whose order is A((1− τ)−1),
see Proposition 1(i) in Daouia et al. (2020). As a second consequence, at least as far as
handling bias is concerned, estimating extreme expectiles under short-tailed models using
a semiparametric extreme value methodology should be expected to be much harder than
under heavy-tailed models.

We conclude this section by drawing a useful corollary from Proposition 1; see Equa-
tion (A.15) in the proof of the latter result.
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Corollary 1. Under the conditions of Proposition 1,

x⋆ − ξτ = [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ)(x⋆ − qτ )
1/(1−γ)

×
(
1− x⋆ − ξτ

(x⋆ − E(X))(1− γ−1)
(1 + o(1)) +

γ

ρ(γ + ρ)(1− γ − ρ)
A(1/F (ξτ ))(1 + o(1))

)
.

It should be noted that the quantity x⋆−E(X), which is a measure of the spread of the
distribution tail, appears in the asymptotic equivalent of (x⋆ − ξτ )/(x

⋆ − qτ ) and in both
of the remainder terms of the asymptotic expansion for x⋆− ξτ . By contrast, no measures
of spread appear in the asymptotic connection between extreme expectiles and quantiles
of heavy-tailed distributions, although the expectation E(X), which can be understood as
a location parameter, appears in an error term proportional to 1/qτ , as can be seen from
Proposition 1 in Daouia et al. (2020).

With Proposition 1 and Corollary 1 at our disposal, we can now construct and study
two classes of extreme expectile estimators. The first one, in Section 2.2 below, is built
upon asymmetric least squares minimization, while the second one, in Section 2.3, is di-
rectly obtained by plugging in Equation (2.5) estimators of E(X) and of the tail quantities
γ, x⋆ and qτ .

2.2 Asymmetric least squares estimation

Suppose that the available data has been generated from the random variables X1, . . . , Xn

with common distribution function F , and let τn ↑ 1 (as n → ∞) be a high asymmetry
level at which the target unknown expectile ξτn is to be estimated. A first solution is
to construct the estimator minimizing the empirical counterpart of problem (1.1). This
produces the Least Asymmetrically Weighted Squares (LAWS) estimator

ξ̂τn = argmin
θ∈R

1

n

n∑
t=1

ητn(Xt − θ)− ητn(Xt) = argmin
θ∈R

n∑
t=1

ητn(Xt − θ). (2.6)

Our theoretical analysis of this estimator hinges upon the following observation made
by Jones (1994): the τth expectile of F is actually the τth quantile of the distribution
function E = 1− E, where

E(x) =
E(|X − x|1{X > x})

E(|X − x|)
.

This survival function can equivalently be rewritten as

E(x) =
φ(1)(x)

2φ(1)(x) + x− E(X)
, with φ(κ)(x) = E((X − x)κ1{X > x}).

Since ξ̂τ is the τth expectile of the empirical distribution function F̂n = 1− F̂n defined as

F̂n(x) =
1

n

n∑
t=1

1{Xt > x},

it must therefore be the τth quantile of the distribution function Ên = 1− Ên defined as

Ên(x) =
φ̂
(1)
n (x)

2φ̂
(1)
n (x) + x−Xn

, where φ̂(κ)
n (x) =

1

n

n∑
t=1

(Xt − x)κ1{Xt > x},
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with Xn being the sample mean. Intuitively, to derive the asymptotic behavior of ξ̂τn−ξτn ,
it suffices to obtain the asymptotic behavior of Ên(x)/E(x) at a level x = xn close to ξτn
in an appropriate sense and to apply a suitable inversion argument.

We do so in a general framework of strictly stationary, weakly dependent random
variables. Recall that a strictly stationary sequence (Xt)t≥1 is said to be α−mixing (or
strongly mixing) if α(l) = supm≥1 αm(l) → 0, where

∀l ≥ 1, αm(l) = sup
A∈F1,m

B∈Fm+l,∞

|P(A ∩B)− P(A)P(B)|

with F1,m = σ(X1, . . . , Xm) and Fm+l,∞ = σ(Xm+l, Xm+l+1, . . .) denoting the past and
future σ−algebras. The α−mixing condition is one of the weakest dependence assumptions
in the mixing time series literature: more restrictive conditions include β−, ρ−, ϕ− and
ψ−mixing, see Bradley (2005). We make the following assumption about the mixing rate.

Condition M There exist sequences of positive integers (ln) and (rn), both tending to
infinity, such that ln/rn → 0, rn/n→ 0 and nα(ln)/rn → 0, as n→ ∞.

The sequences (ln) and (rn) are respectively interpreted as “small-block” and “big-block”
sequences, and are used to develop a big-block/small-block argument as a prerequisite to
evaluating the asymptotic variance of ξ̂τn . Condition M has already been used in the lit-
erature on the extreme values of time series, see e.g. Rootzén et al. (1998, Equation (2.1)).
We also require the following tail dependence condition on the joint extreme behavior of
(Xt)t≥1 at different time points.

Condition D For any integer t ≥ 1, there exists a function Rt on [0,∞]2 \ {(∞,∞)} such
that

∀(x, y) ∈ [0,∞]2 \ {(∞,∞)}, lim
s→∞

sP(F (X1) ≤ x/s, F (Xt+1) ≤ y/s) = Rt(x, y),

and there exist a constant K ≥ 0 and a nonnegative summable sequence (ρ(t))t≥1 such
that, for s large enough,

∀t ≥ 1, ∀x, y ∈ (0, 1], sP(F (X1) ≤ x/s, F (Xt+1) ≤ y/s) ≤ ρ(t)
√
xy +

K

s
xy.

The function Rt, called the tail copula of (X1, Xt+1) (see Schmidt and Stadtmüller, 2006),
finely quantifies the degree of asymptotic dependence between X1 and Xt+1. The first
half of Condition D ensures that the probability of a joint extreme value of X1 and Xt+1

is at most of the same order of magnitude as the probability of an extreme value of X1,
meaning that clusters of extreme values across time cannot form too often. The second
half of Condition D guarantees that a variant of the dominated convergence theorem can
be applied in correlation calculations prior to using central limit theory for the asymptotic
normality of our estimators. A similar anti-clustering assumption is made in Drees (2003),
see conditions (C2) and (C3) therein.

Under these temporal dependence assumptions and using our insight about the link
between the LAWS estimator and the empirical estimator of E, we can prove the following
result on the joint asymptotic normality of the LAWS estimator and an empirical quantile
having the same order of magnitude, i.e. an order statistic q̂πn = X⌈nπn⌉,n with F (ξτn)/(1−
πn) → 1, where X1,n ≤ X2,n ≤ · · · ≤ Xn,n is the ordered version of (X1, . . . , Xn).

Theorem 1. Assume that X satisfies condition C2(γ, a, ρ, A). Let τn, πn ↑ 1 be such that

nF (ξτn) → ∞, F (ξτn)/(1− πn) → 1 and
√
nF (ξτn)A(1/F (ξτn)) = O(1).
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(i) Suppose that (Xt)t≥1 is a strictly stationary sequence of copies of X, whose dis-
tribution function F is continuous, satisfying conditions M and D. Assume that
rnF (ξτn) → 0, and that there is δ > 0 such that

E(|min(X, 0)|2+δ) <∞,
∑
l≥1

l2/δα(l) <∞ and rn

 rn√
nF (ξτn)

δ

→ 0.

Then √
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn , q̂πn − qπn)

d−→ N (0,V (γ) + 2C(γ,R))

where the 2 × 2 symmetric matrices V (γ) and C(γ,R) are defined elementwise as
V11(γ) = 2/[(1− γ)(1− 2γ)], V12(γ) = 1/(1− γ) and V22(γ) = 1,

C11(γ,R) =
1

γ2

∫∫
(0,1]2

∞∑
t=1

Rt(x
−1/γ , y−1/γ) dx dy

C12(γ,R) = − 1

2γ

∫ 1

0

∞∑
t=1

[Rt(x
−1/γ , 1) +Rt(1, x

−1/γ)] dx

and C22(γ,R) =
∞∑
t=1

Rt(1, 1).

(ii) If the Xi are i.i.d. copies of X and E(|min(X, 0)|2) <∞, then the above asymptotic
normality result holds with Rt ≡ 0 for any t ≥ 1, that is,√

nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn , q̂πn − qπn)

d−→ N (0,V (γ)).

If X is bounded, then assumption
∑

l≥1 l
2/δα(l) <∞ in (i) can be weakened to

∑
l≥1 α(l) <

∞, and no integrability assumption on X is necessary.

In Theorem 1, condition nF (ξτn) → ∞ requires τn to be intermediate, i.e. not too large.

Assumption
√
nF (ξτn)A(1/F (ξτn)) = O(1) is a bias condition which corresponds exactly

to the usual bias condition
√
n(1− τn)A((1−τn)−1) = O(1) in extreme quantile estimation

when replacing ξτn with its quantile analog qτn , see Theorem 2.4.1 on p.50 in de Haan and
Ferreira (2006). In fact, an inspection of the proof of Theorem 1(i) reveals that the bias

condition
√
nF (ξτn)A(1/F (ξτn)) = O(1) is only needed for the asymptotic normality of

q̂πn − qπn , and is thus unnecessary for the validity of the asymptotic normality of ξ̂τn − ξτn
alone. The conditions on rn in Theorem 1(i) are similar to those of Theorem 3.1 in Davison
et al. (2023) in heavy-tailed models, taking into account that F (ξτn) is asymptotically
proportional to 1 − τn in the latter setting. The integrability assumption on X and the
condition on the mixing rate α(l) ensure that a central limit theorem applies to Xn, as

part of the proof of the asymptotic normality of Ên(x)/E(x) at high levels x = xn close
to ξτn .

It is natural, and instructive, to compare Theorem 1 with results one may obtain in
the i.i.d. setting. It is, first of all, obvious that the asymptotic variance V (γ) + 2C(γ,R)
obtained in our mixing framework is always greater than or equal to the asymptotic
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variance V (γ) in the i.i.d. setup. This can be viewed as a consequence of positive extremal
dependence between bivariate margins of the time series (Xt) under condition D, in the
sense that for any x, y ≥ 0 and t ≥ 1,

s
{
P(F (X1) ≤ x/s, F (Xt+1) ≤ y/s)− P(F (X1) ≤ x/s)P(F (Xt+1) ≤ y/s)

}
→ Rt(x, y) ≥ 0

as s→ ∞. This is nothing but a weaker version of the classical positive quadrant depen-
dence assumption between pairs (X1, Xt+1) which itself is a fairly weak assumption on
the family of bivariate copulas of these pairs, see the discussion on p.200 in Nelsen (2006).
The positive quadrant dependence assumption is satisfied in particular if these copulas
are extreme value copulas, see Gudendorf and Segers (2010).

We then compare our result with an asymptotic normality result for intermediate quan-
tile estimation at level τn by its direct empirical counterpart q̂τn = X⌈nτn⌉,n. According to
Theorem 2.4.1 on p.50 in de Haan and Ferreira (2006), when the Xi are i.i.d.,√

nF (qτn)

a(1/F (qτn))
(q̂τn − qτn)

d−→ N (0, 1).

Observe that, by a combination of Lemma 1.2.9 on p.22 in de Haan and Ferreira (2006)
and Lemma A.1 in Section A.1, a(1/F (x))/(x⋆ − x) → −γ as x ↑ x⋆, and therefore√

nF (ξτn)

a(1/F (ξτn))

/ √
nF (qτn)

a(1/F (qτn))
=

√
F (ξτn)

F (qτn)
× x⋆ − qτn
x⋆ − ξτn

(1 + o(1)).

By (2.4) and (2.5) this ratio is asymptotically proportional to (x⋆−qτn)−(γ+1/2)/(1−γ) under
the mild further condition ρ < 0. In other words, the intermediate LAWS estimator ξ̂τn
converges faster than q̂τn when γ > −1/2, has the same rate of convergence if γ = −1/2,
and converges at a slower rate if γ < −1/2.

One may also compare Theorem 1, devoted to short-tailed data, with the correspond-
ing result one obtains for i.i.d. heavy-tailed data. If X has a heavy right tail, that is,
U(sz)/U(s) → zγ as s→ ∞ for any z > 0, where 0 < γ < 1/2, and under the assumptions
that E(|min(X, 0)|2+δ) < ∞ for some δ > 0, τn ↑ 1 and n(1 − τn) → ∞, one has, by
Theorem 2 in Daouia et al. (2018),√

n(1− τn)

(
ξ̂τn
ξτn

− 1

)
d−→ N

(
0,

2γ3

1− 2γ

)
.

In this same setting, (U(sz) − U(s))/a(s) → (zγ − 1)/γ as s → ∞, with a(s) = γU(s),
and F (ξτn)/(1 − τn) → γ−1 − 1 = (1 − γ)/γ (this was first shown by Bellini et al., 2014,
Theorem 11). Therefore, when X has a heavy right tail,√

nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≈

√
1− γ

γ3/2
×
√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
d−→ N

(
0,

2(1− γ)

1− 2γ

)
.

It follows that the rates of convergence of the LAWS estimator look similar in both the
heavy and bounded tail settings, but there is a phase transition in terms of asymptotic
variance: the term 1− γ appears in its numerator for heavy tails, while it appears in the
denominator for short tails, as established in Theorem 1. Interestingly, the two asymptotic
variances in the heavy and short-tailed settings converge to 2, and therefore exactly match
in the light-tailed scenario, when γ → 0.

As a corollary of Theorem 1, we obtain the asymptotic normality of the empirical

estimator F̂n(ξ̂τn) of F (ξτn), on which the rate of convergence of ξ̂τn crucially depends.

9



Corollary 2. Work under the conditions of Theorem 1. Then

√
nF (ξτn)

(
F̂n(ξ̂τn)

F (ξτn)
− 1

)
d−→ N

(
0,

2γ2 + γ + 1

(1− γ)(1− 2γ)

+2

∫∫
(0,1]2

∞∑
t=1

(
1

γ2
Rt(x

−1/γ , y−1/γ) +
1

γ
[Rt(x

−1/γ , 1) +Rt(1, x
−1/γ)] +Rt(1, 1)

)
dx dy

)
.

The rate of convergence of F̂n(ξ̂τn) is rather natural: for a sequence (un) tending to
x⋆ such that nF (un) → ∞, Lemma A.5 states that

√
nF (un)

(
F̂n(un)

F (un)
− 1

)
d−→ N

(
0, 1 + 2

∞∑
t=1

Rt(1, 1)

)
.

It is worth noticing that the asymptotic variance of F̂n(ξ̂τn) does not coincide with the

variance that would be obtained if ξτn were known, namely, if F̂n(ξτn) were considered
instead. This is due to the asymptotic dependence existing between ξ̂τn and high order

statistics of the sample (and therefore between ξ̂τn and F̂n), see Theorem 1 and the proof
of Corollary 2.

We now have the tools necessary to construct an extreme value estimator of a properly
extreme expectile ξ1−pn , where pn ↓ 0 at any possible rate as n → ∞. Recall, first of

all, that condition nF (ξτn) → ∞, ensuring that ξ̂τn is an asymptotically normal estimator
of ξτn , requires τn to be intermediate. In particular, ξ̂1−pn is not going to be an asymp-
totically normal estimator of ξ1−pn whatever the choice of pn ↓ 0 is; the construction of
an appropriate estimator for ξ1−pn with pn arbitrarily close to 1 requires extrapolating

the intermediate LAWS estimator ξ̂τn using the extreme value condition C2(γ, a, ρ,A).
Using (2.1) with s = 1/F (ξτn) and z = F (ξτn)/F (ξ1−pn) motivates the approximation

ξ1−pn ≈ ξτn + a(1/F (ξτn))
(F (ξτn)/F (ξ1−pn))

γ − 1

γ
.

By Theorem 1, ξτn is estimated by the LAWS estimator ξ̂τn at rate a(1/F (ξτn))/
√
nF (ξτn).

The scale parameter a(1/F (ξτn)) and shape parameter γ can be estimated by a variety of
techniques such as:

• The (pseudo-)Generalized Pareto maximum likelihood (GPML) estimators, that is,
if k = kn → ∞ is a sequence of integers such that k/n→ 0,

(âML(n/k), γ̂ML
n ) = argmax

σ>0, γ>−1/2

k∏
i=1

h(Xn−i+1,n −Xn−k,n|σ, γ)

where the GP probability density function h(·|σ, γ) is defined as

h(x|σ, γ) = 1

σ

(
1 +

γx

σ

)−1/γ−1
for all x > 0 with 1 +

γx

σ
> 0.

• The Moment-type estimators of Dekkers et al. (1989), defined as

(âMom(n/k), γ̂Mom
n ) = (Xn−k,nM

(1)
k (1− γ̂(−)

n ),M
(1)
k + γ̂(−)

n )

10



where

γ̂(−)
n = 1− 1

2

(
1−

(M
(1)
k )2

M
(2)
k

)−1

and M
(j)
k =

1

k

k∑
i=1

(logXn−i+1,n − logXn−k,n)
j , for j = 1, 2.

Typically, estimators of the scale function a(1/F (un)) converge on the relative scale at

the rate 1/
√
nF (un) when un ↑ x⋆ is such that nF (un) → ∞; see Sections 3.4 and 4.2

in de Haan and Ferreira (2006) in the i.i.d. case, and Section 6 in Drees (2003) in the
dependent data setup. Since, by Corollary 2, the (unknown) quantity F (un) = F (ξτn)

can be consistently estimated at the rate 1/
√
nF (ξτn), we therefore expect to be able

to estimate a(1/F (ξτn)) at this rate on the relative scale. Finally, given an intermediate
level τn, it is customary to estimate the extreme value index γ at the rate 1/

√
n(1− τn)

when the top k = ⌊n(1 − τn)⌋ values in the data are used, see Sections 3.3, 3.4, 3.5
and 3.6 in de Haan and Ferreira (2006) in the i.i.d. case, and again Section 6 in Drees
(2003) when the data points are serially dependent. It remains to find a way to estimate
F (ξτn)/F (ξ1−pn), which depends on the target quantity ξ1−pn itself. A combination of
Equations (2.4) and (2.5) with the fact that the function s 7→ x⋆ − U(s) is regularly
varying with index γ (see de Haan and Ferreira, 2006, Corollary 1.2.10 p.23) suggests that

F (ξτn)

F (ξ1−pn)
≈ 1− τn

pn
× x⋆ − ξ1−pn

x⋆ − ξτn
≈ 1− τn

pn

(
x⋆ − q1−pn

x⋆ − qτn

)1/(1−γ)

≈ 1− τn
pn

(
1− τn
pn

)γ/(1−γ)

=

(
1− τn
pn

)1/(1−γ)

(2.7)

which in turn leads to the expectile-specific approximation

ξ1−pn ≈ ξτn + a(1/F (ξτn))
((1− τn)/pn)

γ/(1−γ) − 1

γ
.

Consequently, like extreme quantiles, extreme expectiles can be extrapolated from their
values at lower levels, but their values are not (in the appropriate sense) asymptotically
equivalent to those of intermediate expectiles, since√

n(1− τn)

a(1/F (ξτn))
(ξ1−pn − ξτn) → +∞

when n(1 − τn) → ∞ and pn/(1 − τn) → 0. Given estimators σ̂n and γ̂n of a(1/F (ξτn))
and γ, respectively, one can then construct the following estimator of ξ1−pn :

ξ̂⋆1−pn = ξ̂τn + σ̂n
((1− τn)/pn)

γ̂n/(1−γ̂n) − 1

γ̂n
. (2.8)

Since (1 − τn)/F (ξτn) → 0, the parameter γ is estimated at a slower rate than the other
quantities, so we expect the asymptotic behavior of γ̂n to govern that of ξ̂⋆1−pn . The
last theorem of this section makes this intuition rigorous. Its proof crucially relies on
Theorem 1 and on Proposition 1 in order to quantify the bias in the approximation (2.7).
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Theorem 2. Work under the conditions of Theorem 1. If moreover ρ < 0, n(1−τn) → ∞,
(1−τn)/pn → ∞,

√
n(1− τn)/ log((1−τn)/pn) → ∞,

√
n(1− τn)(x

⋆−qτn)1/(1−γ) = O(1),√
n(1− τn)A((1− τn)

−1) = O(1), σ̂n and γ̂n are such that√
nF (ξτn)

(
σ̂n

a(1/F (ξτn))
− 1

)
= OP(1) and

√
n(1− τn)(γ̂n − γ)

d−→ Γ,

where Γ is a nondegenerate limit, then√
n(1− τn)

a(1/F (ξτn))
(ξ̂⋆1−pn − ξ1−pn)

d−→ Γ

γ2
.

2.3 Quantile-based estimation

We use here Proposition 1 to present an alternative estimator of extreme expectiles, purely
based on quantiles, and to develop its asymptotic theory. Similarly to the setup of extreme
quantile estimation in Section 4.3 of de Haan and Ferreira (2006), assume that k = kn → ∞
is a sequence of positive integers such that k/n → 0 and that estimators γ̂n, â(n/k) and
Xn−k,n of γ, a(n/k) and U(n/k), respectively, are given such that

√
k

(
γ̂n − γ,

â(n/k)

a(n/k)
− 1,

Xn−k,n − U(n/k)

a(n/k)

)
d−→ (Γ,Λ, B) (2.9)

where (Γ,Λ, B) is a nontrivial trivariate weak limit. This assumption is satisfied by the
moment and Generalized Pareto maximum likelihood (GPML) estimators of the shape and
scale parameters presented in Section 2.2, among others, see an overview in Section 4.3
of de Haan and Ferreira (2006) in the case where the Xi are independent random variables.
It is also satisfied when (Xt)t≥1 is a strictly stationary but serially dependent sequence: this
is for example the case when the data points are β−mixing and satisfy an anti-clustering
condition similar to the tail dependence assumption D, as a consequence of the powerful
results of Drees (2003).

Let pn ↓ 0 with k/(npn) → ∞, so that the level 1 − pn is much more extreme than
1−k/n. Following Section 4.3 of de Haan and Ferreira (2006), the extreme quantile q1−pn

and the right endpoint x⋆ can be estimated by

q̂⋆1−pn = Xn−k,n + â(n/k)
(k/(npn))

γ̂n − 1

γ̂n
and x̂⋆ = Xn−k,n − â(n/k)

γ̂n
. (2.10)

According to Proposition 1, an estimator of ξ1−pn follows then as

ξ̃⋆1−pn = x̂⋆ − [(x̂⋆ −Xn)(1− γ̂−1
n )]−γ̂n/(1−γ̂n)(x̂⋆ − q̂⋆1−pn)

1/(1−γ̂n). (2.11)

The next result provides its asymptotic properties, where a sequence (un) is said to be
asymptotically proportional to another sequence (vn) if (un/vn) converges to a finite pos-
itive limit as n→ ∞.

Theorem 3. Suppose that E|min(X, 0)| <∞ and condition C2(γ, a, ρ, A) holds with ρ < 0.

Assume that condition (2.9) holds true and that
√
k(Xn − E(X))

P−→ 0 with k = kn
being asymptotically proportional to nχ, for some χ ∈ (0, 1). Let pn be asymptotically
proportional to n−ω where ω > 0 is such that χ + ω − 1 > 0. If moreover

√
kA(n/k) →

12



λ ∈ R, then we have, up to changing probability spaces and with appropriate versions of
the estimators involved,

ξ̃⋆1−pn − ξ1−pn =
a(n/k)√

k

1

γ2

(
Γ + γ2B − γΛ− λ

γ

γ + ρ
+ oP(1)

)
+ [a(n/k)(k/(npn))

γ ]1/(1−γ)(−γ)−1(1− γ)−1/(1−γ)(x⋆ − E(X))−γ/(1−γ)

×

(
log(np

1/(1−γ)
n /k)√
k

Γ + oP

(
log n√
k

))
+O(nωγ/(1−γ)(nωγ/(1−γ) + |A(nω/(1−γ))|)).

Let us discuss the assumptions made in Theorem 3. Condition
√
k(Xn −E(X))

P−→ 0
is satisfied in practice if

√
n(Xn − E(X)) = OP(1), which is in particular true when a

central limit theorem applies. As already highlighted below Theorem 1, this will be the
case if E(|min(X, 0)|2) < ∞ when the Xi are independent, or if there is δ > 0 such that
E(|min(X, 0)|2+δ) <∞ and

∑
l≥1 l

2/δα(l) <∞ when (Xt)t≥1 is α−mixing. In particular,

when the data mixes geometrically fast, then
√
n(Xn−E(X)) = OP(1) as soon as X has a

finite moment of order 2+δ, for some δ > 0. Besides, the assumption that k = kn is asymp-
totically equivalent to a positive and finite multiple of nχ, is only very slightly stronger
than the usual pair of extreme value conditions k → ∞ and k/n→ 0. The only difference
is that our assumption does not allow to take k growing to infinity logarithmically fast;
such sequences produce, however, very small values of k in practice and would therefore
yield estimators having very large variances. We also note that in standard settings such
as those of Beirlant et al. (2004, Table 2.2 p.68), A(s) is asymptotically proportional to
sρ, in which case the optimal choices of k satisfying the usual bias-variance tradeoff for
extreme value index estimation would fulfill

√
kA(n/k) → λ ∈ R \ {0}, that is, k should

be asymptotically proportional to n−2ρ/(1−2ρ). In other words, it is reasonable to expect
that optimal choices of k in practice have to be asymptotically equivalent to a positive
and finite multiple of a fractional power of n.

It follows from Theorem 3 that the asymptotic behavior of the extreme expectile es-
timator ξ̃⋆1−pn is more complex than that of the extreme quantile estimator q̂⋆1−pn : while,
from Theorem 4.3.1 on p.134 and Theorem 4.5.1 on p.146 of de Haan and Ferreira (2006),

q̂⋆1−pn − q1−pn converges to the same distribution 1
γ2

(
Γ + γ2B − γΛ− λ γ

γ+ρ

)
as x̂⋆ − x⋆

at the rate a(n/k)/
√
k for γ < 0, the asymptotic distribution of ξ̃⋆1−pn − ξ1−pn may be a

nonstandard mixture of the two limiting distributions of x̂⋆−x⋆ and γ̂n−γ. In particular,
Corollary 3 shows that when, for example, ω = 1 (containing the typical setting pn = 1/n)
and χ (and hence k) is chosen small enough, it is in fact the asymptotic distribution Γ of
γ̂n − γ that dominates in ξ̃⋆1−pn − ξ1−pn , while Corollary 4 examines what can otherwise
be said.

Corollary 3. Under the assumptions of Theorem 3, if moreover χ < 1 − ω/(1 − γ) and
χ < 2ωmin(−γ,−ρ)/(1− γ), then

√
k

log(np
1/(1−γ)
n /k)

ξ̃⋆1−pn − ξ1−pn

[a(n/k)(k/(npn))γ ]1/(1−γ)

d−→ −γ−1(1− γ)−1/(1−γ)(x⋆ − E(X))−γ/(1−γ)Γ.

One may then compare the rates of convergence of ξ̂⋆1−pn and ξ̃⋆1−pn by setting τn =
1 − k/n. Using the convergence a(s)/(x⋆ − U(s)) → −γ as s → ∞ and Equation (2.5),
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one finds under the assumptions of Corollary 3 that

√
k

a(1/F (ξ1−k/n))

/ √
k

log(np
1/(1−γ)
n /k)[a(n/k)(k/(npn))γ ]1/(1−γ)

∝ log(n)
[a(n/k)]1/(1−γ)

a(1/F (ξ1−k/n))
(k/(npn))

γ/(1−γ) ∝ n(χ+ω−1)γ/(1−γ) log(n) → 0.

This means that ξ̃⋆1−pn converges to ξ1−pn faster than ξ̂⋆1−pn when k (or 1 − τn) is chosen
sufficiently small. We shall illustrate this finding below in our simulation study. It is also
interesting to note that the closer γ is to 0, or equivalently, the closer the data-generating
distribution is to having a light tail, the stronger the constraint on χ through the condition
χ < 2ωmin(−γ,−ρ)/(1 − γ). This is analogous to what happens in extreme expectile
estimation for heavy-tailed distributions, where the condition

√
k/q1−k/n = O(1) (see e.g.

Daouia et al., 2020, Theorem 5) becomes a strong restriction as the tail gets less heavy,
i.e. when γ approaches 0.

Condition χ < 1 − ω/(1 − γ) may not hold in a given example, especially when ω is
large enough, or equivalently, pn is small enough. Yet, interestingly this condition can
always be satisfied for sufficiently small χ in the standard setting ω = 1 of extreme value
analysis. If it is not satisfied, then ξ̃⋆1−pn tends to inherit the asymptotic behavior of x̂⋆,
rather than γ̂, as established in the following result.

Corollary 4. Under the assumptions of Theorem 3, if moreover χ > 1− ω/(1− γ), then

ξ̃⋆1−pn − ξ1−pn =
a(n/k)√

k

1

γ2

(
Γ + γ2B − γΛ− λ

γ

γ + ρ
+ oP(1)

)
+O(nωγ/(1−γ)(nωγ/(1−γ) + |A(nω/(1−γ))|)).

It is important to note that the condition χ > 1 − ω/(1 − γ) itself is not sufficient
to ensure the convergence of ξ̃⋆1−pn ; in practice, depending on the choice of k, the bias
term may dominate the asymptotics. This is most easily seen when A(s) is asymptotically
proportional to sρ and ω = 1, corresponding to the standard extreme value situation where
pn ≈ c/n. In this case:

• One automatically has χ+ ω − 1 = χ > 0,

• Condition
√
kA(n/k) → λ ∈ R essentially amounts to χ ≤ −2ρ/(1− 2ρ),

• Condition χ > 1− ω/(1− γ) becomes χ > −γ/(1− γ).

For the bias term in Corollary 4 to be negligible, one requires
√
k

a(n/k)
× nγ/(1−γ)(nγ/(1−γ) + |A(n1/(1−γ))|) → 0.

Since a(n/k) is asymptotically proportional to (n/k)γ by Lemma A.3(i), this is equivalent
to assuming

χ

(
1

2
+ γ

)
+
γ2 −min(−γ,−ρ)

1− γ
< 0.

When γ > −1/2, which is a case often encountered in practical applications, and 0 <
−ρ < −γ, representing situations where the bias due to the second-order framework is
high, this condition becomes

χ < − 2(γ2 + ρ)

(1− γ)(1 + 2γ)
.
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Depending on the value of ρ, this final condition may not be compatible with χ > −γ/(1−
γ): in fact, if ρ is close enough to 0, it may even be impossible to satisfy whatever the
value of χ (since the right-hand side of the above displayed inequality tends to a negative
constant as ρ→ 0, when γ > −1/2). In this case, with the choice pn = c/n, the asymptotic
behavior of x̂⋆ − x⋆ can never dominate in ξ̃⋆1−pn − ξ1−pn .

2.4 Selection of the expectile asymmetry level

In practical situations it is crucial to make an informed decision as to what the asymmetry
level of the target expectile should be. In financial applications, where the dual interpre-
tation of expectiles in terms of the gain-loss ratio is available (Bellini and Di Bernardino,
2017), it is sensible to set the expectile level so as to achieve a certain value of the gain-loss
ratio. Otherwise, it has been proposed in the literature to select τ such that ξτ coincides
with another pre-specified intuitive risk measure: Bellini and Di Bernardino (2017) suggest
to choose the expectile level τ so that ξτ is identical to the Value-at-Risk (or quantile) qπ,
where π is a high probability level specified by the statistician or the practitioner.

The proposal of Bellini and Di Bernardino (2017) is valid only when the underlying
loss distribution is Gaussian. Daouia et al. (2018) later extended this idea to the heavy-
tailed setup. We examine here the short-tailed situation, hitherto unexplored from this
perspective. Fix a large quantile level 1− pn. Setting τ = τn to be such that ξτ = q1−pn ,
Equation (2.4) leads to

(x⋆ − q1−pn)pn
1− τn

=
(x⋆ − ξτ )F (ξτ )

1− τ
≈ (x⋆ − E(X))(1− γ−1).

In other words,

1− τn ≈ x⋆ − q1−pn

(x⋆ − E(X))(1− γ−1)
pn.

This approximation suggests to estimate the quantity τn by

τ̂n ≡ τ̂n(pn) = 1−
x̂⋆ − q̂⋆1−pn

(x̂⋆ −Xn)(1− γ̂−1
n )

pn

with the notation of (2.10). Our next main result shows that, under suitable bias condi-
tions, this estimator converges at the rate log(k/(npn))/

√
k in the framework of Section 2.3.

Proposition 2. Under the assumptions of Theorem 3, if moreover χ < min(−2ωγ,−2ρ/(1−
2ρ)), then √

k

log(k/(npn))

(
1− τ̂n
1− τn

− 1

)
d−→ Γ.

It is worth noting that in the standard setting when pn ≈ c/n, for a positive constant
c, the bias condition χ < min(−2ωγ,−2ρ/(1 − 2ρ)) will always be satisfied provided k is
chosen small enough. In contrast to Proposition 2, in the heavy-tail setting and according
to Section 5 in Daouia et al. (2018), it holds that 1− τn ≈ pn/(γ

−1 − 1). An estimator of
τn is then τ̂n = 1− pn/(γ̂

−1
n − 1). In this setting, it is straightforward to obtain, under a

suitable bias condition when
√
k(γ̂n − γ) → Γ, that

√
k

(
1− τ̂n
1− τn

− 1

)
d−→ Γ

γ(1− γ)
.

The estimator 1− τ̂n therefore converges at a slightly faster rate in the heavy-tailed model.
The slower speed of convergence in the short-tailed framework is due to the presence of
the quantity x̂⋆ − q̂⋆1−pn = −â(n/k)γ̂−1

n (k/(npn))
γ̂n in the numerator of 1− τ̂n, whose rate

of convergence to x⋆ − q1−pn is precisely log(k/(npn))/
√
k.
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2.5 Towards conditional and dynamic extreme expectile estimation

The tail behavior of X can often be better understood by estimating its conditional ex-
tremes given a relevant finite-dimensional covariate Z ∈ Rd. In financial applications, this
covariate can contain, among others, global market information (through current global
market index values, for instance) as well as lags of the target variable, in order to al-
low for dynamic prediction of future extreme risk levels given past financial information.
Many popular models used in statistical practice for this purpose are particular examples
of explicit regression models linking Xt to Zt through the formula Xt = m(Zt)+εt, where
m(·) : Rd → R is an unknown measurable function to be estimated and εt is an unob-
served innovation. When the model is correctly specified, as we shall assume here, the
εt = Xt−m(Zt) are typically independent and identically distributed copies of a centered
random variable ε with survival function F , and for each t, εt is independent of Zt.

It follows from this model assumption that a conditional expectile ξτ (Xt|Zt = z)
can be written as ξτ (Xt|Zt = z) = m(z) + ξτ (ε). A reasonable idea in order to es-
timate the extreme conditional expectile ξτ (Xt|Zt = z), for τ = τn ↑ 1, from data
(Z1, X1), . . . , (Zn, Xn) generated from this model, is to estimate first the regression func-

tion m(z) and then the tail unconditional expectile ξτ (ε), using residuals ε̂
(n)
t of the

model instead of the unobserved εt. This eventually results in a two-step estimator of
ξτn(Xt|Zt = z). The crucial difficulty, of course, is that these residuals, unlike the true
unobserved innovations, will typically not be independent or even identically distributed,
even in simple models such as those concerned with linear regression. However, since at
least in parametric regression models one is typically able to estimate the function m in
a straightforward fashion at the rate 1/

√
n, which is faster than the rate of convergence

of the extreme-value step, one should expect the estimator of ξτn(ε) based on residuals to
behave asymptotically just like its unachievable true error-based counterpart.

An interesting question is therefore to consider whether this intuition is indeed correct
under a reasonable condition. Our final asymptotic result goes in this direction.

Theorem 4. Assume that the centered random variable ε satisfies condition C2(γ, a, ρ,A),
with E(|min(ε, 0)|2) <∞ and right endpoint e⋆ > 0, and let ξτ = ξτ (ε) be its τ th expectile.

Let τn ↑ 1 be such that nF (ξτn) → ∞. If the ε̂
(n)
t satisfy√

nF (ξτn)

a(1/F (ξτn))
max
1≤t≤n

|ε̂(n)t − εt|
P−→ 0, (2.12)

then the LAWS residual-based estimator ξ̂τn = argminθ∈R
∑n

t=1 ητn(ε̂
(n)
t − θ) is such that√

nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn)

d−→ N
(
0,

2

(1− γ)(1− 2γ)

)
.

The key condition to be checked as part of Theorem 4 is convergence (2.12), which
essentially expresses that the model has to be estimated faster than the rate of the extreme-
value procedure applied to the innovation term for the residual-based intermediate estima-
tor to have the required asymptotic normality property. For example, in the linear model

Xt = Z⊤
t β + εt, where β ∈ Rd is estimated by β̂n, |ε̂(n)t − εt| = |Z⊤

t (β̂n − β)|, so that√
nF (ξτn)

a(1/F (ξτn))
max
1≤t≤n

|ε̂(n)t − εt| ≍

√
nF (ξτn)

a(1/F (ξτn))
∥β̂n − β∥
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when (for instance) the covariatesZt have compact support. If moreover β̂n is
√
n−consistent,

as is for instance the case with the standard ordinary least squares estimator, then√
nF (ξτn)

a(1/F (ξτn))
max
1≤t≤n

|ε̂(n)t − εt| ≍

√
F (ξτn)

a(1/F (ξτn))
.

Besides, it follows from convergence a(s)/(e⋆ − U(s)) → −γ as s → ∞ and the fact that
the function s 7→ e⋆ − U(s) is regularly varying with index γ (see de Haan and Ferreira,
2006, Corollary 1.2.10.2 p.23) that one has√

F (x)

a(1/F (x))
≍

√
F (x)

e⋆ − U(1/F (x))
= G(1/F (x)) as x ↑ e⋆,

where G(s) = 1/(
√
s(e⋆ − U(s))) is regularly varying with index −(γ + 1/2). This means

that convergence (2.12), and hence Theorem 4, will be satisfied for any choice of inter-
mediate sequence (τn) when γ > −1/2. This discussion naturally leads to the following
corollary.

Corollary 5. Assume that the centered, nondegenerate and bounded random variable ε
satisfies condition C2(γ, a, ρ, A), with γ > −1/2, and let ξτ = ξτ (ε). Let τn ↑ 1 be such
that nF (ξτn) → ∞. If the linear model Xt = Z⊤

t β + εt holds, where the covariates Zt

have compact support and β ∈ Rd is estimated by a
√
n−consistent estimator β̂n, then

the LAWS estimator ξ̂τn = argminθ∈R
∑n

t=1 ητn(ε̂
(n)
t − θ) based on the residuals ε̂

(n)
t =

Xt −Z⊤
t β̂n is such that√

nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn)

d−→ N
(
0,

2

(1− γ)(1− 2γ)

)
,

and the tail conditional expectile estimator ξ̂τn(Xt|Zt = z) = z⊤β̂n + ξ̂τn satisfies√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn(Xt|Zt = z)− ξτn(Xt|Zt = z))

d−→ N
(
0,

2

(1− γ)(1− 2γ)

)
.

The condition γ > −1/2 is fairly natural in extreme value theory; it appears in partic-
ular in the asymptotic analysis of the semiparametric GPML estimators of the scale and
shape extreme value parameters (see de Haan and Ferreira, 2006, Theorem 3.4.2 p.92). It
is fortunately satisfied in most models and applications: for example, it is a straightfor-
ward consequence of Taylor’s theorem with remainder in Lagrange form that this condition
holds as soon as ε has a probability density function which is k times continuously differ-
entiable in a neighborhood [e⋆ − ι, e⋆ + ι] of the right endpoint e⋆ of ε (for a certain k ≥ 1
and ι > 0) and whose (k + 1)th derivative exists in [e⋆ − ι, e⋆) and has a finite positive
left limit at e⋆. It is noteworthy that while the estimation of central regression parame-
ters often requires assumptions about the smoothness of the probability density function
of the errors near 0 (see for example Condition 3.2 in Chaudhuri, 1991, for regression
quantile estimation), our framework of extremal regression naturally involves smoothness
assumptions near the upper boundary of the support of ε instead.

In applied settings, one would of course require consistent and asymptotically normal
estimators of properly extreme conditional expectiles, of the form ξ1−pn(Xt|Zt = z), where
npn → c <∞. This in turn requires constructing extrapolated, residual-based estimators
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of ξ1−pn(ε), which can only be obtained by constructing first residual-based estimators of
a(1/F (ξτn)) and γ, as is already the case in the construction of extrapolated estimators
of extreme unconditional expectiles in Section 2.2. Proving rigorously that these residual-
based estimators of a(1/F (ξτn)) and γ are indeed consistent and asymptotically normal is a
difficult mathematical task whose solution may require establishing asymptotic Gaussian

theory for the tail empirical process of residuals, that is, s 7→ ε̂
(n)
n−n(1−τn)s

, 0 ≤ s ≤ 1.
Current results on this empirical process are limited to the setting when the innovations
are heavy-tailed, see Girard et al. (2021). The hard but interesting mathematical question
of working out the asymptotic behavior of this stochastic process when the εt are short-
tailed is left for future research.

3 Simulation study

The finite-sample performance of the estimators proposed in Sections 2.2 and 2.3 is illus-
trated here through a simulation study. The simulation setup first considers three models
for i.i.d. observations:

(i) The Xt have a Beta distribution, whose density function is

f(x|α, β) = xα−1(1− x)β−1

B(α, β)
, 0 ≤ x ≤ 1.

Here B(α, β) is the Beta function and the shape parameters are set as α = 3 and β = 5/2.
The extreme value index and the upper endpoint of this model are γ = −2/5 and x⋆ = 1,
respectively.

(ii) The Xt have a short-tailed power-law distribution, whose distribution function is

F (x|x⋆,K, α) = 1−K(x⋆ − x)α, x⋆ −K−1/α ≤ x ≤ x⋆.

Here x⋆, K and α are the endpoint of the distribution, a positive constant and the shape
parameter, respectively, which have been set as x⋆ = 5, K = 1/3 and α = 3, so that the
extreme value index is γ = −1/3.

(iii) The Xt have a GEV distribution, whose distribution function is

F (x|γ) = exp(−(1 + γx)−1/γ), 1 + γx > 0.

We set the extreme value index γ = −1/3, so that the upper endpoint is x⋆ = −1/γ = 3.

We then consider the following three time series models, in which Φ denotes the stan-
dard normal distribution function and Yt is the AR(1) process defined as Yt+1 = ϱYt +√
1− ϱ2 εt, with independent standard normal innovations εt, and where ϱ ∈ (−1, 1):

(iv) Xt = qX(Φ(Yt)), where qX is the quantile function corresponding to the Beta distri-
bution defined in (i), and where the correlation parameter is ϱ = 0.95.

(v) Xt = qX(Φ(Yt)), where qX is the quantile function corresponding to the short-tailed
power-law distribution defined in (ii), and where the correlation parameter is ϱ = 0.5.

(vi) Xt = qX(Φ(Yt)), where qX is the quantile function corresponding to the GEV distri-
bution defined in (iii), and where the correlation parameter is ϱ = 0.8.
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The EVI and upper endpoints of models (iv), (v) and (vi) are those of models (i), (ii)
and (iii), respectively, and the time series models (iv)-(vi) are geometrically β-mixing
(and in particular geometrically α−mixing) since the linear AR(1) process (Yt) is so. We
consider the sample sizes n = 150, 300, 500 and we aim to predict expectiles of extreme
level τ ′n = 1 − pn = 1 − 1/n = 0.9933, 0.9967, 0.9980. The true expectile values cannot
be given in closed form, but they have here been computed by intensive Monte Carlo
simulations and are reported in Table 1.

Model τ ′n = 0.9933 τ ′n = 0.9967 τ ′n = 0.9980

(i), (iv) 0.8571 0.8814 0.8968
(ii), (v) 4.5284 4.5939 4.6372
(iii), (vi) 1.9523 2.1020 2.2000

Table 1: Values of the expectile ξτ ′n obtained through intensive Monte Carlo simulations
for τ ′n = 1− 1/n, with n = 150, 300, 500.

We simulate M = 10,000 samples of n observations from each model and compare the
purely empirical (LAWS) estimator ξ̂τ ′n in (2.6), the extrapolating LAWS estimators ξ̂⋆τ ′n

in (2.8) obtained by setting σ̂n = â(1/F̂n(ξ̂τn)), its alternative version ξ
⋆
τ ′n

obtained with

σ̂n = â((1 − τn)
−1) × ((1 − τn)/F̂n(ξ̂τn))

γ̂n in view of the approximation a(1/F (ξτn)) ≈
((1−τn)/F (ξτn))γa((1−τn)−1) that follows from the regular variation property of the scale
function a, and the extrapolating quantile-based (QB) estimator ξ̃⋆τ ′n in (2.11). In these

last three estimators, (â(n/k), γ̂n) are either the pair of GPML estimators of (a(n/k), γ)
based on the top k observations in the sample, or their versions based on the Moment
estimator. We set throughout τn = 1 − k/n, let the effective sample size k range from
1% up to 25% of the total sample size n, and record Monte Carlo approximations of the
relative bias, variance and Mean Squared Error (MSE) of the estimators as a function
of k.

Results are reported in Figures B.1–B.6 in the Appendix. In each figure the relative
bias, variance and MSE are displayed from left to right, and results related to sample
sizes n = 150, 300, 500 are shown from top to bottom. For the sake of brevity we only
report below in Figure 1 the results obtained with the Beta distribution, for the sample
size n = 300 that we will also consider in our real data analysis of weekly loss returns,
but we discuss the conclusions from the full set of models in Appendix B. The Beta model
corresponds to a case in which the extreme value bias is present (unlike in the power-
law setting, which is a transformation of a pure Pareto model) but not too disruptive
in small samples (unlike in the case of the GEV distribution, which should be seen as
difficult from that perspective). On the basis of the bias, the empirical estimator and
extrapolating QB estimator tend to underestimate the true expectile along the entire range
of the effective sample size, while the extrapolating LAWS estimator tends to overestimate
the true expectile (at least when the scale and shape parameters are estimated via GPML).
From the variance point of view, the extrapolating QB estimator is overall best among the
estimators we consider, with the extrapolating LAWS estimators having large variance
for small values of the effective sample size. Variability of the estimates seems to be
highest when the data points come from time series. This conclusion carries over to the
MSE: based on this criterion, the extrapolating QB estimator overall performs best, as
expected from our discussion below Corollary 3, with the extrapolating LAWS estimator
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sometimes outperforming the extrapolating QB estimator for effective sample fractions
larger than 20%. In general, both extrapolating QB and LAWS estimators seem to perform
remarkably well relative to the purely empirical expectile estimator, especially when one
takes into account the small sample size in this simulation study.
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Figure 1: Empirical relative bias, variance and MSE (left, middle and right), multiplied by
100, for the estimators of ξτ ′n obtained with observations from a Beta distribution, τ ′n = 1−
1/n and sample size n = 300. Empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS

estimators ξ̂⋆τ ′n (magenta lines) and ξ
⋆
τ ′n

(blue lines), and extrapolating QB estimators ξ̃⋆τ ′n
(black lines). The versions of the extrapolating estimators based on the GPML scale and
shape parameter estimates are referred to using solid lines, and those based on the Moment
estimators are referred to using dashed lines. Top: i.i.d. data, bottom: nonlinear AR(1)
data.

4 Application to forecast verification and comparison

In this section, we apply our LAWS and QB estimation methods to estimate tail risk for
Bitcoin (BTC-USD), a peer-to-peer digital decentralized cryptocurrency, and then for the
Netflix stock. At the end of September 2014, Bitcoin had volatility seven times greater
than gold, eight times greater than the S&P 500, and 18 times greater than the US
dollar. Although the growth of Bitcoin prices has been often described as an economic
bubble, the COVID-19 crisis has sparked substantial investment in this digital currency
as an alternative to conventional asset classes. We construct a time series of weekly loss
returns (i.e. negative log-returns) from averaged daily Bitcoin closing prices within the
corresponding week, from September 28th, 2014, to June 12th, 2022. The time series of
loss returns is represented in Figure 2 (A).
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We consider risk assessment from a forecasting perspective. With our knowledge of this
week, the goal is to give the best possible point estimate of the expectile risk measure ξτ ′n
for the next week based on rolling windows of length n = 300. This window length results
in 103 samples of size n over the observed timeframe. For each sample (X1, . . . , Xn), the
EVI of the underlying distribution was estimated by means of the ML method for peaks
over a high threshold Xn−k,n. The plot of the estimates obtained over the successive 103
rolling windows is given in Figure 2 (B), where an appropriate k is chosen, for each sample,
by regarding the path of the ML estimator of γ as a function of k and selecting the k value
which corresponds to the median estimate over the most stable region of the path (this can
be achieved by employing for instance the algorithm developed by El Methni and Stupfler
(2017)). This selection is highlighted in Figure 2 (B) by a colour scheme, ranging from
dark red (low) to dark violet (high). The final EVI estimates are found to be all negative
in [−0.147,−0.057]. It should also be noted that we have comfortably concluded the
stationarity of the time series samples across all T = 103 rolling windows of short-tailed
data, from the Augmented Dickey-Fuller test in our exploratory analysis, at the three
significance levels 0.10, 0.05 and 0.01. Similarly, the Kwiatkowski-Phillips-Schmidt-Shin
test corroborates the stationarity hypothesis, see Figure 2 (C). A test specifically focused
on the tail would of course be important, but the Quintos et al. (2001) test, which is, to
the best of our knowledge, the only formally established test in order to detect structural
breakpoints in extreme value analysis, does not apply here since it relies on the marginal
distributions being heavy-tailed. We tested for heavy tails by implementing the test of
Theorem 5.2.12 pp.172-173 in de Haan and Ferreira (2006) under the stringent condition
of independent weekly loss returns: the plot of p-values displayed in Figure 2 (D) clearly
rejects the assumption of heavy tails over each rolling window at the significance level
0.01. In any event, we only require a local form of stationarity to be valid, with model
parameters being allowed to change as the rolling window changes; this is standard practice
in the extreme value analysis of financial data, see e.g. McNeil and Frey (2000) and Drees
(2003). As is to be expected from the resulting range of mildly negative EVI estimates, the
95% confidence intervals for γ in Figure 2 (B), derived from the asymptotic GPML theory
under the independence condition (black curves), do not exclude the value 0. Likewise,
the one-sided Wald test of γ = 0 versus γ < 0, induced by the asymptotic normality of the
GPML estimator of γ under the independence condition (Theorem 3.4.2 p.92 in de Haan
and Ferreira, 2006), does not reject the null hypothesis as indicated by the plot of p-values
in Figure 2 (E). If the hypothesis γ = 0 were true, a natural implication would be to assume
that the light-tailed Bitcoin loss returns have a normal distribution. However, both the
Kolmogorov-Smirnov and Shapiro-Wilk tests reject the normality of the weekly data over
all estimation windows at the significance level 0.01, as shown in Figure 2 (F). Therefore,
the model assumption of a short tailed-distribution over each time period appears to be
the only plausible choice.

Expectiles have recently received growing attention in quantitative risk management
not only for their coherence as a tail risk measure, but also for their property of elicitability
that corresponds to the existence of a natural methodology for backtesting and forecast
verification. According to Gneiting (2011) and Ziegel (2016) among others, letting the
random variable X model the future observation of interest, the expectile ξτ ′n equals the
optimal point forecast for X given by the Bayes rule

ξτ ′n = argmin
ξ∈R

E
[
Lτ ′n(ξ,X)

]
,

under the asymmetric quadratic scoring function

Lτ ′n : R2 −→ [0,∞), (ξ, x) 7→ ητ ′n(x− ξ),
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where Lτ ′n(ξ, x) represents the loss or penalty when the point forecast ξ is issued and the
realization x of X materializes. Following the ideas of Gneiting (2011) and Ziegel (2016),
the competing estimation procedures for ξτ ′n can be compared by using the scoring func-

tion Lτ ′n : Suppose that, in T forecast cases, we have point forecasts
(
ξ
(m)
1 , . . . , ξ

(m)
T

)
and

realizing observations (x1, . . . , xT ), where the index m numbers the competing forecasters
that are computed at each forecast case t = 1, . . . , T . In the assessment, we compare

the purely empirical expectile ξ
(1)
t := ξ̂τ ′n in (2.6) with the direct extrapolating LAWS

estimator ξ
(2)
t := ξ̂⋆τ ′n in (2.8) and its alternative version ξ

(3)
t := ξ

⋆
τ ′n

described in Section 3,

and with the indirect QB extrapolating estimator ξ
(4)
t := ξ̃⋆τ ′n in (2.11), all of them being

based on the GPML estimators (â(n/k), γ̂n) of (a(n/k), γ). When the Moment estimators
(â(n/k), γ̂n) are used instead of the ML estimators, the corresponding three extrapolating
forecasters ξ̂⋆τ ′n , ξ

⋆
τ ′n

and ξ̃⋆τ ′n will be denoted in the sequel by replacing “⋆” with “♣” to
define

ξ
(5)
t := ξ̂♣τ ′n

, ξ
(6)
t := ξ

♣
τ ′n
, ξ

(7)
t := ξ̃♣τ ′n

.

The seven competing point estimates can then be ranked in terms of their average scores
(the lower the better):

L
(m)
τ ′n

=
1

T

T∑
t=1

Lτ ′n

(
ξ
(m)
t , xt

)
, m = 1, . . . , 7.

The computation of the different extrapolated expectile estimators requires, like the EVI
estimators, the determination of the optimal value of the effective sample size k. By bal-
ancing the potential estimation bias and variance, a usual practice in extreme value theory
is to choose k from the first stable region of the plots [see, e.g., Section 3 in de Haan and
Ferreira (2006)]. This is achieved by using the path stability procedure for γ estimation.

However, to achieve optimal point forecasts
(
ξ
(m)
1 , . . . , ξ

(m)
T

)
for the future observation X,

this requires the use of k values that minimize their associated realized loss L
(m)
τ ′n

≡ L
(m)
τ ′n

(k),

for m = 2, . . . , 7. Doing so, we obtain the final values of L
(m)
τ ′n

graphed in Figure 2 (G),
as functions of the extreme level τ ′n ∈ [0.99, 1], for the seven competing estimators. It
can be seen that the LAWS-Moment estimator ξ̂♣τ ′n

(dashed magenta) is the best fore-

caster uniformly in τ ′n, followed by the LAWS-ML estimator ξ̂⋆τ ′n (solid magenta) and then

the QB-ML estimator ξ̃⋆τ ′n (solid black). The remaining three extrapolating estimators
do not seem, for this particular choice of T = 103 rolling windows of length n = 300,
to outperform the naive sample expectile ξ̂τ ′n (dashed orange). The values of the top-

ranked forecaster ξ̂♣τ ′n
, computed on the 103 successive rolling windows for the extreme

levels τ ′n ∈ {0.99, 0.9933, 0.9966}, are displayed in Figure 2 (H), along with the realizing
observation at each forecast case. The point forecasts seem to smoothly increase with
τ ′n approaching the worst expected (finite) losses at τ ′n = 1. From the perspective of pes-
simistic decision making, the forecasts obtained at the lower level τ ′n = 0.99 (orange curve)
are already cautious since they do lie almost overall beyond the range of the data: This is
mainly due to the short-tailed nature of Bitcoin data that is closer to light-tailedness.

Extreme expectiles can also serve as a useful tool for estimating the conventional
Value at Risk (VaR) itself. Stated differently, if the statistician or the practitioner wishes
to forecast a coherent expectile ξτ ′n that has the same probabilistic interpretation as an
extreme quantile qπn , for a pre-specified tail probability level πn, a natural way of doing so
is to select the asymmetry level τ ′n so that ξτ ′n ≡ qπn . As justified in Section 2.4, such a τ ′n
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can be estimated by τ̂ ′n = 1 − (x̂⋆−q̂⋆πn )(1−πn)

(x̂⋆−Xn)(1−γ̂−1
n )

. When substituting this estimated value in

place of τ ′n in our ξτ ′n extrapolated estimators, the latter estimate the VaR qπn itself and
can then be compared with the popular GP fit q̂⋆πn

defined in (2.10). Here also, forecast
verification and comparison is possible thanks to the elicitability property of quantiles (see
e.g. Gneiting (2011)). Given that it is the quantile level πn which is fixed in advance, the
accuracy of the associated VaR forecasts is to be assessed by means of the realized loss

L
(m)
πn

=
1

T

T∑
t=1

Lπn

(
q
(m)
t , xt

)
, m = 1, . . . , 8,

under the asymmetric piecewise linear scoring function

Lπn : R2 −→ [0,∞), (q, x) 7→ ϱπn(x− q),

for the competing ML-based forecasters q
(1)
t := q̂⋆πn

, q
(2)
t := ξ̂⋆τ̂ ′n

, q
(3)
t := ξ

⋆
τ̂ ′n
, q

(4)
t := ξ̃⋆τ̂ ′n

,

and their Moment-based versions q
(5)
t := q̂♣πn

, q
(6)
t := ξ̂♣τ̂ ′n

, q
(7)
t := ξ

♣
τ̂ ′n
, and q

(8)
t := ξ̃♣τ̂ ′n

.

The resulting realized losses L
(m)
πn

are graphed in Figure 2 (I), as functions of the quantile
level πn ∈ [0.99, 1], for the eight competing estimators of qπn ≡ ξτ ′n . It is remarkable that

the best forecaster is still the LAWS-Moment estimator ξ̂♣τ̂ ′n
(dashed magenta), followed

by the LAWS-ML estimator ξ̂⋆τ̂ ′n
(solid magenta). Most importantly, these expectile-based

forecasters clearly outperform the usual GP-ML fit q̂⋆πn
(solid orange) and GP-Moment fit

q̂♣πn
(dashed orange), which is good news to practitioners whose concern is to assess the

accuracy of forecasts. Figure 2 (J) contrasts the evolution of the optimal point forecasts
ξ̂♣τ̂ ′n

, for the risk measure qπn at the extreme levels πn ∈ {0.99, 0.9933, 0.9966}, with the
realizing observation at each forecast time. By comparing these πnth quantile estimates
with their expectile analogs from Figure 2 (H) at the same asymmetry levels (πn = τ ′n), it
may be seen that expectiles are ultimately less conservative than quantiles, which empiri-
cally corroborates the theoretical result for short-tailed data in Proposition 2.2 by Bellini
and Di Bernardino (2017). This more liberal expectile assessment of tail risk is indeed
a consequence of the diversification principle satisfied by expectiles. Interestingly, the
conservative LAWS-Moment (expectile-based) forecasts ξ̂♣τ̂ ′n

, for qπn in Figure 2 (J), seem
also to be more sensitive to the variability of weekly losses compared with their analog
forecasts ξ̂♣πn

for ξπn in Figure 2 (H).
We repeated the same exercise based on rolling windows of length n = 150 and found

negative EVI estimates in [−0.324,−0.014] over 160 successive rolling windows. However,

the dominant forecasters become the alternative LAWS-Moment estimator ξ
♣
τ ′n

and the

LAWS-ML estimator ξ̂⋆τ ′n for the expectile risk measure ξτ ′n , and their composite versions

ξ
♣
τ̂ ′n

and ξ̂⋆τ̂ ′n
for the VaR qπn .

Now, we consider the time series of weekly loss returns of the Netflix stock observed
from September 26th, 2014, to April 22nd, 2022 (Figure 3 (A)), and estimate its uncon-
ditional EVI over successive rolling windows of length n = 150, before forecasting the
tail risk based on the pre-identified estimation windows of short-tailed data. First, we
conclude the stationarity of the time series samples across all the resulting 246 estima-
tion windows from the Augmented Dickey-Fuller test (Figure 3 (B)). The ML estimates
of the EVI obtained over the successive windows are superimposed (as rainbow curve) in
Figure 3 (C) with their associated asymptotic 95% confidence intervals derived from the
asymptotic theory of the ML estimator under either an independent data assumption, see
Theorem 3.4.2 p.92 in de Haan and Ferreira (2006) (black curves), or the condition of
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β-mixing data, see Corollary 3.2 p.1283 (see also p.1288) of Drees (2000) (gray curves). It
should be noted that, while inference via GPML theory is practically feasible under the
assumption of independent data (using low frequency data is a practical solution to reduce
the potential serial dependence substantially), it is so far only theoretically possible in a
β−mixing model. The major difficulty in exploiting the asymptotic result in Corollary 3.2
of Drees (2000) lies in the unknown asymptotic variance of the ML γ estimator, which
crucially depends on the cumulative serial extremal dependence coefficient

∑
t≥1Rt(1, 1),

whose estimation is notoriously difficult. Instead, we used the intuitive average squared

estimator (log k
jn
)−1

∑k
i=jn

(γ̂
(i)
n − γ̂

(k)
n )2 of the asymptotic variance, based on the ML es-

timator γ̂
(i)
n that uses the i+ 1 largest order statistics of the sample, with a choice of the

tuning parameter jn = o(k) being eyeballed between the thresholds 5 and 65 over each
estimation window. The consistency of this asymptotic variance estimator can be shown
by adapting the arguments of the proof of Theorem 2.3 p.630 of Drees (2003) using the
expression of the asymptotic variance term in convergence (50) p.652 therein combined

with the asymptotic Gaussian representation of γ̂
(i)
n given on p.654. As expected from

the asymptotic theory in p.1288 of Drees (2000) where the asymptotic variance of the
ML estimator is higher under β-mixing serial dependence, the asymptotic Gaussian 95%
confidence intervals are wider in this case than in the i.i.d. case. Although they are fairly
wide, both confidence intervals comfortably indicate negative EVI values over the first
successive 234 estimation windows. This is, however, no longer valid starting from the
235th rolling window due to the appearance of a severe loss return (corresponding to the
week of 2022-01-28, as indicated by a vertical red line in Figure 3 (A)) into this estimation
window. These results are corroborated by the p-values related to the one-sided Wald test
of γ = 0 versus γ < 0 obtained in Figure 3 (D), induced by the asymptotic normality of the
GPML estimator of γ under the independence condition from Theorem 3.4.2 of de Haan
and Ferreira (2006) and under the β−mixing condition from Corollary 3.2 of Drees (2000).

For the comparison and validation of our competing estimation procedures on historical
short-tailed data, we restrict the forecast assessment to the T = 234 rolling windows that
result in negative EVI estimates in [−0.6,−0.25]. The realizations of the future observation
to be forecast in an optimal way under both the expectile and the quantile scoring functions
on each rolling window are delimited by the vertical red lines in Figure 3 (A). When using
the expectile ξτ ′n as an optimal point forecast for the future observation, we obtain in

Figure 3 (E) the realized losses L
(m)
τ ′n

for its seven competing estimators ξ̂τ ′n , ξ̂
⋆
τ ′n
, ξ

⋆
τ ′n
, ξ̃⋆τ ′n ,

ξ̂♣τ ′n
, ξ

♣
τ ′n

and ξ̃♣τ ′n
, as functions of the extreme level τ ′n ∈ [0.99, 1]. The best forecasters are

the two LAWS-ML estimators ξ̂⋆τ ′n (solid magenta) and ξ
⋆
τ ′n

(solid blue), followed by the

LAWS-Moment estimator ξ
♣
τ ′n

(dashed blue). The optimal point forecasts ξ̂⋆τ ′n obtained

at the extreme levels τ ′n ∈ {0.99, 0.9933, 0.9966} are displayed in Figure 3 (F), along
with the realizing observation at each forecast case. When using the quantile qπn as an
optimal point forecast for the future observation, we obtain in Figure 3 (G) the realized

losses L
(m)
πn

for its eight competing estimators q̂⋆πn
, ξ̂⋆τ̂ ′n

, ξ
⋆
τ̂ ′n
, ξ̃⋆τ̂ ′n

, q̂♣πn
, ξ̂♣τ̂ ′n

, ξ
♣
τ̂ ′n

and ξ̃♣τ̂ ′n
, as

functions of πn ∈ [0.99, 1]. Globally, the top forecaster is still the LAWS-ML estimator
with both its variants ξ̂⋆τ̂ ′n

(solid magenta) and ξ
⋆
τ̂ ′n

(solid blue) that clearly outperform

the traditional GP-ML fit q̂⋆πn
(solid orange) and GP-Moment fit q̂♣πn

(dashed orange).

Finally, Figure 3 (H) contrasts the evolution of the resulting optimal point forecasts ξ̂⋆τ̂ ′n
at πn ∈ {0.99, 0.9933, 0.9966} with the realizing observation at each forecast time.
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5 Discussion

We concentrated on the estimation of, and inference about, extreme expectiles of short-
tailed distributions in a general setting of weakly dependent and strictly stationary time
series. Our assumptions require that the strong mixing coefficients of the data-generating
process decay algebraically fast and, in particular, that they form a summable series. This
does not cover the interesting frameworks of long memory processes or high-frequency
data, both of which have been extensively analyzed in heavy-tailed models (see e.g. Kulik
and Soulier (2020) and Mao and Zhang (2018)), but whose theory remains untouched
in our short-tailed setup. In contrast to high-frequency data analysis, we explored and
provided tools that may be used for long-run market risk assessment, which explains the
focus on expectiles of the underlying stationary distribution in our theory and weekly loss
data in our application. While we did discuss the extension of our results about inter-
mediate expectile estimation to the altogether different problem of conditional/dynamic
intermediate expectile estimation for short-tailed models, we could not provide asymptotic
theory about the estimation of properly extreme conditional expectiles where the expectile
level can grow arbitrarily fast to 1. This is a very difficult problem requiring to obtain
asymptotic theory about residual-based estimators of extreme value parameters, which is
well beyond the scope of the current paper. Theoretical results along these lines are left
for future research.
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Appendix to the paper “Extreme expectile
estimation for short-tailed data”

Abdelaati Daouia, Simone A. Padoan and Gilles Stupfler

This appendix contains all necessary proofs and provides extra finite-sample results about
our simulation study.

A Proofs of the main results

A.1 Auxiliary results

We first of all list a number of facts that will be used numerous times in our proofs: if
condition C2(γ, a, ρ, A) holds, then

• Condition C2(γ, a, ρ,A) holds locally uniformly in z, see Remark B.3.8.1 on relation-
ship (B.3.3) in de Haan and Ferreira (2006).

• The right endpoint of F is finite and will be denoted in the sequel by x⋆, see Theo-
rem 1.2.1 on p.19 of de Haan and Ferreira (2006).

• One has a(s)/(x⋆−U(s)) → −γ as s→ ∞, see Lemma 1.2.9 on p.22 of de Haan and
Ferreira (2006).

• The functions x 7→ F (x⋆−1/x) and s 7→ x⋆−U(s) are regularly varying with indices
1/γ and γ, respectively, see Theorem 1.2.1.2 on p.19 and Corollary 1.2.10.2 on p.23
of de Haan and Ferreira (2006).

Our first auxiliary result is a useful asymptotic inversion lemma that will be used several
times.

Lemma A.1. Suppose that condition C2(γ, a, ρ, A) holds.

(i) One has

lim
x↑x⋆

U(1/F (x))− x

a(1/F (x))A(1/F (x))
= 0.

In particular

lim
x↑x⋆

1

A(1/F (x))

(
x⋆ − U(1/F (x))

x⋆ − x
− 1

)
= 0.

(ii) One has

lim
τ↑1

1

A((1− τ)−1)

(
F (qτ )

1− τ
− 1

)
= 0.

Proof of Lemma A.1. We only show (i); the proof of (ii) is similarly written by using an
equivalent second-order condition on F (see de Haan and Ferreira, 2006, Theorem 2.3.8
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p.48). Assume that A is positive; the proof for a negative A is similar. Condition
C2(γ, a, ρ, A) holds locally uniformly in z, so pick ε ̸= 0 and apply this condition to obtain

lim
x↑x⋆

∣∣∣∣ 1

A(1/F (x))

(
U([1 + εA(1/F (x))]/F (x))− U(1/F (x))

a(1/F (x))
− (1 + εA(1/F (x)))γ − 1

γ

)
−
∫ 1+εA(1/F (x))

1
vγ−1

(∫ v

1
uρ−1du

)
dv

∣∣∣∣∣ = 0

and therefore

lim
x↑x⋆

1

a(1/F (x))A(1/F (x))

∣∣∣∣U([1 + εA(1/F (x))]/F (x))− U(1/F (x))

− a(1/F (x))
(1 + εA(1/F (x)))γ − 1

γ

∣∣∣∣ = 0.

Conclude that

lim
x↑x⋆

U([1 + εA(1/F (x))]/F (x))− U(1/F (x))

a(1/F (x))A(1/F (x))
= ε.

By definition of U as the left-continuous inverse of 1/F , one has U([1+εA(1/F (x))]/F (x)) ≥
x when ε > 0 (resp. ≤ x when ε < 0), so

lim sup
x↑x⋆

x− U(1/F (x))

a(1/F (x))A(1/F (x))
≤ lim

x↑x⋆

U([1 + εA(1/F (x))]/F (x))− U(1/F (x))

a(1/F (x))A(1/F (x))
= ε

and a similar lower bound applies. Let ε→ 0 to complete the proof of the first convergence.
The second convergence follows because a(s)/(x⋆ − U(s)) → −γ as s→ ∞.

A fine understanding of the asymptotic behavior of extreme expectiles requires an
asymptotic expansion of φ(1)(x) = E((X − x)1{X > x}) for x close to the right endpoint
x⋆. This is the focus of the below lemma, where we recall that more generally φ(κ)(x) =
E((X − x)κ1{X > x}).

Lemma A.2. Suppose that condition C2(γ, a, ρ, A) holds.

(i) Then, for any κ ≥ 1, and as x ↑ x⋆,

φ(κ)(x)

F (x)[a(1/F (x))]κ
= O(1).

(ii) As x ↑ x⋆,

φ(1)(x)

F (x)a(1/F (x))
=

1

1− γ

(
1 +

1

1− γ − ρ
A(1/F (x)) + o(|A(1/F (x))|)

)
.

(iii) As x ↑ x⋆,

φ(2)(x)

F (x)[a(1/F (x))]2

=
2

(1− γ)(1− 2γ)

(
1 +

3− 4γ − 2ρ

(1− γ − ρ)(1− 2γ − ρ)
A(1/F (x)) + o(|A(1/F (x))|)

)
.
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Proof of Lemma A.2. Statement (i) is shown by writing

φ(κ)(x)

F (x)[a(1/F (x))]κ
≤
(

x⋆ − x

a(1/F (x))

)κ

=

(
−1

γ
× x⋆ − x

x⋆ − U(1/F (x))

)κ

(1 + o(1)) = O(1)

by Lemma A.1(i) and because a(s)/(x⋆ − U(s)) → −γ as s→ ∞.

To show (ii) and (iii), recall that X
d
= U(Y ), where Y is a unit Pareto random variable.

Write φ(1)(x) = E((U(Y )− x)1{Y > 1/F (x)}). By Lemma A.1(i),

φ(1)(x) = E((U(Y )− U(1/F (x)))1{Y > 1/F (x)}) + o(F (x)a(1/F (x))|A(1/F (x))|)

=

∫ ∞

1/F (x)
(U(y)− U(1/F (x)))

dy

y2
+ o(F (x)a(1/F (x))|A(1/F (x))|)

=
1

s

∫ ∞

1
(U(sz)− U(s))

dz

z2
+ o(F (x)a(1/F (x))|A(1/F (x))|) (A.1)

with s = s(x) = 1/F (x) → ∞ (as x ↑ x⋆). Define now a⋆ and A⋆ as

a⋆(s) =


a(s)

(
1− 1

ρ
A(s)

)
, ρ < 0,

a(s)

(
1− 1

γ
A(s)

)
, ρ = 0,

and A⋆(s) =


1

ρ
A(s), ρ < 0,

A(s), ρ = 0.

(A.2)

By the set of uniform inequalities in Theorem 2.3.6 of de Haan and Ferreira (2006),
there exist functions a0 and A0 such that A0 is asymptotically equivalent to A⋆ and
a0(s)/a⋆(s) = 1 + o(|A⋆(s)|) as s→ ∞, and, for any ε > 0, the following inequality holds
for s large enough:

∀z ≥ 1,

∣∣∣∣ 1

A0(s)

(
U(sz)− U(s)

a0(s)
− zγ − 1

γ

)
−Ψγ,ρ(z)

∣∣∣∣ ≤ εzγ+ρ+ε,

where Ψγ,ρ(z) =


zγ+ρ − 1

γ + ρ
, ρ < 0,

1

γ
zγ log(z), ρ = 0.

(A.3)

Write then

1

s

∫ ∞

1
(U(sz)− U(s))

dz

z2
=
a0(s)

s

∫ ∞

1

zγ − 1

γ

dz

z2

+
a0(s)A0(s)

s

∫ ∞

1

1

A0(s)

(
U(sz)− U(s)

a0(s)
− zγ − 1

γ

)
dz

z2

and use (A.3) in conjunction with the dominated convergence theorem together with
straightforward calculations to get

1

s

∫ ∞

1
(U(sz)− U(s))

dz

z2

=
a0(s)

s

(
1

1− γ
+A0(s)

[
1

1− γ − ρ
1{ρ < 0}+ 1

γ(1− γ)2
1{ρ = 0}+ o(1)

])
.

Combine this last identity with (A.1), (A.2) and a straightforward calculation to conclude
the proof of (ii). We turn to showing (iii). Start by writing

(X − x)2
d
= (U(Y )− U(1/F (x)))2

+ (U(1/F (x))− x)× (2(U(Y )− U(1/F (x))) + (U(1/F (x))− x))
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and use the results of the proof of (ii) along with Lemma A.1(i) to obtain

φ(2)(x) = E((U(Y )− U(1/F (x)))21{Y > 1/F (x)}) + o(F (x)[a(1/F (x))]2|A(1/F (x))|)

=

∫ ∞

1/F (x)
(U(y)− U(1/F (x)))2

dy

y2
+ o(F (x)[a(1/F (x))]2|A(1/F (x))|)

=
1

s

∫ ∞

1
(U(sz)− U(s))2

dz

z2
+ o(F (x)[a(1/F (x))]2|A(1/F (x))|) (A.4)

where again s = s(x) = 1/F (x) → ∞ as x ↑ x⋆. Now

1

s

∫ ∞

1
(U(sz)− U(s))2

dz

z2
=

[a0(s)]
2

s

∫ ∞

1

(
zγ − 1

γ

)2 dz

z2

+ 2
[a0(s)]

2

s

∫ ∞

1

(
U(sz)− U(s)

a0(s)
− zγ − 1

γ

)
zγ − 1

γ

dz

z2

+
[a0(s)]

2

s

∫ ∞

1

(
U(sz)− U(s)

a0(s)
− zγ − 1

γ

)2 dz

z2
.

Combine (A.3) with the dominated convergence theorem and straightforward calculations
to find

1

s

∫ ∞

1
(U(sz)− U(s))2

dz

z2
=

[a0(s)]
2

s

(
2

(1− γ)(1− 2γ)

+A0(s)

[
2(2− 2γ − ρ)

(1− γ)(1− γ − ρ)(1− 2γ − ρ)
1{ρ < 0}+ 2(2− 3γ)

γ(1− γ)2(1− 2γ)2
1{ρ = 0}+ o(1)

])
.

Conclude the proof by combining (A.2) with (A.4) and further straightforward calcula-
tions.

Inverting the limiting relationship (2.4), and providing an asymptotic expansion that
strengthens (2.5), requires in particular an asymptotic expansion of x⋆ − ξτ . We do so in
the following lemma.

Lemma A.3. Suppose that condition C2(γ, a, ρ, A) holds with ρ < 0.

(i) The limit C = lims→∞ s−γ(x⋆ − U(s)) exists, is positive and finite, with

x⋆ − U(s) = Csγ
(
1 +

γ

ρ(γ + ρ)
A(s) + o(|A(s)|)

)
and a(s) = −γCsγ

(
1 +

A(s)

ρ
+ o(|A(s)|)

)
as s→ ∞.

(ii) With the notation of (i), as x ↑ x⋆,

F (x) = C1/γ(x⋆ − x)−1/γ

(
1 +

1

ρ(γ + ρ)
A(1/F (x)) + o(|A(1/F (x))|)

)
and F (x)a(1/F (x)) = −γC1/γ(x⋆ − x)1−1/γ

(
1 +

ρ+ 1

ρ(γ + ρ)
A(1/F (x)) + o(|A(1/F (x))|)

)
.
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Proof of Lemma A.3. The main difficulty is to show (i). We start by the assertion on U .
By Remark B.3.7 in de Haan and Ferreira (2006) with (c1, c2) = (1, 0), the limit c =
lims→∞ s−γa(s) ∈ (0,∞) exists and the function g defined by

g(s) = U(s)− c
sγ − 1

γ

satisfies

lim
s→∞

g(sz)− g(s)

a(s)A(s)
=

1

ρ
× zγ+ρ − 1

γ + ρ
, for all z > 0.

By Theorem B.2.2 on p.373 of de Haan and Ferreira (2006) applied to − sign(A)g, c′ =
lims→∞ g(s) exists and

lim
s→∞

c′ − g(s)

a(s)A(s)
= − 1

ρ(γ + ρ)
.

The identity c′ = lims→∞ g(s) yields

c′ = x⋆ +
c

γ
and thus c′ − g(s) = x⋆ − U(s) + c

sγ

γ
.

The above convergence and the convergence a(s)/(x⋆ − U(s)) → −γ, as s → ∞, then
provide

x⋆ − U(s) = −cs
γ

γ
− 1

ρ(γ + ρ)
a(s)A(s)(1 + o(1))

= −cs
γ

γ
+

γ

ρ(γ + ρ)
(x⋆ − U(s))A(s)(1 + o(1)).

Set finally C = −c/γ to find

x⋆ − U(s) = Csγ
(
1 +

γ

ρ(γ + ρ)
A(s) + o(|A(s)|)

)
, s→ ∞,

as required. To show the assertion on a, set h(s) = s−γa(s) and rewrite Equation (2.3.7)
on p.44 of de Haan and Ferreira (2006) as

lim
s→∞

h(sz)− h(s)

s−γa(s)A(s)
=
zρ − 1

ρ
, for all z > 0.

By Theorem B.2.2 on p.373 of de Haan and Ferreira (2006) again,

lim
s→∞

c− h(s)

s−γa(s)A(s)
= −1

ρ
.

The conclusion in (i) is now immediate since h(s) = s−γa(s) and c/C = −γ. The expan-
sions in (ii) are obtained by taking s = 1/F (x) in the expansion of x⋆ − U(s) and then
using Lemma A.1(i).

The following lemma is the essential element in obtaining the joint asymptotic nor-
mality of the LAWS estimator and empirical quantile when the data generating process
is α−mixing. In the proof of this lemma and later on we shall use the following result:
under condition C2(γ, a, ρ, A), if xn, un ↑ x⋆ satisfy (x⋆ − xn)/(x

⋆ − un) → 1, then

F (xn)

F (un)
→ 1 and

a(1/F (xn))

a(1/F (un))
→ 1. (A.5)

The first convergence is found by using the regular variation property of x 7→ F (x⋆−1/x).
The second one is then obtained by combining the convergence a(s)/(x⋆ − U(s)) → −γ,
as s→ ∞, with the regular variation property of s 7→ x⋆ − U(s).
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Lemma A.4. Assume that X satisfies condition C2(γ, a, ρ, A). Suppose that F is contin-
uous and that (Xt)t≥1 is a strictly stationary sequence of copies of X satisfying conditions
M and D. Let finally un ↑ x⋆ be such that nF (un) → ∞, rnF (un) → 0, and xn, x

′
n ↑ x⋆

be such that (x⋆ − xn)/(x
⋆ − un) → 1 and (x⋆ − x′n)/(x

⋆ − un) → 1.

(i) If sn → ∞ is such that sn = O(rn), one has

n

sn
Var

 sn∑
t=1

√
F (un)

n

(
1{Xt > xn}
P(X > xn)

− 1

)→ 1 + 2
∞∑
t=1

Rt(1, 1),

n

sn
Cov

 sn∑
t=1

√
F (un)

n

(
(Xt − xn)1{Xt > xn}
E((X − xn)1{X > xn})

− 1

)
,

sn∑
t=1

√
F (un)

n

(
1{Xt > x′n}
P(X > x′n)

− 1

)
→ 1 + (1− γ−1)

∫ 1

0

∞∑
t=1

[Rt(x
−1/γ , 1) +Rt(1, x

−1/γ)] dx, and

n

sn
Var

 sn∑
t=1

√
F (un)

n

(
(Xt − xn)1{Xt > xn}
E((X − xn)1{X > xn})

− 1

)
→ 2(1− γ)

1− 2γ
+ 2(1− γ−1)2

∫∫
(0,1]2

∞∑
t=1

Rt(x
−1/γ , y−1/γ) dx dy.

(ii) If the assumption sn → ∞ is dropped, then each of the three sequences in (i) stays
bounded.

Proof of Lemma A.4. We prove both statements for the third sequence because the proofs
for the first two sequences are simpler, and we start by preliminary calculations. By
Lemma A.2(ii),

n

sn
Var

 sn∑
t=1

√
F (un)

n

(
(Xt − xn)1{Xt > xn}
E((X − xn)1{X > xn})

− 1

)
= (1− γ)2 × 1 + o(1)

F (un)[a(1/F (un))]2
× 1

sn
Var

(
sn∑
t=1

(Xt − xn)1{Xt > xn}

)
. (A.6)

Then, combining Lemma A.2(ii) and (iii) with (A.5) and snF (un) = O(rnF (un)) → 0,

1

sn
Var

(
sn∑
t=1

(Xt − xn)1{Xt > xn}

)
= E((X − xn)

2
1{X > xn})− sn [E((X − xn)1{X > xn})]2

+
2

sn

sn−1∑
t=1

(sn − t)E((X1 − xn)(Xt+1 − xn)1{X1 > xn, Xt+1 > xn})

=
2

(1− γ)(1− 2γ)
F (un)[a(1/F (un))]

2(1 + o(1))

+ 2

∞∑
t=1

(
1− t

sn

)∫∫
[xn,x⋆)2

P(X1 > v,Xt+1 > v′) dv dv′1{t < sn}. (A.7)

It remains to control the integral in (A.7). Taking into account the continuity of F , the
change of variables (v, v′) = (xn − γ(x⋆ − xn)w, xn − γ(x⋆ − xn)w

′) = (x⋆ − (1 + γw)(x⋆ −
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xn), x
⋆−(1+γw′)(x⋆−xn)), convergence a(s)/(x⋆−U(s)) → −γ as s→ ∞, Lemma A.1(i)

and convergence (A.5) yield

1

F (un)[a(1/F (un))]2

∫∫
[xn,x⋆)2

P(X1 > v,Xt+1 > v′) dv dv′

=

∫∫
[0,−1/γ)2

1

F (un)
P(F (X1) ≤ F (x⋆ − (1 + γw)(x⋆ − xn)),

F (Xt+1) ≤ F (x⋆ − (1 + γw′)(x⋆ − xn))) dw dw′(1 + o(1)). (A.8)

Since x 7→ F (x⋆ − 1/x) is regularly varying with index 1/γ, one has

∀w ∈ [0,−1/γ), lim
n→∞

F (x⋆ − (1 + γw)(x⋆ − xn))

F (xn)
= (1 + γw)−1/γ .

Then, we find, using Potter bounds (see Proposition B.1.9.5 on p.367 of de Haan and
Ferreira, 2006) and the 1-homogeneity of the function Rt in condition D (as a direct
consequence of its definition) along with (A.5) that, for any w,w′ ∈ [0,−1/γ) and t ≥ 1,

1

F (un)
P(F (X1) ≤ F (x⋆ − (1 + γw)(x⋆ − xn)), F (Xt+1) ≤ F (x⋆ − (1 + γw′)(x⋆ − xn)))

→ Rt((1 + γw)−1/γ , (1 + γw′)−1/γ) as n→ ∞. (A.9)

We now assume that sn → ∞ and we prove (i). Fix ε ∈ (0,−1/γ). From condition D,
Potter bounds and (A.5) again, we have, for n large enough,

1

F (un)
P(F (X1) ≤ F (x⋆ − (1 + γw)(x⋆ − xn)), F (Xt+1) ≤ F (x⋆ − (1 + γw′)(x⋆ − xn)))

≤ C

(
ρ(t)

√
(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε + F (un)(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε

)
(A.10)

for any t ≥ 1 and any w,w′ ∈ [0,−1/γ), where C is a positive constant. Notice that for
any t < sn,

ρ(t)
√
(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε + F (un)(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε

→ ρ(t)
√
(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε (A.11)

as n→ ∞, and
∞∑
t=1

∫∫
[0,−1/γ)2

(
ρ(t)

√
(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε

+ F (un)(1 + γw)−1/γ−ε(1 + γw′)−1/γ−ε
)
dw dw′

1{t < sn}

→

(∫
[0,−1/γ)2

√
(1 + γw)−1/γ−ε dw

)2 ∞∑
t=1

ρ(t) <∞ (A.12)

by splitting the sum and using the assumption that snF (un) = O(rnF (un)) → 0. Combine
Theorem 1 in Pratt (1960) with (A.8), (A.9), (A.10), (A.11) and (A.12) to get

1

F (un)[a(1/F (un))]2

∞∑
t=1

(
1− t

sn

)∫∫
[xn,x⋆)2

P(X1 > v,Xt+1 > v′) dv dv′1{t < sn}

→
∫∫

[0,−1/γ)2

∞∑
t=1

Rt((1 + γw)−1/γ , (1 + γw′)−1/γ) dw dw′.
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Plug this into (A.7) and use a change of variables to complete the proof of (i). To show
(ii), write sn ≤ C ′rn where C ′ is a positive constant, and note that, by (A.7),

1

sn
Var

(
sn∑
t=1

(Xt − xn)1{Xt > xn}

)

≤ 2

(1− γ)(1− 2γ)
F (un)[a(1/F (un))]

2(1 + o(1))

+ 2
∞∑
t=1

(
1− t

C ′rn

)∫∫
[xn,x⋆)2

P(X1 > v,Xt+1 > v′) dv dv′1{t < C ′rn}.

Follow then the proof of (i) and use (A.6) to obtain that the upper bound converges as
n→ ∞. The desired conclusion is now immediate.

Lemma A.5 below provides the asymptotic normality of the empirical survival function

Ên at intermediate levels, when the data generating process is at least α−mixing. The
asymptotic normality of the intermediate LAWS estimator will follow from that result.

Lemma A.5. Assume that X satisfies condition C2(γ, a, ρ, A). Suppose that F is contin-
uous and that (Xt)t≥1 is a strictly stationary sequence of copies of X satisfying conditions
M and D. Let finally un ↑ x⋆ be such that nF (un) → ∞, rnF (un) → 0, and xn, x

′
n ↑ x⋆

be such that (x⋆ − xn)/(x
⋆ − un) → 1 and (x⋆ − x′n)/(x

⋆ − un) → 1.

(i) If there is δ > 0 such that rn(rn/
√
nF (un))

δ → 0, then one has

√
nF (un)

(
φ̂
(1)
n (xn)

φ(1)(xn)
− 1,

F̂n(x
′
n)

F (x′n)
− 1

)
d−→ N (0,Σ(γ) + 2D(γ,R))

where the 2 × 2 symmetric matrices Σ(γ) and D(γ,R) are defined elementwise as
Σ11(γ) = 2(1− γ)/(1− 2γ), Σ12(γ) = Σ22(γ) = 1,

D11(γ,R) = (1− γ−1)2
∫∫

(0,1]2

∞∑
t=1

Rt(x
−1/γ , y−1/γ) dx dy

D12(γ,R) =
1

2
(1− γ−1)

∫ 1

0

∞∑
t=1

[Rt(x
−1/γ , 1) +Rt(1, x

−1/γ)] dx

and D22(γ,R) =
∞∑
t=1

Rt(1, 1).

(ii) If, choosing δ > 0 as in (i), one has E(|min(X, 0)|2+δ) <∞ and
∑

l≥1 l
2/δα(l) <∞,

then √
nF (un)

(
Ên(xn)

E(xn)
− 1,

F̂n(x
′
n)

F (x′n)
− 1

)
d−→ N (0,Σ(γ) + 2D(γ,R)).

If X is bounded, then in (ii) assumption
∑

l≥1 l
2/δα(l) <∞ can be weakened to

∑
l≥1 α(l) <

∞ and no integrability assumption on X is necessary.

If the Xi are in fact i.i.d. then both results hold with D(γ,R) = 0 under the sole assump-
tions that X satisfies condition C2(γ, a, ρ,A), un ↑ x⋆ is such that nF (un) → ∞, and
xn, x

′
n ↑ x⋆ are such that (x⋆ − xn)/(x

⋆ − un) → 1 and (x⋆ − x′n)/(x
⋆ − un) → 1, with the

extra requirement that E(|min(X, 0)|2) <∞ for (ii) only.
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Proof of Lemma A.5. (i) Pick (λ, µ) ∈ R2 \ {(0, 0)}. Clearly√
nF (un)

{
λ

(
φ̂
(1)
n (xn)

φ(1)(xn)
− 1

)
+ µ

(
F̂n(x

′
n)

F (x′n)
− 1

)}

=
n∑

t=1

λ×

√
F (un)

n

(
(Xt − xn)1{Xt > xn}
E((X − xn)1{X > xn})

− 1

)
+ µ×

√
F (un)

n

(
1{Xt > x′n}
P(X > x′n)

− 1

)

=

n∑
t=1

Xn,t(λ, µ)

is a mean of identically distributed and centered random variables for every n. We start
by the case when (Xt)t≥1 is an α−mixing sequence. We aim to apply Lemma C.7(ii)
in Davison et al. (2023), of which we check each condition. By Lemma A.4, and using
condition M,

n

rn
Var

(
ln∑
t=1

Xn,t(λ, µ)

)
= O(ln/rn) → 0,

Var

n−rn⌊n/rn⌋∑
t=1

Xn,t(λ, µ)

 = O((n− rn⌊n/rn⌋)/n) = O(rn/n) → 0,

lim
n→∞

n

rn
Var

(
rn∑
t=1

Xn,t(λ, µ)

)
= λ2(Σ11(γ) + 2D11(γ,R)) + 2λµ(Σ12(γ) + 2D12(γ,R))

+ µ2(Σ22(γ) + 2D22(γ,R)).

Besides, for any ε > 0,

n

rn
E

∣∣∣∣∣
rn∑
t=1

Xn,t(λ, µ)

∣∣∣∣∣
2

1

{∣∣∣∣∣
rn∑
t=1

Xn,t(λ, µ)

∣∣∣∣∣ > ε

} ≤ ε−δ × n

rn
E

∣∣∣∣∣
rn∑
t=1

Xn,t(λ, µ)

∣∣∣∣∣
2+δ


= O
(
nr1+δ

n E(|Xn,1(λ, µ)|2+δ)
)

= O

rn
 rn√

nF (un)

δ


by the Hölder inequality and Lemma A.2(i) and (ii). This converges to 0 by assumption,
so Lemma C.7(ii) in Davison et al. (2023) applies and yields the desired conclusion in
the α−mixing framework thanks to the Cramér-Wold device. When the Xi are i.i.d., one
may apply the standard Lyapunov central limit theorem (Billingsley, 1995, Theorem 27.3
p.362) instead: first of all

nVar(Xn,1(λ, µ)) → λ2
2(1− γ)

1− 2γ
+ 2λµ+ µ2

by Lemma A.2, because of (A.5). Then, by the Hölder inequality and Lemma A.2(i) and
(ii),

nE|Xn,1(λ, µ)|4 = O

(
n

(
F (un)

n

)2
(

φ(4)(xn)

[φ(1)(xn)]4
+

1

[F (un)]3

))
= O

(
1

nF (un)

)
.
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This converges to 0, so the Lyapunov central limit theorem applies and the proof of (i) is
complete.

To show (ii), write

log
Ên(xn)

E(xn)
= log

φ̂
(1)
n (xn)

φ(1)(xn)
− log

(
2φ̂

(1)
n (xn) + xn −Xn

2φ(1)(xn) + xn − E(X)

)
.

Since

2φ̂
(1)
n (xn) + xn −Xn

2φ(1)(xn) + xn − E(X)
− 1 =

2(φ̂
(1)
n (xn)− φ(1)(xn))− (Xn − E(X))

2φ(1)(xn) + xn − E(X)

= OP

 φ(1)(xn)√
nF (un)

×
√
nF (un)

(
φ̂
(1)
n (xn)

φ(1)(xn)
− 1

)+OP

(
1√
n
×
√
n(Xn − E(X))

)
,

it follows that

2φ̂
(1)
n (xn) + xn −Xn

2φ(1)(xn) + xn − E(X)
− 1 = oP

 1√
nF (un)


by Lemma A.2(i) and Corollary 1.2 on p.10 of Rio (2017) along with (1.25a) and (1.25b) on
p.12 therein, when the Xi are α−mixing and under the assumptions E(|min(X, 0)|2+δ) <
∞ and

∑
l≥1 l

2/δα(l) < ∞. [When X is also bounded, condition
∑

l≥1 α(l) < ∞ is
sufficient, see (1.24) on p.11 of Rio (2017).] In the case when the Xi are i.i.d., the usual
central limit theorem can be applied instead in order to control Xn − E(X), under the
condition E(|min(X, 0)|2) <∞. Hence, in both cases, the equality

log
Ên(xn)

E(xn)
= log

φ̂
(1)
n (xn)

φ(1)(xn)
+ oP

 1√
nF (un)


from which (ii) follows by applying (i).

A.2 Proofs of the main results

Proof of Proposition 1. The starting point is to combine Equation (2.2) and Lemma A.2,
in order to obtain

x⋆ − E(X)− (x⋆ − ξτ )

=
2τ − 1

1− τ
× F (ξτ )a(1/F (ξτ ))

1− γ

(
1 +

1

1− γ − ρ
A(1/F (ξτ )) + o(|A(1/F (ξτ ))|)

)
as τ ↑ 1. In other words,

F (ξτ )a(1/F (ξτ ))

1− τ
= (1− γ)[(x⋆ − E(X))− (x⋆ − ξτ )]× (1− 2(1− τ))−1

×
(
1− 1

1− γ − ρ
A(1/F (ξτ )) + o(|A(1/F (ξτ ))|)

)
as τ ↑ 1. (A.13)
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Then, by Lemma A.3(i) with s = 1/F (qτ ) and Lemma A.3(ii) with s = 1/F (ξτ ) combined
with Lemma A.1, one has the alternative expansion

F (ξτ )a(1/F (ξτ ))

1− τ
= −γ (x

⋆ − ξτ )
1−1/γ

(x⋆ − qτ )−1/γ

(
1 +

ρ+ 1

ρ(γ + ρ)
A(1/F (ξτ )) + o(|A(1/F (ξτ ))|)

)
×
(
1− 1

ρ(γ + ρ)
A((1− τ)−1) + o(|A((1− τ)−1)|)

)
as τ ↑ 1.

A consequence of Equation (2.3) is that 1/F (ξτ ) = o((1 − τ)−1). Therefore, since |A| is
regularly varying with index ρ < 0, one has A((1 − τ)−1) = o(|A(1/F (ξτ ))|), from which
it follows that

F (ξτ )a(1/F (ξτ ))

1− τ
= −γ (x

⋆ − ξτ )
1−1/γ

(x⋆ − qτ )−1/γ

(
1 +

ρ+ 1

ρ(γ + ρ)
A(1/F (ξτ )) + o(|A(1/F (ξτ ))|)

)
(A.14)

as τ ↑ 1. Combine (A.13) and (A.14) to find

(x⋆ − ξτ )
1−1/γ

(x⋆ − qτ )−1/γ
= (x⋆ − E(X))(1− γ−1)

[
1− 1

x⋆ − E(X)
(x⋆ − ξτ )

]
× (1− 2(1− τ))−1

×
(
1− 1− γ

ρ(γ + ρ)(1− γ − ρ)
A(1/F (ξτ )) + o(|A(1/F (ξτ ))|)

)
as τ ↑ 1.

A consequence of Equation (2.4) is that 1− τ = o(x⋆ − ξτ ). Hence

(x⋆ − ξτ )
1−1/γ

(x⋆ − qτ )−1/γ
= (x⋆ − E(X))(1− γ−1)

[
1− 1

x⋆ − E(X)
(x⋆ − ξτ ) + o(x⋆ − ξτ )

]
×
(
1− 1− γ

ρ(γ + ρ)(1− γ − ρ)
A(1/F (ξτ )) + o(|A(1/F (ξτ ))|)

)
as τ ↑ 1.

(A.15)

Combine the above expansion with Equations (2.4) and (2.5) and the regular variation
property of |A| to get

(x⋆ − ξτ )
1−1/γ

(x⋆ − qτ )−1/γ

= (x⋆ − E(X))(1− γ−1)

×
[
1− (x⋆ − E(X))−1/(1−γ)(1− γ−1)−γ/(1−γ)(x⋆ − qτ )

1/(1−γ)(1 + o(1))
]

×

(
1− (1− γ)[(x⋆ − E(X))(1− γ−1)]−ρ/(1−γ)

ρ(γ + ρ)(1− γ − ρ)
A((1− τ)−1(x⋆ − qτ )

1/(1−γ))(1 + o(1))

)
as τ ↑ 1. Then clearly

x⋆ − ξτ = [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ)(x⋆ − qτ )
1/(1−γ)

×
[
1− [(x⋆ − E(X))(1− γ−1)]−1/(1−γ)(x⋆ − qτ )

1/(1−γ)(1 + o(1))
]

×

(
1 +

γ[(x⋆ − E(X))(1− γ−1)]−ρ/(1−γ)

ρ(γ + ρ)(1− γ − ρ)
A((1− τ)−1(x⋆ − qτ )

1/(1−γ))(1 + o(1))

)
as τ ↑ 1, which is the first desired asymptotic expansion. The second statement is then
a direct consequence of a combination of Lemma A.3(i), for s = (1 − τ)−1, with this
asymptotic expansion.
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Proof of Theorem 1. Fix u, v ∈ R. To prove the desired joint convergence, it is sufficient
to examine the convergence of the sequence

P


√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤ u,

√
nF (ξτn)

a(1/F (ξτn))
(q̂πn − qπn) ≤ v

 .

First of all, since a(s)/(x⋆ − U(s)) → −γ as s → ∞, and s 7→ x⋆ − U(s) is regularly
varying, the assumption F (ξτn)/(1− πn) → 1 yields√

nF (ξτn)

a(1/F (ξτn))
=

√
n(1− πn)

a((1− πn)−1)
(1 + o(1)).

As a result, it is equivalent to analyze the asymptotic behavior of

P


√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤ u,

√
n(1− πn)

a((1− πn)−1)
(q̂πn − qπn) ≤ v

 .

The key observation in order to do so is that, for fixed u, v ∈ R, if

xn = xn(u) = ξτn + u
a(1/F (ξτn))√

nF (ξτn)
and x′n = x′n(v) = qπn + v

a((1− πn)
−1)√

n(1− πn)

then, following a simple calculation,

P


√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤ u,

√
n(1− πn)

a((1− πn)−1)
(q̂πn − qπn) ≤ v


= P

(√
nF (ξτn)

(
Ên(xn)

E(xn)
− 1

)
≤
√
nF (ξτn)

(
E(ξτn)

E(xn)
− 1

)
,

√
nF (ξτn)

(
F̂n(x

′
n)

F (x′n)
− 1

)
≤
√
nF (ξτn)

(
1− πn

F (x′n)
− 1

))
(A.16)

because ξτn (resp. ξ̂τn) is the τnth quantile of the continuous distribution function E
(resp. the distribution function Ên), and likewise qπn (resp. q̂πn) is the πnth quantile
of the distribution function F (resp. the distribution function F̂n). We first handle the
right-hand sides of both of the inequalities in (A.16). Note that

x⋆ − xn
x⋆ − ξτn

− 1 = −ua(1/F (ξτn))
x⋆ − ξτn

× 1√
nF (ξτn)

= O

 1√
nF (ξτn)

→ 0 (A.17)

using the convergence a(s)/(x⋆−U(s)) → −γ as s→ ∞, and Lemma A.1(i). Note further
that the function E is absolutely continuous on any compact interval, because

• The function x 7→ φ(1)(x) =
∫∞
x F (y) dy is Lipschitz continuous,

• The denominator x 7→ E(|X − x|) = 2φ(1)(x) + x − E(X) of E defines a Lipschitz
continuous function that is bounded away from zero.

41



A straightforward calculation shows that E has Lebesgue derivative

E
′
(x) = −φ

(1)(x) + F (x)(x− E(X))

(2φ(1)(x) + x− E(X))2
.

In particular, it comes as a consequence of Lemma A.2(ii) that −E′
(x)/F (x) → 1/(x⋆ −

E(X)) as x ↑ x⋆. Then√
nF (ξτn)

(
E(ξτn)

E(xn)
− 1

)
=

√
nF (ξτn)

∫ ξτn

xn

E
′
(y)

E(xn)
dy

=

√
nF (ξτn)

∫ xn

ξτn

(1− γ)F (y)

F (xn)a(1/F (xn))
dy(1 + o(1))

= (1− γ)×
√
nF (ξτn)

xn − ξτn
a(1/F (ξτn))

(1 + o(1))

→ (1− γ)u (A.18)

as n→ ∞, by combining (A.5) with Lemma A.2(ii) and (A.17). Besides

x⋆ − x′n
x⋆ − ξτn

− 1 =

(
x⋆ − qπn

x⋆ − ξτn
− 1

)
− v

a((1− πn)
−1)

x⋆ − qπn

× 1 + o(1)√
nF (ξτn)

→ 0 (A.19)

because of the convergence (x⋆−qπn)/(x
⋆−ξτn) → 1, granted by the assumption F (ξτn)/(1−

πn) → 1, the regular variation property of s 7→ x⋆ − U(s) and convergence a(s)/(x⋆ −
U(s)) → −γ as s→ ∞, and Lemma A.1(i). Then√

nF (ξτn)

(
1− πn

F (x′n)
− 1

)
=

√
nF (ξτn)

(
F (qπn)

F (x′n)
− 1

)
+

√
nF (ξτn)

(
1− πn

F (qπn)
− 1

)
F (qπn)

F (x′n)

=

√
nF (ξτn)

(
F (qπn)

F (x′n)
− 1

)
+ o(1)

because of Lemma A.1(ii), the asymptotic equivalence between F (qπn), F (ξτn) and F (x
′
n)

due (in part) to (A.19), assumption
√
nF (ξτn)A(1/F (ξτn)) = O(1) and the regular vari-

ation property of |A|. Note now that the convergence in Theorem 2.3.8 on p.48 of de Haan
and Ferreira (2006), which is equivalent to the convergence granted by condition C2(γ, a, ρ, A),
is actually locally uniform by Theorem B.3.19 on p.401 of de Haan and Ferreira (2006),
and therefore√

nF (ξτn)

(
F (qπn)

F (x′n)
− 1

)
=

√
nF (ξτn)

(
F (qπn)

F (qπn + v a((1− πn)−1)/
√
n(1− πn))

− 1

)
→ v

using the asymptotic equivalence between 1− πn, F (qπn) and F (ξτn). Conclude that√
nF (ξτn)

(
1− πn

F (x′n)
− 1

)
→ v. (A.20)
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Combine (A.16), (A.18) and (A.20) to get

P


√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤ u,

√
n(1− πn)

a((1− πn)−1)
(q̂πn − qπn) ≤ v


= P


√
nF (ξτn)

1− γ

(
Ên(xn)

E(xn)
− 1

)
+ o(1) ≤ u,

√
nF (ξτn)

(
F̂n(x

′
n)

F (x′n)
− 1

)
+ o(1) ≤ v

 .

Use Lemma A.5(ii) (this is allowed because of (A.17) and (A.19)) to conclude the proof.

Proof of Corollary 2. Fix v ∈ R. The proof relies on the identity{√
nF (ξτn)

(
F̂n(ξ̂τn)

F (ξτn)
− 1

)
≤ v

}
= {q̂πn ≤ ξ̂τn}

where

πn = πn(v) = 1− F (ξτn)

1 +
v√

nF (ξτn)

 .

We therefore investigate the asymptotic behavior of P(q̂πn ≤ ξ̂τn). To this end we write

{q̂πn ≤ ξ̂τn}

=


√
nF (ξτn)

a(1/F (ξτn))
(q̂πn − qπn)−

√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤

√
nF (ξτn)

a(1/F (ξτn))
(ξτn − qπn)

 .

Now

ξτn − qπn = −

U
 1

F (ξτn)

1 +
v√

nF (ξτn)

−1− U

(
1

F (ξτn)

)+ o

a(1/F (ξτn))√
nF (ξτn)


by Lemma A.1(i) and condition

√
nF (ξτn)A(1/F (ξτn)) = O(1). Since condition C2(γ, a, ρ,A)

holds locally uniformly in z, a Taylor expansion and condition
√
nF (ξτn)A(1/F (ξτn)) =

O(1) yield √
nF (ξτn)

a(1/F (ξτn))
(ξτn − qπn) → v.

As a consequence

{q̂πn ≤ ξ̂τn} =


√
nF (ξτn)

a(1/F (ξτn))
(q̂πn − qπn)−

√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) + o(1) ≤ v

 .

The conclusion follows by applying Theorem 1.
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Proof of Theorem 2. Recall from Equation (2.4) that 1− τn = o(F (ξτn)) and write√
n(1− τn)

a(1/F (ξτn))
(ξ̂⋆1−pn − ξ1−pn)

=

√
n(1− τn)

a(1/F (ξτn))
(ξ̂τn − ξτn)

+
√
n(1− τn)

(
σ̂n

a(1/F (ξτn))
− 1

)
((1− τn)/pn)

γ̂n/(1−γ̂n) − 1

γ̂n

+
√
n(1− τn)

(
((1− τn)/pn)

γ̂n/(1−γ̂n) − 1

γ̂n
− ((1− τn)/pn)

γ/(1−γ) − 1

γ

)

+
√
n(1− τn)

(
((1− τn)/pn)

γ/(1−γ) − (F (ξτn)/F (ξ1−pn))
γ

γ

)

−
√
n(1− τn)

(
ξ1−pn − ξτn
a(1/F (ξτn))

− (F (ξτn)/F (ξ1−pn))
γ − 1

γ

)
(A.21)

=
√
n(1− τn)

(
((1− τn)/pn)

γ̂n/(1−γ̂n) − 1

γ̂n
− ((1− τn)/pn)

γ/(1−γ) − 1

γ

)

+
√
n(1− τn)

(
((1− τn)/pn)

γ/(1−γ) − (F (ξτn)/F (ξ1−pn))
γ

γ

)
+ oP(1) (A.22)

by Theorem 1 (for the control of the first term in (A.21)), the assumption on σ̂n, the
convergence of γ̂n to γ < 0, the assumption (1 − τn)/pn → ∞ (for the second term
in (A.21)), Lemma A.1 and the arguments leading to the control of the nonrandom bias
term IV in the proof of Theorem 4.3.1 on p.134 of de Haan and Ferreira (2006) (for the
fifth term in (A.21)). Now

((1− τn)/pn)
γ̂n/(1−γ̂n) − 1

γ̂n
− ((1− τn)/pn)

γ/(1−γ) − 1

γ

=
((1− τn)/pn)

γ̂n/(1−γ̂n) − ((1− τn)/pn)
γ/(1−γ)

γ̂n
+ [((1− τn)/pn)

γ/(1−γ) − 1](γ̂−1
n − γ−1)

=
((1− τn)/pn)

γ/(1−γ)

γ
((1− τn)/pn)

γ̂n/(1−γ̂n)−γ/(1−γ) − 1)(1 + oP(1)) +
γ̂n − γ

γ2
(1 + oP(1))

=
γ̂n − γ

γ2
(1 + oP(1)) + OP

(
((1− τn)/pn)

γ/(1−γ) log((1− τn)/pn)√
n(1− τn)

)

=
γ̂n − γ

γ2
+ oP

(
1√

n(1− τn)

)
(A.23)

because γ̂n is
√
n(1− τn)−consistent and x−c log x→ 0 as x→ ∞ for any c > 0. Finally,

combining Lemma A.3 with Corollary 1 results in

F (ξτn)

F (ξ1−pn)
=

(
1− τn
pn

)1/(1−γ) (
1 + O((x⋆ − qτn)

1/(1−γ)) + O(|A((1− τn)
−1)|)

)
(A.24)

because 1/F (ξτ ) = o((1− τ)−1) as τ ↑ 1, and therefore A((1− τn)
−1) = o(|A(1/F (ξτn))|).

Combine (A.22), (A.23) and (A.24) to complete the proof.
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Proof of Theorem 3. We decompose ξ̃⋆1−pn − ξ1−pn in the following way:

ξ̃⋆1−pn − ξ1−pn

= x̂⋆ − x⋆ − (x̂⋆ − ξ̃⋆1−pn − (x⋆ − ξ1−pn))

= x̂⋆ − x⋆

− {[(x̂⋆ −Xn)(1− γ̂−1
n )]−γ̂n/(1−γ̂n) − [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ)]}(x̂⋆ − q̂⋆1−pn)

1/(1−γ̂n)

− [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ)[(x̂⋆ − q̂⋆1−pn)
1/(1−γ̂n) − (x⋆ − q1−pn)

1/(1−γ)]

+ (x⋆ − ξ1−pn)− [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ)(x⋆ − q1−pn)
1/(1−γ).

By Proposition 1 and Lemma A.3(i), it follows that

ξ̃⋆1−pn − ξ1−pn

= x̂⋆ − x⋆

− {[(x̂⋆ −Xn)(1− γ̂−1
n )]−γ̂n/(1−γ̂n) − [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ)]}(x̂⋆ − q̂⋆1−pn)

1/(1−γ̂n)

− [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ)[(x̂⋆ − q̂⋆1−pn)
1/(1−γ̂n) − (x⋆ − q1−pn)

1/(1−γ)]

+ O(p−γ/(1−γ)
n (p−γ/(1−γ)

n + |A(p−1/(1−γ)
n )|)). (A.25)

We control each of the three terms in (A.25). By the Skorokhod lemma, up to changing the
probability space and with appropriate versions of the estimators involved, Theorem 4.5.1
on p.146 of de Haan and Ferreira (2006) provides

x̂⋆ − x⋆ =
a(n/k)√

k
× 1

γ2

(
Γ + γ2B − γΛ− λ

γ

γ + ρ
+ oP(1)

)
. (A.26)

Writing

[(x̂⋆ −Xn)(1− γ̂−1
n )]−γ̂n/(1−γ̂n) − [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ)

=

[(
x̂⋆ −Xn

x⋆ − E(X)

)−γ̂n/(1−γ̂n)

− 1

]
[(x⋆ − E(X))(1− γ̂−1

n )]−γ̂n/(1−γ̂n)

+ [(x⋆ − E(X))(1− γ̂−1
n )]−γ̂n/(1−γ̂n) − [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ),

and combining (A.26) with the assumption that
√
k(Xn − E(X))

d−→ 0 and the delta-
method, we find

[(x̂⋆ −Xn)(1− γ̂−1
n )]−γ̂n/(1−γ̂n) − [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ) = OP

(
1√
k

)
. (A.27)

It follows from our assumptions that log(k/(npn))/
√
k = O(log(n)/

√
k) → 0, and therefore

x̂⋆ − q̂⋆1−pn = −â(n/k)(k/(npn))
γ̂n

γ̂n

= −a(n/k)(k/(npn))
γ

γ

(
1 +

log(k/(npn))√
k

Γ + oP

(
log n√
k

))
. (A.28)

Recalling that, by Lemma A.3(i), (k/n)γa(n/k) → −γC <∞ with C = lims→∞ s−γ(x⋆ −
U(s)), it follows that

(x̂⋆ − q̂⋆1−pn)
1/(1−γ̂n)−1/(1−γ)

=

(
−a(n/k)(k/(npn))

γ

γ

)1/(1−γ̂n)−1/(1−γ)(
1 + oP

(
log n√
k

))
= 1− log(pn)√

k
× γ

(1− γ)2
(Γ + oP(1)) + oP

(
log n√
k

)
.
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Hence the asymptotic expansion

(x̂⋆ − q̂⋆1−pn)
1/(1−γ̂n)

=

(
−a(n/k)(k/(npn))

γ

γ

)1/(1−γ)

×
(
1 +

log(k/(npn))√
k

× 1

1− γ
Γ− log(pn)√

k
× γ

(1− γ)2
Γ + oP

(
log n√
k

))
=

(
−a(n/k)(k/(npn))

γ

γ

)1/(1−γ)
(
1 +

log(k/(np
1/(1−γ)
n ))√
k

× 1

1− γ
Γ + oP

(
log n√
k

))
(A.29)

= OP

((
−a(n/k)(k/(npn))

γ

γ

)1/(1−γ)
)

(A.30)

where the convergence (k/n)γa(n/k) → −γC <∞ was used. Combining (A.27) and (A.30)
results in particular in

{[(x̂⋆ −Xn)(1− γ̂−1
n )]−γ̂n/(1−γ̂n) − [(x⋆ − E(X))(1− γ−1)]−γ/(1−γ)]}(x̂⋆ − q̂⋆1−pn)

1/(1−γ̂n)

= oP

((
−a(n/k)(k/(npn))

γ

γ

)1/(1−γ) log n√
k

)
. (A.31)

Using Lemma A.3(i) and the convergence (k/n)γa(n/k) → −γC <∞ again in conjunction
with the regular variation property of |A|,

x⋆ − q1−pn =
x⋆ − q1−pn

a(1/pn)

a(1/pn)

a(n/k)
a(n/k)

= −a(n/k)(k/(npn))
γ

γ

(
1− 1√

k
× λ

ρ
+ o

(
1√
k

))
(A.32)

and so

(x⋆ − q1−pn)
1/(1−γ) =

(
−a(n/k)(k/(npn))

γ

γ

)1/(1−γ)(
1− 1√

k
× λ

ρ(1− γ)
+ o

(
1√
k

))
.

(A.33)
Combine (A.29) and (A.33) to obtain

(x̂⋆ − q̂⋆1−pn)
1/(1−γ̂n) − (x⋆ − q1−pn)

1/(1−γ)

=

(
−a(n/k)(k/(npn))

γ

γ

)1/(1−γ)
(
log(k/(np

1/(1−γ)
n ))√
k

Γ

1− γ
+ oP

(
log n√
k

))
. (A.34)

Finally, combine (A.26), (A.31) and (A.34) to complete the proof.

Proof of Corollary 3. Under the assumptions of the result, and by Lemma A.3(i), a(n/k)

is asymptotically proportional to n(1−χ)γ , and [a(n/k)(k/(npn))
γ ]1/(1−γ) log(np

1/(1−γ)
n /k)

is asymptotically proportional to nωγ/(1−γ) log n. The assumption χ < 1 − ω/(1 − γ)
therefore ensures

a(n/k)√
k

= o

(
[a(n/k)(k/(npn))

γ ]1/(1−γ) log(np
1/(1−γ)
n /k)√

k

)
.
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Moreover, it is a consequence of Proposition B.1.9.1 on p.366 of de Haan and Ferreira
(2006) that |A(s)| = o(sρ+ε) as s→ ∞ for any ε > 0, so A(nω/(1−γ)) = o(nωρ/(1−γ)+δ) for
any δ > 0. Hence, using the assumption χ < 2ωmin(−γ,−ρ)/(1− γ), the convergence

√
k

[a(n/k)(k/(npn))γ ]1/(1−γ) log(np
1/(1−γ)
n /k)

× nωγ/(1−γ)(nωγ/(1−γ) + |A(nω/(1−γ))|) → 0.

Apply Theorem 3 to complete the proof.

Proof of Corollary 4. It was shown in the proof of Corollary 3 that a(n/k) is asymptoti-

cally proportional to n(1−χ)γ , and [a(n/k)(k/(npn))
γ ]1/(1−γ) log(np

1/(1−γ)
n /k) is asymptot-

ically proportional to nωγ/(1−γ) log n. Under the assumptions of the result,

[a(n/k)(k/(npn))
γ ]1/(1−γ) log(np

1/(1−γ)
n /k)√

k
= o

(
a(n/k)√

k

)
.

Apply Theorem 3 to complete the proof.

Proof of Proposition 2. Write

log
1− τ̂n
1− τn

= log

(
x̂⋆ − q̂⋆1−pn

x⋆ − q1−pn

)
− log

(
x̂⋆ −Xn

x⋆ − E(X)

)
− log

(
1− γ̂−1

n

1− γ−1

)
+ log

(
x⋆ − q1−pn

(x⋆ − E(X))(1− γ−1)

pn
1− τn

)
. (A.35)

Note that condition χ < min(−2ωγ,−2ρ/(1−2ρ)) ensures in particular that
√
kA(n/k) →

0. Combine (A.26), (A.28), (A.32), convergence
√
k(Xn − E(X))

P−→ 0 and the delta-
method to get

√
k

log(k/(npn))

(
log

(
x̂⋆ − q̂⋆1−pn

x⋆ − q1−pn

)
− log

(
x̂⋆ −Xn

x⋆ − E(X)

)
− log

(
1− γ̂−1

n

1− γ−1

))
=

√
k

log(k/(npn))
log

(
x̂⋆ − q̂⋆1−pn

x⋆ − q1−pn

)
+ oP(1)

d−→ Γ. (A.36)

Combine now Proposition 1 and Lemma A.3 with the relationship 1 − τ = o(x⋆ − ξτ ) as
τ ↑ 1 (coming as a consequence of Equation (2.4)) to get

(x⋆ − ξτ )F (ξτ )

1− τ
= (x⋆ − E(X))(1− γ−1)(1 + O(x⋆ − ξτ ) + O(|A(1/F (ξτ ))|)) as τ ↑ 1.

With τ = τn such that ξτ = ξτn = q1−pn and using Lemma A.1(ii), we find

(x⋆ − q1−pn)

(x⋆ − E(X))(1− γ−1)

pn
1− τn

= 1 +O(x⋆ − q1−pn) + O(|A(1/pn)|) as n→ ∞. (A.37)

Assumptions χ + ω − 1 > 0 and χ < min(−2ωγ,−2ρ/(1 − 2ρ)) ensure that A(1/pn) =
o(|A(n/k)|) and

√
k(x⋆− q1−pn) → 0. Plug (A.36) and (A.37) into (A.35) to complete the

proof.

Proof of Theorem 4. We know that τ 7→ ξ̂τ is the inverse of the distribution function

Ên = 1− Ên defined by

Ên(x) =
φ̂n(x)

2φ̂n(x) + x− 1
n

∑n
t=1 ε̂

(n)
t

, where φ̂n(x) = φ̂(1)
n (x) =

1

n

n∑
t=1

(ε̂
(n)
t −x)1{ε̂(n)t > x}.
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The conclusion of the proof of Theorem 1 contains the fact that for any fixed u ∈ R,

P


√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤ u


= P

(√
nF (ξτn)

(
Ên(xn)

E(xn)
− 1

)
≤
√
nF (ξτn)

(
E(ξτn)

E(xn)
− 1

))

= P


√
nF (ξτn)

1− γ

(
Ên(xn)

E(xn)
− 1

)
+ o(1) ≤ u

 ,

where

xn = xn(u) = ξτn + u
a(1/F (ξτn))√

nF (ξτn)
.

Define also the unfeasible, innovation-based LAWS estimator of ξτn(ε) by

ξ̃τn = argmin
θ∈R

n∑
t=1

ητn(εt − θ).

Then τ 7→ ξ̃τ is the inverse of the distribution function Ẽn = 1− Ẽn given by

Ẽn(x) =
φ̃n(x)

2φ̃n(x) + x− εn
, where φ̃n(x) = φ̃(1)

n (x) =
1

n

n∑
t=1

(εt − x)1{εt > x}

and εn is the sample mean of the εt, 1 ≤ t ≤ n. We are going to prove that if xn = xn(u)
as above, then √

nF (ξτn)

∣∣∣∣∣Ên(xn)− Ẽn(xn)

E(xn)

∣∣∣∣∣ P−→ 0. (A.38)

This will result in the fact that, for any fixed u ∈ R,

P


√
nF (ξτn)

a(1/F (ξτn))
(ξ̂τn − ξτn) ≤ u

 = P


√
nF (ξτn)

1− γ

(
Ẽn(xn)

E(xn)
− 1

)
+ oP(1) ≤ u

 ,

from which the conclusion will immediately follow by applying Lemma A.5(ii) to the
i.i.d. sequence (εt).

Clearly

∣∣∣Ên(xn)− Ẽn(xn)
∣∣∣ = ∣∣∣∣∣ φ̂n(xn)

2φ̂n(xn) + xn − 1
n

∑n
t=1 ε̂

(n)
t

− φ̃n(xn)

2φ̃n(xn) + xn − εn

∣∣∣∣∣
≤ φ̂n(xn)

2|φ̂n(xn)− φ̃n(xn)|+ | 1n
∑n

t=1 ε̂
(n)
t − εn|

(2φ̂n(xn) + xn − 1
n

∑n
t=1 ε̂

(n)
t )(2φ̃n(xn) + xn − εn)

+
|φ̂n(xn)− φ̃n(xn)|
2φ̃n(xn) + xn − εn

. (A.39)
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Our assumption on |ε̂(n)t − εt| immediately entails∣∣∣∣∣ 1n
n∑

t=1

ε̂
(n)
t − εn

∣∣∣∣∣ ≤ max
1≤t≤n

|ε̂(n)t − εt| = oP

a(1/F (ξτn))√
nF (ξτn)

 . (A.40)

In particular,

1

n

n∑
t=1

ε̂
(n)
t

P−→ 0 (A.41)

from the law of large numbers and the fact that a(x) → 0 as x ↑ e⋆. Besides

|φ̂n(xn)− φ̃n(xn)| ≤
1

n

n∑
t=1

|ε̂(n)t − εt|1{εt > xn}

+
1

n

n∑
t=1

|ε̂(n)t − xn|
∣∣∣1{ε̂(n)t > xn} − 1{εt > xn}

∣∣∣ . (A.42)

Denoting the empirical survival function of the εt by F̃n, we obviously have

1

n

n∑
t=1

|ε̂(n)t − εt|1{εt > xn} ≤ F̃n(xn) max
1≤t≤n

|ε̂(n)t − εt| = oP

F (ξτn)a(1/F (ξτn))√
nF (ξτn)

 (A.43)

using our assumption on |ε̂(n)t − εt|, along with the Chebyshev inequality showing that

F̃n(xn)/F (xn) = 1 + oP(1) and the asymptotic equivalence between F (xn) and F (ξτn)
due to a combination of (A.5) with (A.17) applied to the distribution of ε. Note then

that, using again our assumption on |ε̂(n)t − εt|, one may define by induction a sequence of
increasing integers Nk, for k ≥ 1, such that for any n > Nk,

P


√
nF (ξτn)

a(1/F (ξτn))
max
1≤t≤n

|ε̂(n)t − εt| >
1

k

 ≤ 1

2k
.

Setting δn = 1/k when n ∈ {Nk + 1, . . . , Nk+1} results in a nonrandom positive sequence
(δn) converging to 0 and such that the event

An =


√
nF (ξτn)

a(1/F (ξτn))
max
1≤t≤n

|ε̂(n)t − εt| ≤ δn


has probability arbitrarily close to 1 as n→ ∞. On An,

1

n

n∑
t=1

|ε̂(n)t − xn|
∣∣∣1{ε̂(n)t > xn} − 1{εt > xn}

∣∣∣
≤ 1

n

n∑
t=1

|ε̂(n)t − xn| (1{εt > xn,−} − 1{εt > xn,+})

≤ 1

n

n∑
t=1

(|ε̂(n)t − εt|+ |εt − xn|) (1{εt > xn,−} − 1{εt > xn,+})

≤ 2δn
a(1/F (ξτn))√

nF (ξτn)
× 1

n

n∑
t=1

(1{εt > xn,−} − 1{εt > xn,+}) (A.44)
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where

xn,+ = xn + δn
a(1/F (ξτn))√

nF (ξτn)
= ξτn + (u+ δn)

a(1/F (ξτn))√
nF (ξτn)

and xn,− = xn − δn
a(1/F (ξτn))√

nF (ξτn)
= ξτn + (u− δn)

a(1/F (ξτn))√
nF (ξτn)

.

The upper bound in (A.44) is positive, so it is stochastically bounded from above by its
expectation in view of the Markov inequality. This means that

1

n

n∑
t=1

|ε̂(n)t − xn|
∣∣∣1{ε̂(n)t > xn} − 1{εt > xn}

∣∣∣ = oP

F (ξτn)a(1/F (ξτn))√
nF (ξτn)

 .

Combining this with (A.42) and (A.43) yields

|φ̂n(xn)− φ̃n(xn)| = oP

F (ξτn)a(1/F (ξτn))√
nF (ξτn)

 . (A.45)

In particular, if φ(xn) = E((ε− xn)1{ε > xn}),

φ̃n(xn)

φ(xn)

P−→ 1, so that
φ̂n(xn)

φ(xn)

P−→ 1 and then φ̂n(xn)
P−→ 0 (A.46)

from Lemma A.5(i) in the i.i.d. setting. Finally, recalling that, from Lemma A.2(ii),

E(xn) =
φ(xn)

2φ(xn) + xn − E(ε)
=

φ(xn)

2φ(xn) + xn

∼ φ(xn)

e⋆
∼ F (xn)a(1/F (xn))

(1− γ)e⋆
∼ F (ξτn)a(1/F (ξτn))

(1− γ)e⋆

as n→ ∞, (A.38) follows from combining (A.39), (A.40), (A.41), (A.45) and (A.46).

B Further finite-sample results

We enclose here the full set of graphs we obtained in our numerical results for the six
models we discuss in Section 3 and for the three sample sizes n = 150, 300, 500.
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Figure B.1: Empirical relative bias, variance and MSE (left, middle and right), multiplied
by 100, for the estimators of ξτ ′n obtained with i.i.d. observations from a Beta distribution
(simulation setup (i)), τ ′n = 1 − 1/n and sample size n = 150, 300, 500 (top, middle, bot-
tom). Purely empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS estimators ξ̂⋆τ ′n
(magenta lines) and ξ

⋆
τ ′n

(blue lines), and extrapolating QB estimators ξ̃⋆τ ′n (black lines).
The versions of the extrapolating estimators based on the GPML scale and shape param-
eter estimates are referred to using solid lines, and those based on the Moment estimators
are referred to using dashed lines.
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Figure B.2: Empirical relative bias, variance and MSE (left, middle and right), multiplied
by 100, for the estimators of ξτ ′n obtained with i.i.d. observations from a power-law distri-
bution (simulation setup (ii)), τ ′n = 1−1/n and sample size n = 150, 300, 500 (top, middle,
bottom). Purely empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS estimators ξ̂⋆τ ′n
(magenta lines) and ξ

⋆
τ ′n

(blue lines), and extrapolating QB estimators ξ̃⋆τ ′n (black lines).
The versions of the extrapolating estimators based on the GPML scale and shape param-
eter estimates are referred to using solid lines, and those based on the Moment estimators
are referred to using dashed lines.
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Figure B.3: Empirical relative bias, variance and MSE (left, middle and right), multiplied
by 100, for the estimators of ξτ ′n obtained with i.i.d. observations from a GEV distribution
(simulation setup (iii)), τ ′n = 1− 1/n and sample size n = 150, 300, 500 (top, middle, bot-
tom). Purely empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS estimators ξ̂⋆τ ′n
(magenta lines) and ξ

⋆
τ ′n

(blue lines), and extrapolating QB estimators ξ̃⋆τ ′n (black lines).
The versions of the extrapolating estimators based on the GPML scale and shape param-
eter estimates are referred to using solid lines, and those based on the Moment estimators
are referred to using dashed lines.
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Figure B.4: Empirical relative bias, variance and MSE (left, middle and right), multiplied
by 100, for the estimators of ξτ ′n obtained with nonlinear AR(1) observations from a Beta
distribution (simulation setup (iv)), τ ′n = 1 − 1/n and sample size n = 150, 300, 500
(top, middle, bottom). Purely empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS

estimators ξ̂⋆τ ′n (magenta lines) and ξ
⋆
τ ′n

(blue lines), and extrapolating QB estimators ξ̃⋆τ ′n
(black lines). The versions of the extrapolating estimators based on the GPML scale and
shape parameter estimates are referred to using solid lines, and those based on the Moment
estimators are referred to using dashed lines.
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Figure B.5: Empirical relative bias, variance and MSE (left, middle and right), multiplied
by 100, for the estimators of ξτ ′n obtained with nonlinear AR(1) observations from a power-
law distribution (simulation setup (iv)), τ ′n = 1 − 1/n and sample size n = 150, 300, 500
(top, middle, bottom). Purely empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS

estimators ξ̂⋆τ ′n (magenta lines) and ξ
⋆
τ ′n

(blue lines), and extrapolating QB estimators ξ̃⋆τ ′n
(black lines). The versions of the extrapolating estimators based on the GPML scale and
shape parameter estimates are referred to using solid lines, and those based on the Moment
estimators are referred to using dashed lines.
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Figure B.6: Empirical relative bias, variance and MSE (left, middle and right), multiplied
by 100, for the estimators of ξτ ′n obtained with nonlinear AR(1) observations from a GEV
distribution (simulation setup (iv)), τ ′n = 1 − 1/n and sample size n = 150, 300, 500
(top, middle, bottom). Purely empirical estimator ξ̂τ ′n (orange line), extrapolating LAWS

estimators ξ̂⋆τ ′n (magenta lines) and ξ
⋆
τ ′n

(blue lines), and extrapolating QB estimators ξ̃⋆τ ′n
(black lines). The versions of the extrapolating estimators based on the GPML scale and
shape parameter estimates are referred to using solid lines, and those based on the Moment
estimators are referred to using dashed lines.
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