
Warning

This document is made available to the wider academic

community.

However, it is subject to the author’s copyright and therefore,

proper citation protocols must be observed.

Any plagiarism or illicit reproduction of this work could result in

criminal or civil proceedings.

Contact : portail-publi@ut-capitole.fr

Liens

Code la Propriété Intellectuelle – Articles L. 122-4 et L. 335-1 à

L. 335-10

Loi n° 92-597 du 1er juillet 1992, publiée au Journal Officiel du

2 juillet 1992

http://www.cfcopies.com/V2/leg/leg-droi.php

http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

mailto:portail-publi@ut-capitole.fr
http://www.cfcopies.com/V2/leg/leg-droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

The University neither endorses not condemns opinions expressed in this thesis.

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 1 Capitole

Cotutelle internationale:

Présentée et soutenue par

Rachael COLLEY

Le 26 juin 2023

Délégations expressives et rationnelles lors du vote

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et

Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications

Unité de recherche :

IRIT : Institut de Recherche en Informatique de Toulouse

Thèse dirigée par

Laurent PERRUSSEL et Umberto GRANDI

Jury

M. Richard BOOTH, Rapporteur

M. Bruno ESCOFFIER, Rapporteur

Mme Leila AMGOUD, Examinatrice

Mme Maria POLUKAROV, Examinatrice

M. Laurent PERRUSSEL, Directeur de thèse

M. Umberto GRANDI, Co-directeur de thèse

Rachael Colley
Expressive and Rational Delegations in Voting

Abstract

Through the digitisation of democracies, more complex voting methods increase
the frequency of decisions and expand citizen input on a wider range of topics.
As a result, digital democracy has the potential to deliver better outcomes, higher
voter turnout and more satisfied citizens. However, despite the increasing use of
artificial intelligence in daily life, trust in the digitisation of large-scale political
decisions is not uniformly embraced. Trust in the digitisation of collective decisions
is being built with the creation of new digital democracy platforms. As a result, the
public is more willing to give their opinions, albeit for decisions with low impact,
e.g., deciding on a time to meet, how a local council should spend funding and
responding to opinion polls online.

This thesis develops the theoretical research underpinning the implementation
of digital democracy, particularly models that incorporate the connections between
agents, thus furthering their ability to express their opinions and do so more ratio-
nally. Specifically, we explore models of delegative democracy and opinion diffusion
where the connections between agents represent trust and influence.

In delegative democracy models, trust is represented by one agent delegating
their vote to another, who then votes on their behalf. The most well-known models
of delegative democracy are proxy voting and liquid democracy. In the former,
voters choose which representative from a predefined set will vote on their behalf.
In the latter, the delegations can be transitive. When agents receive delegations,
they are free to vote or delegate. If they vote directly on the issue, they do so with
their own vote and any they have received via delegations. If they delegate, they
pass their vote and any received delegations to another agent.

We extend liquid democracy by studying more complex delegations and elections
with multiple interconnected issues. Here, we are interested in the properties of
our procedures that resolve delegations. In liquid democracy, we introduce a new
voting power measure, showing how an agent’s position within a social network can
impact their power in deciding an outcome. We also study liquid democracy from
a more realistic perspective, where delegations are intended to last for multiple
elections. Such models paired with a digital platform can balance the benefits and
drawbacks of direct democracy and representative democracy. Consequently, they
can directly choose the representative who will vote on their behalf and update their
representative instantly. Making delegations more rational and expressive gives the
voters even more control over how their vote should be determined, thus increasing
the representation of the model.

We also study a related model where the connections between agents represent
influence, modelling agents who can change each other’s opinions. We study an
extension of opinion diffusion where the agents’ opinions update with respect to a
Boolean function instead of a quota rule. Hence, the way in which agents’ opinions
are updated in a more fine-grained manner. We make the opinion diffusion model

ii

more expressive by connecting it to the field of Boolean networks, examining con-
vergence, maximising opinions via asynchronous updates and linking multi-agent
delegations to opinion diffusion.

This thesis contributes to a deeper understanding of digital democracy’s theoret-
ical foundations, focusing on models of delegative democracy and opinion diffusion.
In particular, we study how models of delegative democracy can be made more
expressive and rational.

Resumé

L’utilisation de la technologie permet de développer des méthodes de vote plus
complexes, d’augmenter la fréquence des décisions et d’élargir la participation des
citoyens. La démocratie numérique possède donc le potentiel de fournir de meilleurs
résultats, une participation électorale plus élevée et des citoyens plus satisfaits.
Cependant, malgré l’utilisation croissante de l’intelligence artificielle dans la vie
quotidienne, la numérisation des décisions politiques à grande échelle n’est pas
uniformément acceptée. La confiance du public dans cette numérisation se construit
à mesure que des décisions collectives sont prises à travers de nouvelles plateformes
de démocratie numérique. Par conséquent, le public est plus disposé à donner son
avis, même pour des décisions ayant peu d’impact telles que planifier un rendez-
vous, décider comment un conseil local devrait dépenser des fonds ou répondre à
des sondages en ligne.

Cette thèse développe des recherches théoriques étayant l’implémentation de la
démocratie numérique, notamment les modèles qui intègrent les connexions sociales
entre les agents permettant leur capacité de partager ses opinions d’une manière
plus expressive et rationnelle. Plus précisément, nous explorons des modèles de
démocratie délégative et de diffusion de l’opinion où la confiance et l’influence sont
représentées par les connexions entre les agents.

Dans les modèles de démocratie délégative, la confiance est représentée par la
délégation de la voix d’un agent à un autre qui votera en son nom. Les modèles de
démocratie délégative les plus connus sont le vote par procuration et la démocratie
liquide. Dans ce premier, les électeurs choisissent le représentant qui votera en
leur nom dans un ensemble prédéfini. Dans ce dernier, les délégations peuvent
être transitives : lorsqu’un agent reçoit des délégations, il est libre de voter ou de
déléguer à nouveau. S’il vote directement sur la question, il le fait avec sa propre
voix ainsi que celles qui lui ont été déléguées. S’il délègue, il transmet sa voix et les
délégations reçues à un autre agent.

L’une de mes contributions à la démocratie délégative a été d’étendre la
démocratie liquide en étudiant des délégations et des élections plus complexes avec
plusieurs questions interconnectées. En démocratie liquide, nous avons introduit
une nouvelle mesure de pouvoir qui montre comment la position d’un agent dans
un réseau social peut avoir un impact sur son pouvoir de décision. Nous étu-
dions également la démocratie liquide sous un angle plus réaliste, où les délégations
sont destinées à durer plusieurs élections. Ces modèles associés à une plateforme
numérique sont à mi-chemin entre la démocratie directe et la démocratie représen-
tative, où le choix d’un représentant peut être mis à jour instantanément et son vote
décidé directement. En rendant les délégations plus rationnelles et plus expressives,
cela permet aux électeurs de mieux contrôler la manière dont leur vote doit être
déterminé, ce qui accroît la représentativité du modèle.

Nous considérons également un modèle où les connexions entre les agents

iv

représentent l’influence sociale. Les agents peuvent ainsi changer les opinions des
autres. Ma contribution consiste à donner une extension de la diffusion d’opinion où
les opinions des agents sont mises à jour à partir d’une fonction booléenne. Nous
étendons le modèle de diffusion d’opinion en le reliant au domaine des réseaux
booléens, en examinant sa convergence, en maximisant les opinions à travers des
mises à jour asynchrones et en reliant les délégations multi-agents à la diffusion
d’opinion.

Dans l’ensemble, cette thèse contribue à une compréhension plus profonde des
fondements théoriques de la démocratie numérique, en se concentrant sur les mod-
èles de démocratie délégative et de diffusion d’opinion. Nous étudions notamment
la manière dont les modèles de diffusion de l’opinion peuvent être plus expressifs et
rationnels que dans la démocratie liquide.

Acknowledgments

This thesis was only possible with the support of many people.
I would first like to thank my supervisor, Umberto Grandi. His care, support

and patience throughout my PhD have made my time in Toulouse both formative
and enjoyable, and I couldn’t be more grateful.

Next, I thank Laurent Perrussel, Arianna Navora, my collaborators, and my
wider academic circle for their consistent encouragement and openness to teaching
me their expertise.

I am grateful to my thesis committee for giving their time to assess my work as
well as for their constructive comments, especially to my reviewers, Bruno Escoffier
and Richard Booth.

Finally, I would like to thank my friends, family and partner for their support
in my personal life (as well as a bit of proofreading!), making this thesis possible.

Contents

1 Introduction 1
1.1 Context . 5
1.2 Outline of Thesis and Contribution 8
1.3 Published Work . 10

2 Multi-Agent Ranked Delegations 13
2.1 Introduction . 13

2.1.1 Contribution . 14
2.1.2 Related Work . 15

2.2 Smart Voting . 16
2.2.1 Smart Ballots . 17
2.2.2 Language Restrictions of Smart Ballots 19

2.3 Unravelling Procedures . 23
2.3.1 Optimal Unravellings . 25
2.3.2 Greedy Unravellings . 27

2.4 Computational Complexity of Unravellings 31
2.4.1 Computational Complexity of MinSum 31
2.4.2 Computational Complexity of MinMax 36
2.4.3 Computational Complexity of the Greedy Unravellings 40

2.5 Comparing the Unravelling Procedures 41
2.5.1 Restrictions Yielding Distinct or Identical Outcomes 41
2.5.2 Participation Axioms . 43
2.5.3 Pareto Dominance and Optimality 46
2.5.4 Discussion on the Choice of Unravelling Procedure 49

2.6 Conclusion and Future Work . 50

3 Preserving Consistency in Multi-Issue Liquid Democracy 53
3.1 Introduction . 53

3.1.1 Contribution . 54
3.1.2 Related Work . 55

3.2 The Model . 55
3.3 Minimal Changes to Ballots and Votes 57
3.4 Eliciting and Applying Priorities over Issues 59

3.4.1 Complexity of PDC and PVC 61
3.4.2 Approximation Bounds . 63
3.4.3 Comparing Rules on Priorities 64

3.5 Knapsack Constraints . 65
3.6 Removing Assumptions on the Model 66

3.6.1 Allowing Cycles Among Issues 66
3.6.2 Personal Rationality Constraints 69

viii Contents

3.7 Conclusion and Future Work . 69

4 Boolean Opinion Diffusion 71
4.1 Introduction . 71

4.1.1 Contribution . 73
4.1.2 Related Work . 73

4.2 The Model . 75
4.2.1 Restricted Languages for Update Functions 77

4.3 The Complexity of Convergence . 77
4.4 Asynchronous Updates . 81
4.5 Multi-Agent Delegations as Opinion Diffusion 84

4.5.1 Control in Multi-Agent Delegation 86
4.6 Results from the Boolean Network Literature 88
4.7 Conclusion and Future Work . 89

5 Analysing Classical Liquid Democracy 91
5.1 Introduction . 91
5.2 A Priori Voting Power in Liquid Democracy 91

5.2.1 Contribution . 92
5.2.2 Related Work . 93
5.2.3 The Model . 94
5.2.4 Modelling a priori voting power 97
5.2.5 Hardness of Computation . 99

5.3 Modelling Long-Term Delegation in Liquid Democracy 102
5.3.1 Contribution . 103
5.3.2 Related Work . 103
5.3.3 The Model . 104
5.3.4 Best-Responses and Equilibrium 106
5.3.5 Best Response Protocols Returning Nash Equilibria 108
5.3.6 Using Potential Functions to Find Nash Equilibria 110

5.4 Conclusion and Future Work . 111
5.4.1 Discussion on A Priori Voting Power in Liquid Democracy . . 111
5.4.2 Discussion on Long-Term Delegations 112

6 Conclusion 113
6.1 Summary of Contributions and Discussion 113
6.2 Perspectives and Future Work . 115

6.2.1 Introducing Divisiveness Measures into Digital Platforms . . 116
6.2.2 Connecting Collective Combinatorial Optimisation Problems 117

6.3 Final Remarks . 118

Bibliography 121

Chapter 1

Introduction

Digital technology is present in almost every aspect of modern life, from socialising
to organising medical appointments to managing our finances. By incorporating
digital technology into our lives to such an extent, we have not only learnt to
trust each of its applications but to embrace them. One area of modern life in
which we have avoided digitisation, or at least been more hesitant to adapt to, is
in our collective decision-making processes [Mancini, 2014]. We see that by means
of electing public officials, many democracies have not evolved and remain in line
with the public and social infrastructure currently in place, e.g., the Westminster
system in the UK was first developed in the medieval period and has only had minor
updates since The Parliament Act 1911, itself a mild reform of the same structure
in place since 1801 [Grant, 2009]. Thus, although digital democracy could now be
easily implemented at scale, there is unease from the public and decision-makers
to digitise our large-scale collective decisions, such as national elections. Although
this aversion to digital democracy comes from many different lines of reasoning,
the unease towards its adoption often stems from a lack of trust in such systems.
For example, an absence of clear accountability of the system, suspicion in the
credibility of the outcome, and doubts in its ability to maintain the one person, one
vote principle [Rana et al., 2015].

This lack of trust is not unfounded. There have been issues in many attempted
implementations of new voting methods. For instance, an early step away from
traditional paper ballots in national elections was the introduction of mechanical
voting machines [Alvarez and Hall, 2010]. The mechanisation of the voting process
promised a more robust, accurate and straightforward counting method with less
chance of human corruption and error when counting. Nonetheless, one of the most
infamous accounts of the use of mechanical voting machines is that of the faulty
tabulation machines during the 2000 presidential elections in the USA [Mebane,
2004]. Here, the reliance on a simple device that punched a hole in a ballot led
to 50,000 unintended spoiled votes without which, Mebane [2004] has argued, the
election result may well have been different. Circumstances like this make the public
wary of changing the methods by which we make crucial decisions.

Even with such a lack of public trust, more technologically advanced solutions
are being created and implemented, and in turn, there are more issues of trust
and fairness being raised. Staying in the context of the USA, the introduction of
e-voting terminals in polling stations was coupled with concerns about their usabil-
ity, as adopting the machines could exclude portions of society or misrepresent their
views [Bederson et al., 2003]. Due to worries about these systems, there has been

2 Chapter 1. Introduction

a breadth of academic research to comprehend the impacts of their introduction.
For instance, Buldas and Mägi [2007] studied practical security measures between
different e-voting systems, which were deemed vastly different in their ability to
be secure and reliable, even though their underlying technologies were extremely
similar. Hence, the study surrounding systems that have been put into practice
needs to be comprehensive and thoroughly explore the impacts and implications
of the systems. We call this responsive research, and it reassures the public and
builds their trust in these implemented systems. Responsive research in this do-
main inspects the implementations of digital democracy systems, determining their
successes and, in the case of failures, looking to improve the systems so that their
behaviour aligns with their purposes.

Much of the research into digital democracy tools is not responsive but is instead
forward-looking. Instead of asking what are the impacts of the systems already in
place, some question how incorporating technology in collective decision-making can
revolutionise its methodology, accessibility, and its place in the broader functioning
of society. This exploratory research allows the public to see how they can benefit
from new voting systems.

These benefits could include making the voting process more flexible and prac-
tical for the voters, such as allowing online voting rather than being restricted to a
geographical location. For example, although voting to take place online in Esto-
nian elections has not drastically increased the total voter turnout, there has been
a clear increase in the percentage of voters using it [Ehin et al., 2022]. Thus, there
is a trend that voters are consistently making use of the flexibility of the system.

Another vast area of exploratory research in digital democracy tools is to the-
oretically examine voting models and their decision-making protocol from a more
structural perspective. This could mean creating and advocating for more complex
aggregation functions that, although they have beneficial properties, would require
a level of computational power that would exceed that capable by hand, especially
on a large scale.1 Some advocate further still, wanting digital democracy to be used
to test the boundaries of collective decision-making in society. A prominent propo-
nent of the reinvention of our democratic system is Mancini [2014], who argues in
favour of creating a new democratic process to match all other aspects of our now
digitised lives.

This thesis examines both this forward-looking and responsive research, study-
ing the exploration of new voting models aided in their implementation by digital
democracy tools. In particular, the thesis focuses on voting models that include
delegations. The use of delegations in voting models makes the process more repre-
sentative and gives voters more control over how their vote is determined, balancing

1For example, Tideman [1995] argued that the voting mechanism of single transferable vote
(STV) gives a more defensible outcome than the plurality rules, yet countries such as Ireland have
had problems with STV when determining the outcome by hand. In a recent election in Ireland
to select their members of the EU Parliament, the results were delayed by 28 days due to the need
to recount ballots. Following this, some, such as Doyle [2019], called for implementing e-voting
systems in future elections.

3

possible drawbacks in a less transparent and trustworthy system. Two early pro-
ponents of this are Miller [1969] and Tullock [1967], who argued for using digital
tools to realise a model of proxy voting in place of a congressional model. Here, any
voter could vote directly on a motion being passed via a computer in their home
or use the same system to choose their representative, who, in turn, would vote on
behalf of themself as well as those who chose them as a representative. Although
these representatives must be somewhat predetermined, Miller envisioned that not
only those acting as politicians would be representatives. In addition, Miller raises
questions about security in the voting process, voter fraud, and how technology
could counteract this, describing the use of a key given to each voter, allowing them
to access their ballot via their computer.

This research provides a vision to make the democratic process more engaging
and involved via the use of technology. It is now referred to by the umbrella term
of interactive democracy, to follow the terminology of Brill [2018]. In this work,
Brill [2018] creates a picture of what can be built under the remit of interactive
democracy, highlighting many disparate research directions and finding dynamic
uses for such models. Our focus on delegative democracy falls under this umbrella
term.

In models of delegative democracy, the connection between voters allows them
to rely on one another to find better outcomes. The creation of models of delega-
tive democracy is born from balancing the drawbacks of representative democracy
and direct democracy. Models of representative democracy generalise the views of
the many into a few representatives who each vote on many decisions on behalf of
their community. This can leave voters having their views under- or un-represented,
reducing the variety of opinions present in the final voter [Bogdanor, 1997]. This
is especially concerning when representatives are part of the bill creation process
[Chamberlin and Courant, 1983]. Direct democracy achieves the maximum repre-
sentation of individual opinions but requires a lot of effort from every member of a
community to be sufficiently informed on every issue being voted on, which could
leave the turnout rate of elections low if voters do not vote on issues on which they
are uninformed [Lutz, 2007]. Delegating allows voters far more choice in who rep-
resents them by creating a direct link between the voters and the representatives.
Crucially, this direct link is not guaranteed in representative democracy, wherein
voters may vote for a candidate who is ultimately not selected to be their represen-
tative. Moreover, delegations do not require voters to be informed on every issue;
instead, they can entrust certain decisions to another agent. Liquid democracy fur-
thers this still, as an agent chosen as a delegate may decide to delegate their vote
and any voters they have received to any other voter as their delegate. Without
the guarantee of your delegate voting directly, as in proxy voting, delegations are
resolved transitively. This means that a direct vote votes on behalf of those who
delegate to them both directly and indirectly through other delegators. Thus, the
interpretation of the transitive nature of delegations in liquid democracy is that if
you trust your delegate, you should also trust their choice of ballot. However, in
some cases, transitive delegations may result in delegation cycles, i.e., a path of

4 Chapter 1. Introduction

delegations which does not lead to a direct voter.
Delegative democracy has been studied from many different angles with differ-

ent techniques and purposes, but there is consistently a clear overlap in research
disciplines. Political scientists and philosophers tackle justifying delegative democ-
racy at a systemic level, examining how it could be an alternative to representative
democracy. Economists interested in the subfield of social choice theory consider
the aspects of liquid democracy surrounding the mechanism’s ability to find an out-
come that represents the collective’s preferences. Computer scientists investigate
delegative democracy from both applied and theoretical perspectives. The applied
questions focus on implementing delegative democracy while ensuring that critical
democratic principles are upheld, such as vote secrecy and security. In contrast, this
thesis is mainly concerned with theoretical questions, specifically the algorithmic
questions raised when creating delegative voting models.

This thesis contributes to the field of computational social choice [Brandt et al.,
2016]. Therefore, while our methods and techniques are drawn from theoretical
computer science, we apply them to social choice theory. Hence, we are interested
in creating algorithms to solve problems in models of delegative democracy, such
as resolving delegations. We are interested in questions such as: do the algorithms
always terminate? how quickly do they terminate? which procedure returns better
outcomes? what is a better result in this model?

From the classical models of proxy voting and liquid democracy, we are inter-
ested in broadening these models to make delegations more rational and expressive,
contributing to exploratory and responsive research.
Delegative Democracy Case Study. We exemplify this organic cycle between
responsive and exploratory research by discussing delegative democracy, where the
form of delegations in these voting models has evolved:

• an initial idea from Dodgson [1884] would allow candidates to redistribute
their vote share via delegations to other candidates in multi-winner elections;

• in models of proxy voting, voters delegate to one of the voting representatives
who vote on their behalf;

• in liquid democracy any voter can decide to vote directly on the issue or
delegate to any other agent; here the delegations are transitive and resolved
by finding a direct vote on their outgoing delegation path.

Such exploration of the possibility of delegative democracy models led to the
creation of voting platforms implementing delegations (see Paulin [2020] for an
overview). One of these platforms is LiquidFeedback [Behrens et al., 2014], a soft-
ware for digital voting via a model of liquid democracy (as well as many other
features, such as deliberation). Implementing what was only a theoretical model
has fed back into the research community in two ways. First, in exploring the ex-
tensions of liquid democracy, we can either move towards more realistic situations,
such as liquid democracy elections with multiple interconnected issues or change

1.1. Context 5

the model to benefit the voters with respect to certain norms. For instance, we can
avoid cycles [Brill et al., 2022] or remove the concentration of power [Gölz et al.,
2018]. Second, the implementation of LiquidFeedback has affected the study of
liquid democracy in that there is also responsive research based on the behaviour
exhibited on the platform. For example, the empirical analysis of the voter be-
haviour including the distribution of voting power [Kling et al., 2015] or studying
how votes can intentionally create delegation cycles (see Behrens et al. [2022] for
the inspiration for the study given in Section 5.3 of this thesis). △

This thesis is also concerned with a related model of opinion diffusion. Opin-
ion diffusion studies the impact of micro-level interactions between agents on the
macrolevel properties of the collective’s opinions. This relates to how delegations
play a role in our communities. Shapiro and Talmon [2022] advocate for a more
holistic view of the term ‘digital democracy’, arguing that it should also explore
ways of making digital society democratic, like our own societies. When consid-
ering what would make a democratic digital community, they argue that a vital
pillar would ensure that communication between the community’s personal digital
devices is possible. Thus, opinion diffusion can model forms of deliberative or del-
egative democracy where the mechanism has not been developed to incorporate it.
Shapiro [2022] argues that liquid democracy can be constitutional or grassroots,
where the delegations occur either formally inside or outside the mechanism, re-
spectively. The connection between delegations and influence was pointed out by
Christoff and Grossi [2017a]. Thus, opinion diffusion has a strong connection to
digital democracy with grassroots delegations.

1.1 Context

This section puts the contribution of this thesis into context by addressing some
of the related research areas and giving an overview of the previous work it builds
on, mainly in the field of computational social choice. We first provide an overview
of the broader research on social choice on social networks, and then we move
specifically to the context of delegative democracy. In the applications we study,
the edges in a social network represent a possible connection between agents. For
example, edges represent delegations from one agent to another, showing that the
first voter wants the second to vote on their behalf. For opinion diffusion, an edge in
a social network means that one agent can, in part, change the opinion of another.

The study of social networks in (computational) social choice has increased
as the community moves towards more realistic models. A group rarely makes
collective decisions without information about each other’s opinions, and they will
communicate during the lead-up to the decision being taken. Following the survey of
Grandi [2017], most of the related research on social networks can be split into i) the
effect of social networks on collective decisions and ii) the creation of social choice
mechanisms utilising social networks. Models of delegative democracy fall into the
second category, as the mechanism uses the social network, i.e., the delegations

6 Chapter 1. Introduction

among the agents, to find a collective decision.
We give an example to demonstrate how the inclusion of social networks has

made the study of computational social choice more realistic. Control and bribery
are well studied in computational social choice [Faliszewski and Rothe, 2016], where
control refers to some central actor having the power to alter the structure of an
election, and bribery refers to the coercion of some agents to vote or behave in a
certain way to impact the outcome. Control in district voting has been extended to
social networks by modelling the change of districts where a social network connects
voters so that geographical distance can be measured in the model [Bervoets and
Merlin, 2012]. As for bribery, one area that has benefitted from incorporating social
networks is election campaigning on graphs [Faliszewski et al., 2022]. This connects
the study of bribing agents to change their opinions, which are then diffused in the
social network and alter the election outcome. Hence, including social networks in
the study of bribery has made the research more sophisticated and closer to realistic
human interactions.

Delegative Democracy In delegative voting, an agent’s vote (or corresponding
voting power) can be passed to another voter or candidate. Dodgson [1884] was
the first to mention the introduction of delegations to the voting process. How-
ever, this was in the context of multi-winner elections, where a candidate could
strategically delegate some proportion of their votes to another candidate. The
following stream of research relating to incorporating delegations into the voting
models was the introduction of proxies. This differs from representative democracy,
where representatives are fixed, to a more flexible system where voters can choose
their representative and change it at any time [Tullock, 1967, Miller, 1969]. This
last point of changing a delegation at any time is now referred to as instant recall.
It is a central pillar in the justification for liquid democracy from political philoso-
phers and scientists [Blum and Zuber, 2016, Valsangiacomo, 2022]. Although it
is not entirely clear when research into introducing delegations into voting models
started again after a few instances in the 1960s, the notion of re-delegations was
given by Ford [2002], coining the term delegative democracy. The ability to re-
delegate a vote is one of the core principles described by Ford. This property of
re-delegation is now referred to as transitive delegations in the literature of liquid
democracy. Since the creation of liquid democracy, a lot of research stemming from
both models of proxy voting and liquid democracy has been undertaken to analyse
these models and explore extensions for various purposes. This is especially true
since the first implementations of delegations of digital democracy platforms (see
Paulin [2020] for an overview).

Much research has been conducted on models of classical liquid democracy2 and
its extensions. A central research area on classical liquid democracy has been study-

2By classical liquid democracy, we mean the model where voters can choose to vote directly
on a single issue or delegate to a voter, where delegations are transitive. We introduce this term
to avoid confusion throughout this thesis, as much of the literature refers to both classical liquid
democracy and its various extensions as liquid democracy.

1.1. Context 7

ing delegation cycles; the focus on this problem stemmed from Christoff and Grossi
[2017a] to the best of our knowledge. The initial problem of delegation cycles has led
to many more models extending classical liquid democracy by introducing more del-
egation options, either allowing agents submitting a subset of acceptable delegates
[Gölz et al., 2018, Dey et al., 2021, Markakis and Papasotiropoulos, 2021], ranked
delegations in order of importance [Kotsialou and Riley, 2020, Brill et al., 2022], or
delegations using multiple agents’ votes [Degrave, 2014]. A question which many
researchers have tried to solve is the effectiveness of models of liquid democracy
in their ability to uncover some ground truth in comparison to direct democracy
[Kahng et al., 2021, Revel et al., 2022b, Caragiannis and Micha, 2019, Armstrong
and Larson, 2021, Becker et al., 2021]. This has also been followed up with human
experiments analysing how they used delegations, for example in a company [Hardt
and Lopes, 2015]. Moreover, some have studied how accurately a group can use
delegations to uncover ground truths [Revel et al., 2022a] or if voters rely on dele-
gations over abstentions [Campbell et al., 2022]. Although many studies examining
the effectiveness of liquid democracy use direct democracy as a benchmark, Ade
et al. [2022] has studied the connection between liquid democracy and represen-
tative democracy. Revel et al. [2023] gives a more general model in which many
different methods to find representative bodies can be compared. Finally, some are
more interested in the rationality of the agents when considering delegations rather
than the effectiveness of the model itself [Bloembergen et al., 2019, Noel et al.,
2021].

There has been much theoretical work on how models of liquid democracy can be
implemented in practice. For example, in examining how vote secrecy can be upheld
in a liquid democracy platform [Nejadgholi et al., 2021], or how liquid democracy
could be implemented on a blockchain-based voting system [Anwar ul Hassan et al.,
2022].

Proxy Voting Although much attention has been focused on liquid democracy,
proxy voting has remained a central topic in delegative democracy. From the per-
spective of political scientists, proxy voting has been characterised to show its ben-
efits with respect to STV [Alger, 2006] and analysed via its axioms to justify its
ability to be representative [Green-Armytage, 2015]. Proxy voting has also been
studied in its ability to find equilibrium in the models [Cohensius et al., 2017],
be manipulated by the proxies and delegators [Bielous and Meir, 2022], quantify
how representative a model of proxy voting can be [Anshelevich et al., 2021], as
well as the a priori voting power of proxies and delegators [Colley et al., 2023a,c].
Moreover, further extensions of proxy voting have also been studied, such as the
model given by Abramowitz and Mattei [2019], where voters assign weights to their
representatives for each issue.

8 Chapter 1. Introduction

1.2 Outline of Thesis and Contribution

This thesis contributes to the field of computational social choice by expanding
upon models of collective decision-making by incorporating social networks into the
mechanism. This breaks down into two research areas, namely models of delegative
democracy and models of opinion diffusion. The majority of this thesis is dedicated
to the use of delegations in voting models. We want to create and analyse models
with expressive and rational delegations. A key contribution of this thesis is extend-
ing the notion of a delegation to be more expressive. This means that the voters
can have more freedom in how they can give their delegations, meaning that voters
can say precisely how their vote should be determined. By rational delegations,
we refer to two (connected) ideas from computational social choice. The first is a
game-theoretic sense of rationality where delegations are given in such a way that
it benefits the delegator. The second is regarding rationality constraints, ensuring
that delegations do not go against the sense of rationality provided by the setting,
such as giving consistent pairwise comparisons over alternatives or reflecting that
voters choose at least one of the options.

Chapter 2 investigates how the classic model of liquid democracy can be ex-
tended to give the agents more expressive power, and it does so in two ways. First,
agents are allowed to submit multiple ranked delegations. Thus, there are more
ways for the delegations to be resolved when their first delegation leads to problems
such as delegation cycles. The second extension allows for more complex delega-
tions to be given by the agents, thus allowing a vote of a delegating agent to be
determined by a function which uses the votes of a delegator’s delegatees. This en-
ables the agents to express how exactly their vote should be determined, with the
onus on the model creators to accommodate the delegator’s desires. From creating
this new framework, we study six algorithmic procedures to resolve the delegations.
Each of these output a collection of votes resembling a standard voting profile (i.e.,
when there is a binary decision, all agents have a vote for or against the issue).
Given that there can be obstacles in resolving delegations using every agent’s first
delegation, these procedures each aim at resolving these issues in a different man-
ner. For example, with respect to minimising the ranked delegation used globally,
via an egalitarian approach, or by iteratively adding high-priority votes. The study
of these procedures includes their computational complexity, whether they produce
Pareto-optimal outcomes and a full picture of how and when they should be chosen
for an election.

Chapter 3 addresses a different extension of classical liquid democracy. In-
stead of studying new forms of delegations, we look at generalising the classical
model to contain multiple issues. If all of these issues are independent, this model
corresponds to multiple elections using the classical liquid democracy model imple-
mented in parallel. We study liquid democracy on multiple interconnected issues
where the resolved delegations must remain consistent with some constraint repre-
senting rationality in the given setting. This builds on two existing models of liquid
democracy on multiple issues. In the first model, issues represent pairwise compar-

1.2. Outline of Thesis and Contribution 9

isons over alternatives; thus, rationality must reflect a consistent preference ordering
over the alternatives [Brill and Talmon, 2018]. The second model is a version of
liquid democracy where the issues being voted upon are projects to be funded by a
budget; here, rationality reflects that the projects the agents accept through voting
directly on them or via delegations must respect the budget constraint [Jain et al.,
2022]. Instead, we look at a model that generalises both of those previously men-
tioned in that we consider a set of any binary issues by any constraint (under a few
restrictions such that it is of a certain form to keep tractability in the procedures
that follow). Hence, we are not restricted to a specific domain. We contribute to
the literature by creating and analysing three procedures and rephrasing a fourth
procedure from the literature in our model that resolves the delegations. As resolv-
ing the delegations straightforwardly could lead to inconsistencies, each procedure
ensures that the resulting votes are consistent with the setting’s constraint. Many
procedures that resolve delegations try to do so optimally for some objective. For
example, they try to minimise the number of delegation changes to the profile in re-
solving delegation consistently. This chapter not only studies procedures looking to
minimise the number of changes to regain consistency but also provides procedures
which make changes to the delegations and votes with respect to the priorities ad-
ditionally elicited from the agents. We again study the procedures’ computational
complexity, showing that our priority procedures are polynomial-time solvable while
the optimisation procedures are intractable. We further compare these procedures,
showing that the tractable priority procedures do not approximate their intractable
counterparts well. Moreover, we compare the procedures based on how well they re-
spect the agents’ priorities over their delegations. Lastly, we return to the knapsack
voting setting to compare our procedures on budget constraints.

Chapter 4 introduces a model of opinion diffusion via Boolean networks. Here,
agents update their (binary) opinion according to a Boolean function that we as-
sume is compactly represented as a propositional formula. This is in contrast to
the classical threshold models, where opinions update depending on the proportion
of an agent’s influencers having differing opinions. Hence, our model extends the
functions updating the opinions to be more expressive. Moreover, as Boolean net-
works are a well-studied mathematical model used extensively in biology, there is a
solid foundation for analysing it through the lens of opinion diffusion. Therefore, we
focus on extending the known results from the threshold models to our new model
of Boolean opinion diffusion, where update functions are agent-specific Boolean
functions. Notably, we analyse the computational complexity of deciding if opin-
ions converge from a given initial point, the existence of an asynchronous update
that maximises the global agreement among the agents in polynomial time, and we
explore connections with delegative voting. Finally, we profit from the wealth of
research on Boolean networks in the literature as many results can be translated
into our model, therefore expanding the known results of our model.

Chapter 5 returns to classical liquid democracy and highlights two new ways
to analyse the model. The first, given in Section 5.2, recreates the well-studied
Banzhaf index in liquid democracy. This index measures the likelihood of a voter

10 Chapter 1. Introduction

changing the collective decision by changing their vote, given that the voter is in-
different among the options that they cast in their ballot. Although studied in
many different voting contexts, we adapt it to liquid democracy, where an under-
lying graph represents the possible delegations a voter can choose from. We prove
that, in general, computing the index is a #P-hard problem. The second part of
the chapter, Section 5.3, introduces a game-theoretical model that analyses liquid
democracy from a temporal viewpoint, which has often been overlooked. Here, del-
egations are not given for single use but are set up to be used multiple times over
many different issues to ensure that votes are counted when a voter cannot vote
directly. Thus, we introduce a model such that voters have some probability of
voting directly, and if not, they rely on their delegation. The main question of our
model is finding a stable profile of the voters’ delegations so that each voter is happy
with their delegation and the expected payoff this delegation will return. We give
some initial observations of the model and outline our future research directions.

Chapter 6 concludes this thesis’s main streams of research, giving possible fu-
ture directions for the study of delegations and diffusion for the broader context of
digital democracy. Moreover, we introduce two other streams of research of interest
that pertain to digital democracy. Concretely, we study the introduction of a new
aggregation method that returns a ranking of the divisive issues rather than the
collectively agreed upon issues. This new metric has already been implemented
on digital democracy platforms, giving participants a well-rounded view of the re-
sults. The second area we briefly introduce is weighted judgment aggregation as
an overarching framework that can capture many collective combinatorial optimi-
sation (CCO) problems, such as participatory budgeting or collective scheduling.
This gives weighted judgment aggregation an engineering flavour as we show the
CCO domains should be seen as sister problems and that many of their aggregation
rules are actually well-studied rules from weighted judgment aggregation.

1.3 Published Work

• Chapter 2 is based on:

Rachael Colley, Umberto Grandi, and Arianna Novaro. Smart voting. In
Twenty-Ninth International Joint Conference on Artificial Intelligence (IJ-
CAI), 2020

Rachael Colley, Umberto Grandi, and Arianna Novaro. Unravelling multi-
agent ranked delegations. Autonomous Agents and Multi-Agent Systems, 36
(1):9, 2022

• Chapter 3 is based on:

Rachael Colley and Umberto Grandi. Preserving consistency in multi-issue
liquid democracy. In Proceedings of the Thirty-First International Joint Con-
ference on Artificial Intelligence (IJCAI), 2022a

1.3. Published Work 11

• Chapter 4 is based on:
Rachael Colley and Umberto Grandi. The spread of opinions via boolean
networks. In Proceedings of the Multi-Agent Systems: Nineteenth European
Conference (EUMAS), 2022b

• Chapter 5 is split into two thematic sections. Section 5.2 is based on:
Rachael Colley, Théo Delemazure, and Hugo Gilbert. Taking delegations
seriously: Measuring a priori voting power (Extended abstract). In Proceedings
of the Twenty-Second International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2023c
Rachael Colley, Théo Delemazure, and Hugo Gilbert. Measuring a priori vot-
ing power in liquid democracy. Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence (IJCAI-23), 2023b
Section 5.3 is based on unpublished work.

• Section 6 is the conclusion and it raises other directions of work carried out
during my thesis. These are based on:
Rachael Colley, Umberto Grandi, César Hidalgo, Mariana Macedo, and Carlos
Navarrete. Measuring and controlling divisiveness in rank aggregation. In
Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI-23, 2023d
Linus Boes, Rachael Colley, Umberto Grandi, Jérôme Lang, and Arianna No-
varo. Collective discrete optimisation as judgment aggregation. arXiv preprint
arXiv:2112.00574, 2021

Chapter 2

Multi-Agent Ranked
Delegations

2.1 Introduction

This chapter explores the use of complex delegations in voting models to make the
voting process more expressive for the voters. This allows voters to decide precisely
how their vote should be determined via multi-agent ranked delegations. Multi-
agent delegations allow a single agent’s vote to be determined by the votes of a
group of agents via a delegation function. This gives the voters more flexibility as
they can rely on a group of trusted voters rather than one individual. We also allow
ballots to be more expressive by allowing ranked delegations. Ranked delegations
are useful as they will be used when a vote cannot be determined, for example,
to avoid delegation cycles. We compare classical liquid democracy and our model
in Figure 2.1. On the right-hand side of Figure 2.1, we see a profile with multi-
agent ranked delegations. Agent A gives a first delegation representing the majority
opinion of the other agents and a backup delegation to B.

We allow delegations to be general functions which take the voter’s delegates’
votes as the input to the function. For delegation functions to be as general as
possible, we model delegation functions as Boolean functions. This provides a very
flexible model, giving a general tool to the voters that they can use as much or
as little as they desire. We also study different delegation functions, for example,

A -

B -

C Yes

D No

A *

B *

C Yes

D No

maj

Liquid democracy Smart voting

Figure 2.1: A profile of binary votes in liquid democracy on the left: voter A
delegates her vote to B, who in turn delegates to C, who casts a direct vote in
favour, unlike D, who casts a direct vote against. On the right, a profile of smart
ballots: voter A wants her vote to coincide with the majority outcome of B, C, and
D’s votes, and in case this leads to a delegation cycle, she gives a single delegation
to B. Voter B delegates to D, who casts a direct vote against, while C votes in
favour. Voters A and B abstain (*) as their final backup option.

14 Chapter 2. Multi-Agent Ranked Delegations

delegations decided by a quota rule or a simple delegation to a single agent (i.e.,
classical liquid democracy). Note that both of these delegation functions can be
expressed as Boolean functions.

It should be noted that, even in the simplest model of delegative voting with
transitive delegations, it would be unreasonable to ask for delegations to be checked
and verified without the aid of computation on a large scale, especially in terms of
verifying to the voters how their vote was determined. With the promise of digital
democracy platforms, such expressive delegations seem more attainable in practice.
One direction for implementing this work comes from the idea that technology,
such as blockchain technology, could be the solution to keep elections safe from
interference in digital democracy settings. In particular, we called our model smart
voting [Colley et al., 2020] due to the connection between smart contracts and
secure, verifiable voting, as pointed out by Dhillon et al. [2019].

2.1.1 Contribution

This chapter contributes to the creation and analysis of an expressive model of
delegative democracy. In Section 2.2, we introduce our model of multi-agent ranked
delegations, which we call smart voting. Our smart ballots allow agents to be more
expressive with their delegations than in other models of delegative democracy.
Starting from these complex ballots, an unravelling procedure returns a standard
voting profile from which a collective decision is taken. We introduce six unravelling
procedures: MinSum minimises the preference levels globally used for the agents;
MinMax minimises the maximum preference level used in the unravelling; the
remaining four procedures use a greedy approach to guarantee tractability. We
then introduce two restricted languages for smart ballots on binary issues: Bool is
our general language, where delegations are arbitrary Boolean functions expressed
in complete DNF. A second language of interest is Liquid, which allows for ranked
single-agent delegations.

In Section 2.4, we prove our main results: the decision problems needed to
compute MinSum and MinMax on the Bool language are NP-complete. However,
they are polynomial-time solvable for Liquid ballots. Moreover, we prove that
our four greedy unravelling procedures always terminate on valid smart ballots in
polynomial time.

In Section 2.5, we compare our unravelling procedures, showing that all six
can give outcomes which differ from each other and the procedures from Kotsialou
and Riley [2020]. However, the four greedy procedures and MinSum coincide on
classical (unranked) liquid democracy ballots. We also study the axioms of cast-
participation, guru-participation and a notion of Pareto dominance. Finally, we
conclude in Section 2.6.

2.1. Introduction 15

2.1.2 Related Work

This section complements the introduction and related work outlined in Chapter 1
by giving an overview of the related work extending classical liquid democracy by
allowing for multi-agent or ranked delegations.

Multi-Agent Delegations Our first generalisation is to allow voters to express
delegations involving many other agents. In the same spirit, the model by Degrave
[2014] allows an agent’s delegation to be split among possibly many delegates. For
example, a voter delegating to three agents could give half their vote to one delegate
and a quarter to the other two delegates. Abramowitz and Mattei [2019] give
a similar model for proxy voting, where agents assign weights to a fixed set of
representatives for each issue: agents can thus choose to spread their vote over
many representatives.

In liquid democracy with multiple issues, some models allow delegations to
different agents. However, these models focus on one single-agent delegation per
issue. The first was on pairwise liquid democracy on ordinal elections [Brill and
Talmon, 2018], where ballots are partial rankings over alternatives which can be
completed by delegating the decision on distinct pairs of alternatives to a delegate.
Note that an agent can delegate to multiple delegates, each on a different pair of
alternatives. There have been other models of fine-grained, issue-wise delegations
to other voting domains, such as liquid knapsack voting [Jain et al., 2022], and on
binary issues connected by Boolean formulas (see Chapter 3 based on Colley and
Grandi [2022a]).

Another model in which multiple agent delegations have been studied on a single
issue is from Gölz et al. [2018]. They address the problem of a few agents holding
a lot of power by studying the fluid mechanics of liquid democracy. Their model
balances influence in a delegation graph like liquid in a vessel. Here, agents submit a
list of multiple acceptable delegates, and the mechanism balances the voting power
of the direct voters.

Ranked Delegations The second generalisation is to allow for ranked delega-
tions to avoid cycles (as in our case) or to avoid the delegation to an abstaining
agent. Ford [2002] introduces the notion of delegation chains, which we call ranked
delegations, where an agent submits an ordering of many delegates, from the most
trusted to one who still represents the agent, but less than the delegates coming
before.

The model proposed by Kotsialou and Riley [2020] includes ranked delegations
that avoid delegating to an abstaining agent and delegation cycles. They propose
two procedures, breadth-first and depth-first, which find an outcome similar to what
we suggest, yet they do not allow delegations to abstaining agents. Brill et al. [2022]
follow a similar approach and provide an axiomatic analysis of the delegation rules
that return direct votes from ranked delegations. They also perform experiments
on synthetic and real-world data.

16 Chapter 2. Multi-Agent Ranked Delegations

Kahng et al. [2018, 2021] suggest an alternative method of removing delegation
cycles by assigning a competency level to agents and forbidding them to delegate to
someone with a lower competency level than themselves. Boldi et al. [2011] propose
viscous democracy, a model of liquid democracy that can be extended to include
ranked delegations, where they use a dampening factor to ensure shorter chains
of delegations. Behrens and Swierczek [2015] propose a model of ranked liquid
democracy and seven desirable properties for a liquid democracy system, showing
that no system can satisfy all of them.

Other lines of research have used the idea of ranks over delegations without in-
corporating them into the mechanism. For example, Escoffier et al. [2019] introduce
a model with iterative delegations, where voters update their ballots iteratively, as a
best response dynamic, to find a set of delegations where no voter wants to deviate
from their ballot to receive a better ultimate delegate. Given that every voter has
a preference ordering over their ultimate delegates, they showed that, in general,
a stable Nash equilibrium does not necessarily exist. Yet, in an extension of their
work, Escoffier et al. [2020] showed that equilibria exist under certain conditions
over the voters’ preferences.

2.2 Smart Voting

We formally introduce our delegative voting model, where delegations can be ranked
and involve multiple agents. Before doing so, it is worth outlining the four main
stages of a smart voting election.

1. Each voter creates their smart ballot, which could be restricted to be of a
certain form, and sends it to the central authority;

2. The central authority then checks if the received ballots are valid and abide
by the restrictions;

3. The possibly complex ballots involving multi-agent ranked delegations then
need to be turned in the votes of the agents, i.e., by resolving or unravelling
the delegations and the potential cycles;

4. The resolved votes (all in the issue’s domain of alternatives) are then aggre-
gated to find a collective decision.

Note that a decentralised system could replace the central authority when the
election is held via smart contracts. In this case, steps 2, 3 and 4 are carried out
by each member of the decentralised system, with an additional verification step.

This work studies steps 1 to 3 of such an election, as the fourth step can be
done with the desired aggregation rule.

We let N be a set of n agents, and I is the set of issues which will be voted
on. Each issue has a set of possible choices of its outcome, called alternatives, and
we denote the domain of the alternatives for an issue i ∈ I as D(i). We mainly

2.2. Smart Voting 17

consider binary issues, either with or without abstentions, unless stated otherwise,
D(i) = {0, 1} or D(i) = {0, 1, ∗}. We consider the issues in I to be independent of
each other, and therefore, we can consider each issue in isolation. Thus, we study
the model as if there were just a single issue. Collective decisions on multiple issues
would be determined in parallel.

2.2.1 Smart Ballots

We next introduce smart ballots into the model. These ballots differ from classical
liquid democracy ballots in that they allow for ranked delegations and more complex
delegation functions possibly involving multiple agents. In the former, an ordering
of priority is given over the delegations and a lower priority delegation can be
used when the higher prioritised delegations cannot be determined, for example,
because of a delegation cycle. In the latter, delegations are no longer thought of as
passing a vote transitively between agents but rather allowing the agent’s vote to
be determined by the votes of their delegates with respect to their chosen function.
Each agent a ∈ N expresses how they want their vote to be determined on an issue
i ∈ I through a smart ballot Bai, which is defined as follows:

Definition 2.1 (Smart ballot). A smart ballot of agent a on an issue i ∈ I is an
ordering ((S1, F 1) > · · · > (Sk, F k) > x) where k ≥ 0 and for h ≤ k we have that
Sh ⊆ N is a set of agents, F h : D(i)Sh → D(i) is a resolute aggregation function
and x ∈ D(i) is an alternative.

As we focus on a single issue i ∈ I, we drop the index i from our notation due to
the independence of issues in this model. Thus, D(i) becomes D and Bai becomes
Ba.

We see that the smart ballots, as defined in Definition 2.1, give voters the ability
to prioritise their desired delegations, i.e., the k domain-function pairs (S, F), which
are followed by a direct vote in the domain of alternatives for the issue x ∈ D.
The addition of a direct vote as the final entry in the priority order ensures that
delegation cycles can always be resolved. This may seem like a large ask upon the
agent, yet this could be the status quo option in a binary vote (if one exists) or
an abstention when allowed. Observe that when k = 0, the agent has decided to
vote directly on the issue without delegating; we will refer to these agents as direct
voters.

Delegation functions F can represent many ways of delegating, such as: the
identity function representing a simple delegation; an aggregation rule such as quota
rules; or a Boolean function expressed as a formula. When F is a Boolean function,
it is built from the standard logical connectives (i.e., ¬, ∨, ∧, · · ·) and the variables
are the agents, i.e., {a | a ∈ N } which represent the vote determined for that agent.
Note that when F represents a Boolean formula φ from a pair (S, F) then S must
be such that the variables of φ are in S, i.e., V ar(φ) ⊆ S.

When computing a function F on an incomplete input, we use the notion of
necessary winners [Konczak and Lang, 2005]. For example, consider an agent a ∈ N

18 Chapter 2. Multi-Agent Ranked Delegations

having a delegation Maj(b, c, d)—i.e., the majority over the votes of b, c and d—on
a binary issue for which b and c have a direct vote for 1, while there is no vote of d

yet. We can still compute Maj(b, c, d) without the vote of d since there is already a
majority for 1.

We extend Definition 2.1 to give valid smart ballots, which now have some
additional desired properties.

Definition 2.2 (Valid smart ballot). A valid smart ballot of agent a is a smart
ballot Ba such that for all 1 ≤ s ̸= t ≤ k, we have that (i) if Ss ∩ St ̸= ∅ then F s is
not equivalent to F t, and (ii) a /∈ Ss.

Condition (i) ensures that agents cannot manipulate by submitting equivalent
formulas multiple times. We want to avoid this in order to keep the priority level
used between the agents somewhat uniform. For example, an agent cannot submit
one delegation function of a and another as a∧a, as these two functions are logically
equivalent. The second condition (ii) is that an agent cannot include themself in
the domain of the function, thus not allowing immediate delegation cycles. We now
give examples of possible smart ballots to demonstrate their range of forms:

Example 2.1. Six agents N = {a, b, c, d, e, f} face the decision of whether to order
dinner from one of two new restaurants. Let 1 denote the choice of the first restau-
rant and 0 denote the choice of the second one, and assume that agents can also
abstain, i.e., D = {1, 0, ∗}.

We now present some valid smart ballots that agent a could submit:

(i) Ba = (1)

This smart ballot represents the direct vote of a for the first restaurant.

(ii) Ba = (({b, c, d, e, f}, RMaj) > 0)

Here, agent a wants their vote to be the relative majority RMaj (i.e., plurality
between 0 and 1, with ∗ in case of a tie) of the choices of the agents b, c, d, e, f .
They will vote for the second restaurant if this first delegation of a cannot be
determined.

(iii) Ba = (({d}, id) > ({e}, id) > ∗)

Here, a’s first preference is to delegate to agent d (id indicates the identity
function); if this causes a delegation cycle, then a chooses to delegate to e;
and if this also causes a cycle, then a abstains from the vote.

Suppose now that we have a binary issue1 with domain D = {0, 1} where 1
represents ordering takeaway while 0 represents cooking at home.

1Note that in order to use Boolean functions to express a delegation, the domain of the alterna-
tives for the issue must be a Boolean algebra. We restrict this to a two-element Boolean algebra,
namely {0, 1}.

2.2. Smart Voting 19

(iv) Ba = (({b, f}, b ∨ f) > ({b, c, e}, (c ∧ b) ∨ (¬e ∧ b)) > 1)

In this case, a’s first choice is to delegate using the Boolean function b∨f , i.e.,
a will vote for takeaway if either b or f wants to; if this creates a delegation
cycle, then a will vote to try the takeaway if both b and c also want to, or b

wants to while e prefers to cook at home. If this still causes a cycle, a votes
to try the new takeaway restaurant.

(v) Ba = (({b, c, f}, Maj) > ({b, c, e}, (c ∧ b) ∨ (¬e ∧ b)) > 1)

This smart ballot differs from (iv) only in that a’s first preference is to have
their vote coincide with the majority outcome from agents b, c and f .

One can easily check that all the ballots given in Example 2.1 are valid as per
Definition 2.2. △

Each linear order of delegations (plus the backup vote) in a smart ballot indicates
a preference over possible delegations. We write Bh

a to indicate the hth preference
level given by agent a in their smart ballot Ba. Hence, we have Bh

a = (Sh
a , F h

a)
when the hth preference level is a delegation, or Bh

a = x with x ∈ D when the hth

preference level is a direct vote. In Example 2.1, e.g., B2
a = ({e}, id) for ballot (iii).

We refer to a collection of smart ballots, one per agent, as a smart profile, denoted
with B. A valid (smart) profile is a smart profile where each smart ballot is valid,
according to Definition 2.2.

2.2.2 Language Restrictions of Smart Ballots

Given our general definition of valid smart ballots, as given by Definition 2.2, we
may still want to restrict the language of delegations further for a given election. For
example, the community may want the election only to contain simple delegations
or only a maximum number of levels in the priority. Thus, we let L be a language to
restrict the form of the delegations, saying that a delegation function F belongs to
a language L if it abides by its restrictions. Let L[k] denote the language restricting
the delegations to belong to L as well as the additional constraint that ballots can
have at most k delegations in their ordering. Let L∗ denote a language L restricting
the final direct vote to be an abstention ∗ when an agent has delegations, as in ballot
(iii) in Example 2.1.

The main language we use throughout the chapter is Bool, which restricts
delegations to be expressed as Boolean functions. To do this, we introduce some
logical notions. First, restrict the formulas to be propositional formulas on a binary
domain; thus, abstentions are not allowed in this domain.2 Second, we insist that
the formulas are contingent—i.e., neither a tautology nor a contradiction— to avoid
a direct vote in disguise for the issue (in the case of a tautology) or against the issue
(in the case of a contradiction), as they would always evaluate to true (respectively,

2Note that an extension of Bool could be introduced on the domain {0, 1, ∗} in which evaluating
the delegation functions under three values has been specified properly, such that the functions are
well-defined and resolute.

20 Chapter 2. Multi-Agent Ranked Delegations

to false). Third, the formulas must be expressed in disjunctive normal form (DNF),
i.e., they are written as a disjunction of cubes, where a cube is a conjunction of
literals (and a literal is a variable or its negation). Finally, a cube C is an implicant
of formula φ if C ⊨ φ, and C a prime implicant of φ if C is an implicant of φ and
for all other C ′ ⊨ φ, we have that C ′ ⊭ C. Intuitively, prime implicants are the
minimal partial assignments to make a formula true. A complete DNF uniquely
represents a DNF listing all of its prime implicants.

Although this list of restrictions may seem hard to fulfil for human users, we
envision that the smart voting model would use a digital democracy platform. In
doing so, practitioners could create a user-friendly interface to help smart ballots
in a complex form be created. Besides, digital smart voting platforms could have a
pre-processing step which takes the ballots containing Boolean functions and turns
them into formulas in complete DNF. This could use well-known techniques such
as the consensus method or variable depletion (see the textbook by Crama and
Hammer [2011] for further details).

We now give the formal definition of Bool, the delegation language using
Boolean functions.

Definition 2.3 (Bool). A smart ballot Ba for an agent a on a binary issue is
in the language Bool if every F h

a in Ba is a contingent propositional formula in
complete DNF.

Note that Bool is very expressive and can encapsulate many other types of
delegations we are interested in. For example, simple delegations to a single agent
can be represented as an atomic variable of their delegate’s name. In Example 2.1,
ballot (v) does not belong to language Bool as B1

a = Maj is not a Boolean formula;
however, ballot (iv) belongs to Bool. Note that the formula (b ∧ c) ∨ (b ∧ ¬c) ∨ f ,
which is equivalent to the formula used at the first preference level of (iv), would
not be in Bool as it is not complete. Moreover, smart ballots (i) and (iv) in
Example 2.1 belong to the language Bool[2].

For the language Bool, we often write φlev
a instead of F lev

a .
We insist that Boolean delegation functions are in complete DNF because of

the following property: checking if there exists a necessary winner of a formula in
complete DNF can be done in polynomial time.

Proposition 2.1. Deciding if a formula in a Bool ballot has a necessary winner
on a partial truth assignment can be done in polynomial time.

Proof. Observe that the necessary winner for a formula under a partial truth assign-
ment being 1 (respectively, 0) means that the formula is true (respectively, false)
in all possible extensions of the partial assignment. We first need to prove the
following two claims under a partial truth assignment:

1. The necessary winner of a complete DNF formula is 1 if and only if every
literal of at least one cube of the formula is true.

2.2. Smart Voting 21

2. The necessary winner of a complete DNF formula is 0 if and only if every
cube of the formula is made false by at least one literal.

Both of these claims can be verified in polynomial time by reading the formula and
the partial truth assignment. Thus, if they are true, a necessary winner can be
found in polynomial time.

For the right-to-left direction of claim (1), assume that one cube of the formula
is true. As the formula is a complete DNF, each cube represents one of its prime
implicants. By definition, if a prime implicant is made true, so is the formula.

For the left-to-right direction of claim (1), assume that the complete DNF for-
mula φ is made true by some partial truth assignment X. We create a cube C from
the partial assignment, where if a variable x is true (respectively, false) in X, then
x (respectively, ¬x) is a literal in C. As C is built from a partial truth assignment
making φ true, we have that C ⊨ φ and thus C is an implicant of φ. Then, either
C is a prime implicant of φ or there exists a prime implicant C ′ of φ, such that
C ′ ⊨ C, where C ′ contains a subset of literals in C. As φ is a complete DNF, in
either case, there is a cube of φ made true by X (i.e., either C or C ′).

For the right-to-left direction of claim (2), if all cubes in the formula are made
false, then the formula is also necessarily false (i.e., the necessary winner is 0).

For the left-to-right direction of claim (2), assume that a complete DNF φ eval-
uates to false under a partial truth assignment X. Yet, assume for a contradiction
that there exists a cube C of φ that does not evaluate to false under X. As C is
not false, then either C is true under X (yielding a contradiction, as φ would be
true), or there are some variables v ∈ V ar(C) without a truth value in X and the
remaining literals are made true. We can then extend X for each such v ∈ V ar(C)
such that the literal of v in C is made true. As φ is a complete DNF, the cube C

would be true—as no cube can contain contradictions (e.g., x and ¬x). Thus, the
formula φ would be true, and we have reached a contradiction. Finally, checking
that each literal of at least one cube is true (or that every cube is made false by
at least one literal) can be done by simply inspecting the formula with the partial
truth assignment and thus in polynomial time.

A further advantage of having delegations expressed in complete DNF is that we
can check whether a ballot is valid in polynomial time, as a tautology in complete
DNF is ⊤, a contradiction is ⊥, and to check if two complete DNF formulas are
equivalent it suffices to see if the lists of their prime implicants are the same. In
previous iterations of our work on smart voting [Colley et al., 2020], we did not in-
clude this further stipulation that Bool ballots must be in complete DNF. Instead,
the validity of the ballots was studied when delegations were contingent Boolean
formulas in DNF. We prove that checking validity must be NP-complete when there
are at most k delegations on ballots with delegations built from Boolean formulas
in DNF.

Theorem 2.1. Checking if a ballot restricted to be in L[k] is valid is an NP-
complete problem, for k ≥ 1 and L[k] allows for at most k delegations which are

22 Chapter 2. Multi-Agent Ranked Delegations

contingent Boolean formulas in DNF on a binary domain.

Proof. For membership, observe that for a ballot B to be valid with respect to L,
the following properties need to be verified (for 1 ≤ h, ℓ ≤ k), that can either be
checked in polynomial time by reading B or require a (polynomial) certificate. The
properties that can be checked in polynomial time are:

• there are less than k delegations in the ballot of the form (Sh
a , φh

a);

• there is one direct vote in {0, 1} as final preference;

• each φh
a is in DNF;

• each Sh
a is such that a /∈ Sh

a ;

• and each φh
a is such that V ar(φh

a) ⊆ Sh
a ⊆ N .

For the final three properties, we have to guess certificates for:

• at most k certificates to check that each φh
a is not a tautology, we do this by

checking that ¬φh
a is satisfiable;

• at most k certificate to check that each φh
a is not a contradiction, i.e., by

checking that φh
a is satisfiable;

• at most k
2 (k − 1) certificates to check that for all φh

a and φℓ
a such that h ̸= ℓ,

φh
a and φℓ

a are not logically equivalent (i.e., ¬(φh
a ↔ φℓ

a) is satisfiable).

All this requires at most k
2 (k + 3) certificates for constant k. Thus, the problem of

checking if a ballot is valid for L[k] is in NP.
For hardness, we reduce from the NP-complete problem DNF-falsifiable,3

whose input is a formula φ in DNF. We create an instance of our problem. Let
N = V ar(φ)∪{a, b}, for fresh variables a and b, D = {0, 1} and Ba = ((N \{a}, φ∨
b) > 1). We now show that DNF-falsifiable has a positive answer if and only if
our ballot is valid for the language L[k].

Assume that φ is falsifiable. By the construction of Ba, we only need to check
that φ ∨ b is neither a contradiction nor a tautology: this follows from φ being
falsifiable and b being a fresh variable. That is, φ ∨ b can be made false when b

is false and by the truth assignment that falsifies φ (which exists by assumption).
φ ∨ b can be made true when b is true. Therefore, Ba is a valid ballot for L[k].
Next, assume that φ is not falsifiable, i.e., φ is a tautology. Thus, the delegation
φ ∨ b is also a tautology; hence, Ba is not valid. Therefore, the problem of checking
if a ballot is valid for language L[k] (where each of the delegations is a contingent
Boolean formula in DNF) is NP-complete.

3Since sat-CNF is NP-hard, by the duality principle DNF-falsifiable is also NP-hard; for
membership in NP it suffices to verify a falsifying truth assignment in polynomial time.

2.3. Unravelling Procedures 23

The previous result shows that by insisting that delegations are in complete
DNF, the complexity of checking for necessary winners and ballot validity has been
reduced to done in polynomial time. In the former case, this will become particularly
important, as in the next section, we will start defining our unravelling procedures
which resolve delegations. Here, checking for necessary winners in polynomial time
will become useful.

We next introduce a language to restrict the ballots of the agents to be in ranked
liquid democracy, where delegations must be to a single agent.

Definition 2.4 (Liquid). Smart ballot Ba for agent a belongs to Liquid if every
delegating Bh

a is of the form ({b}, id) for b ∈ N \ {a} and id the identity function.

In many models of ranked liquid democracy, such as in the models suggested by
Brill et al. [2022] and Kotsialou and Riley [2020], the final backup vote must be an
abstention. We denote this language as Liquid∗.

For instance, in Example 2.1, ballot (iii) belongs to the language Liquid∗ as
well as Liquid[2]. Note that checking if a ballot is valid for Liquid is a tractable
problem as it suffices to check that all delegation functions use id and that no one
delegates to themselves or the same agent multiple times.

2.3 Unravelling Procedures

From the definitions of the acceptable ballots in the model, we define the third step
of the election, taking the complex ballots and turning them into a profile of votes
in the domain of the issue Dn. We do this via an unravelling procedure.

Definition 2.5 (Unravelling procedure). An unravelling procedure U for the agents
in N is any computable function

U : (B1 × · · · × Bn) → Dn.

Thus, an unravelling procedure U takes a smart profile B and returns a voting
profile in Dn. When U and B are clear from context, we often write just X to
denote an outcome of an unravelling procedure: i.e., X ∈ U(B) for X ∈ Dn.

After an unravelling procedure returns a profile of direct votes, the agents may
want to know how their smart ballot was unravelled: i.e., which preference level of
their ballot was used to compute their direct vote. For this purpose, we introduce
the notion of a certificate.

Definition 2.6 (Certificate). A certificate c ∈ Nn for profile B is a vector where,
for all a ∈ N such that Ba = (B1

a > · · · > Bka
a), the entry ca ∈ [1, ka] corresponds

to a preference level for agent a.

Within the class of all possible certificates of Definition 2.6, we are interested
in those that satisfy the following property: a certificate is consistent if there is
an ordering of the agents such that each agent’s vote can be determined using the

24 Chapter 2. Multi-Agent Ranked Delegations

preference level in the certificate, given the votes of the agents that come prior in
the order.4

Definition 2.7 (Consistent certificate). Given a profile B of valid ballots, a cer-
tificate c is consistent if there exists an ordering σ : N → N of the agents which,
starting from vector X0 = {∆}n with placeholder values ∆ for all agents, iteratively
constructs an outcome vector of direct votes X ∈ Dn as follows, for σ(a) = z ∈ [1, n]:

Xz
a =

Bca
a , if Bca

a ∈ D
F ca

a (Xz−1 ↾Sca
a

), otherwise

where Xa represents a’s entry in X, we let X ↾S= Πs∈SXs, and note that F ca
a

returns the necessary winner when the input is incomplete when possible.

We let C(B) be the set of all consistent certificates of a profile B, and the ath

entry of c corresponds to Bca
a being used by the unravelling procedure. Moreover,

when certificates can determine outcomes of unravelling procedures, we use CU (B)
to denote all consistent certificates given by the unravelling procedure U . We show
next that each consistent certificate c has a unique corresponding outcome vector
Xc of direct votes.

Note that checking if a certificate is consistent can be done in polynomial time
(the proof of which can be found in the proof of Lemma 2.1).

Proposition 2.2. If a consistent certificate c can be given by two orderings σ and
σ′ of the agents (as per Definition 2.7), then the orderings yield the same outcome
Xc ∈ Dn.

Proof. Consider an arbitrary profile B and a consistent certificate c ∈ C(B). As-
sume for a contradiction that c can yield two distinct vectors of direct votes X ̸= X ′,
which are given by two orderings σ and σ′ of N , respectively. To reach a contradic-
tion, we show by induction on the ordering σ that for each agent a ∈ N , we have
Xa = X ′

a.
For the base case, consider agent a ∈ N such that σ(a) = 1. As a’s vote was

added to Xc without any other vote, ca must refer to a direct vote. Therefore, the
direct vote of a will be added to X and X ′ (although it may be that σ′(a) ̸= 1).
Thus, Xa = X ′

a.
Our inductive hypothesis assumes that for some k, for all agents b ∈ N (where

σ(b) ≤ k), it is the case that Xb = X ′
b. We show that for agent d such that σ(d) =

k+1, we have Xd = X ′
d. In case Bcd

d is a direct vote, the same reasoning applies as in
the base case. Else, by definition, we have a necessary winner for F cd

d (X ↾S
cd
d

) = Xd.
If Xd ̸= X ′

d, then F cd
d (X ↾S

cd
d

) ̸= F cd
d (X ′ ↾S

cd
d

) and X ↾S
cd
d

̸= X ′ ↾S
cd
d

. Hence, an
entry differs in the two vectors, which contradicts our inductive hypothesis. Then,
Xd = X ′

d. As Xa = X ′
a for all a ∈ N , we have that X = X ′. Hence, a consistent

certificate c gives a unique outcome Xc.
4When ballots are restricted to single-agent delegations, an unravelling procedure is a confluent

sequence rule, defined by Brill et al. [2022], if it always gives outcomes with consistent certificates.

2.3. Unravelling Procedures 25

Note that a certificate leads to a delegation cycle exactly when it is not consis-
tent, i.e., there is a cycle of dependencies when determining the votes of the agents
within the delegation cycle, and therefore, there is no possible ordering σ in which
the agents’ votes can be added.

Finally, we define the rank of a certificate c as the sum of the preference levels
used. Given profile B, the rank of a certificate c ∈ C(B) is rank(c) :=

∑
a∈N

ca. The

minimum possible value of rank for an unravelling is n, i.e., when all the agents
have their first preference level used in the unravelling. Thus, if a profile contains
a delegation cycle at the first preference level, the certificate c = (1, · · · , 1) is not
consistent.

2.3.1 Optimal Unravellings

We first inspect our optimal unravelling procedures, which find consistent certifi-
cates c that minimise some criteria. The first procedure tries to find a certificate
that minimises the total sum of the entries rank(c). The second follows an egali-
tarian approach and tries to find a certificate whose maximal entry is minimal.

Our first procedure, MinSum, is optimal with respect to the rank: it returns all
outcome vectors which can be obtained by a consistent certificate minimising the
sum of preference levels used for the agents.

Definition 2.8 (MinSum). For a given profile B, the MinSum unravelling proce-
dure is defined as:

MinSum(B) := {Xc | c ∈ arg min
c∈C(B)

rank(c)}.

Hence, MinSum returns all vectors of direct votes Xc whose consistent certifi-
cate c minimises the value of rank(c). Intuitively, more trusted agents are being
chosen as delegates by minimising the agents’ preference levels used globally. Next,
we give examples of consistent certificates and the outcomes of the MinSum proce-
dure.
Example 2.2. Consider a binary issue with domain D = {0, 1} and five agents N =
{a, b, c, d, e}, whose ballots form the profile B, shown schematically in Figure 2.2
as both a table and a delegation graph. Note that there is a cycle in the delegation
graph when considering the first preference delegations (the solid lines or B1

x). We
see that agent a needs the vote of c to compute their own vote (given that b votes
in favour), agent c delegates to d, agent d delegates to e, and agent e delegates to
a. Thus, the certificate c = (1, 1, 1, 1, 1) leads to a delegation cycle and c /∈ C(B).
As a result, a consistent certificate for this profile will have a rank of at least 6.

Consider the certificate c′ = (1, 1, 2, 1, 1), where only c has their second pref-
erence used: c′ is consistent, as shown by the ordering σ = (b, c, a, e, d). As
rank(1, 1, 2, 1, 1) = 6, the corresponding outcome Xc′ = (0, 1, 0, 0, 0) is an out-
come of MinSum(B). The consistent certificate c′′ = (1, 1, 1, 2, 1) gives Xc′′ =
(1, 1, 1, 1, 1) and as rank(c′′) = 6, it also is an outcome of MinSum(B). Since there

26 Chapter 2. Multi-Agent Ranked Delegations

B1
x B2

x B3
x

a ({b, c}, b ∧ c) ({d}, d) 1
b 1 - -
c ({d}, d) 0 -
d ({e}, e) 1 -
e ({a}, a) ({b}, b) 0

a 1

b ∧ c

c 0b 1

d 1e 0

Figure 2.2: A table and graphical depiction of the B from Example 2.2. On the
left-hand side, we have a table where each row represents the ballot for each of
the agents N = {a, b, c, d, e}, while the columns separate the different preference
levels of the agents’ ballots. On the right-hand side, we display the same profile
as a graph, where the solid lines represent first preferences and the dashed lines
represent second preferences. The final preference for a direct vote is next to the
agent’s name.

can be multiple certificates minimising the total rank (yielding distinct vectors of
direct votes X), we see that the MinSum unravelling procedure is not resolute. △

While MinSum maximises the global satisfaction of the agents, there can be
a large disparity in the selected delegation levels used from the perspective of the
individual voters. Our second optimal procedure MinMax is motivated by an
egalitarian approach, finding outcomes whose certificate minimises the maximum
delegation level used among all agents.

Definition 2.9 (MinMax). Given profile B, the MinMax unravelling procedure
returns the following vectors of direct votes:

MinMax(B) := {Xc | c ∈ arg min
c∈C(B)

max(c)}.

Example 2.3. Consider a binary issue and 26 agents N = {a, . . . , z}. Let the profile
B be such that the smart ballot of agent a is:

Ba = (N \{a},
∨
x∈

N \{a}

x) > (N \{a, b},
∨
x∈

N \{a,b}

x) > (N \{a, b, c},
∨
x∈

N \{a,b,c}

x) > 1,

and for each agent x ∈ N \ {a} let Bx = (({a}, a) > 0) be their smart ballot.
MinMax(B) returns the outcomes obtained via the following three certificates

c = (1, 2, . . . , 2), c′ = (2, . . . , 2), c′′ = (2, 1, 2, . . . , 2). Observe that max(c) =
max(c′) = max(c′′) = 2, even though rank(c) = rank(c′′) = 51 and rank(c′) = 52.
The outcome of MinSum(B) has certificate c′′′ = (4, 1, . . . , 1) and rank(c′′′) = 29;
however, this is not an outcome of MinMax, since max(c′′′) = 4. △

2.3. Unravelling Procedures 27

Algorithm 1 General unravelling procedure Unravel
1: Input: B
2: X := (∆, . . . , ∆) ▷ vector for direct votes initialised with placeholders ∆
3: while X /∈ Dn do
4: lev := 1 ▷ reset preference level counter lev to 1
5: Y := X ▷ store a copy of X to compute changes
6: while X = Y do
7: procedure Update(#) with # ∈ {U, RU, DU, DRU}
8: lev := lev + 1
9: return X ▷ output a vector of direct votes when complete

A disadvantage of MinMax is that it may return a large number of tied out-
comes for some profiles, as we shall see in the profile given in Table 2.2.

2.3.2 Greedy Unravellings

In Section 2.4, we prove that computing an outcome of MinSum and MinMax is
generally not computationally tractable. This motivates us to introduce four un-
ravelling procedures with a greedy approach. They each find consistent certificates
by using the lowest possible delegation level in the ballots while keeping the process
tractable.

Algorithm 1 outlines our general unravelling procedure Unravel. The input is
a smart profile B, and the procedure initialises a vector X with placeholders ∆ for
each agent a ∈ N . The outcome X is returned when each agent has a vote in D, i.e.,
X ∈ Dn. A counter lev is always reset to 1 to return to the first preference level of
the agents. An additional vector Y is used to help with intermediate computations.

In line 7 a subroutine using an update procedure is executed.5 Given a partial
profile of direct votes and placeholders ∆, as well as a preference level lev, the
Update procedure searches for a direct vote or a vote that can be computed via
necessary winners (depending on which Update is used) at the levth preference
level in the profile. If this is not possible, Unravel moves to level lev + 1 (line 8).

no random voter selection random voter selection
no direct vote priority U RU

direct vote priority DU DRU

The four update procedures that can be called in Algorithm 1 are defined by
the presence or absence of two properties. The first is direct vote priority (D): an
update procedure prioritises direct votes over those that can be computed from the
current vector Y of votes (i.e., votes found through delegations). The second is
random voter selection (R): an update procedure randomly selects, when possible,
a single agent whose direct or computable vote can be added to X. We thus obtain

5In the following, we simply write Unravel(#), with # ∈ {U,DU,RU,DRU}, to indicate
the Unravel algorithm using Update procedure #.

28 Chapter 2. Multi-Agent Ranked Delegations

Algorithm 2 Update(U)
1: for a ∈ N such that xa = ∆ do
2: if Blev

a ∈ D then ▷ add a’s vote if a has a direct vote at lev
3: xa := Blev

a

4: else if F lev
a (Y↾Slev

a
) ∈ D then

5: xa := F lev
a (Y↾Slev

a
) ▷ add a’s vote if a has a computable vote at lev

the following procedures: basic update (U), update with direct vote priority (DU),
update with random voter selection (RU), update with both direct vote priority
and random voter selection (DRU).

The Update(U) procedure6 in Algorithm 2 updates the vector X with the direct
votes for those agents who currently do not have one (line 1), if their preference at
lev is a direct vote (line 3) or it can be computed from the votes in Y (line 5).

Algorithm 3 Update(DU)
1: for a ∈ N such that xa = ∆ do
2: if Blev

a ∈ D then ▷ add all direct votes
3: xa := Blev

a

4: if Y = X then ▷ if no direct votes are added to X
5: for a ∈ N such that xa = ∆ do
6: if F lev

a (Y↾Slev
a

) ∈ D then ▷ find and add computable votes to X
7: xa := F lev

a (Y↾Slev
a

)

In Algorithm 3, Update(DU) first adds the direct votes from preference level
lev to X for those agents without a vote in X (line 2). If there are no direct voters
at lev (line 4), then the procedure tries to add computable votes (line 6).

Algorithm 4 Update(RU)
1: P := ∅ ▷ initialise an empty set
2: for a ∈ N such that xa = ∆ do
3: if Blev

a ∈ D or F lev
a (Y↾Slev

a
) ∈ D then

4: P := P ∪ {a} ▷ add voters to P if their vote can be determined
5: if P ̸= ∅ then ▷ there are direct or computable votes in P
6: select b from P uniformly at random
7: if Blev

b ∈ D then ▷ If the randomly chosen agent has a direct vote
8: xb := Blev

b

9: else if F lev
b (Y↾Slev

b
) ∈ D then ▷ If random agent has a computable vote

10: xb := F lev
b (Y↾Slev

b
)

The Update(RU) procedure has the random voter selection property (Algo-
rithm 4): at line 1 an empty set P is initialised to store agents with either a direct

6Unless otherwise specified, in case the condition in an if statement fails, our programs skip to
the next step. Also, recall that Y↾S denotes the restriction of vector Y to the elements in set S.

2.3. Unravelling Procedures 29

Algorithm 5 Update(DRU)
1: P, P ′ := ∅ ▷ initialise two empty sets
2: for a ∈ N such that xa = ∆ do
3: if Blev

a ∈ D then ▷ add agents with direct votes at lev to P
4: P := P ∪ {a}
5: else if F lev

a (Y ↾Slev
a

) ∈ D then ▷ add agents with computable votes at lev
to P ′

6: P ′ := P ′ ∪ {a}
7: if P ̸= ∅ then ▷ if there are agents with direct votes
8: select b from P uniformly at random
9: xb := Blev

b ▷ add only the randomly selected voter’s direct vote to X
10: else if P ′ ̸= ∅ then ▷ if there are some computable votes
11: select b from P ′ uniformly at random
12: xb := F lev

b (Y ↾Slev
b

) ▷ add only the randomly selected voter’s computable
vote to X

vote or a computable vote at lev (line 3). If the set P is non-empty, one agent is
randomly selected and their direct or computable vote is added to X.

Lastly, Algorithm 5 presents Update(DRU), which has both properties. At
lev, the procedure adds agents with direct votes to P (line 3) and agents with
computable votes to P ′. If P is non-empty, an agent is selected from P , and their
direct vote is added to X (line 9). Otherwise, if P is empty and P ′ is not, an agent
is selected from P ′ and their computable vote is added to X (line 12). If both P

and P ′ are empty, no votes are added to X and the procedure terminates.
We now give an example of the execution of these four unravelling procedures:

Example 2.4. For a binary issue with D = {0, 1} consider agents N = {a, . . . , f}. In
Figure 2.3, we show the agents’ Bool ballots and the profiles delegation structure
are represented schematically. Observe that B abides by Definition 2.2 and is thus
a valid profile. We now illustrate our four greedy unravelling procedures.

B1
x B2

x B3
x

a ({b, c, d}, (b ∧ c) ∨ (b ∧ d) ({e}, e) 1
b 1 - -
c 0 - -
d ({e}, e) 0 -
e ({f}, f) 1 -
f ({a}, a) ({b}, b) 1

f 1 a 1 e 0

(b ∧ c) ∨ (b ∧ d)b 1

c 0

d 1

Figure 2.3: Representation of the ballots (left) and the delegation structure (right)
of the agents in B from Example 2.4. In the graph on the right, a solid line indicates
the first preference for delegation, a dashed line represents the second, and the final
preference (a direct vote in {0, 1}) is written next to the agents’ names.

30 Chapter 2. Multi-Agent Ranked Delegations

Unravel(U) At lev = 1, the procedure adds the direct votes of b and c to X.
Thus, we have X = (∆, 1, 0, ∆, ∆, ∆). Then, the algorithm cannot find a direct or
computable vote at lev = 1, so it moves to lev = 2 where it uses Y to add the
direct votes of d and e, as well as f ’s vote that is computable from X by copying
b, giving X = (∆, 1, 0, 0, 1, 1). As no other update is possible at this level, the
algorithm sets lev = 1, and it computes a’s vote, yielding X = (0, 1, 0, 0, 1, 1), with
c = (1, 1, 1, 2, 2, 2).

Unravel(DU) As with Unravel(U), the direct votes of b and c are added
initially to X = (∆, 1, 0, ∆, ∆, ∆), and then the algorithm moves to lev = 2 as no
votes at lev = 1 can be added. Unlike Unravel(U), the procedure Unravel(DU)
adds only the direct votes of d and e, giving X = (∆, 1, 0, 0, 1, ∆). Returning to
lev = 1, a’s vote can be computed from the votes of b, c and d, giving X =
(0, 1, 0, 0, 1, ∆). Finally, at lev = 1 , f ’s delegation is computable (a delegation
to a) and is added to X, thus giving X = (0, 1, 0, 0, 1, 0), with certificate c =
(1, 1, 1, 2, 2, 1).

Unravel(RU) First, the direct votes of b and c are added, each in a separate
iteration, giving X = (∆, 1, 0, ∆, ∆, ∆). Then, the algorithm moves to lev = 2,
where it chooses a single vote at random to add to X from the agents d, e and f .

• If d’s direct vote was chosen, then X = (∆, 1, 0, 0, ∆, ∆). Unravel(RU) re-
turns to lev = 1 where a’s vote can be computed, giving X = (0, 1, 0, 0, ∆, ∆).
Following this, at lev = 1 the computable vote of f and then e can be added
giving X = (0, 1, 0, 0, 0, 0) with certificate c = (1, 1, 1, 2, 1, 1).

• If e’s vote was chosen, then X = (∆, 1, 0, ∆, 1, ∆). Then at lev = 1, d’s
vote can be computed from e’s, giving X = (∆, 1, 0, 1, 1, ∆). At lev = 1,
A’s computable vote can now be added and then F ’s computable vote can be
added from A’s, giving X = (1, 1, 0, 1, 1, 1) with certificate c = (1, 1, 1, 1, 2, 1).

• If the computable vote of f was added, then X = (∆, 1, 0, ∆, ∆, 1). At lev =
1, e’s vote can be computed from f ’s, and then d’s from e’s, giving X =
(∆, 1, 0, 1, 1, 1). Then, at lev = 1, a’s vote can be computed from b, c and
d’s, yielding X = (1, 1, 0, 1, 1, 1), whose certificate is c = (1, 1, 1, 1, 1, 2).

Unravel(DRU) This procedure behaves in the same manner as Unravel(RU)
in the example, with the only exception being that Unravel(DRU) chooses ran-
domly only between the direct votes of d and e at the iteration where Unravel(RU)
can also choose to select the computable delegation of agent f .

In this example, MinMax would return outcomes all certificates c where
max(c) = 2. This would include, e.g., c = (1, 1, 1, 2, 1, 1), which is also returned by
MinSum, but also c′ = (2, 1, 1, 2, 2, 2) and many more. △

2.4. Computational Complexity of Unravellings 31

2.4 Computational Complexity of Unravellings

In this section, we study the computational complexity of our unravelling pro-
cedures when focusing on our general language Bool. First, we study how
hard it is to unravel a smart profile under a given procedure. We begin with
MinSum and MinMax, showing that an associated decision problem, respectively
BoundedMinSum and BoundedMinMax, are NP-complete. However, a solu-
tion can be found in polynomial time when smart ballots are restricted to Liquid.
Unlike MinSum and MinMax, we show that our greedy procedures, Unravel(#)
with # ∈ {U, DU, RU, DRU}, always terminate in a polynomial number of time
steps.

2.4.1 Computational Complexity of MinSum

In this section, we study the computational complexity of finding MinSum outcomes
when ballots are restricted to either the Bool or Liquid language, finding the
problem to be NP-complete in the former case and tractable in the latter.

We begin by studying the decision problem BoundedMinSum rather than the
search problem of finding all solutions to MinSum.

BoundedMinSum

Given: A smart profile B, such that every ballot is valid and restricted to
be in Bool[k], and M ∈ N

Question: Does there exist a consistent certificate c that unravels B such that
rank(c) ≤ M?

Repeatedly using BoundedMinSum for different values of M gives us the
minimum value of M , which equates to the rank of the certificates found by
MinSum. A modified version of BoundedMinSum using partial certificates would
allow us to compute an outcome of MinSum. Both problems are harder than
BoundedMinSum, which we now show to be NP-complete.

Lemma 2.1. BoundedMinSum is in NP.

Proof. Recall that BoundedMinSum is defined on Bool profiles. We prove mem-
bership in NP by showing that a witness can be checked in polynomial time. Our
witness is the certificate vector c ∈ Nn, such that ci represents the preference level
of agent i ∈ N when unravelling the profile.

First, we check that c abides by Definition 2.6 and is, in fact, a certificate for
the profile: that is, for each i ∈ N , ci corresponds to a preference level in Bi. To
do this, we need to read the certificate and the profile, taking a polynomial number
of time steps. Next, we check that c is consistent with respect to Definition 2.7:
we first find the direct voters Bci

i ∈ {0, 1} from the certificate and the profile, and
we add them to a set D. We construct the outcome vector X ∈ {∆}n and append
the entry Xi = Bci

i for these direct voters, which can be done in polynomial time.

32 Chapter 2. Multi-Agent Ranked Delegations

Then, we check if any necessary winners can be computed from D: for each agent
i ∈ N \ D such that there exists a j ∈ D such that j ∈ Sci

i , we check if we can
compute a necessary winner of F ci

i given X ↾S
ci
i ∩D. If so, we add i ∈ D and

let Xi = F ci
i (X ↾S

ci
i ∩D). Since all delegation functions are in complete DNF, we

can check for a necessary winner in polynomial time by Proposition 2.1. Since at
least one agent gives a direct vote, we must check at most n − 1 agents’ delegation
functions for a necessary winner in the first round. If the certificate c is consistent,
at least one agent is added in each round. Therefore, we have to do at most∑n−1

k=1 k = (n−1)n
2 polynomial checks if, in the worst case, only a single agent is

found in each round. Finally, we check in polynomial time that
∑

i∈N ci ≤ M .
All steps can be done in polynomial time, showing that BoundedMinSum is in
NP.

We now show that BoundedMinSum is NP-hard by giving a reduction from
Feedback Vertex Set (FVS), a problem shown by Karp [1972] to be NP-complete.
The input of FVS is a directed irreflexive graph G = (V, E) and a positive integer
k,7. It asks if there is a subset X ⊆ V with |X| ≤ k such that when all vertices of
X and their adjacent edges are deleted from G, the remaining graph is cycle-free.

Lemma 2.2. BoundedMinSum is NP-hard.

Proof. Recall that BoundedMinSum is defined for the language of complete DNFs.
We prove the claim by reducing from Feedback Vertex Set (FVS). Given an instance
(G, k) of FVS, let an instance of BoundedMinSum be such that N = V , M =
|V | + k, and for each vertex-agent v ∈ V their ballot Bv is constructed as follows,
we let Ov = {u ∈ V | (v, u) ∈ E} be the set of outgoing edges of vertex v in G their
ballot is then:

Bv = (Ov,
∧

u∈Ov

u) > 1.

The first delegation of each agent v is a conjunction of positive literals (hence,
a formula in complete DNF), each representing one of the outgoing edges from v in
graph G. Then, the backup vote for 1 represents the removal of the vertex v in the
FVS problem. For the agents v ∈ V without any outgoing edges (Ov = ∅), their
ballot is Bv = 1.

To show the correctness of our reduction, we first prove the following claim: a
graph G is acyclic if and only if c = {1}n is a consistent certificate for the profile
B given by the translation above.

For the left-to-right direction, we prove the contrapositive: assume that the
certificate c = {1}n is not consistent for B. Therefore, there is no ordering of the
agents such that all their votes can be iteratively added using the previously added
votes. This means there is a delegation cycle between the formulas at the first

7The formulation by Karp [1972] is on directed graphs G which allow for reflexive edges. How-
ever, our sub-problem is also NP-complete. A reduction can be given where the constructed graph
G′ adds a dummy node a′ for each node a that had a reflexive edge in G and the edges (a, a′) and
(a′, a).

2.4. Computational Complexity of Unravellings 33

preference level of some agents in B, as at least two agents require each others’
votes to determine their own. By the construction of B, the literals in the formulas
represent the outgoing edges in G, and the graph G is not acyclic.

For the right-to-left direction, let c = {1}n be a consistent certificate for B.
First, note that all nodes in G representing non-delegating agents in B have no
outgoing edges and are not in a cycle in G. Second, for each delegating agent
v ∈ V , their first preference delegation,

∧
u∈Ov

u, can be determined. Since every
voter can only be assigned a vote of 1 (their direct vote), the truth value of the
formula

∧
u∈Ov

u can only be determined when all delegations have been resolved.
Thus, every maximal path in G starting from a node v ends in a node without any
outgoing edges (a node representing a direct voter). Therefore, G is acyclic.

We now prove the reduction using the previous claim. First, assume that a
subset X exists such that |X| ≤ k and the resulting graph has no cycles: we want
to show that rank(B) ≤ M = |V | + k. If all agents in X receive their second
preference, then all remaining agents in N \ X get their first preference. Since this
subset is acyclic, it is also consistent (given our claim above), and the addition
of direct voters does not impact the consistency of a certificate. The rank of this
unravelling is |V | + |X| ≤ |V | + k and therefore, rank(B) ≤ M = |V | + k.

Next, we show that if rank(B) ≤ M = |V | + k, a subset X exists, such that
|X| ≤ k and the remainder of G without X is cycle-free. We let c be the certificate
of unravelling B such that the rank is less than or equal to |V |+k. From c, we build
X = {u | rank(cu) = 2}. We remove the agents in X from the profile, both their
ballots and any mention of them in delegations. Since rank(B) ≤ M = |V | + k, it
must be the case that |X| ≤ k. Thus, the restriction of the certificate to v ∈ N \ X

must mean that they each have cv = 1 by the construction of the profile and X.
We can now use the claim above to state that the resulting graph with nodes V \ X

is acyclic. Therefore, BoundedMinSum is NP-hard.

Theorem 2.2. BoundedMinSum is NP-complete.

Remark 2.1. The reduction in the proof of Lemma 2.2 does not use negated literals
in the ballots. Thus, BoundedMinSum would still be NP-complete if delegations
were restricted further to contingent complete DNF formulas with only positive
literals. By similar reasoning, it would also be NP-complete if Bool was restricted
to contain only formulas built with conjunctions, i.e., cubes.

The proof of our next result uses Edmonds’ algorithm [Edmonds, 1967].8 This
algorithm finds, for a given weighted directed graph, a minimum arborescence tree,
i.e., a directed rooted tree minimising the sum of the weights of the edges in the
tree.9

Edmond’s algorithm takes as input a (pre-processed10) weighted directed graph
8Also independently suggested by Chu [1965] and Bock [1971].
9For undirected graphs, the corresponding problem is that of finding a minimum spanning tree.

10The algorithm removes all incoming edges to the root r, and in case of parallel edges (i.e.,
edges between the same nodes, in the same direction), it removes them all except the edge with
minimum weight.

34 Chapter 2. Multi-Agent Ranked Delegations

D = (V, E, w) and a root r ∈ V , where V is a set of vertices, E is a set of edges,
and w is a vector of the edges’ weights. At each step, the algorithm picks a vertex
v ∈ V \ {r} that does not yet have an incoming edge in the arborescence tree. It
selects the incoming edge of v with the minimum weight. After each edge has been
added, the algorithm checks if a cycle has formed: if that is the case, the nodes
involved in the cycle are contracted to a single node vC , creating a new directed
graph D′. The algorithm continues until the contracted graph is a directed spanning
tree. Finally, all of the contractions are expanded.

The cycles are contracted as follows: Given a set of nodes C involved in a cycle,
we let V ′ = (V \ C) ∪ {vC}, for a new node vC representing the cycle. In case there
is an edge entering the cycle but not currently involved in it, i.e., euv ∈ E for u /∈ C

and v ∈ C, we let euvC ∈ E′ be such that w(euvC) = w(euv) − w(ewv) where ewv

is the lowest weighted incoming edge of v (the weight of euvC corresponds to the
incoming weight to the cycle, minus the lowest weighted incoming weight to node
v in the cycle). In case there is an edge exiting the cycle, i.e., evu ∈ E for v ∈ C

and u /∈ C, we let evCu ∈ E′ have weight w(evCu) = w(evu). All edges whose nodes
are not involved with the cycle C, including their weights, remain unchanged.

Theorem 2.3. An outcome in MinSum(B) on a profile B in Liquid can be found
in O(n(d + n)) time, where d represents the number of delegations in B.

Proof. The idea of the proof is to create a graph on which to apply Edmonds’ algo-
rithm Edmonds [1967]. For a profile B of Liquid ballots, we construct a directed
graph D = (V, E), where V = N ∪ {r} and r is a fresh node. For the edges in E,
we let eji ∈ E if Bk

i = ({j}, j) for some k, i.e., we add an edge from j to i if i was
delegating to j at i’s kth preference level. Furthermore, we add an edge eri ∈ E for
all i ∈ N , representing the final direct vote of each voter. The weight of each edge
is always given by its preference level in the ballot: if Bk

i ∈ D then w(eri) = k, and
if Bk

i = ({j}, j) then w(eji) = k.
Edmonds’ algorithm returns the arborescence tree A = (V, E′) rooted at r in

time O(|V | × |E|), minimising its weight w(A) =
∑

eij∈E′ w(eij). By applying
Edmonds’ algorithm to the graph D above, we find an unravelling of B, whose
certificate vector c minimises rank(c). Moreover, since it returns a tree which
includes every node, there are no delegation cycles and every agent has exactly one
of their preference levels used. As a result, the arborescence tree corresponds to a
consistent certificate for unravelling the profile with a minimal rank.

Thus, we can find a solution of MinSum in O(|V | × |E|) = O((n + 1) × (d + n))
time steps, since |V | = n + 1 (all the agents plus the vertex r), and |E| = d + n,
where d represents the number of delegations in B. When simplifying the bound,
this can be done in O(n(d + n)) time steps.

We can thus find an optimal unravelling of a Liquid smart profile in a poly-
nomial number of time steps. Furthermore, as Edmonds’ algorithm is recursive,
we are guaranteed that it will terminate, giving an optimal unravelling provided
that there is some tie-breaking rule when there are many optimal unravellings. We

2.4. Computational Complexity of Unravellings 35

now illustrate in an example the application of Edmonds’ algorithm in the proof of
Theorem 2.3.
Example 2.5. Edmonds’ algorithm can be applied to a Liquid smart profile B, as
in the proof of Theorem 2.3, to get a MinSum outcome. Consider the profile B in
Table 2.1. The directed graph D = (V, E, w) has nodes V = {a, b, c, d, e, r}, edges
E = {(ra), (cb), (ab), (rb), (dc), (ec), (rc), (bd), (ed), (rd), (re)}, and weights
w(ra) = w(cb) = w(dc) = w(bd) = w(re) = 1, w(ab) = w(ec) = w(ed) = 2, and
w(rb) = w(rc) = w(rd) = 3. The graph D is shown on the left of Figure 2.4, with
solid, dashed, and dotted lines representing first, second, and third preference levels
in the ballots, respectively.

B1
x B2

x B3
x

a 1 - -
b ({c}, c) ({a}, a) ∗
c ({d}, d) ({e}, e) ∗
d ({b}, b) ({e}, e) ∗
e 0 - -

Table 2.1: The Liquid profile that is unravelled via Edmonds’ algorithm in Exam-
ple 2.5, and by the algorithm introduced in Theorem 2.5 in Example 2.7.

In Figure 2.4, we see at the bottom of D that there is a cycle among first
preference delegations of nodes b, c and d. Edmonds’ algorithm contracts this cycle
to a single vertex v, creating a second directed graph D′ = (V ′, E′, w), shown in the
centre of Figure 2.4. The nodes of D′ are V ′ = {a, v, e, r}; while for the edges E′, we
keep (ra) and (re) but we alter the edges coming into and out of the cycle. However,
note that there are only incoming edges to the cycle: (ab), (rb), (rd), (rc), (ed), (ec).
Thus, we add to E′ only edges coming into v, taking into account the lowest weighted
incoming edge to each node in the cycle.

For the edge (rb) ∈ E, we thus have an edge (rv) ∈ E′ whose weight is computed
as w(rv) = w(rb) − w(xb) where w(xb) is the weight of the lowest incoming edge of
b, e.g., (cb), which has weight w(cb) = 1. Thus, w(rv) = 3 − 1 = 2, and analogously
for (rc) and (rd). For the edge (ed) ∈ E, we have an edge (ev) ∈ E′ whose weight
is w(ev) = w(ed) − w(xd) = 2 − 1 = 1, and similarly for (ec). Finally, for (ab) ∈ E,
we have an edge (av) ∈ E′ with weight w(av) = w(ab) − w(xb) = 1.

Since there are no cycles in D′, we can find an arborescence tree of D′ rooted
at r with edges (ra), (re) and then either (av) or (ev), as they both have the lowest
weight of 1. Suppose that (av) is chosen. This represents the delegation from b to
a with weight 2. By choosing this edge, a will be followed by b in the arborescence
tree—this unravelling is shown on the right-hand side of Figure 2.4. From here, the
unravelling continues until all of the vertices in the cycle have been chosen, giving
the edges (bd) and (dc). Alternatively, the algorithm could have chosen the edges
(ec) or (ed) instead of (ab): all of these unravellings are optimal, with a total weight
of 6. △

36 Chapter 2. Multi-Agent Ranked Delegations

r ea

b d c

1 1
2

1 1

3 33 2 2

1

r ea

v

1 1
1 1

22
1

2

r
a e

b d c

1 1

2

1 1

Directed graph D Directed graph D′ Choice of edge (ab)

Figure 2.4: Three stages of unravelling the Liquid profile B from Table 2.1 by using
Edmonds’ algorithm. The directed graph D (left) represents the initial profile. In
D′ (centre), the nodes b, c and d are contracted into v, as they were in a cycle in
D. The arborescence tree (right) is the output where the edge (ab) was chosen to
break the tie, and it corresponds to an outcome of MinSum on B.

2.4.2 Computational Complexity of MinMax

We now study the computational complexity of the MinMax rule, showing that,
like MinSum, it is NP-hard for the language Bool and polynomial-time solvable
for Liquid. We begin by studying the problem BoundedMinMax.

BoundedMinMax

Given: A valid smart profile B restricted to Bool and M ∈ N
Question: Does there exist a consistent certificate c that unravels B such that

maxa∈N (c) ≤ M?

We first show membership in NP and then NP-hardness.

Lemma 2.3. BoundedMinMax is in NP.

Proof. Recall that BoundedMinMax is defined on Bool profiles. To prove mem-
bership in NP, we can check in polynomial time that a certificate vector c abides
by Definition 2.6 and is consistent, as we did for Lemma 2.1. Then, we need to
check that all entries in the certificate are less than or equal to the constant M ,
which can be done in polynomial time.

Lemma 2.4. BoundedMinMax is NP-hard.

Proof. Recall that BoundedMinMax is defined on Bool ballots, where delega-
tions are expressed in complete DNFs. We reduce from the NP-complete problem
CNF-Sat which takes as input a formula φ in CNF—i.e., a conjunction of clauses
(disjunctions of literals)—and it then asks if there exists a satisfying assignment for
φ.

For a given formula φ in CNF, let C = {c | c is a clause of φ} be a set of
variables, each c ∈ C representing one of the clauses of φ. We now construct
an instance of BoundedMinSum where M = 2 and the set of agents is N =
{x, y} ∪ C ∪ V ar(φ), with x and y being fresh variables. The ballots are defined as
follows:

2.4. Computational Complexity of Unravellings 37

• Bx = (1),

• Bv = (({x}, x) > 0) for all v ∈ V ar(φ),

• By = (({x} ∪ C, x ∧
∧

c∈C c) > (C,
∧

c∈C c) > 1),

• Bc = (({y}, y) > ({y} ∪ V ar(c), y ∨
∨

l∈c l) > 1) for all c ∈ C, where l ∈ c

represents the literal l of clause c. If c contains a variable and its negation
(i.e., c is a tautology), we remove the second-level delegation in the ballot.

Note that each delegation is a complete DNF since it is either a cube or a clause.
Moreover, note that each delegation function is a contingent formula.

First, assume that φ is satisfiable. Therefore, there exists a satisfying truth
assignment which can be given as a vector X ∈ {0, 1}|V ar(φ)|. We then build a
consistent certificate c where each agent v ∈ V ar(φ) gets their first preference
delegation cv = 1 if in the satisfying truth assignment of φ the variable v is true
Xv = 1, or their second preference cv = 2 if v is false in the truth assignment
Xv = 0. The truth assignment X makes every clause of φ true, and thus, each
c ∈ C true. Therefore, at least one literal in y ∨

∨
l∈c l is made true, making the

whole formula true. Thus, agents c ∈ C cannot receive higher than their second
preference (cc ≤ 2). Agent y can receive their first preference (cy = 1), given
that we can determine the vote of each c ∈ C. Finally, agent x receives their first
preference (cx = 1). Therefore, if φ is satisfiable, there is an unravelling such that
every agent receives at most their second preference level in the ballot.

Next, assume that φ is not satisfiable. Therefore, no truth assignment satisfies
φ. For a contradiction, we assume that there exists an unravelling with a consistent
certificate c such that max(c) ≤ 2. By constructing the profile, we see that cx = 1
and for all v ∈ V ar(φ) that cv ≤ 2, as they do not have higher than a second
preference level in their ballots. Furthermore, by assumption, it must be the case
that either cy = 1 or cy = 2. If cy = 1, then either all clauses c ∈ C evaluate to
1 or there exists a c ∈ C whose vote is 0, given that x votes for the issue (1). In
the latter case, this has to come from c’s first or second preference. It cannot be
c’s first delegation, as c’s vote determines y’s vote. Thus, the unravelling would
not be consistent. Their second preference can only be 0 if all of the literals of c

and y are false, which cannot be determined without the vote of y; thus, we have
reached a contradiction. However, if each c ∈ C has a vote of 1, this entails that
each c ∈ C can be made true (using the second preference delegation). Therefore,
φ is satisfiable, or the third preference of c ∈ C has been used. Hence, max(c) > 2
if φ is unsatisfiable, reaching a contradiction. The same reasoning holds for cy = 2.
Therefore, BoundedMinMax is NP-hard.

We now give an example of the translation given in Lemma 2.4 to exemplify the
reduction.
Example 2.6. We show the translation of the formula φ = i ∧ (j ∨ ¬k). This
translation gives the set of agents N = {x, y, i, j, k, c1, c2} with the following ballots
(depicted in Figure 2.5).

38 Chapter 2. Multi-Agent Ranked Delegations

y 1

x ∧ c1 ∧ c2

c1 ∧ c2

x 1

c2 1 c1 1 y ∨ iy ∨ j ∨ ¬k

j 0

k 0

i 0

Figure 2.5: An example of the reduction used in Lemma 2.4 from CNF-Sat on the
formula φ = i ∧ (j ∨ ¬k). This diagram depicts the agents’ ballots. In each box,
we see the agent’s name alongside their final direct backup vote. In each ellipse,
we give the multi-agent delegation function of an agent. Moreover, the solid lines
represent the first delegation, while the dashed line represents a second preference
delegation.

• Bx = 1;

• for each a ∈ {i, j, k}, Ba = x > 0;

• By = (x ∧ c1 ∧ c2) > (c1 ∧ c2) > 1;

• Bc1 = y > y ∨ i > 1;

• Bc2 = y > (y ∨ j ∨ ¬k) > 1.

△
Lemmas 2.3 and 2.4 together give us the following:

Theorem 2.4. BoundedMinMax is NP-complete.

Therefore, as our bounded decision problem is intractable for our most general
language, a natural question to ask next is whether there are restrictions on the
ballots such that MinMax can be solved in polynomial time. As with MinSum,
we show that MinMax can tractably find solutions on Liquid ballots.

Theorem 2.5. An outcome of MinMax on a profile B in Liquid can be found in
time O(n2ℓ2), where ℓ is the highest preference level of any agent in the profile.

Proof. We provide an algorithm to find a MinMax outcome by transforming the
profile B into a directed graph and then finding an arborescence tree.

We construct a directed graph G = (V, E, w) where V = N ∪ {r}, where r is
a fresh node that roots our tree. The set of edges E will reflect the single-agent
delegations as before, where each edge has a weight representing its preference level.

2.4. Computational Complexity of Unravellings 39

We iteratively build the graph with respect to the edges’ weights and check if there
is an arborescence tree at each iteration. Thus, we start with E = ∅. Starting from
lev = 1 until lev = ℓ, where ℓ is the maximum preference level given by any agent
in B, the following procedure is executed:

1. Add to the current set E an edge eij if Blev
i = ({j}, j), and an edge eri if

Blev
i ∈ D. Namely, E := E ∪ {eji | Blev

i = ({j}, j)} ∪ {eri | Blev
i ∈ D}. In

both cases, let w(eij) = w(eri) = lev;

2. Check in O(|V | + |E|) time (see, e.g., Cormen et al. [2009], pg. 606) if there
is a path from r to a via the edges in the current E, for each a ∈ N (hence,
this step has to be repeated n times, for each a ∈ N). Then, if r is connected
to all a ∈ N , exit the loop; otherwise, if there is some a ∈ N not connected
to r, let lev := lev + 1.

After the execution of this iterative procedure, we obtain a graph G where all
nodes are connected to r. To find a solution, we then find any arborescence tree
from E rooted at r in O(|V | + |E|) time [Kozen, 2012, pg. 19]. The consistent
certificate c giving an outcome of MinMax is then given by ca being the incoming
weight of a in the arborescence tree, for all a ∈ N . Intuitively, we obtain a MinMax
outcome since the root r represents direct votes. We can determine an agent’s vote
if there is a path from r to them. Since the edges are added iteratively, we know
that a path does not exist for a lower maximum preference level.

As all agents give a backup vote, eri ∈ E can be eventually added for each
i ∈ N . Thus, the algorithm always terminates. Since the loop iterates at most ℓ

times, and each time it makes n checks, each bounded by O(|V | + |E|), overall it
takes at most O(nℓ(|V | + |E|)). Since |V | = n + 1 and |E| ≤ nℓ, the time bound is
O(nℓ(n + 1 + nℓ)). In O(|V | + |E|) = O(n + 1 + nℓ) an arborescence tree is found.
Thus, a solution can be found in O((nℓ + 1)(n + 1 + nℓ)) time steps, which can be
simplified to O(n2ℓ2).

We now show an example applying the algorithm from the proof of Theorem 2.5
to find a MinMax outcome on a Liquid profile.

Example 2.7. Consider the Liquid profile in Table 2.1. To find a solution to
MinMax, we first construct the directed graph D1 = (V, E1, w), shown in Fig-
ure 2.6 (left), where V = {a, b, c, d, e, r} and E1 are the edges added when consider-
ing lev = 1. Since the nodes b, d and c are not connected to the root r in D1, we set
lev = 2 and we create the graph D2 = (V, E2, w), shown in Figure 2.6 (right). The
set E2 contains edges representing the first and second preference levels. Since in
D2, there is at least one path from r to every other node, we search for an arbores-
cence tree that represents a MinMax outcome, e.g., via a depth-first algorithm.
One such tree has edges {(ra), (re), (ab), (bd), (dc)}. △

40 Chapter 2. Multi-Agent Ranked Delegations

r ea

b d c

1 1

1 1
1

r ea

b d c

1 1
2

1 1

2 2

1
Directed graph D1 Directed graph D2

Figure 2.6: Application of the algorithm in the proof of Theorem 2.5 to the Liquid
profile B from Table 2.1. The directed graph D1 (left) shows the algorithm’s first
iteration using only the agents’ first preference levels. As there is no path from r to
every other node in D1, the algorithm moves to the second iteration, constructing
D2 (right), which shows the agents’ first and second preference levels. Since D2 is
connected, the algorithm terminates.

2.4.3 Computational Complexity of the Greedy Unravellings

We now turn to the complexity of the greedy unravelings. In this section, we
show that Unravel(#) always terminates when paired with any update procedure
∈ {U, DU, RU, DRU}, given a valid profile. Moreover, we show that they
always terminate polynomial time.

Proposition 2.3. Algorithms Unravel(#) with # ∈ {U, DU, RU, DRU} always
terminate on a valid smart profile B.

Proof. Let B be a valid smart profile for n agents. For the sake of a contradiction,
assume that Unravel(#) given in Algorithm 1 does not terminate on a valid profile
B. Hence, Unravel cannot exit the while loop from either line 6, due to no direct
votes being computable at any preference level, or from line 3, due to X /∈ Dn.

Consider a case where Unravel cannot terminate due to a cycle involving the
while loop from line 6. Let A = {a ∈ N | xa = ∆} be the set of agents whose votes
have not been computed due to a delegation cycle. As B is a valid smart profile, we
know that for all a ∈ A, Ba has a finite number of preference levels11 and the final
preference must be a direct vote. In each of the update procedures (U, DU, RU
and DRU), after a finite number of loops, we reach a direct vote of an agent in A.
Each update procedure adds at least one direct vote to the vector of direct votes
X at this point, breaking this cycle. Moreover, no procedure replaces a vote in X

with ∆ or with any value not in D.
Therefore, if the algorithm does not terminate, it must be due to the while loop

at line 3. This can only happen while X /∈ Dn. However, as we can exit the cycle
from line 6, the algorithm always changes some xa = ∆ to a vote in D. Thus, after
a finite number of iterations, X ∈ Dn and Unravel terminates.

11Recall that since both D and the possible sets of delegates are finite, and since all functions
given in an agent’s valid ballot must differ, the possible number of functions must also be finite.

2.5. Comparing the Unravelling Procedures 41

Next, we show that our unravelling procedures terminate in polynomial time
on Bool ballots. Recall that the delegations in a Bool ballot are contingent
Boolean functions φ expressed in complete DNF. Thus, the size of the input B is
in O(maxp(B) · n · maxφ(B)), where maxp(B) is the highest preference level of any
ballot in B and maxφ(B) is the maximum length of any formula in B.

Proposition 2.4. Unravel(#) for # ∈ {U, DU, RU, DRU} terminates in at
most O(n2 · maxp(B) · maxφ(B)) time steps, on a valid smart profile B in Bool.

Proof. The while loop from line 3 in Unravel (see Algorithm 1) can be repeated
at most n times (when a single vote is added to X at each iteration). Moreover,
the while loop from line 6 can be repeated at most maxp(B) times when all smart
ballots are of the same length and no vote is computable in the first maxp(B) − 1
iterations.

The following is executed at most n · maxp(B) times. Unravel(#) checks or
each agent a when xa = ∆ (at most n−1) if either Blev

a ∈ D or φlev
a has a necessary

winner (depending on the update procedure used). As each φlev
a is a complete DNF,

to verify if it has a necessary winner, we check if either (i) all literals of a cube of φlev
a

are made true by X ↾Slev
a

, or (ii) one literal in each cube is made false by X ↾Slev
a

,
returning a direct vote of 1 or 0, respectively, as described in Proposition 2.1.

The use of Unravel(#) takes at most O(n ·2 maxφ(B)) steps, which is equiva-
lent to O(n · maxφ(B)) steps. Thus, Unravel(#) with # ∈ {U, DU, RU, DRU}
yields a vector X of direct votes in O(n2 · maxp(B) · maxφ(B)) time steps.

2.5 Comparing the Unravelling Procedures

In this section, we complement the results of Section 2.4, which analysed the com-
putational complexity of our unravelling procedures by further distinguishing our
unravelling procedures. This aims to better understand when a procedure would
be preferable to another.

2.5.1 Restrictions Yielding Distinct or Identical Outcomes

We study here under which restrictions on the language of the ballots the outcomes
of our unravelling procedures coincide or differ. First, we show that all unravelling
procedures defined in Subsections 2.3.2 and 2.3.1 can give different outcomes, even
when the ballots are restricted to Liquid.

Proposition 2.5. The unravellings MinSum, MinMax, and Unravel(#), with
∈ {U, DU, RU, DRU} can give different certificates and outcomes on the same
smart profile B of Liquid ballots.

Proof. Consider the Liquid profile B for the domain D = {1, 0} and the set of
agents N = {a, b, c, d} presented in Table 2.2 (left). The outcomes of the unravel-
ling procedures and their certificates are also shown in Table 2.2 (right). We do not
show the outcomes of MinMax, as it returns all consistent certificates such that

42 Chapter 2. Multi-Agent Ranked Delegations

B1
x B2

x B3
x B4

x

a ({b}, b) ({c}, c) ({d}, d) 1
b ({a}, a) ({c}, c) 0 -
c ({a}, a) ({b}, b) 1 -
d ({a}, a) 1 - -

Procedure Outcome Certificate

U (1, 0, 1, 1) (3, 3, 3, 2)

DU (0, 0, 1, 1) (1, 3, 3, 2)

RU (1, 1, 1, 1) (3, 1, 1, 2)
(0, 0, 0, 1) (1, 3, 1, 2)
(1, 1, 1, 1) (2, 1, 3, 2)
(1, 1, 1, 1) (1, 2, 3, 2)

DRU (0, 0, 0, 1) (1, 3, 1, 2)
(1, 1, 1, 1) (2, 1, 3, 2)
(1, 1, 1, 1) (1, 2, 3, 2)

MinSum (0, 0, 0, 0) (1, 3, 1, 1)

Table 2.2: On the left, we show the profile B used in the proof of Proposition 2.5. On
the right, the table shows the outcomes and certificates of unravelling profile B with
the procedures Unravel(U), Unravel(DU), Unravel(RU), Unravel(DRU),
and MinSum.

no entry is greater than 3; e.g., it will also include the certificate c = (3, 3, 2, 2)
giving the outcome (1, 0, 0, 1). Since the latter is not an outcome of the other pro-
cedures, MinMax differs from those. Moreover, while procedures Unravel(RU)
and Unravel(DRU) give the same outcomes (1, 1, 1, 1) and (0, 0, 0, 1), they are
returned at different rates.

Given the previous result, there are restrictions on the ballots where the out-
comes of the procedures coincide. We show that the outcome is the same for all
our unravelling procedures, except for MinMax, when considering only Liquid[1]∗
ballots.

Proposition 2.6. If B ∈ Liquid[1]∗, the procedures MinSum and Unravel(#)
for # ∈ {U, DU, RU, DRU} give the same outcome X, although their certificates
may differ.

Proof. Unravel(U) and Unravel(DU) act in an identical manner for Liquid[1]∗
ballots. They first add all non-delegating agents’ votes to X. Then, they iteratively
unravel the first preference delegations of all agents not in a delegation cycle. Once
no more votes can be added from the first preference level, i.e., there are agents
in a delegation cycle, the remaining agents are assigned their second choice, an
abstention ∗.

Unravel(RU) picks one agent at a time from the first preference level who
either gives a direct vote or their delegate has a vote in X. When no more agents
are available at the first preference level, the remaining agents are in delegation
cycles. Moving to the second preference level, one of these agents is added with
an abstention. Consequently, everyone caught in this delegation cycle also receives

2.5. Comparing the Unravelling Procedures 43

abstentions from the agent who was picked at random. This is repeated until all
delegation cycles have been resolved and all agents have a vote in X.

Unravel(DRU) first adds the direct votes of the agents who do not delegate
one by one. Then, it does the same for delegating agents whose delegate already
has a vote in X. Once no more agents can be added with their first preference,
the procedure adds a single random agent with an abstention (from their second
preference). Then it continues as Unravel(RU) until all delegation cycles are
resolved.

Finally, MinSum returns all outcomes that minimise the total rank. Therefore,
all agents receive their first preference, except for a single agent from each delegation
cycle, as in the previous unravellings. Observe that on any profile B in Liquid[1]∗,
we have CMinSum(B) = CUnravel(RU)(B) = CUnravel(DRU)(B).

Remark 2.2. All our six unravelling procedures have the certificate c = {1}n on
Liquid[1]∗ profiles with no delegation cycles. However, if there are delegation
cycles, MinMax returns many outcomes—including the one whose certificate gives
all delegating agents their second preference (∗), regardless of whether they are in a
delegation cycle. Furthermore, Proposition 2.6 does not hold for Liquid[1], where
backup votes are not restricted to ∗, as the tie-breaking affects the outcome X.
Remark 2.3. The breadth-first and depth-first rules by Kotsialou and Riley [2020]
differ from all six of our unravellings. Consider N = {a, b, c}, an issue with domain
D = {1, 0, ∗}, and agents’ ballots as follows: Ba = (({b}, b) > ({c}, c) > ∗), Bb =
(∗), and Bc = (1). Our six unravelling procedures would return the outcome (∗, ∗, 1)
with certificate c = (1, 1, 1), whereas the breadth-first and depth-first procedures
would return the outcome (1, ∗, 1) with certificate c = (2, 1, 1).

Next, we inspect the connection between our two procedures with the random
voter selection property. We show that all possible outcomes of Unravel(DRU)
are also possible outcomes of Unravel(RU), as the set of certificates of the former
is a subset of the set of certificates of the latter.

Proposition 2.7. The set of consistent certificates of unravelling B us-
ing Unravel(DRU) are also consistent certificates of Unravel(RU),
CUnravel(RU)(B) ⊆ CUnravel(DRU)(B) for any valid smart profile B.

Proof. At any iteration of Unravel(RU), there is a random choice between agents,
including direct voters. If there are direct voters, Unravel(DRU) has a subset of
the choices of Unravel(RU) (and hence the potential outcomes and certificates).
If there are no direct voters at an iteration, the potential delegation chosen at this
step is the same for Unravel(RU) and Unravel(DRU). Thus, all certificates of
Unravel(DRU) are also certificates of Unravel(RU).

2.5.2 Participation Axioms

In this subsection, we study two properties of resolute unravelling procedures, fo-
cusing on a binary domain with abstentions D = {0, 1, ∗}. Both properties were

44 Chapter 2. Multi-Agent Ranked Delegations

proposed by Kotsialou and Riley [2020] and focus on a voter’s incentive to partic-
ipate in the election, either by voting directly or by delegating, in line with the
classical participation axiom from social choice (see, e.g., Moulin [1988]).

We assume that an agent a expressing a direct vote for x ∈ {0, 1} prefers the
outcome x over both 1 − x and an abstention. We denote this by x >a 1 − x and
x >a ∗, respectively. Furthermore, we focus on resolute rules to directly compare
the breadth-first and depth-first procedures to our own, as the participation axioms
were originally constructed to study these procedures.

First, we distinguish between the unravelling procedures being resolute, as our
greedy procedures, or irresolute, as our optimal procedures. A unique outcome
is returned by the former, and by the latter, possibly many tied outcomes are
returned. Although throughout the paper we present all outcomes of the greedy
procedures with random voter selection RU and DRU (see, e.g., the outcomes
displayed in Table 2.2), these procedures are resolute as defined in Algorithms 4
and 5, respectively.

Definition 2.10 (Cast-Participation). A resolute voting rule r and a resolute un-
ravelling procedure U satisfy cast-participation if for any valid smart profile B and
any agent a ∈ N such that Ba ∈ D \ {∗} we have that for any B′

a ̸= Ba that

r(U(B)) ≥a r(U(B−a, B′
a))

where B−a is equal to B without a’s ballot. We require the inequality to hold for
any possible outcome of U for randomised procedures.

Cast-participation implies that agents who vote directly are incentivised to do
so rather than express any other ballot. In order to prove if a pair of an unravelling
procedure and an aggregation rule satisfies such a participation axiom, we need
some further notation. Let the set of voters influenced by a voter a in a profile B

using a resolute deterministic unravelling procedure U be IU (B, a) = {b | a ∈ Sk
b

for U(B) = Xc with c ∈ C(B) and cb = k}. Further, let IU
∗ (B, a) = IU (B, a) ∪ {c |

c ∈ IU (B, b)∧b ∈ IU (B, a)}∪. . . be the voters who are influenced by a both directly
and indirectly.

Given the domain D = {0, 1, ∗}, we consider two rules. The majority rule
(Maj) returns the alternative from the domain that has more than n/2 votes for it,
and ∗ otherwise. The relative majority rule (RMaj) returns the plurality outcome
in D \ {∗}, and if there is a tie, it returns ∗. A voting rule r on the domain
{0, 1, ∗}n satisfies monotonicity if for any profile X if r(X) = x with x ∈ {0, 1}
then r(X+x) = x, where X+x is obtained from X by making one voter switch from
either an initial vote of 1 − x to either x or ∗, or from an initial vote of ∗ to x.
Observe that both Maj and RMaj satisfy monotonicity. Due to this definition, we
can now show the following:12

12Note that Definition 2.10 slightly differs from the one given in previous work Colley et al.
[2020], and thus Theorem 2.6 does not hold for RU or DRU: a counterexample can be constructed
exploiting the fact that an agent may prefer the outcome of one random iteration of the procedure
to another.

2.5. Comparing the Unravelling Procedures 45

Theorem 2.6. Any monotonic rule r with Unravel(#) for # ∈ {U, DU} satisfies
cast-participation for Liquid∗ with domain D = {0, 1, ∗}.

Proof. Without loss of generality, assume that for agent a ∈ N , we have Ba = (1).
To falsify cast-participation, we need to find a profile B with r(Unravel(#)(B)) =
0 or ∗, and a ballot B′

a such that r(Unravel(#)(B−a, B′
a)) = 1, for # ∈ {U, DU}.

First, observe that all voters c ∈ I#
∗ (B, a) vote for 1 in B, since the language

is restricted to single-agent delegations. Now, if B′
a = 0 or ∗ (or they delegate to

some agent who is assigned these votes), then by monotonicity, the result of B′ will
remain as 0 or ∗. Moreover, all c ̸∈ I#

∗ (B, a) do not change their vote from B to
B′, whether B′

a is a direct vote or a possibly ranked delegation. Therefore, the final
votes of B′ can be obtained from those of B by switching 1s to 0s or ∗s. Thus, this
contradicts the monotonicity assumption of rule r.

Remark 2.4. Theorem 2.6 does not hold for Bool ballots. Consider the counterex-
ample with agents N = {a, b, c} voting on an issue with domain D = {0, 1} having
ballots Ba = (1), Bb = (({a}, ¬a) > 0) and Bc = (({a}, ¬a) > 0). Our greedy
unravellings would return the outcome Maj(1, 0, 0) = 0. However, if B′

a = 0 then
Maj(0, 1, 1) = 1. Thus, agent a strictly prefers to submit a ballot that is not a
direct vote for their preferred alternative.

We now focus on the incentive a voter has to receive and accept delegations,
building on the definition of the guru-participation property from Kotsialou and
Riley [2020].

Definition 2.11 (Guru-participation). A voting rule r and a resolute unravelling
procedure U satisfy guru-participation if and only if for all profiles B and all agents
a ∈ N such that Ba = (x) with x ∈ D \ {∗} we have that for any b ∈ I#

∗ (B, a)

r(U(B)) ≥a r(U(B−b, (∗)))

where B−b is B without b’s ballot. We require the inequality to hold for any
possible outcome of U for randomised procedures.

All four greedy unravellings do not satisfy this property when considering the
final aggregation rule RMaj.

Theorem 2.7. RMaj and Unravel(#) for # ∈ {U, DU, RU, DRU} do not
satisfy guru-participation for Liquid∗ with domain D = {0, 1, ∗}.

Proof. Consider a smart profile B, as shown on the left-hand-side of Table 2.3, and
profile B′ = (B−b, (∗)) obtained from B by switching b’s vote to B′

b = (∗). The
outcomes of the four procedures are shown on the right-hand side of Table 2.3.

By applying Unravel(U) and Unravel(DU), agent a prefers the outcome of
B′ to that of B, since RMaj(X1) = ∗ and RMaj(X2) = 1. The outcome of B′ when
considering Unravel(RU) and Unravel(DRU) is RMaj(X2) = 1. However, the
outcome of B can be either RMaj(X4) = RMaj(X5) = 0 or RMaj(X3) = 1. Hence,

46 Chapter 2. Multi-Agent Ranked Delegations

B1
x B2

x B3
x

a 1 - -
b ({c}, id) ({a}, id) ∗
c ({d}, id) ({f}, id) ∗
d ({b}, id) ({f}, id) ∗
e 1 - -
f 0 - -

B B′

U/ X1 = (1, 1, 0, 0, 1, 0) X2 = (1, ∗, ∗, ∗, 1, 0)
DU

RU/ X3 = (1, 1, 1, 1, 1, 0) X2 = (1, ∗, ∗, ∗, 1, 0)
DRU X4 = (1, 0, 0, 0, 1, 0)

X5 = (1, 0, 0, 0, 1, 0)

Table 2.3: A Liquid∗ profile B (on the left) and the outcomes of
Unravel(U), Unravel(DU), Unravel(RU) and Unravel(DRU) on the pro-
files B and B′ (on the right), where B′ = (B−b, (∗)) is obtained from B by switch-
ing b’s vote to B′

b = (∗).

when the random choice of RU or DRU leads to X4 or X5, agent a strictly prefers
the outcome RMaj(X2) to the outcome RMaj(X4) and RMaj(X5). Therefore, the
inequality does not hold for any outcome of the randomised procedures.

2.5.3 Pareto Dominance and Optimality

We now focus on comparing the outcomes of our unravelling procedures in terms
of Pareto dominance and Pareto optimality. We show that none of our procedures
Pareto dominate another on all profiles. However, we prove that all outcomes of
MinSum are Pareto optimal with respect to all outcomes with consistent certifi-
cates.

A certificate c weakly Pareto dominates another certificate c′ if for every i ∈ N ,
we have that ci ≤ c′

i. We say that the unravelling procedure U weakly Pareto
dominates another unravelling procedure U ′ if for any valid profile B, all (pos-
sible) certificates c corresponding to outcomes of U(B) weakly Pareto dominate
all the (possible) certificates c corresponding to the outcomes of U ′(B). Note
that the possibility of multiple certificates arises not only for irresolute procedures
but also from different executions of the random procedures Unravel(RU) and
Unravel(DRU).
Example 2.8. Consider the example given in Table 2.2. The certificate of the out-
come of Unravel(U) is cU = (3, 3, 3, 2), and that of the outcome of Unravel(DU)
is cDU = (1, 3, 3, 2). Thus, since cDU weakly Pareto dominates cU, given that each
entry of cDU is less than or equal to the corresponding entry in cU. Moreover,
since there is an outcome of Unravel(RU) with certificate cRU = (3, 1, 1, 2), nei-
ther cDU weakly Pareto dominates cRU (as cDU

a < cRU
a for the first agent a) nor

vice-versa (as cDU
b > cRU

b for the second agent b). △
We now give an example that shows when an unravelling procedure is weakly

dominated by another.
Example 2.9. Consider the unravelling procedure Ud that returns every voter’s final
backup direct vote. Thus, Ud(B) returns the outcome with certificate cd, wherein

2.5. Comparing the Unravelling Procedures 47

cd
i is maximal for each i ∈ N . Each of our six unravelling procedures weakly Pareto

dominates Ud, as they always produce a consistent certificate, which cannot have a
higher entry than cd

i , for each agent i ∈ N . △

When comparing our greedy procedures, one might think that the pro-
cedure with the additional properties (R and D) should be chosen over
those without. However, the following example provides a profile where
Unravel(DU), Unravel(RU) and Unravel(DRU) do not weakly Pareto dom-
inate Unravel(U), and thus, they do not weakly Pareto dominate Unravel(U)
in general.

B1
x B2

x B3
x

a ({b, e}, b ∨ e) ({c, e}, c ∨ e) 0
b ({c, e}, c ∨ e) ({a, e}, a ∨ e) 0
c ({a, e}, a ∨ e) ({b, e}, b ∨ e) 0
d 1 - -
e ({f}, f) ({d}, d) 0
f ({e}, e) 0 -

Table 2.4: A profile B showing that Unravel(U) is not dominated in general by
Unravel(DU), Unravel(RU) or Unravel(DRU).

Example 2.10. Take agents N = {a, b, c, d, e, f}, whose ballots are shown in Ta-
ble 2.4. On this profile, Unravel(U) gives the outcome Xc = (1, 1, 1, 1, 1, 0),
where c = (1, 1, 1, 1, 2, 2) and Unravel(DU) gives Xc′ = (0, 0, 0, 1, 0, 0), with cer-
tificate c′ = (3, 3, 3, 1, 1, 2). Thus, c does not weakly Pareto dominate c′ as agent
e’s entries in the certificates are such that ce < c′

e. It is also not the case that c′

weakly Pareto dominates c as for some agents, for example, agent a, we have that
ca > c′

a. Hence, Unravel(DU) does not weakly Pareto dominate Unravel(U) or
vice-versa.

Furthermore, a possible outcome of Unravel(RU) is Xc′′ = (0, 0, 0, 1, 0, 0)
where c′′ = (3, 1, 1, 1, 1, 2)—the random choices pick f first and then a. Again,
c′′ does not weakly Pareto dominate c, as ca > c′′

a. Therefore, Unravel(RU)
does not weakly Pareto dominate Unravel(U), and as Xc′′ is also an out-
come of Unravel(DRU), Unravel(DRU) does not weakly Pareto dominate
Unravel(U) as well. △

Proposition 2.8. None of the four greedy unravelling procedures Unravel(#) for
∈ {U, DU, RU, DRU} weakly Pareto dominates another greedy procedure.

Proof. Example 2.10 shows that Unravel(U) is not weakly Pareto dominated by
Unravel(#) for # ∈ {DU, RU, DRU}. Then, in Table 2.2 the outcome of
Unravel(U) is weakly Pareto dominated by the outcomes of Unravel(#) for
∈ {DU, RU, DRU} and therefore, Unravel(U) does not weakly Pareto domi-
nate the other greedy procedures.

48 Chapter 2. Multi-Agent Ranked Delegations

From Table 2.2, we can also conclude that Unravel(DRU) does not weakly
Pareto dominate Unravel(DU), and vice-versa. The outcome of Unravel(DRU)
with certificate c = (2, 1, 3, 2) does not weakly Pareto dominate the outcome of
Unravel(DU), having certificate c′ = (1, 3, 3, 2), as ca > c′

a. For the other
direction, as c′

b > cb Unravel(DU) does not always weakly Pareto dominate
Unravel(DRU). Since the outcome with c = (2, 1, 3, 2) is also possible for
Unravel(RU), Unravel(RU) is not guaranteed to weakly Pareto dominate
Unravel(DU) and vice-versa.

Finally, Unravel(DRU) and Unravel(RU) do not weakly Pareto dominate
one another as the certificates of the former are a subset of the latter (Proposi-
tion 2.7).

For irresolute procedures, by checking whether an unravelling procedure on
any profile always has an outcome whose certificate weakly Pareto dominates the
certificates of all the outcomes of another procedure, we find the following negative
results:

• The certificates c = (4, 1, . . . , 1) of MinSum and c′ = (1, 2, . . . , 2) of MinMax
from Example 2.3 shows that neither c weakly Pareto dominates c′ nor vice-
versa. Therefore, neither MinMax nor MinSum dominates the other.

• From Table 2.2, we see that Unravel(U) does not weakly Pareto dominate
MinSum or MinMax in general. From Example 2.3 we see that MinSum
does not weakly Pareto dominate Unravel(U) in general.

Finally, we introduce the notion of Pareto optimality, which defines all those
consistent certificates that are not Pareto dominated by any other consistent cer-
tificate.

Definition 2.12. A consistent certificate c of B is Pareto optimal with respect to
all of the consistent certificates C(B) if there exists no c′ ∈ C(B) with c′ ̸= c, such
that c′ weakly Pareto dominates c.

The following proposition corresponds to the well-known fact that maximising
the average of a vector leads to a Pareto optimal vector, but not vice-versa.

Proposition 2.9. The certificate c for any outcome Xc ∈ MinSum(B) is Pareto
optimal for C(B), for any valid profile B.

Proof. Take an arbitrary valid smart profile B, and arbitrary Xc ∈ MinSum(B).
For the sake of a contradiction, assume that c is not Pareto optimal for C(B).
Hence, there exists a c′ ∈ C(B) \ {c} such that c′ weakly Pareto dominates c.
Therefore, for all i ∈ N , we get c′

i ≤ ci, which gives us that
∑

i∈N
c′

i ≤
∑

i∈N
ci.

Furthermore, since c ̸= c′ and c′ weakly Pareto dominates c, there exists an agent
j ∈ N such that c′

j < cj , and thus
∑

i∈N
c′

i <
∑

i∈N
ci. Since

∑
i∈N

ci is not minimal, we

have Xc /∈ MinSum(B), and we have reached a contradiction.

2.5. Comparing the Unravelling Procedures 49

The opposite direction of Proposition 2.9 does not hold. In Example 2.3, the
MinSum procedure does not return the Pareto optimal certificate c = (1, 2, . . . , 2).
Moreover, the other unravelling procedures are not guaranteed to produce outcomes
with Pareto optimal certificates, as there exist outcomes of each of them whose
certificates are weakly Pareto dominated by some other consistent certificate, as
seen in previous examples.

2.5.4 Discussion on the Choice of Unravelling Procedure

In this chapter, we have provided six unravelling procedures and have given results
that should guide a user of this model as to which procedure to choose. In what
follows, we provide a summary and a discussion of these results.

The main distinction between the optimal and greedy procedures is that finding
an outcome with a greedy procedure is a tractable problem, whereas even checking
if an outcome of an optimal procedure exists under a given bound on the opti-
mised score is an NP-complete problem for the general language Bool (where
the delegations are contingent formulas expressed in complete DNF). Although we
acknowledge that the improvements in the performance of Sat-solvers make the
intractability BoundedMinMax and BoundedMinSum less concerning, the as-
sociated search problem of computing the outcomes of the unravelling remains, in
principle, even harder. Moreover, if the model were to be used on a large scale, then
even the use of efficient Sat-solvers may not be efficient enough when the input size
of the problem is large, i.e., the profile size increases with the number of agents.
Hence, the greedy procedures are desirable when tractability is key.

Proposition 2.9 shows that the certificates of the outcomes of MinSum are
Pareto optimal and thus are never dominated by outcomes found by a consistent
certificate. In contrast, MinMax cannot make this guarantee. Although MinMax
may return outcomes that are not Pareto optimal, it can provide more egalitarian
outcomes. In Example 2.3, the outcome with the lowest rank relies on the fourth
preference of agent a being chosen: while it is still a trusted delegate, the agent
may be less confident in them than in their three previous delegations.

Furthermore, as MinSum and MinMax are irresolute, they would have to be
paired with a tie-breaking mechanism to select a single outcome from the possibly
many that they produce. In contrast, the greedy procedures are not only, in general,
quicker than the optimal procedures, but they are also resolute.

With profiles of Liquid[1]∗ ballots, MinSum and the greedy procedures return
the same outcome vector, and therefore, they can be used interchangeably. For
profiles of Liquid ballots, there should be a preference for MinSum or MinMax,
since an outcome can be found in polynomial time (Theorems 2.3 and 2.5). The
choice between these two procedures should be determined by whether the situation
would benefit more from Pareto optimality or egalitarian properties. However,
these procedures rely on tie-breaking, which could bring up issues of fairness in the
certificates.

As the participation axioms do not differentiate the greedy procedures, the

50 Chapter 2. Multi-Agent Ranked Delegations

properties they are defined on (i.e., direct vote priority and random voter selection)
are the clearest way to compare them. Random voter selection should be used when
a lottery is acceptable, yet it should be avoided when it would be unfair to give a
worse preference level to just some agents. Direct vote priority should be used when
a direct vote from an agent is preferred to a delegation, perhaps in situations that
could benefit from a level of expertise on the issue, and to ensure shorter delegation
chains.

Given the above discussion, one may think that Unravel(DRU) gives the best
outcomes overall. However, we have proved that no greedy procedure is guaran-
teed to Pareto dominate another (Proposition 2.8). Thus, the notion of Pareto
dominance does not distinguish between greedy procedures.

To summarise, greedy procedures should be preferred when finding outcomes
need to be done tractably, except in the special case of Liquid ballots, for which
this problem is polynomial for all proposed rules. The MinSum procedure should
be used when outcomes need to be Pareto optimal and MinMax should be used
when an egalitarian approach is required. When using the greedy procedures, the
choice between them should be determined by whether the situation asks for either
random voter selection or direct vote priority properties.

2.6 Conclusion and Future Work

In this chapter, we proposed a model of multi-agent ranked delegations in voting,
which generalises the standard model of liquid democracy in two aspects, both
making the ballots in the model more expressive.

First, delegations can involve many agents instead of a single agent who de-
termines their vote. We introduced a general language named Bool, in which
delegations are expressed as contingent propositional formulas in complete DNF.
We emphasise that although agents may not want to use the full expressivity of the
language, they are free to use it as much as they desire, and many natural delega-
tion types are captured by it. For example, both liquid democracy delegations and
delegations using threshold rules can be expressed in Bool. More elaborate voting
models, such as smart voting, can be used to implement voting systems digitally
and utilise computer technology. Moreover, other areas of AI could help the voters
use the full expressiveness of the delegations in smart voting. For instance, it may
not be possible for most community members to create Boolean functions as dele-
gations; however, using a natural language processing model could aid them with
this. Thus, it does not seem too far-fetched that voters would trust a delegation
formula returned by a large language model prompted by text from the voter to
create a complex delegation. In this case, the flexibility of a language such as Bool
could be utilised.

The second way our model is more expressive is by allowing ranked delegations.
As transitive delegations can lead to delegation cycles among the agents’ most
preferred delegates, the linear order of trusted delegations given by the agents can

2.6. Conclusion and Future Work 51

be used to break these cycles.
Our main contribution is the definition and study of six unravelling procedures:

two optimal procedures looking to find outcomes that minimise some given cri-
terion and four that greedily find outcomes. They each take a profile of smart
ballots and return a standard voting profile. We show that all of the procedures
can give different certificates and outcomes (Proposition 2.5) and that they differ
from the breadth-first and depth-first procedures of Kotsialou and Riley [2020] (Re-
mark 2.3). Moreover, we show that all of the procedures, except MinMax, coincide
on Liquid[1]∗ ballots, i.e., classical liquid democracy ballots with a single delegation
per agent. The certificates of the outcomes of MinSum are Pareto optimal with
respect to the set of consistent certificates (Proposition 2.9), while greedy proce-
dures do not Pareto dominate one another (Proposition 2.8). Our main results show
that decision variants of MinSum and MinMax are NP-complete problems (The-
orems 2.2 and 2.4) over the general language Bool. Still, they become tractable
when ballots are restricted to Liquid, the language of ranked liquid democracy
(Theorems 2.3 and 2.5). Finally, we prove that our four greedy unravelling proce-
dures always terminate (Proposition 2.3) and do so in a polynomial number of time
steps for general Bool ballots (Proposition 2.4).

Future Work Since this work was conducted, some of its open problems have
been studied. Tyrovolas [2022] gave more complexity results on the procedures.
One interesting extension they explored was the combination of our procedures
MinSum and MinMax, returning the outcome of MinMax, which had the lowest
rank, showing that the bounded decision version of this problem is also NP-hard.
Moreover, preliminary experimental investigations from Kulesza [2022] have already
been into our six unravelling procedures. They conducted an online experiment by
creating an online voting platform to analyse the truth-tracking power of liquid
democracy with respect to the different unravelling procedures. On their online
platform, they focused on the language Liquid.

There is still a lot of analysis to be done on the model. One possibility would
be to look at the voting power of the agents in the model. Zhang and Grossi
[2022] studied a version of the Banzhaf index in liquid democracy given a delegation
graph. In Chapter 5, we will study the a priori voting power of simple liquid
democracy. Yet neither approach has been explored on voting models with more
complex delegations. Moreover, another extension of this work would study multi-
agent ranked delegations on multiple interconnected issues, in line with Chapter 3.

Finally, full implementation of the smart voting model would be an exciting
line of research, following the preliminary work of Kulesza [2022]. This would mean
creating an online voting platform allowing voters to use full Bool ballots. A major
challenge of this line of research would be how to effectively present such a voting
model to voters in a user-friendly way. From such a platform, studying cycles and
using delegations would be extremely fruitful in guiding future research needed to
implement models.

Chapter 3

Preserving Consistency in
Multi-Issue Liquid Democracy

3.1 Introduction

This chapter takes on a different aspect of extending delegative democracy from
classical liquid democracy. Unlike in the previous chapter, we are no longer in-
terested in extending the delegations to consider more complex ones. Instead, we
want to extend the model to account for multiple interconnected issues. Our model
builds on those of Brill and Talmon [2018] and Jain et al. [2022]. Their models
study liquid democracy with many interconnected issues on specific domains in
which the consistency of every agent’s ballot must be upheld. Brill and Talmon
[2018] studies liquid democracy where each issue is a pairwise comparison between
two alternatives. After resolving the delegations, every agent’s ballot must contain
a complete strict ordering over the alternatives and the resulting preferences cannot
contain cycles. Jain et al. [2022] studied a different setting, namely liquid knapsack
voting, where the issues are projects to be accepted and their cost must be within
the budget. In this model, every voter’s ballot must not exceed the budget after
resolving the delegations. We study a more general model, considering general con-
straints connecting the multiple issues and deciding what is rational in each setting.
This area of research explores the idea that through liquid democracy any collective
decision mechanism can be “liquidised” — to borrow a term from Brill and Talmon
[2018], i.e., to include transitive delegations into a voting model.

In each of these models, delegations are given on particular issues. Therefore,
an agent can delegate one decision on an issue to one agent while delegating on a
different issue to a different agent. Hence, after delegations have been resolved, the
returned set of votes may not be rational in this setting, i.e., not consistent with
the rationality constraint.
Example 3.1. Consider a group of agents who are voting on a set of issues that
reflect projects to be accepted. These two projects could be: building a local park
p and a fence being built around the park f . The agents’ rationality in this setting
could be that a fence cannot be built around the park if it has not been built. Hence,
the rationality constraint may insist that every agent’s final vote is consistent with
the following formula: f → p (if the fence is accepted, then the park must also be
accepted). Agent A may decide that agent B is the best suited to decide if the park
is built and delegate to them on issue p. However, agent A may believe that agent
C is the best delegate to decide on the fence f . Thus, given A’s delegations, their

54 Chapter 3. Preserving Consistency in Multi-Issue LD

vote will be inconsistent with the rationality constraint as B is against the park
being built while C is for the fence being built. △

In many of the models of liquid democracy, we run into consistency problems.
One strategy to solve these problems is to use algorithmic techniques to solve the
problem optimally with respect to some parameters. In the previous work on pre-
serving consistency in multi-issue liquid democracy, this parameter is the number
of changes made to the original profile to ensure that the resulting profile is con-
sistent. Optimisation-based approaches proposed in previous work run into high
computational costs, and approximation algorithms may be hard to defend in a
social choice setting where fairness criteria and explanatory power of the outcome
are of primary importance.

We propose to elicit a voter’s priorities over the issues on which they are dele-
gating and feed them to tractable rules that maintain ballot consistency. Such an
elicitation can easily be performed, for example, using the order in which voters en-
ter their delegations in the voting platform, a global order of priority such as by the
cost of implementing the projects, or a personal priority order given directly from
the voters. In Example 3.1, A may decide that the issue of the park being built has
a higher priority than the fence being built. We show that using priority ordering
over the issues in the procedure can lead to outcomes being found tractably.

3.1.1 Contribution

The main contribution of this chapter is extending the modelling of liquid democ-
racy on multiple interconnected issues and analysing how inconsistencies in the
agents’ ballots should be resolved. This chapter is based on the work of Colley
and Grandi [2022a]. We describe this model in Section 3.2. Section 3.3 then intro-
duces our two procedures that minimise the required changes so that every agent’s
resulting votes are consistent. One of these procedures makes minimal changes
to the profile such that when the delegations are resolved, the resulting votes are
consistent; this procedure was previously studied in specific settings. The second
procedure is novel. It resolves all the delegations and then directly changes the
votes to regain consistency. We show that these procedures are, unsurprisingly,
intractable. Given their intractability, we then search for different ways in which
we can regain consistency. In Section 3.4, we give our solution to elicit the agents’
priorities over the issues and use them to find consistent votes tractably and in a
principled way. We give two procedures that use the agents’ priorities, built with
the same distinction between the minimisation procedures, with one changing the
profile and the other changing the votes after resolving delegations. Next, we anal-
yse the four procedures, showing that the priority procedures do not approximate
their minimisation counterparts well (Section 3.4.2) and compare the procedures on
how well they respect the priorities (Section 3.4.3). Section 3.5 focuses on knapsack
constraints, as these constraints have the property that a procedure would never
turn an issue’s rejection into an acceptance. Thus, we study how the procedures
affect the number of acceptances in the final votes after inconsistencies have been

3.2. The Model 55

resolved. Section 3.6 extends the original work [Colley and Grandi, 2022a]. It
explores a more general version of this model where either delegation cycles are
allowed or every agent can have their own personal rationality constraint.

3.1.2 Related Work

The seminal work of Christoff and Grossi [2017a] already considered a “liquidised”
version of binary aggregation on interdependent issues. This chapter builds on this,
generalising and unifying the approach of Jain et al. [2021] and Brill and Talmon
[2018], where the former pertains to approved projects respecting a budget and
the latter to accepted pairwise comparisons being transitive. More precisely, we
study the problem of liquid democracy over multiple binary issues where the final
opinions must satisfy a constraint. Another model considering a liquid version of
preference aggregation is that of Harding [2022]. However, this work guides agents in
choosing a proxy that is consistent with their views. Although we allow for multiple
delegations, these should be thought of as parallel delegations rather than a single
delegation involving multiple agents on a single issue. For example, the smart voting
model introduced in Chapter 2, in ranked liquid democracy [Kotsialou and Riley,
2020, Brill et al., 2022], spreading fractional power among delegates [Degrave, 2014],
or submitting a subset of acceptable delegates [Dey et al., 2021, Gölz et al., 2018]. As
already observed by Christoff and Grossi [2017a] liquid democracy relates strongly
to opinion diffusion, where a delegation can be interpreted as an influence link
between agents. Constraints in opinion diffusion have been considered by Friedkin
et al. [2016] for real-valued beliefs and by Botan et al. [2019] for majoritarian updates
on binary issues, yet the connection between the models will be explored more in
Chapter 4.

3.2 The Model

We model a group of agents N = {1, · · ·, n} making a collective decision on a set
of issues I = {1, · · ·, m}, where the domain of each issue j ∈ I is D(j). Without
loss of generality, we will consider binary issues, thus D(j) = {0, 1} for all j ∈ I.1
Each agent i ∈ N submits a ballot Bi ∈ Πj∈I(D(j) ∪ N \{i}), which specifies for
each issue j ∈ I if the agent gives a direct vote in D(j) or a delegation to any
other agent in N \{i}. A profile of ballots is denoted by B = (B1, · · · , Bn) and the
ballot of agent i on issue j in profile B is denoted as Bij . We let B̂ be an n × m

matrix containing only the direct votes of the agents in profile B, where B̂ij = Bij

if Bij ∈ {0, 1} and B̂ij = ∆, otherwise. We let X ∈ {0, 1}n×m denote a profile of
votes.

Example 3.2. Consider two agents N = {C, D}, two issues I = {j, k}, and a profile
B composed of ballots BC = (1, D) and BD = (C, 1), where C delegates to D

1Non-binary issues can be expressed in the binary setting by letting each alternative become a
binary issue where the constraint permits only one alternative per issue to be chosen.

56 Chapter 3. Preserving Consistency in Multi-Issue LD

C 1 D D C 1

k

j

Figure 3.1: The delegation graph GB of the profile given in Example 3.2.

on issue k, and D delegates to C on issue j. The direct votes of the agents are
B̂ = ((1, ∆), (∆, 1)). △

We assume there are no delegation cycles on any given issue in the first part
of the chapter (we remove this assumption in Section 3.6 and examine its effect on
the model). To clarify this, we associate a labelled delegation graph GB = (V, E)
with each profile B, where V = N and edge (C, D, j) ∈ E if C delegates to D on
issue j in B (where j is the label of the edge). See Figure 3.1 for a profile of ballots
given in Example 3.2. We assume that GB is acyclic for any issue, i.e., for each
(C, D, j) ∈ E, there is no j-path from C returning to C. Notice that in Figure 3.1
that there is a cycle in the edges, i.e., an edge from C to D and another from D to
C, there is no cycle for a given issue. This would be the case if C’s delegation to
D were on issue j instead. This allows us to first focus on preserving consistency
without making assumptions on how delegation cycles are broken, similarly to the
previous work [Brill and Talmon, 2018, Jain et al., 2021].

Thanks to the assumption of acyclicity, we can define a canonical profile of votes
XB ∈ {0, 1}n×m for every B, where all delegating voters are assigned the vote of
the direct voter at the end of the delegation chain (sometimes known as a guru or
an ultimate delegate). Given a delegation graph GB, for each i ∈ N and j ∈ I, we
find the endpoint k ∈ N of the longest outgoing j-path from i and let XB

ij = B̂kj .
We assume that the issues in I are interconnected, i.e., that the votes of the

agents have to respect a given constraint or set of constraints Γ. For instance,
in knapsack voting, agents have to respect a given budget in the set of approved
projects, or in preference aggregation, the approved comparisons are assumed to be
transitive.

If Xi ∈ {0, 1}m, we denote with Xi |= Γ that agent i’s vote satisfies the constraint
Γ. If X is a profile of votes, we write X |= Γ when Xi |= Γ for all i ∈ N . The set
of all consistent votes is denoted by XΓ = {X | X |= Γ}, assuming that Γ is not
a contradiction, i.e. XΓ ̸= ∅. We allow for any representation of Γ, with the only
restriction being that checking if a partial vote can be completed to a consistent
one should be feasible in polynomial time.

For instance, budget constraints, logical formulas in complete DNF, and the
transitivity of preferences would all be acceptable constraints. Constraints ex-
pressed as arbitrary logical formulas do not, as the problem of completing partial
evaluations is equivalent to SAT. Formally, if X ∈ {0, 1, ∆}m is a partial vote, we
write X p≈ Γ if there exists a complete vote X ∈ {0, 1}m such that X ⊆ X and

3.3. Minimal Changes to Ballots and Votes 57

X |= Γ.2 We assume that every agent’s (partial) direct votes can be completed,
i.e., for all i ∈ N we assume B̂i p≈ Γ.

In line with previous work, we say that a profile of ballots B is consistent if
XB |= Γ.3 From our assumptions that delegations are acyclic and the membership
problem of Γ is tractable, we obtain that:

Remark 3.1. To check if a profile B is consistent is polynomial-time solvable.

As profiles may not be consistent, we define consistent delegation rules that take
a profile of ballots B and return a profile of consistent votes, preserving the voters’
direct votes:

Definition 3.1. Given a constraint Γ, a consistent delegation rule F takes a profile
of ballots B and returns a profile of votes such that F(B) |= Γ and B̂ ⊆ F(B).

Example 3.3. Consider the same setting as Example 3.2, with the constraint that j

and k cannot both be accepted. Thus, Γ can be represented as ¬j ∨ ¬k (a logical
formula in complete DNF) and XΓ={(0, 0), (0, 1), (1, 0)}. Following the agents’
delegations in B, the canonical profile of votes is XB=((1, 1), (1, 1)). Thus, B is
not consistent. Observe that any consistent delegation rule would give the outcome
((1, 0), (0, 1)) (where the direct votes are not changed). △

3.3 Minimal Changes to Ballots and Votes

In this section, we introduce two consistent delegation rules that preserve vote
consistency by making minimal changes, showing that associated decision problems
are NP-complete.

The first approach is to modify the profile of ballots B by ignoring a minimal
number of delegations that conflict with the constraint, replacing them with a direct
vote. This rule has been defined in previous work on multi-issue liquid democracy
for the specific settings of knapsack voting [Jain et al., 2021] and preference aggre-
gation [Brill and Talmon, 2018]. Given a profile B, the minimal delegation change
rule MDC finds all consistent profiles B′ that replace a minimal number of delega-
tions with direct votes and whose canonical profile of votes XB′ is consistent with
Γ:

MDC(B)={XB′
|B′∈ arg max

{B′|B̂⊆XB′ & XB′ |=Γ}

∑
i∈N

|Bi ∩ B′
i|}

We show that the following decision problem associated with MDC is NP-
complete.

2Here we slightly abuse the subset notation, for a partial assignment X ∈ {0, 1,∆}m and
assignment X ∈ {0, 1}m, we say X ⊆ X when X is found by only changing ∆s in X to 0 or 1.

3Brill and Talmon [2018] also define a weaker notion of consistency. Both are equivalent to our
definition of acyclic profiles.

58 Chapter 3. Preserving Consistency in Multi-Issue LD

MinimalDelChange

Given: a profile B, constraint Γ and integer k ≥ 0
Question: is there a consistent profile B′ found by changing at most k delega-

tions of B to direct votes?

Proposition 3.1. MinimalDelChange is NP-complete.

Proof. A sub-problem of MinimalDelChange is the consistent knapsack voting
problem CKV from Jain et al. [2021] (they also consider acyclic delegation graphs,
as CKV removes cycles by replacing every delegation in a cycle with a direct vote
against the issue). CKV is an NP-complete problem, as shown by Jain et al.
[2021] (Theorem 1), implying that MinimalDelChange is NP-hard. To see that
MinimalDelChange is in NP, consider a certificate that lists agents and issues,
indicating delegations to be changed to direct votes to obtain B′ from B. First, we
check that the list has at most k entries. Then we check whether B′ is consistent,
which can be done in polynomial time by Remark 3.1.

The second approach, loosely inspired by related literature on judgment aggre-
gation (see, e.g., Lang et al. [2011]), makes minimal changes to the canonical profile
of votes XB directly, but only on issues where the voter expressed a delegation.
The minimal vote change rule MVC is defined as follows:

MVC(B) = arg max
{X|B̂⊆X and X|=Γ}

∑
i∈N

|Xi ∩ XB
i |

In line with Proposition 3.1, we now show that the following decision problem
associated with MVC is NP-complete.

MinimalVoteChange

Given: A profile B, constraint Γ, and integer k ≥ 0
Question: Is there an X |= Γ such that B̂ ⊆ X and X is found by changing

at most k votes in XB?

Proposition 3.2. MinimalVoteChange is NP-complete.

Proof. For membership in NP, we take a certificate that lists pairs of agents and
issues to be changed in XB to define X ′. We then check in polynomial time that
the list has at most k entries and that X ′

i |= Γ for each i ∈ N .
To show NP-hardness, we reduce from the NP-complete problem independent

set IndSet [Karp, 1972]. The input of IndSet is a graph G = (V, E) and integer
t ≥ 0. It asks if there is a V ′ ⊆ V with |V ′| ≥ t such that no edge in E has both ends
in V ′. Given an instance of IndSet, consider a set of agents N = {Av | for all v ∈
V } ∪ {A}, issues I = {Iv | v ∈ V }, and bound k = |V | − t. Next, our constraint
only allows for independent sets: Γind = {(Iu → ¬Iv) ∧ (Iv → ¬Iu) | (u, v) ∈ E}.
First, observe that we can check in polynomial time if a partial assignment can be
completed to one satisfying Γind, as we only need to check that the vertices accepted

3.4. Eliciting and Applying Priorities over Issues 59

in the partial assignment are an independent set. Finally, consider a profile of ballots
B such that agent A delegates to agent Av on issue Iv for all v ∈ V , and each Av

only approves of Iv, rejecting all other issues.
Assume there is an independent set V ′ ⊆ V with |V ′| ≥ t. Given that

XB
A =(1, · · ·, 1), consider XA containing votes for the issues Iv with v ∈ V ′ and

against the remaining issues. The resulting profile of votes is consistent: for each
v ∈ V , XAv is consistent as only one issue is accepted, and XA |= Γind as XA

reflects an independent set. Thus, we also have a solution to our problem as the
number of votes changed is |V | − |V ′| ≤ |V | − t = k. Next, assume that there is
no independent set of size at least t, and suppose t′ < t is the size of the largest
independent set of G. Observe that to make XB

A consistent, at least |V | − t′ votes
need to be reverted. As |V |−t′ > |V |−t = k, there is no solution to our problem
either. Hence, MinimalVoteChange is NP-hard, thus NP-complete.

3.4 Eliciting and Applying Priorities over Issues

To provide tractable and principled rules to preserve vote consistency, we propose to
elicit from the voters their priorities over the issues they choose to delegate on—this
could be, e.g., the order in which the voter expressed their delegations. In doing so,
we discard a fixed parameter tractability analysis of MDC and MVC since Jain et al.
[2021] have already provided extensive negative results for this approach.4

Example 3.4. Consider N = {C, D, E} voting on I = {j, k} where at most one
issue can be chosen, i.e., Γ = ¬j ∨ ¬k. C and D vote directly as such BC = (1, 0)
and BD = (0, 1), whereas E delegates on both issues as such BE = (C, D). One
of E’s delegations will be ignored as XB

E = (1, 1) is inconsistent. Any consistent
delegation rule must decide which delegation to ignore, returning either (1, 0) or
(0, 1). If E prioritises issue j, they should prefer (1, 0) as their final votes. △

We assume that voters specify a total ordering over the issues on which they
express a delegation. To simplify the presentation, we assume these orderings are
on the whole set of issues I (the two assumptions are equivalent since consistent
delegation rules never change direct votes). We denote this order by ≺i for each
agent i ∈ N and write ≺i (k) for the issue with the kth highest priority in ≺i.

In parallel with the minimisation rules presented in Section 3.3, we present two
approaches based on changing delegations or votes. First, the priority delegation
changing rule (PDC) described in Algorithm 6 iteratively alters an agent’s delegation
to a direct vote if its addition is inconsistent. Second, the priority vote changing rule
(PVC) described in Algorithm 7 iteratively adds consistent votes from XB following
the agents’ order of priorities over the issues. We now define some notation used in

4Jain et al. [2021, Theorem 1] show that their version of MDC is tractable only under restric-
tive conditions such as when voters delegate on at most one issue. Moreover, their problem is
NP-complete even when restricting many parameters to be small constants, such as the number
of issues, the number of delegations, the issues having equal weights, and only one issue being
accepted.

60 Chapter 3. Preserving Consistency in Multi-Issue LD

Algorithm 6 Priority delegation changing (PDC)
1: Input: B, ≺i for all i ∈ N
2: t = 0 ▷ Set the counter to 0
3: Find X0 = B̂ ▷ Let X0 be the direct votes of B
4: while Xt /∈ {0, 1}n×m do ▷ loop until all agents have voters on each issue
5: Xt+1 := Xt

6: for i ∈ N and k ∈ [1, m] do ▷ for every agent and priority level
7: j :=≺i (k) ▷ let j be i’s kth priority issue
8: if vote(Xt, i, j) = ∆ and vote(Xt, Bij , j) ∈ {0, 1} then ▷ if no vote is

recorded for i on j but i’s delegate does
9: if (bal(Xt+1, i)−j , vote(Xt, Bij , j)) p≈ Γ then vote(Xt+1, i, j) :=

vote(Xt, Bij , j) ▷ update the vote if it is consistent
10: else vote(Xt+1,i,j):=1−vote(Xt, Bij , j) ▷ else update the opposite

vote
11: X := Xt

the algorithms. Recall that B̂ denotes an n × m matrix containing only the direct
votes of B. We let bal(X, i) denote the vector of votes recorded for agent i in
matrix X and vote(X, i, j) denote the vote recorded in X for agent i on issue j.
Furthermore, (X−j , xj) denotes the vector X with the entry for issue j appended
with a new entry xj .

Algorithm 6 inputs the profile B and the agents’ priorities over the issues ≺i

and then sets the counter t to 0. On line 4, the algorithm starts a while-loop that
continues until every agent has a vote in {0, 1} for every issue. Each iteration of
the while-loop checks whether an update can be made for each agent following
their priority order over the issues. In the current Xt, if i does not have a vote
for j and their delegate does (on line 8), we check if adding their delegate’s vote is
consistent. If so we update Xt+1

i with the consistent vote (line 9). Otherwise, we
add the opposite vote (line 10). Note that the update to Xt+1 is simultaneous as
it uses information from Xt. Hence, the order of agents in the for-loop does not
affect the outcome.

Algorithm 7 Priority vote changing (PVC)
1: Input: B, ≺i for all i ∈ N
2: Find X0 = B̂
3: Find XB

4: for i ∈ N and k ∈ [1, m] do ▷ for every agent and priority level
5: j :=≺i (k) ▷ let j be i’s kth priority issue
6: if vote(X0, i, j) = ∆ then ▷ if i delegates on issue j
7: if (bal(X0, i)−j , vote(X0, XB

ij , j)) p≈ Γ then vote(X0, i, j) :=
vote(X0, XB

ij , i) ▷ update the vote if it is consistent
8: else vote(X0, i, j) := 1 − vote(X0, XB

ij , j) ▷ else update the opposite
vote

9: X := X0

3.4. Eliciting and Applying Priorities over Issues 61

E C D

F E E

C 1 0 D 0 1

k

j k

j

Figure 3.2: The delegation graph GB of the profile given in Example 3.5.

Algorithm 7 describes PVC, it inputs the profile B and the agents’ priorities. It
then finds B̂ and the canonical profile of votes XB. For each agent i ∈ N it checks
in the priority order ≺i (line 4) if they have a vote recorded in X0 (line 6). If the
addition of XB

ij is consistent, we update X0
i with it (line 7) If XB

ij is inconsistent
with their current vote, we update the vector with the opposite (line 8).
Example 3.5. Consider agents N = {C, D, E, F} and issues I = {j, k} where at
most one issue can be accepted, i.e., Γ = ¬j ∨ ¬k. Consider profile B in which
agents C and D vote directly, BC = (1, 0) and BD = (0, 1), whereas the remaining
agents delegate as such: BE = (C, D) and BF = (E, E) (as depicted in Figure 3.2).
Agent E has the priority j ≻E k while F has the priority k ≻F j. PDC first considers
delegations of the highest priority issue. The top priority issue for E is j and their
delegate has a vote for j in X0. As E currently has no votes in X0 we let X1

Ej = 1.
Then, the delegation on the second priority issue k is not consistent. Thus, X1

Ek = 0.
As in X0, E does not have any votes and F ’s votes can only be added in the second
iteration. Thus, X2

F = (1, 0) and PDC(B) = ((1, 0), (0, 1), (1, 0), (1, 0)). PVC first
computes the canonical profile of votes XB = ((1, 0), (0, 1), (1, 1), (1, 1)), where XB

E

and XB
F are inconsistent. For similar reasons as when using PDC, PVC then changes

E’s vote to X0
E = (1, 0). However, for F , the algorithm first tries X0

F k = 1 in
accordance with F ’s priorities, which is consistent, entailing that X0

F j = 0. Thus,
PVC(B) = ((1, 0), (0, 1), (1, 0), (0, 1)). △

3.4.1 Complexity of PDC and PVC

In the absence of constraints, it is easy to see that all four rules output the canonical
profile of votes associated with the profile.
Remark 3.2. When Γ = ⊤, PDC, PVC, MDC and MVC give the same outcome, XB.
We next show that PDC and PVC always terminate with consistent profiles of votes.

Proposition 3.3. For any acyclic profile B and constraint Γ, PDC and PVC termi-
nate, PDC(B) |= Γ and PVC(B) |= Γ.

Proof. We start from PDC. Due to the while-loop on line 4, if Algorithm 6 ter-
minates, it does so with X ∈ {0, 1}n×m. We assume for a contradiction that
Algorithm 6 does not terminate, and therefore, Xt

ij = ∆ for all t > T after some

62 Chapter 3. Preserving Consistency in Multi-Issue LD

iteration T ∈ N and for some i ∈ N and j ∈ I. Note that Bij /∈ {0, 1} as the al-
gorithm does not change any direct votes to ∆. Therefore, Bij is a delegation, and
since votes are propagated following delegations, we can infer that also Xt

Bijj = ∆.
By the acyclicity of B, the delegation chain on issue j starting at agent i must end
at a direct voter for j, whose vote will then eventually reach voter i, against our
assumption. Next, we show that every agent’s votes are consistent with Γ. Recall
that the initial direct votes are consistent, i.e., B̂i p≈ Γ for all i ∈ N . Each time
a vote is added, we check if its addition allows for consistent completion; if not,
the opposite is added. As XΓ ̸= ∅, the process is guaranteed to give a consistent
completion of votes.

Next, we show the same for PVC. Algorithm 7 first finds XB. It then inspects
the cells of X0 with a for-loop on line 4, cycling through every agent and issue (in
order of their priorities), after which it will terminate. In line 6, it inspects every
entry of X0 without a vote X0

ij = ∆ and then updates it to a vote in {0, 1} from
line 7 to line 8.

Thus, the algorithm always returns X ∈ {0, 1}n×m. We next show that the
agents’ votes are consistent. The algorithm starts with B̂, which by assumption
is such that B̂i p≈ Γ for all i ∈ N . It then iteratively adds votes from XB if they
can be completed to a consistent set of votes, otherwise, the opposite vote is added.
This will always lead to votes X0

i |= Γ. Therefore, PVC always terminates with
Xn×m and Xi |= Γ for all i ∈ N .

We show that both rules run in polynomial time. Recall that n is the number
of voters, m the number of issues, and let ℓ be the time to check if a partial vote
has a Γ-consistent completion (we assumed that ℓ is polynomial in n and m).

Proposition 3.4. PDC terminates in O(nm(n + ℓ)) time.

Proof. In each iteration of while-loop on line 4, Algorithm 6 first checks if Xt ∈
{0, 1}n×m in O(nm) time. Since each issue has at least one direct voter, in the
first iteration of the while-loop the for-loop on line 6 checks at most m(n − 1)
delegations, to see if their delegate has a vote in X0, each taking constant time.
As the profile is acyclic, at least one vote for each issue is added in each iteration.
Thus, in iteration t, the for-loop checks at most m(n − t) delegations. Therefore,
Algorithm 6 requires at most

∑n
t=1 nm + (n − t)m ∈ O(mn2) time to check the

while-loop condition and if a voter’s delegate has a direct vote. Furthermore,
once for each delegation, we check if the addition of their delegate’s vote has a Γ-
consistent completion, in total taking at most m(n − 1)ℓ steps. Hence, Algorithm 6
terminates in O(nm(n + ℓ)) time.

Proposition 3.5. PVC terminates in O(nm(n + ℓ)) time.

Proof. Algorithm 7 first finds XB in O(n2m) time, where for each issue and each
agent it takes at most O(n) time to unravel the delegation chain until a direct voter
is found. For each delegation in B, the for-loop on line 4 will check, if the addition
of the vote found in XB along with the votes already in X0 can be completed to

3.4. Eliciting and Applying Priorities over Issues 63

A4 A2 A3 · · · A3 A3 A1 A2 · · · A2

A1 1 1 · · · 1 A2 0 0 · · · 0

A4 A1 A2 · · · A2 A3 A1 A2 · · · A2

A1 1 1 · · · 1 A2 0 0 · · · 0

(a) Profile from Proposition 3.6 (b) Profile from Proposition 3.7

Figure 3.3: The profiles from (a) Proposition 3.6 and (b) Proposition 3.7 when
N = {A1, A2, A3, A4} and |I| = m.

comply with Γ (following the order given by the priorities). As there are at most
m(n − 1) delegations and each completion check takes ℓ steps, this can be done
in O(nmℓ) time. Summing the two figures, we obtain that Algorithm 7 gives an
outcome in O(nm(n + ℓ)) time.

3.4.2 Approximation Bounds

Next, we assess whether PDC and PVC are good polynomial approximations of MDC
and MVC, giving a negative response. This is unsurprising, as PDC and PVC aim
to respect priorities rather than minimise changes. By a slight abuse of notation,
we define flip(F(B)) to count the number of changes F makes when finding a
consistent outcome on profile B. This corresponds to delegations in B being ignored
by PDC and MDC, or direct votes being reverted in XB by PVC and MVC. An example
of the profiles used in each of the following proofs can be seen in Figure 3.3.

Proposition 3.6. For each n ≥ 3 and m ≥ 2, there is a profile B such that
flip(PDC(B)) = (n − 2) × (m − 1) × flip(MDC(B)).

Proof. Consider N = {A1, · · ·, An} and I = {i1, · · ·, im}, and XΓ =
{(0, · · ·, 0), (1, · · ·, 1)}. Consider profile B where BA1 = (1, · · ·, 1), BA2 = (0, · · ·, 0),
and for the remaining agents let BAt = (At−2, At−1, · · ·, At−1) for t ∈ [3, n], each
with priorities ix ≻At iy, if x < y. Replacing the delegation of A3 on issue i1
to a direct vote of 0 gives a consistent profile, flip(MDC(B)) = 1. However, PDC
returns the vote XAt = (1, · · ·, 1) when t is odd and XAt = (0, · · ·, 0) when t is
even. Thus, for the n − 2 delegating agents, At with t ≥ 2, all of their delegations
are flipped for the issues in I\{i1}. Thus, flip(PDC(B)) = (n − 2)(m − 1), and
flip(PDC(B)) = (n − 2) × (m − 1) × flip(MDC(B)).

Proposition 3.7. For each n ≥ 3 and m ≥ 2, there is a profile B such that
flip(PVC(B)) = (m − 1) × flip(MVC(B)).

Proof. Consider N = {A1, · · ·, An} and I = {i1, · · ·, im}, and XΓ =
{(0, · · ·, 0), (1, · · ·, 1)}. The ballots of B are as follows: BA1 = (1, · · ·, 1), BA2 =
(0, · · ·, 0), and the remaining agents have the ballot BAt = (A1, A2, · · ·, A2) for
t ∈ [3, n], with the priorities ix ≻At iy for every x < y.

64 Chapter 3. Preserving Consistency in Multi-Issue LD

The canonical profile XB is inconsistent since XAt = (1, 0, · · ·, 0) for t > 2. MVC
alters the delegated vote of such voters on issue i1, hence flip(MVC(B)) = n − 2.
PVC instead reverts all delegated votes except for the one on issue i1, hence
flip(PVC(B)) = (n − 2) × (m − 1). Therefore, flip(PVC(B)) = (m − 1) ×
flip(MVC(B)).

Propositions 3.7 and 3.6 show us that the priority procedures can make many
more changes to the canonical profile of votes than the minimisation procedures.
Thus, we can see that the priority procedures are not approximating their minimi-
sation counterparts.

3.4.3 Comparing Rules on Priorities

In this section, we compare the four procedures that find consistent votes with
respect to the agents’ priorities over the issues. This section aims to check if our
priority procedures respect the priorities elicited from the voters. We use the topi

function which identifies agent i’s highest priority issue from a subset of issues
according to ≺i.

We first define the sets of issues on which a rule F does not respect agent i’s
delegations, either with respect to their delegate (del):

deliF (B)={j | j∈I, Bij /∈{0, 1} and F(B)ij ̸=F(B)Bijj},

or with respect to the canonical profile of vote (dir):

diri
F (B)={j | j ∈ I and XB

ij ̸= F(B)ij}.

The set deliF (B) identifies the issues on which the votes of agent i in F(B)
differ from their delegate’s vote, whereas diri

F (B) identifies the issues on which the
votes of agent i in the outcome F(B) differ to their votes in XB.

Note that there is no logical connection between these sets. Intuitively, agents
want lower priority issues in these sets, as they reflect the delegations that have
been ignored in finding consistent votes.

For a profile B, rules F and F ′, and measure c ∈ {del, dir}, we say that an agent
i top-prefers ci

F (B) to ci
F ′(B) (denoted by ci

F (B) ⪰top
i ci

F ′(B)) if topi(ci
F (B)) ⪯i

topi(ci
F ′(B)), where topi(c) gives the highest element of c with respect to ≺i.

Thus, top-preferring ci
F (B) to ci

F ′(B) entails that the top issue whose delegation
is ignored using F has a lower priority than the top issue using F ′. Let cB

F =
(c1

F (B), · · ·, cn
F (B)), and cB

F ′ ⪯top
N c′B

F if and only if ci
F ′(B) ⪯top

i ci
F (B) for every

i ∈ N .
The following proposition shows that PVC respects issues with higher priorities

than its minimisation counterpart MVC.

Proposition 3.8. dirB
MVC ⪯top

N dirB
PVC for any profile B.

Proof. We assume for a contradiction that there exists a profile B such that
dirB

MVC ⪯̸top
N dirB

PVC. Therefore, there is an agent i ∈ N such that topi(diri
MVC(B)) ≺i

3.5. Knapsack Constraints 65

topi(diri
PVC(B)). Suppose that topi(diri

MVC(B)) is i’s kth priority and that
topi(diri

PVC(B)) is i’s mth priority (thus, m < k). MVC outputs a consistent vote
including i’s first (k − 1) top-priority issues. Thus, the partial truth assignment Xi

including i’s direct votes and accepting the delegations on the top (k − 1) priority
issues is such that Xi p≈ Γ. PVC on the other hand only accepts the delegations on
i’s top (m−1) priorities and rejects the delegation on the mth issue. Yet if Xi p≈ Γ,
then any X ′ ⊆ Xi is such that X ′ p≈ Γ, including the partial assignment accepting
i’s direct votes and their delegations on the first m priority issues. We have reached
a contradiction as PVC rejected a partial assignment that could be completed.

We now show that the analogous result is not true for PDC.

Proposition 3.9. There exists profiles B and B′ such that delB
MDC ⪯top

N delB
PDC and

delB′
PDC ⪯top

N delB′
MDC .

Proof. First, we give B such that delB
MDC ⪯top

N delB
PDC. We have N ={C, D, E, F}

and issues I={i, j, k} with the set of consistent votes being XΓ = {(1, 0, 0), (0, 1, 1)}.
We let BC = (1, 0, 0), BD = (0, 1, 1), BE = (0, 1, 1) and agent F delegates as such:
BF = (C, D, E) with the following priorities over the issues i ≻F j ≻F k. PDC
first adds F ’s delegation on i, giving XF = (1, ∆, ∆). It then attempts to add
the delegations on j and k but rejects both, resulting in XF = (1, 0, 0). Thus,
delFPDC(B) = {j, k}. MDC returns X ′

F = (0, 1, 1), where only the delegation on issue
i is changed, thus delFMDC(B) = {i}. All agents T ∈ N \{F} are direct voters, hence
delTMDC(B)=delTPDC(B)=∅. As topF (delFMDC) ≺F topF (delFPDC), we can conclude that
delB

MDC ⪯top
N delB

PDC.
Now let N , I, and XΓ be as in the first part of the proof, yet consider pro-

file B′ with the following ballots: BC=(0, 1, 1), BD=(1, 0, 0), BE=(C, C, 1), and
BF =(E, E, D), with E and F having the priority i ≻ j ≻ k. The first it-
eration of Algorithm 6 gives XE = (0, 1, 1) and XF = (∆, ∆, 0). In the sec-
ond iteration, we have XF = (1, 0, 0), as the delegations to E are inconsistent.
Therefore, delCPDC(B′) = delDPDC(B′) = delEPDC(B′) = ∅, whereas, delFPDC(B′)={i, j}.
MDC however lets XF =(0, 1, 1) where delFMDC(B′)={k}. As topF (delFMDC(B′)) ≺F

topF (delFPDC(B′)), we have that delB′
PDC ⪯top

N delB′
MDC.

3.5 Knapsack Constraints

This section focuses on knapsack or budget constraints, i.e., sets of feasible votes
respecting a budget limit L ∈ N of the form ΓL={X |

∑
j∈I xj≤L}. They have

the property that turning a vote from acceptance to rejection in a consistent ballot
preserves consistency. In the algorithm proposed by Jain et al. [2021], this property
is exploited to remove cycles and solve inconsistent delegations. However, this can
lead to rejecting many issues and potentially leaving funds unassigned.

This section evaluates this factor for the four rules we proposed. Let
count(X) =

∑
i∈N ,j∈I xij be the number of acceptances in the profile of votes

X.

66 Chapter 3. Preserving Consistency in Multi-Issue LD

Remark 3.3. Given a profile B and budget constraint ΓL, we have that
count(XB) ≥ count(F(B)) for F ∈ {MDC, MVC, PDC, PVC}.

Proposition 3.10. For any profile B, count(MVC(B)) ≥ count(F(B)) for F ∈
{MDC, PVC, PDC}.

Proof. Let B be an arbitrary profile and ΓL be a budget constraint. MVC(B) outputs
all consistent profiles of votes obtained from XB with a minimal number of 1s
changed to 0s. Our rules do not change 0s to 1s, as rejections do not use any of
the budget. Note that if X, X ′ ∈ MVC(B) then count(X) = count(X ′). Thus, any
other consistent delegation rule must approve at most the same number of issues
as MVC(B).

An analogous result showing that PVC accepts more issues than MDC or PDC
does not hold, as can be shown by counterexample. To conclude, the approach of
minimal delegation changes proposed in the literature might not be appropriate for
budgeting applications, where it is outperformed by minimal vote changes in terms
of the number of projects accepted.

3.6 Removing Assumptions on the Model

So far in this chapter, we have assumed that there are no issue-wise delegation
cycles. As such, an ultimate delegate can be found for every agent on every issue.
In this section, we remove this assumption as well as extend the model to allow
each agent to have their own rationality constraint. We show that the results in
the slightly extended models do not change from the initial results.5

In Section 3.6.1, we will allow cyclic delegations on single issues. Thus, we are no
longer guaranteed that all agents will have a vote in {0, 1} in the canonical profile
XB. Then, in Section 3.6.2, we allow the notion of rationality to vary between
agents. Thus, each agent i ∈ N can give their own notion of rationality. Hence,
each i ∈ N gives their own set of constraints Γi.

3.6.1 Allowing Cycles Among Issues

We first inspect how our model changes when allowing delegation cycles on specific
issues. More formally, we have different conditions on the delegation graph GB =
(V, E). Recall that V = N and for each Bij = k, we create an edge (i, k, j) ∈ E

from agent i to agent k on issues j, where j is a label on the edge. Allowing issue-
wise delegation cycles means that for an issue j, there can be a j-path starting and
returning to a single agent. For example, we will allow for Bij = k and Bkj = i,
giving a cycle between i and k on issue j.

5Although we will show that many of the equivalent results do not change, we leave the pre-
sentation of this chapter as focusing on the more basic model. This is due to the slight extensions
making the presentation of the procedures and the proofs more complicated.

3.6. Removing Assumptions on the Model 67

C

A B 1
D

1 B C

A

C 1 0
B

∗ 1 1

k

i i
j j

Figure 3.4: The profile B from Example 3.6 for the agents N = {A, B, C, D} voting
on the issues I = {i, j, k}. The box below their names displays their ballot showing
their ballots on issues i, j, then k (reading from left to right). The edges show
delegations in the figure and the edges labels represent the delegation’s issue.

We now update the model described in Section 3.2 to account for cycles. We do
not resolve cycles by assigning a direct vote for or against the cyclic issue. Instead,
we extend the domain of alternatives for the issues to allow for abstentions. Hence,
we now consider that every j ∈ I has a domain D(j) = {0, 1, ∗}. Although the
use of abstentions could be exclusively for cycles, we will consider that those voting
directly on an issue may also choose to abstain.6 Hence, we now allow ballots to be
Bi ∈ Πj∈I(D(j) ∪ N \{i}) for each i ∈ N on our new domain of alternatives. With
this addition to the domain of the issues in our model, we update the definition of
B̂ as such:

B̂∗ =

Bij , if Bij ∈ {0, 1, ∗}
∗, if i has no ultimate delegate on issue j

∆, otherwise.

Hence, now B̂∗ gives the votes that we will not consider changing to preserve
consistency among the votes on the issues. This is analogous to the previous model,
where we did not change the direct votes of the agents to gain consistency.

In this new model, we may now have complete vectors of votes X ∈ {0, 1, ∗}
and partial vectors X ∈ {0, 1, ∗, ∆}, and with this, we need to update the notion of
consistency. Note that we keep the restrictions imposed on rationality constraints Γ,
that a partial vote can be completed consistently in polynomial time. We say that
a vector X is consistent with Γ (with X ∈ {0, 1, ∗} or X ∈ {0, 1, ∗, ∆}) if and only if
there is some X ′ ⊇ X↾{0,1} such that X ′ ∈ {0, 1} and X ′ |= Γ where X↾{0,1} changes
all ∗s in X to ∆s. Observe that this can also be checked in polynomial time. The
canonical profile of votes XB is found in the same way as described in Section 3.2,
however due to our new definition on B̂∗ we have that XB ∈ {0, 1, ∗}n×m.
Example 3.6. Consider the agents N = {A, B, C, D} who are voting on the issues
I = {i, j, k}. The rationality constraint Γ reflects that at most two of the three
issues may be accepted. Their ballots can be seen in bee seen in Figure 3.4. Observe

6The model where abstentions are reserved for only the final vote on cyclic issues is a restricted
version of this new model.

68 Chapter 3. Preserving Consistency in Multi-Issue LD

that agent B is directly abstaining on issue i and that there is a delegation cycle
on issue i between A and C. The latter entails that A and C have ∗ recorded for
their vote on issue i in B̂∗ (as seen in Table 3.1).

i j k

B̂∗
A ∗ 1 0

B̂∗
B ∗ 1 1

B̂∗
C ∗ ∆ 0

B̂∗
D 1 ∆ ∆

Table 3.1: The direct votes given by B̂∗ from the profile B∗ given in Example 3.6.

Note that every ∗ in B̂∗ will never be changed to a vote of 0 or 1.
To check consistency, consider the complete ballot of B. XB = (∗, 1, 1) is

consistent with the constraint Γ as there exists X ′ = (0, 1, 1) such that XB ⊆ X ′

and X ′ |= Γ. Although X ′ is the only consistent, complete extension of XB, we do
not alter the B’s abstention ∗ in XB.

The canonical profile of votes XB would differ from B̂∗ on the vectors of votes
for agents C and D. We find that XB

C = (∗, 1, 1) which is consistent with Γ.
However, XB

D = (1, 1, 1) which is not consistent with Γ. △
From seeing the extension of our model to account for cycles, the next step we

address is how these additions affect the results from the previous sections of this
chapter. We start by assessing the extension of Proposition 3.1 to the problem
MinimalDelChange∗. The only difference between MinimalDelChange and
MinimalDelChange∗ is that we allow for the profile in the input to have the
domain D(j) = {0, 1, ∗} for all j ∈ I and we allow profiles with issue-wise delegation
cycles.

Proposition 3.11. MinimalDelChange∗ is NP-complete.

Proof. First, notice that every instance of MinimalDelChange is also an in-
stance of MinimalDelChange∗. Therefore, as MinimalDelChange is NP-
complete, we have that MinimalDelChange∗ is NP-hard. For membership of
MinimalDelChange∗ in NP, we take the same certificate as in Proposition 3.1.
Consider a certificate that lists agents and issues, indicating delegations to be
changed to direct votes {0, 1, ∗} to obtain B′ from B. First, we check that the
list has at most k entries. Then, we check whether B′ is consistent, which can be
done in polynomial time by Remark 3.1.

By similar reasoning as to why Proposition 3.11 holds given Proposition 3.1,
analogous results can be shown for Propositions 3.2, 3.4, and 3.5.

Observe that as in their new model, as the delegations on cycles are never
changed to votes that could affect the rationality constraint, we can see that the
bound on the approximations given in Propositions 3.6 and 3.7 cannot be worse
than the bounds given. Similarly, for Propositions 3.8 and 3.9, as the delegations
on cycles are never being changed, these results also remain in our new setting.

3.7. Conclusion and Future Work 69

3.6.2 Personal Rationality Constraints

We now inspect what happens to our model when we allow each agent to set their
own rationality constraint. Each agent may submit their own constraints to repre-
sent how a rational collection of votes looks for them after their delegations have
been resolved, i.e., for all i ∈ N , we have Γi such that Xi |= Γi. We impose the
same restrictions on the personal constraints as in the previous model, i.e., that a
partial vote can be completed to a feasible one in polynomial time. We will denote
the collection of the constraints as such Γ = (Γ1, · · · , Γn).

By allowing agents to submit their own rationality constraints, we let them
determine how their delegations should be resolved. For example, when the issues
represent the projects to be funded, one agent may want their constraint to be a
knapsack constraint (that their final votes reflect the budget constraint). Another
agent may want their final votes to accept at most four projects to ensure their
ballot does not contain too many acceptances.

We first comment the effect on the complexity of MinimalVoteChange and
MinimalDelChange (Propositions 3.2 and 3.1). We first note that, as in Sec-
tion 3.6.1, we see that the original model is a sub-case of our model where for all
i, j ∈ N we have that Γi = Γj . Thus, both problems remain NP-hard. Member-
ship for both problems remains close to the original proofs. The only difference is
that consistency is checked with respect to the agent’s constraint rather than the
general constraint. Thus, the results of Propositions 3.2 and 3.1 carry over to this
new domain.

Furthermore, the procedures PDC and PVC remain tractable (Propositions 3.4
and 3.5). The only difference between the propositions would be that ℓ now repre-
sents the longest time needed to check if a partial vote has a Γi-consistent completion
for any i ∈ N .

Finally, we then consider the remaining results from Section 3.4.2 and 3.4.3
are not affected by the addition of personal rationality constraints. We do not
consider the results from Section 3.5 as this setting insists on voters having the
same constraint.

3.7 Conclusion and Future Work

This chapter’s starting point was the two existing approaches in the literature of
multi-issue liquid democracy with constraints connecting the issues. However, the
existing research has focused on specific settings such as knapsack voting and pref-
erence aggregation. Both studied the changes to the ballots to maintain consistency
in the final resolved votes. We generalise this by studying liquid democracy on mul-
tiple interconnected issues, putting forward two novel ideas: first, we propose two
rules that start by resolving delegations and then make changes to the final votes;
second, we design polynomial algorithms to maintain vote consistency by eliciting
agents’ priorities over the issues.

70 Chapter 3. Preserving Consistency in Multi-Issue LD

Models of multi-issue liquid democracy have clear applications for digital democ-
racy platforms. Given that platforms such as LiquidFeedback are already running
liquid democracy elections on multiple issues, I believe that the extension studied in
Section 3.6.2, where every agent can set their own rationality constraint, can make
an impact on the running of the platform. It will allow voters who cannot keep
track of many elections on the different issues some constraints over their overall
final votes. Thus, they can impose their own global rationality over the issues, and
it is the mechanism’s job to ensure the voter’s rationality is upheld.

The main open problem is whether PDC can be improved since Proposition 3.9
shows that it does not use priorities in the best way. We conjecture that this
cannot be done in polynomial time, but a result showing this impossibility is yet to
be shown. Our result in Section 3.5 shows that specific constraints require specific
treatment, and thus, the choice of a consistent delegation rule is not trivial. Hence,
a prominent direction for future research is to specify our general setting on specific
classes of constraints.

Chapter 4

Boolean Opinion Diffusion

4.1 Introduction

This chapter considers a model of opinion diffusion, which is structurally related
to delegative democracy. Instead of modelling delegations in the mechanism, this
chapter models influence. Opinion diffusion models opinions spreading throughout
a social network. In the network, every node represents an agent with an opinion
on a given issue, which we will assume is binary. The network’s edges determine
each agent’s influencers. Many digital platforms, such as social media platforms,
have this same structure; the platform users are the network’s nodes, and each edge
between two nodes represents a connection in their (para)social sphere.

A classical modelling assumption in opinion diffusion is that an agent’s opinion
changes with respect to a threshold function. Thus, an agent’s opinion changes
when a given proportion of their influencers have a different opinion (see, e.g., the
seminal work of Granovetter [1978]). Some typical problems studied in the opinion
diffusion literature are stable diffusions and opinion control. In the former, we
recognise whether the diffusion process will stabilise so no agent wants to update
their opinion. In the latter, we study how to control certain opinion characteristics,
such as gaining a consensus on the issue, for instance, by changing some initial
opinions or the network structure. In this chapter, we show that Boolean networks,
a well-studied mathematical model from biology, generalise models of binary opinion
diffusion (with opinions being either 0 or 1) to define influence updates among the
agents in a more fine-grained way. Thus, it allows for a more realistic framework
to understand the spread of opinions.

Boolean networks are graphs where each node has a state, typically on or off,
1 or 0, yes or no. A discrete-time dynamical process starts from an initial state.
A set of Boolean update functions determines the state in the following iterations
of the network. Each node has a function that takes as input the binary states of
their influencers. Akutsu et al. [2008], Cheng et al. [2010a] and Kauffman [1969]
all provide good introductions to this model. There have been many mathematical
advancements in the study of Boolean networks due to their ability to model gene
regulatory networks in biology (see, e.g., Kauffman [1993] and Shmulevich and
Zhang [2002]).

Boolean networks can model opinion diffusion on binary issues where update
functions are arbitrary Boolean functions. We assume that such functions are rep-
resented as logical formulas built from the standard connectives (∧, ∨, ¬, · · ·), and
the atomic propositions are the influencers of the agent. These functions allow us to

72 Chapter 4. Boolean Opinion Diffusion

Alex

φA = ⊤

Bernie

φB = (A ∧ C) ∨ D

Charlie

φC = B ∧ D ∧ ¬A

Dom

φD = A ∧ B ∧ C

Figure 4.1: The Boolean network associated with agents described in Example 4.1.
Under each agent, we display their update function as a Boolean function. The
arrows in the network describe the influence within the social network. For example,
Alex only has outgoing edges as they do not have any influencers.

study fine-grained relationships between the agents, as showcased in the following
example.

Example 4.1. A group is deciding whether they should go on holiday together. Alex
has organised a holiday for themself and their friends Bernie, Charlie and Dom.
Alex believes it is the perfect holiday for the group and wants to go. However, the
opinions of the rest of the group correspond to the following formulas (their update
functions are also depicted in Figure 4.1):

• Bernie’s closest friend is Dom, and Bernie will go if Dom decides to go. How-
ever, Bernie would also go on holiday if both Alex and Charlie decided to go
as well. Therefore, Bernie’s opinion would be updated with respect to the
following propositional formula: (Alex ∧ Charlie) ∨ Dom.

• Charlie has currently fallen out with Alex. Therefore, Charlie will only go if
Bernie and Dom are both going and Alex is not. This could be expressed as
Bernie ∧ Dom ∧ ¬Alex.

• Dom is reluctant to go on the holiday, and thus, will only go on the holiday
if all of their friends go as well: Alex ∧ Bernie ∧ Charlie.

Consequently, as Alex will attend, Charlie will not, given they will only go if Alex
does not. As Alex will attend and Charlie will not, Bernie will only go if Dom does.
However, as Charlie will not go, neither will Dom. In turn, neither will Bernie. △

4.1. Introduction 73

4.1.1 Contribution

This chapter introduces Boolean networks as opinion diffusion models and is based
on the work of Colley and Grandi [2022b]. As such, we focus on some well-studied
topics in binary opinion diffusion and see if they extend to our setting with Boolean
update functions. We show that:

• The computational complexity of determining if a given Boolean network and
set of initial opinions will lead to a stable state under synchronous updates is
PSpace-complete. We build upon a similar result from Chistikov et al. [2020]
where opinion updates are majority functions by showing a non-trivial lemma
(Section 4.3).

• There does not necessarily exist a sequence of asynchronous updates that leads
to a stable profile and maximises agreement. Thus, the result from Bredereck
and Elkind [2017] for majority update functions does not hold in our Boolean
network setting. However, when update functions are restricted to contain
only positive (or only negated) literals, we give a procedure that finds a stable
state of opinions with a maximal number of agreements (Section 4.4).

• Synchronous opinion diffusion always terminates if the Boolean network im-
itates a multi-agent delegative voting problem, such as liquid democracy.
Moreover, it does so in polynomial time and gives the same outcomes as
the polynomial unravelling procedures defined in Chapter 2. We also show
that manipulating collective opinions in this setting is a NP-complete problem
(Section 4.5).

• Known results from the vast literature on Boolean networks can be applied
to classical problems of opinion diffusion (Section 4.6).

4.1.2 Related Work

This section overviews some existing literature on Boolean networks and opinion
diffusion, focusing on the most pertinent areas: threshold models, multi-issue opin-
ion diffusion, and delegative voting.

Algorithmic Approaches to Boolean Networks. A recent stream of papers
provided algorithmic results closer to our purposes, each having a biological ap-
plication. Most notably, Akutsu et al. [2006] studied the complexity of choosing
which nodes to control to gain a specific outcome and showed that this problem is
NP-hard. Inoue [2011] gives a logical language by which Boolean networks can be
entirely expressed. Kosub [2008] studies fixed points in social networks relating to
our notion of stability. Section 4.6 expands on this related work by importing and
rephrasing some known results in the opinion diffusion terminology.

74 Chapter 4. Boolean Opinion Diffusion

Threshold Models. Much opinion diffusion research has focused on threshold
models where agents update their opinions when a certain proportion of their in-
fluencers have differing opinions. The seminal work on binary opinion diffusion was
explored by Granovetter [1978]. The problem of convergence for binary opinions
has been widely studied. For example, Goles and Olivos [1980] showed that thresh-
old models either terminate or cycle between two different collections of opinions.
Christoff and Grossi [2017b] gave the conditions by which a social network stabilises
on majority updates. Another popular problem is trying to maximise the influence
in the network (see, e.g., Domingos and Richardson [2001], Richardson and Domin-
gos [2002]). In particular, Zhuang et al. [2020] define graph-theoretic notions when
using a threshold model which determines how to reach a consensus. Auletta et al.
[2018] identifies conditions on the graph structure that allow a minority to influence
the majority’s opinions. Instead, Ferraioli and Ventre [2017] study a version of opin-
ion games where pressure is put on agents to reach a consensus. Furthermore, they
show that deciding whether the two opinions can coexist in some stable configura-
tion is an NP-hard problem. Bredereck and Elkind [2017] study an asynchronous
model with majority updates to maximise the number of agreements in the model
with polynomial algorithms. One application of opinion diffusion with threshold
updates is to model product adoption [Auletta et al., 2020b, Shen et al., 2019].
A large part of the study of product adoption is the introduction of seed nodes to
influence the group of agents to adopt a new product, Auletta et al. [2020a] gives an
algorithm to identify the agents as good seeds, yet this is not tractable. Moreover,
Auletta et al. [2021] looks at an extended version of this model that moves away
from binary opinions.

Multi-Issue Opinion Diffusion. General models of opinion diffusion have been
proposed, assuming that agents have opinions on multiple interconnected issues.
The problem studied here is how to ensure that influence on the different issues
results in consistent opinions for each agent: Brill et al. [2016] need to ensure that
individual preference orders remain transitive and acyclic; Botan et al. [2019] use
arbitrary integrity constraints. Both focus on majoritarian update functions. In
this context, the closest work to ours is that of Grandi et al. [2015], which considers
opinion diffusion with arbitrary update functions on multiple interconnected binary
issues.

Opinion Diffusion with Complex Opinion Updates. Rosenkrantz et al.
[2020] focuses on opinion diffusion where update functions are given as Boolean
functions. However, they only consider social networks that are directed and acyclic
graphs. A different direction taken by Morrison and Naumov [2020] extends the
update functions to have multiple thresholds and labels for their influencers. One
example could allow different thresholds for different groups. Thus, an agent may
update their opinion if 80% of their work colleagues have a different opinion or if
30% of their close friends do. Salehi-Abari et al. [2019] study a model of collective

4.2. The Model 75

decision-making where a voter’s utility is reflected not only in their own opinion
being represented by the outcome but also if their neighbour’s opinions are also
reflected, modelling a form of empathy in a social network.

Multi-Agent Delegations. Christoff and Grossi [2017a] first observed the con-
nection between models of delegative democracy and opinion diffusion. The authors
express liquid democracy as a model of opinion diffusion where every agent is in-
fluenced by at most one agent. Models of delegative democracy have recently been
extended to account for multi-agent delegations: Degrave [2014] allowed delegations
to be fractionally spread among their delegates, and in Chapter 2, we let voters ex-
press a ranking of Boolean functions to model delegations. Section 4.5 expands
upon the work of Christoff and Grossi [2017a] to consider the connection between
Boolean opinion diffusion and voting models that allow for multi-agent delegations.

4.2 The Model

A set of agents N = {1, · · · , n} can influence each other’s opinion via a social
network G = (V, E). The agents are the nodes V = N . The directed edges represent
influence; thus (i, j) ∈ E if agent i can influence j’s opinion. Furthermore, we let
the influence neighbourhood of agent i ∈ N be Ni = {j | (j, i)}. Therefore, j ∈ Ni

means that j can influence i’s opinion on the issue (sometimes this set is referred to
as i’s in-neighbours). We allow the edge (i, i) ∈ E, as an agent i’s current opinion
may influence their future opinion. We study a setting with a single binary issue,
denoting agent i’s opinion as oi ∈ {0, 1}. The agents’ opinions are not static, so we
let ot

i be i’s opinion at time t ∈ N. Thus, o0
i is agent i’s initial opinion. We will

refer to the collection of the agents’ opinions as a profile of opinions. At time t, we
denote the profile of opinions by Ot = (ot

1, · · · , ot
n).

In this model, each agent has a Boolean function γi that represents when agent
i’s opinion changes, known as their update function. The update function γi for
agent i is represented as a compact propositional formula in DNF built from the
connectives ¬, ∧, ∨ where the atomic variables are given by Ni (i.e., assuming that
V ar(γi) = Ni). If for some i ∈ N , Ni = ∅, then their update function is constant.
Hence, either γi = ⊤ or ⊥. The collection of the agents’ update functions is denoted
by γ = (γ1, · · ·, γn).

Most of this chapter concerns synchronous updates ◦ on the agents’ opinions.
For all agents, ◦ at time t + 1 checks if each agent’s neighbours’ opinions at t

induce that agent’s opinion to change. Thus, ◦ iteratively lets ot+1
i = 1 if and

only if
∧

j∈Ni
ot

j ⊨ γi and lets ot+1
i = 0, otherwise.1 We denote an instance of

opinion diffusion with ⟨G, γ, O0⟩. We denote t iterations of the diffusion process as
◦(G, γ, O0, t) = Ot. We say that the synchronous update is stable if there is some

1Note that ⊨ is the logical symbol for logical entailment in propositional logic. For two propo-
sitional formulas φ and ψ, if φ ⊨ ψ holds, every truth assignment making φ true will also make ψ
true. Another way of phrasing this is that φ → ψ is a tautology.

76 Chapter 4. Boolean Opinion Diffusion

t ∈ N such that for all t′ > t, we have that ◦(G, γ, O0, t) = ◦(G, γ, O0, t′), i.e., no
more changes to the opinion profile can happen. At times, we refer to the stable
profile of opinions as OT . In the literature, the diffusion process stabilising is also
referred to as converging [Chistikov et al., 2020]. As there are a finite number of
opinion profiles of the agents, the process is cyclic if the synchronous update does
not lead to a stable opinion profile.

Example 4.2. Let the set of agents be N = {a, b, c, d, e, f, g} have the following
initial opinions O0 = (0, 1, 0, 0, 1, 1, 1). On the right-hand side of Figure 4.2, we see
the social network G where V = N are the nodes and E represents the directed
edges. The neighbourhoods of influence for each agent can be seen from G. For
example, agent a has two incoming edges from d and g, thus Na = {d, g}. On the
left-hand side of Figure 4.2, Table (a) lists each agent’s neighbourhood of influence,
update function and initial opinion. Consider the update function γb = a ∧ ¬d.
The intuition behind γb is that b will only update their opinion at time t + 1 to be
ot+1

b = 1 if and only if at time t, a is for the issue ot
a = 1 and d is against the issue

ot
d = 0. Note that in all other scenarios for b (dictated by the different combinations

of opinions of a and d, excluding b’s initial opinion), that b’s opinion is against the
issue.

i ∈ N Ni γi o0
i

a d, g d ∨ g 0
b a, d a ∧ ¬d 1
c b b 0
d c c 0
e b, c b ∧ c 1
f a a 1
g e, f e ∨ f 1

d
c 0

a

d,g 0
f

a 1
g

e, f 1
e

b, c 1
b

a, d 1
c

b 0

(a) The instance ⟨G, γ, O0⟩ (b) Social network G

Figure 4.2: This figure describes the social network and the agents’ initial opinions
in Example 4.2. Table (a) on the left-hand side gives every agent’s neighbourhood,
update function and initial opinion. On the right-hand side, Figure (b) depicts the
social network G where the box under an agent’s name gives their neighbourhood
of influencers and their initial opinion.

We now follow the synchronous diffusion ◦ on ⟨G, γ, O0⟩. Agent a updates their
opinion from 0 to 1 when either d or g are for the issue in the previous iteration. As
o0

g = 1 at time t = 1, we have that o1
a = 1. Next, we address the opinion update of

b at time t = 1, as o0
a = 0, we see that b’s update function evaluates to false; thus,

o1
b = 0. Following this, we arrive at ◦(G, γ, O0, 1) = O1 = (1, 0, 1, 0, 0, 0, 1). The

opinions at t = 1 are used at time t = 2 giving O2 = (1, 1, 0, 1, 0, 1, 0). Following
this process iteratively, we have:

O3 = (1, 0, 1, 0, 0, 1, 1); O4 = (1, 1, 0, 1, 0, 1, 1); O5 = (1, 0, 1, 0, 0, 1, 1).

4.3. The Complexity of Convergence 77

The instance is not stable using ◦ as O3 = O5 ̸= O4. Thus, the process would
alternate between O3 and O4. Note that the opinions of a, e, f and g are stable. △

4.2.1 Restricted Languages for Update Functions

We let L denote a language for update functions such that γ ∈ L if and only if γ

abides by the criteria of L. Generally, we assume that all Boolean formulas are in
DNF. In threshold models, update functions are compactly represented as quota,
i.e., i ∈ N has opinion ot+1

i = 1 if and only if
∑

j∈Ni
ot

j ≥ q for some quota q ∈ N.
Expressing such a quota as a propositional formula leads to an exponential blow-up
in constraint size when the quota depends on the input. As such, quotas like the
majority rule would give an exponential blow-up when q = n/2. Yet this is not the
case when the quota is a constant, e.g., needing only two approvals q = 2. We denote
the formulas corresponding to quota rules with Lquota. Another restriction on the
update functions we study is L+, where update functions are Boolean functions
that do not contain negated literals.

4.3 The Complexity of Convergence

This section examines the computational complexity of stability, i.e., the problem
of detecting if a given initial configuration leads to a stable state. To follow the
literature, we refer to the problem as convergence.

Convergence-L

Given: An instance of Boolean opinion diffusion ⟨G, γ, O0⟩ with every γ ∈ γ

such that γ ∈ L
Question: Does the diffusion process stabilise on ⟨G, γ, O0⟩?

To prove PSpace-completeness for Convergence-L, we use the reduction
given by Chistikov et al. [2020] for Convergence-Maj where Maj is the fam-
ily of majority updates. In their proof, however, Maj is represented compactly as
a quota rule for each agent. In contrast, Maj can only be represented as an expo-
nential Boolean formula (for example, listing all the possible majorities). We refer
to an instance of their model as ⟨G, Maj, O0⟩. We first prove a lemma that allows
us to translate an instance of ⟨G, Maj, O0⟩ into a Boolean network in polynomial
time by adding some dummy agents.

Lemma 4.1. For every majoritarian opinion diffusion instance ⟨G, Maj, O0⟩ we
can create a Boolean opinion diffusion instance ⟨G′, γ, O′0⟩ in O(n3) time that con-
verges exactly when ⟨G, Maj, O0⟩ does.

Proof. This proof uses the connection between quota rules and budget constraints.
We consider budget constraints on issues with unary weights. For some budget b, a
truth assignment on the issues will be consistent with the constraint when less than
or equal to b issues are accepted. Note that quota rules are made true if there are

78 Chapter 4. Boolean Opinion Diffusion

x
γMaj 1

w
γMaj 1

y
γMaj 0

c3
γ=¬y 0

c2
γ=¬x 0

c4
γ=¬x 0

c1
γ=¬w 0

c5
γ=¬y 0

c6

c1 0
r1

c2∨c3 0

r3
c5 0

r2
c4 0 c8

r2∧r3 0

c7
c1∧c6 0

c9
c7∨c8 0

c10
¬c9 1

r∗
γ=c10 1

z
γ=dc 1

each path is of length k

Figure 4.3: This diagram shows how to create a DNNF circuit to mimic the majority
update function of agent z who is influenced by w, x and y. The circuit nodes Cz
represent a circuit reflecting if at most one of their influencers is for the issue with
c9 giving this outcome. Thus, c10’s opinion reflects the majority opinion of z’s
influencers. The regulatory nodes ensure that each path from the influencers to z
is of length k, either within the circuit (as seen by r1, r2 or r3) or the nodes which
can appear between c10 and r∗ (represented by the dotted line).

at least the quota number of acceptances, while budget constraints are true when
there are less than a given number of acceptances. Hence, the negation of a quota
rule is a budget constraint on issues with unary weights.

Our proof relies on the fact that every budget constraint can be translated into
Boolean circuits in decomposable negation normal form (DNNF) in polynomial
time [De Haan, 2018]. A circuit has leaf nodes labelled with either ⊤, ⊥, x, ¬x for
any variable x. Furthermore, each internal node is labelled with ∧ or ∨ dictating
the operation performed on its children’s values to determine its own value. A
DNNF circuit must be directed, acyclic, and have a single root. Moreover, for every
conjunction in the circuit, each of its conjuncts cannot share variables. Finally, note
that any budget constraint over a set of costed issues I and budget limit B can
be represented by a DNNF circuit in B + |I|-time [De Haan, 2018, Theorem 16].
A clear connection to Boolean opinion diffusion can be made where parent nodes
are influenced by their children with respect to their labels. Thus, translating a
node from a DNNF circuit into a Boolean network will let its children become its
influencers and its label become its update function. Furthermore, the circuit’s leaf
nodes either represent an accepted or rejected issue (negation). Thus, the input of
a circuit is the opinions of an agent’s influencers.

We use these DNNF circuits to encode the majoritarian opinion diffusion in
our Boolean setting (moving from ⟨G, Maj, O0⟩ to ⟨G′, γ, O′0⟩). We create dummy
agents between each agent i ∈ N from G and their in-neighbours Ni ̸= ∅ (recall
that if Ni = ∅, their opinions never update). These dummy agents are either part
of a DNNF circuit Ci or are regulatory agents in Ri. The dummy agents in Ci

allow the final agent in the circuit’s opinion to reflect the majority opinion of i’s in-

4.3. The Complexity of Convergence 79

neighbours. The dummy agents in Ri ensure that every path from the agents in Ni

to i is of length k (the maximum path length of any required circuit). This ensures
that the opinions of the original agents in N will be updated simultaneously.

We give an example of this translation in Figure 4.3. It translates the majority
update function of z who is influenced by w, x and y via a DNNF circuit. The
dummy agents who are part of the budget limit circuit Cz ensure that the opinion
of c9 is 1 if at most one of the agents w, x or y has the opinion 1. Thus, as c10’s
update function represents the negation of c9’s opinion, c10’s opinion will represent
the majority opinion of w, x and y. The regulatory nodes Rz before c10 ensure
that the opinions of w, x and y reach c10 after the same number of steps. The
regulatory nodes from c10 to r∗ ensure this majority opinion reaches the original
agents of N at the same step.

When an agent has an even number of influencers (i.e., |Ni| is even), the strict
majority rule on Ni requires a different budget limit depending on the agent’s
current opinion. This would require two circuits for the two different budget limits.
The use of the circuit would depend on the current opinion of the agent.

The translation requires at most 2n circuits (at most 2 circuits per agent in
N). Each circuit being found in B + |I| = ⌊ |Ni|

2 ⌋ ± 1 + |Ni| time. Hence, at most
O(2n2) time is required to build every circuit, including adding the regulatory
nodes. The initial opinions of these agents are the final information needed to
create ⟨G′, γ, O′0⟩. All original agents retain their initial opinions. If the dummy
agents of agent i appear before the final circuit agent (c10 in Figure 4.3), then they
have the opposite initial opinion to agent i, 1 − o0

i . All subsequent dummy agents
(c10 and the dummy agents coming after c10 in Figure 4.3) have the same initial
opinion o0

i . This translation can be found in polynomial time.
Claim: For any step t and any ℓ ∈ [1, k] (where k is the largest depth of any Ci),

it is the case that Ot
i = O

′((t−1)k+ℓ) mod k
i always holds for any non-dummy agent

i ∈ N .
We prove this claim by induction.
Base Case: Starting when t = 0, ⟨G, Maj, O0⟩ has the initial opinions O0, we

need to check that in the first k steps (ℓ ∈ [1, k]) of ⟨G′, γ, O′0⟩ that for all i ∈ N
that o′ℓ

i = o0
i . In the first k steps of ⟨G′, γ, O′0⟩, the initial opinions of an agent’s

influencers in G have not reached them yet. This is due to their being k agents
between i and the agents in Ni, namely the agents in Ci and Ri. Secondly, the
opinion of i will not change before then due to the initial opinions of the dummy
agents being chosen so that they will not change i’s opinion.

Inductive Hypothesis: The inductive hypothesis assumes that for all previous
steps t and for any ℓ ∈ [1, k] that ot

i = o
′((t−1)k+ℓ) mod k
i . We now show this for

t + 1.
Inductive Step: At the step kt of ⟨G′, γ, O′0⟩, we see that for an arbitrary agent

i ∈ N that their influencers in Ni will influence the leaf nodes of Ci. By the
inductive hypothesis, we know that the opinions of these agents from Ni have been
static for the last k iterations. The opinions of the agents in Ni update at time kt.

80 Chapter 4. Boolean Opinion Diffusion

Thus, the update of their opinions will only affect the opinion of i after k steps, as
this is the number of agents between i and Ni. Thus, o′kt+ℓ

i is static for the next k

steps.
By the previous claim, when ⟨G′, γ, O′0⟩ is built from ⟨G, Maj, O0⟩, then either

both or neither will converge. The isolated nature of the dummy agents (as (Ci ∪
Ri) ∩ (Cj ∪ Rj) = ∅ for any i ̸= j ∈ N) means that their opinions only update to
update the non-dummy agents. Due to the periodic nature of opinion updates in
⟨G′, γ, O′0⟩ when there is no new input to the circuit, the opinions of the dummy
agents Ci ∪ Ri also do not change. Thus, neither does the opinion of i.

Finally, this process can be completed in O(n3) time: O(2n2) time is needed to
build the circuits; O(n3) time is needed to alter all of the circuits to be of the same
length; then at most O(nk) time is needed to add the remaining agents in Ri.

Proposition 4.1. Convergence-L is PSpace-complete.

Proof. To show membership of Convergence-L in Pspace, we need to ensure that
the problem requires no more than polynomial space. We require two vectors with
n entries, the first storing the agents’ current opinions and the second storing the
updated opinions which use the current opinions. Furthermore, we have a counter
that counts the number of iterations completed in the diffusion process. This counts
maximally to 2n + 1, which can be represented with a polynomial amount of space,
n + 1 bits when writing the number in binary. In addition, we need a polynomial
amount of space to compute each agent’s update function. Since model checking of
Boolean functions can be done in polynomial time, it can also be done in polynomial
space. The answer is a “yes” when the two vectors are equal. However, the answer
is “no” when the counter has reached 2n + 1. At this point, we are sure there is a
cycle among the opinions. Thus, Convergence-L is in Pspace.

To prove Pspace-hardness for Convergence-L, we reduce from the problem
Convergence-Maj which was shown to be Pspace-complete by Chistikov et al.
[2020, Theorem 1]. The reduction is provided by Lemma 4.1, which shows that we
can translate every majoritarian opinion diffusion to Boolean opinion diffusion in
polynomial time.

As Convergence-L is in PSpace and Pspace-hard, we can conclude that
Convergence-L is Pspace-complete.

Remark 4.1. A consequence of Proposition 4.1 is that checking the necessary and
sufficient stability conditions given by Christoff and Grossi [2017b, Lemma 3] is a
Pspace-complete problem.

We study another decision problem from Chistikov et al. [2020], asking if there
is an initial set of opinions for a social network such that the process does not
stabilise.

Guarantee-Convergence-L

Given: A network G and γ such that for all γ ∈ γ, γ ∈ L
Question: Is there an O0 such that ⟨G, γ, O0⟩ does not stabilise?

4.4. Asynchronous Updates 81

Proposition 4.2. Guarantee-Convergence-L is PSpace-complete.

We provide a proof sketch as it is similar to the proof of Proposition 4.1.

Proof Sketch. Membership of Guarantee-Convergence-L in PSpace uses the
basic idea used for proving membership in Proposition 4.1. The only difference is
that we must repeat the process for all initial opinions until one stabilises. Hence,
we store an extra vector with the current initial set of opinions in a vector with n

entries. A “yes” answer is found when the diffusion process is shown not to stabilise
on some initial set of opinions. A “no” answer is found when all possible initial
opinions have been shown to stabilise. Note that both can be done with polynomial
space. Thus, Guarantee-Convergence-L in PSpace.

A similar reduction can obtain hardness to the one in Proposition 4.1 using
Theorem 2 from Chistikov et al. [2020]. Hence, Guarantee-Convergence-L is
PSpace-complete.

Remark 4.2. Convergence-L and Guarantee-Convergence-L are in P when
the network is restricted such that for every i ∈ N we have that |Ni| ≤ 1. This
relates to the correspondence between opinion diffusion and liquid democracy ob-
served by Christoff and Grossi [2017a].

Remark 4.3. To our knowledge, this result has yet to be shown in the context of
Boolean networks. The closest result previously studied was checking if an agent’s
opinion is stable when updates happen block-sequentially, which is a PSpace-
complete problem [Goles et al., 2016]. Hence, our results are potentially useful
for applications of Boolean networks. For example, checking if there is a fixed point
in a gene regulatory network starting from a particular initial state.

4.4 Asynchronous Updates

This section extends the asynchronous majoritarian opinion diffusion model results
from Bredereck and Elkind [2017] to see if they still hold in our model. In particular,
they give an asynchronous procedure to find a sequence of agents such that the
diffusion process stabilises on a profile of opinions and maximises the agreement
on the issue. We now extend our model to be able to account for asynchronous
updates.

Following the notation of Bredereck and Elkind [2017], we let σ ∈ 2N × · · ·× 2N

be the sequence in which the updates happen. Note that when σ = (N , · · · , N),
we regain the synchronous model (all agents updating simultaneously). Generally,
asynchronous updates ensure that every entry in σ is a singleton (one agent updating
at a time). Most cases between these two extremes relate to block sequencing,
studying when subsets of agents can update their opinions synchronously [Goles
et al., 2016]. We slightly abuse notation by letting ◦ denote the asynchronous
update function, which takes an instance ⟨G, γ, O0⟩ and a sequence σ and returns
a profile of opinions O|σ| found by following σ. Thus, ◦[⟨G, γ, O0⟩, σ] = O|σ|. If

82 Chapter 4. Boolean Opinion Diffusion

we want to look at step t of this sequence, we let ◦[⟨G, γ, O0⟩, σ, t] = Ot. One can
distinguish an asynchronous update from a synchronous update by the presence of
σ in the input.

Bredereck and Elkind [2017] show that when all agents use the majority update
function, an asynchronous update sequence always exists such that the process
stabilises. However, this does not hold in our general model due to the possibility
of negations in the update functions.

Proposition 4.3. For some ⟨G, γ, O0⟩, there may exist no σ such that
◦[⟨G, γ, O0⟩, σ] = O|σ| where O|σ| is stable.

Proof. Consider the following counter-example with no stable profiles. Let N =
{a, b} with update functions γa = b and γb = ¬a. We let the initial opinions be
O0

a = 1 and O0
b = 0. Consider the following profiles of opinions for x ∈ {0, 1}:

(x, x): this is not stable as b wants to update their opinion to 1 − x;

(x, 1 − x): this is not stable as a wants to update their opinion to 1 − x.

As there is no stable profile of opinions for this social network, this entails that
there is no sequence that leads to a stable profile of opinions.

Proposition 4.3 is a negative result showing that when the update functions
contain negated literals, there is no longer a guarantee of a stable outcome. How-
ever, we show that this is no longer true when restricting update functions to L+.
Although we focus on L+, an analogous result can be shown when update functions
only contain negated literals.

Bredereck and Elkind [2017] look at sequences that not only stabilise the diffu-
sion process but also maximise or minimise the number of 1s in the stable profile,
namely, the optimistic or pessimistic updates. An update sequence is optimistic
(respectively, pessimistic) if it leads to a stable profile of opinions and maximises
(respectively, minimises) the number of 1s in the final state. We now show that
Proposition 1 from Bredereck and Elkind [2017] extends to our model when update
functions contain only positive Boolean functions.

Proposition 4.4. For every instance of Boolean opinion diffusion ⟨G, γ, O0⟩ with
every γ ∈ γ such that γ ∈ L+, there exists an optimist (resp. pessimistic) update
sequence σ such that (i) σ is asynchronous, (ii) |σ| ≤ 2n, (iii) every agent i ∈ N
changes their opinion at most twice, (iv) σ can be computed in O(ℓn2) time (where
ℓ is the maximum time for model checking for any γi ∈ γ), (v) if σ leads to the
stable collective opinion O|σ|, then every other optimistic (resp. pessimistic) update
sequence σ∗ also gives O|σ∗|.

Proof. We emphasise that the following proof follows the same steps and is very
similar to the proof of Proposition 1 from Bredereck and Elkind [2017], which was
in turn inspired by a similar proof from Chierichetti et al. [2013]. We first give
the procedure for the optimistic update, which has two phases. Note that the

4.4. Asynchronous Updates 83

pessimistic update takes two steps in the opposite order. Then, without loss of
generality, we only give the proof sketch for the optimistic update, as the proof for
the pessimistic update is very similar.

We initially start with an empty sequence σ and proceed with the following
two phases, only moving to phase two when there are no more changes available in
phase one:

1. If ot
i = 0 and Ot

↾Ni
⊨ γi then append σ with {i} and let ot+1

i = 1;

2. If ot
i = 1 and Ot

↾Ni
⊨ ¬γi then append σ with {i} and let ot+1

i = 0.

This procedure is (i) asynchronous, as only a single agent’s opinion is changed at any
time. (ii) and (iii) are also true as each agent can only have their opinion changed
once in each phase. Thus, each agent can maximally have their opinion changed
twice in the sequence; as a result, the sequence’s length is such that |σ| ≤ 2n.

We now show (iv) that the procedure terminates in O(ℓn2) time. We let ℓ be
the maximum time required to check whether an opinion should be updated. This
is model-checking and can be done in a polynomial time. In each phase, there are at
most n iterations where at each step t we have to check all agents with the opposite
opinion. This is at most n− t checks, each taking ℓ steps. Thus, one phase can take
at most O(ℓn(n+1)

2) time. Thus, both phases can be computed in O(ℓn2) time.
For (v), we first show that the procedure leads to a stable profile of opinions.

We assume that there is an agent i ∈ N who wants to update their vote after the
sequence given by the procedure to gain a contradiction. We now study two cases.
The first case is if O

|σ|
i = 1 and the second is if O

|σ|
i = 0. If O

|σ|
i = 1 yet Ot

↾Ni
⊨ ¬γi,

then the procedure is not over as i’s opinion would need to be updated at this point
in phase 2. On the other hand, if O

|σ|
i = 0 yet Ot

↾Ni
⊨ γi, then it would have also

been the case at the end of phase 1 (as γi ∈ L+, there is some cube of γi such that
all of these neighbours have the opinion 1, which would have also been the case
at the end of phase 1). Thus, at the end of phase 1, i’s opinion should have been
updated to 1. In both cases, we have reached a contradiction and the procedure
always leads to a stable profile of opinions.

Finally, we need to show that any other optimistic sequence σ∗ gives the same
profile of opinions, ◦[⟨G, γ, O0⟩, σ] = ◦[⟨G, γ, O0⟩, σ∗]. We show this via the fol-
lowing two cases: first, that every opinion changed from 0 to 1 in the sequence σ∗

was also flipped under σ; second, that every vertex flipped from 1 to 0 under σ

is also flipped under σ∗. As the two cases are similar, we only give proof of the
first case. We prove the first case via a contradiction. Assume that σ and σ∗ do
not give the same profile of opinions. We let i∗ ∈ N be the first agent such that
their opinion was changed from 0 to 1 under σ∗ (at step k) yet not under σ. By
assumption, for all steps k′ < k, the agents’ opinions changed from 0 to 1 under
σ∗ were also changed in σ as i∗ was the first agent with a differing opinion. Thus,
◦[⟨G, γ, O0⟩, σ∗, k − 1] is such that Ok−1

↾Ni∗ ⊨ γi∗ . Therefore, if enough neighbours
of i∗ have the opinion 1 such that i∗ can change their opinion to 1, then in phase

84 Chapter 4. Boolean Opinion Diffusion

1 of σ, i∗’s opinion would be flipped from 0 to 1. Therefore, we have reached a
contradiction, concluding that (v) is true.

4.5 Multi-Agent Delegations as Opinion Diffusion

Following the work of Christoff and Grossi [2017a], we study the connection between
opinion diffusion and delegative democracy. In liquid democracy, an agent can
either vote directly or delegate their vote to another agent, who can transitively
delegate their vote and any votes they have received to another agent. Thus, a
delegation can be seen as an agent influenced by their delegate. There are, however,
some differences between the two models. For instance, delegating agents in liquid
democracy typically have no initial opinion and agents who have an initial opinion
(a direct voter) are not influenced by other agents.

Christoff and Grossi [2017a] were the first to make the connection explicit be-
tween liquid democracy and opinion diffusion for the case of delegations to a single
agent. We extend this to delegative democracy models with multi-agent delegations
in line with Boolean networks.

In Chapter 2, we proposed a model where ballots allow for multi-agent ranked
delegations. This model extends liquid democracy in two regards: first, an agent’s
delegation can use the votes of many other agents; second, ballots can contain
ranked delegations to avoid delegation cycles. We will study a restricted version
of this model that does not include ranked delegations. Consider a set of N =
{1, · · · , n} agents (or voters) who vote on a single binary issue. Each agent i ∈ N
gives a ballot:

Bi ∈ {(Si, Fi) | Si ⊆ N \{i}, Fi : Si → {0, 1}} ∪ {0, 1}.

Thus, every agent either delegates or votes directly. Note that Si is a subset of
agents acting as i’s delegates whose votes determine i’s according to the Boolean
function Fi.

In Chapter 2, we defined six unravelling procedures that take the agents’ ballots
and return a profile of votes by resolving delegations. All of these procedures are
equivalent when considering ballots without ranked delegations. Thus, we refer to
them as Unravel. Unravel iteratively adds votes from delegations synchronously,
stopping when no more votes can be added from one iteration to the next.

We now translate multi-agent delegative democracy into our synchronous
Boolean opinion diffusion model as described in Section 4.2. The set of agents
remains the same N . The edges of G are determined by the agents’ delegates; thus
E = {(j, i) | j ∈ Si}. We introduce a third opinion ∗ representing abstention to
allow the models to align. We now introduce a language for the update functions
in this setting to account for the new ternary domain of opinions. We say an up-
date function γ ∈ Lupdate∗ if γ : {0, 1, ∗} → {0, 1, ∗} and for O ∈ {0, 1, ∗}|V ar(γ)|

computing γ(O) can be done in polynomial time. This is equivalent to finding a
necessary winner of a Boolean function on a partial assignment [Konczak and Lang,

4.5. Multi-Agent Delegations as Opinion Diffusion 85

if Bi = 1 O0
i = 1; γi = ⊤

if Bi = 0 O0
i = 0; γi = ⊥

if Bi = (Si, Fi) O0
i = ∗; γi = Fi

Ot+1
i =

1 if Ot

↾Ni
⊨ γi;

0 if Ot
↾Ni

⊨ ¬γi;
∗, otherwise.

Table 4.1: For i ∈ N , the left-hand-side table gives i’s initial opinion and update
function from their ballot; on the right-hand-side, it shows how to compute a dele-
gating agent’s opinion update.

2005]. For example, the necessary winner of a Boolean function in complete DNF2

can be computed in polynomial time and would fall into this category (as shown
in Proposition 2.1). On the left-hand side of Table 4.1, we see how we translate an
agent’s multi-agent delegative democracy ballot into an initial opinion and update
function. Recall that if an agent’s update function is ⊤ or ⊥, they do not have any
influencers.

For a delegating agent i ∈ N , their update function γi = Fi can take as input
{0, 1, ∗} even though γi is represented as a propositional formula.3 The right-hand-
side of Table 4.1 shows how to compute their opinion when the input of γi can
contain abstentions, Ot

↾Ni
∈ {0, 1, ∗}|Ni|.

Following the diffusion process described in Section 4.2, we prove a lemma that
shows that the diffusion process always terminates in a stable state.

Lemma 4.2. Let ⟨G, γ, O0⟩ be such that γ ∈ Lupdate∗. If at some time t we have
that Ot

i = v ∈ {0, 1}, then Ot′
i = v for all steps t′ > t.

Proof. We prove this lemma by induction on the step t, showing that if Ot
i ∈ {0, 1},

then it changes for no t′ > t.
Base Case: As O0

i ∈ {0, 1}, this means that γi = ⊥ or ⊤, respectively. As
their update functions are constant, their opinion remains static at all steps t ≥ 1,
Ot

i = O0
i .

Inductive hypothesis: For some step t, every i ∈ N such that Ot
i ∈ {0, 1}, their

opinion does not change in any subsequent step, Ot′
i = Ot

i for all t′ > t.
Inductive step: We want to show that given the inductive hypothesis is true at t,

it remains true at step t+1. By assumption, we know that all agents with an opinion
of 0 or 1 in Ot are such that their opinions will not change in future steps. For the
agents in S ⊆ N such that S = {i | Ot

i = ∗ and Ot+1
i ∈ {0, 1}}, we want to show

that for each i ∈ S that their opinion will not change after t + 1. For an arbitrary
j ∈ S, we assume that Ot+1

j = 1 without loss of generality. Therefore, Ot
↾Nj

⊨ γj .
We let Vj ⊆ Nj be the agents of Nj such that they have a non-abstaining vote in

2The necessary winner of an update function γ in complete DNF is 1 if and only if there exists
at least one cube of the formula where every literal is true, and the necessary winner is 0 if and
only if every cube of the formula is made false by at least one literal.

3Note the similarities between this way of resolving delegations and in Section 3.6.1 where we
allowed for abstentions in the domain of alternatives and issue-wise delegation cycles. In both
settings, necessary winners are used to avoid the problem of partial binary truth assignments. The
difference between them is that here we are interested in a single issue, whereas in Section 3.6.1,
we are interested in multiple issues.

86 Chapter 4. Boolean Opinion Diffusion

Ot, hence, that Ot
↾Vj

⊨ γj . By our inductive hypothesis, the votes of the agents in
Vj will not change after time t. As j’s vote changes at this step, a necessary winner
of γj was found from the votes in Vj . As no agent’s vote in Vj will change, neither
will the necessary winner of γj , no matter the votes of the agents in Nj\Vj . As j

was chosen arbitrarily, the votes of all agents in S do not change after t + 1. Our
inductive hypothesis has been shown.

From Lemma 4.2, we see that the process terminates as only a finite number of
opinion updates can be made.

Corollary 4.1. The diffusion processes terminate on ⟨G, γ, O0⟩ when γ ∈ Lupdate∗.

Although the process terminates, we remark that this does not necessarily mean
that all agents have an opinion in {0, 1}. Furthermore, the outcome found by the
diffusion process is the same as Unravel. As Unravel terminates in polynomial
time (see Proposition 2.4), we now show that the diffusion process also does. We let
Terminate-L∗ be the functional problem that given an instance ⟨G, γ, O0⟩ with
γ ∈ Lupdate∗ finds the stable profile of opinions found by the diffusion process.

Proposition 4.5. Terminate-L∗ is in P.

Proof. Recall that finding a necessary winner of a γ ∈ Lupdate∗ can be done in
polynomial time; let ℓ be the maximum amount of time required for any γ ∈ γ.
Lemma 4.2 tells us that when an opinion is in {0, 1}, it does not change. Thus, at
most n diffusion iterations, all agents will have their update function checked for a
necessary winner. Therefore, the process terminates in O(n2ℓ) time.

Proposition 4.5 shows that our diffusion process can unravel a multi-agent del-
egation profile in polynomial time, giving the same computation complexity bound
as Unravel (Proposition 2.4).

4.5.1 Control in Multi-Agent Delegation

One common area of research in opinion diffusion is opinion control [Akutsu et al.,
2006, Langmead and Jha, 2009]. We extend this to our model of opinion diffusion
when focusing on multi-agent delegative democracy. This section focuses on the
computational complexity of being able to change the outcome of the collective
decision by bribing a given number of agents to change their votes. Here, we look
at ensuring that the collective outcome is for the issue. Note that the problem when
ensuring that the collective outcome is against the issue is equivalent. We focus on
the collective outcome being determined by a quota rule while the update function
remains expressed as propositional formulas in Lupdate∗, i.e., given an assignment
O ∈ {0, 1, ∗}|V ar(γ)|, then γ(O) can be computed in polynomial time. Moreover, by
an instance ⟨G, γ, O0⟩ reflecting multi-agent delegative democracy, we mean that
from a set of agents N who give a profile of multi-agent delegations as B, the
translation (as given at the beginning of the section) has been undertaken to obtain

4.5. Multi-Agent Delegations as Opinion Diffusion 87

G, γ, and O0. Hence, G = (N , E) with E = {(j, i) | j ∈ Si} and the pair γ and O0

are found by the description given in Table 4.1.

Quota-Control

Given: An instance ⟨G, γ, O0⟩ reflecting multi-agent delegative democracy
such that for all γ ∈ γ we have that γ ∈ Lupdate∗ and constants k ∈ N
and q ∈ [0, n]

Question: Is there a D ⊆ N such that |D| ≤ k and for all i ∈ D changing
γi = ⊤ and O0

i = 1 gives a stable profile of opinions OT such that∑
oi∈OT

oi ≥ q?

Informally, Quota-Control asks if there is a subset of agents D, who by
bribing them to change their ballot to be for the issue means that there are at least
q agents in the stable profile of opinions in favour of the issue.

Proposition 4.6. Quota-Control is an NP-complete problem.

Proof. Quota-Control can be shown to be in NP by checking a certificate in
polynomial time. The certificate lists the agents in D whose update function and
initial opinion will be changed to represent a direct vote for the issue. We make
these changes to the instance, giving ⟨G′, γ ′, O′0⟩. As shown in Proposition 4.5, the
diffusion process on such an instance terminates in polynomial time. Then, it is
required to check if the stable profile of opinions on termination exceeds the quota.
Therefore, a certificate can be checked in polynomial time, and Quota-Control
is in NP.

We show NP-hardness of Quota-Control by giving a reduction from the NP-
complete problem Feedback Vertex Set, FVS [Karp, 1972]. FVS takes as input a
directed graph G = (V, E) and k ∈ N and then asks if there is a subset X ⊆ V such
that |X| ≤ k and the remaining graph when only considering the vertices V \X is
cycle-free.

The translation of FVS to our problem lets the nodes remain the same N = V

and for each i ∈ N , Ni is determined by E. Each agent’s update function depends
on their neighbourhood: for each i ∈ N if Ni = ∅ then O0

i = 1 and γi = ⊤;
else O0

i = ∗ and γi =
∧

j∈Ni
j. Note that the update functions of each delegating

agent will update to 1 only when every one of their neighbours has the opinion 1.
Otherwise, it will be ∗. Note that no agent’s vote can be against the issue as no
agents have the initial opinion of 0 and there are no negations in the delegation
functions. The quota represents unanimity q = n, i.e., the collective decision is 1
only when there is a consensus.

First, assume that we have a solution to FVS, and we want to show that there
is also a solution to Quota-Control. Given X, we change the update functions
and the initial opinions of the agents in X. As X is a solution to FVS, we see
that the remaining network is cycle-free and all votes can be assigned. As all direct
voters vote for the issue, every opinion on termination will be 1, and our quota

88 Chapter 4. Boolean Opinion Diffusion

q = n has been met. Next, we assume that there is no solution to FVS. Therefore,
more than k nodes need to be removed to make the network cycle-free. Thus,
no matter which agents’ initial opinions and update functions are changed, there
will still be at least one cycle. For each i in this cycle, no necessary winner will
be found for γi =

∧
j∈Ni

j. Their opinion remains as ∗, as no opinions can be 0
at any diffusion stage. Thus, a necessary winner can only be found when each
of the agents in i’s neighbourhood is in favour of the issue. Therefore, for every
agent still in a cycle, their opinion at termination is ∗. Thus, the quota cannot
be met and the final collective opinion is not 1. Therefore, there is no solution
either for Quota-Control. We have shown NP-hardness and membership for
Quota-Control. Thus, it is NP-complete.

This result is unsurprising given that an equivalent in majoritarian opinion
diffusion is known to be an NP-hard problem [Kempe et al., 2003] and manipulation
via bribery remains an intractable problem in this voting scenario.

4.6 Results from the Boolean Network Literature

This chapter connects the well-established research area of Boolean networks (BN)
and opinion diffusion. BN have impacted many different disciplines, such as cryp-
tography [Cardell and Fúster-Sabater, 2019], ecological complexity [Gaucherel et al.,
2017], and biomedical sciences, such as estrogen transcriptional regulation [Anda-
Jáuregui et al., 2019], and most notably, regulatory gene networks. The model
used in this paper aligns with standard BN; thus, many results can be translated
into our model with only a few details to be checked. The following remarks take
known results from the BN literature and rephrase them in terms of Boolean opinion
diffusion.

Remark 4.4. Akutsu et al. [1999] showed that a unique Boolean network can be
found in polynomial time from a sequence of opinion profiles when the number of
agents in any in-neighbourhood is bounded by some constant, |Ni| ≤ k for all i ∈ N
and k ∈ N.

Remark 4.5. Farrow et al. [2004] showed that finding a stable profile of opinions
for a Boolean opinion diffusion instance where the network is monotonic4 is NP-
complete.

One BN topic that is not widely studied in opinion diffusion is the effect of
negative influence. However, negative influence can be a key reason a network does
not stabilise, as seen in Proposition 4.3. We guide the reader to the survey from
Richard [2019] for an overview of positive and negative cycles in Boolean networks.

4Take any Boolean function F and any X ∈ {0, 1}|F | such that F (X) = 1, F is monotonic if
and only if F (X ′) = 1 still holds for any X ′ found by changing a single 0 entry in X to a 1. A BN
is monotonic if every Boolean function within it is also monotonic.

4.7. Conclusion and Future Work 89

Remark 4.6. Goles and Salinas [2010] showed that finding a stable profile of opinions
can be done in polynomial time when every cycle in the network G has an even
number of decreasingly monotonic arcs with respect to the update functions.

It may be sufficient for the opinion diffusion process not to stabilise in some
cases if it only cycles through a small number of profiles.
Remark 4.7. Akutsu et al. [2012] showed that in polynomial time, a profile of
opinions could be found that leads to a cycle among two profiles of opinions when
all γ ∈ γ are such that γ ∈ L∨ ∩ L+ (functions only containing positive literals and
disjunctions).

Fixed points are well studied in the BN literature; in our terminology, this
equates to whether a stable collection of opinions exists for a network.
Remark 4.8. Kobayashi [2019] showed that it is an NP-complete problem to check
if a stable collection of opinions exists for a Boolean opinion diffusion instance.

This remark follows from the fact that this problem is equivalent to checking
if there is a solution to an ILP where the set of constraints contains a constraint
γi(O↾Ni) = oi for each i ∈ N . In Section 4.3, we studied a similar problem, the
difference being that in Proposition 4.1, we ask if a stable state is coming from an
initial profile of opinions. The increase in complexity from NP to PSpace comes
from the fact that it is hard to verify if a stable profile of opinions can come from
a particular initial profile of opinions.

Boolean network control, as defined by Akutsu et al. [2006], asks if, from a given
set of agents whose opinions can be controlled, is it possible to gain a particular
profile of opinions OM in M steps by controlling only the given subset of agents.
Remark 4.9. Akutsu et al. [2006] showed that Boolean network control is an NP-
complete problem yet is polynomial when the underlying graph is a tree.

4.7 Conclusion and Future Work

This chapter has studied algorithmic problems from opinion diffusion on the model
given by Boolean networks. We have shown that it is PSpace-complete to recognise
whether a given initial state leads to stability in synchronous diffusion, generalising
a known result on majoritarian opinion diffusion. In contrast, when moving to asyn-
chronous diffusion, we showed that the existence of a diffusion sequence leading to
stability and maximising consensus could not be guaranteed for arbitrary Boolean
networks. However, we demonstrated its existence when negative influence is not
allowed. Finally, we showed that stability is guaranteed when a delegative voting
problem induces the influence structure. Moreover, we showed that influence max-
imisation is NP-hard in this restriction of the model. We also rephrased known
results from the Boolean network literature in terms of diffusion to showcase the
synergy of the two research subjects.

This chapter has opened several directions for future work. Perhaps the most
interesting is to explore the use of semi-tensor products in opinion diffusion, as

90 Chapter 4. Boolean Opinion Diffusion

they currently constitute one of the primary techniques used by recent research on
Boolean networks (see, e.g., Cheng [2007] and Cheng et al. [2010b]). We conjecture
that this will draw a parallel between our setting and using DeGroot processes
given by Christoff and Grossi [2017a]. Another area for future work is looking at
probabilistic BNs for opinion diffusion, particularly with respect to existing work
on control Akutsu et al. [2007].

Following a similar line of research as Akutsu et al. [1999] (see Remark 4.4), one
possible direction of future research is extracting BNs from a social network and
the opinions over time. For example, extracting the users’ update functions from
a real-world social network. This would aid in the understanding of how users are
influenced on digital democracy platforms and also how we should be modelling
influence, i.e., are quotas sufficient to model how humans update their opinions or
do we require more complex functions?

Chapter 5

Analysing Classical Liquid
Democracy

5.1 Introduction

This chapter returns to the classical setting of liquid democracy, where voters can
either vote directly on the issue or delegate their vote to another agent. Specifically,
we consider a set of agents N who can either vote directly on a binary issue {0, 1} or
delegate to another voter in N (or some subset of N). Within this model, we assume
that delegations are transitive and that cycles can occur. Therefore, delegations are
resolved by every voter receiving their ultimate delegate’s vote. If a voter is part of
a delegation cycle and has no ultimate delegate, then they receive an abstention.

This chapter focuses on new ways to analyse the classic model of liquid democ-
racy and understand its properties. Thus, we are interested in performing responsive
research, as described in Chapter 1. Section 5.2 does this by extending a priori vot-
ing power measures — which are well-studied in many different voting models —
to liquid democracy. These measures allow us to analyse the impact of introduc-
ing liquid democracy to weighted voting games, asking questions such as can all
voters affect the outcome of the vote? In Section 5.3, we study a different method
of analysing the classical model of liquid democracy. This analysis starts from the
observed behaviour of voters in instances of liquid democracy platforms, where del-
egations have a slightly different purpose. Instead of delegations being given for a
one-off election, they are chosen to be used for multiple votes on different issues
when voters cannot vote on all issues directly. For instance, Behrens et al. [2022]
illustrates the observed voter behaviour where they intentionally create delegation
cycles when delegations are given for more long-term purposes. Hence, this model
aims to characterise the observed voter strategy in a game-theoretic model.

5.2 A Priori Voting Power in Liquid Democracy

Voting games have been used extensively to study the a priori voting power of voters
participating in an election [Felsenthal and Machover, 1998]. A priori voting power
refers to the power granted solely by the rules governing the election process to a
voter. Notably, these measures do not consider the content of the bill being voted
on nor the affinities between voters. It is instead used to quantify the distribution
of power in different voting models, allowing the impact of their structure on the
collective decision to be compared. The class of I-power measures (where I denotes

92 Chapter 5. Analysing Classical Liquid Democracy

influence) calculates how likely a voter will influence the outcome. Several I-power
measures have been defined, the most well-known being the Penrose-Banzhaf mea-
sure in simple voting games [Banzhaf III, 1964, Penrose, 1946].

In simple voting games, an assembly of voters must make a collective decision
on a proposal, and each voter may either support or oppose the proposal. Each
voter in the assembly can have a different voting weight, which affects their impact
on changing the collective decision. For example, it was shown, by using I-power,
that the European Union’s commission in 1958 had assigned each country’s voting
weights relative to their population size in such a way that Luxembourg’s voting
power was zero. Thus, Luxembourg was a dummy agent in this election as their
vote never affected the outcome [Felsenthal and Machover, 2004].

As a measure of a priori voting power, the Penrose-Banzhaf assumes that vot-
ers vote independently of one another and are equally likely to vote for or against
the proposal. Given this probabilistic model of the voters’ behaviour, it then mea-
sures the probability that a voter can alter the election’s outcome. As the study
of simple voting games has been extended to account for complex and realistic
models, so has the notion of I-power. Such extensions include taking into account
abstention [Freixas, 2012], using multiple levels of approval [Freixas and Zwicker,
2003], or coalition structures [Owen, 1981]. These new power indices are crucial in
the development of voting models, as they allow the structure of the models to be
understood in terms of the voters’ criticality in deciding the outcome. However,
election frameworks with delegations have been largely unexplored so far in terms
of a priori voting power and thus make for an interesting research direction.

5.2.1 Contribution

This section highlights the collaborative work undertaken with Théo Delemazure
and Hugo Gilbert who are both at LAMSADE, Université Paris-Dauphine (see
[Colley et al., 2023a,b] for complete details of proofs and experimental details) on
extending the simple voting games to model elections where voters can delegate
to one of their neighbours in a social network, modelled as any digraph G. We
designed a new I-voting power measure to quantify voters’ criticality in each setting.
We argue that our power measure is a natural extension of the Penrose-Banzhaf
measure, and we illustrate the intuitions behind it through various examples. When
G is an arbitrary digraph, we show in this section that the computation of our
measure is #P-hard, even when voters’ weights are polynomially bounded in the
number of voters. Outside of this section, in Colley et al. [2023c], we also looked at
restrictions on the underlying social network that allow the measure to be computed
in pseudo-polynomial time. These specific underlying networks represented proxy
voting (G is a complete bipartite graph) and in an unrestricted version of liquid
democracy (G is complete).

5.2. A Priori Voting Power in Liquid Democracy 93

5.2.2 Related Work

The inspiration for our line of research comes from the overview given by Felsenthal
and Machover [1998].1 They introduce each of the well-known power indices and
measures, such as those presented by Shapley and Shubik [1954], Penrose [1946],
Banzhaf III [1964] and Coleman [1971], as well as giving the motivation behind each
of them. In this section, we will give some background on the different measures of
voting power and the extensions that have already been explored. Finally, we look
at the only other paper that inspects measures of voting power in delegative voting.

Voting Power. Measuring a voter’s voting power in a specific setting quantifies
how critical a voter is in casting the deciding vote in the election. For example, a
voter i’s voting power can be considered as the difference in probability of i voting
for the issue when the outcome is also for the issue and i voting for the issue when
the outcome does not accept the issue [Gelman et al., 2002]. We recommend the
following technical study from Lucas [1974] for an overview of voting power and the
work of Felsenthal and Machover [2005] for a historical overview; however, we give
an overview of some standard measures.

The most well-known voting power measure is the Shapley-Shubik measure
[Shapley and Shubik, 1954]; it quantifies a voter’s expected payoff, known as P-
power, unlike the other measures we will discuss. Measures of P-power and I-power
differ in their motivation. P-power measures quantify the frequency of a voter being
in the winning coalition and sharing the coalition’s utility between the members,
with those not receiving utility 0. In contrast, I-power is more policy-seeking in its
motivation and is therefore concerned with the voter’s stance on the issue. Hence,
they differ in measuring what they regard as an outcome: I-power concerns the
passing of a bill, whereas P-power is concerned with the shared power of the win-
ning coalition (thus the longevity of being able to determine the outcomes of the
votes). Hence, the Shapley-Shubik power index is defined as a restriction of the
Shapley value [Shapley, 1953] to simple voting games. This index can be seen as
the probability that a voter will be the last member to join a losing coalition to
make it a winning one.

I-power was independently given a mathematical explanation by Penrose [1946],
Banzhaf III [1964], and Coleman [1971]. By convention, it is usually called the
Banzhaf index, and we thus describe it through this lens. It considers the possible
combinations rather than permutations, as in the Shapley-Shubik index. Thus, the
Banzhaf measure (or absolute Banzhaf index) quantifies the power of an agent i by
counting how many profiles of the possible profiles changing i’s vote from 0 to 1
cause the outcome to change. The Banzhaf measure is denoted by β′, whereas the
Banzhaf index is the relative quantity denoted by β (found by normalising β′). Note
that the concept defined by Penrose [1946] is instead given by a ratio between the
voters’ power. Therefore, it compares the number of coalitions in which different

1The title of our publication [Colley et al., 2023c] is a nod to Chapter 8 of a book by Machover
and Felsenthal entitled "Taking abstention seriously” [Felsenthal and Machover, 1998].

94 Chapter 5. Analysing Classical Liquid Democracy

voters are critical. Whereas the measure introduced by Coleman [1971] rescales the
Banzhaf measure of voting power (see Remark 3.2.21 in [Felsenthal and Machover,
1998]).

Extending the Notion of Voting Power. Voting power measures were initially
defined on binary issues and would occasionally take into consideration abstentions.
However, the study of voting power measures has advanced with the study of voting
models, as the power measures need to be reassessed in each new model. One way
this is done is by generalising the domain of the available votes, such as including
abstentions or considering an issue with many possible alternatives instead of a
binary domain. Influenced by Felsenthal and Machover [2001], several authors
have studied probabilistic models of voting power with abstention and a binary
outcome [Freixas, 2012, Felsenthal and Machover, 1997]. Freixas and Lucchetti
[2016] extended the Banzhaf index in this setting, introducing two measures of
being positively critical. The first of these measures models changing a vote from
being in favour of the issue to abstention, and the second from abstaining on the
issue to being against it. Voting games with approvals form a subclass of voting
games with several levels of approvals in the input and output of the election [Freixas
and Zwicker, 2003].

Kurz [2014] extended simple voting games to allow agents to cast a ballot for
any real number between 0 and 1. They considered how the power indices could be
naturally extended in this setting. When considering this continuous and convex
voting space, they study the index for an a priori uniform distribution of votes and
distributions where the alternatives are not equally probable.

Owen [1988] extended the framework to allow the representation of the Shapley
value with multilinear equations and then went on to give the Banzhaf index in this
setting [Owen, 1975]. In this new framework, Owen [1981] studied these measures
of voting power, extending them further to account for some agents being more
likely to act together than others, moving away from the uniformity assumption.

Liquid Democracy. The closest work to ours is that of Zhang and Grossi [2021],
who study a version of the Banzhaf index in liquid democracy. For a given delegation
graph, their measure determines how critical an agent is in changing the outcome.
However, our work differs as we focus on a priori voting power, where no prior
knowledge is known about the agents, such as the delegation graph.2

5.2.3 The Model

Let V be a set of n voters participating in an election to decide whether some
binary proposal should be accepted. Each voter has different possible actions: they
may delegate their vote to another voter or vote directly, either for (1) or against
(−1) the proposal. A voter who decides to vote (respectively, delegate) on the

2In Appendix A.2 of [Colley et al., 2023a], we present a probabilistic model which can be used
to interpret the Banzhaf measure from Zhang and Grossi [2021] as a measure of I-power.

5.2. A Priori Voting Power in Liquid Democracy 95

issue will be termed a delegatee (respectively, delegator). An underlying social
network G = (V, E) restricts the possible delegations between the agents, hence
voter i ∈ V can only delegate to a voter in their out-neighbourhood NBout(i) = {j ∈
V | (i, j) ∈ E}. In our previous work, we studied two specific social networks: when
G is complete and when G is bipartite, where the former corresponds to the liquid
democracy setting when voters can choose any voter as their delegate and the latter
corresponds to proxy voting.

Definition 5.1. Given a digraph G = (V, E), a G-delegation partition D is a map
defined on V such that D(i) ∈ NBout(i) ∪ {−1, 1} for all i ∈ V . We let D be the set
of all such partitions and D−, D+, and Dv be the inverse images of {−1}, {1} and
{v} for each v ∈ V under D.

A direct-vote partition divides the voters so that each partition cell corresponds
to a possible voting option. We allow for abstentions to model situations where a
delegator does not have a delegatee voting on their behalf (e.g., due to delegation
cycles).

Definition 5.2. A direct-vote partition of a set V is a map T from V to the votes
{−1, 0, 1}. We let T −, T 0, and T + denote the inverse images of {−1}, {0} and {1}
under T .

A G-delegation partition D naturally induces a direct-vote partition TD by
resolving the delegations. First, we let voters in D− and D+ be in T −, and T +,
respectively. From this point, for some ◦ ∈ {−, +}, if v′ ∈ Dv and v ∈ T ◦, then
v′ ∈ T ◦. This continues until no more voters can be added to T + or T −. The
remaining unassigned agents abstain and thus are in T 0. This procedure assigns
agents their delegate’s vote unless it leads to a cycle; in this case, their vote is
recorded as an abstention.3

Next we define a partial ordering ≤ among direct-vote partitions: if T1 and T2
are two direct-vote partitions of V , we let: T1 ≤ T2 ⇔ T1(x) ≤ T2(x) for all x ∈ V .

Definition 5.3. A ternary (resp. binary) voting rule is a map W from the set
{−1, 0, 1}n (resp. {−1, 1}n) of all direct-vote partitions (resp. all direct-vote parti-
tions without abstention) of V to {−1, 1} satisfying the following conditions:

1. W (1) = 1 and W (−1) = −1 where 1 = (1, . . . , 1︸ ︷︷ ︸
×n

);

2. Monotonicity: T1 ≤ T2 ⇒ W (T1) ≤ W (T2).4

3Note that this returns the outcomes as Unravel as described in Section 4.5 and the same as
Unravel(#) from Chapter 2 for any # when ballots are restricted to classic liquid democracy
ballots.

4No ternary voting rule satisfies monotonicity, e.g., a weighted voting rule with an additional
quorum condition. However, we enforce this condition such that we must only look at the election’s
result to define a voter’s criticality when only they change their vote.

96 Chapter 5. Analysing Classical Liquid Democracy

j1 k1 ℓ1 m1

d2 e1 f1 g1 h−
1 i+

1

a−
3 b−

2 c+
1

Figure 5.1: The underlying network G used in Example 5.1. While all edges give us E, the
solid edges give us a valid G-delegation partition where the superscripts of + or − represent
delegatees’ direct votes for or against the issue, respectively. Each node’s subscript refers
to its voting weight.

Note that ternary (and binary) voting rules only use the direct-vote partition
to find an outcome, i.e., only the information of which agents voted directly or
indirectly for or against the proposal or abstained. Thus, these rules do not need
the delegations to find an outcome.

A ternary (resp. binary) voting rule is symmetric if W (T) = −W (−T), where
−T is the direct-vote partition defined by −T (x) = −(T (x)), for all x ∈ V . More-
over, for ease of notation, we may also use W (T +, T −) to denote W (T).

Weighted voting games. Weighted Voting Games (WVGs) express ternary vot-
ing rules compactly, with a quota q ∈ (0.5, 1] and a map w : V → N>0 assigning
each voter a positive weight. Given a set S ⊆ V , we let w(S) =

∑
i∈S w(i). In a

WVG with weight function w, we let W (T (V)) = 1 iff w(T +) > q × w(T + ∪ T −),
i.e., the proposal is accepted if the sum of the voters’ weights for the proposal is
greater than a proportion q of the total weight of non-abstaining voters; otherwise,
the proposal is rejected.

Example 5.1. Consider agents V = {a, b, · · · , m} connected by the underlying net-
work G as depicted in Figure 5.1. The solid lines give a valid G-delegation partition
D with D+ = {c, i}, D− = {a, b, h}, Da = {d}, Db = {e}, Dc = {f, g}, Dd = {j, k},
Dℓ = {m}, and Dm = {ℓ}. This G-delegation partition induces the following direct-
vote partition: T + = {c, f, g, i}, T − = {a, b, d, e, h, j, k}, and T 0 = {ℓ, m}. Consider
the voting rule W where q = 0.5 and that the voters have the following voting
weights: w(a) = 3, w(b) = w(d) = 2 and the remaining voters x ∈ V \{a, b, d} have
weight w(x) = 1. The proposal is rejected under this G-delegation partition as
w(T +) = 4 ≤ 15/2 = q · w(T + ∪ T −). △

We conclude this subsection with some notation. Given a set S, let Pk(S)
denote the set of k ordered partitions of S. By ordered partitions, we mean that
({1}, {2, 3}) should be considered different to ({2, 3}, {1}). Next, given a voting
rule W , a voter i ∈ V , and (S, T, U) three non-intersecting subsets of V \ {i}, we
define:

δW
i,−→+(S, T, U)= W (S∪U ∪{i}, T) − W (S, T ∪U ∪{i})

2 .

We say a voter i ∈ V is critical when they can affect the outcome of the vote.

5.2. A Priori Voting Power in Liquid Democracy 97

Thus, for three non-intersecting subsets of V \ {i}. We let S (resp. T) denote
the set of voters opposing (resp. supporting) the proposal through their vote of
delegation. We let U be the set of voters delegating both directly and indirectly
to i. Then we say that i is critical if and only if δW

i,−→+(S, T, U) > 0. We say a
voter i ∈ V is positively (resp, negatively) critical if by changing a positive (resp.
negative) vote to a negative (resp. positive) one, the outcome will also change from
being for to against (resp. against to for) the issue. In Example 5.1, we see that
agent a is critical in this G-delegation partition, as V \{a} is partitioned as such
S = {c, f, g, i}, T = {b, e, h} and U = {d} and thus δW

a,−→+(S, T, U) = 1−(−1)
2 = 1.

5.2.4 Modelling a priori voting power

We aim to measure a priori voting power in this setting. An agent’s voting power
is their probability of being able to affect the election’s outcome. With a similar
motivation to that behind the Penrose-Banzhaf measure, we invoke the principle of
insufficient reason. There are two ways of seeing this principle.

The global uniformity assumption. If there is no information about the pro-
posal or voters, we assume all G-delegation partitions are equally likely with prob-
ability Πi∈V

1
|NBout(i)|+2 . In Example 5.1, as |NBout(i)| = 2 for every i ∈ V and

|V | = 13, this means that every G-delegation partition occurs with probability
(1

4)13.

The individual uniformity assumption. The global uniformity assumption
is similar to a model in which each voter delegates with probability pi

d =
|NBout(i)|/|NBout(i)|+2 and votes with probability pi

v = 1 − pi
d = 2/|NBout(i)|+2. Under

this assumption, delegation (resp. voting) options are chosen uniformly at ran-
dom. This is consistent with the idea that we have no information about voters’
personalities, interests, or the nature of the proposal. Hence, voters should be
equally likely to support (probability py) or oppose (probability pn) the proposal,
i.e., py = pn = 1/2. Moreover, in ignorance of any concurrence or opposition of
interests between voters, we should assume that a voter’s choice of delegate is also
equally likely, i.e., the probability that a delegator i delegates to a voter j ∈ NBout(i)
is 1/NBout(i). The individual uniformity assumption is an extension of the global
uniformity assumption in which pi

d can be any value in [0, 1] dependent on |NBout(i)|,
such that pi

d = 0 when NBout(i) = ∅.
We study our model under this latter assumption of generality. We now define

the LD Penrose-Banzhaf measure of a voter i for a given underlying graph G when
considering that the probability of each G-delegation partition is determined by the
individual uniformity assumption.

Definition 5.4 (LD Penrose-Banzhaf measure). Given a digraph G = (V, E) and
a ternary voting rule W , the LD Penrose-Banzhaf measure of voter i ∈ V is defined

98 Chapter 5. Analysing Classical Liquid Democracy

as:

Mld
i (W, G) =

∑
D∈D

P(D)
W (TD+

i
) − W (TD−

i
)

2 ,

where P(D) is the probability of the G-delegation partition D occurring, and D+
i

(resp. D−
i) is the G-delegation partition identical to D with the only possible

difference being that i supports (resp. opposes) the proposal.

Mld
i quantifies the probability to sample a delegation partition where i is able

to alter the election’s outcome (formally stated in the following Theorem).5

Theorem 5.1. Given a digraph G = (V, E), a ternary voting rule W , and a voter
i ∈ V , we have that:

P(i is critical) = Mld
i (W, G).

Moreover, if NBout(i) = ∅ or W is symmetric, we have that:

P(i is positively critical) = Mld
i (W, G)/2

= P(i is negatively critical).

This proof relies on the fact that we are summing over the probability of each
D with respect to W (TD+

i
) − W (TD−

i
), which measures when the voter i is critical.

Recall that being positively critical means that changing a vote from for to against
will also change the outcome in the same direction (negatively critical is defined
similarly). Furthermore, this happens equally when NBout(i) = ∅ (the only option
is to vote either for or against the issue) or when W is symmetric.

For the second part of Theorem 5.1, the condition is necessary as if W reflects
unanimity, i.e., W (T) = 1 if and only if T = 1, then voters will be more likely to
be positively critical than negatively critical.6 Additionally, observe that the LD
Penrose-Banzhaf measure of voting power extends the standard Penrose-Banzhaf
measure (formalised in Proposition 5.1) and that its values are not normalised (i.e.,
summing over the agents does not yield 1). The corresponding voting power index
can be defined by normalising over voters.

Proposition 5.1. If pi
d = 0 for all i ∈ V , e.g., if E = ∅, then the LD Penrose-

Banzhaf measure of voting power is equivalent to the standard Penrose-Banzhaf
voting power measure.

Example 5.2. We return to the agents V = {a, · · · , m} from the previous example
with the same weights; however, we are in the LD setting where the underlying

5Full proofs can be found in Colley et al. [2023a].
6If the voting rule requires total agreement to accept the proposal, then voter i will be critical

if and only if all other voters agree on the proposal. Thus, the probability that i is critical while
voting directly or indirectly for the proposal is higher than i being critical while voting directly or
indirectly against the proposal.

5.2. A Priori Voting Power in Liquid Democracy 99

Table 5.1: Mld
x (rounded to 3 decimal places) for pd ∈ {0, 0.5, 0.9} for v = {a, · · · , m}

from Example 5.1 when considering a complete network.
Agent x ∈ V pd = 0 pd = 0.5 pd = 0.9

a: w = 3 0.511 0.424 0.696
b, d: w = 2 0.306 0.308 0.638

V \{a, b, d}: w = 1 0.148 0.212 0.568

network is a complete digraph, i.e., for each i ∈ V we have that NBout(i) = V \{i}.
In Table 5.1, we see the power measures of each agent where the probability of
delegating varies.

When pd = 0, we are in the standard weighted voting game case where all agents
vote directly. Thus, the probability of voting for the issue and the probability of
voting against the issue are equally likely, both happening with a probability of 0.5.

If pd = 0.5, a voter i delegates to voter j ∈ V \{i} with probability pd/|V |−1 = 1/24.
Moreover, these voters vote directly with probability (1−pd) = 0.5, and thus, for the
issue with probability 0.25 and against with the same probability. When this is the
case, those with less voting weight have their voting power measure increase. This
is due to the possibility of them gaining voting weight through receiving delegating.

Observe that when pd = 1, all agents are caught in delegation cycles and thus
T 0 = V . Hence, we study the case when pd = 0.9. Notice here that the voters’
voting power becomes closer together than when pd = 0 or pd = 0.5. This is
explained by the voting weight becoming less important in determining the outcome
when delegations are very likely. △

5.2.5 Hardness of Computation

Computing the standard Penrose-Banzhaf measure in WVGs without delegations is
#P -complete [Prasad and Kelly, 1990]. However, it can be computed by a pseudo-
polynomial algorithm that runs in polynomial time with respect to the number
of voters and the maximum weight of a voter [Matsui and Matsui, 2000]. We
show that the problem of computing the LD Penrose-Banzhaf measure is #P -hard
even when voter’s weights are linearly bounded by the number of voters. Hence, a
similar pseudo-polynomial algorithm is unlikely to exist in the LD setting with any
underlying graph. The proof uses an enumeration trick inspired by that of Chen
et al. (2010, Theorem 1).

Theorem 5.2. Given a digraph G = (V, E) and a WVG defined on V , computing
the LD-Penrose-Banzhaf power measure of a voter is #P -hard even when voter’s
weights are linearly bounded by the number of voters.

Proof. To prove this, we will give a Turing reduction7 from the #P-complete prob-
lem of counting simple paths in a graph [Valiant, 1979]. The problem takes a

7There are many types of reductions for counting problems. There are also parsimonious reduc-
tions and polynomial-time counting reductions. Using a Turing reduction allows for a polynomial
number of calls to a subroutine of our problem to solve the #P-complete problem.

100 Chapter 5. Analysing Classical Liquid Democracy

s

a

b c

d

t s

a

b c

d

t

z

s30

a1

b1 c1

d1

t1

z10

ℓ1m1 n1

G = (V, E) G′ = (V ′, E′) G′
1 = (V ′

1 , E′
1)

Figure 5.2: This figure gives an example of the reduction given in the proof of
Theorem 5.2. From left to right, we see the different stages of the reduction. The left
image shows an initial graph G for which we want to use the problem from Valiant
[1979] to count the number of paths from s to t. The middle graph G′ = (V ′, E′)
shows the pre-processing step where the incoming edges of s have been removed,
the outgoing edges of t have been removed, and the first dummy agent z has been
added. In these figures, dummy agents are indicated by a grey dashed circle around
them. Note that dmax = 2 in G′ and |V | = 6. The image on the right of the figure
shows one of the 6 elections created for this instance when k = 1 (the 6 instances
come from k = 1, · · · , 6). We see that three additional dummy agents are required
D1 = {ℓ, m, n} such that all agents in V \{t} can have dmax + k = 3 outgoing edges.
The subscripts for the nodes in G′

1 denote the agents’ voting that |V ′
1 | = 10.

directed graph G = (V, E) and nodes s, t ∈ V as input and returns the number of
simple paths from s to t in G.

Let G = (V, E) be a directed graph and s, t ∈ V two connected vertices of this
graph. For our problems to align, we will make some alterations to G as a pre-
processing step, yet retaining the correct outcome of the original problem. Thus,
we construct a second graph G′ = (V ′, E′) in which we remove every incoming edge
of s in E and every outgoing edge of t to get E′. We add a dummy node z with no
outgoing or incoming edges, giving V ′ = V ∪ {z}. See Figure 5.2 for an example of
how the reduction works on a specific instance of G.

Let dmax be the highest out-degree of any vertex in G′. For k ≥ 0, we let
G′

k = (V ′
k, E′

k) be the graph G′ with additional dummy agents Dk and additional
outgoing edges to Dk in order that every x ∈ V ′\{z, t} has out-degree dmax + k.
However, z and t have out-degree 0. Note that we only add a polynomial number
of vertices and edges by doing this.

Now, we will run |V | + 1 elections, one for each graph G′
k with k = 1, . . . , |V |.

For election k, we set w(s) = 3|V ′
k|, w(z) = |V ′

k| and w(x) = 1 for x ∈ V ′
k\{s, z}).

Observe that when node s is not in a cycle, they are always critical as w(s) >∑
i∈V ′

k
\{s} w(i) = 2|V ′

k| − 2 and the election’s outcome is determined by the vote
of s (the total voting weight in the network is 5|V ′

k| − 2). However, if s is in a
cycle, then the outcome of the election depends only on z’s vote as |V ′

k| = w(z) >∑
i∈V ′

k
\{s,z} w(i) = |V ′

k| − 2. Moreover, observe that z cannot be in a cycle as they

5.2. A Priori Voting Power in Liquid Democracy 101

have no outgoing edges. Thus, when s is not in a cycle, a vertex x /∈ {z, s} is critical
for their given delegation partition if and only if x is part of s’s delegation path.
In particular, this is true for t, which, with the additional point that t cannot be
in a cycle (t has no outgoing edges), means that t is critical if and only if there is
a path from s to t via the delegations.

Next, we let P be a delegation path from s to t in G′
k of length l. Each vertex on

this path has dmax + k outgoing edges. Thus, the probability of this path occurring
under the uniformity assumption is equal to πl

k =
(
pdmax+k

d
1

dmax+k

)l
. Let Pl be the

set of simple paths of length l between s and t in G′ (also in G). In Figure 5.2 we
see that P2 = ∅ and |P3| = 2. Note that the maximum length of a simple path in
the graph is n, thus l ∈ [1, n]. Since t is critical if and only if there is a path from
s to t on the delegation graph, then:

P(t is critical in G′
k) =

n∑
l=1

|Pl|πl
k.

We obtain a set of |V | linear equations (one for each value of k = 1, · · · , |V |),
each equation is built for the variables |Pl| with coefficient πl

k (one variable for
each l ∈ [1, n]). Hence, we have |V | variables as l = 1, · · · , |V | and note that all
coefficients differ.

With these equations, we can make a Vandermonde matrix M from the coef-
ficients of the equations. Hence, M is an |V | × |V | matrix where Mij = πj

i for
i, j = 1, · · · , n. We let the vector XP = (|P1|, · · · , |P|V ||) be the variable vector and
Y c be a vector with n entries such that Y c

k = P(t is critical in G′
k). Hence, we get

the following equation:
Y c = MXP .

Note that M is a square Vandermonde matrix with different entries, so it can be
easily inverted [Macon and Spitzbart, 1958]. Hence, given M and Y c, XP can be
computed in polynomial time. As a result, we obtain the values of |P1|, · · · , |P|V ||
and can thus calculate the number of paths from s to t by summing these values.
Finally, given that solving the simple path counting problem is #P-hard, so is
ours.

Thus, we have shown that computing our liquid democracy Penrose-Banzhaf
measure is hard in general. In Colley et al. [2023c], we showed that this can be
reduced to being computable in pseudo-polynomial time when restricted to a com-
plete underlying graph or a complete bipartite graph (representing proxy voting
when all delegators can pick any delegatee).

102 Chapter 5. Analysing Classical Liquid Democracy

5.3 Modelling Long-Term Delegation in Liquid Democ-
racy

This section analyses a different usage of the classical model of liquid democracy.
Models of liquid democracy often consider a one-off election, whether it be on a
single issue (e.g., the model of Smart Voting described in Chapter 2) or multiple
issues simultaneously (e.g., the multi-issue model described in Chapter 3). In this
work, we now consider a more practical use, inspired by the voting platform Liquid-
Feedback [Behrens et al., 2014], where each user sets up a delegation to be enacted
only in the case when they cannot vote on an issue directly. Hence, this section is
interested in long-term delegations in a classical liquid democracy setting.

Long-term delegations are suggested in the LiquidFeedback platform to ensure
every voter has a ballot on every issue. LiquidFeedback allows for a delegation to
be set up to last over many issues, where each issue has its own single-issue election
happening asynchronously. Therefore, a delegation is used, for example, when a
voter is relying on their delegate as an expert to vote on their behalf or as a means
of dividing the labour of becoming sufficiently well-informed on every issue when
there are too many among many voters.

In the LiquidFeedback software [Behrens et al., 2014], multiple delegations are
given, each with instructions on when it should be used. These instructions refer to
the most accurate delegation given for an issue. For example, a delegation given on
a specific issue should be used if the user did not vote directly. However, if no such
specific delegation was used, then a delegation given relating to the broader genre
of the issue should be used in this case (i.e., if no issue-specific delegation was given
on the issue of the new bus routes, then a delegation given on the broader genre of
public transport should be used). A system specifying when different delegations
should be used is a valuable functionality in practice. It allows for a satisfactory
delegate to be used in many scenarios, especially when voters cannot be perfectly
informed to vote directly on all issues nor to remember to delegate perfectly for every
issue. Thus, these levels of delegations are safety nets to ensure adequate delegates
are used each time. This section only considers a single long-term delegation to be
set up, thus simplifying the model used in LiquidFeedback.

One behaviour observed on the platform was that the users were intentionally
creating cycles [Behrens et al., 2022], which was unexpected, given that the the-
oretical study of liquid democracy has viewed cycles as something to be avoided
or minimised (e.g., Chapter 2 and Section 3.6.1). Thus, this work aims to expand
the knowledge of liquid democracy to try and account for this phenomenon by
remodelling liquid democracy in terms of long-term delegations.

We provide a probabilistic model in which every voter may or may not vote
directly with some probability, and this probability can vary among voters. This
probability reflects the intuition that there are too many issues for a voter to learn
about them all adequately or even be aware of them all. We then model the utility
gained by a voter from a single election as the distance or the dissimilarity between

5.3. Modelling Long-Term Delegation in Liquid Democracy 103

them and the voter who voted on their behalf, known as their ultimate delegate.
Thus, a voter gains a maximal payoff when they vote themself and a lower payoff
when a dissimilar voter votes on their behalf. This payoff can even be negative
when the dissimilarity between a voter and their ultimate delegate is too large. One
way in which to model this dissimilarity between voters could be quantifying the
distance between them on the left-right political spectrum. Thus, we are interested
in whether a stable collection of delegations exists so that no agent’s expected utility
can be improved by changing their delegation. Moreover, we want to see if these
stable states contain delegation cycles.

5.3.1 Contribution

This section details preliminary ongoing work with Markus Brill (Warwick Uni-
versity), Anne-Marie George (University of Olso) and Ulrike Schmidt-Kraepelin
(Universidad de Chile), which stems from discussions with Andreas Nitsche from
the Interaktive Demokratie, a co-creator of LiquidFeedback. Our preliminary work
consists of modelling such a framework and providing a notion of a Nash equilib-
rium in this model where no voters would change their delegation to increase their
expected utility. Furthermore, we provide a best-response dynamic that finds Nash
equilibria from random profiles of delegations. Finally, we give some preliminary
results found through simulations, highlighting promising future research directions.

5.3.2 Related Work

We highlight some work closely related to the model we will introduce in the next
section, the closest of which is that of Escoffier et al. [2019, 2020]. They propose a
model where voters have an ordinal preference over the direct voters from a model
relating to our notion of distance. They show that equilibria are not always guar-
anteed to exist in their model in general, yet they do for many different preference
structures over the delegators’ possible ultimate delegates. There are two main
differences between our models. First, we are interested in long-term delegations,
whereas they are interested in a one-off election. Thus, we look for stability in the
expected utility over all possible realisations of a delegation graph rather than the
utility gained from a single election. The second is that we have different notions
about which delegates are deemed suitable by the agents. We have a distance-based
approach, whereas they use ordinal preferences.

Another similar model to ours is that of Anshelevich et al. [2021], who study a
game-theoretical model of proxy voting where the agents are also positioned on a
line. However, they are trying to find a subset of proxies that can best represent
the population as a whole.

We are also interested in the model from Bloembergen et al. [2019], they also
studied liquid democracy from a game-theoretic point of view to determine when it
is beneficial for a voter to delegate. They also consider a probabilistic model where
the utility given is the voter’s ability to communicate their type (either being of

104 Chapter 5. Analysing Classical Liquid Democracy

type 0 or 1). The probabilities in this model measure the accuracy of the voter
communicating their type correctly when voting directly. They study equilibria
in delegation games where the accuracy of choosing a delegate is being weighed
against voting directly, with their accuracy minus the effort they expend in voting
directly. Many similar game-theoretic models define utility in terms of the group’s
accuracy in finding a ground truth. These models differ from ours in that they are
not interested in the individual’s utility; see Section 1.1 for more details of these
models.

While the preceding models all share properties with the model we are about
to introduce, there are many clear distinctions — crucially, our treatment uses
probabilities to model the long-term effects of single delegation.

5.3.3 The Model

Consider a set of agents (or voters) N = {1, · · · , n} who are participating in a liquid
democracy platform where they can choose to vote on any issue or use their long-
term delegation. In our probabilistic model, we consider the long-term expected
utility of delegations. Thus, each voter has a probability of voting directly pi ∈ [0, 1]
for every i ∈ N . These probabilities are collected into a vector p = (p1, · · · , pn).
The utility that each agent gains from a single issue depends on how far away their
ultimate delegate is, given that all voters have decided if they will vote directly or
delegate on this issue. Distance between voters can be defined in many ways, but
in this section, we focus on the distance between points on a line. Thus, every
agent i ∈ N has a position xi ∈ [0, 1]. We collect these positions into the vector
x = (x1, · · · , xn). We let dist(i, j) = |xi − xj | denote the distance between two
voters i and j’s positions on the line.8

We now introduce the long-term delegations to the model. Every agent i ∈ N
chooses a delegate di ∈ N , who they will delegate to with a probability of 1 − pi.
Note that when di = i, i has chosen not to select a long-term delegate and will only
have a vote recorded on issues when they vote directly. The profile of delegations
is denoted by d = (d1, · · · , dn). From the profile of delegations, a delegation graph
G(d) = (N , E) can be given where for every i ∈ N , there exists a single edge
(i, di) ∈ E. From a delegation graph G(d), we can obtain a realised version of the
delegation graph G(d)r, which represents a profile of votes on a specific issue where
some agents have voted directly, thus G(d)r removes the outgoing edges from any
agent who is voting directly on this specific issue.
Example 5.3. Consider six agents N = {A, B, C, D, E, F} whose opinions can be
placed on a line such that x = (0.2, 0.25, 0.4, 0.4, 0.6, 0.8) as depicted in Figure 5.3.
Each agent will vote directly on issues with different probabilities, given by vector
p = (0.5, 0.5, 0.9, 0.3, 0.5, 0.3), thus agent C votes directly with probability 0.9.
Consider the profile of delegations d = (A, D, E, B, F, E) which induces a delegation

8One extension of the work we are interested in is modelling the agent’s positions in a unit
square. Hence, xi ∈ [0, 1]2. Here, the notion of distance would be updated. For example, if
xi = (a, b) and xj = (c, d), then we define dist(i, j) =

√
(a− c)2 + (b− d)2.

5.3. Modelling Long-Term Delegation in Liquid Democracy 105

0 0.2 0.4 0.6 0.8 1

AV B C

D

E FV

xC ± α0.15 0.65

Figure 5.3: A diagram showing the positions x and delegations in d from the
Example 5.3. The profile of delegations d is seen in the figure by considering both
the solid and dashed lines. The realisation of the delegation graph G(d)r is seen by
only considering the solid edges, and the direct voters in this model are A and F
(denoted by the subscript V). Finally, we see that for agent C, their limit of what
they consider an acceptable ultimate delegate given by xC ± α.

graph G(d), depicted in Figure 5.3 by considering both the dashed and solid lines.
However, let us consider a realisation of this delegation graph where the only voters
to vote directly are A and F (in Figure 5.3 this is indicated by them having the
subscript V). This gives the realisation of the graph G(d)r, seen in the figure
when only considering the solid edges. This realisation of the graph happens with
probability pA ×pF ×Πi∈N \{A,F }(1−pi) = 0.002625. As A and F are the only direct
voters in this realisation of the graph, they are the only possible ultimate delegates.
Hence, C, E and F have F vote on their behalf, A just votes for themselves. The
votes of voters B and D are not counted in this realisation as they are caught in a
delegation cycle. △

We see from Example 5.3 that we next need to be able to define the payoff a
voter receives from a given realised delegation graph. We let α ∈ R denote a voter’s
maximum payoff. Intuitively, this maximum payoff can only be achieved when their
ultimate delegate has the same position as them. Hence, if a delegator i ∈ N has
the ultimate delegate of j ∈ N , they receive the utility of α only when they share
the same position xi = xj . In particular, this holds if i ∈ N votes directly, as
they are their own ultimate delegate. In general, we define the utility gained by an
agent in a realised delegation graph to be the maximum payoff minus the distance
between the voter and their ultimate delegate, given by the following formula:

ui(Gr) =

α − dist(i, j) if there exists an ultimate delegate j ∈ N for i in Gr,

0 otherwise (if i is in a cycle).

where dist(i, j) is the distance between two voters’ positions described above.
In Example 5.3, we see that the utility from the realised graph for agent A is

α = 0.25 as they vote on their behalf. Agent E has F as their ultimate delegate,
as dist(E, F) = 0.2, this means that uE(G(d)r) = α − dist(E, F) = 0.05. Agent C

has a negative payoff from this realisation of the graph where F is their ultimate
delegate as uC(G(d)r) = 0.25 − 0.4 = −0.15. Therefore, C would have rather not
delegated in this case and received utility 0, as B and D did.

106 Chapter 5. Analysing Classical Liquid Democracy

We are interested in the expected utility of this model rather than the utility of
a single realised graph. Therefore, we use this utility to define the voters’ expected
utility for a given delegation graph G(d). To do so, we find the longest outgoing
simple path from an agent i ∈ N in G(d), which we will denote the length of as
k. Note that every agent on this path could be i’s ultimate delegate in its different
realisations. We can relabel the agents in this path such that v1 = i and vk is the
final agent in this path. The expected utility of i in G given by:

E(i, G) =
k∑

ℓ=1
(α − dist(v1, vℓ))pvℓ

ℓ−1∏
m=1

(1 − pm)

This sums for each outgoing simple path from i = v1 to vℓ (thus ℓ ≤ k), the
utility i would obtain from vℓ being their ultimate delegate, given by α−dist(v1, vℓ),

multiplied by the likelihood of that happening, given by pvℓ

ℓ−1∏
m=1

(1 − pm). This
product corresponds to the probability that vℓ is i’s ultimate delegate. This can
only happen if vℓ is the first delegate in this path to vote directly. Thus, all voters
prior to vℓ in the path do not vote, that is (1 − pm) for each m ∈ [1, ℓ − 1], and vℓ

does vote with probability pℓ.

Example 5.4. Returning to Example 5.3, we see that the longest outgoing path from
A in G(d) is just A. Therefore, A’s expected utility from d is pa × α = 0.5 × 0.25 =
0.125. We now consider the expected payoff of C. We see that the longest outgoing
path from C goes to F via E. Thus, we consider the three sub-paths: C, C to E

and C to F . We will now calculate the expected utility contributed by each of the
possible paths from C in d.
Path= C This path represents C voting directly with probability 0.9 re-

ceiving a payoff of α = 0.25, contributing 0.225 to the expected
utility.

Path= CE This path represents that C did not vote and E did, which
happens with probability (1−0.9)×0.5 = 0.05. As dist(C, E) =
0.2, if this happened C would receive a utility of 0.05. Hence,
this contributes to the expected utility of 0.0025.

Path= CEF This represents C and E not voting and F voting. This reali-
sation occurs with probability (1−0.9)×(1−0.5)×0.3 = 0.015.
The payoff C would receive from F being their ultimate dele-
gate is −0.15 as dist(C, F) = 0.4. Hence, the expected utility
contributed by this realisation is −0.00225.

Thus, in total, the expected utility of this profile of delegation for C is
E(C, G(d)) = 0.22525. △

5.3.4 Best-Responses and Equilibrium

This section defines the solution concepts for our model. We first define a best
response. Informally, this means that for an agent i ∈ N and profile of delegations
d, an alternative delegation d′

i is a best response to d when replacing their delegation

5.3. Modelling Long-Term Delegation in Liquid Democracy 107

in d to d′
i results in the highest expected utility for agent i.

Definition 5.5. For agent i ∈ N , d′
i is a best response to d if and only if

E(i, G(d−i, d′
i)) is maximal and E(i, G(d−i, d′

i)) > E(i, G(d)), for some x, p and
d.

Example 5.5. We return to the scenario described in Example 5.3 and the profile
of delegations d = [A, D, E, B, F, E]. Agent C has a best response to d, as their
expected utility increases when they change their delegation from E to D (as seen
in Table 5.2). △

d′
C A B C D E F

E(C, G(d−C , d′
C)) 0.2275 0.23375 0.2250 0.2360 0.22525 0.22225

Table 5.2: Agent C’s expected utility for each of their possible delegations (d′
C ∈ N)

in response to the remaining agents’ delegations in d−C . Their expected utility is
maximal when delegating to D and is therefore, their best response to d.

Using the notion of a best response, we can now define a Nash equilibrium in this
model. This refers to no agent having a higher expected utility when considering
another delegation when all others are fixed (i.e., no unilateral deviation is beneficial
for that agent).

Definition 5.6. A profile of delegations d is a Nash equilibrium (NE) given x and
p if and only if no i ∈ N has a best response d′

i to d.

Note that for a given pair x and p, there can be multiple equilibria, yet we do
not know whether an equilibrium is guaranteed for any x and p.

Example 5.6. Returning to Example 5.3, it is clear that d is not a Nash Equilibrium
as in Example 5.5 we saw that C has a best response to d, which is changing their
delegation to D instead of E.

agent i \ d′
i A B C D E F

A 0.12 0.175 0.14825 0.14825 0.099125 0.0725
B 0.175 0.125 0.1715 0.1715 0.12325 0.08100
C 0.23 0.23125 0.225 0.2325 0.23125 0.2205
D 0.1100 0.1187 0.2325 0.075 0.0925 0.0435
E 0.0750 0.08125 0.14825 0.14825 0.125 0.1325
F -0.1 -0.09125 -0.02265 -0.02265 0.043675 0.075

Table 5.3: The expected utilities of the agents from Example 5.3 with the
same positions and probabilities yet considering the profile of delegations d′ =
[B, A, D, C, D, F]. Each row represents that agent’s expected utility when consid-
ering their possible delegations. The highest expected utility for each agent is in
bold. Notice that the delegations of d′ are highlighted; thus, there is no best re-
sponse.

108 Chapter 5. Analysing Classical Liquid Democracy

0 0.2 0.4 0.6 0.8 1

A B C D E F

Figure 5.4: The delegation graphs d1 and d2 from Example 5.7 represented by solid
and dashed lines, respectively.

Instead, consider the profile of delegations d′ = [B, A, D, C, D, F]. This is a
NE as for each of the agents, choosing a different delegation will not increase their
utility, as seen in Table 5.3. Note that although E has two equally good delegations,
delegating to either C or to D gives the same expected utility. However, d′ is still
a NE as E cannot increase their expected utility by deviating. △

We currently do not have proof guaranteeing the existence of NEs. Thus, we
support this conjecture via simulations in Section 5.3.5.

Observation. For a given x, p, and α, there can be many profiles of delegations d

that are NEs. Moreover, for two profiles of delegations d and d′ that are NEs, their
respective delegation graphs G(d) and G(d′) can have node-wise different connected
components, as shown in the following example.

Example 5.7. Consider α = 0.25, N = {A, B, C, D, E, F} with positions x =
[0.2, 0.3, 0.4, 0.5, 0.6, 0.8] and probabilities p = [0.8, 0.3, 0.2, 0.3, 0.1, 0.3]. Here we
have two NEs, whose delegation graphs have different connected components, d1 =
[B, C, A, E, D, F] and d2 = [C, A, B, C, F, E] (as shown in Figure 5.4). It is clear
that in d1 that there are three connected components (A, B, C), (D, E) and (F),
whereas d2 has only two connected components (A, B, C, D) and (E, F). Hence,
these equilibria are substantially different, i.e., not just the same nodes in a cycle
with a different ordering of agents. We note that here:

∑
i∈N E(i, G(d1)) = 0.68652

and
∑

i∈N E(i, G(d2)) = 0.6888, again supporting that these two NEs are substan-
tially different. △

5.3.5 Best Response Protocols Returning Nash Equilibria

With a definition for Nash equilibria in our model, we now want a procedure which
finds them. We consider a best response dynamic (using Definition 5.5) that itera-
tively asks agents if they have a best response to the current profile of delegations.
We detail the best response dynamic in Algorithm 8.

The protocol initially starts with a random profile of delegations, d ∈ N n. It
then updates the agents’ delegations one at a time (in the same order as in x) with
their new best response when one exists (ties are broken arbitrarily). We will refer
to each time the protocol checks if an agent has a best response as a round. The
algorithm will only terminate when there have been n rounds without a BR (when

5.3. Modelling Long-Term Delegation in Liquid Democracy 109

Algorithm 8 BR Protocol
1: Input: p, x, n, and α
2: d ∈ [1, n]n ▷ randomly initialise a dummy vector of delegations
3: it = 0 ▷ initialise counter of the number of rounds without a BR
4: while it ≤ n do ▷ while there has been a BR in one of the last n rounds
5: d1 = d
6: for each i ∈ N do
7: it = it + 1
8: exp = (0)n ▷ initialise the vector for expected utilities
9: for each j ∈ N do ▷ for each possible delegation

10: exp(j) = E(i, (G−i(d1), j)) ▷ add the delegation’s expected utility
11: if maxk∈[1,n](exp) > E(i, G(d1)) then ▷ if there is a BR
12: d(i) = arg maxj∈N exp(j) ▷ add their BR (random tie-breaking)
13: it = 0 ▷ reset the counter to 0
14: else if it ≥ n then ▷ else if there have been n rounds without a BR
15: return d ▷ return the NE

it ≥ n). Therefore, the resulting delegations returned will be a NE as no agent has
a BR to the profile of delegations. Each time a BR has been updated (in line 11),
the counter it is set to 0 (at line 13).

Example 5.8. We will perform the best response protocol on our running example,
first given in Example 5.3. We assume that the randomly initiated set of delegations
is d = [A, D, E, B, F, E]. Following the BR protocol, we start with agent A and
check if there is a BR. A’s BR is delegating to agent B. We then check for agent
B, who has a BR to delegate to A. We then inspect C and see that their BR is to
delegate to D. This continues until we arrive at a NE d′′ = [B, A, D, C, C, F] after
6 iterations (we can confirm this is a NE with Table 5.3). In these first 6 steps, the
counter it is set to 0 each time an agent updates their delegations with a BR. The
protocol will then continue for another 6 iterations with no more updates (as we
have reached a NE). The protocol terminates when it = 6. Moreover, we note that
for our example, there are only two NEs, d′ and d′′. △

Finding NEs manually via this protocol is difficult by hand due to the number
of calculations required to check which of the delegations is a BR, if one exists.
Thus, we implemented the protocol given in Algorithm 8 in Python 3 [Van Rossum
and Drake, 2009] and ran simulations to guide our research. The primary goal of
these simulations was to give us some intuition of whether there is a guarantee of a
NE existing for any x, p and α.

Experiment 1 We ran the BR protocol on 20, 000 instances of our problem where
the parameters n, x, p, α were chosen at random as such:

• n chosen randomly from [1, 100];

110 Chapter 5. Analysing Classical Liquid Democracy

• α ∈ [0, 2
3] rounded to 2 decimal places;9

• x ∈ [0, 1] rounded to 2 decimal places;

• p ∈ [0, 1] rounded to 2 decimal places.

For each of these instances, we found a NE. We also wanted to test how well
the protocol found a NE. We did this by measuring how many rounds were needed.
However, as there are different numbers of agents in each of the instances, we instead
compared the total number of rounds carried out by the protocol divided by n, r/n.
This can be thought of as the number of times the protocol checked if an agent had
a BR. Over the 20, 000 instances, the protocol found a NE after checking if each
agent had a BR r/n = 2.5 on average. Furthermore, for different ranges of n, the
average remains similar (each r/n ∈ [2.5, 3.3] when restricting to different ranges of
n). The maximum value of r/n from our 20, 000 instances was 9.

5.3.6 Using Potential Functions to Find Nash Equilibria

In the study of this model, the last thing we explore in this chapter is the use of
potential functions to find Nash Equilibria. Our delegation game is finite as we
have a finite set of actions (the possible delegations) and clear utilities from every
profile of delegations (the expected utilities). Therefore, we are guaranteed that a
mixed strategy Nash equilibria will exist [Nash, 1951]. A mixed strategy involves
multiple actions, each played with some probability. For example, a mixed strategy
could be an agent choosing to delegate to their first delegate with probability p and
to a second with probability (1 − p).

However, the question remains whether a pure equilibrium is guaranteed to
exist in our model. Experiment 1 supports this claim, as the BR protocol found an
equilibrium for each random instance. However, we still need proof of this being
the case.

One proof method of interest is turning our delegation game into a potential
game [Monderer and Shapley, 1996]. Potential games are characterised by a global
potential function, a global measure that aligns with the agents’ incentives. More-
over, Monderer and Shapley [1996] showed that a game with an ordinal potential
function is guaranteed to have a Nash equilibrium. Hence, if we can find a function
that increases and decreases in the same direction as the agents’ utility in every
unilateral deviation, our model is guaranteed a Nash equilibrium.

A natural place to start looking for a potential function for our delegation game
is by looking at the total expected utility of all agents from a profile of delegations.
Hence, we start with the potential function:

pf(d) =
∑
i∈N

E(i, G(d)).

9This range of values for α was chosen due to it being easier to find NEs when α is high.
Intuitively, when α is high, there will be more positive neighbours and therefore the expected
payoff will be higher.

5.4. Conclusion and Future Work 111

However, the next example shows that this is not a potential function for our
delegation game.

Example 5.9. Consider agents N = {A, B, C} with positions x = [0.2, 0.5, 0.7],
probabilities p = [0.4, 0.8, 0.1] and α = 0.35. Consider the current profile of delega-
tions d = (B, C, B) for which the potential function gives pf(d) = 0.5882. We now
consider the unilateral deviation of B. B’s best response is to delegate to A, strictly
increasing their utility from 0.283 to 0.284. However, in this new profile of delega-
tions d′ = (B, A, B), we see that the potential function lowers to pf(d′) = 0.5802.
Therefore, the potential function has decreased by the agent B increasing their
utility. △

The consequence of Example 5.9 is that the function pf is not a potential
function for our model. However, an interesting area for future work is trying to
see if there are potential functions for our model to show the guaranteed existence
of pure Nash equilibria in our delegation game.

5.4 Conclusion and Future Work

This chapter has outlined two models for which classical liquid democracy has
been analysed. The first is the introduction of the Penrose-Banzhaf index in liquid
democracy as an a priori voting power measure. This allows us to measure the
impact of the election’s structure on how the voters can impact the vote’s outcome.
The second model introduced a more realistic use of delegations on liquid democracy
platforms, such as LiquidFeedback. In particular, its purpose was to make sense
of the observed behaviour on the platforms, such as users intentionally creating
delegation cycles.

5.4.1 Discussion on A Priori Voting Power in Liquid Democracy

Section 5.2 introduced the well-studied notion of a priori voting power and extended
it to liquid democracy. A priori voting power refers to a voter’s ability to change the
outcome without knowing the issue or the connections between the voters. This aims
to measure each agent’s power obtained from the structural aspects of the model.
In liquid democracy, this could be the voting weight of the voter or their position
in the underlying social network, which determines their possible delegations.

We gave the generalised version of the Penrose-Banzhaf index in liquid democ-
racy, where an agent’s delegations are restricted to their neighbours in an underlying
social network connecting the voters. The main result of this section was giving
the #P-hardness result showing computing the index for an agent on an arbitrary
underlying social network.

We have also studied subcases of our model where the computation of the mea-
sures becomes pseudo-polynomial rather than #P-hard. These cases arise where
there is some structure on the delegations, for example, when the underlying net-
work is complete (and there are no restrictions on the delegations) or when we

112 Chapter 5. Analysing Classical Liquid Democracy

have a complete bipartite graph which represents proxy voting (see [Colley et al.,
2023c,a] for full details). We also conducted various simulations on these subcases.
For example, we showed the relationship in the liquid democracy setting with a
complete underlying graph between the probability of an agent being critical and
the probability of delegating. The association observed by the simulations was that
the probability of being critical became more similar as the probability of delegating
increased.

There are many potential areas for future work stemming from this line of
research. One area of particular interest would be in conducting more simulations.
We have started inspecting the effect of the underlying graph on the power measures,
showing a strong correlation between the voters’ criticality and their in-degree in
the network, similarly between the network’s structure and the voters’ criticality.
We hope that further research in that direction will work towards the understanding
of precisely when agents gain more voting power solely due to network structure.
Another natural extension is to redefine these measures in other models of delegative
democracy, such as smart voting (Chapter 2) or a model with a non-binary domain
that uses delegations.

5.4.2 Discussion on Long-Term Delegations

Section 5.3 highlighted a new way of modelling liquid democracy, rephrasing the
use of delegations in terms of their use on digital democracy platforms. This has
been done by moving away from the idea that delegations are given for a single
issue; in our model they are instead set up to be used for many issues. Hence, we
created a probabilistic model where voters have a probability of how likely they
are to vote directly on an issue, with their delegation being used when they do not
vote. From this, we created a delegation game where the strategy of each agent is
to find a delegation which maximises their expected utility based on how close they
are to their ultimate delegate. In this model, we gave the notion of a best response
and Nash equilibria. Our main open question is whether a Nash equilibrium in
guaranteed to exist for every instance. However, we do know that they are not
necessarily unique (see Example 5.7). We believe that a promising direction for
proving the existence of Nash equilibria is via potential functions and potential
games.

There are many possible extensions of the current model and we hope to explore
them in our future work. The first one is considering more complex notions of the
agents’ positions, such as being placed in a m-dimensional space. Within these
extensions, there may be cases where Nash equilibria do not exist. The second
extension is letting α be more general – in particular, for every agent i ∈ N to have
their own αi, which dictates how far away an acceptable ultimate delegate is for
them.

Chapter 6

Conclusion

This thesis has examined how delegations can be made expressive and rational. We
emphasise that this line of theoretical research has direct application to the realm
of digital democracy platforms. Moreover, adapting these platforms to incorporate
delegations improves the users’ experience, making the process more accessible and
allowing users to convey their opinions more accurately. In Section 6.1, we will
address how each chapter of this thesis has worked towards this aim. Section 6.2
will address some of my other research directions that pertain to making the voting
process on digital democracy platforms more expressive and rational.

6.1 Summary of Contributions and Discussion

We first looked at making delegations more expressive by allowing for ranked multi-
agent delegations in Chapter 2. Our smart voting model allowed agents to give more
complex delegations to express how their votes should be determined. Valid ballots
in this model permitted delegations to use the votes of multiple trusted agents.
Hence, a delegation could let the majority opinion of a group determine their vote
instead of being forced to choose a single agent. The second aspect allowed ballots
to contain ranked delegations, where agents can specify how their vote should be
determined in case of a delegation cycle. From proposing this new form of delega-
tions, we then determined how these complex delegations should be resolved. We
introduced six unravelling procedures to do so. The first two optimised the level
of ranked delegations used when resolving delegations and were both intractable
problems. However, we showed that we regain tractability with these minimisation
procedures when the ballots reflect a ranked liquid democracy election. The re-
maining four greedy procedures were all shown to resolve the complex delegations
tractably. We showed that the outcomes found by MinSum are Pareto optimal
with respect to the outcomes found from any consistent certificate. Moreover, the
greedy procedures do not Pareto dominate one another.

In Chapter 3, we investigated whether models of delegative democracy could be
extended to ensure that delegations can remain rational when there are multiple
interconnected issues. Ensuring rationality is upheld is important in fine-grained
liquid democracy, where voters can delegate to different agents on different decisions
and may leave the agents’ resulting votes to be irrational. Our contribution was
to extend the model to a more general case where rationality is not restricted to a
single setting with specific constraints. From this model, we gave procedures to ob-
tain consistent votes for the voters. We proposed two procedures that minimise the

114 Chapter 6. Conclusion

changes required to regain consistency in the agents’ votes. The first procedure,
known from the literature, finds consistent votes by making minimal changes to
the agents’ ballots. The second novel procedure resolves the delegations and then
makes minimal changes to these votes to find consistent votes. We showed that
these minimisation procedures are intractable and then looked for other directions
to gain tractable procedures. We proposed to elicit the agents’ priorities over the
issues to guide the procedures to find consistent votes. We showed that our two pri-
ority procedures, changing either votes or delegations, can find consistent votes in
polynomial time. We showed that the priority procedures do not approximate their
minimisation counterparts well — this was to be expected, as they have different
objectives than the minimisation procedures. Hence, we saw that PVC is guaran-
teed to respect the agents’ priorities more than its minimisation counterpart MVC.
However, the same cannot be said about PDC and MDC. This chapter also explored
how the original model can be extended to become more realistic. We did this in
two ways: first, we allowed deletion cycles on specific issues; second, we allowed
agents to give their own rationality constraints. We saw that these new models did
not change the corresponding results from earlier in the chapter. The extension
allowing voters to give their own personalised rationality constraint over their del-
egations is the most promising area for implementation as it perfectly reflects the
initial purpose of the model.

Chapter 4 studied a related model of opinion diffusion, where we extended the
notion of influence to be more expressive, similar to Chapter 2. Instead of agents
updating opinions when some proportion of their influencers had a different opin-
ion, our model looked at opinions updating with respect to a Boolean function.
We showed that our underlying model of Boolean opinion diffusion is a Boolean
network. The next purpose of this chapter was to take well-known results from
binary opinion diffusion (where opinions are updated with quota rules) and inves-
tigate whether there was an equivalent result in our model. We showed that it is
a PSpace-complete problem to recognise whether a given initial state leads to sta-
bility in synchronous diffusion, generalising a known result on majoritarian opinion
diffusion. A result for majoritarian updates showed an asynchronous update proce-
dure that maximises agreement among the agents’ opinions. We showed that this
result does not generally hold in our model. Yet, an equivalent result holds when
we restrict the update functions to contain only positive or only negative literals.
We connected Boolean opinion diffusion and multi-agent delegative democracy (as
given in Chapter 2), and we showed that the models align and give the same final
opinions or votes. This reflects the idea that delegations can happen outside the
mechanism. Moreover, we inspected opinion control in this model and showed that
influence maximisation is an NP-hard problem. We also rephrased known results
from the Boolean network literature in terms of diffusion to showcase the synergy
of the two research subjects.

Lastly, in Chapter 5, we analysed delegations in the classical model of liquid
democracy. This comprised two different streams of research. The first, studied
in Section 5.2, extended the Penrose-Banzhaf index in classical liquid democracy.

6.2. Perspectives and Future Work 115

We assumed that the voters had no predetermined opinions on the issue or affinity
to have certain voters as delegates. Hence, in our extension, agents were indiffer-
ent with respect to their possible delegates, modelled as their neighbours in the
underlying social network. Given this assumption over the agent’s voting options,
our measure quantifies the power a voter has within the structure of the election
to change its outcome. We showed that computing our index is #P-hard when
we imposed no restrictions on the underlying network. The measure allows us to
see which properties a voter has, such as if they are well-connected in the social
network or if their voting weight affects their power to make the final decision. The
second method we inspected to analyse classical liquid democracy was via long-term
delegations in Section 5.3. We did not model the use of delegations classically. In-
stead of delegations being given each election separately, we developed the function
of delegations as a means of voting on an issue when voting directly is not possi-
ble (due to time constraints or lack of expertise). This model reflects delegative
democracy platforms. However, it has not been studied theoretically. Moreover,
our purpose was to explore the intentional creation of delegation cycles seen on the
LiquidFeedback platform. To mimic this real-world application, each agent votes
with some probability and relies on their delegation otherwise. From this, we built
a delegation game where every agent chooses their delegation as their action, and
their utility is the expected payoff of their delegation. Given this game, we gave the
standard notions of best responses and Nash equilibria. Although we did not prove
that Nash equilibria are not guaranteed, we have made strides towards showing
this. Through simulations, we showed that best response dynamics found a Nash
equilibrium from our varied 20,000 instances. We also looked at using potential
functions to prove the existence of Nash equilibria in this model; moreover, we note
that many equilibria contain cycles.

6.2 Perspectives and Future Work

This thesis has focused on extending the notion of delegations to be more expressive
and rational in order to improve digital democracy platforms. There are still many
areas of future work in extending delegations, both as outlined in the conclusions
of each chapter and related topics involving delegations untouched by this thesis.
For instance, one area for future work could be creating voting models which mix
different frameworks, such as addressing the effects of combining sortition1 and
liquid democracy. There are many ways in which digital democracy can be improved
that do not involve delegations. In this section, we will outline two of these areas
explored, which pertain to a better understanding of digital democracy platforms.
The first avenue we explored was addressing that digital democracy platforms can
return more information to the voters than just their collective agreements. This

1A model where a set of representatives is randomly chosen from the population. In some mod-
els, the random selection is done consistently with proportionality constraints based on description
features of the population, e.g., 50% of the representatives should be women.

116 Chapter 6. Conclusion

is unlike standard voting scenarios where brevity in returning outcomes is key.
Hence, we study a family of aggregation rules that measure the divisiveness of an
issue. The second avenue that we explored uses weighted judgment aggregation as
a unifying framework for models of collective combinatorial optimisation problems
(CCO). These are voting scenarios with similar structures, such as multi-winner
elections, participatory budgeting and collective scheduling. CCO problems are a
natural candidate to be implemented by digital democracy platforms due to digital
ballots making the combinatorial aspect of the model (many issues to be voted
on, each with their own details) more accessible. Moreover, many of these voting
scenarios have already been implemented online, such as participatory budgeting,
or have some subcase being voted on, for example, Doodle2 is used to schedule a
meeting instead of ordering a string of meetings.

6.2.1 Introducing Divisiveness Measures into Digital Platforms

Digital democracy platforms benefit from the ability to return more information
about the vote to the voters with a very low communication cost. Therefore, there
is a need for theoretical research into other purposes of aggregating opinions. Navar-
rete et al. [2022] created a preference elicitation platform called MonProgramme3

during the French presidential election in 2022 to determine a collective governmen-
tal programme among the users. They returned not only a collective ranking of the
proposals but also a ranking of how divisive the proposals were. Therefore, one of
my research directions has contributed to the theoretical study of divisiveness first
introduced by Navarrete et al. [2022] and is joint work with Carlos Navarrete, Mar-
iana Macedo and César Hidalgo who are based at CCL, ANITI, IRIT, Université de
Toulouse and Umberto Grandi (IRIT, Université Toulouse Capitole) [Colley et al.,
2023d].

Rank aggregation is the problem of ordering issues in such a way that sum-
marises a collection of individual rankings. This problem has been studied exten-
sively in computational social choice (see, for example, Brandt et al. [2016]) when
the rankings are assumed to represent human preferences. For example, one may
be interested in each individual’s ranking of preference over candidates in a political
election, a set of projects to be funded, or any set of alternative proposals. The
most common approach in this literature is to find normative desiderata for the
aggregation process, including computational requirements such as the existence of
algorithms for tractable computation and characterising the aggregators that sat-
isfy them. Previous work in rank aggregation focused on how to best elicit which
issues are the most agreed upon by the underlying population, with little interest
in identifying those issues that divide them. We illustrate this in the following
example:
Example 6.1. Consider three groups of agents and each group has a homogeneous
preference over the issues a, b, c, d and e. The preferences of the three groups can

2https://doodle.com/
3https://monprogramme2022.org/

https://doodle.com/
https://monprogramme2022.org/

6.2. Perspectives and Future Work 117

be described as such:

Group 1 a ≻ b ≻ c ≻ d ≻ e

Group 2 a ≻ d ≻ c ≻ e ≻ b

Group 3 a ≻ d ≻ b ≻ e ≻ c

We understand the preferences as such: each member of Group 1 prefers issue a to
any other issue, then they prefer b to issues c, d and e, and so on. Given the groups’
preferences, it is reasonable to assume that most aggregation rules will ensure that
issue a is ranked the highest in the collective agreement ranking. For example,
we see that two well-known rank aggregation rules, namely the Borda rule and
Copeland rule, would rank a first, no matter the size of the groups. However, it
is not immediately apparent from these rankings which issue should be considered
the most divisive. One approach could say that issue b is the most divisive as it
is sometimes ranked second and sometimes last. Thus, it has the most significant
variance of where it is ranked out of the issues. However, if Group 2 only consisted
of a few agents, then b may be less divisive than issues c and d, depending on the
function used to measure divisiveness. △

We put forward a family of functions that, starting from a collection of individ-
ual rankings, can order issues based on their divisiveness, extending the definition
from Navarrete et al. [2022]. An issue’s divisiveness is found by aggregating the
disagreement among all possible subpopulations defined by the relative preference
among the other issues. This work connects the definition of divisiveness to the
field of computational social choice by parameterising it in terms of collective rank
aggregation functions. We also connect our divisiveness measure to other measures
of disagreement, such as a classical measure of polarisation from Esteban and Ray
[1994] and the rank-variance of an issue. Although using a divisiveness measure
is beneficial because it can keep voters informed about the collective’s opinions,
it can also have other uses. One such application of a divisiveness measure could
be to help the community work towards consensus. There is hope that unity in a
community can be achieved by addressing and discussing the most divisive issue.
Hence, the population would be more cohesive by decreasing the total divisiveness.
For example, recent work has suggested that the creation of recommender systems
could help depolarise a population [Stray, 2022].

6.2.2 Connecting Collective Combinatorial Optimisation Problems

In this second avenue of research into digital democracy, we examine many differ-
ent settings of collective decision-making over which items should be accepted from
an agenda with a combinatorial nature and the accepted issue must respect some
collective constraint, such as ordering a complete transitive schedule without gaps
or respecting a budget limit. We characterise each of these settings as collective
combinatorial optimisation (CCO) problems. Many of these CCO problems have
been studied separately, while they all share many common structural features. Our
contribution establishes novel and fundamental connections between several lines of

118 Chapter 6. Conclusion

research and between several problems that have been studied independently thus
far. Identifying those connections may lead to meaningful insights and implications
across different streams of research. In doing so, we give an engineering flavour to
judgment aggregation, a field that up until now has focused on impossibility results,
axiomatisation and computational complexity of winner determination. This work
connecting weighted judgment aggregation and CCO problems is joint work with
Linus Boes (Heinrich-Heine-Universität Düsseldorf), Umberto Grandi (IRIT, Uni-
versité Toulouse Capitole), Jérôme Lang (CNRS, PSL), and Arianna Novaro (CES,
Université Paris 1 Panthéon-Sorbonne). Full details are given in Boes et al. [2021].

We use weighted judgment aggregation as a general model in which many specific
CCO settings can be framed. Thus, each of these specific CCO settings can be
aligned structurally. Moreover, this ensures that the independent study in each
setting can be shared with either judgment aggregation or even with the sister
settings directly. One judgment aggregation rule we consider is the median rule
from Nehring and Pivato [2022]. We showed that the following sister CCO rules
are instances of the median rule:

• the standard multi-winner approval voting rule that outputs the most ap-
proved k candidates (modulo tie-breaking) in multi-winner elections;

• the max rule with cardinality satisfaction from Talmon and Faliszewski [2019]
in participatory budgeting;

• the maximum collective spanning tree from Darmann et al. [2008] is the col-
lective networking setting;

• the utilitarian aggregation rule with swap distance from Pascual et al. [2018]
in the collective scheduling problem.

This study showed that judgment aggregation is a good candidate for declarative
language to express various CCO problems, although other models may be equally
good candidates. Yet, we needed a slight generalisation of judgment aggregation
where issues are weighted, and these weights may be asymmetric. However, this
generalisation allows for specific CCO problems to be seen through the lens of
judgment aggregation. We showed that many rules studied for their specific settings
are instances of the more general judgment aggregation rules. This shows strong
connections between two specific ‘sister’ rules that are instances of the same general
rules and share common normative properties.

6.3 Final Remarks

This thesis has made strides towards modelling delegations to be more expressive
and more rational in delegative democracy. We did this with exploratory research
into new models that extend classical liquid democracy by making delegations in
our models more expressive (i.e., multi-agent ranked delegations) and more rational
(i.e., by preserving consistency in multi-issue liquid democracy). In these settings,

6.3. Final Remarks 119

we saw that this allowed voters to decide exactly how their vote should be deter-
mined. We also studied classical liquid democracy through the lens of responsive
research, as described in the introduction, by analysing its structure through a priori
voting power and in terms of rational delegation choices on long-term delegations.
There are still many interesting open research directions in the study of delega-
tive democracy, mainly in line with turning exploratory research into responsive
research. For instance, models exploring the possibilities of delegative democracy
(Chapter 2 and 3) have not yet been fully assessed, e.g., a priori voting power has
not been studied in these settings. The most promising research currently being un-
dertaken in studying delegative democracy is through the study of how delegations
are used in practice, and it is from here that we should be deciding the direction of
our theoretical research.

Bibliography

Ben Abramowitz and Nicholas Mattei. Flexible representative democracy: An in-
troduction with binary issues. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence (IJCAI), 2019.

Leyla Ade, Matteo Michelini, and Pietro Vigiani. Proportionality in Liquid Democ-
racy and Representative Democracy. Proceedings of the ESSLLI 2022 Student
Session, 2022.

Tatsuya Akutsu, Satoru Miyano, and Satoru Kuhara. Identification of genetic net-
works from a small number of gene expression patterns under the boolean network
model. In Biocomputing’99, pages 17–28. World Scientific, 1999.

Tatsuya Akutsu, Morihiro Hayashida, Wai-Ki Ching, and Michael K Ng. On the
complexity of finding control strategies for boolean networks. In Proceedings of
the Fourth Asia-Pacific Bioinformatics Conference, 2006.

Tatsuya Akutsu, Morihiro Hayashida, Wai-Ki Ching, and Michael K Ng. Control of
boolean networks: Hardness results and algorithms for tree structured networks.
Journal of theoretical biology, 244(4):670–679, 2007.

Tatsuya Akutsu, Morihiro Hayashida, and Takeyuki Tamura. Algorithms for infer-
ence, analysis and control of boolean networks. In International Conference on
Algebraic Biology, 2008.

Tatsuya Akutsu, Sven Kosub, Avraham A Melkman, and Takeyuki Tamura. Finding
a periodic attractor of a boolean network. IEEE/ACM transactions on compu-
tational biology and bioinformatics, 9(5):1410–1421, 2012.

Dan Alger. Voting by proxy. Public Choice, 126(1-2):1–26, 2006.

R Michael Alvarez and Thad E Hall. Electronic elections: The perils and promises
of digital democracy. Princeton University Press, 2010.

Guillermo de Anda-Jáuregui, Jesús Espinal-Enríquez, Santiago Sandoval-Motta,
and Enrique Hernández-Lemus. A boolean network approach to estrogen tran-
scriptional regulation. Complexity, 2019, 2019.

Elliot Anshelevich, Zack Fitzsimmons, Rohit Vaish, and Lirong Xia. Representative
proxy voting. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2021.

Ch Anwar ul Hassan, Muhammad Hammad, Jawaid Iqbal, Saddam Hussain,
Syed Sajid Ullah, Hussain AlSalman, Mogeeb AA Mosleh, and Muhammad Arif.
A liquid democracy enabled blockchain-based electronic voting system. Scientific
Programming, 2022:1–10, 2022.

122 Bibliography

Ben Armstrong and Kate Larson. On the limited applicability of liquid democracy.
In Proceedings of the Third Games, Agents, and Incentives Workshop (GAIW),
2021.

Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco. Reasoning about con-
sensus when opinions diffuse through majority dynamics. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence (IJ-
CAI), 2018.

Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco. On the complexity of rea-
soning about opinion diffusion under majority dynamics. Artificial Intelligence,
284:103–288, 2020a.

Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco. On the effectiveness
of social proof recommendations in markets with multiple products. In Proceed-
ings of the Twenty-Fourth European Conference on Artificial Intelligence (ECAI),
2020b.

Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco. Optimal majority dy-
namics for the diffusion of an opinion when multiple alternatives are available.
Theoretical Computer Science, 869:156–180, 2021.

John F Banzhaf III. Weighted voting doesn’t work: A mathematical analysis.
Rutgers Law Review, 19:317, 1964.

Ruben Becker, Gianlorenzo D’angelo, Esmaeil Delfaraz, and Hugo Gilbert. Unveil-
ing the truth in liquid democracy with misinformed voters. In Algorithmic Deci-
sion Theory: Seventh International Conference (ADT), pages 132–146. Springer,
2021.

Benjamin B Bederson, Bongshin Lee, Robert M Sherman, Paul S Herrnson, and
Richard G Niemi. Electronic voting system usability issues. In Proceedings of the
SIGCHI conference on Human factors in computing systems, 2003.

J. Behrens, A. Kistner, A. Nitsche, and B. Swierczek. The principles of LiquidFeed-
back. Interacktive Demokratie, Berlin, 2014.

Jan Behrens and Björn Swierczek. Preferential delegation and the problem of neg-
ative voting weight. The Liquid Democracy Journal, 3, 2015.

Jan Behrens, Axel Kistner, Andreas Nitsche, and Björn Swierczek. The Temporal
Dimension in the Analysis of Liquid Democracy Delegation Graphs. The Liquid
Democracy Journal, 2022.

Sebastian Bervoets and Vincent Merlin. Gerrymander-proof representative democ-
racies. International Journal of Game Theory, 41:473–488, 2012.

Bibliography 123

Gili Bielous and Reshef Meir. Proxy manipulation for better outcomes. In Proceed-
ings of the Multi-Agent Systems: Nineteenth European Conference (EUMAS),
2022.

Daan Bloembergen, Davide Grossi, and Martin Lackner. On rational delegations
in liquid democracy. In Proceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI), 2019.

Christian Blum and Christina Isabel Zuber. Liquid democracy: Potentials, prob-
lems, and perspectives. Journal of Political Philosophy, 24(2):162–182, 2016.

F. C. Bock. An algorithm to construct a minimum directed spanning tree in a
directed network. Developments in operations research, pages 29–44, 1971.

Linus Boes, Rachael Colley, Umberto Grandi, Jérôme Lang, and Arianna No-
varo. Collective discrete optimisation as judgment aggregation. arXiv preprint
arXiv:2112.00574, 2021.

Vernon Bogdanor. First-past-the-post: An electoral system which is difficult to
defend. Representation, 34(2):80–83, 1997.

Paolo Boldi, Francesco Bonchi, Carlos Castillo, and Sebastiano Vigna. Viscous
democracy for social networks. Communications of the ACM, 54(6):129–137,
2011.

Sirin Botan, Umberto Grandi, and Laurent Perrussel. Multi-issue opinion diffusion
under constraints. In Proceedings of the Eighteenth International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), 2019.

Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D Procaccia.
Handbook of computational social choice. Cambridge University Press, 2016.

Robert Bredereck and Edith Elkind. Manipulating opinion diffusion in social net-
works. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence (IJCAI), 2017.

Markus Brill. Interactive democracy. In Proceedings of the Seventeenth Interna-
tional Conference on Autonomous Agents and MultiAgent Systems (AAMAS),
2018.

Markus Brill and Nimrod Talmon. Pairwise liquid democracy. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJ-
CAI), 2018.

Markus Brill, Edith Elkind, Ulle Endriss, and Umberto Grandi. Pairwise diffusion
of preference rankings in social networks. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence (IJCAI), 2016.

124 Bibliography

Markus Brill, Théo Delemazure, Anne-Marie George, Martin Lackner, and Ulrike
Schmidt-Kraepelin. Liquid democracy with ranked delegations. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), 2022.

Ahto Buldas and Triinu Mägi. Practical security analysis of e-voting systems. In
Proceedings of the Advances in Information and Computer Security: Second In-
ternational Workshop on Security, 2007.

Joseph Campbell, Alessandra Casella, Lucas de Lara, Victoria R Mooers, and Dilip
Ravindran. Liquid democracy. two experiments on delegation in voting. Technical
report, National Bureau of Economic Research, 2022.

Ioannis Caragiannis and Evi Micha. A contribution to the critique of liquid democ-
racy. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence (IJCAI), 2019.

Sara D Cardell and Amparo Fúster-Sabater. Binomial representation of crypto-
graphic binary sequences and its relation to cellular automata. Complexity, 2019:
1–13, 2019.

John R Chamberlin and Paul N Courant. Representative deliberations and represen-
tative decisions: Proportional representation and the Borda rule. The American
Political Science Review, pages 718–733, 1983.

Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social net-
works under the linear threshold model. In 2010 IEEE International Conference
on Data Mining, pages 88–97, 2010.

Daizhan Cheng. Semi-tensor product of matrices and its applications-a survey. Proc-
ceeings of the Fourth International Congress of Chinese Mathematicians (ICCM),
2007.

Daizhan Cheng, Zhiqiang Li, and Hongsheng Qi. A survey on boolean control
networks: A state space approach. Three Decades of Progress in Control Sciences,
pages 121–139, 2010a.

Daizhan Cheng, Hongsheng Qi, and Zhiqiang Li. Analysis and control of Boolean
networks: a semi-tensor product approach. Springer Science & Business Media,
2010b.

Flavio Chierichetti, Jon Kleinberg, and Sigal Oren. On discrete preferences and
coordination. In Proceedings of the fourteenth ACM conference on Electronic
commerce (EC), 2013.

Dmitry Chistikov, Grzegorz Lisowski, Mike Paterson, and Paolo Turrini. Conver-
gence of opinion diffusion is pspace-complete. In Proceedings of the Association
for the AAAI Conference on Artificial Intelligence (AAAI), 2020.

Bibliography 125

Zoé Christoff and Davide Grossi. Binary voting with delegable proxy: An analysis
of liquid democracy. In Proceedings Sixteenth Conference on Theoretical Aspects
of Rationality and Knowledge (TARK), 2017a.

Zoé Christoff and Davide Grossi. Stability in binary opinion diffusion. In Logic,
Rationality, and Interaction: Sixth International Workshop (LORI), 2017b.

Yoeng-Jin Chu. On the shortest arborescence of a directed graph. Scientia Sinica,
14:1396–1400, 1965.

Gal Cohensius, Shie Mannor, Reshef Meir, Eli A. Meirom, and Ariel Orda. Proxy
voting for better outcomes. In Proceedings of the Sixteenth Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS), 2017.

James S Coleman. Control of collectivities and the power of a collectivity to act.
Social choice (Routledge Revivals), pages 269–300, 1971.

Rachael Colley and Umberto Grandi. Preserving consistency in multi-issue liquid
democracy. In Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence (IJCAI), 2022a.

Rachael Colley and Umberto Grandi. The spread of opinions via boolean net-
works. In Proceedings of the Multi-Agent Systems: Nineteenth European Confer-
ence (EUMAS), 2022b.

Rachael Colley, Umberto Grandi, and Arianna Novaro. Smart voting. In Twenty-
Ninth International Joint Conference on Artificial Intelligence (IJCAI), 2020.

Rachael Colley, Umberto Grandi, and Arianna Novaro. Unravelling multi-agent
ranked delegations. Autonomous Agents and Multi-Agent Systems, 36(1):9, 2022.

Rachael Colley, Théo Delemazure, and Hugo Gilbert. Measuring a priori voting
power–taking delegations seriously. arXiv preprint arXiv:2301.02462, 2023a.

Rachael Colley, Théo Delemazure, and Hugo Gilbert. Measuring a priori voting
power in liquid democracy. Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence (IJCAI-23), 2023b.

Rachael Colley, Théo Delemazure, and Hugo Gilbert. Taking delegations seriously:
Measuring a priori voting power (Extended abstract). In Proceedings of the
Twenty-Second International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2023c.

Rachael Colley, Umberto Grandi, César Hidalgo, Mariana Macedo, and Carlos
Navarrete. Measuring and controlling divisiveness in rank aggregation. In Pro-
ceedings of the Thirty-Second International Joint Conference on Artificial Intel-
ligence, IJCAI-23, 2023d.

126 Bibliography

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. In-
troduction to algorithms. MIT press, 2009.

Yves Crama and Peter L Hammer. Boolean functions: Theory, algorithms, and
applications. Cambridge University Press, 2011.

Andreas Darmann, Christian Klamler, and Ulrich Pferschy. Computing spanning
trees in a social choice context. In Proceedings of the Second International Work-
shop on Computational Social Choice (COMSOC), 2008.

Ronald De Haan. Hunting for tractable languages for judgment aggregation. In
Proceedings of the Sixteenth International Conference on Principles of Knowledge
Representation and Reasoning (KR), 2018.

Jonas Degrave. Resolving multi-proxy transitive vote delegation. arXiv preprint
arXiv:1412.4039, 2014.

Palash Dey, Arnab Maiti, and Amatya Sharma. On parameterized complexity of
liquid democracy. In Proceedings of the Algorithms and Discrete Applied Mathe-
matics: Seventh International Conference (CALDAM), 2021.

Amrita Dhillon, Grammateia Kotsialou, Peter McBurney, Luke Riley, et al. In-
troduction to voting and the blockchain: some open questions for economists.
Technical report, Competitive Advantage in the Global Economy (CAGE), 2019.

Charles Lutwidge Dodgson. The Principles of Parliamentary Representation. Har-
rison and Sons, 1884.

Pedro Domingos and Matt Richardson. Mining the network value of customers. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2001.

Kevin Doyle. EU recount delay now shows need for e-
voting - Minister — independent.ie. https://www.
independent.ie/irish-news/elections-2019/european/
eu-recount-delay-now-shows-need-for-e-voting-minister-38173482.
html, 2019. [Accessed 25-Mar-2023].

Jack Edmonds. Optimum branchings. Journal of Research of the national Bureau
of Standards B, 71(4):233–240, 1967.

Piret Ehin, Mihkel Solvak, Jan Willemson, and Priit Vinkel. Internet voting in
estonia 2005–2019: Evidence from eleven elections. Government Information
Quarterly, 39(4):101718, 2022.

Bruno Escoffier, Hugo Gilbert, and Adèle Pass-Lanneau. The convergence of iter-
ative delegations in liquid democracy in a social network. In Proceedings of the
Twelfth International Symposium on Algorithmic Game Theory (SAGT), 2019.

https://www.independent.ie/irish-news/elections-2019/european/eu-recount-delay-now-shows-need-for-e-voting-minister-38173482.html
https://www.independent.ie/irish-news/elections-2019/european/eu-recount-delay-now-shows-need-for-e-voting-minister-38173482.html
https://www.independent.ie/irish-news/elections-2019/european/eu-recount-delay-now-shows-need-for-e-voting-minister-38173482.html
https://www.independent.ie/irish-news/elections-2019/european/eu-recount-delay-now-shows-need-for-e-voting-minister-38173482.html

Bibliography 127

Bruno Escoffier, Hugo Gilbert, and Adèle Pass-Lanneau. Iterative delegations in
liquid democracy with restricted preferences. In Proceedings of the Thirty-Fourth
AAAI Conference on Artificial Intelligence (AAAI), 2020.

Joan-Maria Esteban and Debraj Ray. On the measurement of polarization. Econo-
metrica: Journal of the Econometric Society, pages 819–851, 1994.

Piotr Faliszewski and Jörg Rothe. Handbook of Computational Social Choice, chap-
ter Control and Bribery in Voting. Cambridge University Press, 2016.

Piotr Faliszewski, Rica Gonen, Martin Koutecý, and Nimrod Talmon. Opinion
diffusion and campaigning on society graphs. Journal of Logic and Computation,
32(6):1162–1194, 2022.

Christopher Farrow, Jack Heidel, John Maloney, and Jim Rogers. Scalar equations
for synchronous boolean networks with biological applications. IEEE Transac-
tions on Neural Networks, 15(2):348–354, 2004.

Dan S Felsenthal and Moshé Machover. Ternary voting games. International journal
of game theory, 26(3):335–351, 1997.

Dan S Felsenthal and Moshé Machover. The measurement of voting power: Theory
and practice, problems and paradoxes. In The Measurement of Voting Power.
Edward Elgar Publishing, 1998.

Dan S Felsenthal and Moshé Machover. Models and reality: the curious case of
the absent abstention. In Power indices and coalition formation, pages 87–103.
Springer, 2001.

Dan S Felsenthal and Moshé Machover. A priori voting power: what is it all about?
Political Studies Review, 2(1):1–23, 2004.

Dan S Felsenthal and Moshé Machover. Voting power measurement: a story of
misreinvention. Social choice and welfare, 25(2):485–506, 2005.

Diodato Ferraioli and Carmine Ventre. Social pressure in opinion games. In Proceed-
ings of the Twenty-Sixth International Joint Conference on Artificial Intelligence
(IJCAI), 2017.

Bryan Alexander Ford. Delegative democracy. Technical report, 2002. Unpublished
Manuscript. Available at: https://bford.info/deleg/deleg.pdf.

Josep Freixas. Probabilistic power indices for voting rules with abstention. Mathe-
matical Social Sciences, 64(1):89–99, 2012.

Josep Freixas and Roberto Lucchetti. Power in voting rules with abstention: an
axiomatization of a two components power index. Annals of operations research,
244(2):455–474, 2016.

https://bford.info/deleg/deleg.pdf

128 Bibliography

Josep Freixas and William S Zwicker. Weighted voting, abstention, and multiple
levels of approval. Social choice and welfare, 21(3):399–431, 2003.

Noah E. Friedkin, Anton V. Proskurnikov, Roberto Tempo, and Sergey E. Parsegov.
Network science on belief system dynamics under logic constraints. Science, 354
(6310):321–326, 2016.

Cédric Gaucherel, H Théro, A Puiseux, and Vincent Bonhomme. Understand
ecosystem regime shifts by modelling ecosystem development using boolean net-
works. Ecological Complexity, 31:104–114, 2017.

Andrew Gelman, Jonathan N Katz, and Francis Tuerlinckx. The mathematics and
statistics of voting power. Statistical Science, pages 420–435, 2002.

E. Goles and J. Olivos. Periodic behaviour of generalized threshold functions. Dis-
crete Mathematics, 30(2):187–189, 1980.

Eric Goles and Lilian Salinas. Sequential operator for filtering cycles in Boolean
networks. Advances in Applied Mathematics, 45(3):346–358, 2010.

Eric Goles, Pedro Montealegre, Ville Salo, and Ilkka Törmä. Pspace-completeness of
majority automata networks. Theoretical Computer Science, 609:118–128, 2016.

Paul Gölz, Anson Kahng, Simon Mackenzie, and Ariel D Procaccia. The fluid
mechanics of liquid democracy. In Proceedings of the International Conference
on Web and Internet Economics (ICWIE), 2018.

Umberto Grandi. Social choice and social networks. Trends in Computational Social
Choice, pages 169–184, 2017.

Umberto Grandi, Emiliano Lorini, and Laurent Perrussel. Propositional opinion
diffusion. In Fourteenth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2015.

M. Granovetter. Threshold models of collective behavior. American Journal of
Sociology, 83(6):1420–1443, 1978.

Moyra Grant. UK Parliament. Edinburgh University Press, 2009.

James Green-Armytage. Direct voting and proxy voting. Constitutional Political
Economy, 26(2):190–220, 2015.

Jacqueline Harding. Proxy selection in transitive proxy voting. Social Choice and
Welfare, 58(1):69–99, 2022.

S. Hardt and L. CR Lopes. Google votes: A liquid democracy experiment on a
corporate social network. 2015.

Bibliography 129

Katsumi Inoue. Logic programming for boolean networks. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI),
2011.

Pallavi Jain, Krzysztof Sornat, and Nimrod Talmon. Preserving consistency for
liquid knapsack voting. In Proceedings of the Twentieth International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2021.

Pallavi Jain, Krzysztof Sornat, and Nimrod Talmon. Preserving consistency for
liquid knapsack voting. In Proceedings of Multi-Agent Systems: Nineteenth Eu-
ropean Conference (EUMAS), 2022.

Anson Kahng, Simon Mackenzie, and Ariel D Procaccia. Liquid democracy: An
algorithmic perspective. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI), 2018.

Anson Kahng, Simon Mackenzie, and Ariel Procaccia. Liquid democracy: An al-
gorithmic perspective. Journal of Artificial Intelligence Research, 70:1223–1252,
2021.

Richard M Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103. Springer, 1972.

Stuart Kauffman. Homeostasis and differentiation in random genetic control net-
works. Nature, 224(5215):177–178, 1969.

Stuart A Kauffman. The origins of order: Self-organization and selection in evolu-
tion. Oxford University Press, USA, 1993.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the Ninth ACM SIGKDD interna-
tional Conference on Knowledge Discovery and Data Mining, 2003.

Christoph Kling, Jérôme Kunegis, Heinrich Hartmann, Markus Strohmaier, and
Steffen Staab. Voting behaviour and power in online democracy: A study of
liquidfeedback in germany’s pirate party. In Proceedings of the International
AAAI Conference on Web and Social Media, 2015.

Koichi Kobayashi. Design of fixed points in boolean networks using feedback vertex
sets and model reduction. Complexity, 2019.

Kathrin Konczak and Jérôme Lang. Voting procedures with incomplete prefer-
ences. In Proceedings of the IJCAI-05 Multidisciplinary Workshop on Advances
in Preference Handling (MPREF), 2005.

Sven Kosub. Dichotomy results for fixed-point existence problems for boolean dy-
namical systems. Mathematics in Computer Science, 1(3):487–505, 2008.

130 Bibliography

Grammateia Kotsialou and Luke Riley. Incentivising participation in liquid democ-
racy with breadth-first delegation. In Proceedings of the Nineteenth International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS), 2020.

Dexter C Kozen. The design and analysis of algorithms. Springer Science & Business
Media, 2012.

Romane Kulesza. Development of a web platform to study voting procedures with
ranked delegations. Technical report, Université PSL (Paris Sciences & Lettres),
2022. Internship report.

Sascha Kurz. Measuring voting power in convex policy spaces. Economies, 2(1):
45–77, 2014.

Jérôme Lang, Gabriella Pigozzi, Marija Slavkovik, and Leendert van der Torre.
Judgment aggregation rules based on minimization. In Proceedings of the 13th
Conference on Theoretical Aspects of Rationality and Knowledge (TARK), 2011.

Christopher James Langmead and Sumit Kumar Jha. Symbolic approaches for
finding control strategies in boolean networks. Journal of Bioinformatics and
Computational Biology, 7(02):323–338, 2009.

W Lucas. Measuring power in weighted voting systems. Technical report, Cornell
University Operations Research and Industrial Engineering, 1974.

Georg Lutz. Low turnout in direct democracy. Electoral Studies, 26(3):624–632,
2007.

Nathaniel Macon and Abraham Spitzbart. Inverses of vandermonde matrices. The
American Mathematical Monthly, 65(2):95–100, 1958.

Pia Mancini. How to upgrade democracy for the Internet era. https:
//www.ted.com/talks/pia_mancini_how_to_upgrade_democracy_for_the_
internet_era, 2014. [Accessed 25-Mar-2023].

Evangelos Markakis and Georgios Papasotiropoulos. An approval-based model for
single-step liquid democracy. In Algorithmic Game Theory: Fourteenth Interna-
tional Symposium, (SAGT), 2021.

Tomomi Matsui and Yasuko Matsui. A survey of algorithms for calculating power
indices of weighted majority games. Journal of the Operations Research Society
of Japan, 43(1):71–86, 2000.

Walter R Mebane. The wrong man is president! overvotes in the 2000 presidential
election in florida. Perspectives on Politics, 2(3):525–535, 2004.

James C Miller. A program for direct and proxy voting in the legislative process.
Public choice, 7(1):107–113, 1969.

https://www.ted.com/talks/pia_mancini_how_to_upgrade_democracy_for_the_internet_era
https://www.ted.com/talks/pia_mancini_how_to_upgrade_democracy_for_the_internet_era
https://www.ted.com/talks/pia_mancini_how_to_upgrade_democracy_for_the_internet_era

Bibliography 131

Dov Monderer and Lloyd S Shapley. Potential games. Games and economic behav-
ior, 14(1):124–143, 1996.

Colby Morrison and Pavel Naumov. Group conformity in social networks. Journal
of Logic, Language and Information, 29(1):3–19, 2020.

Hervé Moulin. Axioms of Cooperative Decision Making. Cambridge University
Press, 1988.

J Nash. Non-cooperative games. Annals of Mathematics, 54, 1951.

Carlos Navarrete, Nicole Ferrada, Mariana Macedo, Rachael Colley, Jingling Zhang,
Umberto Grandi, Jérôme Lang, and César A Hidalgo. Understanding political
agreements and disagreements: Evidence from the 2022 french presidential elec-
tion. arXiv preprint arXiv:2211.04577, 2022.

Klaus Nehring and Marcus Pivato. The median rule in judgement aggregation.
Economic Theory, 73(4):1051–1100, 2022.

Mahdi Nejadgholi, Nan Yang, and Jeremy Clark. Short paper: ballot secrecy for
liquid democracy. In Financial Cryptography and Data Security (FC), 2021.

Jonathan A. Noel, Mashbat Suzuki, and Adrian Vetta. Pirates in wonderland: Liq-
uid democracy has bicriteria guarantees. In Algorithmic Game Theory - Four-
teenth International Symposium (SAGT), 2021.

Guillermo Owen. Multilinear extensions and the banzhaf value. Naval research
logistics quarterly, 22(4):741–750, 1975.

Guillermo Owen. Modification of the Banzhaf-Coleman index for games with a priori
unions. In Power, voting, and voting power, pages 232–238. Springer, 1981.

Guillermo Owen. Multilinear extensions of games. The Shapley Value. Essays in
Honor of Lloyd S. Shapley, pages 139–151, 1988.

Fanny Pascual, Krzysztof Rzadca, and Piotr Skowron. Collective schedules:
Scheduling meets computational social choice. In Proceedings of the Seventeenth
International Conference on Autonomous Agents and MultiAgent Systems (AA-
MAS), 2018.

Alois Paulin. An overview of ten years of liquid democracy research. In Proceed-
ings of the Twenty-First Annual International Conference on Digital Government
Research, pages 116–121, 2020.

Lionel S Penrose. The elementary statistics of majority voting. Journal of the Royal
Statistical Society, 109(1):53–57, 1946.

Kislaya Prasad and Jerry S Kelly. NP-completeness of some problems concerning
voting games. International Journal of Game Theory, 19(1):1–9, 1990.

132 Bibliography

Ahmed Rana, Ibrahim Zincir, and Samsun Basarici. The security and the credibility
challenges in e-voting systems. In European Conference on Cyber Warfare and
Security, 2015.

Manon Revel, Daniel Halpern, Adam Berinsky, and Ali Jadbabaie. Liquid democ-
racy in practice: An empirical analysis of its epistemic performance. ACM Confer-
ence on Equity and Access in Algorithms, Mechanisms, and Optimization, 2022a.

Manon Revel, Tao Lin, and Daniel Halpern. How many representatives do we need?
the optimal size of a congress voting on binary issues. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2022b.

Manon Revel, Niclas Boehmer, Rachael Colley, Markus Brill, Piotr Faliszewski, and
Edith Elkind. Selecting representative bodies: An axiomatic view. arXiv preprint
arXiv:2304.02774, 2023.

Adrien Richard. Positive and negative cycles in boolean networks. Journal of
theoretical biology, 463:67–76, 2019.

Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites for viral
marketing. In Proceedings of the Eighth ACM SIGKDD International Conference
on knowledge discovery and data mining, 2002.

Daniel J Rosenkrantz, Madhav V Marathe, SS Ravi, and Richard E Stearns. Syn-
chronous dynamical systems on directed acyclic graphs (DAGs): Complexity and
algorithms. Technical report, Biocomplexity Institute and Initiative, University
of Virginia, 2020.

Amirali Salehi-Abari, Craig Boutilier, and Kate Larson. Empathetic decision mak-
ing in social networks. Artificial intelligence, 275:174–203, 2019.

Ehud Shapiro. Grassroots vs. constitutional liquid democracy, 2022. Presentation
at the Liquid Democracy Workshop at the University of Zurich, Switzerland,
website at https://democracynet.eu/activities/ldws2022/.

Ehud Shapiro and Nimrod Talmon. Foundations for grassroots democratic meta-
verse: Blue sky ideas track. In Proceedings of the Twenty-First International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
1814–1818, 2022.

Lloyd S. Shapley and Martin Shubik. A method for evaluating the distribution of
power in a committee system. American political science review, 48(3):787–792,
1954.

Llyod S. Shapley. A value for n-person games. Contributions to the Theory of
Games II, Annals of Mathematical Studies, 28, 1953.

https://democracynet.eu/activities/ldws2022/

Bibliography 133

Wen Shen, Yang Feng, and Cristina V Lopes. Multi-winner contests for strategic
diffusion in social networks. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2019.

Ilya Shmulevich and Wei Zhang. Binary analysis and optimization-based normal-
ization of gene expression data. Bioinformatics, 18(4):555–565, 2002.

Jonathan Stray. Designing recommender systems to depolarize. First Monday, 27
(5), 2022. doi: 10.5210/fm.v27i5.12604. URL https://doi.org/10.5210/fm.
v27i5.12604.

Nimrod Talmon and Piotr Faliszewski. A framework for approval-based budget-
ing methods. In Proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence (AAAI), 2019.

Nicolaus Tideman. The single transferable vote. Journal of Economic Perspectives,
9(1):27–38, 1995.

Gordon Tullock. Toward a mathematics of politics. Ann Arbor: University of
Michigan Press, 1967.

Giannis Tyrovolas. The limits of smart voting in liquid democracy. Master’s thesis,
University of Oxford, 2022.

Leslie G Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410–421, 1979.

Chiara Valsangiacomo. Clarifying and defining the concept of liquid democracy.
Swiss Political Science Review, 28(1):61–80, 2022.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009.

Yuzhe Zhang and Davide Grossi. Power in liquid democracy. In Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI), 2021.

Yuzhe Zhang and Davide Grossi. Tracking truth by weighting proxies in liq-
uid democracy. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2022.

Zhiqiang Zhuang, Kewen Wang, Junhu Wang, Heng Zhang, Zhe Wang, and Zhiguo
Gong. Lifting majority to unanimity in opinion diffusion. In Proceedings of the
Twenty-Fourth European Conference on Artificial Intelligence (ECAI), 2020.

https://doi.org/10.5210/fm.v27i5.12604
https://doi.org/10.5210/fm.v27i5.12604

