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Overview

This thesis contains four chapters on specification tests and model selection of instrumental
variable models. Instrumental variables (IVs) have become a major tool in the social sciences
and in the evaluation of public policies as they allow researchers to estimate causal effects
of endogenous variables on outcomes without bias (for instance due to omitted variables
or measurement error) by projecting said endogenous variables on the IVs. In order for
this strategy to work IVs must be correlated with the endogenous variables and must be
exogenous, ie the IVs must affect the outcome only through the endogenous variables. Thus,
in this thesis, I design tests and methods to choose IV models in order to estimate the true
causal effect of one variable on another. In each chapter I focus on a specific class of commonly
used IV model and then develop methods either to test whether the model is well-specified
or not, or to select the “best” model, or both. This thesis is a nice contribution because
the statistics and econometrics literature has mainly focused on choosing the best model for
prediction or finding the best causal model in simple cases (linear model, binary classifier).
At the same time, a deliberate decision was to make these new methods easily implementable
thus usable by applied researchers, even tough they are very technical. Below is a description
of each chapter for non-specialists, the table of contents, and the chapters themselves.

The first chapter is called “A Pivotal Nonparametric Test for Identification-Robust In-
ference in Linear IV Models” and largely builds upon the ideas developed in Antoine and
Lavergne (2019). In it, I consider the linear IV model with homogenous effect and indepen-
dent data (which is the most common type of IV model) and develop a testing method for the
values of the causal effect. As a direct consequence, by testing and rejecting different values,
confidence intervals of the causal effect can be built. This test has three notable characteristics.
First, it is robust to identification problems, in other words even if the true causal effect cannot
be consistently estimated, specific values of this causal effect can be properly rejected with the
test leading to valid confidence intervals. Second, the test is nonparametric and utilizes all the
information contained in the relationship between the endogenous variable and the IVs. In
turn, this makes the confidence interval for the causal effect built using the test small. Third,
the test statistic is pivotal as in its asymptotic distribution is chi-square distributed under the
null which makes it very simple to apply in practice. These characteristics are demonstrated
in a simulation exercise and in an application. In the latter, I use the data from Angrist and
Krueger (1991) and show, using numerous IVs, that the true causal effect of education on
wages is significant and positive. Although this procedure can be extended to the time series
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case, it requires either to impose very strong restriction on the autocorrelation structure or to
change the test statistic (and remove its pivotality which is its main appeal).

The second chapter is called “Testing and Relaxing Distributional Assumptions on Ran-
dom Coefficients in Demand Models” and is co-authored with Gökçe Gökkoca and Max Lesel-
lier (it is his job market paper). This large paper is the product of our understanding of the
econometrics literature on tests and misspecification, and of our understanding of the em-
pirical industrial organization (IO) literature and some of its failings. In it, we consider the
differentiated products demand model of Berry (1994) and Berry, Levinsohn and Pakes (1995)
also known as the BLP model. The BLP model is the staple model in the empirical industrial
IO literature as it only requires macro-level data, with variables such as price which can be
endogenous (thus the model has IVs), while allowing for individual preference heterogeneity.
Preference heterogeneity is key and determines product substitution patterns which are then
used to perform counterfactual exercises (for instance estimating the effect of a new carbon
tax on demand for cars). The most common way to introduce preference heterogeneity con-
sists in introducing normally distributed random coefficients. But although this method is
simple, it may not capture the true preferences of individuals leading to the wrong substi-
tution patterns, thus the wrong counterfactuals. In this chapter, we show that choosing the
wrong distribution for the random coefficients leads to a misspecification error which is cor-
related with the IVs. Then we develop a class of specification tests of the distribution random
coefficients based on this correlation. In addition, we build new IVs called most powerful
instruments, which take into this potential misspecification to maximize the tests’ power and
to better estimate the BLP model. Furthermore, we propose an algorithm to determine which
product attributes should display preference heterogeneity. The empirical performances of
the tests, of the most powerful instruments, and of the algorithm are assessed with simula-
tions, and we show, using data from the German car market, that a flexible distribution of
preferences leads to very different demand functions and counterfactual quantities of inter-
est. Note that the tests and the new IVs created in this paper generalize to other models and
frameworks, and thus will soon become their own separate papers.

The third chapter of this thesis and also my job market paper is called “Selecting Strong
and Exogenous Instruments via Structural Error Criteria”. This paper is the result of my
insights in the econometrics literature on weak IVs and invalid IVs, and of my exposure to
the statistics and machine learning literature on model selection. I consider the linear IV
model with homogenous effect and independent and identically distributed data, but I also
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allow some of the IVs to have a direct linear effect on the dependent variable and / or to
have a low correlation with the endogenous variable. From there, only a subset of IVs can
be used to estimate consistently the true causal effect of the endogenous variable. A typical
example is when estimating the effect of price on demand and using weather variables as IVs.
Weather variables are cost-shifters, however, they may be weak or may directly affect demand.
Consequently, I coin three relevant losses and criteria based on out-of-sample validation to
select the subsets of IVs which correctly estimate the causal effect. Then I provide theoretical
and simulation evidence that the correct IV subsets are selected and that the true causal effect
is estimated. In the application, I estimate that the causal effect of pre-trial detention on the
probability of being found guilty is 25% after selecting judge dummy IVs (in comparison
to 18% without selection). Note that although these selection procedures and their good
properties generalize to the heteroskedastic case and to various types of IV estimators, their
empirical performances can falter when the model is not linear or when the causal effect is
heterogeneous. This makes their interpretation and practical use difficult. Thus, the next step
in this project is to derive the theoretical properties of the selection criteria designed in this
paper for more general models.

The fourth and last chapter is the vignette of the package "SpeTestNP" developed on R
in collaboration with Pascal Lavergne. This project started early during my PhD as a simple
package and was finally published on CRAN (the official repertory for all R libraries) in 2022.
This package performs nonparametric tests of parametric specifications. In simpler terms, it
allows to test whether a simple (parametric) model is capable of capturing the full effect of
one variable on another compared to a more complex (non-linear) model. A very large class of
parametric models can be tested (including IV models if the functions are well-parametrized).
Five heteroskedasticity-robust tests are available: Bierens (1982), Zheng (1996), Escanciano
(2006), Lavergne and Patilea (2008), and Lavergne and Patilea (2012). Specific bandwidth
and kernel methods can be chosen, along with many other options, most notably parallel
computing to quickly compute p-values based on the bootstrap. The package capabilities are
illustrated by testing parametric specifications of the effect of years of education and age on
earnings.
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Chapter 1: A Pivotal Nonparametric Test for
Identification-Robust Inference in Linear IV Models

Abstract

In linear models with endogenous regressors it is well-known that weak instruments
(IVs) bias the 2 Stage Least Squares (2SLS) and other k-class IV estimators and make stan-
dard Gaussian confidence intervals invalid. Inference can still be performed by inverting
tests, however there are no known method to account for a non-linear first stage except
Antoine and Lavergne (2022). Their method requires simulations of the distribution of the
test statistic under the null which makes it difficult to apply when sample size is mod-
erate to large. For the above reasons I build a pivotal test statistic based on a score of
integrated conditional moments which allows to easily infer on the model’s structural pa-
rameters regardless of instruments’ strength and the shape of the first stage conditional
mean. For heteroskedastic or independent and identically distribution data with normal
or non-normal errors I prove that the test is valid regardless of the degree of identification
of the structural parameter of interest, and also prove that the test is consistent as long if
the parameter of interest is at least semi-strongly identified. I compare the performances of
the test against competing ones and revisit the effect of education on wage using Angrist
and Krueger (1991) data and prove that it is strictly positive.

Keywords: Weak Instruments, Hypothesis Testing, Semiparametric Model
JEL Codes: C12, C13, C14
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1 Introduction

Consider the linear model with endogenous variables popular in reduced form econometrics

yi = x′i β + z′1iγ + ui E(ui|z1i, z2i) = 0 i = 1, . . . , n (1.1)

where x are endogenous variables, z1 are exogenous control variables, and z2 are exogenous
instrumental variables. One would like to infer on the structural parameter β. Starting from a
controversial application by Angrist and Krueger (1991) and a critique by Bound, Jaeger, and
Baker (1995) it has been shown that if the correlation between instruments and endogenous re-
gressors is small then standard asymptotic approximations of the distribution of IV estimators
are unreliable both in small and large samples. From there, alternative asymptotic frameworks
were developed to account for potentially weak identification or weak instruments, such as
in the seminal paper by Staiger and Stock’ (1997), so that robust tests and inference may
still be performed, see e.g. , Anderson and Rubin (1949), Stock and Wright (2000), Moreira
(2003), Kleibergen (2002, 2005), Andrews and Cheng (2012), Andrews (2016), and Andrews
and Mikusheva (2016a,b). Important surveys on weak identification include Stock, Wright,
and Yogo (2002), Dufour (2003), Hahn and Hausman (2003), and Andrews and Stock (2005).
These procedures are robust to instrument strength and rely on a parametric and often linear
approximation of the first-stage equation. But using a linear approximation of the first stage
leads to a loss of information and thus lowers IV strength, in a recent paper Dieterle and Snell
(2016) highlights how in a variety of applications adding polynomials and cross-products of
the instruments change the 2SLS estimates significantly. Consequently, in the context of weak
instruments, it would be preferable to consider a non-linear first stage but as Jun and Pinkse
(2012) have shown, using a nonparametric estimate of the first-stage conditional mean does
not allow to obtain a valid confidence interval for β when instruments are weak. This negative
results extends to nonparametric IV estimation procedures such as Newey and Powell (2003)
or Darolles, Florens, and Renault (2011). In fact estimating the first stage conditional mean
nonparametrically typically results in a weak-identification robust confidence interval which
is wider than if the first stage was considered linear because the conditional mean is too flat
and the number of IVs too large, see Dieterle and Snell (2016). For the above reasons Antoine
and Lavergne (2022) came up with an inference procedure based on a test which leaves the
first stage equation unspecified and unestimated while being robust to weak identification.
Their test statistic uses the methodology of integrated conditional moments but is not pivotal
hence its the distribution has to simulated. This makes their test hard to apply in practice
when sample size becomes large (n > 10, 000) as is most common in applied microeconomics
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papers and in the application of this paper.

Consequently, I develop a pivotal test statistic for weak-identification robust inference in
linear IV models with an unspecified first stage. This allows applied researchers to easily
infer on the linear effect of endogenous variables on outcomes regardless of the nature of the
relationship between the instruments and the endogenous variables. To create this test my ap-
proach resembles that of Antoine and Lavergne (2022): I combine the integrated conditional
moment specification test of Bierens (1982) with the Lagrange multiplier test of Kleibergen
(2005) (LM) to create KICM for Kleibergen integrated conditional moment, whereas they con-
sider an integrated conditional moment version of Anderson and Rubin (1949) (AR) called
ICM for integrated conditional moment and of the conditional likelihood ratio test of Moreira
(2003) (CLR) called CICM for conditional integrated conditional moment. ICM and CICM
are asymptotic tests, therefore they will perform well only in larger samples and yet they are
also non-pivotal tests hence their critical values depend on the null hypothesis being tested
and have to be simulated. This means that for large samples with possibly a few endogenous
regressors it is very computationally costly to invert the ICM or CICM tests. On the contrary
KICM is chi square with degrees of freedom equal to the number of endogenous regressors
at the limit under the null with iid or heteroskedastic non-normal errors and a fixed number
of instruments which makes inversion for inference relatively easy. In addition, it is known
that the LM test is more robust to many and many weak instruments, see Hansen, Hausman,
and Newey (2008), compared the AR and the CLR, this result carries on for their integrated
conditional moment versions. These advantages shine in the simulations and application of
this paper: With 4 instruments KICM has no size distortion compared ICM and CICM. The
ICM and CICM tests cannot be inverted to infer on the effect of schooling on wages because
sample size is above 100, 000.

In the second section of this paper I formally introduce the model, the existing tests, and
motivate KICM. The third section is devoted to the derivation of the KICM test statistic from
the null hypothesis and its implementation. The fourth establishes the validity and consis-
tency of KICM for iid and heteroskedastic data. In the fifth section I perform an simulation
exercise to assess KICM performances. In the sixth section I perform inference on the return
to schooling on salary using the data from Angrist and Krueger (1991). I conclude in a seventh
and final section. Proofs are in section A, B, C and D of the appendix, tables and plots from
the simulations and the application are in section E of the appendix.
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2 Framework

The objective is to infer on the effect β of l endogenous variables xi on an outcome yi by
testing null hypotheses of the form H0 : β = β0 for some β0 ∈ Rl. Without loss of generality
exogenous control variables are projected out‘a la Frisch-Waugh consequently in the rest of
the paper I consider the following structural equation

yi = x′i β + ui E(ui|zi) = 0 i = 1, . . . , n (2.2)

which is augmented by a first-stage reduced form equation for xi with k > l exogenous
instruments zi

xi = Π(zi) + vi E(vi|zi) = 0 i = 1, . . . , n (2.3)

zi may also include some of the exogenous controls if one also suspects Π(·) to be non-linear
in those. I denote by y, x, z and Π(z) the stacked versions the versions of (yi, x′i, z′i, Π(zi)

′)
over the observations i = 1, . . . , n so that y is of dimension n× 1, x of dimension n× l, z of
dimension n× k, and Π(z) of dimension n× l.

Π(·) may be “close to zero” so that z is weakly related to x. This weak instruments problem
prevents consistent estimation of β and renders inference using standard Gaussian confidence
interval invalid. Valid inference is still possible by inverting weak-identification robust tests
but those may yield conservative confidence interval as they don’t account for non-linearities
in the first stage. In the next subsections I first briefly present the weak instruments problem,
second I review the most popular methods for weak-identification robust inference, and third
I motivate the use of KICM.

2.1 The weak instruments problem

Consider the setting described by (2.2) and (2.3) and assume for exposition that (yi, xi, zi)
n
i=1

is iid and that Π(·) is linear and injective, ie Π(zi) = Π′zi with Π a full rank k × l matrix.
To estimate β one will use a k-class estimator such as 2SLS but when the instruments are
weak as in Π is close to being singular the estimators mentioned above are biased and the
traditional inference procedures become unreliable even in large samples. The literature has
largely expanded upon these types of problems, see the surveys by Stock et al. (2002), Dufour
(2003), Hahn and Hausman (2003), and Andrews and Stock (2005), and has coined different
types of weak instruments asymptotics in order to model these problems. Because I consider
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a finite number of instruments k, I follow the terminology of Andrews and Cheng (2012) and
without loss of generality allow instruments to be very weak, weak, semi-strong and strong

Π ≡ 1
na C (2.4)

where C is a k × l full rank matrix and a is positive or infinite. a represents instruments’
strength so that when a = 0 the instruments are deemed strong and β is strongly identi-
fied, when a ∈ (0; 1/2) the instruments are deemed semi-strong and consequently β is semi-
strongly identified, when a = 1/2 the instruments are deemed weak and thus β is weakly
identified, and when a > 1/2 the instruments are deemed very weak and therefore β is very
weakly identifiedMore specifically, as long as a < +∞ the structural parameter β is point-
identified however depending of the strength of the instruments β may not be consistently
estimated which is why this terminology is used. When the instruments are weak or very
weak a > 1/2 then k-class estimators such as 2SLS lose their consistency and their asymptotic
normality.

Because consistent estimation is too difficult in case of weak instruments even with reg-
ularization, the literature has focused on providing inference robust to weak instruments by
inverting tests. I introduce the most famous tests in the literature then show with a simple
example that, because they do not take into account many non-linearties in the first stage,
they decrease identification strength of β which is why KICM is needed.

2.2 Existing tests

Define

Y =




y1 x′1

y1 x′2
...

...

yn x′n




, Ωi ≡ Ω(zi) = Var(Yi|zi) =




Var(yi|zi) Cov(yi, xi|zi)

Cov(xi, yi|zi) Var(xi|zi)


 = Var(v′iβ + ui v′i|zi)

b0 = [1 − β′0]
′, A0 = [β0 Il]

′

Assuming the data is homoskedastic, ie Ω(zi) = Ω, then one can also define

S ≡ S(β0) = Yb0
(
b′0Ωb0

)−1/2 , T ≡ T(β0) = YΩ−1A0

(
A′0Ω−1A0

)−1/2
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Notice that b0 has dimension (l + 1)× 1 and A0 has dimension (l + 1)× l so T has dimension
n× l whereas S has dimension n× 1. Most notably, these notations imply that Yb0 = y− xβ0

and that if the data is homoskedastic Var(yi − x′i β0|zi) = b′0Ωb0.

Anderson and Rubin (1949) were the first to address the issue of inference with weak
instruments under the assumption of homoskedacity and linearity in the first stage, without
resorting to estimating the first stage correlation coefficient Π. The principle is the following:
for different β0, y − xβ0 is regressed on z and a test of joint significance of z is performed,
then all the values of β0 for which the test is not rejected form the confidence interval of β. To
test H0 : β = β0 rewrite model (2.2)

Yb0 = y− xβ0 = x(β− β0) + u ≡ zδ0 + u0

then the AR test statistic is the Wald statistic which tests H0 : δ0 = 0

AR ≡ AR(β0) =
b′0Y′PzYb0

b′0Ωb0
= S′PzS

As z has rank k so does Pz which implies that under the null H0 : β = β0 and assuming

linearity in the first stage and homoskedasticity AR d→ χ2
k. This holds whether or not the

errors are normals and if Ω is replaced by a consistent estimator such as 1
n−kY′MzY.

Later came Kleibergen (2002) Lagrange Multiplier statistic

LM = S′PPzTS = S′PzT(T′PzT)−1T′PzS

derived from limited information maximum likelihood criterion. PPzT has rank l thus LM d→
χ2

l under the null, linearity of Π(·) and homoskedastic errors.

Moreira (2003) coined a conditional likelihood-ratio statistic

CLR = S′PzS− λmin(




S′PzS S′PzT

T′PzS T′PzT


)

where λmin(·) is the minimum eigenvalue. In general the asymptotic distribution of CLR has
to be simulated and depends on β0.
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Note that H0 : β = β0 is equivalent to δ0 = 0 if and only if Π is non-singular hence if Π is
singular or if the instruments are very weak a > 1/2, see (2.4), then the CI derived from any
of these procedures will be of infinite length. Because the limiting distribution of LM does
not depend on the number of instruments k but on the number of endogenous regressors l
inference using LM yields confidence intervals with better coverage than with the AR and
CLR if k is moderate or large. One downside of LM is that the confidence intervals for β may
be the union of 2 or 3 intervals. When k is small it can be shown that CLR has better power
than the other 2 and thus the confidence interval built from it has smaller length.

There exists heteroskedasticity robust and some auto correlation robust versions of the
AR, LM and CLR tests, see e.g. Andrews, Moreira, and Stock (2004), Kleibergen (2007),
Chernozhukov and Hansen (2008), Moreira and Moreira (2019) and Andrews and Mikusheva
(2016a), tests which are similar in purpose but specific to other types of models such as the
generalized empirical likelihood test of Guggenberger and Smith (2005) also exists. As noted
by Dufour and Taamouti (2007) the AR test is "robust to misspecification" in the first stage
unlike the LM and CLR tests: As long as there is one instrument left, if an instrument is not
included in the first stage then the AR test will still be χ2 distributed under the null thus it
will have correct size. Tests which allow for non conservative inference on subvectors of β also
exist, see Guggenberger, Kleibergen, Mavroeidis, and Chen (2012), Guggenberger, Kleibergen,
and Mavroeidis (2019).

2.3 Motivation

An important issue with these tests is that they only consider the linear relationship between
the endogenous variables and the instruments hence non linearities remain in part undetected
leading to a loss of power thus larger confidence intervals.

As an example consider the following scalar-IV model l = k = 1 with iid data homoskedas-
tic data (yi, xi, zi)

n
i=1 with Ω known and zi ∼ N (0, 1)

yi = xiβ + ui, xi = z2
i + vi, E(vi|zi) = E(ui|zi) = 0

Then notice that the best linear projection of xi on zi denoted as BLP(xi|zi) equals 0

BLP(xi|zi) = z′iE(ziz′i)
−1E(zixi) = z′iE(ziz′i)

−1E(z3
i ) = 0

because E(z3
i ) = 0. Similarly the projection yi on zi equals 0

BLP(yi|zi) = z′iE(ziz′i)
−1E(ziyi) = z′iE(ziz′i)

−1E(z3
i β + ziviβ + ziui) = 0

13



As a consequence, instruments are considered irrelevant by the AR, LM and CLR tests because
all of them are quadratic functions of Y′PzY, thus confidence intervals built from them are the
whole real line. More precisely using the law of large numbers (LLN) and the central limit
theorem (CLT) it can be shown that

Y′PzY =
1√
n

Y′z
(

1
n

z′z
)−1 1√

n
z′Y = OP(1)

where OP(1) is the big O in probability notation for bounded in probability1. Thus AR cannot
explode under the alternative H1 : β 6= β0 because it is bounded in probability, it has no power
hence a confidence interval built from it will be very large.

In a more general case with the possibility of semi-strong and weak instruments, only
considering linearities in the first stage as in the AR, LM and CLR can only exacerbate the
issue of instrument weakness even in the best of cases while in the worst as in the example
above it can make the instruments completely irrelevant. For this reason a new test which
takes into account non-linearities in the first stage such as KICM is needed.

3 Building KICM

I derive the KICM statistic in two steps: First, I consider a conditional moment null hypothesis
and prove that it is equivalent to an integrated conditional moment hypothesis as in Bierens
(1982). Second, using the ICM statistic of Antoine and Lavergne (2022) as a criterion I build
KICM which is a transformation of ICM’s score. Then I present the feasible versions of KICM
for both homoskedastic and heteroskedastic data. From now on and in the rest of the paper I
consider the model characterized by (2.2) and (2.3) and unless specifically mentioned I do not
assume that Π(·) is linear and that the data is iid.

3.1 From a conditional moment to an integrated conditional moment

Recall the model characterized by (2.2) and (2.3)

yi = x′i β + ui E(ui|zi) = 0 (2.2)

xi = Π(zi) + vi E(vi|zi) = 0 (2.3)

1Formally if X = OP(1) then ∀ε > 0∃M : P(|X| > M) 6 ε. If X = oP(1) then X is degenerate in probability
and ∀ε > 0, P(|X| > ε)→ 0.
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Then to test H0 : β = β0 the structural equation should be rewritten

y− xβ0 = Π(z)(β− β0) + u0, u0 = v(β− β0) + u

As a consequence, H0 : β = β0 implies that H1
0 : E(yi − x′i β0|zi) = 0 a.s which turns into an

equivalence under specific conditions.

Using H1
0 directly is not possible so instead I use the "Fourier" transformation from Bierens

(1982) to obtain an equivalent many moments condition H2
0 : E((yi − x′i β0)eit′zi) = 0 ∀t ∈ Rk.

One may interpret H2
0 as the true error being 0 on average for any possible direction of the

instruments or equivalently for any possible "additive combination" of the moments of the
instruments. Indeed

∀t ∈ Rk exp(it′zi) = cos(t′zi) + i sin(t′zi) = exp(i
k

∑
j=1

ztk
i )

Alternatives to H2
0 could be used such as a many moments condition with check functions,

however using the complex exponential will allow to formulate the test in a simple matrix
form and makes it pivotal.

The condition H2
0 is equivalent to H3

0 : |E((yi − x′i β0)eit′zi)|2 = 0 ∀t ∈ Rk where | · |
denotes the modulus. Finally H3

0 is equivalent to H4
0 , an integrated version of the many

moments conditions over the t to only have 1 final moment so that the null H0 : β = β0 is
equivalent to

H4
0 :
∫

Rk
|E((yi − x′i β0)eis′zi)|2dµ(s) = 0

where µ is a (finite) measure with support Rk which is positive almost everywhere to account
for all the moments. These equivalences are summarized in the following proposition.

Proposition 3.1 Assuming that (2.2) and (2.3) hold and that µ is a positive measure almost every-
where on Rk then

H0 : β = β0 ⇒ H1
0 : E(yi − x′i β0|zi) = 0 a.s ⇔ H2

0 : E((yi − x′i β0)eit′zi) = 0 ∀t ∈ Rk

⇔ H3
0 : |E((yi − x′i β0)eit′zi)|2 = 0 ∀t ∈ Rk

⇔ H4
0 :
∫

Rk
|E((yi − x′i β0)eis′zi)|2dµ(s) = 0
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Moreover, if l = 1 and P(Π(zi) = 0) = 0 then

H0 ⇔ H1
0 ⇔ H2

0 ⇔ H3
0 ⇔ H4

0

The proof is in A.1 of the appendix. It is then straightforward to build a test statistic for
H0 from H4

0 . Note that in general H4
0 tests an implication of H0 like the previously mentioned

tests, when Π(·) is small the test has low power and the confidence interval built from it is
large.

3.2 From ICM to KICM

To test H0 : β = β0 an empirical counterpart of H4
0 :
∫

Rk |E((yi − x′i β0)eis′zi)|2dµ(s) = 0 is
taken, then multiplying by n and standardizing allows the CLT to apply to the integrand, this
is the ICM statistic of Antoine and Lavergne (2022) which writes

ICM ≡ ICM(β0) =
∫

Rk
|n−1/2

n

∑
i=1

yi − x′i β0

Var(yi − x′i β0|zi)1/2 eis′zi |2µ(s)

ICM can actually be written as a function of S, let W be a n × n matrix with elements
Wij = n−1w

(
zi − zj

)
such that

w(z) =
∫

Rk
eis′zdµ(s) (3.5)

The condition for µ to have support Rk translates into the restriction that w(·) should have
a Fourier transform which is strictly positive almost everywhere, or if the support of the
instruments z is bounded, that its Fourier transform is well-defined in a neighborhood of 0,
see Theorem 1 in Bierens (1982). The choice of w(·) thus includes products of densities such as
triangular, normal, or logistic, see Johnson, Kotz, and Balakrishnan (1995), Student, including
Cauchy, see Dreier and Kotz (2002), or Laplace. Using properties of the modulus it is simple
to show that ICM = S′WS.

Thus ICM ressembles AR = S′PzS but W is not a projection matrix hence ICM is not piv-
otal asymptotically and its distribution depends on β0. Similarly from Antoine and Lavergne
(2022) CICM is the integrated conditional moment equivalent of the CLR of Moreira (2003)
and is not pivotal asymptotically. To derive the KICM test statistic which is pivotal asymptot-
ically I use ICM as a criterion function and derive its score which I then standardize: Taking
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(y, x, z) as deterministic notice that the convex function

β 7→ b′Y′WYb
b′Ωb

, b = (1 − β′)′

is minimized uniquely at β = β0 under the null hypothesis. Thus taking the first order
condition at β0 yields

∂

∂β
b0 × (

Y′WYb0

b′0Ωb0
− Ωb0b′0Y′WYb0

(b′0Ωb0)2 ) = 0 ⇔ Y′WYb0

b′0Ωb0
− Ωb0b′0Y′WYb

(b′0Ωb0)2 = 0

⇔ (A′0Ω−1A0)
−1/2A′0Ω−1Y′WYb0

(b′0Ωb0)1/2 = 0

⇔ T′WS = 0

where the second line is obtained by multiplying by (A′0Ω−1A0)
−1/2A′0Ω−1 and using the fact

that A′0b0 = 0l. I prove later that E(S′WT|z) = 0 when (y, x, z) is random. Finally KICM is a
quadratic version of the score S′WT standardized with respect to WT

KICM = S′WT(T′W2T)−1T′WS = S′PWTS

where PWT is the orthogonal projection matrix on WT which gives the statistic its chi square
l degrees of freedom asymptotic distribution.

3.3 KICM in practice

In practice in order to use KICM properly several elements are still needed:
First, I greatly simplify the choice of w(·) by imposing that its Fourier transform is a real

symmetric density which is strictly positive almost everywhere, or around 0 if z has bounded
support, and that the L2 norm of w(·) equals 1. As a consequence, w(·) is also a symmetric real
bounded density, thus possible choices for w(·) are Triangular, Logistic, Cauchy or Laplace
distribution densities (see Johnson et al. (1995)). Imposing that the Fourier transform is a
centered density cleverly prevents having too many instruments, puts more weights on lower
moments of z and make sure no cardinal direction of moments of z is favored. On the other
hand making sure that the squared norm of w(·) equals 1 ensures that the elements of W do
not scale with sample size.

Second, Ω(zi) = Var(Yi|zi) must be estimated consistently. Assuming it is linear in z then
simply using the parametric estimator Ω̂ = 1

nY′MzY is a good idea. If this assumption is too
strong one may use a semi-parametric or non-parametric estimator, e.g. from Seifert, Gasser,
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and Wolf (1993) or from Yin, Geng, Li, and Wang (2010). I use the later in the simulations and
application. It writes

Ω̂(z) =
1

nh ∑n
i=1(Yi − Ȳ(z))(Yi − Ȳ(z))′K((zi − z)/h)

1
nh ∑n

i=1 K((zi − z)/h)
, Ȳ(z) =

1
nh ∑n

i=1 YiK((zi − z)/h)
1

nh ∑n
i=1 K((zi − z)/h)

with the bandwidth h chosen properly to allow convergence. If data is homoskedastic the
estimator is the following average Ω̂ = 1

n ∑n
i=1 Ω̂(zi).

Third, the instruments should be standardized. A desirable property of weak-identification
robust tests is that of invariance to orthogonal transformations of the instruments which al-
lows the tests to be invariant to instruments’ scale (see Andrews and Stock (2007)). KICM
cannot satisfy this property however by standardizing the instruments a priori the same ef-
fect can be obtained. Additionally in the literature on nonparametric estimation via Kernels,
regressors are standardized through the bandwidth (see Li and Racine (2006)) and here w(·)
has the role of a Kernel function.

Feasible tests Based on the above the feasible KICM statistic for homoskedastic data Var(Yi|zi) =

Ω writes

KICM f = S′f PWTf S f , S f = Yb0(b′0Ω̂b0)
−1/2, Tf = YΩ̂−1A0(A′0Ω̂−1A0)

−1/2

where W has elements Wij =
1
n w(zi − zj) with w(·) a density satisfying the aforementioned

conditions and where Ω̂ is a consistent estimator of Ω.
In case of heteroskedastic data Var(Yi|zi) = Ω(zi) = Ωi I first define the heteroskedasticity

robust version of KICM

KICMh = S′hPWTh Sh, ∀i Sih = Y′i b0(b′0Ω(zi)b0)
−1/2, T′ih = Y′i Ω(zi)

−1A0(A′0Ω(zi)
−1A0)

−1/2

with Sh and Th the stacked versions of Sih and Tih respectively. This change allows Sih and
Tih to be properly standardized in the heteroskedastic case. Then the feasible version of the
heteroskedasticity robust KICM statistic writes

KICMh f = S′h f PWTh f Sh f , ∀i Sih f = Y′i b0(b′0Ω̂(zi)b0)
−1/2, T′ih f = Y′i Ω̂(zi)

−1A0(A′0Ω̂(zi)
−1A0)

−1/2

where Ω̂(·) is a consistent estimator of Ω(·).
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Weak-identification robust inference With a feasible KICM test statistic in hand it is now
possible to infer on β regardless of its degree of identification. To do so the econometrician
has to invert the KICM test. First, they need to select a nominal coverage 1− α for the confi-
dence interval and a grid over Rl from which they will test different values of β0. Then the
econometrician must compute the KICM feasible statistic for all values of β0 over the grid.
Finally all values of β0 for which the statistic is above the 1− α quantile of a chi square with
l degrees of freedom will constitute the 1− α confidence interval of β.

The next section is devoted to formal results on the distibution and the asymptotic behav-
ior of KICM.

4 KICM validity and consistency

In this section, I first introduce assumptions necessary for the asymptotic theory then I prove
that KICM is chi square distributed under normality of the errors under the null, and lastly
I prove validity and consistency of KICM without normality of the errors. The theoretical
coverage probabilities of the confidence interval built from KICM are direct implications of
the propositions and theorem introduced in this section which is why they are omitted.

4.1 Assumptions

I first assume that the data is either iid or heteroskedastic in the sense that errors’ variance
are functions of the instruments. Then to obtain asymptotic results and a consistent estimator
of the conditional variance Ω(·) I require Yi to have strictly more than a second conditional
moment which is bounded in order to use Berry-Esseen inequalities to prove convergence.

Assumption A
(i) Observations (yi, x′i, z′i)

n
i=1 are independent and identically distributed

(ii) Observations (yi, x′i, z′i)
n
i=1 are independent with (z′i)

n
i=1 also identically distributed

(iii) ∃δ > 0, M > 0 : E(||Yi||2+δ|zi) < M

Second, I make assumptions on the parameters. I assume the unique existence of a struc-
tural parameter of interest β and of some reduced form parameter Π(·). Then in order to
model strong, weak and very weak identification I allow Π(·) to depend on n in two ways:
Either Π(·) = n−aC(·) where C(·) is a function which does not depend on n and a represents
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the degree of identification of β or equivalently the degree of weakness of the instruments.
The coefficient a is just a theoretical tool to study size and power when parameters have
different identification strength, it is unknown in practice. Then β is strongly identified or
equivalently instruments are strong when a = 0, β is semi-strongly identified and the instru-
ments are semi-strong when 0 < a < 1/2, β is weakly identified and the instruments are said
to be weak in the sense of Staiger and Stock’ (1997) when a = 1/2, β is very weakly identified
and instruments are very weak when a > 1/2, and when a = ∞ instruments are irrelevant
and β is not identified at all. Either Π(·) = N−1

C C(·) where NC is a l × l diagonal matrix with
entries which correspond to the degree of identification of each element in the vector β or
equivalently the degree of weakness of the instruments with regards to each element of β

NC =




na1 0 ... 0

0
. . . . . . ...

... . . . . . . 0
0 ... 0 nal


 , (a1, . . . , al) ∈ R̄l

+

where aj represents the degree of identification of β j.Thus if aj = 0 instruments are strong for
j and β j is strongly identified, if 0 < aj < 1/2 then β j is semi-strongly identified, etc... With
either of those assumptions β and its elements can be strongly identified, weakly identified
or not identified at all if a = ∞. Lastly, I assume C(zi) to have a strictly positive and finite
second moment.

Assumption B
(i) There exists a unique β and some Π(·) such that (2.2) and (2.3) hold
(ii) Π(·) = n−aC(·) where a ∈ R̄+

(iii) Π(·) = N−1
C C(·) where NC is a diagonal matrix with entries (naj)l

j=1 with aj ∈ R̄+

(iv) C(·) does not depend on n and 0 < E(C(zi)C(zi)
′) < +∞

Next I impose conditions on w(·) so that by Bochner’s Theorem µ(·) is finite and strictly
positive almost everywhere. Furthermore, I assume that W is positive definite which holds in
practice but cannot be formally proven without imposing more conditions on w(·) and z.

Assumption C
(i) w(·) has a Fourier transform which is strictly positive almost everywhere, or which is strictly
positive in a neighborhood of 0 if the support of zi is bounded
(ii) W is positive definite almost surely for any n

Lastly, I impose conditions on the conditional covariance estimator Ω̂. In the homoskedas-
tic case a simple consistent estimator for any possible DGP is needed.
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In the heteroskedastic case proving the validity and consistency of KICM involves looking
at random processes of Ω and t such as (t, Ω) 7→ Y′i Ω−1cos(t′zi). These processes must be
sufficiently smooth in Ω which is why I restrict the covariances to the class O. Each Ω in
the class O should be "uniformly bounded" using their minimal and maximal eigenvalues.
Functions in that class also have to be smooth enough so that the class is not "too large",
for any DGP O has a finite covering number2 denoted N(ε,O, L2(P)) which should not to
explode when ε gets bigger for any DGP. This assumption is necessary in order to obtain
asymptotic equicontinuity uniform of the random processes involving Ω so that the difference
between the feasible version KICM and KICM vanishes in the heteroskedastic case, see Vaart
and Wellner (2000), Kosorok (2008) and the proof of Theorem 4.3 in appendix B for more
details. In addition, estimator Ω̂(·) also needs to converge uniformly towards Ω(·) in the L2

sense and to belong uniformly to O almost surely at the limit. In the literature on convergence
of nonparametric statistics with nuisance parameters this type of condition is common, see
Andrews (1995), these are also necessary conditions for the difference between feasible KICM
and KICM to vanish uniformly at the limit.

Assumption D
Let P denote the set of all distributions which satisfy assumptions A(i), A(ii) or A(iii), B(i), B(ii) or
B(iii), B(iv), C(i) and C(ii)
(i) ∀P ∈ P Ω̂ P→ Ω
(ii) Define O such that ∀Ω(·) ∈ O

0 < λ = in f
s∈Rl ,Ω∈O

{λ(Ω(s))} < sup
s∈Rl ,Ω∈O

{λ(Ω(s))} = λ̄ < +∞

∀P ∈ P , ∀ε > 0, N(ε,O, L2(P)) < K′e−Kε

for some K′ > 0, K < 2
(iii) sup

P∈P
||Ω̂(·)−Ω(·)||L2(P) → 0, sup

P∈P
P(Ω̂(·) ∈ O)→ 1

4.2 Normal Errors

For exposition I first consider conditionally normal errors or equivalently that Yi|zi ∼ N (E(Yi|zi), Ω).
Under this assumption it is relatively simple to show that under the null KICM ∼ χ2

l if the

2A ball L2(P) of size ε > 0 centered in g ∈ L2(P) writes { f ∈ L2(P) :
∫
|| f − g||22dP < ε}, then the covering

number of O for DGP P with interval of size ε is the minimal number of ε-balls necessary to cover all of O
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data is homoskedastic, and KICMh ∼ χ2
l if the data is heteroskedastic.

In the homoskedastic case Var(Yi|zi) = Ω it can be shown that WT has rank l and therefore
that the orthogonal projection matrix PWT also has rank l. In turn using the fact that S and T
are orthogonal this implies that KICM is χ2

l distributed conditionally on (z, T) which implies
that KICM is χ2

l distributed. This result is summarized in the following proposition.

Proposition 4.1
For any P ∈ P such that H0 : β = β0, assumptions A(i), B(i), B(iii), B(iv), C(i) and C(ii) hold and
assuming that Yi|zi ∼ N (E(Yi|zi), Ω) holds then KICM ∼ χ2

l

The proof is in A.2 of the appendix. As a direct corollary, the feasible statistic under nor-
mal errors KICM f is also asymptotically χ2

l when assumptions A(iii) and D(i) are added. The
reason is that, under the null, KICM f is bounded in probability, and that Si f and Ti f have
covariance identity at the limit and therefore S f and Tf are orthogonal at the limit. This result
is an implication of the continuous mapping theorem (CMT) so its formal proof is omitted.

In the heteroskedastic case Var(Yi|zi) = Ω(zi) the heteroskedasticity robust KICM statistic
KICMh also follows a chi square distribution with l degrees of freedom

Proposition 4.2
Given Ω, for any P ∈ P such that H0 : β = β0, assumptions A(i), B(ii), B(iii), B(iv), C(i) and C(ii)
hold and assuming that Yi|zi ∼ N (E(Yi|zi), Ω(zi)) holds then KICMh ∼ χ2

l

The proof is very similar to that of Proposition 4.1 and is omitted. Once again the key
argument is that (Sih, Tih) has variance identity conditionally on zi. The feasible statistic
KICMh f can also be proven to be χ2

l asymptotically taking Ω(·) as given. The formal proof of
this result is also omitted.

4.3 Non-normal Errors

With non-normal errors I use empirical process theory to prove that the heteroskedasticity
robust feasible KICM test is uniformly valid and uniformly consistent. In the heteroskedastic
case Ω(zi) is random and could be unbounded thus it is very desirable that KICM is valid
and consistent for all possible data generating processes and not specific ones. Note that the
following results also hold under homoskedastic data and / or normal data.
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Theorem 4.3 shows that the feasible heteroskedasticity robust KICM test is uniformly valid
regardless of instruments strength. Indeed no statement is made about (aj)

l
j=1 thus by invert-

ing this test one automatically obtains a confidence interval with at least nominal coverage.
Of course in practice this interval may be large, especially if instruments are weak.

Theorem 4.3 (Uniform Validity of KICM)
Denote by q1−α the 1− α quantile of the chi-square distribution with l degrees of freedom. Then, under
the null H0 : β = β0 and assumptions A(ii), A(iii), B(i), B(iii), B(iv), C(i), C(ii), D(ii) and D(iii):

lim
n→∞

sup
β0

sup
P∈P :β=β0

P(KICMh f > q1−α) 6 α

The size of KICM is lesser or equal than its nominal size asymptotically.

The proof of Theorem 4.3 is in B of the appendix.
Regarding the power of the KICM test it is determined by the identification strength of

the elements of β which differs from β0, in addition it is the element which is best identified
which will drive power. Intuitively, to reject H0 the part of β which is different from β0 must
be at least semi-strongly identified. Mmore explicitly if for element j and j′ β j = β j0 and
β j′ 6= β j′0, then element j can never contribute to rejecting the null whereas j′ will contribute
if aj′ 6 1/2. Thus if B(ii) is assumed the test is consistent if a < 1/2 but if B(iii) is assumed
then the test is consistent if min{aj : β j0 6= β j} < 1/2. For simplicity, Corollary 4.4 presents
the asymptotic uniform power properties of the feasible heteroskedasticity robust KICM test
under assumption B(ii), ie Π = n−aC(·). The power properties of the KICM test under
assumption B(iii), ie Π(·) = N−1

C C(·), are presented and discussed in appendix D.

Corollary 4.4 (Uniform consistency of KICM)
Denote by q1−α the 1− α quantile of the chi-square distribution with l degrees of freedom. Then under
assumptions A(ii), A(iii), B(i), B(ii), C(i), C(ii), D(ii), and D(iii),

• lim
n→∞

in f
β0

in f
P∈P :β 6=β0,a<1/2

P(KICMh f > q1−α) = 1;

The test is consistent when the instruments are at least semi-strong.

• lim
n→∞

in f
β0

in f
P∈P :β 6=β0,a=1/2

P(KICMh f > q1−α) ∈ [α; 1);

The test has more than trivial power when the instruments are weak.

• lim
n→∞

sup
β0

sup
P∈P :β 6=β0,a>1/2

P(KICMh f > q1−α) 6 α;

The test has trivial power when the instruments are very weak.
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The proof of Corollary 4.4 is in C of the appendix. Next, I study the empirical performances
of KICM.

5 Simulations

Setting I perform simulations in order to evaluate the empirical performances (size, power,
confidence interval length) of the KICM test in small samples in case of strong, semi-strong or
weak instruments, for 4 different first stages, and in case of homoskedastic or heteroskedastic
data. The specification in the simulations is the following: I assume that there is one regressor
l = 1 and either one or two instruments k ∈ {1, 2} in (2.2) and (2.3), the true β is 0, the instru-
ment zi are standard normal thus centered, uncorrelated, and with a symmetric distribution,
sample size is either 100 or 400. Thus there are 24 possible setups:

• 4 possible first stages: linear; non-linear; polar polynomial; semi-polar polynomial

Π1(z) =
z1

na , Π2(z) =
1
na

z1 + z2 + z1z2 + z2
1 + z2

2 + z2
1z2

2 − 3√
26

,

Π3(z) =
1
na

z2
1 − 1√

3
, Π4(z) =

1
na

z1 + z2
2 − 1√
4

• 3 instrument strengths: strong a = 0; semi-strong a = 1/4; weak a = 1/2

• 2 data types: homoskedastic; heteroskedastic

Ω =




1 0.81

0.81 1


 , Ω(z) =

1 + z2
1

2




1 0.81

0.81 1




Keeping instrument strength constant the data (yi, xi, zi)
n
i=1 has the same mean and variance

whatever the setup. Note that for this reason, controlling instruments strength a is equivalent
to controlling the value of the (nonlinear) concentration parameter µ2 = Π(z)′Π(z)√

Var(vi)
as in papers

which define instruments’ strength by the value of the concentration parameter, see Stock and
Yogo (2005), Staiger and Stock’ (1997). In these simulations if a = 1/2 then µ2 ≈ 1, if a = 1/4
then µ2 ≈ √n, if a = 0 then µ2 ≈ n.

Competing methods I consider 6 competing procedures for building confidence sets: the
AR, the LM, the CLR, the ICM, the CICM and the Wald, the later is simply the confidence
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set built using the 2SLS estimator and using its traditional confidence interval based on the
t-test Gaussian asymptotics. Note that if the first stage is polar polynomial as specified above
then the best linear projection of yi and xi on zi is 0, and that if the first stage is semi-polar
polynomial then the best linear projection of yi and xi on z2i is 0. So even in case of strong
instruments I expect the AR, LM and CLR tests to perform very badly in terms of power
compared to the KICM (and ICM and CICM). The number of simulations required to build
the CI of the CLR, ICM and CICM vary between m = 200 and m = 500. Finally to create
comparable heteroskedasticity robust versions of the AR, LM, CLR, ICM, KICM and CICM
I use the nonparametric estimator of Ω(·) of Yin et al. (2010), and consider the Eicker-White
estimator of the covariance matrix of the 2SLS estimator for the Wald test.

Empirical size First, the coverage of the confidence intervals built with KICM is of special
interest, it is the probability that the true β, which equals 0 in this setting, is in said interval
(which is random). The empirical coverage is equal to the empirical size when tests are
inverted. Hence, when comparing sizes the best procedure is the one for which the empirical
size is closest to nominal size which I set to 10%. I report the empirical sizes of the AR,
LM, CLR, ICM KICM, CICM and Wald test for the different settups in table 1 in the weak
instruments case, in table 2 in the semi-strong instruments case, and in table 3 in the strong
instruments case constructed over 5000 simulations in appendix E.1.1.

From the tables, the AR, LM, CLR, ICM, KICM and CICM are all robust to weak in-
struments thus in terms of size there is little difference between them when the strength of
instruments changes. This is not the case for the Wald test built from 2SLS, it is not robust
to weak instruments nor non-linearities, in fact even with semi-strong instruments it is very
oversized. More precisely in all settings it seems that the empirical size of KICM is closer to
nominal size 10% than both ICM and CICM which require a larger number of simulations in
order to be competitive, especially in the linear case Π1(·). In addition, KICM has better size
than the AR, LM and CLR in all settings expect in the linear one which is within expectations.

Power curves Second, to assess how KICM rejects wrong values of β0 I plot its power curve
and the power curves of other competing tests as is done in most of the literature on testing. A
power curve is drawn by measuring the empirical probability of rejecting the null H0 : β = β0

for many different β0 in a grid. This implies that at the grid point β0 = β it is the empirical
size of the test that is computed. Power curves are a useful tool as they tell if one test will
reject false values of β more than another, consequently if a test’s power curve dominates
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another’s then its confidence intervals will be systematically tighter than its competitor’s.
In appendix E.1.2 below are the power curves of the AR, LM, CLR, ICM, KICM, CICM and

Wald test built from 5000 replications for a test of nominal size 10% for the linear, non-linear
and polar polynomial first stages. Sample size is n = 400 and I used m = 500 simulations
in order to compute the critical values of the CLR, ICM and CICM tests. Figure 1, figure
2, figure 3 are the power curves of the 7 tests for strong, semi-strong and weak instruments
respectively with homoskedastic data. Figure 4, figure 5, figure 6 are the power curves for
strong, semi-strong and weak instruments respectively with heteroskedastic data.

Several remarks should be made: Notice that the curves are almost similar whether data
is homoskedastic or heteroskedastic. Next in the polar case and non linear case note that the
tests which are non-robust to non-linearities (AR, LM CLR and Wald) experience a large loss
of power even when instruments are strong. All tests have trivial power when instruments
are weak which again is as expected. Additionally KICM has power overall similar to ICM
and CICM except on one side, this is due to the fact that inverting the KICM test is equivalent
to solving a quartic inequality, LM has similar properties, see Mikusheva (2010). Thus when
choosing between KICM, ICM and CICM there may be a tradeoff between coverage and
power. KICM always seem to have better coverage but CICM seem to have better power in
some cases.

Average p-value curves To have an idea of the "average length" of the CI interval for each
test procedure, I define an “average” confidence interval built by inverting a test over many
simulations. I could consider taking the average bounds of the confidences intervals built over
many simulations, however bounds may not exists when instruments are weak, so instead
I find the average 90% coverage confidence interval by using average p-value curves: For
any candidate β0 for any test for any setting, I check if the average p-value when testing
H0 : β = β0 is above 10%. Then all the β0 for which it is true will constitute the average 90%
confidence interval.

Figure 7, 8 and 9 in appendix E.1.3 are plots of the average p-value curves for strong,
semi-strong and weak instruments respectively, with heteroskedastic data, n = 400, m = 500.

The sets are the whole real line in case of weak instruments for all tests except the Wald test
which gives a finite interval which has very low coverage. The tests which are non robust to
non-linearities (AR, LM and CLR) have higher average p-values hence the average confidence
intervals built from them are much large than the sets built from ICM, KICM and CICM in
case of non-linear first stage, and infinite in case of polar polynomial first stage unlike sets
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built from ICM, KICM and CICM. There is little to differentiate the sets built with KICM
from the ones built from ICM and CICM in the strong or weak instruments case. In case of
semi-strong instruments however the set built from KICM is the union of 2 finites sets in the
linear and non-linear first stage case, one big set which is common the ICM and CICM and
one much smaller set. Again there seems to be a tradeoff between having the right coverage
and higher power when choosing between KICM and ICM and CICM.

Empirical size with a higher number of instruments Finally I consider a first stage with a
higher number of instruments. It is well known that the LM test fares much better when k
starts to grpw compared to both the AR and CLR in the linear case. The same holds true for
KICM compared to ICM and CICM. I consider the linear first stage

Π5(z) =
1
na

z1 + z2 + z3 + z4√
4

Then the empirical coverage of the 7 tests over 5000 simulations for homoskedastic data,
sample size n = 100 and m = 200 simulations of the distributions of CLR, ICM and CICM are
in table 4.

Clearly all the tests are oversized except the LM and KICM, hence a confidence interval
built from will have a lower coverage than the nominal 90% for weak, semi-strong or strong
instruments.

6 Application: Returns to schooling

In this final section I provide inference via KICM for the causal effect of the number of years
of schooling on the logarithm of wage using quarters of birth as instruments using the data
from Angrist and Krueger (1991). The authors estimate the causal effect of the number of
years spent in school on wage by using the exogenous variation of schooling due to difference
in quarters of births: Teenagers born early in the year leave school earlier because they reach
the age at which they can work earlier, this creates a difference in the total number of years
of schooling between children born early in the year and children born later. In addition, the
authors try different specifications by interacting these instruments with time and location
dummies in order to increase the fit of the first stage with the belief that it increases the
strength of the instruments. Data is from the US where they have access to different cohorts
and I focus on cohort 20-29 with 247, 199 observations in the sample.
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This paper is well-known for the fact that the instruments used are quite weak3, across
all specifications and all cohorts the F-statistic vary between 1 and 15. Because of the large
sample size ICM and CICM cannot be used. At the same time considering that the first stage
is non-linear allows quarter of births to act as types, the first stage is equal to a different
non-linear function of the exogenous regressors for each type. This degree of flexibility is
much larger compared to a linear first stage with only a few interactions being considered.
Thus one can expect the confidence intervals built from KICM to be small compared to the
competition if there is a sufficient number of covariates.

Formally I consider the model in table IV of Angrist and Krueger (1991) which focuses on
cohort 20-29

log(wage)i = β schoolingi + FEy + FEr + x′iγ + ui

schoolingi = ∑
j,t

αjt 1QBi=j,YB=i + FEy + FEr + x′iζ + vi

where QBi is the quarter of birth, YBi is the year of birth, FEy are year of birth fixed effects,
FEr are region of residence fixed effects, and xi some covariates. Using KICM I allow the first
stage to be completely non-linear in the instruments and covariates thus I consider

schoolingi = ∑
j,t,r

1QBi=j,YBi=t,RRi=rΠjtr(xi) + vi

where RRi is the region of residence, and Πjtr(·) is a non-linear function of xi specific to the
triple quarter of birth j, year of birth t, and region of residence r. In other words when using
KICM I implicitly allow for a first stage with a different non-linear function for every possible
combination of quarter of birth, year of birth and region of residence. This is much more
flexible than a linear first stage specification.

In table 5 of appendix E.2 below I provide estimates of the 90% coverage heteroskedasticity
robust confidence interval of β by inverting AR, LM, CLR, and KICM and for reference I also
provide the OLS, 2SLS, LIML and Fuller estimates and their t-test Gaussian based confidence
intervals for 4 different specifications.

In the simplest specification (1) there are no covariates only year fixed effects therefore
KICM considers the same first stage as the other tests. At the same time without covariates,

3see Stock and Yogo (2005) for a comprehensive look at thresholds which determine if instruments are weak
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schooling is very likely to still be endogenous even after being projected on the instruments.
Assuming exogeneity however, observe that even in the simplest specification the KICM confi-
dence set for returns to schooling is positive and has smaller length than the set built with the
AR test, the CLR set however is significantly smaller. For specification (2) and (3) which add
other covariates all 4 test procedures which are robust to weak instruments give the whole
real line as the confidence interval. Finally in specification (4) which also includes region
of residence fixed effects, while other tests give the whole real line as confidence sets, the
KICM confidence interval is small and positive. In figure 10 of appendix E.2 is the p-value
curve for KICM and Wald tests built using the different estimators over a grid of potential
null H0 : β = β0 in specification (4). This result is not so surprising as KICM becomes more
powerful with more covariates as it considers all non-linearities including interactions. This
set is also very different from the OLS and 2SLS set but is included in the LIML and Fuller
set which is not far-fetched because LIML and Fuller are known to perform better than 2SLS
when there are weak possibly many instruments.

These results imply that estimates of the returns to schooling may not be as small as OLS
and 2SLS and not as large as Fuller and LIML have indicated until now, from specification (4)
an increase of 1 year of schooling yields an increase in wages between 13.8% and 24%.

7 Conclusion

On the one hand in the current literature on weak instruments, most inference procedures
do not take into account non-linearities or interactions in the first stage. This leads to an
important loss of relevance, or a total loss of relevance of the instruments, both in simulations
and in applications. On the other hand estimating the first stage non-linearly is difficult
and leads to a situation of having too many weak instruments, see Dieterle and Snell (2016).
Thus like ICM and CICM from Antoine and Lavergne (2022), KICM relies on an integrated
conditional moment in order to consider the non-linearities present in the first stage.

KICM has some advantages over the ICM and CICM. First, its size is closer to nominal size
in practice hence sets built with KICM have coverages which are closer to nominal coverage
compared to ones built with ICM or CICM. Second, it is more robust to many instruments
than ICM and CICM just like how the LM is more robust to many instruments than the
AR and CLR. Third, it is pivotal hence it does not require simulations in order to obtain its
asymptotic distribution, ICM and CICM require simulations and are thus unimplementable
when samples get large as in the application of this paper. This implies that in larger samples
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or with more instruments KICM is very simple to implement and reliable. All in all KICM
is an off-the shelf procedure to easily compute confidence sets which are robust to weak
instruments and which consider non-linearities in the first stage, regardless of sample size
or the number of instruments, normality or non-normality of the data, homoskedasticity or
heteroskedasticity of the data.

Consequently, linear IV models with a single instrument and few covariates and / or fixed
effects should expect significant improvements in the quality of confidence sets at no cost
when using KICM compared to alternative procedures as it will automatically consider both
interactions and non-linearities in the first stage while maintaining pivotality of the test. The
pivotality of KICM is very useful in applied microeconomic settings with large samples, but
this property is lost in practice when data is clustered or auto-correlated without imposing
a lot of structure, this requires more investigation. In addition, there exists other pivotal
tests for weak-identification robust inference which consider a non-linear first stage and these
could have better power properties than ICM, CICM or KICM. As in the work of Moreira
and Ridder (2017) or Andrews and Mikusheva (2016a), it may be possible to prove that ICM,
CICM and KICM are or are not optimal.
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A Proof of propositions

A.1 Proof of Proposition 3.1

The implication from H0 to H1
0 and from H1

0 to H2
0 are obvious so I prove the reverse implica-

tions. From H1
0 to H0 notice that

E(yi − xiβ0|zi) = Π(zi)
′(β− β0)

Thus if l = 1 and P(Π(zi) = 0) = 0 then E(yi − xiβ0|zi) implies β = β0.
From H2

0 to H1
0 first let E(yi− x′i β0|zi) = r(zi) = max{r(zi); 0}−max{−r(zi); 0} = r1(zi)−

r2(zi). Then

E((yi − x′i β0)eit′zi) = E(r1(zi)eit′zi)−E(r2(zi)eit′zi) =
∫

r1(s)dPz(s)−
∫

r2(s)dPz(s)

Next for j = 1, 2 define the probability measures Pj(B) =
∫

B rj(s)dPz(s)/E(rj(z)) ∀B ∈ B(Rk).
This gives

∀t, E((yi − x′i β0)eit′z) = E(r1(zi))
∫

eit′sdP1(s)−E(r2(zi))
∫

eit′sdP2(s) = 0

⇒ E(r1(zi)) = E(r2(zi)) by taking t = 0

⇔
∫

eit′sdP1(s)−
∫

eit′sdP2(s) = 0 ∀t

⇔ ∀B ∈ B(Rk), P1(B)−P2(B) = 0

⇔ ∀B ∈ B(Rk),
∫

B
r(s)Pz(s) = 0

Taking the event B+ = {s : r(s) > 0} and B− = {s : r(s) < 0} gives
∫

B+ r(s)dPz(s) =
E(r(zi)1r(zi)>0) = 0 ⇔ P(r(zi) > 0) = 0 and

∫
B− r(s)dPz(s) = 0 ⇔ P(r(zi) < 0) = 0, which

imply that P(r(zi) = 0) = 1⇔ r(zi) = E(yi − xiβ0|zi) = 0 a.s. hence H2
0 implies H1

0 .

Equivalences between H2
0 , H3

0 and H4
0 are easily established using properties of positive

functions and integrals.
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A.2 Proof of Proposition 4.1

To prove that KICM is χ2
l conditionally distributed first use the eigendecomposition of PWT

PWT = H


 Il 0l×(n−l)

0(n−l)×l 0(n−l)×(n−l)


H′

where H = ( WT(T′W2T)−1/2 MWT A(A′MWT A)−1/2 ), and A =
(

In−l
0l×(n−l)

)
, H is the orthog-

onal eigenvector matrix of PWT. This allows to rewrite KICM as the sum of l components

KICM =
l

∑
i=1

(S′H)2
i

Second, I prove that S′H ∼ N (0, In) conditionally on z. Under the null H0 : β = β0,
E(Si|zi) = 0 and Var(Si|zi) = 1 so that

Cov(Si, Ti|zi) = E(SiTi|zi) =
b′0E(YiY′i )Ω

−1A0(A′0Ω−1A0)
−1/2

√
b′0Ωb0

= 0l

Thus conditionally on zi (Si, Ti) ∼ N ((0, E(Ti)), Il+1). Consequently, under the null and
conditionally on zi Si |= Ti which implies that S |= T. In turn P is a function of z through W
and of T therefore

E(S′H|z, T) = E(S|z)′H = 0n

⇒Cov((S′H)i, (S′H)j|z, T) = E(e′i HSS′Hej|z) = eiH′E(SS′|z)Hej = 1i=j

⇒Var(S′H|z, T) = H′E(SS′|z)H = H′H = In

⇒S′H ∼ N (0, In)|z, T
⇒S′H ∼ N (0, In)

where ej denotes a vector of size n equal to zero in all elements expect in coordinate j where it
is equal to 1 and 11=j is an indicator function which equals one only when i = j. Consequently,
KICM is equal to a sum of l independent squared standard normal so KICM follows a χ2

l
under H0 : β = β0.

B Proof of Theorem 4.3

Throughout the proof assumptions A(ii), A(iii), B(i), B(iii), B(iv), C(i), C(ii), D(ii), and D(iii)
are maintained. The proof is divided in five parts, the first introduces notations and some
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useful matrix results, the second presents the decomposition of the KICM statistic used in
the proof, the third proves the convergence of the random processes which compose KICM,
the fourth characterizes the limits of these random processes, and the fifth proves validity by
contradiction.

B.1 Notations and matrix results

Denote by oP(1) and OP(1) the small o in probability and big O in probability notations for de-
generate in probability and bounded in probability: If X = oP(1) then ∀ε > 0 P(|X| > ε)→ 0.
If X = OP(1) then ∀ε > 0 ∃M > 0 : P(|X| > M) 6 ε. Denote by oP(1) and OP̄(1) the uniform
counterparts of oP(1) and OP(1): If X = OP̄(1) then X is uniformly bounded in probability
and ∀ε > 0 ∃M : sup

P∈P
P(|X| > M) 6 ε. If X = oP(1) then X is uniformly degenerate in

probability and ∀ε > 0, sup
P∈P

P(|X| > ε)→ 0. For any random object X then denote by X 6= 0

the condition P(X = 0) < 1 or equivalently P(X 6= 0) > 0. In addition, for some square
matrix X denote by λmin(X) and λmax(X) its smallest and biggest eigenvalue respectively.

Before starting the proof here are four useful matrix results which are used many times
over: For any invertible matrices X and Y, for any full rank matrix A

X−1 −Y−1 = X−1(Y− X)Y−1 (B.6)

X−Y =
1
2
(X1/2 + Y1/2)(X1/2 −Y1/2) +

1
2
(X1/2 −Y1/2)(X1/2 + Y1/2) (B.7)

(A′XA)−1 6 (A′A)−1 λmin(X)−1 (B.8)

((A′XA)−1/2 + (A′YA)−1/2)−1 6 (A′A)1/2(λmax(X)−1/2 + λmax(Y)−1/2)−1} (B.9)

((A′X−1A)−1/2 + (A′Y−1A)−1/2) > (A′A)−1/2(λmin(X)1/2 + λmin(Y)1/2)} (B.10)

B.2 Preliminary decomposition

As defined in section 3.3
Tih = (A′0Ω−1

i A0)
−1/2A′0Ω−1

i Yi

Thus each component j of Tih is a weighted sum of the components of Yi. Thus without
loss of generality

Tih,j =
l

∑
l′=1

wij,l′xil′ + wij,yyi =
l

∑
l′=1

(wij,l′ + wij,yβ0l′)xil′ + wij,yui ≡
l

∑
l′=1

w∗ij,l′xil′ + wij,yui

where Tih,j is the j-th coordinate of Tih, wij,l′ ∈ R is the weight associated to xil′ through xi,
wij,y ∈ R the weight associated to yi, and (w∗ij,l′ ∈ R is the true weight associated to xil′ . These
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weights are functions of zi and of the null β0 and note that ∀j Tih,j 6= 0 because Var(Ti) = In,
thus ∀j (w∗j1i, . . . , w∗jli, wij,y) 6= 0l+1. Therefore define (a∗j )

l
j=1 where

a∗j =

{
a if (w∗ij,l′)

l
l′=1 6= 0l

1 o.w

a∗j does not represent identification strength of β j but instead characterize the limit (which

exists) of 1√
n ∑n

i=1 Tih,j. Additionally a∗j does not only depend on instruments’ strength a, but

also on the conditional covariance between xij and (xij′)
l
j′=1, and on β0. To get an heuristic idea

of why a∗j is introduced, notice that because Π(·) = n−aC(·) if a∗j > 1/2 then 1√
n ∑n

i=1 Tih,j will

converge towards a centered Normal distribution, if a∗j = 1/2 then 1√
n ∑n

i=1 Tih,j will converge

towards a non-centered distribution, and if a∗j < 1/2 then n
a∗j −1/2
√

n ∑n
i=1 Tih,j will converge in

probability towards a certain expectation. Hence KICM rewrites as follows

KICMh = S′hWTh(T′hW2Th)
−1T′hWSh = S′hWThN∗C(N∗CT′hW2ThN∗C)

−1N∗CT′hWSh

where N∗C =




na∗1−1/21a∗1<1/2 + 1a∗1>1/2 0 · · · 0

0 na∗2−1/21a∗2<1/2 + 1a∗2>1/2
. . .

...
...

. . . . . . 0

0 · · · 0 na∗l −1/21a∗l <1/2 + 1a∗l >1/2




N∗C is a l × l diagonal matrix, it is a theoretical tool which will allow to properly charac-
terize the limit of KICM, given any instruments’ strength, any covariance structure Ω(·) and
any null β0.

I can then rewrite the components of KICMh. S′hWThN∗C is the integral of the product of
the sums of (Sih)

n
i=1 and of (Tih)

n
i=1

S′hWThN∗C =
1
n ∑

i,j
SihT′jhN∗Cw(zi − zj) =

∫ 1
n ∑

i,j
SihT′jhN∗Ceit′(zi−zj)µ(t)

=
∫ ( 1√

n

n

∑
i=1

Siheit′zi

)(
1√
n

n

∑
j=1

T′jhN∗Ce−it′zj

)
µ(t)
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N∗CT′hW2ThN∗C also rewrites. I reformulate the elements of the matrix W2 first

(W2)i j =
1
n2

n

∑
m=1

∫

Rk
eit′(zi−zm)dµ(t)

∫

Rk
eis′(zm−zj)dµ(s)

=
1
n2

∫ ∫
eit′zi e−is′zj

(
n

∑
m=1

ei(s−t)zm

)
dµ(t)dµ(s)

⇒ N∗CT′hW2ThN∗C = ∑
i,j

N∗CTihT′jhN∗C(W
2)i j

N∗CT′hW2ThN∗C =
∫ ∫ ( 1√

n

n

∑
i=1

N∗CTiheit′zi

)(
1√
n

n

∑
j=1

T′jhN∗Ce−is′zj

)(
1
n

n

∑
m=1

ei(s−t)zm

)
dµ(t)dµ(s)

Thereforedefine the processes which enter the integrals and characterize KICM

GS(t, Ω) =
1√
n

n

∑
i=1

(b′0Ω(zi)b0)
−1/2b′0Yieit′zi =

1√
n

n

∑
i=1

Siheit′zi

GT(t, Ω) =
N∗C√

n

n

∑
i=1

(A′0Ω−1(zi)A0)
−1/2A′0Ω−1(zi)Yie−it′zi =

N∗C√
n

n

∑
i=1

Tihe−it′zi

Gz(t) =
1
n

n

∑
i=1

eit′zi

So KICMh rewrites as

∫

Rk
GS(t, Ω)G′T(t, Ω)dµ(t)

(∫

Rk
GT(−t, Ω)G′T(s, Ω)Gz(s− t)dµ(t)

)−1 ∫

Rk
GS(t, Ω)GT(t, Ω)dµ(t)

Lastly, define the conditionally normal version of GS and GT

G∗S(t, Ω) =
1√
n

n

∑
i=1

(b′0Ω(zi)b0)
−1/2b′0Y∗i eit′zi , Y∗i |zi

iid∼ N (E(Yi|zi), Ω(zi))

G∗T(t, Ω) =
N∗C√

n

n

∑
i=1

(A′0Ω−1(zi)A0)
−1/2A′0Ω−1(zi)Y∗i e−it′zi

B.3 Donsker property and asymptotic equicontinuity

From the above decomposition in order for KICM to converge, the processes GS, GT, G∗S, G∗T
must uniformly converge to Gaussian processes, ie to be Donsker, and Gz must uniformly
converge to a function, ie to be Glivenko-Cantelli. In addition, in order to make the difference
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between the feasible KICM test statistic and the KICM test statistic the processes GS, G∗S, GT
and G∗T also need to be asymptotically equicontinuous in Ω.

To obtain these results the following families of functions

FS = {(c, d) ∈ Rk ×Rl+1 7→ (b′0Ωb0)
−1/2b′0d eit′c, t ∈ Rk, Ω ∈ O}

FT = {(c, d) ∈ Rk ×Rl+1 7→ (A′0Ω−1A0)
−1/2A′0Ω−1d eit′c, t ∈ Rk, Ω ∈ O}

Fz = {c ∈ Rk 7→ eit′c, t ∈ Rk}

need an envelope F which satisfies E(F2(yi, xi, zi)1F(yi,xi,zi)>M) →
M→+∞

0 and a bounded uni-

form entropy integral (BUEI). If that’s the case then by Theorem 2.8.3 in Vaart and Wellner
(2000) FS, FT and Fz are uniformly Donsker and pre-Gaussian and thus by Theorem 2.8.2
from Vaart and Wellner (2000) processes GS, GT, G∗S and G∗T weakly converge to Gaussian
processes and are uniformly asymptotically equicontinuous, and Gz weakly converge to a
function. Asymptotic equicontinuity implies that for any Ω ∈ O with consistent estimator
Ω̂ as per assumption D the difference between the feasible GS(·, Ω) and GT(·, Ω̂) vanishes
uniformly in probability

∀ε > 0, sup
β0

sup
P∈P :β=β0

P(|GS(·, Ω)− GS(·, Ω̂)| > ε)→ 0

∀j = 1, · · · , l, ∀ε > 0, sup
β0

sup
P∈P :β=β0

P(|GT j(·, Ω)− GT j(·, Ω̂)| > ε)→ 0

Here assumption D(iii) and D(iv) was used, specifically the fact that Ω̂ converge uniformly
towards Ω in the L2 sense and that Ω̂ is uniformly in O at the limit.

To show that FS, FT and Fz have a “bounded” envelope and are BUEI, I first consider

Fcos,S = {(c, d) ∈ Rk ×Rl+1 7→ (b′0Ωb0)
−1/2b′0d cos(t′c), t ∈ Rk, Ω ∈ O}

Fcos,T = {(c, d) ∈ Rk ×Rl+1 7→ (A′0Ω−1A0)
−1/2A′0Ω−1d cos(t′c), t ∈ Rk, Ω ∈ O}

Note that |cos(.)| 6 1, and that from assumption D(ii) ∃(λ, λ̄) : λIl+1 6 Ω(·) 6 λ̄Il+1
where λ > 0 and λ̄ < +∞. Thus for any (t, Ω) ∈ Rk ×O, for any A ∈ R(l+1)×l full rank, for
any b 6= 0l+1, for any K ∈ Rl+1

|(b′0Ωb0)
−1/2b′0d cos(t′c)| 6 λ−1/2||b0||−1/2

2 |b′0d|
|(A′0Ω−1A0)

−1/2A′0Ω−1d cos(t′c)|1 6 λ̄1/2λ−1|(A′0A0)
−1/2A0d|1

Thus an envelope for Fcos,S is FFcos,S : d 7→ λ−1/2||b0||−1/2
2 |b′0d|, FFcos,S(Yi) is square integrable

by A(iii), in addition 1FFcos,S
(Yi)>M →

M→+∞
0, thus by the dominated convergence theorem

(DCT) E(FFcos,S(Yi)
21F>M) →

M→+∞
0. Envelopes by coordinate for Fcos,T are Fl′,Fcos,T : d 7→
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λ̄1/2λ−1|e′j(A′0A0)
−1/2A0d| with l′ = 1, . . . , l, using previous arguments by the DCT they also

satisfy the condition. Using similar arguments FS, FT and Fz also satisfy this condition and
have a “bounded” envelope.

Next, by assumption D(ii) O has finite covering number so it is BUEI. The fact that the
composite of Ω are BUEI still needs to be proven. To do that, I prove that the functions
Ω 7→ (A′0Ω−1A0)

−1/2A′0Ω−1d and Ω 7→ (b′0Ωb)−1/2b′0d are Lipschitz and bounded in Ω
∀d ∈ Rl+1 so that by Lemma 9.14 in Kosorok (2008) the families {d 7→ (b′0Ωb0)

−1/2b′0d, Ω ∈ O}
and {d 7→ (A′0Ω−1A0)

−1/2A′0Ω−1d, Ω ∈ O} are BUEI.
Boundedness is trivial from the fact that any covariance function in O has eigenvalues in

a bounded subset of R+
∗ . First, I deal with Lipschitz continuity of the first function

|b′0d(b′0Ω1b0)
−1/2 − b′0d(b′0Ω2b0)

−1/2|
|(b′0Ω1b0)−1 − (b′0Ω2b0)−1| =

|b′0d(b′0Ω1b0)
−1/2 − b′0d(b′0Ω2b0)

−1/2|
|(b′0Ω1b0)−1/2 − (b′0Ω2b0)−1/2| |(b′0Ω1b0)−1/2 + (b′0Ω2b0)−1/2|

= |b′0d| |(b′0Ω1b0)
−1/2 + (b′0Ω2b0)

−1/2|−1

6 |b′0d| ||b||2(λmax(Ω1)
−1/2 + λmax(Ω2)

−1/2)−1

6 |b′0d| ||b||2
√

λ̄

2
≡ K̃

where the 3rd line is obtained by (B.9) and the last line by assumption D(ii), and due to
the fact that eigenvalues of any Ω ∈ O are bounded in R+

∗ . This implies Lipchitzness of
Ω 7→ (b′0Ωb0)

−1/2b′0d using (B.8)

|b′0d(b′0Ω1b0)
−1/2 − b′0d(b′0Ω2b0)

−1/2| 6 K̃ |(b′0Ω1b0)
−1 − (b′0Ω2b0)

−1|
6 K̃ ||(b′0Ω2b0)

−1(b′0Ω2b0 − b′0Ω1b0)(b′0Ω1b0)
−1||2

6 K̃ ||b||−2
2 λmin(Ω1)

−1λmin(Ω2)
−1||b′0(Ω2 −Ω1)b||2

6 K̃ ||b||−2
2 λ−2||b′0(Ω2 −Ω1)b||2

6 K̃
||b||2 λ2 ||Ω1 −Ω2||2

=
|b′0d|
√

λ̄

2λ2 ||Ω1 −Ω2||2

Next without loss of generality assume that Ω1 > Ω2. This implies that

Ω−1
1 < Ω−1

2 ⇒ A′0Ω−1
1 A0 < A′0Ω−1

2 A0 ⇒ (A′0Ω−1
1 A0)

−1/2 > (A′0Ω−1
2 A0)

−1/2

Then using (B.10) I obtain that

1
2
((A′0Ω−1

1 A0)
−1/2 + (A′0Ω−1

2 A0)
−1/2) > 1

2
(A′0 A0)

−1/2(λmin(Ω1)
−1/2 + λmin(Ω2)

−1/2)−1 > (A′0 A0)
−1/2

√
λ
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It then follows using (B.7)

||(A′0Ω−1
1 A0)

−1 − (A′0Ω−1
2 A0)

−1||2 = ||1
2
((A′0Ω−1

1 A0)
−1/2 + (A′0Ω−1

2 A0)
−1/2)((A′0Ω−1

1 A0)
−1/2 − (A′0Ω−1

2 A0)
−1/2)

+
1
2
((A′0Ω−1

1 A0)
−1/2 − (A′0Ω−1

2 A0)
−1/2)((A′0Ω−1

1 A0)
−1/2 + (A′0Ω−1

2 A0)
−1/2)||2

>
√

λ ||(A′0 A0)
−1/2((A′0Ω−1

1 A0)
−1/2 − (A′0Ω−1

2 A0)
−1/2)

+ ((A′0Ω−1
1 A0)

−1/2 − (A′0Ω−1
2 A0)

−1/2)(A′0 A0)
−1/2||2

= 2

√
λ

λmax(A′0 A0)
||(A′0Ω−1

1 A0)
−1/2 − (A′0Ω−1

2 A0)
−1/2||2

≡ ˜̃K||(A′0Ω−1
1 A0)

−1/2 − (A′0Ω−1
2 A0)

−1/2||2

Using (B.6) the above inequality implies the following

||(A′0Ω−1
1 A0)

−1/2 − (A′0Ω−1
2 A0)

−1/2||2 6 ˜̃K−1 ||(A′0Ω−1
1 A0)

−1 − (A′0Ω−1
2 A0)

−1||2
6 ˜̃K−1 ||(A′0Ω−1

1 A0)
−1||2 ||(A′0Ω−1

2 A0)
−1||2 ||A0||22 ||Ω1 −Ω2||2

6 ˜̃K−1 ||(A′0 A0)
−1||22 λ̄2 ||Ω1 −Ω2||2

Then using the triangular inequality and previous arguments it follows that Ω 7→ (A′0Ω−1A0)
−1/2A′0Ω−1d

is Lipschitz ∀d ∈ Rl + 1 and for some strictly positive constant ˜̃̃K

||(A′0Ω−1
1 A0)

−1/2 A′0Ω−1
1 K− (A′0Ω−1

2 A0)
−1/2 A′0Ω−1

2 K||2 6 ||(A′0Ω−1
1 A0)

−1/2 A′0Ω−1
1 K− (A′0Ω−1

1 A0)
−1/2 A′0Ω−1

2 K||2
+ ||(A′0Ω−1

1 A0)
−1/2 A′0Ω−1

2 K− (A′0Ω−1
2 A0)

−1/2 A′0Ω−1
2 K||2

6 | ˜̃̃K| ||Ω1 −Ω2||2

As for the class {c 7→ t′c, t ∈ Rk} it has Vapnick-Cervonenkis index k + 1 hence by Sauer’s
Lemma (Vaart (2007)) it is BUEI. From there as the cosinus function is also bounded and
Lipschitz continuous then the class {c 7→ cos(t′c), t ∈ Rk} is BUEI by 9.14 in Kosorok (2008).
The Lipschitz-continuity in t can be proven with the mean value theorem in the following
way

|cos(t′1c)− cos(t′2c)|
||t1 − t2||2

6 |cos(t′1c)− cos(t′2c)|
|(t1 − t2)′c|

|(t1 − t2)
′c|

||t1 − t2||2
6 ||c||2

|cos(t′1c)− cos(t′2c)|
|(t1 − t2)′c|

6 ||c||2

Then by Theorem 9.15 in Kosorok (2008) the “product” of 2 BUEI families is BUEI so that
Fcos,T and Fcos,S are BUEI. Replacing the cosinus function by the sinus function keep these
two families BUEI therefore by applying Lemma 9.14 from Kosorok (2008), the families FT,
FS and Fz are BUEI.
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B.4 Limits of GS, GT and Gz

Next, from the previous results GS and G∗S converge uniformly towards Gaussian processes if
demeaned whereas Gz converges uniformly towards a function with values in C. As for GT
and G∗T, depending on instruments’ strength a it can be decomposed as the sum of different
terms, some of which are uniformly degenerate, some of which converge uniformly towards
functions with values in C, and some of which converge uniformly towards Gaussian pro-
cesses. Note that the families of functions over which GS, GT, Gε, Gζ , and Gz are defined such
as FT and FS are Donsker thus also Glivenko-Cantelli. These limits are characterized in the
following way:

1. Regarding GS recall GS(t, Ω) = 1√
n ∑n

i=1 Siheit′zi = 1√
n ∑n

i=1 Y′i b0(b′0Ωib0)
−1/2eit′zi , there-

fore under the null the and ∀t ∈ Rk, ∀Ω ∈ O the asymptotic mean of GS writes

E(Siheit′zi) = E(E(yi − x′i β0|zi)(b′0Ωib0)
−1/2eit′zi) = E(εieit′zi) = 0

And ∀(t, t̃), ∀Ω ∈ O, the asymptotic covariance of GS writes

Var(Siheit′zi) = E(E((yi − x′i β0)
2|zi)(b′0Ωib0)

−1e2it′zi) = Var(uieit′zi) = E(e2it′zi)

Cov(Siheit′zi , Siheit̃′zi) = E(ei(t+t̃)′zi)

Consequently, ∀Ω ∈ O the limit of GS(·, Ω) is a Gaussian process with, under the null,
a constant mean equal to 0 and a covariance function (t, t̃) 7→ E(ei(t+t̃)′zi). Note that
under any alternative H1 : β 6= β0 the asymptotic equicontinuity result still holds, ie
the difference between GS(·, Ω) and GS(·, Ω̂) vanishes, however GS does not converge
towards the aforementioned Gaussian process. Characterization of the limit of GS in
Ω is unecessary for the proof, GS is considered a function of Ω only in order to prove
convergence of the feasible process GS(·, Ω̂).

Regarding G∗S, it has the same limit as GS because the conditional normality doesn’t
play a role asymptotically, indeed E(Yi) = E(Y∗i ) and Var(Yi) = Var(Y∗i ). Thus for
any Ω ∈ O both GS(·, Ω) and G∗S(·, Ω) converge uniformly towards the same complex
Gaussian process. This implies that the distance between the 2 shrinks asymptotically
uniformly by definition of weak convergence.

2. Regarding Gz its limit is the characteristic function of zi t 7→ E(eit′zi).

3. Regarding GT, first recall

Tih,j =
l

∑
l′=1

w∗ij,l′xil′+wij,yui =
l

∑
l′=1

w∗ij,l′(
C(zi)l′

na + vil′)+wij,yui = n−aw∗ij
′C(zi)+w∗ij

′vi +wij,yui
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Therefore for some j = 1, . . . , l GT j rewrites

GT j(t, Ω) =
na∗j−1/21a∗j <1/2 + 1a∗j >1/2√

n

n

∑
i=1

Tih,je−it′zi

where a∗j =

{
a if (w∗ij,l′)

l
l′=1 6= 0l

1 o.w
so if a∗j > 1/2 then GTj writes

GTj(t, Ω) =
l

∑
l′=1

1
n1/2+a

n

∑
i=1

w∗ij,l′C(zi)l′e−it′zi +
l

∑
l′=1

1√
n

n

∑
i=1

w∗ij,l′vil′e−it′zi

+
1√
n

n

∑
i=1

wij,yuie−it′zi

And if a∗j < 1/2 it must be that a∗j = a so GTj writes

GTj(t, Ω) =
l

∑
l′=1

1
n

n

∑
i=1

w∗ij,l′C(zi)l′e−it′zi +
l

∑
l′=1

na−1/2
√

n

n

∑
i=1

w∗ij,l′vil′e−it′zi

+
na−1/2
√

n

n

∑
i=1

wij,yuie−it′zi

It follows then that if a∗j > 1/2 then, either ∀l′ wij,l′ = 0 and a∗j = 1, either ∃l′ :
E(wij,l′C(zi)l′) 6= 0 and a∗j = a > 1/2. Thus if a∗j > 1/2

l

∑
l′=1

1
n1/2+a

n

∑
i=1

w∗ij,l′C(zi)l′e−it′zi = oP(1)

This implies that GTj(·, Ω) will converge to a Gaussian process with constant mean 0 and

covariance function (t, s) 7→ E(e−i(t+s)′zi) because ∑l
l′=1 E(wij,l′vil′e−t′zi) = E(wij,yuie−it′zi) =

0 by the law of iterated expectations and because Tih has variance identity conditionally
on zi.

If a∗j = 1/2 then GTj(·, Ω) will converge towards a non-centered Gaussian process with

mean t 7→ ∑l
l=1
′E(w∗ij,l′C(zi)e−itzi) and covariance function (t, s) 7→ E(e−i(t+s)′zi).

If a∗j < 1/2 then ∃l′ : w∗ij,l′ 6= 0 and a∗j = a. Then

l

∑
l′=1

na−1/2
√

n

n

∑
i=1

w∗ij,l′vil′e−it′zi +
na−1/2
√

n

n

∑
i=1

w∗jyiuie−it′zi = oP(1)
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Therefore GTj(·, Ω) will converge towards t 7→ ∑l
l′=1 E(w∗ij,l′C(zi)l′e−it′zi) for any Ω(·) ∈

O.

Regarding the whole vector Ti, because Ti has conditional variance identity (even under
the alternative), GT(·, Ω) = (GT1 · · · GTl) will converge to a vector of random processes
whose elements are uncorrelated and characterized by the limits GTj for j = 1, . . . , l
which are characterized by the vector (a∗j )

l
j=1.

Now with regards to G∗T, it has the same limit as GT for the same reason that G∗S and
GS have the same limit: the conditional normality does not play a role anymore asymp-
totically, asymptotically what matters are the means and the covariances of the limitting
processes which in the case GT and G∗T are the same. In conclusion, asymptotically the
distance between GT(·, Ω) and G∗T(·, Ω) vanishes for any Ω ∈ O uniformly.

B.5 Lipschitzness of KICM

Define f and g for any triple of functions (A, B, C) with inputs in Rk and values in a bounded
subset of C, Cl \ 0l and C+

∗ respectively

f (A, B) =
∫

Rk
A(t)B(t)µ(t), g(B, C) =

∫

Rk

∫

Rk
B(t)B′(t)C(s− t)dµ(s)dµ(t)

Notice that KICMh = || f (GS, GT)g(GT, Gz)||22 so I shall prove that KICMh is Lipschitz in
GS, GT and Gz through f and g. In the following K is an unspecified constant.

• To prove Lipschitzness in A note that because (A, B, C) take values in bounded subset I
can always find a supremum to A(t) and B(t) and an infimum to λmin(g(B, C))

| || f (A1, B)g(B, C)−1/2||22 − || f (A2, B)g(B, C)−1/2||22 | = |
∫
(A1 − A2)(t)B(t)′dµ(t)g(B, C)−1

∫
(A1 + A2)(t)B(t)dµ(t) |

6 ||A1 − A2||∞
∫
||B(t)||2dµ(t)λmin(g(B, C))−1

∫
|A1(t) + A2(t)| ||B(t)||2dµ(t)

6 K× sup
t
|A1(t)− B2(t)|
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• To prove Lipschitzness in C I use result ((B.6))

||g(B, C1)− g(B, C2)||2 = 6 λmin(g(B, C1))
−1λmin(g(B, C2))

−1

×
∫ ∫

||B(t)B(−s)′||2dµ(t)dµ(s)||C1 − C2||∞
6 K ||C1 − C2||∞

Then Lipschitzness of C 7→ || f (A, B)g(B, C)−1/2||22 is established because it is a function
of C only through g and because I can find an upper bound on f (A, B).

• To prove Lipchitzness in B I express | || f (A, B1)g(B1, C)−1/2||22−|| f (A, B2)g(B2, C)−1/2||22 |
as a sum of 3 components which depend on f (A, B1)− f (A, B2) and g(B1, C)− g(B2, C)
then by the triangular inequality and for some positive constants (K1, K2)

| || f (A, B1)g(B1, C)−1/2||22 − || f (A, B2)g(B2, C)−1/2||22 |
= | f (A, B1)

′(g(B1, C)−1 − g(B2, C)−1) f (A, B1)

+ f (A, B2)
′
(

g(B1, C)−1( f (A, B1)− f (A, B2))− (g(B2, C)−1 − g(B1, C)−1) f (A, B2)
)
|

6 K1 ||g(B1, C)−1 − g(B2, C)−1||2 + K2 || f (A, B1)− f (A, B2)||2

Reusing (B.6) and aforementioned arguments for the Lipchitzness in A and C of (A, B, C) 7→7→
|| f (A, B)g(B, C)−1/2||22 it is also Lipchitz in B.

The Lipschitzness of KICMh in GS and GT allows for the difference between feasible KICM
(KICMh f ) and unfeasible KICM (KICMh) to vanish uniformly asymptotically.

B.6 KICM validity by contradiction

Let q1−α be the 1 − α quantile of a χ2
l then suppose that the theorem does not hold. The

theorem not holding is equivalent to ∃P such that β = β0 and P(KICMh > q1−α) > α which
implies that ∃δ > 0 : P(KICMh > q1−α) > α + 2δ.

Next, I can find bounded subsets CS ⊂ C∗, CT ⊂ Cl
∗ and Cz ⊂ C∗ such that δ > P(GS 6∈

CS, GT 6∈ CT, Gz 6∈ Cz) = 1− P(GS ∈ CS, GT ∈ CT, Gz ∈ Cz). Indeed, these CS, CT and Cz
exist because GS, GT and Gz are uniformly bounded in probability and non-degenerate as
shown in B.4. Note that, because the integral of a bounded random process with respect to
a finite measure is bounded and the product of bounded random variables is bounded, the
event GS ∈ CS ∩ GT ∈ CT ∩ Gz ∈ Cz implies some event KICMh 6 C which is consistent with
the fact that KICMh = OP̄(1) 6= oP(1).

Next, let Kh be KICMh but with Yi assumed normal conditionally on zi. Then as I saw be-
fore in 4.1 Kh ∼ χ2

l |z, T ⇒ Kh ∼ χ2
l hence the 1− α quantile of Kh is q1−α the quantile 1− α of
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a χ2
l . Then introduce KICMhC = KICMh 1GS∈CS,GT∈CT ,Gz∈Cz and KhC = Kh 1Gε∈CS,GT∈CT ,Gz∈Cz . I

define the quantile of KhC as qC,1−α = in f {q : P(KhC 6 q) > 1− α}.

Thus, because KICMh = KICMhC if GS ∈ CS, GT ∈ CT, Gz ∈ Cz it follows that:

1KICMh>x = 1KICMh>x,GS∈CS,GT∈CT ,Gz∈Cz + 1KICMh>x,GS∈CS,GT∈CT ,Gz∈Cz

= 1KICMhC>x,GS∈CS,GT∈CT ,Gz∈Cz + 1KICMh>x,GS∈CS,GT∈CT ,Gz∈Cz

6 1KICMhC>x + 1GS∈CS,GT∈CT ,Gz∈Cz

By taking the mean it implies that,

P(KICMh > x) 6 P(KICMhC > x) + P(GS ∈ CS, GT ∈ CT, Gz ∈ Cz) < P(KICMhC > x) + δ

Then using P(KICMh > q1−α) > α + 2δ I obtain:

P(KICMhC > q1−α) > α + δ

Additionally KICMhC 6 KICMh implies that qC,1−α 6 q1−α∀α which leads to,

P(KICMhC > qC,1−α) > α + δ

Going forward, note that x ∈ R+ 7→ x1x<C is bounded by C and Lipschitz. At the same
time KICMh is Lipschitz in GS, GT and Gz as long as these take values in bounded sets as
saw in B.6 thus KICMhC is Lipschitz in GS, GT and Gz. Now that the difference between
GS and G∗S and between GT and G∗T vanishes uniformly by B.4, hence by the Portemanteau
Lemma, as KICMhC is Lipschitz and bounded, then KICMhC and KhC converge uniformly
towards the same distribution which is the distribution of KhC. It implies by definition of
weak convergence that,

sup
x
|P(KICMhC > x)−P(KhC > x)| → 0

Consequently, asymptotically

lim
n→∞

P(KICMhC > qC,−α) = P(KhC > qC,1−α) = α > α + δ⇔ δ 6 0

Which is impossible because δ > 0.

On a final note, the Lipschitzness and boundedness of KICMhC and KhC in GS and GT
imply that the difference between the feasible and unfeasible statistics vanishes uniformly by
asymptotic equicontinuity uniform of the processes GS and GT. Therefore the contradiction
still holds even if KICMh f is used instead of KICMh, and Kh f instead of Kh (where Kh f denotes
KICMh f but with Yi conditionally normal).
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C Proof of Corollary 4.4

For any null β0, GT is still bounded and bounded away from 0 as shown in B.4 uniformly over
the P ∈ P : β 6= β0. GT’s limit is different under the alternative tough as it depends on the
actual distribution of yi. As for GS and G∗S the difference between the two will also vanish as
per the arguments of B.4, even if GS and G∗S don’t have a limit but explode. Before deriving
the power of KICM under different types of identification let’s first decompose GS under the
alternative β 6= β0:

GS(t, Ω) =
1√
n

n

∑
i=1

Siheit′zi =
1√
n

n

∑
i=1

yi − x′i β0√
b′0Ωib0

eit′zi =
1√
n

n

∑
i=1

yi − x′i β√
b′0Ωib0

eit′zi +
1√
n

n

∑
i=1

x′i(β− β0)√
b′0Ωib0

eit′zi

=
1√
n

n

∑
i=1

(ui + v′i(β− β0))
eit′zi

√
b′0Ωib0

+
1

n1/2+a

n

∑
i=1

C(zi)
′(β− β0)

eit′zi
√

b′0Ωib0

The term on the left will, reusing arguments from B.4, converge towards a complex Gaussian
process with mean 0 and covariance (s, t) 7→ E(Mei(s+t)′zi) with

M = (1 β′ − β′0)
Ωi

b′0Ωib0
(1 β′ − β′0)

′

As a consequence

GS(t, Ω) = OP̄(1) +
n1/2−a

n

n

∑
i=1

C(zi)
′(β− β0)

eit′zi
√

b′0Ωib0

= OP̄(1) + OP̄(n
1/2−a)

And there are 3 possible behaviors of KICM:

1. If a < 1/2 then GS(t,Ω)
n1/2−a = OP̄(1) 6= oP(1). In other words GS(·, Ω)/n1/2−a is uniformly

bounded in probability and uniformly non-degenerate and converges towards the fol-
lowing function,

t 7→ E(C(zi)
′ eit′zi
√

b′0Ωib0

)(β− β0)

Then because GS/n1/2−a, GT and Gz are OP̄(1) then for any ζ > 0 there exists bounded
subsets CS ⊂ C∗, CT ⊂ Cl

∗ and Cz ∈ C∗ such that P(GS/n1/2−a 6∈ CS, GT 6∈ CT, Gz 6∈
Cz) < ζ. Also note that, conditionally on the event C = (GS/n1/2−a ∈ CS, GT ∈ CT, Gz ∈
Cz), KICMh /n1−2a > K surely where K is a strictly positive constant (by properties of
integrals).
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Now assume that for some x ∈ R+, P(KICMh > x) → 1 doesn’t hold. Then it implies
that ∃η ∈ [0; 1) such that lim

n→∞
P(KICMh > x) < η or equivalently that ∃(η, ζ) ∈ [0; 1)×

R+
∗ such that lim

n→∞
P(KICMh > x) 6 η − ζ. Additionally,

η − ζ > P(KICMh > x) = P(KICMh > x|C)P(C) + P(KICMh > x|C̄)P(C̄)
> P(KICMh > x|C)P(C)

= P(KICMh /n1−2a > x/n1−2a|C)(1− ζ)

> P(K > x/n1−2a|C)(1− ζ)

= P(K > x/n1−2a)(1− ζ)

→ 1− ζ

Which is equivalent to η− ζ > 1− ζ asymptotically which is impossible for any x ∈ R+

thus the test is consistent. It trivially follows that this contradiction holds uniformly
over the β0 and the P : β 6= β0, a < 1/2 per the results in B.3.

2. If a = 1/2 then GS and G∗S converges towards the same non-centered complex Gaussian
process. This means that the distance between KICMh under conditional normality and
KICMh still vanishes. Then KICMh does not follow a χ2

l asymptotically anymore but a

non centered χ2
l,λ where λ = E

(
C(zi)

′(β−β0)√
b′0Ωib0

)2

. Indeed when Yi is conditionally normal

then even if E(Sih|zi) 6= 0, Var(Sih|zi) = 1 and Cov(Sih, Tih) = 0l which implies that
S is independent from T. Consequently, under conditional normality KICMh is indeed
the sum of l independent non-centered standard normal variable thus conditionally on z
and T and assuming conditional normality KICMh ∼ χ2

l,λ. Furthermore, the cdf of a non-
central χ2 evaluated at any point is strictly decreasing in its non-centrality parameter.
Therefore,

P(KICMh > x|z, T)→ P(χ2
l,λ > x) > P(χ2

l > x)

⇒ lim
n→∞

P(KICMh > q1−α) = lim
n→∞

E(P(KICMh > q1−α|z, T)) > α

In other words, there is more than trivial power. As the convergence towards a χ2
l,λ can

be proven to be uniform over the β0 and P : β 6= β0, a = 1/2 per arguments in B.3

lim
n→∞

sup
β0

sup
P∈P :β 6=β0, a=1/2

P(KICMh > q1−α) > α

3. If a > 1/2 then reusing arguments from B.4 the processes GS(·, Ω) and G∗S(·, Ω) will
converge to the same centered complex Gaussian process as under the null because
Sih has mean 0 asymptotically. Therefore, following the proof of Theorem 4.3, KICMh
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will still behave as in the conditionally normal case. From there, because Var(S) = In
still, KICMh will behave like the sum of l standard normal and follow a χ2

l . Thus the
probability to reject the null at nominal level α will be inferior or equal to α uniformly
over the P : β 6= β0 and the β0. The omitted part of the proof is a copy of the proof of
Theorem 4.3.

D Non-uniform identification strength

It is important to note that one could assume that the parameters do not have the same degree
of identification as in assumption B(iii) instead of B(ii). Then the asymptotic behavior of the
KICM test would remain relatively unchanged using a new a∗j to characterize the asymptotics

a∗j =

{
min{aj : β j 6= β0j} if(w∗ij,l′)

l
l′=1 6= 0l

1 o.w

Non-uniformity of the degree of identification of β does not affect the size of KICM, but
affects its power. Among the components j of β such that the null being tested β0j 6= β j if
at least one parameter is semi-strongly identified then the test is consistent, if at least one
parameter is weakly identified then the test has more than trivial power, if all the parameters
are very weakly identified then the test has trivial power. These results are summarized in
the following corollary

Corollary 4.1 (Uniform consistency of KICM, non-uniform identification strength)
Denote by q1−α the 1− α quantile of the chi-square distribution with l degrees of freedom. Then under
assumptions A(ii), A(iii), B(i), B(iii), B(iv), C(i), C(ii), D(ii), and D(iii),

• lim
n→∞

in f
β0

in f
P∈P :β 6=β0,min{aj :β j 6=β0j}<1/2

P(KICMh f > q1−α) = 1;

The test is consistent when at least one parameter is semi-strongly identified.

• lim
n→∞

in f
β0

in f
P∈P :β 6=β0,min{aj :β j 6=β0j}=1/2

P(KICMh f > q1−α) ∈ [α; 1);

The test has more than trivial power when at least one parameter is weakly identified.

• lim
n→∞

sup
β0

sup
P∈P :β 6=β0,min{aj :β j 6=β0j}>1/2

P(KICMh f > q1−α) 6 α;

The test has trivial power when all parameters are very weakly identified.

The proof is extremely similar to that of Corollary 4.4 in appendix C and is omitted.
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E Plots and tables

E.1 Small sample simulations

E.1.1 Empirical size
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Weak instruments AR LM CLR ICM KICM CICM W-2SLS

Linear model
n=100, m=200 0.1042 0.1042 0.1044 0.1414 0.1112 0.1398 0.1684
n=100, m=500 0.1042 0.1042 0.1028 0.1188 0.1112 0.1122 0.1684
n=400, m=200 0.0976 0.0976 0.0944 0.1024 0.1004 0.0982 0.1592
n=400, m=500 0.0976 0.0976 0.0974 0.1096 0.1004 0.1074 0.1592
n=400, m=500, Heteroskedasticity 0.1056 0.1056 0.1050 0.1164 0.1070 0.1124 0.1848

Non-linear model
n=100, m=200 0.1170 0.1120 0.1174 0.1364 0.1072 0.1354 0.3964
n=100, m=500 0.1170 0.1120 0.1158 0.1176 0.1072 0.1180 0.3964
n=400, m=200 0.0980 0.0958 0.0942 0.1052 0.0946 0.0992 0.3878
n=400, m=500 0.0980 0.0958 0.0944 0.1122 0.0946 0.1056 0.3878
n=400, m=500, Heteroskedasticity 0.1044 0.1044 0.1044 0.1174 0.1014 0.1060 0.3856

Polar polynomial model
n=100, m=200 0.1042 0.1042 0.1044 0.1414 0.1034 0.1378 0.2030
n=100, m=500 0.1042 0.1042 0.1028 0.1188 0.1034 0.1200 0.2030
n=400, m=200 0.0976 0.0976 0.0944 0.1024 0.0976 0.1006 0.1986
n=400, m=500 0.0976 0.0976 0.0974 0.1096 0.0976 0.1090 0.1986
n=400, m=500, Heteroskedasticity 0.1056 0.1056 0.1050 0.1164 0.1028 0.1174 0.1992

Semi-polar polynomial model
n=100, m=200 0.1170 0.1092 0.1134 0.1364 0.1106 0.1366 0.3908
n=100, m=500 0.1170 0.1092 0.1108 0.1176 0.1106 0.1176 0.3908
n=400, m=200 0.0980 0.0958 0.0948 0.1052 0.0954 0.0998 0.3848
n=400, m=500 0.0980 0.0958 0.0934 0.1122 0.0954 0.1060 0.3848
n=400, m=500, Heteroskedasticity 0.1048 0.1010 0.1040 0.1186 0.0990 0.1084 0.3786

Table 1: Empirical size of the tests for nominal size 10%, weak instruments case
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Semi-strong instruments AR LM CLR ICM KICM CICM W-2SLS

Linear model
n=100, m=200 0.1042 0.1042 0.1044 0.1414 0.1098 0.1238 0.1078
n=100, m=500 0.1042 0.1042 0.1028 0.1188 0.1098 0.1174 0.1078
n=400, m=200 0.0976 0.0976 0.0944 0.1024 0.0984 0.0998 0.0908
n=400, m=500 0.0976 0.0976 0.0974 0.1096 0.0984 0.0996 0.0908
n=400, m=500, Heteroskedasticity 0.1056 0.1056 0.1050 0.1164 0.1038 0.1060 0.1024

Non-linear model
n=100, m=200 0.1170 0.1152 0.1128 0.1364 0.894 0.1228 0.3206
n=100, m=500 0.1170 0.1152 0.1134 0.1176 0.894 0.1106 0.3206
n=400, m=200 0.0980 0.1000 0.0948 0.1052 0.0902 0.0936 0.2844
n=400, m=500 0.0980 0.1000 0.0956 0.1122 0.0902 0.1014 0.2844
n=400, m=500, Heteroskedasticity 0.1048 0.1016 0.1014 0.1164 0.0980 0.1028 0.2940

Polar polynomial model
n=100, m=200 0.1042 0.1042 0.1044 0.1414 0.0998 0.1350 0.1788
n=100, m=500 0.1042 0.1042 0.1028 0.1188 0.0998 0.1152 0.1788
n=400, m=200 0.0976 0.0976 0.0944 0.1024 0.0994 0.0990 0.1764
n=400, m=500 0.0976 0.0976 0.0974 0.1096 0.0994 0.1056 0.1764
n=400, m=500, Heteroskedasticity 0.1056 0.1056 0.1050 0.1150 0.1042 0.1086 0.1758

Semi-polar polynomial model
n=100, m=200 0.1170 0.1102 0.1106 0.1364 0.0950 0.1200 0.2620
n=100, m=500 0.1170 0.1102 0.1088 0.1176 0.0950 0.1098 0.2620
n=400, m=200 0.0980 0.0936 0.0942 0.1052 0.0918 0.0976 0.1972
n=400, m=500 0.0980 0.0936 0.0958 0.1122 0.0918 0.1010 0.1972
n=400, m=500, Heteroskedasticity 0.1048 0.1042 0.1018 0.1186 0.0968 0.1016 0.2136

Table 2: Empirical size of the tests for nominal size 10%, semi-strong instruments case
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Strong instruments AR LM CLR ICM KICM CICM W-2SLS

Linear model
n=100, m=200 0.1042 0.1042 0.1044 0.1414 0.1124 0.1128 0.1008
n=100, m=500 0.1042 0.1042 0.1028 0.1188 0.1124 0.1118 0.1008
n=400, m=200 0.0976 0.0976 0.0944 0.1024 0.0976 0.0938 0.0954
n=400, m=500 0.0976 0.0976 0.0974 0.1096 0.0976 0.0962 0.0954
n=400, m=500, Heteroskedasticity 0.1056 0.1056 0.1050 0.1164 0.1068 0.1086 0.0986

Non-linear model
n=100, m=200 0.1070 0.1056 0.1064 0.1364 0.0914 0.1120 0.1478
n=100, m=500 0.1070 0.1056 0.1030 0.1176 0.0914 0.0964 0.1478
n=400, m=200 0.0980 0.0968 0.0962 0.1052 0.966 0.1012 0.1040
n=400, m=500 0.0980 0.0968 0.0944 0.1122 0.966 0.1018 0.1040
n=400, m=500, Heteroskedasticity 0.1048 0.0960 0.0948 0.1122 0.0964 0.1046 0.0934

Polar polynomial model
n=100, m=200 0.1042 0.1042 0.1044 0.1414 0.0958 0.1114 0.0836
n=100, m=500 0.1042 0.1042 0.1028 0.1188 0.0958 0.1036 0.0836
n=400, m=200 0.0976 0.0976 0.0944 0.1024 0.1000 0.1004 0.0708
n=400, m=500 0.0976 0.0976 0.0974 0.1096 0.1000 0.1032 0.0708
n=400, m=500, Heteroskedasticity 0.1050 0.1050 0.1036 0.1074 0.0980 0.1052 0.0404

Semi-polar polynomial model
n=100, m=200 0.1170 0.1096 0.1094 0.1364 0.0902 0.0996 0.1156
n=100, m=500 0.1170 0.1096 0.1074 0.1176 0.0902 0.0924 0.1156
n=400, m=200 0.0980 0.0974 0.0940 0.1052 0.0944 0.1006 0.0960
n=400, m=500 0.0980 0.0974 0.0962 0.1122 0.0944 0.0984 0.0960
n=400, m=500, Heteroskedasticity 0.08 0.10 0.10 0.07 0.10 0.10 0.06

Table 3: Empirical size of the tests for nominal size 10%, strong instruments case
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Instruments Strength AR LM CLR ICM KICM CICM W-2SLS

Weak 0.1298 0.1186 0.1270 0.1438 0.0900 0.1370 0.7052
Semi-Strong 0.1298 0.1178 0.1232 0.1438 0.0868 0.1362 0.6506
Strong 0.1298 0.1078 0.1110 0.1438 0.0984 0.1250 0.3704

Table 4: Empirical size for nominal size 10%, 4 Instruments

E.1.2 Power curves
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Figure 1: Power curves, strong instruments, homoskedastic Data
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Figure 2: Power curves, semi-strong instruments, homoskedastic data
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Figure 3: Power curves, weak instruments, homoskedastic data
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Figure 4: Power curves, strong instruments, heteroskedastic data
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Figure 5: Power curves, semi-strong instruments, heteroskedastic data
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Figure 6: Power curves, weak instruments, heteroskedastic data
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E.1.3 Average p-value curves

Figure 7: P-value curves, strong instruments, heteroskedastic data
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Figure 8: P-value curves, semi-strong instruments, heteroskedastic data
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Figure 9: P-value curves, weak instruments, heteroskedastic data
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E.2 Application
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Specification (1) (2) (3) (4)

KICM [0.009;0.132] R R [0.138;0.240]

AR [0.009;0.162] R R R

LM [0.047;0.118] R R R

CLR [0.042;0.110] R R R

OLS 0.080 0.080 0.072 0.070

[0.080;0.081] [0.080;0.081] [0.071;0.072] [0.070;0.071]

2SLS 0.077 0.131 0.106 0.101

[0.052;0.102] [0.076;0.186] [0.050;0.163] [0.046;0.156]

LIML 0.076 0.255 0.300 0.282

[0.047;0.105] [0.118;0.393] [0.068;0.531] [0.059;0.505]

FULLER 0.76 0.238 0.256 0.241

[0.047;0.105] [0.100;0.375] [0.024;0.487] [0.018;0.464]

Age and age square - Yes Yes Yes

Additional covariates - - Yes Yes

Region residence FE - - - Yes

First, stage F test statistic 4.68 1.08 0.99 1.03

Table 5: 90% confidence intervals for returns to education, cohort 20-29
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Figure 10: P-value curve of return to education, all covariates and fixed effects setting, cohort 20-29
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Chapter 2: Testing and Relaxing Distributional
Assumptions on Random Coefficients in Demand

Models

Co-authored with Gökçe Gökkoca and Max Lesellier

Abstract

The BLP demand model for differentiated products is the workhorse model for de-
mand estimation with market-level data. This model uses random coefficients to account
for unobserved preference heterogeneity. The shape of the distribution of random coeffi-
cients matters greatly for many counterfactual quantities, such as the cost pass-through.
In this paper, we develop new econometric tools to test this distribution and improve its
estimation under a flexible parametrization. First, we construct new instruments that are
designed to detect deviations from the true distribution of random coefficients. Second,
we develop a formal moment-based specification test on the distribution of random coeffi-
cients. Third, we show that our instruments can be successfully used to estimate a flexible
distribution of random coefficients. Finally, we validate our approach with Monte Carlo
simulations and an empirical application using data on car purchases in Germany. We also
show that these methods extend to the mixed logit demand model with individual-level
data.

Keywords: Demand Estimation, Specification Test, Random Coefficients
JEL codes: C35, C36, L13, C52
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1 Introduction

The differentiated product demand model initiated by Berry (1994) and Berry, Levinsohn,
and Pakes (1995) has been used in a wide array of empirical studies. It enables researchers to
perform demand estimation in markets with differentiated products using either macro-level
(market shares) or micro-level (individual purchases) data while allowing for unobserved
heterogeneity in preferences as well as price endogeneity. This unobserved heterogeneity in
preferences is modeled through the use of random coefficients (RCs) in the utility function.
This framework allows researchers to estimate demand functions, price elasticities and coun-
terfactual outcomes. Applications of the BLP model have notably studied the determinants of
market power, the welfare effects resulting from a merger or the introduction of a new good
and the economic impact of a tax or a subsidy.1

The informativeness of the empirical analysis depends on how well the model can repro-
duce the underlying substitution patterns and approximate the shape of the demand curve,
including its slope and curvature. A recent result in Miravete, Seim, and Thurk (2022) shows
that the commonly used Gaussian RC on price imposes strong restrictions on the demand’s
curvature and thus limits the range of the implied pass-through. The degree of pass-through
of taxes and costs is central to answering many questions in economics such as the impact
of tariffs or a cost shock on consumer welfare. However, estimating a more flexible demand
system with a non-Gaussian distribution of random coefficients is challenging. First, there
is a clear trade-off between the degree of flexibility one chooses (for instance, going from a
Gaussian to a Gaussian mixture) and the precision of the estimates one obtains. Therefore, it
is important to be able to test the specification chosen by the researcher on the distribution of
the RC (for instance, a Gaussian RC) and quantify the degree of misspecification before po-
tentially moving to a more flexible specification. Second, to precisely estimate a more flexible
distribution of RC, the researcher must choose instruments (or equivalently moment condi-
tions) that strongly identify this distribution. The instruments used by the current empirical
practice work well with the standard Gaussian RC, but their performance appears to decline
as the specification becomes more flexible in the simulation exercises that we perform.

1The BLP demand model has been widely utilized in numerous applications. A non-exhaustive list of exam-
ples includes: Barahona, Otero, Otero, and Kim (2020), Berry et al. (1995), Crawford, Shcherbakov, and Shum
(2019), Dubois, Griffith, and O’Connell (2018), Durrmeyer (2022), Grennan (2013), Grigolon, Reynaert, and Ver-
boven (2018), Miller, Sheu, and Weinberg (2021), Miller and Weinberg (2017), Miravete, Moral, and Thurk (2018),
Nevo (2000), Petrin (2002), Reynaert (2021).
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In this paper, we provide novel econometric tools to address these two challenges. In
particular, we construct a new set of instruments designed to detect deviations from the
true distribution of random coefficients. Building on these instruments, we provide a formal
moment-based specification test on the distribution of random coefficients, which can be im-
plemented without having to re-estimate the model under a more flexible parametrization.
Our instruments are designed to maximize the power of this test when the distribution of RC
is misspecified. We also show how these instruments can strengthen the identifying power
of the moment conditions used for estimation, and thus be successful at estimating a flexi-
bly parameterized distribution of RCs. As an example of a flexible parametric distribution,
we consider the Gaussian mixture, which can approximate arbitrarily well any continuous
distribution on the real line.

This paper consists of three main contributions. First, we construct a new set of instru-
ments that are designed to detect departures from the true distribution of RCs. The intuition
we use is the following. Any given distribution of RCs generates a structural error, which,
if correctly specified, is mean-independent with respect to a set of exogenous variables. This
identifying condition can be transformed into unconditional moments, which can be used to
test whether the chosen distribution of RCs is correctly specified. We formally define this test
and construct instruments that maximize its power against a fixed alternative. In a first step,
we assume that the econometrician knows the fixed alternative and derives an expression for
the first-best instrument. We call this instrument the most powerful instrument (MPI) and
show that this specific choice of instrument achieves the consistency of the test. In a second
step, we provide two feasible approximations of the MPI that can be derived without knowl-
edge of the fixed alternative. We call these feasible MPIs the interval instruments in reference
to the way they approximate the MPI.

Second, we consider the case where the researcher wants to test whether the distribution
of RCs belongs to a given parametric family. For instance, the researcher may be interested
in testing if the random coefficient is normally distributed. This is a composite hypothesis,
and we must estimate the unknown parameters of the distribution in a first step. In a second
step, we choose instruments to test if the distribution evaluated at the estimated parameters
is correctly specified. Here, the interval instruments represent a natural choice of instruments
as they are designed to detect deviations from the true distribution of RCs. We study the
asymptotic properties of our test when the number of markets, T, goes to infinity and we
prove the asymptotic validity of the test under common assumptions. In particular, we ac-
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count for the statistical uncertainty stemming from the first step estimation, and we control
for the magnitude of the approximations that intervene in the estimation of the BLP model.
Our asymptotic results complement previous work by Freyberger (2015) on the asymptotic
properties of the BLP estimator when the number of markets grows to infinity.

Third, we show that our interval instruments can be successfully used to estimate the
model, and particularly so when the distribution of RCs is flexibly parameterized. We do
so by exhibiting the connection between the MPI and the classical optimal instruments used
for efficient estimation purposes. Specifically, we show that the MPI devoted to testing the
specification of the model at the true parameter against any local alternative can be rewritten
as a linear combination of the optimal instruments. This relation between the MPI and the
optimal instruments helps us understand why the interval instruments, which approximate
the MPI, perform so well in our simulations. So far, the literature has exclusively exploited
instruments that approximate the optimal instruments (Gandhi and Houde (2019), Reynaert
and Verboven (2014)). We refer to these instruments as traditional instruments. These have
been shown to work well in the usual Gaussian case. However, our simulations show that
their performance declines when we depart from the Gaussian RC.

To evaluate the performance of our test and instruments, we conduct two sets of simu-
lation experiments. First, we compare the performance of the test when using our interval
instruments and when using the instruments commonly adopted by practitioners (Gandhi
and Houde (2019), Reynaert and Verboven (2014)). We show that the test has the correct
empirical size and that the interval instruments significantly outperform the traditional in-
struments in terms of power under alternative distributions. Second, we evaluate the per-
formance of the interval instruments in estimating the model when the distribution of RC is
flexibly parametrized, and follows a Gaussian mixture. We show that our instruments out-
perform the traditional instruments in terms of the mean squared error. In the case where the
RC is a simple Gaussian, the three sets of instruments perform equally well.

Finally, we apply the tools developed in this paper to estimate the demand for cars in
Germany from 2012 to 2018. The objective of the empirical exercise is to see how well our
instruments perform at estimating a flexible distribution of RCs using a real dataset. Given
the importance of price to address most empirical questions, we increase the flexibility of the
model by estimating a Gaussian mixture for the RC associated with price. Second, we use
our specification test to assess how the degree of misspecification decreases when we increase
the flexibility in the distribution of RCs. Third, we use our results to study how the shape of
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the RC on price can modify important counterfactual quantities such as the pass-through. In
particular, our empirical results are consistent with the findings in Miravete et al. (2022).

Related literature Our paper contributes to several strands of the literature. First, it con-
tributes to the literature on the flexible estimation of aggregate demand models for differenti-
ated goods. A few recent papers have proposed non-parametric and semi-parametric methods
to estimate aggregate demand functions. Compiani (2018) proposes a non-parametric estima-
tor of the demand functions. If relaxing all the parametric assumptions makes this approach
conceptually appealing, it also faces significant theoretical and practical difficulties (more
stringent data requirements, large curse of dimensionality, limited scope for counterfactual
analysis).2 Lu, Shi, and Tao (2021) and Wang (2022) propose semi-parametric estimators of
the distribution of RCs. These approaches are complementary to ours and the instruments we
develop in this paper can be useful to implement their non-parametric IV estimation proce-
dures, which are known to be rather sensitive to the quality of the instruments (Chetverikov
and Wilhelm (2017)). Finally, Ho and Pakes (2014), Tebaldi, Torgovitsky, and Yang (2019)
suggest deriving bounds directly on the counterfactual quantities.

Our paper also contributes to the literature on the non-parametric identification of the
distribution of RCs in demand models (Fox and Gandhi (2011), Fox, il Kim, Ryan, and Bajari
(2012), Dunker, Hoderlein, and Kaido (2022), Wang (2022), Berry and Haile (2014)). First, we
slightly extend the identification result in Wang (2022) to link it directly to the primitives of
the model, without assuming that the demand functions are identified. Second, we provide
a practical way of constructing moments that feature high identifying power with respect to
the distribution of RCs.

Third, we contribute to the literature that focuses on the practical estimation of the BLP
model. First, we show that the interval instruments that we construct in this paper can be suc-
cessfully used to estimate the distribution of random coefficients, and particularly so under of
flexible distribution of RCs. This new set of instruments complements instruments commonly
used by practitioners: Reynaert and Verboven (2014) and Gandhi and Houde (2019) (see Con-
lon and Gortmaker (2020) for a review). Moreover, we provide a new parametrization of the

2In particular, Compiani (2018) relaxes the Type 1 Extreme Value assumption on the taste shock. However,
it is not clear how restrictive this assumption is. McFadden and Train (2000) shows that a mixed-logit model
with flexibly distributed random coefficients can approximate any discrete choice model derived from random
utility maximization. On the other hand, the Type 1 Extreme Value assumption generates massive computational
gains, which allows for studying sophisticated markets with many products and many characteristics. Thus, the
cost-benefit analysis seems to be largely in favor of the logit specification.
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model, which facilitates the estimation when the distribution of RCs is a Gaussian mixture.
This new parametrization complements previous papers that aim at improving the estimation
of the model (Dubé, Fox, and Su (2012), Lee and Seo (2015), Salanié and Wolak (2019)).

Finally, our paper contributes to the literature on the asymptotic properties of the BLP
estimator (Armstrong (2016), Berry, Linton, and Pakes (2004), Freyberger (2015), Ketz (2019)).
In particular, we prove the asymptotic normality and the consistency of the BLP estimator
in the large market framework under less stringent assumptions than the remainder of the
literature.

Structure of the paper In Section 2, we recall the baseline BLP model, define the struc-
tural error of the model, and provide conditions under which the distribution of RCs is non-
parametrically identified. In Section 3, we derive the most powerful instrument and show how
it relates to the classical optimal instruments. In Section 4, we construct two feasible approx-
imations of the MPI. In Section 5, we present our specification test and show its asymptotic
validity. In Section 6, we conduct Monte Carlo simulations to evaluate the consequences of
misspecification on quantities of interest, and gauge the performance of our test and instru-
ments. In Section 7, we apply our new tools to estimate the demand for cars in Germany. We
conclude the paper in section 8.

2 Model and identification

2.1 Indirect utility and moment restrictions

Indirect utility We first describe the indirect utility function that induces the observed mar-
ket shares. Our setting closely follows the one introduced in the seminal paper Berry et al.
(1995). There are T markets indexed by t = 1, ..., T. There is a continuum of consumers
indexed by i. There are Jt market-specific products in market t. Each consumer chooses a
product j ∈ {0, 1, ..., Jt} where j = 0 corresponds to the outside option. For the sake of exposi-
tion and without loss of generality, we will assume throughout our analysis that the number
of products is constant across markets (∀t, Jt = J). Product j is characterized by a vector of
characteristics xjt, which includes the price of the good in most empirical settings. Consumer
i derives an indirect utility uijt from purchasing good j ∈ {0, 1, . . . , J} in market t:
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uijt = x′1jtβ + ξ jt︸ ︷︷ ︸
δjt

+x′2jtvi + εijt, (2.1)

with the following:

• x1jt is a vector of product characteristics of dimension K1 associated with product j and
for which there is no preference heterogeneity; β represents preferences for x1jt;

• ξ jt is an unobserved demand shock on product j in market t;

• δjt ≡ x′1jtβ + ξ jt denotes the mean utility for product j, the part of the utility that is
common to all consumers;

• x2jt is a vector of product characteristics of dimension K2 for which there is preference
heterogeneity; vi is the associated random coefficient that follows a distribution charac-
terized by density f and is independent of all the other variables: vi ⊥⊥ (xt, ξt, {εijt}j=1,...J);

• εijt is a preference shock that follows an Extreme Value type I (EV1) distribution inde-
pendent of all other variables and across i, j, t.

For individual i in market t, the indirect utility from purchasing the outside option is
normalized to ui0t = εi0t. From the random utility functions in (2.1), we can infer the demand
functions for each good j in market t denoted ρjt( f , β). Each consumer chooses the product
that maximizes his or her utility. Let yijt equal 1 if individual i chooses good j = 0, 1, . . . , J in
market t = 1, . . . , T. We have the following:

∀j ̸= 0, ρjt( f , β) ≡ P f ,β(yijt = 1|xt, ξt)

= P f ,β(good j is chosen in market t by individual i|xt, ξt)

= P f ,β(uijt > uikt ∀k ̸= j|xt, ξt)

=
∫

RK2

exp
{

x′1jtβ + ξ jt + x′2jtv
}

1 + ∑J
k=1 exp

{
x′1ktβ + ξkt + x′2ktv

} f (v)dv. (2.2)

For the outside option, the demand function is written as follows:

ρ0t( f , β) = P f ,β(yi0t = 1|xt, ξt) =
∫

RK2

1

1 + ∑J
k=1 exp

{
x′1ktβ + ξkt + x′2ktv

} f (v)dv.
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Following the EV1 assumption on the idiosyncratic shock on utility, the demand functions
take the usual logit form integrated over the distribution of preference heterogeneity. We
assume in this paper that the observed market shares are equal to the shares generated by the
model above at the true distribution f and the true preference parameter β:

∀j, ∀t, sjt = ρjt( f , β). (2.3)

Moment restrictions Following the literature, we assume that the unobserved demand shock
ξ jt is mean independent of zjt, a set of instrumental variables, namely, E[ξ jt|zjt] = 0 a.s.. The
set zjt traditionally consists of the exogenous characteristics of all the products on the market
as well as cost shifters, which are meant to instrument for price. Indeed, the price of a good
is usually considered to be an endogenous variable since it is correlated with the unobserved
demand shock ξ jt through the profit maximization problem of firms.3 To estimate the model,
the researcher chooses functions of the instruments zjt to construct a set of unconditional
moments. We refer to these functions as estimation instruments and denote them hE(zjt).
Likewise, in our analysis, we study the functions of the instruments that are designed to test
the specification of the model. We refer to these instruments as testing instruments and we
denote them hD(zjt), where D stands for detection.

2.2 Inverse demand function and structural error

Inverse demand function For any given distribution of random coefficients f̃ , we define the
demand function ρ ≡ (ρ1(·), ..., ρJ(·)) as the function which maps the vector of mean utilities
δ to the vector of market shares generated by the model under f̃ :

ρ(·, x2t, f̃ ) : RJ → [0, 1]J

δ 7→
∫

RK2

exp
{

δ + x′2jtv
}

1 + ∑J
k=1 exp

{
δk + x′2ktv

} f̃ (v)dv.

3To deal with the endogeneity of prices, Berry et al. (1995) also suggests using exogenous own-product
characteristics as well as exogenous characteristics from other products. The main idea behind the use of these
instruments is to take advantage of the correlation between price and exogenous characteristics implied by
profit-maximizing firms. To be precise, Berry et al. (1995) suggests using the sum of the characteristics from
other products produced by the same firm and the sum of exogenous characteristics from rival firms’ products
as instruments.
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Berry (1994) shows by applying Brouwer’s fixed point that for any (st, x2t) and for any dis-
tribution of random coefficients f̃ (even when f̃ is not the true distribution), there exists a
unique δ̃ ∈ RJ such that:

st = ρ(δ̃, x2t, f̃ ).

We define the solution to the previous system of equations as the inverse demand func-
tions: ρ−1(st, x2t, f̃ ) = δ̃. Unfortunately, there is no closed form expression for the inverse
demand function, which must be recovered numerically.

Structural error From what precedes, we can uniquely define the structural error ξ jt( f̃ , β̃)

generated by a distribution of random coefficient f̃ and a homogeneous parameter β̃:

ξ jt( f̃ , β̃) = ρ−1
j (st, x2t, f̃ )− x′1jt β̃. (2.4)

The non-linear nature of the model is captured by the inverse demand function which enters
the expression of the structural error. The absence of an analytical formula for the inverse
demand implies that there is no closed form expression for the structural error, which com-
plicates the estimation of the BLP demand model. If we consider a parametric family of
distributions F̃ = { f̃ (·|λ̃) : λ̃ ∈ Λ̃}, then the structural error generated by a specific element
in f̃ (·|λ̃) ∈ F̃ and β̃ is defined as follows:

ξ jt( f̃ (·|λ̃), β̃) = ρ−1
j (st, x2t, f̃ (·|λ̃))− x′1jt β̃.

2.3 Non-parametric identification

The main objective of this paper is to provide tools to test the specification on the distribution
of random coefficients and to improve its estimation under a flexible specification. A natural
first step is to study the conditions under which this distribution is non-parametrically identi-
fied. The identification of random coefficients in multinomial choice models has been studied
extensively in the literature (Allen and Rehbeck (2020), Berry and Haile (2014), Dunker et al.
(2022), Fox and Gandhi (2011), Fox et al. (2012), Wang (2022)). We summarize some of these
findings in Appendix C.1. In this Section, we build on an important identification result in
Wang (2022) to recover a set of sufficient identifying conditions directly on the primitives of
the model. We also show that the identification result holds with a less stringent exogeneity
assumption than in Wang (2022).

In contrast to the rest of the literature, Wang (2022) adopts all the parametric assumptions
in the standard BLP model and looks for a set of sufficient restrictions under which the
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identification of the demand functions implies the identification of the distribution of random
coefficients. This approach allows him to obtain conditions that are less stringent than the rest
of the literature. In particular, Wang (2022) makes no special regressor assumption, no full
support assumption, and no continuity assumption on the covariates. Specifically, he shows
that if the demand functions ρ = (ρ1, ..., ρJ) are identified on an open set of RJ , then the
distribution of random coefficients is identified.4 His proof exploits the real analytic property
of the demand functions.5 In this paper, we build on this injectivity result to find sufficient
identifying conditions directly on the primitives of the model (without assuming identification
of the demand functions). We also show using a random permutation of the indices that we
only require the demand shock ξ jt to be mean independent of the instrumental variables
zjt across products, but we do not require this to hold for each product j taken separately.
Formally, we only require E[ξ jt|zjt] = 0 a.s. and not E[ξ jt|zjt] = 0 a.s. for all product j as
previously. This is less restrictive, as demand shocks can now be on average non-zero for
certain products and account for unobserved quality inherent to each product.

Let us formally state the assumptions that we impose to recover the point identification of
( f , β).

Assumption A
(i) Strict exogeneity: E[ξ jt|zjt] = 0 a.s.;
(ii) Completeness: for any measurable function g such that E[|g(st, xt)|] < ∞, if E[g(st, xt)|zjt] =

0 a.s., then g(st, xt) = 0 a.s.;
(iii) The distribution of the data (st, x2t, x1t, zt) is fully observed by the econometrician and market
shares st are generated by the demand model defined in section 2.1 by equations (2.1) and (2.3);
(iv) Detectable difference in distributions: we say f and f̃ differ (and write f ̸= f̃ ) if there exists
v̄ ∈ RK2 such that F(v̄) ̸= F̃(v̄);
(v) Let xt = (x1t, x2t) then xt is such that P(x′txt is positive definite) > 0 ∀t;
(vi) There exists x̄t ∈ X and an open set D ⊂ RJ such that δt = x̄1tβ0 + ξt varies on D a.s..

In A(i), we assume that the instruments are strictly exogenous. Assumption A(ii) is a
completeness assumption that states that the instruments are strongly relevant with respect
to (st, xt). This assumption is typical of semiparametric or nonparametric IV models and is

4Identification of demand functions can be achieved using Theorem 1 in Berry and Haile (2014).
5In particular, the real analytic property yields that the local identification of ρ on D ⊂ RJ implies the

identification of ρ on RJ From the global identification of ρ, he is then able to show that the random coefficients’
distribution is identified under a simple rank condition on x2t.
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equivalent to a full rank assumption in a linear IV model. Intuitively, it means that if the
inverse demands are different almost surely, then the instruments will be able to detect the
difference. The completeness assumption is a strong assumption that has been widely used
in this literature (Berry and Haile (2014), Dunker et al. (2022), Wang (2022)). Assumption
A(v) is a standard rank condition. Assumption A(vi) is meant to ensure that there is enough
variation in δt to apply the injectivity result in Wang (2022). This assumption indicates that
there needs to be sufficient variation in product characteristics across markets in the data to
identify f . In practice, product characteristics are very similar from one market to the other
and may not yield sufficient variation. A judicious solution is to create inter-market variation
by interacting product characteristics with demographic variables characterizing each market.
Let us now state our formal identification result.

Proposition 2.1
Under Assumption A, the distribution of random coefficients f and the homogeneous preference pa-
rameters β are non-parametrically identified:

( f̃ , β̃) = ( f , β) ⇐⇒ E[ξ jt( f̃ , β̃)|zjt] = E

[
ρ−1

j (st, x2t, f̃ )− x′1jt β̃

∣∣∣∣zjt

]
= 0 a.s..

The proof is in Appendix B.1. The identification result above entails that under some fairly
weak conditions and in the presence of instruments that generate sufficient variation in the
product characteristics, the observed data identifies the distribution of random coefficients
non-parametrically. Formally, the model is at the true pair ( f , β) if and only if the associated
structural error is mean independent of the instrumental variables zjt. We use this identifica-
tion result to show the consistency of our test under a specific choice of instruments that we
will characterize thereafter.

3 Detecting misspecification: the most powerful instrument

The aim of this section is to recover the instrument with the greatest ability to detect misspec-
ification in the distribution of RC. To do so, we consider a setting in which the econometrician
wants to test a simple hypothesis of the form H0 : ( f , β) = ( f0, β0). The upper bar is used
to stress the fact that H0 is a simple hypothesis, in contrast to the composite hypothesis
H0 : f ∈ F0 that we study in section 5. Our approach builds on a simple intuition: if the
model under H0 is misspecified, then the structural error will depart from the true demand
shock ξ jt, and our goal is to find the best instrument to pin down this deviation. We proceed as
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follows. First, we introduce a moment-based test for H0 and we show its asymptotic validity.
Next, we derive an analytical expression for the instrument that maximizes the power of our
test against a fixed alternative Ha : ( f , β) = ( fa, βa). We call this instrument the most power-
ful instrument (MPI) and we show how it relates to the classical optimal instruments, derived
for efficient estimation purposes. In Section 4, we provide two feasible approximations of the
MPI, which have the critical property of being invariant with respect to the alternative Ha.

3.1 A moment-based test

We want to test H0 : ( f , β) = ( f0, β0) against Ha : ( f , β) ̸= ( f0, β0). For any set of testing
instruments hD(zjt), we have the following implication:

H0 : ( f , β) = ( f0, β0) =⇒ H′
0 : E[hD(zjt)ξ jt( f0, β0)] = 0.

We propose to test H0 indirectly through its implication H′
0, which is a set of unconditional

moment conditions. We test H′
0 with a moment-based test. Our test statistic writes as follows:

ST(hD, f0, β0) = TJ

(
1

TJ ∑
j,t

ξ jt( f0, β0)hD(zjt)

)′
Ω̂−1

0

(
1

TJ ∑
j,t

ξ jt( f0, β0)hD(zjt)

)
, (3.5)

with Ω̂0 a consistent estimator of Ω0 the asymptotic variance-covariance matrix of

1√
TJ ∑

j,t
hD(zjt)ξ jt( f0, β0)

which is Ω0 = E[ξ2
jt( f0, β0)hD(zjt)hD(zjt)

′]. We study the asymptotic properties of our test
as the number of markets, T, goes to infinity. As the focus of this section is on the construction
of the most powerful instrument, we postpone the treatment of the specific challenges implied
by parameter uncertainty (i.e. when β0 and f0 must be estimated beforehand) and by the
numerical approximations involved in the derivation of the structural error (in practice, the
researcher derives a numerical approximation of ξ jt( f0, β0)) to Section 5. Additionally, to keep
the results as simple as possible while retaining the key intuitions, we assume independence
of the demand shocks in a given market conditional on zjt. This last assumption is relaxed in
the proofs in Appendix B.2 and in section 5.
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Proposition 3.1
Assume that (st, xt, zt) are i.i.d. across markets and consistent with the probability model defined by
equations (2.1), (2.2) and (2.3) evaluated at ( f , β), E[∥ξ jt( f0, β0)hD(zjt)∥2] < +∞, Ω0 has full rank,
and, for k ̸= j, ξ jt ⊥⊥ ξkt|zt. We have the following:

• under H0 : ( f , β) = ( f0, β0), ST(hD, f0, β0)
d−→

T→+∞
χ2
|hD|0 ,

• under H′
a : E

[
hD(zjt)ξ jt( f0, β0)

]
̸= 0, ∀q ∈ R+, P(ST(hD, f0, β0) > q) −→

T→+∞
1,

with | · |0 being the counting norm.

The previous proposition indicates that as long as the testing instruments are functions
of zjt, our test procedure is asymptotically valid for H0. We are testing H0 by virtue of its
implication H′

0 : E
[
hD(zjt)ξ jt( f0, β0)

]
= 0 and, as a consequence, the power properties of our

test hinge critically on the choice of the testing instruments hD(zjt). This is the focus of the
next subsection.

3.2 The most powerful instrument (MPI)

The choice of testing instruments hD(zjt) is key to maximizing the rejection rate of H0 under
any alternative Ha : ( f , β) ̸= ( f0, β0). To guide our choice of instruments, we first derive the
instrument that maximizes the power of our test when the econometrician tests H0 against
a fixed alternative Ha : ( f , β) = ( fa, βa) ̸= ( f0, β0). We refer to this instrument as the most
powerful instrument (MPI). In practice, the researcher is often reluctant to fix the alternative.
However, the MPI represents a useful first-best solution for which we provide two feasible
approximations in section 4.

Derivation of the most powerful instrument To construct the MPI, we use the following
decomposition of the structural error generated under Ha:

ξ jt( f0, β0) = ξ jt( fa, βa)︸ ︷︷ ︸
true error under Ha

+ ξ jt( f0, β0)− ξ jt( fa, βa)︸ ︷︷ ︸
∆

ξ jt
0,a

,

with ∆
ξ jt
0,a being the correction term due to misspecification under the alternative Ha. Our

goal is to compare the ability of our test for different candidates hD(zjt), to reject H0 under
Ha.
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The literature offers many ways to compare the power of competing tests (see Gourieroux
and Monfort (1995) for a comprehensive review). First, we distinguish between exact and
approximate methods. Exact methods rely on the exact distribution of the test statistic (under
H0) and allow for comparison in finite sample while asymptotic methods exploit the asymp-
totic distribution of the test statistic and are informative in larger samples. In our case, the
exact distribution of our test is unknown. Thus, we rely on asymptotic methods, which is the
most common case in the literature. Second, we divide the methods into local and non-local
methods. In parametric tests, local strategies are based on the analysis of the power properties
of competing tests under a sequence of local alternatives θT which converges to θ0 at a given
rate (usually 1√

T
). The econometrician can compare two competing tests by means of their

power functions (or more precisely, the limits of these power functions when sample sizes go
to +∞). This is called the direct approach. The dual approach, which is known as Pitman’s
relative efficiency, consists of comparing the rates at which the minimal number of observa-
tions must increase to ensure a given level of power. The approach we favor in this paper is
the non-local approach developed in Bahadur (1960). Here, the econometrician chooses the
test with the smallest level α needed to attain a given power against a fixed alternative and
for a given number of observations. In other words, the econometrician chooses the test that
minimizes the risk of type I error ceteris paribus.

There are several reasons to favor Bahadur’s non-local approach. First, it is better suited
for the testing problem we study in this paper. The comparison criterion, known as the
asymptotic slope of the test, is in our case straightforward to derive, whereas it is not clear
how one should derive Pitman’s efficiency criterion when the test concerns non-parametric
objects such as distributions. Moreover, we study the properties of our test against a fixed
alternative Ha : ( f , β) = ( fa, βa) as in Bahadur’s case, which is not necessarily local. Finally,
the literature has highlighted many limitations of the local approach. Local criteria are often
unable to discriminate between tests even when these tests lead to different decisions (see
Silvey (1959)). In addition, as shown in Dufour and King (1991), a locally optimal test in a
neighborhood of H0 may perform very poorly away from H0.

Let us now present the intuition for Bahadur’s comparison approach. From Section 3.1,
we have:

Under H0: ST ≡ ST(hD, f0, β0)
d→ S with S = χ2

|hD|0 .

Following the same notations as in Gourieroux and Monfort (1995), we denote:

Λ(s) = PH0
(S ≥ s).
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The critical value is usually derived using the asymptotic distribution of the test statistic under
H0. The approximate critical region at a given level α is then given by:

CRα = {ST ≥ Λ−1(α)} = {Λ(ST) ≤ α}.

The main idea in Bahadur’s approach entails deriving the level of the test if one takes the
value of the test statistic as the critical value (this is also known as the p-value). Namely:

αT = Λ(ST).

Bahadur suggests preferring the test that displays the lowest level αT at least asymptotically.
A formal analysis of the asymptotic behavior of αT shows that it is better to consider the limit
of a transformation of αT than the limit of αT directly. This gives rise to the concept of the
approximate slope of the test.

Definition 1 (Asymptotic slope of the test)

(i) KT = − 2
T log(Λ(ST)) is the approximate slope of the test,

(ii) Under Ha: plim KT = c( fa, βa) is the asymptotic slope of the test,

with plim, the limit in probability when T → +∞.

Under the alternative Ha : ( f , β) = ( fa, βa), consider two sequences of tests based on
S1

T and S2
T with asymptotic slopes c1( fa, βa) and c2( fa, βa) respectively. The test based on

S1
T is asymptotically preferred to the test based on S2

T in Bahadur’s sense if and only if
c1( fa, βa) > c2( fa, βa). To derive the asymptotic slopes of our test, we apply an important

result in Geweke (1981), which states that if under H0: ST
d−→

T→+∞
χ2

q (with any q ∈ N∗), then

1
T ST

a.s.−→ c( fa, βa) (when the limit exists). In our test, the limiting distribution is chi-squared.
Thus, the asymptotic slope of our test with instrument hD(zjt) writes:

chD( fa, βa) = plim
1
T

ST(hD, f0, β0) = JE
[
ξ jt( f0, β0)hD(zjt)

]′ Ω−1
0 E

[
ξ jt( f0, β0)hD(zjt)

]
.

Let us note that the asymptotic slope can also be interpreted as a measure of the speed
of divergence of the test statistic in terms of population moments, i.e. speed of divergence ≈
T × chD( fa, βa). In the next proposition, we derive an analytical expression for the instrument
that maximizes the slope of the test.
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Proposition 3.2 (Most powerful instrument)
Let H be the set of measurable vectorial functions of zjt. Under any fixed alternative Ha : ( f , β) =

( fa, βa), we have the following:

(
E
[
ξ jt( f0, β0)

2|zt

])−1
E[∆

ξ jt
0,a|zjt] ∈ argmax

hD∈H
chD( fa, βa).

The proof is given in Appendix B.2. The MPI equals the conditional expectation of the

correction term ∆
ξ jt
0,a divided by a conditional variance term E

[
ξ jt( f0, β0)

2|zjt
]
. For exposition

purposes, we drop the conditional variance term in the subsequent analysis and take the ho-

moskedastic MPI h∗D(zjt) = E[∆
ξ jt
0,a|zjt] as the reference MPI.6 Methods have been proposed to

estimate the conditional variance term non-parametrically and could be adapted to our case.
However, it is well known that conditional variance, which also appears in the formulation
of the optimal instruments, is difficult to model and estimate in practice. In the BLP frame-
work, the large dimension of zjt makes the exercise even more difficult. Hence, researchers
typically ignore this term or impose a restrictive and ad-hoc structure on the form that it can
take (for instance, Reynaert and Verboven (2014)’s approximation of the optimal instruments
in the BLP model ignores the variance term). The homoskedastic MPI, h∗D(zjt), features other
appealing properties including (i) consistency of the associated test and (ii) maximizing cor-
relation with the structural error under the alternative.7 For simplicity, in what follows, we
refer to the homoskedastic MPI as the MPI.

(i) Consistency By setting hD equal to h∗D, our moment-based test becomes consistent against
any fixed alternative Ha : ( f , β) = ( fa, βa) ̸= ( f0, β0). Namely, we have the following result:

Proposition 3.3 (Consistency of the test with the MPI)
Under Assumption A and the same assumptions as in Proposition 3.1, we have:

Ha : ( f , β) = ( fa, βa) ̸= ( f0, β0) =⇒ ∀q ∈ R+, P(ST(h∗D, f0, β0) > q) −→
T→+∞

1.

The proof of this result is given in Appendix B.2.

6This last expression corresponds to the exact formulation of the MPI under homoskedasticity.
7The consistency of the test also holds when we keep the conditional variance term.
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(ii) Correlation with the structural error Another interesting property of the MPI is to be
the function of zjt which maximizes the correlation with the structural error.

Proposition 3.4 (Correlation between the MPI and the structural error)
Let H be the set of measurable functions of zjt, we have under Ha:

∀α ∈ R∗, α E[∆
ξ jt
0,a|zjt] ∈ arg max

h∈H

∣∣corr(ξ jt( f0, β0), h(zjt))
∣∣ .

The proof is given in Appendix B.2. Intuitively, the MPI h∗D(zjt) is designed to fully capture

the exogenous variation contained in the correction term ∆
ξ jt
0,a implied by the misspecification,

which yields the result above.

3.3 Connection with the optimal instruments

The MPI maximizes the power of the moment-based test for H0 : ( f , β) = ( f0, β0). In contrast,
the optimal instruments minimize the asymptotic variance-covariance of the GMM estimator
when the parameter of interest is identified by conditional moment restrictions. These two
problems are seemingly unrelated. However, we show that the MPI devoted to testing the
specification of the model at the true parameter against any fixed local alternative can be
rewritten as a linear combination of the optimal instruments. Consequently, one can reinter-
pret the optimal instruments as a local approximation of the MPI devoted to testing the model
at the true parameter. This connection between the MPI and the optimal instruments helps
us understand why the feasible approximations of the MPI we construct in section 4 improve
the performance of the BLP estimator in our Monte Carlo simulations when the distribution
of RCs is flexible. In this subsection, we first derive the optimal instruments. Then, we exhibit
the relation between the optimal instruments and the MPI.

The estimation of the model works as follows. The researcher assumes that f belongs
to a parametric family F0 = { f0(·|λ̃) : λ̃ ∈ Λ0} and wants to estimate the true parameter
θ0 = (β′

0, λ′
0)

′ under this parametric restriction. In the estimation context that we study here,
θ0 refers to the true parameter. For now, let us assume that the model is correctly specified: f ∈
F0 and we shorten the notations by removing the dependence of the structural error in f0(·|λ̃),
which becomes implicit in this context. Namely, ξ jt( f0(·|λ̃), β̃) becomes ξ jt(θ̃). We further
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assume that θ0 is point identified by the following moment restriction: E[ξ jt(θ0)|zjt] = 0 a.s..8

The researcher must choose the set of instruments hE(zjt) (or equivalently, the unconditional
moments) to include in the GMM objective function:

θ̂ = Argmin
θ̃

TJ

(
1

TJ ∑
j,t

ξ̂ jt(θ̃)hE(zjt)

)′
Ŵ

(
1

TJ ∑
j,t

ξ̂ jt(θ̃)hE(zjt)

)
.

Optimal instruments in the BLP demand model Traditionally, the instruments hE(zjt) are
chosen to minimize the asymptotic variance-covariance of the estimator θ̂. The instruments
that reach this objective are called the optimal instruments. The resulting estimator is said to
be efficient in the sense that its asymptotic variance cannot be reduced by using additional
moment conditions. There is a large body of literature on the derivation of optimal instru-
ments in econometric models (Amemiya (1974), Chamberlain (1987), Newey (1990, 2004)). The
BLP estimator θ̂ is a non-linear GMM estimator and classical results in Chamberlain (1987)
and Amemiya (1974) show that the optimal instruments in this case write:

h∗E(zjt) = E[ξ jt(θ0)
2|zjt]

−1E

[
∂ξ jt(θ0)

∂θ̃

∣∣∣∣zjt

]
,

The corresponding efficiency bound (obtained by setting hE = h∗E) writes:

V∗ = E

[
E

[
∂ξ jt(θ0)

∂θ̃

∣∣∣∣zjt

]
E

[
∂ξ jt(θ0)

∂θ̃

∣∣∣∣zjt

]′
E[ξ jt(θ0)

2|zjt]
−1
]−1

.

For the sake of exhaustivity, we show this result in Appendix B.2.1. As for the MPI, the
formulation of the optimal instruments above is obtained under the assumption of conditional
independence of demand shocks ξ jt in the same market: k ̸= j, ξ jt ⊥⊥ ξkt|zt. In Appendix
B.2.1, we derive the expression for the optimal instruments under weaker assumptions on the
demand shock.9 Consistent with what we did in the case of the MPI, we drop the conditional
variance term E[ξ jt(θ0)

2|zjt].

8The identification conditions in the parametric case are less stringent than the conditions for the non-
parametric identification in Assumption A.

9We allow for unrestricted forms of correlation between demand shocks within a given market.
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Connection between the MPI and the optimal instruments Let θ0 the true parameter. Un-
der the parametric assumption f ∈ F0, the simple hypothesis H0 : ( f , β) = ( f0, β0) we studied
previously becomes H0 : θ = θ0. It is straightforward to show that, in the parametric case,

the associated MPI against a fixed alternative Ha : θ = θa writes: h∗D(zjt) = E
[
∆

ξ jt
θ0,θa

|zjt

]
with

∆
ξ jt
θ0,θa

= ξ jt(θ0) − ξ jt(θa). By taking a Taylor expansion of ξ jt(θa) around θ0, we obtain the
following:

∆
ξ jt
θ0,θa

=
∂ξ jt(θ0)

∂θ̃
(θ0 − θa) + o(||θ0 − θa||2) .

We see that when θa is in a neighborhood of θ0, the MPI, h∗D(zjt), against this fixed alter-
native is a linear combination of the optimal instruments h∗E(zjt):

h∗D(zjt) = E
[
∆

ξ jt
θ0,θa

|zjt

]
≈ E

[
∂ξ jt(θ0)

∂θ̃

∣∣∣∣zjt

]′

︸ ︷︷ ︸
h∗E(zjt)

(θ0 − θa).

It follows that classical optimal instruments can be interpreted as an approximation of the
MPI devoted to testing H0 : θ = θ0 against any fixed local alternative.10 Moreover, let us
note that the connection between the MPI and the optimal instruments holds if we keep the
conditional variance term in both cases.

4 A feasible most powerful instrument

The MPI is the most powerful instrument to reject H0 : ( f , β) = ( f0, β0) against a fixed
alternative Ha : ( f , β) = ( fa, βa). Its derivation requires the knowledge of the alternative
while in practice the econometrician typically wants to remain agnostic about the alternative.
Moreover, the MPI is defined as a conditional expectation of a non-linear function with respect
to a large dimension vector zjt, and thus, even if the alternative Ha is known, the MPI can
be difficult to compute. In this section, we remain in the same configuration, where the
econometrician wants to test H0 : ( f , β) = ( f0, β0) against a fixed alternative Ha : ( f , β) =

( fa, βa). However now, we assume that this alternative is unknown to the econometrician. We
provide two feasible approximations of the MPI, which do not depend on Ha, and that, unlike

10This interpretation of the optimal instruments only holds when the model is well specified i.e. f ∈ F0, and
thus, in general, the optimal instruments shouldn’t be used to test the specification of the model.
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the MPI, can be computed in practice. To do so, we show that the MPI can be approximated by
a linear combination of known functions of zjt. We call these interval instruments in reference
to the way these functions are derived. Our feasible MPI is simply the vector of the interval
instruments. The cost to incur for feasibility is that the properties we established for the MPI
do not carry over to the feasible MPI. Nevertheless, our Monte Carlo simulations in section 6
show that the interval instruments perform very well in practice.

By construction, in the BLP demand model, the correction term writes:

∆
ξ jt
0,a = x′1jt(βa − β0) + ρ−1

j (st, x2t, f0)− ρ−1
j (st, x2t, fa)

= x′1jt(βa − β0) + ∆j(st, x2t, f0, fa).
(4.6)

The previous equation shows that the correction term is the sum of a linear part, which is
standard, and a non-linear part which is specific to the BLP demand model.

Linear part The linear part of the MPI writes: E[x1jt|zjt]
′(βa − β0) = E[x1jt|zjt]

′γ. Thus,
for its linear part, the MPI is a linear combination of the conditional expectation of x1jt with
respect to the exogenous variables with unknown weights. If one is interested in specifically
testing that β = β0, informative instruments simply consist of the variables in E[x1jt|zjt].

Non-linear part The non-linear part, ∆j(st, x2t, f0, fa), is the part which is implied by the
misspecification on the distribution of RCs and for which we need to recover a feasible ap-
proximation. Equation (4.6) indicates that the non-linear part is the difference between the
inverse demand functions generated by f0 and fa. We now go one step further and derive
two analytical approximations of ∆j(st, x2t, f0, fa) which we then use as building blocks to
construct our feasible approximations of the MPIs. The first approximation is based on a
local expansion around f0. The second approximation is based on an identity that is valid
everywhere. The first approximation is more precise locally whereas the second one is more
robust to large deviations from f0.

4.1 Local approximation

First, we consider a local approximation of ∆j(st, x2t, f0, fa). This approximation corresponds
to the first order term in the expansion of ∆(st, x2t, f0, fa) “around f0", which is recovered by
exploiting the properties of the inverse demand function, which is both C∞ and bijective in st.
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Proposition 4.1
A first order expansion of ∆(st, x2t, f0, fa) around f0 writes:

∆(st, x2t, f0, fa) =

(
∂ρ(δ0

t , x2t, f0)

∂δ

)−1 ∫

RK2

[
exp(δ0

t + x2tv)

1 + ∑J
k=1 exp

{
δ0

kt + x′2ktv
} − ρ(δ0

t , x2t, f0)

]
fa(v) +R0,

with δ0
t = ρ−1(st, x2t, f0) and R0 = o

(∫
RK2 | fa(v)− f0(v)|dv

)
.

The proof is in Appendix B.3.1. We first observe that for any density f0, we can construct
artificial market shares s0

t such that ρ−1(st, x2t, fa) = ρ−1(s0
t , x2t, f0). Then, we recover the

final result by taking a Taylor expansion of ρ−1(s0
t , x2t, f0) around st and showing that the

remainder is bounded.11 This approximation is local by design: it works best when fa is a
local deviation from f0, even if it can be used more generally. To make this expression useful
in practice, we must still overcome two difficulties. The distribution fa is unknown to the
econometrician. In addition, some variables such as δ0

jt are endogenous. However, notice
that the previous expression may be particularly useful if the econometrician is interested in
testing H0 against a fixed and known alternative as we did in the previous section.

Discretizing the integral To solve for the fact fa is unknown to the econometrician, we
replace the integral in which fa appears by a finite Riemann approximation. Namely,

∫

R

exp
{

x′2jtv
}

1 + ∑J
k=1 exp

{
δ0

kt + x′2ktv
} fa(v)dv ≈

L

∑
l=1

ωl( fa)
exp(x′2jtvl)

1 + ∑J
k=1 exp(δ0

kt + x′2ktvl)
,

with {vl}l=1,...,L the points chosen in the domain of definition of fa, and {ωl( fa)}l=1,...,L the
associated weights.12 We provide more details on how to choose the points in Appendix C.4.
It is important to observe that in the Riemann approximation, only the weights depend on
the alternative fa. This approximation can also be interpreted as approaching a continuous
distribution with a discrete one, where each point in {vl}l=1,...,L represents a specific con-
sumer type with an associated probability wl( fa). The non-linear part of the MPI can thus be
approximated as follows:

11The expansion is taken around st because s0
t depends on fa and is thus unknown to the researcher.

12In the usual Riemann sum, the weights correspond to density evaluated at point vl : fa(vl) times the width
of the interval around vl .
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E[∆j(st, x2t, f0, fa)|zjt] ≈
L

∑
l=1

ωl( fa) E[πj,l(st, xt)|zjt],

with πj,l(st, xt) =

(
∂ρ(δ0

t , x2t, f0)

∂δ

)−1 [ exp(δ0
t + x2tvl)

1 + ∑J
k=1 exp

{
δ0

kt + x′2ktvl
} − ρ(δ0

t , x2t, f0)

]

j

.

Approximating the conditional expectation Ideally, we would like to estimate the condi-
tional expectation of πj,l(st, xt) with respect to zjt. The endogenous variables are {δ0

jt}j=1,....,J ,
and the potential endogenous variables in {x2jt}j=1,...,J , which often include prices. In prac-
tice, computing the conditional expectation is challenging because the dimension of zjt can be
very large and the functions πj,l(·) are highly non-linear and non-separable in the endogenous
variables. This makes it unappealing to use standard non-parametric estimation methods.13

In the same spirit as Reynaert and Verboven (2014), we first project the endogenous variables
on the space spanned by a relevant subset of zjt. We mark the projected endogenous vari-
ables with a hat and we plug them into our functions πj,l(·). Namely, we have the following
approximation for every interval instrument l:

E[πj,l(st, xt)|zjt] ≈ π̂j,l(zjt) =

(
∂ρ(δ̂0

t , x̂2t, f0)

∂δ

)−1 [
exp(δ̂0

t + x̂2tvl)

1 + ∑J
k=1 exp

{
δ̂0

kt + x̂′2ktvl
} − ρ(δ̂0

t , x̂2t, f0)

]

j

.

We show in Appendix C.2 that this strategy yields an estimator of the conditional expec-
tation that converges faster to a first order approximation of the conditional expectation.

Test procedure From what precedes, the MPI (for its non-linear part) can be approximated
as follows: h∗D(zjt) ≈ ∑L

l=1 ωl( fa) π̂j,l(zjt). As we don’t know the weights ωl( fa), we propose
to take the vector π̂j(zjt) = (π̂j,1(zjt), ..., π̂j,L(zjt))

′ as our testing instruments. We call them
interval instruments in reference to the way we divide the support into several intervals to
construct this approximation. Following the test procedure presented in section 3.1, we per-
form a moment based test for H0 : E

[
π̂j(zjt)ξ jt( f0, β0)

]
= 0. Under the same assumptions as

in Proposition 3.1 and setting hD(zjt) = π̂j(zjt), we have the following:

13For instance, a Sieve nonparametric estimator of the conditional mean. The dimension of zjt makes this
approach of little relevance in practice.
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Under H0 : ST(hD, f0, β0)
d−→

T→+∞
χ2

L.

This approach has the advantage of being feasible since we can construct the vector of
interval instruments π̂j(zjt), while remaining completely agnostic about fa. The price to pay
is that we lose the optimality properties of the MPI. We further discuss the properties of the
feasible MPI in Appendix C.7. Moreover, the infeasible MPI, h∗D(zjt), is of dimension one
and its test statistic is distributed as χ2

L asymptotically. In contrast, the feasible MPI is of
dimension L and its asymptotic distribution is a χ2

L. This increase in the number of degrees
of freedom may lead to some loss of power. An alternative approach would consist in letting
the researcher choose the weights {ω̂l}l=1,...,L and recover an instrument of dimension one.
However, for this approach to work well and retain good power properties, the econometrician
must choose the weights so that they approximately match the real weights {wl( fa)}l=1,...,L.
This requires a good prior knowledge of the cumulative distribution function of the alternative
distribution fa. Nevertheless, our Monte Carlo simulations in section 6 show that the feasible
MPIs that we propose perform very well in practice.

4.2 Global approximation

Second, we consider a global approximation that is based on an identity which is valid every-
where and not only when f is close to fa. Simple algebraic operations (see Appendix B.3.2)
allow us to derive the following expression for ∆j(st, x2t, f0, fa). Let δ0

jt = ρ−1
j (st, x2t, f0) and

δa
jt = ρ−1

j (st, x2t, fa). We have:

∆j(st, x2t, f0, fa) = log




∫
RK2

exp(x′2jtv)

1+∑J
k=1 exp{δa

kt+x′2ktv}
fa(v)dv

∫
RK2

exp(x′2jtv)

1+∑J
k=1 exp

{
δ0

jt+x′2ktv
} f0(v)dv


 .

As for the local approximation, we cannot directly exploit this formula as some quantities
such as fa and δa

jt are unknown and some variables such as δ0
jt are endogenous. To remedy

these two difficulties, we apply the same methods as previously described: we discretize
the integral, and we project the endogenous variables onto the space spanned by a relevant
subset of zjt. To solve for the fact that the mean utility δa

jt under the alternative is unknown,
we replace it with the mean utility under the null δ0

jt. This should not alter the approximation
too much given that δa

jt only enters the expression at the denominator within a sum, which
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averages out the differences between δa
jt and δ0

jt across products. In the end, we are able to
provide the following approximation for the non-linear part of the MPI:

E[∆j(st, x2t, f0, fa)|zjt] ≈ log

(
L

∑
l=1

ω̄l( fa) ˆ̄πj,l(zjt)

)
with ˆ̄πj,l(zjt) =

exp(x′2jtvl)

1+∑J
k=1 exp{δ̂0

kt+x′2ktvl}
∫

RK2

exp(x′2jtv)

1+∑J
k=1 exp

{
δ̂0

jt+x′2ktv
} f0(v)dv

,

where {ω̄l( fa)}l=1,...,L correspond to the unknown weights and the ˆ̄πj,l(zjt) are set of global
interval instruments. The MPI can thus be approximated by the logarithm of a weighted sum
of known functions of zjt. As we did previously, we use ˆ̄πj(zjt) = ( ˆ̄πj,1(zjt), ..., ˆ̄πj,L(zjt))

′

as instruments to test H0. All the weights are positive and sum to one, which entails that
the non-linear part of the correction term is an increasing function of our instruments. This
approximation is said to be global because contrary to the second approximation we study,
it does not require f0 to be close to fa. Nevertheless, if fa is close to f0, then the fraction κ

inside the logarithm is close to 1 and the well-known approximation log(κ) ≈ κ − 1 allows us
to directly rewrite the MPI as a linear combination of our instruments.

Overall, the feasible MPIs that we derive in this section allows us to approximate the
most powerful instrument against a fixed alternative while remaining agnostic about this
alternative.

4.3 Feasible MPIs for estimation

In the estimation framework, the researcher stipulates that f belongs to a parametric family
F0 = { f0(·|λ̃) : λ̃ ∈ Λ0} and wants to estimate the true parameter θ0 = (β′

0, λ′
0)

′ under
this parametric restriction. From the connection between the MPI and the local instruments
that we present in section 3.3, we can infer that good estimation instruments hE(zjt) ought to
approximate the MPI devoted to testing H0 : θ = θ0 against any local alternative. If we have
an initial estimator of θ0, we can directly use the interval instruments presented previously to
approximate the MPI devoted to testing H0 : θ = θ0 against an unknown alternative. The fact
that the feasible MPIs do not depend on the alternative is key for estimation. Moreover, the
transformation of the MPI into a vector of instruments of dimension L ≥ |λ0| is necessary for
estimation as the number of instruments must be greater than the dimension of the parameter
to estimate.14 In Appendix C.5, we propose a version of the interval instruments that does not

14The linear parameter β0 has its own instruments, which are simply the variables in x1jt.
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require a first step estimate of θ0 and that can be computed directly from the logit specification.

5 Composite hypothesis

In the traditional estimation procedure, which encompasses almost all the applications of the
BLP model, the econometrician must make a parametric assumption on the distribution of
random coefficients to estimate the model. Formally, the econometrician assumes f belongs
to a parametric family F0 = { f0(·|λ̃) : λ̃ ∈ Λ0}, where λ̃ is a parameter that must be es-
timated. In applied work, researchers typically assume that f is normally distributed. This
parametric choice is rarely grounded in economic theory and, if too restrictive, is likely to
impose arbitrary restrictions on some key counterfactual quantities such as the pass-through.
In this section, we develop a formal specification test for H0 : f ∈ F0. In comparison to the
test in section 3.1, we must now estimate the parameters of the distribution θ0 = (β′

0, λ′
0)

′ in
a first step, which generates parameter uncertainty. Moreover, we propose a rigorous treat-
ment of the numerical approximations involved in the derivation of the structural error ξ jt(θ̃).
We organize this section as follows. First, we define the pseudo-true value associated with a
given specification and the first stage estimator. Second, we define our test procedure and its
implementation in practice. Finally, we study the asymptotic properties of our test.

5.1 Pseudo-true value and first stage estimator

To estimate the BLP model, researchers must make three choices. They must choose the
parametric family F0, the instruments hE(zjt) to estimate the model, and a weighting matrix
W, which weights the different moments included in the objective function. Given these three
choices, we can define the BLP pseudo-true value θ(F0, hE, W) ≡ θ0 = (β′

0, λ′
0)

′ as follows:15

θ(F0, hE, W) ∈ Argmin
θ̃

E
[
ξ jt( f0(·|λ̃), β̃)hE(zjt)

]′ WE
[
hE(zjt)ξ jt( f0(·|λ̃), β̃)

]
.

If the model is well-specified ( f ∈ F0) and the pseudo-true value is unique, then the pseudo-
true value is the true value: θ0 = θ. Under misspecification, θ0 is a parameter whose value
depends on (F0, hE, W). For exposition purposes, we omit this dependence in the subsequent

15Our definition of a pseudo-true value is closely related to the approach in White (1982) in the context of
maximum likelihood. In his case, the pseudo true value minimizes the Kullback-Leibler distance between the
assumed likelihood and the true likelihood, whereas in our case, the pseudo-true value minimizes a weighted
sum of population moments.
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analysis. Moreover, here we remain general and do not impose that W must be equal to the
usual optimal weighting matrix. It is often the case in practice, that the researchers choose the
identity matrix or regularize the weighting matrix.

First stage estimator θ̂ The first stage estimator is an empirical counterpart of the BLP
pseudo-true value defined previously. The minimization is done with respect to sample
analogs. Additionally, we know that there is no closed form expressions for the structural
error ξ jt( f0(.|λ̃), β̃), and thus, we must use a feasible counterpart ξ̂ jt( f0(.|λ̃), β̃) instead.

θ̂(F0, hE, Ŵ) ≡ θ̂ = Argmin
θ̃

(
∑
j,t

ξ̂ jt( f0(.|λ̃), β̃)hE(zjt)

)′
Ŵ

(
∑
j,t

ξ̂ jt( f0(.|λ̃), β̃)hE(zjt)

)
. (5.7)

The construction of the feasible structural error ξ̂ jt( f0(.|λ̃), β̃) requires the following 3 numer-
ical approximations:

1. The econometrician does not observe a continuum of consumers as in the theoretical
model but only empirical averages ŝjt over the nt individuals in market t.

ŝjt =
1
nt

nt

∑
i=1

yijt, (5.8)

where yijt ∈ {0; 1} are i.i.d. choices over the i = 1, . . . , nt.

2. There is no closed form for ρj(., x2t, f0(·|λ̃)), the integral has to be computed through
numerical integration. A prominent example is Monte Carlo integration:

ρ̂j(δ, x2t, f0(|λ̃)) =
1
R

R

∑
r=1

exp(δj + x2jtvr)

1 + ∑Jt
k=1 exp(δk + x′2ktvr)

, (5.9)

with vr iid draws from f0(·|λ̃).

3. There is no analytical way to recover the inverse of the demand functions ρ−1(st, x2t, f0(·|λ̃)).
The most popular way to derive the inverse demand is by solving the following contrac-
tion:

C : (·, st, x2t, f0(·|λ̃)) : δ 7→ δ + log(st)− log(ρ(δ, x2t, f0(·|λ̃))).
This solution has given rise to the popular nested fixed point GMM procedure.16

16Another solution that has gained traction in the literature is the MPEC procedure (Dubé et al. (2012)) that
replaces the BLP inversion at each step of the minimization by imposing equilibrium constraints on the mini-
mization program.
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In Section 5.3, we explicitly state the assumptions that allow us to neglect these approxi-
mations asymptotically.

5.2 Test procedure

Under Assumption A, and assuming hE(zjt) and W are such that the pseudo-true value θ0 is
unique, the following equivalence holds:

H0 : f ∈ F0 ⇐⇒ H0 : ( f , β) = ( f0(·|λ0), β0)

⇐⇒ E[ξ jt( f0(·|λ0), β0)|zjt] = 0 a.s..

The pseudo true value reduces the dimensionality of the problem by allowing us to move
from a composite hypothesis H0 : f ∈ F0 to the simple hypothesis H0 : ( f , β) = ( f0(·|λ0), β0)

studied previously. As we did in section 2, we propose a moment-based test of H0.17 Under
H0, for every set of testing instruments hD(zjt), the following moment conditions must hold:

H0 : f ∈ F0 ⇐⇒ H0 : ( f , β) = ( f0(·|λ0), β0) =⇒ H′
0 : E

[
ξ jt( f0(·|λ0), β0)hD(zjt)

]
= 0.

We now develop a procedure to test H′
0. In comparison to the test in section 3.1, we must

now account for the fact that the pseudo-true value needs to be estimated to derive the test
statistic, which generates parameter uncertainty. Moreover, we propose a rigorous treatment
of the numerical approximations involved in the derivation of the structural error.

Test statistic For any choice of testing instruments hD(zjt), our objective is to test H′
0 :

E[ξ jt( f0(·|λ0), β0)hD(zjt)] = 0 where θ0 = (β′
0, λ′

0)
′ is the pseudo-true value associated with

17Other testing approaches could have been considered. First, one could use the previous equivalence to
directly test H0 via an integrated conditional moment test. We do not follow this route for at least two reasons.
First, this test will contain no information on the nature of the misspecification (it could be completely unrelated
to the distribution of RC). Second, in practice the dimension of zjt is often very large, which substantially reduces
the power of this kind of test. Another testing approach would have entailed testing H0 : f ∈ F0 against a larger
class of densities that encompasses F0. For instance, if F0 is the family of normal distributions, encompassing
families are mixtures of Gaussians with a larger number of components. We do not follow this route for two
reasons. First, it is not desirable to restrict the alternative to a class of distributions that encompass the null as
the econometrician does not know a priori the misspecification. Second, estimating the BLP model with a more
flexible parametrization is challenging. An advantage of our test procedure is that it doesn’t require estimating
the model with a more flexible parametrization.
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the parametric family F0.18 In order to test H0, we consider the following Wald test statistic:

ST(hD,F0, θ̂) = TJ

(
1

TJ ∑
j,t

ξ̂ jt( f0(·|λ̂), β̂)hD(zjt)

)′
Σ̂

(
1

TJ ∑
j,t

ξ̂ jt( f0(·|λ̂), β̂)hD(zjt)

)
.

where Σ̂ is a weighting matrix chosen by the econometrician and θ̂ = (β̂, λ̂) is a consistent
estimator of θ0. The number of markets T is the dimension that we let grow to infinity
to the asymptotic properties of our test. We motivate this choice in Appendix C.3. Under
some regularity conditions that we make explicit in the following section, the asymptotic
distribution of the test statistic under H′

0 is as follows:

ST(hD,F0, θ̂)
d→ Z′ΣZ, (5.10)

with
1√
T

T

∑
t=1

J

∑
j=1

ξ̂ jt( f0(·|λ̂), β̂)hD(zjt)
d→ Z ∼ N (0, Ω̃0). (5.11)

Σ is the probability limit of Σ̂. We make Ω̃0 explicit in the next subsection (in particular,
the derivation of Ω̃0 takes into account parameter uncertainty). Given that Σ̂ is chosen by the
econometrician and it is possible to derive a consistent estimator of Ω̃0, the econometrician can
always simulate the asymptotic distribution of the test statistic. In some polar cases, which
we present hereafter, the asymptotic distribution of our test statistic is pivotal chi-square
distribution that does not require to be simulated.

Two polar cases For the sake of exposition, let us now describe two polar cases where
the asymptotic distributions are pivotal chi-square distributions, which do not require to be
simulated. Denote by | · |0 the counting norm.

1. Sargan-Hansen J test: If the set of estimation instruments and the set of testing instru-
ments are the same (hE = hD), if Ŵ is the 2-step GMM optimal weighting matrix and if
Σ̂ = Ŵ−1, then our test boils down to the usual Sargan-Hansen J test and we have under
H′

0:

ST(hD,F0, θ̂)
d→ χ2

|hE|0−|θ|0 .
18Remember that under an alternative specification, the pseudo true value also depends on the estimation

instruments hE(zjt) and the weighting matrix.
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2. Non-redundant hD and hE: if Ω̃0 has full rank and if the econometrician sets Σ̂ = ˆ̃Ω−1
0 ,

then our test statistic has the following asymptotic distribution under H′
0:19

ST(hD,F0, θ̂)
d→ χ2

|hD|0 .

Choice of the testing instruments As previously indicated, the power properties of our test
hinge critically on the choice of testing instruments hD(zjt). We established that the MPI
and its feasible counterparts, the interval instruments, feature attractive properties in testing
H0 : ( f , β) = ( f0(·|λ0), β0) against any fixed alternative. Thus, it is natural to use these
instruments for the specification test above. In particular, we show that the consistency of the
test with the MPI carries over to the general specification test above in Appendix B.5.

5.3 Asymptotic validity

We now study the asymptotic properties of our test when the number of markets T goes to
infinity. To establish the asymptotic validity and consistency of our test, we exploit classical
results on the asymptotic normality of the non-linear GMM estimator (Hansen (1982), Newey
(1990)) as well on the large-T asymptotics of the BLP estimator (Freyberger (2015)). The
main challenge here is to control the magnitude of the approximations that intervene in the
derivation of the structural error so that they can be neglected asymptotically. Contrary to
Freyberger (2015), we do not assume the convergence of any moments ex-ante and we allow
for the approximation error between demand and observed market shares to be non-zero.

Assumption B
(i) (st, xt, zt)T

t=1 are i.i.d. across markets and are consistent with the probability model defined by
equations (2.1), (2.2) and (2.3) evaluated at ( f , β);
(ii) Strong Exogeneity: E[ξ jt( f , β)|zjt] = 0 a.s.;
(iii) Finite moment conditions: x2t has bounded support and x1t has finite 4th moments.

In B(i), we assume that the data are i.i.d. across markets, an assumption which we could
relax slightly (technically, only certain moments need to be identical across markets), and that
the data are generated by the BLP demand model at a given pair ( f , β). In B(ii), we assume

19If Ω0 is singular, one can always use directly the asymptotic distribution in 5.10 or apply the singularity-
robust procedure proposed in Andrews and Guggenberger (2019).
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exogeneity of our instrumental variables. Let us stress that to show the asymptotic validity of
our specification test, we do not require ( f , β) to be non-parametrically identified, as we just
need parametric identification under H0. In particular, we do not need all the assumptions
in A. B(iii) is a necessary condition to recover the asymptotic normality of the BLP estimator.
x1t having finite 4th moments is standard. x2t having bounded support has two purposes.
First, it implies that the structural error has a finite 4th moment, Compiani (2018) makes the
same assumption on price for this purpose. Second, it ensures that the mapping used in the
nested fixed point algorithm is a proper smooth contraction, which allows us to prove that
the NFP algorithm converges (without truncating the contraction mapping as in Berry (1994)
and Berry et al. (1995)) and control for the NFP approximation bias.

Assumption C
F0 is such that :
(i) λ0 belongs to the interior of Λ0 with Λ0 compact;
(ii) λ̃ 7→ ρ(δ, x2t, f0(·|λ̃)) is well defined and continuously differentiable on Λ0.

In C(i), we assume that, for any given DGP, the associated pseudo-true-value λ0 associated
with the family F0 lies in a compact space Λ0. This condition is standard in establishing
the consistency and asymptotic normality of M-estimators. Second, in C(ii), we impose that
the demand function and its derivative with respect to λ should both be well defined and
continuous.

Next, we impose conditions on the instruments that are used for estimation hE(zjt) and
for testing hD(zjt) and on the BLP estimator itself.

Assumption D
For a given F0 that satisfies Assumption C and for some weighting matrix W and Σ, the following
conditions must hold:
(i) Finite moments for instruments: hE(zjt) and hD(zjt) are not perfectly colinear and have finite 4th
moments;
(ii) Global identification of θ0: ∃!θ0 such that ∀θ̃ ̸= θ0:

E

[
∑

j
ξ jt( f0(·|λ̃), β̃)hE(zjt)

′
]

WE

[
∑

j
hE(zjt)ξ jt( f0(·|λ̃), β̃)

]
> E

[
∑

j
ξ jt( f0(·|λ0), β0)hE(zjt)

′
]

WE

[
∑

j
hE(zjt)ξ jt( f0(·|λ0), β0)

]
;
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(iii) Local identification: Γ(F0, θ0, hE) = E
[
∑j hE(zjt)

∂ξ jt( f0(·|λ0),β0)

∂θ′

]
and Γ(F0, θ0, hD) have full

column rank;
(iv) W and Σ are symmetric positive definite and Ŵ P→ W, Σ̂ P→ Σ;
(v) θ̂ minimizes objective function (5.7) and satisfies the FOC of the minimization problem:

(
∑
j,t

∂ξ̂ jt( f (·|λ̂), β̂)

∂θ
hE(zjt)

)′
Ŵ

(
∑
j,t

ξ̂ jt( f (·|λ̂), β̂)hE(zjt)

)
= 0.

Assumption D restricts the class of instruments which can be used for estimation and
for testing. More specifically, D(i) and D(iii) are common regularity conditions necessary to
establish asymptotic results whereas D(ii) is an identification condition which ensures that the
pseudo true value θ0 is uniquely defined, which is critical to show the consistency of the BLP
estimator. Finally, Assumptions D(iv) and D(v) impose regularity conditions on the weighting
matrix as well as on the BLP estimator itself.

The next assumptions ensure that the numerical approximations involved in the derivation
of the structural error do not interfere with the asymptotic theory.

Assumption E
(i) Let nt be the number of individuals in market t, (nt)T

t=1 is i.i.d. and independent from all other
variables. First, it must be that ∀t

√
TE(n−1/2

t ) →
T→+∞

0. Second, observed market share ŝt in market

t must write:

ŝjt =
1
nt

nt

∑
i=1

yijt,

with (yijt)
nt
i=1 i.i.d. draws generated by the BLP demand model at a given pair ( f , β) conditional on

(xt, ξt).
(ii) Let R be the number of simulations, then the simulated demand for product j writes:

ρ̂jt(δ, x2t, f0(·|λ̃)) =
1
R ∑

r

exp(δj + x′2jtvr)

1 + ∑k exp(δk + x′2ktvr)
,

where vr
iid∼ f0(·|λ̃), and T

R →
T→+∞

0.

(iii) Let H be the stopping time for the contraction (which depends on T) and ϵ the fixed Lips-
chitz constant of the contraction mapping used to invert the demand function, then it must be that√

TϵH →
T→+∞

0.
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A sufficient condition for E(i) to hold is that the minimum number of individuals observed
in any market is of higher order than the total number of markets. This condition can be
checked in practice.20 Assumptions E(ii) and E(iii) can also be checked in practice and are
more manageable because R and H are chosen by the researcher and can always be increased
so that these assumptions hold.

Given our assumptions, we derive the asymptotic distribution of our test statistic under
the null, and show that the test is consistent.

Theorem 5.1 Let θ̂ = θ̂(F0, Ŵ, hE) be the BLP estimator associated with distributional assumption
F0, weighting matrix Ŵ, estimating instruments hE. Under assumptions B-E,

• Under H′
0 : E

[
ξ jt( f0(·|λ0), β0)hD(zjt)

]
= 0,

ST(hD,F0, θ̂)
d→

T→+∞
Z′ΣZ, Z ∼ N (0, Ω̃0),

where Ω̃0 =

(
I|hD|0 G

)



Ω(F0, hD) Ω(F0, hD, hE)

Ω(F0, hD, hE)
′ Ω(F0, hE)







I|hD|0

G′


 ,

Ω(F0, hD, hE) = cov
(

∑
j

ξ jt( f (.|λ0), β0)hD(zjt), ∑
j

ξ jt( f (.|λ0), β0)hE(zjt)

)
,

G = −Γ(F0, θ0, hD)
[
Γ(F0, θ0, hE)

′WΓ(F0, θ0, hE)
]−1 Γ(F0, θ0, hE)

′W.

• Under H′
a : E

[
hD(zjt)ξ jt( f0(.|λ0), β0)

]
̸= 0,

∀q ∈ R+, P(ST(hD,F0, θ̂) > q) →
T→+∞

1.

The proof of Theorem 5.1 is in Appendix B.4 and comprises three main steps. First, we
show that under the assumptions in E, the numerical approximation becomes asymptotically
negligible. Second, we show the consistency and asymptotic normality of the BLP estimator.
Finally, we derive the asymptotic distribution of the test statistic, taking into account parame-
ter uncertainty (θ0 is estimated and not observed). The apparent complexity of the asymptotic
variance-covariance matrix Ω0 is a direct consequence of parameter uncertainty.

20Note that by making stronger assumptions on the higher moments and the support of the observed charac-
teristics, it is possible to find milder conditions on the number of individuals relative to the number of markets.
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6 Monte Carlo experiments

In this section, we conduct three distinct sets of Monte Carlo experiments. First, we implement
a simple simulation exercise to assess the effects of incorrectly specifying the distribution of
random coefficients on quantities of interest such as price elasticities or cross-price elasticities,
which are known to play a key role in shaping the counterfactuals. In a second set of Monte
Carlo experiments, we study the finite sample performances of the specification test developed
in section 5 with different sets of testing instruments. We first examine the size of our test
in finite sample. Then, we investigate the power properties of our test under alternative
specifications (with alternatives including Gaussian mixtures, gamma distributions and local
alternatives). We show that our test with the interval instruments significantly outperforms
the traditional J-test with the usual instruments. Finally, in the last Monte Carlo exercise, we
study the performance of the interval instruments to estimate the parameters of the model by
means of comparison with the commonly used instruments in the literature.

6.1 Simulation design

For the sake of exposition, we will keep the same simulation design for all the simulation
experiments. The simulation design closely follows the simulation design used in Dubé et al.
(2012), Reynaert and Verboven (2014). The market includes J = 12 products, which are charac-
terized by 3 exogenous product attributes xa, xb and xc that follow a joint normal distribution.
The price p is endogenous and depends on the observed and unobserved characteristics and
on some cost shifters c1 and c2. Consumer heterogeneity is present only in xc, and the random
coefficient vi associated with xc follows various distributions depending on the simulation ex-
ercise. The sample size T varies between 50, 100 and 200 markets. We can summarize the
DGP as follows:

uijt = 2 + xajt + 1.5xbjt − 2pjt + xcjtvi + ξ jt + εijt ξ jt ∼ N (0, 1), εijt ∼ EV1,

98



and




xa,j

xb,j

xc,j



∼ N







0

0

0




,




1 −0.8 0.3

−0.8 1 0.3

0.3 0.3 1







,

pjt = 1 + ξ jt + ujt +
c

∑
k=a

xkjt + c1jt + c2jt with uj,t ∼ U[−4,−2], c1jt ∼ U[2, 4] and c2jt ∼ U[3, 5].

Market shares are generated by integrating over 20, 000 consumers. This allows us to essen-
tially remove the approximation error between the observed and theoretical market shares.

6.2 Counterfactuals under an alternative distribution

We now present a simple exercise to illustrate how the misspecification of random coefficients
can affect the estimation of quantities of interest such as price elasticities and cross-price
elasticities. To do so, we simulate data using the simulation design introduced above and
we take various distributions for the random coefficient vi (respectively: Gaussian mixture,
Uniform, Chi-square, Exponential, Student, Gamma). We ensure that all the distributions
have the same mean and variance (3 and 3, respectively). For each distribution, we simulate
T = 100 markets of data and we estimate the model either assuming no heterogeneity (simple
logit) or assuming that vi is normally distributed. We replicate the same exercise 500 times
for each distribution. This allows us to recover the mean estimate for the parameters as well
as to construct 95% “confidence bins” (by trimming the observations below the 2.5% quantile
and above the 97.5% quantile). We plot the true densities and their estimated counterparts
under the normal and logit assumptions in Figure 1. We observe that the estimated logit
parameters and the estimated means of the normal distributions always coincide and are
close to 3 for all the distributions. However, there is some variation between the different
specifications. For instance, the estimated means are larger with the exponential distribution.
The estimated variances also vary from one specification to the other. The estimated variances
for the exponential distribution are smaller, while they are larger for the student distribution.
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Figure 1: True densities and estimated densities under normal and logit specifications
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In a second stage, we simulate N = 5, 000 draws from the true distributions as well as from
the estimated logit and normal approximations to compute the demand, the price-elasticity
and the cross-price elasticity for the product j∗ with the highest value for xc.21 The cross-price
elasticity is arbitrarily taken for product j = 1 with respect to pj∗ . We derive the quantities
of interest for 100 equally spaced values of pj∗ ranging in ]0, 10[. We plot the elasticities in
Figure 2 and cross-price elasticities in Figure 3 generated by the true distribution as well as
those generated by the logit and normal approximations, respectively. We proceed similarly
with the demand functions. We see in Figure 9 in Appendix).

One can observe that, as expected, the logit specification poorly replicates the substitu-
tion patterns. In particular, it consistently overstates the magnitude of the elasticities and
cross-elasticities with respect to the true ones. The absence of consumer heterogeneity on
characteristic c implies that consumers can “renounce’ more easily to product j∗ when its
price increases. By introducing some heterogeneity, the normal approximation somewhat
attenuates this issue. However, significant discrepancies in the shape of elasticities and cross-
price elasticities remain. As most counterfactual analyzes rely on the substitution patterns

21The expressions for both price-elasticities and the cross-price elasticities are in Appendix D.1.
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generated by the model, these differences will inevitably create significant biases.

Figure 2: Price elasticities
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Figure 3: Cross-price elasticities
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6.3 Finite sample performance of the specification test

We now study the empirical size and power of our test under different sample sizes and
for different sets of testing and estimating instruments. Once again, the data are generated
according to the simulation design exhibited previously for various distributions of vi. The
assumption made throughout the simulations is H0 : f ∈ F0, where F0 is the family of normal
distributions. In other words, we always assume that the random coefficient is normally
distributed and we test this hypothesis. We set the nominal size to 5%. We study the finite
sample performances of the specification test that we presented in section 5 using different
sets of estimation and testing instruments. For estimation, we take the instruments commonly
adopted by practitioners: the differentiation instruments of Gandhi and Houde (2019) and the
”optimal” instruments of Reynaert and Verboven (2014). Both of these sets are approximations
of the classical optimal instruments. Second, we compare the performance of the test when
performing the standard Sargan-Hansen J test (i.e. when we use the same instruments for
testing and estimation) and when we use the global and local approximations of the MPI
that we constructed in sections 4.2 and 4.1. We denote the latter tests as I Local and I Global
respectively. The BLP estimator is computed following the NFP GMM procedure described
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in section 5.1. For the optimization, only an analytic Jacobian is provided. We ensure that the
number of tested restrictions is of the same magnitude across the different sets of instruments.
More details on the exact sets of instruments and on the estimation procedure for this specific
set of simulations are given in Appendix D.2.

6.3.1 Empirical size

The size is the probability of rejecting the null hypothesis when the null is true, so we com-
pute the empirical size by counting and averaging the number of times we reject the null for
nominal size 5% over the 1, 000 simulations when the random coefficient vi is normally dis-
tributed. Below in Table 1, we report the empirical sizes of the test with the different sets of
instruments described above for the different sample sizes T ∈ {50, 100, 200} and for different
distributions of the RC such that vi ∼ f ∈ F0.

Table 1: Empirical size for nominal size 5% (1000 replications)

Number of markets T=50 T=100 T=200

Estimation instruments “Differentiation” “Optimal’ “Differentiation” “Optimal’ “Differentiation” “Optimal’

Test type J I Global I local J I Global I local J I Global I local J I Global I local J I Global I local J I Global I local

vi ∼ N (−1, 0.52) 0.294 0.083 0.091 0.145 0.078 0.063 0.138 0.078 0.058 0.094 0.084 0.047 0.08 0.052 0.053 0.064 0.05 0.04

vi ∼ N (0, 0.752) 0.293 0.084 0.085 0.148 0.081 0.071 0.137 0.061 0.06 0.1 0.059 0.05 0.074 0.053 0.045 0.062 0.048 0.036

vi ∼ N (1, 12) 0.287 0.084 0.083 0.142 0.084 0.073 0.142 0.055 0.054 0.098 0.053 0.047 0.079 0.042 0.03 0.058 0.035 0.025

vi ∼ N (2, 22) 0.288 0.087 0.077 0.145 0.071 0.072 0.138 0.069 0.051 0.099 0.053 0.056 0.077 0.044 0.041 0.069 0.037 0.044

vi ∼ N (3, 32) 0.287 0.089 0.071 0.137 0.075 0.066 0.145 0.074 0.06 0.098 0.06 0.061 0.076 0.044 0.037 0.061 0.046 0.046

We observe that with a moderate sample size (T = 50, J = 12), all the tests are over-sized.
This is within expectations and due to the approximations inherent to the estimation of the
BLP models as described in section 5 and the relatively large number of instruments used
for estimation and testing purposes.22 However, we notice that the Sargan-Hansen J tests
are much more over-sized than the tests with the interval instruments: the rejection rate is
above 25% for the Sargan-Hansen J test with differentiation instruments vs around 8% for
the I test. Increasing the sample size improves the tests’ empirical levels and shifts them
towards the nominal level, which is a good indication of the validity of our test. Even with

22The number of over-identifying restrictions lies between 6 and 8. The Sargan-Hansen J tests are known to
suffer from size distortions as the number of instruments increases.
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a relatively large number of markets (T = 200), the Sargan-Hansen J tests remain slightly
oversized (rejection rate is still slightly above 5%). On the other hand, for the test with
interval instruments, the empirical size appears to match the nominal level for all but two
configurations, where it seems to be slightly undersized.

6.3.2 Empirical power

Power is the probability of rejecting the null hypothesis under an alternative. We compute the
empirical power by counting and averaging the number of times we reject the null for the test
of nominal size 5% over the 1000 simulations when the distribution of random coefficients is
misspecified. The simulation setup remains the same as previously with the only modification
being that the true distribution of vi is now either a mixture of normals or a Gamma. We report
the power against the different alternatives in the subsequent tables. The main takeaway from
our results is that the test with the interval instruments as testing instruments (I global and
I local) largely outperforms the traditional Sargan-Hansen J-test against all the alternative
distributions considered in our simulations.

Power against Gaussian mixture alternatives We simulate data with the random coefficients
distributed according to the Gaussian mixtures described below. We plot the true distributions
in Figure 4. We report the results in Table 2. We observe that the test with the interval
instruments has great power against all the mixtures tested. The rejection rates go to 1 very
quickly in comparison to the Sargan-Hansen J tests.

v = Dv1 + (1 − D)v2, P(D = 1) = p, P(D = 0) = 1 − p,

v1 ∼ N
(
−
√

3p
1 − p

+ 2, 1

)
v2 ∼ N

(√
3(1 − p)

p
+ 2, 1

)
,

with p ∈ {0.1; 0.2; 0.3; 0.4; 0.5}.
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Figure 4: Densities, Gaussian mixture alternatives
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Table 2: Empirical power, Gaussian mixture alternatives (1000 replications)

Number of markets T=50 T=100 T=200

Estimation instruments “Differentiation” “Optimal’ “Differentiation” “Optimal’ “Differentiation” “Optimal’

Test type J I Global I Local J I Global I Local J I Global I Local J I Global I Local J I Global I Local J I Global I Local

Mixture 1 0.533 0.991 0.987 0.719 0.989 0.989 0.604 1 1 0.967 1 1 0.829 1 1 1 1 1

Mixture 2 0.626 0.996 0.998 0.613 0.997 0.998 0.723 1 1 0.905 1 1 0.933 1 1 1 1 1

Mixture 3 0.629 0.992 0.995 0.43 0.996 0.997 0.741 1 1 0.7 1 1 0.941 1 1 0.977 1 1

Mixture 4 0.601 0.983 0.982 0.275 0.981 0.981 0.713 1 0.999 0.368 1 1 0.921 1 1 0.672 1 1

Mixture 5 0.56 0.907 0.904 0.157 0.9 0.906 0.635 0.993 0.995 0.124 0.995 0.996 0.855 1 1 0.146 1 1

Power against Gamma alternatives We simulate data with the random coefficients dis-
tributed according to the Gamma distribution described below. We plot the true distributions
in Figure 5. We report the results in table 3. We observe that the test with interval instruments
has great power against all the Gamma distributions tested except for the first one, which we
can see on the plot has a distribution that is relatively close to a normal distribution. Even for
the first Gamma distribution, it still outperforms the traditional sets of instruments. For all
the other Gamma distributions, the rejection rates go to 1 very quickly in comparison to the
Sargan-Hansen J-tests. This confirms the superiority of the interval instruments in detecting
misspecification in the distribution of random coefficients. In Appendix D.2, we also study
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the power properties of our test against local alternatives.

v ∼ Γ(2, k) with k ∈ {0.25, 0.5, 0.75, 1, 1.5}

Figure 5: Densities, Gamma alternatives
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Table 3: Empirical power, Gamma alternatives (1000 replications)

Number of markets T=50 T=100 T=200

Estimation instruments “Differentiation” “Optimal’ “Differentiation” “Optimal’ “Differentiation” “Optimal’

Test type J I Global I Local J I Global I Local J I Global I Local J I Global I Local J I Global I Local J I Global I Local

Gamma 1 0.293 0.106 0.093 0.142 0.082 0.074 0.154 0.083 0.073 0.094 0.092 0.08 0.118 0.155 0.139 0.066 0.156 0.138

Gamma 2 0.516 0.747 0.752 0.14 0.781 0.77 0.562 0.983 0.978 0.095 0.982 0.98 0.492 1 1 0.08 1 1

Gamma 3 0.607 0.96 0.962 0.157 0.963 0.969 0.693 0.998 1 0.156 1 1 0.922 1 1 0.161 1 1

Gamma 4 0.622 0.97 0.99 0.207 0.962 0.995 0.748 0.999 1 0.263 1 1 0.933 1 1 0.412 1 1

Gamma 5 0.687 0.991 0.999 0.371 0.988 0.999 0.812 1 1 0.585 1 1 0.976 1 1 0.865 1 1

6.4 Finite sample performance of interval instruments for estimation

In our last simulation exercise, we evaluate the performance of our interval instruments in
estimating the parameters associated with the RC when the distribution of random coefficients
is flexibly parametrized. To do so, we simulate data with a distribution of random coefficients
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following a mixture of Gaussians and we estimate the parameters of this mixture. We provide
a method to estimate the parameters when the distribution of the RC is a mixture in section
C.6 of the Appendix. In particular, we provide a new parametrization of the model, which
yields substantial practical gains and may be of interest to researchers independent of the rest
of the paper. The simulation design remains the same as previously. We assume that the
random coefficient vi is distributed according to the following mixture: vi ∼ Di N (−2, 0.5) +
(1 − Di) N (4, 0.5) with P(Di = 1) = 0.25. Thus, there are 5 parameters associated with
the distribution of RC: the means and variances of each component of the mixture and the
mixing probability. Our objective is to compare the performance of the global and local
interval instruments with the instruments commonly used by practitioners: the differentiation
instruments from Gandhi and Houde (2019) and the “optimal instruments” from Reynaert
and Verboven (2014). In Table 4, we report the empirical biases and the square root of the MSE
for the estimators of the non-linear parameters for each set of instruments and for the different
sample sizes. In Appendix D.3, we report the same information for the linear parameters (see
Tables 14, 15, and 17) as well as the distribution of the empirical distribution of the non-
linear estimates. Table 4 allows us to directly compare the performances of the three sets
of instruments in estimating the non-linear parameters. We first observe that for all the sets
of instruments, the empirical biases and

√
MSE of the estimators decrease when the sample

size increases, which is reassuring. Furthermore, it appears clearly that the differentiation
instruments perform worse than the ”optimal instruments” and the interval instruments. The
empirical

√
MSE of the estimators with the differentiation instruments is up to 12 times

larger than with the interval instruments and up to 6 times larger than with the ”optimal
instruments”. We reach the same conclusions when we study empirical biases. The interval
instruments appear to perform better than the ”optimal instruments” even if the difference
is less significant than with the differentiation instruments. For the sake of conciseness, we
do not report the results obtained with a mixture of 3 components but the observations we
make with two components are even more exacerbated. In Appendix D.3, as a means of
comparison, we perform the same exercise when the distribution of random coefficients is a
simple Gaussian and here, we do not observe any significant differences between the different
sets of instruments, which confirms that the interval instruments make a difference when the
distribution of RCs is flexible.
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Table 4: Estimation non-linear parameters of the mixture (1000 replications)

Instruments Differentiation ”Optimal” Interval Global Interval Local

Parameter β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL

Sample size true -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25

T=50, J=12
bias 0.214 0.184 -0.022 -0.045 0.027 0.076 0.059 0.026 -0.111 0.01 0.017 0 -0.045 0.004 0.005 -0.006 -0.005 -0.039 -0.001 0.003

√
MSE 0.633 0.734 0.281 0.35 0.075 0.361 0.483 0.212 0.281 0.036 0.277 0.391 0.227 0.259 0.024 0.251 0.34 0.214 0.244 0.019

T=50, J=20
bias 0.189 0.347 0.022 -0.081 0.025 0.074 0.11 0.028 -0.089 0.01 0.013 0.042 -0.018 -0.003 0.004 0.019 0.033 -0.023 0.01 0.003

√
MSE 0.566 0.887 0.184 0.291 0.059 0.328 0.563 0.163 0.228 0.033 0.248 0.415 0.166 0.22 0.021 0.228 0.38 0.15 0.184 0.018

T=100, J=12
bias 0.233 0.226 0.02 -0.066 0.027 0.054 0.037 0.019 -0.066 0.007 0.004 -0.012 -0.027 0.005 0.002 0 0 -0.028 0.007 0.001

√
MSE 0.592 0.703 0.256 0.305 0.072 0.279 0.4 0.154 0.211 0.028 0.167 0.282 0.157 0.201 0.013 0.127 0.225 0.143 0.164 0.005

T=100, J=20
bias 0.198 0.423 0.047 -0.101 0.025 0.074 0.107 0.033 -0.074 0.01 -0.009 -0.005 -0.008 -0.009 0.001 -0.003 0.004 -0.01 0.004 0.001

√
MSE 0.552 0.89 0.164 0.27 0.055 0.311 0.52 0.129 0.194 0.034 0.115 0.264 0.115 0.169 0.005 0.104 0.226 0.103 0.125 0.004

T=200, J=12
bias 0.184 0.167 0.011 -0.049 0.019 0.026 0.011 0.021 -0.061 0.004 -0.006 -0.027 -0.015 -0.001 0.001 0.002 -0.007 -0.016 0.006 0.001

√
MSE 0.466 0.601 0.176 0.262 0.053 0.184 0.313 0.113 0.172 0.018 0.088 0.219 0.108 0.164 0.003 0.091 0.174 0.099 0.123 0.003

7 Empirical application

The objective of the empirical exercise is twofold. First, we want to verify how well our in-
struments perform at estimating a flexible distribution of RCs using a real data set. Second,
we want to study how the shape of the distribution of RCs can modify key counterfactual
quantities such as the price elasticities or the pass-through, and check whether the results we
obtain are consistent with the findings in Miravete et al. (2022). To do so, we estimate demand
for cars using data on new car registrations in Germany from 2012 to 2018.23 There are many
reasons to focus on the car market. First, cars are highly differentiated products, which makes
the BLP framework particularly adapted to this market. As a result, the BLP demand model
has been widely applied to study the car industry (e.g., Berry et al. (1995), Grigolon et al.
(2018), Petrin (2002)) and one can easily compare our results with previous results obtained in
the literature under different specifications. Second, there are many policy-relevant questions
related to this market. In particular, the role of road transport in air pollution is significant
and many countries have implemented tax policies to reduce the CO2 emissions generated
by car transportation.24 An important strand of the literature has investigated the perfor-

23The dataset was kindly provided to us by Kevin Remmy https://kevinremmy.com/research/.
24In 2017, road transport was responsible of approximately 19% of total greenhouse has

emissions in EU-28 Retrieved from https://www.eea.europa.eu/data-and-maps/indicators/
transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-12 on Octo-
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mance of these different taxation schemes (Alberini and Horvath (2021), Allcott and Wozny
(2014), D’Haultfœuille, Givord, and Boutin (2014), Durrmeyer (2022), Durrmeyer and Samano
(2018), Gillingham and Houde (2021), Grigolon et al. (2018), Huse and Koptyug (2022), Kunert
(2018)). Other policy-relevant questions include the impact of import tariffs (Miravete et al.
(2018)) and the determinants of market power (Berry et al. (1995), Grieco, Murry, and Yu-
rukoglu (2022)). To answer these questions, the researcher must often estimate the demand
for cars. The credibility of the implied analysis depends critically on how well the model
can reproduce the underlying substitution patterns and the shape of the demand curve. To
this end, it is essential to have a demand system that is sufficiently flexible, and particularly
so with respect to the random coefficient on price. In this section, we use our instruments
to estimate a Gaussian mixture as the random coefficient associated with price. Moreover,
we use our test to assess how moving from the usual Gaussian RC to the Gaussian mixture
decreases the degree of misspecification. Finally, we compare the counterfactual quantities
under a Gaussian mixture and the traditional specifications (Gaussian RC and logit). In line
with the findings in Miravete et al. (2022), our results indicate that the Gaussian mixture yields
higher pass-through rates and curvatures.

7.1 Data

The data set includes state-level new car registrations, publicly available by the German Fed-
eral Motor Transport Authority (KBA) from 2012 to 2018. This gives us 112 markets defined
by state-year pairs. Data on car characteristics and price are scraped from General German
Automobile Club and include horsepower, engine type, size, weight, fuel cost, CO2 emission,
number of doors, segment, and body type. The data set is at a granular level where every car
is uniquely identified by its manufacturer and its type key code (HSN/TSN) that is defined
according to the characteristics of the car. Following the literature, we aggregate products
with the same brand, model, engine type, and body combination (e.g. BMW-1 Series-Diesel-
Hatchback).25 Likewise, we follow the literature and define the market size as the number
of households in the market. To construct market shares, we simply divide new car registra-
tions of a given product by the market size. The data set is complemented by information on
demographics such as the number of households or the average income per household at the

ber 21, 2022.
25In aggregating the products from the HSN/TSN level, we use the characteristics of the car with the highest

sales.
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state-year level and yearly average gas price data from ADAC.26

Summary statistics Shares of products sold by engine type are presented in Table 5. We
focus our analysis on combustion engine vehicles as in our sample period electric-vehicle cars
constitute a small market share (always less than 5% of the sold vehicles) and can be seen as a
distinct market. Between diesel and gasoline cars, we observe that the market share for diesel
decreases over time, starting from 2016. The timing is in line with the emissions scandal,
known as the Dieselgate, which started in September 2015.

Table 5: Shares (%) of new registrations by engine type

Year

Fuel Type 2012 2013 2014 2015 2016 2017 2018

Diesel 46.8 46.1 46.3 46.4 43.9 36.2 30.0

Gasoline 52.6 52.9 52.6 52.3 54.4 60.8 66.5

Battery EV 0.1 0.2 0.3 0.4 0.3 0.7 1.1

Hybrid EV 0.5 0.8 0.7 0.6 1 1.4 1.6

Plug-in hybrid EV 0 0 0.1 0.3 0.4 0.9 0.9

Table 6 provides sales-weighted averages for prices and observed characteristics. We ob-
serve that the difference in fuel consumption and resulting fuel costs steadily ranks diesel
above gasoline. However, the average price of diesel cars sold is higher than gasoline cars.
This implies a potential trade-off in terms of the costs of car ownership at the time of pur-
chase. With a fixed mileage in mind, a consumer with high sensitivity to fuel costs might be
willing to pay a higher price for a more fuel-efficient car. We also observe that the horsepower
and the size of the newly registered cars increase over time.

26State level income https://ec.europa.eu/eurostat/web/products-datasets/-/nama_10r_2hhinc
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Table 6: Summary Statistics (Sales weighted)

Year

2012 2013 2014 2015 2016 2017 2018

Diesel

Price/income 0.74 0.72 0.73 0.72 0.71 0.69 0.68

Size (m2) 8.31 8.31 8.32 8.36 8.42 8.48 8.53

Horsepower (kW/100) 1.09 1.07 1.11 1.11 1.14 1.16 1.21

Fuel cost (euros/100km) 7.90 7.18 6.63 5.53 4.94 5.25 5.83

Fuel cons. (Lt./100km) 5.19 4.98 4.89 4.73 4.61 4.61 4.71

CO2 emission (g/km) 136.19 130.50 127.69 123.58 120.42 120.49 123.27

Nb. of products/market 133 138 146 150 151 149 143

Gasoline

Price/income 0.46 0.46 0.46 0.46 0.46 0.45 0.43

Size (m2) 7.23 7.27 7.28 7.30 7.36 7.46 7.53

Horsepower (kW/100) 0.79 0.78 0.80 0.82 0.85 0.88 0.91

Fuel cost (euros/100km) 9.48 8.61 8.11 7.27 6.69 7.06 7.40

Fuel cons. (Lt./100km) 5.76 5.47 5.40 5.31 5.25 5.34 5.38

CO2 emission (g/km) 135.80 128.18 125.27 122.89 121.22 122.86 123.26

Nb. of products/market 157 171 179 185 186 193 188

Note: Provided statistics are sales weighted averages across products. Total number of markets (State*Year) is 112 .

Inter-market variation Our dataset contains both geographical variation and time variation,
as we observe the sales in every state in Germany over the period 2012-2018. States in Ger-
many differ significantly in terms of income per inhabitant, population density and average
distance driven.27 It is fundamental to take this inter-market variation into account in our em-
pirical specification for two reasons. First, our model postulates that consumers’ preferences
are the same across markets. However, we observe that the market shares vary from one state

27For the population density 2019 (inh/km2): 69 (Mecklenburg-Vorpommern) to 4118 (Berlin) (from Fed-
eral Statistical Office of Germany (Destatis)), GDP per capita 2019: 28.9k (Mecklenburg-Vorpommern) to 67k
(Hamburg) (retrieved from https://www.ceicdata.com/en/germany/esa-2010-gdp-per-capita-by-region/
gdp-per-capita-bremen on 05 November 2022). For average driving distance in 2019: 13079 km (Mecklenburg-
Vorpommern) to 9531 (Berlin) retrieved from https://de.statista.com/statistik/daten/studie/644381/
umfrage/fahrleistung-privater-pkw-in-deutschland-nach-bundesland/ on 19 September 2022.
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to the other even if the choice set remains the same. This feature of the data can only be ex-
plained if we let the preferences vary from one market to the other. Second, in section 2.3, we
saw that there needs to be sufficient variation in the product characteristics across markets to
identify the distribution of RCs. By interacting product characteristics with state demograph-
ics, we achieve both objectives: we shift the preferences to a more common representation and
we create variation in the product characteristics across markets. To choose which interaction
terms to include in the utility function, we first create market specific sales-weighted charac-
teristics for the following variables: price, fuel cost, size, horsepower, height, gasoline dummy,
and foreign dummy (equal to one if the manufacturer of the car is not German). Then, we
regress these quantities on the demographics of interest: average income, population density,
and a time trend. Last, we select the interaction terms that explain the best the variation in
sales-weighted characteristics (namely, the variables with a p-value below 1e−10). The results
of these regressions are presented in Table 7. They suggest that income shifts positively the
preferences for price, size, and horsepower (i.e. higher income is associated with larger cars,
and higher horsepower). In contrast, income shifts negatively the preferences for foreign sta-
tus, height, and gasoline status.28 Although weaker, a similar pattern is observed for the effect
of population density on car characteristics.

Table 7: Linear regressions of sales-weighted car characteristics on demographic characteris-
tics

Income(/1000) Population density (/100) Time trend

Price(×1000) 0.138∗∗ 0.069∗ 0.286∗

(0.013) (0.011) (0.059)

Fuel cost (euros/100km) -0.0069 -0.0036 0.3587∗∗

(0.0063) (0.0056) (0.0296)

Size(m2) 0.0058∗∗ 0.0018∗ 0.0176∗

(0.00079) (0.00070) (0.00371)

Horsepower (KW/100) 0.0028∗∗ 0.0012∗ 0.0129∗∗

(0.00028) (0.00025) (0.00132)

Foreign −0.0050∗∗ −0.0014∗ 0.0295∗∗

(0.00052) (0.00046) (0.00246)

Height(m) −0.00051∗∗ −0.00043∗∗ 0.00181∗

(0.000061) (0.000054) (0.000286)

Gasoline −0.0067∗∗ −0.0024∗ 0.0131∗

(0.00059) (0.00053) (0.00280)

Note: * p-value lower than 0.01, ** p-value lower than 1e−10.

28In the main analysis, we use price/income to capture the income effect.
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Instruments for the endogeneity of price To instrument for price, we use a combination
of variables on the intensity of competition and cost shifters. To measure the intensity of
competition, we consider the number of competing products of the same class and engine
type in a given market, and the number of competing products of the same engine type in
a given market. As for cost shifters, we use three complementary datasets: the mean hourly
labor cost, the price of steel (interacted with the weight of the car), and exchange rates between
Germany and the country of assembly.

1. Labor cost: we use the mean nominal hourly labor cost per employee in the manufac-
turing sector of the country of assembly of the models. The data on labor costs come
from International Labor Organization Statistics (ILOSTAT).29

2. Price of steel: we collect the price of steel futures in January of each year.

3. Exchange rates: we construct the exchange rates between Germany and the country of
assembly of each car model using exchange rate data from OECD.30

7.2 Empirical specification

The indirect utility of consumer i, purchasing product j in market t (defined as a state-year
pair) is given by:

uijt = x′1jtβ + ξ∗jt︸ ︷︷ ︸
δjt

+x′2jtαi + εijt.

The mean utility δjt = x′1jtβ + ξ∗jt captures homogeneous preferences. The variables in x1jt

consist of the product characteristics for which we assume that there is no preference hetero-
geneity and the interaction terms that explain the best the geographical variation observed in
Table 7.31

The demand shock on product j is decomposed as follows:

ξ∗jt = Brandj + Statet + Yeart + ξ jt,

29https://www.ilo.org/ilostat-files/Documents/Excel/INDICATOR/LAC_4HRL_ECO_CUR_NB_A_EN.xlsx
30https://data.oecd.org/conversion/exchange-rates.htm
31The choice of the variables that display preference heterogeneity is based on our understanding of the car

market and follows current empirical practices for this specific market. However, we understand the limitations
of this approach, and we are working on an iterative procedure to select the variables that display consumer
heterogeneity.
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where Brandj is a brand fixed effect that captures the unobserved quality of the brand of
product j, Statet captures state specific demand shocks that are fixed across time and products
and Yeart captures year-specific demand shocks. Therefore, Statet and Yeart play a role in
explaining the variation in the overall demand for cars (or equivalently, in the share of the
outside option).

The variables in x2jt are the product characteristics that display preference heterogeneity and
which we augment with a RC. In our specification, we include the price, the size, and the
gasoline dummy in x2jt. We estimate the model assuming different specifications for the dis-
tribution of RCs. First, we estimate the model without any consumer heterogeneity. Second,
we assume that all the RCs are normally distributed. Finally, we consider a Gaussian mixture
on price to increase flexibility with respect to the preferences on price. For each different
specification, we perform the specification test developed in section 5 to see how the degree
of misspecification evolves as we increase flexibility on the distribution of RCs.

7.3 Estimation

Estimation conditional logit (no heterogeneity) First, we estimate the logit model, and we
report the results in Table 8.32 As expected, we find a negative effect of price and fuel cost
on the utility. The interaction terms indicate that the utility derived from size, horsepower,
foreign status and gasoline all decrease with income. Moreover, we observe that the aversion
to fuel cost decreases over time, which is likely an artifact implied by increasing fuel cost
over the years. In contrast, the utility derived from horsepower appears to increase with time.
However, these time effects are smaller in comparison with the heterogeneity due to income.
To facilitate the interpretation of these results, we consider a household with a e47,000 income
in 2018. This corresponds to the mean income in 2018. For this household, the implied effect
of size on the utility is negative, whereas a positive utility is derived from higher horsepower,
the car’s brand being German, height, and gasoline engines.

32In Appendix E, we provide results for baseline specifications including the simple conditional logit and the
nested logit (with and without state and year fixed effects).
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Table 8: Logit estimation

Baseline × Income (/1000) × Pop. density(/100) × Time trend

Homogeneous Preferences β̂ S.E β̂ S.E β̂ S.E β̂ S.E

Price/income -2.4 1.3e-01 - - - - - -

Fuel Cost -0.25 8.6e-03 - - - - 0.014 1.7e-03

Size(m2) 0.15 4.2e-02 -0.0055 8.5e-04 - - - -

Horsepower(KW/100) 2.7 1.8e-01 -0.019 2.4e-03 - - -0.081 7e-03

Foreign 0.18 7.1e-02 -0.017 1.4e-03 - - - -

Height(m) 3.5 2.3e-01 -0.0015 4.6e-03 -0.036 4.7e-03 - -

Gasoline 1.1 6.3e-02 -0.011 1.2e-03 - - - -

Note: Brand, Year and State FE’s are included.

Estimation with Gaussian random coefficients We now increase the flexibility in the tra-
ditional manner, by assuming that the RCs on the price, the size and the gasoline indicator
follow a Gaussian distribution. We report the estimates obtained under this new specification
in Table 9. The signs for the homogeneous preference parameters in x1jt remain the same
and the magnitude of the effects do not change significantly. The sign associated with the
mean effect of price remains negative. In contrast, the sign on the mean effects of the size and
the gasoline dummy are inverted with respect to the logit specification. This last observation
illustrates an important empirical finding: average effects are not invariant to the introduction
of preference heterogeneity. In other words, the logit estimates do not necessarily match the
means, when we introduce a Gaussian RC. Moreover, the three RCs display high variances
and particularly so for the gasoline dummy, which indicate a high level of heterogeneity with
respect to these three characteristics.33

33The estimation is performed using the parametrization proposed in Ketz (2019), which avoids boundary
issues at 0 for the variances of the RCs.
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Table 9: Traditional BLP (Gaussian RC)

Baseline × Income (/1000) × Pop. density(/100) × Time trend

Homogeneous Preferences β̂ S.E β̂ S.E β̂ S.E β̂ S.E

Price/income - - - - - - - -

Fuel Cost -0.29 5.1e-03 - - - - 0.031 9.2e-04

Size(m2) - - -0.0053 3.1e-04 - - - -

Horsepower(KW/100) 0.77 1.5e-02 0.0078 6.8e-04 - - -0.12 5.6e-03

Foreign 0.21 5.4e-02 -0.019 1.1e-03 - - - -

Height(m) 3.4 1.1e-02 -0.0088 1.2e-03 -0.032 3.6e-04 - -

Gasoline - - -0.0028 8.6e-04 - - - -

Gaussian RC β̂ S.E σ̂ S.E

Price/income -2.4 2e-02 0.96 5.9e-03 - - - -

Size(m2) -0.37 1.5e-02 0.43 3.6e-03 - - - -

Gasoline -2.3 4.4e-02 4 4.1e-04 - - - -

Note: Brand, Year and State FE’s are included.

Estimation with a Gaussian mixture on the price Finally, we increase the flexibility of the
model, by replacing the Gaussian RC on the price variable with a Gaussian mixture of 2 com-
ponents. We focus on the price as the literature shows that the distribution of price sensitivity
is absolutely key for many quantities of interest in IO, including the price elasticities and the
pass-through. We report the estimates obtained under this new specification in Table 10. The
results point out the presence of two distinct modes in the distribution of the RC associated
with price. The two modes reveal the presence of two groups of consumers: the first one
with high price sensitivity (with the mean component at -9.6) and the second one with low
price sensitivity (with the mean component at -2.5). Moreover, the distribution is heavily
asymmetric with the probability of the first mode being 0.9, which entails that the majority of
consumers are highly sensitive to price. This last feature is completely absent in the logit and
Gaussian specifications, which seem to capture only the first mode of the distribution as we
can see in Figure 6. Once again the homogeneous parameters are relatively unchanged with
respect to the previous specifications. The Gaussian RC on the gasoline still displays a high
variance (the standard deviation of the RC equals 2.8).
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Table 10: Estimation Gaussian mixture on Price

Baseline × Income (/1000) × Pop. density(/100) × Time trend

Homogeneous Preferences β̂ S.E β̂ S.E β̂ S.E β̂ S.E

Price/income - - - - - - - -

Fuel Cost -0.23 5.8e-03 - - - - 0.026 1e-03

Size(m2) - - -0.0055 3.7e-04 - - - -

Horsepower(KW/100) 1.8 3.6e-02 -0.0016 1.1e-03 - - -0.1 7e-03

Foreign 0.26 6.1e-02 -0.021 1.2e-03 - - - -

Height(m) 3.5 1.1e-02 -0.012 1.2e-03 -0.032 3.7e-04 - -

Gasoline - - -0.026 1.3e-03 - - - -

Gaussian RC β̂ S.E σ̂ S.E

Size(m2) 0.5 1.9e-02 0.1 6.7e-02 - - - -

Gasoline -0.45 3.8e-03 2.8 9.1e-03 - - - -

Gaussian Mixture β̂1 S.E σ̂1 S.E β̂2 S.E σ̂2 S.E

Price/income -9.6 1.8e-02 0.1 1.8e-03 -2.5 1.8e-02 0.35 5.2e-04

Probability 0.9 6.8e-05

Note: Brand, Year and State FE’s are included.

In Figure 6, we plot the estimated distribution of random coefficients under the three
specifications we consider. We observe little to no variation in the homogeneous parameters
from one specification to the other. The main difference comes from the introduction of
the Gaussian mixture on price, which reveals the presence of a large group of highly price
sensitive consumers.
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Figure 6: Estimated distributions of RCs in the three specifications
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Specification test By increasing the flexibility on the distribution of RCs, we recover less
precise estimates and the model becomes more difficult to estimate. Thus, it is important to
show that the additional flexibility substantially reduces the misspecification of the model.
To quantify the degree of misspecification accross the different models, we keep the same
set of estimation instruments across the different specifications of RCs and we report the
value of the associated Sargan-Hansen J statistics in each case. Moreover, for every model,
we follow the procedure developed in section 5 to test if the distribution of RCs on price
is well specified. We use the global interval instruments and we denote this test “Interval
test”. We report the values of the test statistics and the degrees of freedom of the chi-square
under the null in Table 11. We observe an important decrease in the Sargan-Hansen J statistic
when we transition from the logit to the Gaussian RC. However, the decrease in the Sargan-
Hansen J statistic is much larger when we transition from the Gaussian RC on price to the
Gaussian mixture, which indicates that the Gaussian mixture performs much better than the
simple Gaussian at capturing the underlying heterogeneity in price sensitivity. The interval
test displays a similar behavior, with the largest decrease in the test statistic stemming from
the transition from the Gaussian RC to the Gaussian mixture.
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Table 11: Evolution of misspecification with flexibility

Instruments Logit Gaussian RC Gaussian mixture

Test Stat. Critical val. DF Stat. Critical val. DF Stat. Critical val. DF

J test 2755.7 40.1 27 2341.7 36.4 24 950.3 33.9 21

Interval test 1331.9 14.1 7 999.4 14.1 7 244.0 14.1 7

7.4 Counterfactual quantities

The objective of this subsection is to illustrate how changes in the distribution of the RC as-
sociated with price affect many counterfactual quantities of interest in IO, such as the price
elasticities, the marginal costs faced by car manufacturers, and the pass-through of cost. In
order to compare our empirical results with the findings in Miravete et al. (2022), we also
derive the demand curvature under the different specifications. They show that a large de-
mand curvature is necessary to recover a pass-through larger than one. We now define these
different quantities and derive them under the different specifications considered previously.
For exposition purposes, we omit the dependence of the market shares in δt, x2t and f , and
simply write sj(p) instead of ρj(δt, x2t; f ), where p is the price vector. In Appendix E, we pro-
vide analytical formulas for every quantity of interest. The quantities of interest are computed
using the year 2018, which is the last year of our sample.

• The price elasticity of demand is the ratio of the percentage change in quantity de-
manded of a product to the percentage change in price. The price elasticity for product

j writes as follows: η1
j (p) ≡

pj
sj

∂sj(p)
∂pj

.

• The demand curvature of the demand function is given by: η2
j (p) ≡

∂2sj(p)
∂p2

j

(
∂sj(p)

∂pj

)−2
.

• Marginal costs and mark-ups. To recover the marginal costs and the implied mark-ups,
we need to make additional assumptions on the supply side. Following the literature,
we consider that each multi-product firm f ∈ F sets prices for its own products in
accordance with a Bertrand-Nash equilibrium. The profit of each firm writes:

Π f (p) = ∑t ∑j∈J f

(
pj − cj

)
Mtsjt(p),

where J f is the set of goods produced by firm f , cj is the marginal cost for good j, Mt

is the market size and sj(p) is the market share of product j. The first-order condition
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with respect to price pj writes:

∑
t

Mt sjt(p) + ∑
t

Mt ∑
j′∈J f

(
pj′ − cj′

) ∂sj′(p)
∂pj

= 0.

We gather all the FOCs and rewrite them in matricial form:

s(p) + (∆(p)) (p − c) = 0.

where ∆(p) = ∑t Mt
∂sj′ (p)

∂pj
if j′ and j are produced by the same firm and equals to zero

otherwise. ∆(p) is known as the ownership matrix. Assuming that the prices are in
equilibrium, one can recover the marginal costs using the following equation:

c = p − (∆(p))−1 s(p).

The mark-up for product j simply writes: pj − cj.

• The pass-through of cost is defined as follows. Let us assume that the marginal cost for

product j goes from cj to c′j (with c′j > cj), then the cost pass-through equals αj =
p′j−pj

c′j−cj
,

where p′j is the new equilibrium price. The pass-through corresponds to the proportion
of the cost increase that is transmitted to the price. Following the literature, we derive the
pass-through by increasing the marginal costs of each product by 1% and recomputing
the marginal cost.

Summary of results We report the median values for the five counterfactual quantities of
interest in Table 12. Several remarks are in order. First, the Gaussian mixture yields a much
lower price elasticity than the two other specifications. This is related to the emergence of a
group of very price sensitive consumers in the mixture specification, which we fail to detect
with the logit and Gaussian RC specifications. Moreover, the low price elasticities that we
recover in the Gaussian and logit specifications, generate unreasonably low marginal costs
(even negative ones as we can see in Figure 7) and excessive mark-ups. In contrast, this
problem does not appear with the Gaussian mixture. Finally, to link our results with the
findings in Miravete et al. (2022), we now focus on the demand curvature and the pass-
through of cost. As expected, the logit displays a curvature and a pass-through equal to 1.
In contrast, we can see that the Gaussian mixture displays a larger demand curvature than
the other two specifications. This comes from the skewness that the mixture induces in the
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distribution of price sensitivity. This last feature implies that the Gaussian mixture yields a
pass-through much greater than 1 (1.5 on average). Unfortunately, the negative marginal costs
we recover with the Gaussian RC prevent us from computing the pass-through in this case.34

Table 12: Median counterfactual quantities under different specifications on RCs

RC distribution on price Logit Gaussian Gaussian Mixture

Own price-elasticity -1.2 -1.1 -2.6

Demand curvature 1.0 1.2 1.3

Marginal cost 9,366 1,929 20,105

Mark-up 24,048 29,572 11,066

Pass-through 1.0 - 1.5

In Figure 7, we plot the empirical distributions of the counterfactual quantities. We can
see in the plot featuring the distribution of marginal costs that the logit and Gaussian speci-
fications generate negative marginal costs for some of the cars. This is an indication that the
price elasticities implied by these specifications are too low in absolute value.

34Our algorithm to compute the new equilibrium prices after the change in cost does not converge.
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Figure 7: Empirical distribution of counterfactual quantities under different specifications
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Finally, in Figure 8, we plot the elasticity functions implied by the different specifications
for the 15 most popular cars in our sample. We observe important differences in the elastici-
ties. The Gaussian mixture generates lower price elasticities than the other two specifications.
We do the same exercise with the demand curves in Appendix E.
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Figure 8: Estimated elasticities under different specifications
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8 Conclusion

In this paper, we develop novel econometric tools to parsimoniously increase the flexibility
of the distribution of random coefficients in the BLP demand model initiated by Berry et al.
(1995). Specifically, we construct novel instruments designed to detect deviations from the
true distribution of random coefficients. Building on these instruments, we provide a formal
moment-based specification test on the distribution of random coefficients, which allows re-
searchers to test the chosen specification without having to re-estimate the model under a
more flexible parametrization. Our instruments are designed to maximize the power of the
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test when the distribution of RC is misspecified. By exploiting the duality between estimation
and testing, we show that these instruments can also improve the estimation of the BLP model
under a flexible parametrization. Our Monte Carlo simulations confirm that the interval in-
struments we develop in this paper outperform the traditional instruments both for testing
and estimating purposes. Finally, we apply these new tools to flexibly estimate the demand
for cars in Germany. We show that these tools can be applied to the equally popular mixed
logit demand model with individual-level data.

In future works, we plan to see if we can generalize these instruments to other non-linear
moment-based models, as well as to the general problem of testing distributional assumptions
in structural models. From a broader perspective, our paper is part of an existent discussion
on the most effective way to model unobserved preference heterogeneity in structural mod-
els. Most empirical frameworks feature a clear trade-off between the degree of flexibility one
chooses and the precision of the estimates one obtains. It is thus critical to understand how
misspecification on the unobserved heterogeneity affects the counterfactual quantities of inter-
est. In the case of the BLP demand model, our paper and others show that misspecification in
the distribution of random coefficients substantially distorts the substitution patterns as well
as the shape of the demand curve and, thus, is likely to significantly alter the counterfactual
quantities.
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A Extension to the mixed logit demand model

The main difference between the BLP demand model and the mixed logit model is that the
latter one assumes that the econometrician observes individual data. Let us consider the
baseline mixed logit model with no endogeneity and consumer level data.35 Indirect utility
function of consumer i making choice j ∈ {0, 1, . . . , J} is given by:

uij = x′1ijβ0 + x′2ijvi + εij, (A.12)

where

• εij is a preference shock that follows a type I extreme value distribution independent of
all other variables and across i, j;

• x1ij is a vector of product characteristics interacted with consumer characteristics of size
K1 which display no preference heterogeneity;

• x2ij is a vector of product characteristics interacted with consumer characteristics of size
K2 which display preference heterogeneity;

35In the mixed logit case, the absence of endogenous variables here is not an unrealistic assumption as the
econometrician can always model unobserved product quality by incorporating product fixed effects into the
utility function
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• vi is a vector of random coefficients of size K2 which jointly follows a joint distribution
characterized by a density f ;

Each consumer chooses the product that maximizes his or her utility in each market. For
any couple ( f̃ , β̃), demand for product j from consumer i writes:

∀j ̸= 0, ρj(xi, β̃, f̃ ) =
∫

RK2

exp(x′1ij β̃ + x′2ijv)

1 + ∑J
k=1 exp

{
x′1ik β̃ + x′2ikv

} f̃ (v)dv.

For the outside option, we have:

for j = 0, ρj(xi, β̃, f̃ ) =
∫

RK2

1

1 + ∑J
k=1 exp

{
x′1ik β̃ + x′2ikv

} f̃ (v)dv.

Structural error As we did in the case of the BLP demand model, we can define the struc-
tural error generated by (β̃, f̃ ) as follows. Let yij equal to 1 if individual i chooses good
j = 0, 1, . . . , J.

ξij(β̃, f̃ ) = yij − ρj(xi, β̃, f̃ )

By construction, at the true ( f , β), we have E[ξij(β, f )|xi] = E[yij|xi]− ρj(xi, β, f ) = 0a.s..

Most powerful instrument and approximations As in the aggregate demand model, let
us see how we can construct instruments to detect misspecification in the distribution of
RC. Given that the model displays no endogeneity, the set of exogenous variables is simply
xi. We now want to find the transformation of xi which provides the most detection power
against a wrong distribution. With this objective in mind we consider a situation where the
econometrician has a candidate ( f0, β0) and wants to test that the model is well specified,
namely: H0 : ( f , β) = ( f0, β0). Under an alternative H1 : ( f , β) = ( fa, βa), the expression for
the Most Powerful Instrument (i.e the instrument which maximizes the correlation between
the Structural Error and any instrument in the class of measurable functions of xi) is the same
as previously:

E[∆
ξ j
0,a|xij] = ∆j(xi, f0, β0, fa, βa)

= ρj(xi, β0, f0)− ρj(xi, βa, fa)

=
∫

R
ρj(xi, β0, f0)−

exp(x′1ijβa + x′2ijv)

1 + ∑J
k=1 exp

{
x′1ikβa + x′2ikv

} fa(v)

Several remarks are in order. First, contrary to the BLP case, the correction term ∆
ξ j
0,a is

a function of the exogenous variables xi and thus we don’t need to estimate its conditional
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expectation.Second, βa and fa are usually unknown to the econometrician and thus we cannot
exploit directly this expression. As did for the BLP case, we propose 2 feasible approximations
of the MPI.

• Global approximation: we replace the unknown βa by a known substitute β0
36. As for

the unknown distribution of RC fa, we proceed as in the BLP case and we replace the
integral with a finite sum. Namely, we have:

E[∆j(xi, f0, fa)|xi] ≈
L

∑
l=1

ωl

[
ρj(xi, β0, f0)−

exp(x′1ijβ0 + x′2ijvl)

1 + ∑J
k=1 exp

{
x′1ikβ0 + x′2ikvl

}
]

︸ ︷︷ ︸
πj,l(xi)

with {vl}l=1,...,L L points chosen in the support of fa, and ωl the unknown weights
associated with each point

• Local approximation: we provide a local approximation which is accurate when f0 is
close to the true density fa. To derive this local approximation, we need to impose
additional restrictions on β0 and βa so that ∥βa − β0∥ = O

(∫
RK2 | f0(v)− fa(v)|dv

)

Assumption 1 We assume that β0 = β∗
0 and βa = β∗

a where (β∗
0, β∗

a) are both pseudo true
values which maximize the conditional expectation of their respective population log-likelihoods.
Namely,

β∗
0 = argmax

β∈RK1

E
[
L(xi, yi, β, f0)

∣∣xi
]

with L(xi, yi, β, f0) =
J

∑
j=0

1{yij = 1} log(ρj(xi, β, f0))

β∗
a = argmax

β∈RK1

E
[
L(xi, yi, β, fa)

∣∣xi
]

with L(xi, yi, β, fa) =
J

∑
j=0

1{yij = 1} log(ρj(xi, β, fa))

Now we can derive the following first order approximation of the ∆j(xi, f0, β0, fa, βa)

Proposition 1.1
Under Assumption1, a first order expansion of ∆j(xi, f0, β0, fa, βa) around f0 writes:

∆j(xi, f0, β0, fa, βa) = gj(xi, β0, f0)− gj(xi, βa, fa)

=
∫

RK2

exp(x′1ijβ0 + x′2ijv)

1 + ∑J
k=1 exp

{
x′1ikβ0 + x′2ikv

} ( f0(v)− fa(v))dv +
∂ρj(xi, β, fa)

∂β

∣∣∣∣
β=β0

(β1 − β0) +R0

with R0 =
∫

RK2 | f0(v)− fa(v)|dv

36in simulations, we find that the homogeneous parameters are usually close to each other even when the
distributions are somewhat remote from each other
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The proof is in section B. Building on this approximation, we can construct the following
local feasible approximation of the MPI:

E[∆j(xi, f0, fa)|xi] ≈
L

∑
l=1

ω̄1l

[
ρj(xi, β0, f0)−

exp(x′1ijβ0 + x′2ijvl)

1 + ∑J
k=1 exp

{
x′1ikβ0 + x′2ikvl

}
]

︸ ︷︷ ︸
π̄1,j,l(xi)

+
L

∑
l=1

ω̄2l
∂

∂β

{
exp(x′1ijβ0 + x′2ijvl)

1 + ∑J
k=1 exp

{
x′1ikβ0 + x′2ikvl

}
}

︸ ︷︷ ︸
π̄2,j,l(xi)

with {vl}l=1,...,L L points chosen in the support of fa, and ω̄l the unknown weights asso-
ciated with each point. The interval instruments are simply the set (π̄1,j,l(xi), π̄2,j,l(xi)).

Specification test

B Proofs

B.1 Identification

In this subsection, we prove that under Assumption A, the distribution of random coefficients
f is non-parametrically point identified.

B.1.1 Proof of Proposition 2.1

We want to show that under Assumptions A, the following implication holds:

( f̃ , β̃) = ( f , β) ⇐⇒ E[ξ jt( f̃ , β̃)|zjt] = 0 a.s.

⇐⇒ E

[
ρ−1

j (st, x2t, f̃ )− x′1jt β̃

∣∣∣∣zjt

]
= 0 a.s..

Step 1 First, we show that for any random permutation of indexes j → j′, the following
equivalence holds:

E[ξ jt|zjt] = 0 a.s. ⇐⇒ E[ξ jt|zj′t] = 0 a.s. ∀ j′.

First, let us show that the standard exogeneity conditions assumed in Berry and Haile (2014)
and in Wang (2022) implies the moment condition we utilize in this paper:
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By construction, we can rewrite the exogeneity condition A (i) as follows:

E[ξ jt|zjt] =
J

∑
k=1

Pr(j = k)E
[
ξ jt
∣∣zjt, j = k

]
=

1
J

J

∑
k=1

E
[
ξ jt
∣∣zjt, j = k

]

The exogeneity condition in Wang (2022) assumes: ∀k, E
[
ξ jt
∣∣zjt, j = k

]
= 0. From what

precedes, this condition implies the exogeneity condition E[ξ jt|zjt] = 0 a.s. in A (i). This
assumption is required for non-parametric identification of the demand functions but not for
the non-parametric identification of the distribution of RC.

Now let us prove the identification result. As an artifact for our proof, let us consider
a new indexation, which is done exogenously across markets. We denote j′ the exogenous
indices. Consequently, a same product j doesn’t necessarily have the same indices across
markets. As the new indexation is done exogenously, we have for any j′:

E[ξ jt( f̃ , β̃)|zjt] = E[ξ jt( f̃ , β̃)|zjt, j → j′] ≡ E
j′
[ξ j′t( f̃ , β̃)|zj′t]a.s.

j → j′ indicates index j has been changed into j′. Consequently, we have:

E[ξ jt( f̃ , β̃)|zjt] = 0 a.s. ⇐⇒ ∀j′ E
j′
[ξ j′t( f̃ , β̃)|zj′t] = 0 a.s.

As a consequence, we can rewrite the initial equivalence as follows:

( f̃ , β̃) = ( f , β) ⇐⇒ ∀j′, E
j′
[ξ j′t( f̃ , β̃)|zj′t] = 0 a.s.

Given the random permutation j → j′, which is market dependent, we must redefine our
matrices and vectors as follows: x̂t = Mtxt with (Mt)i,k = 1{i = jt, k = j′t}. Likewise ŝt = Mtst.
Mt is a random matrix. It is straight forward to show the direct implication.

( f̃ , β̃) = ( f , β) =⇒ ∀j′, E
j′

[
ρ−1

j′ (ŝt, x̂2t, f̃ )− x′1j′t β̃

∣∣∣∣zj′t

]
= E

j′
[ξ j′t( f , β)|zj′t] = 0 a.s.

The reverse implication is much more intricate to prove and we will exploit other results
in the literature. We want to show:

( f̃ , β̃) ̸= ( f , β) =⇒ ∃j′
∣∣∣∣ E

j′

[
ρ−1

j′ (ŝt, x̂2t, f̃ )− x̂′1jt β̃

∣∣∣∣zj′t

]
= 0 a.s. does not hold
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First, let us assume that f̃ = f and β̃ ̸= β, then we have:

ρ−1(ŝt, x̂2t, f̃ )− x̂1t β̃ = ρ−1(ŝt, x̂2t, f )− x1tβ︸ ︷︷ ︸
ξ̂t( f ,β)

+x̂1t(β − β̃)

By assumption, we have: P(x′1tx1t dp) > 0. Mt is symmetric, idempotent and full rank.
As a consequence,

P(x̂′1t x̂1t dp) = P(x′1tMtx1t dp) = P(x′1tx1t dp) > 0

Therefore, we have ∀ γ ̸= 0 ∈ RK,

P(γ′ x̂′1t x̂1tγ > 0) > P(x̂′1t x̂1t dp) > 0 ⇐⇒ P(∥x̂1tγ∥2 > 0) > 0
⇐⇒ P(x̂1tγ ̸= 0) > 0

Thus, ∃j′ | x′1j′t(β − β̃) = 0 a.s does not hold. To conclude, there exists j′ such that:

E
j′
[ρ−1

j′ (ŝt, x̂2t, f )− x′1j′t β̃|zj′t] = E
j′
[ξ j′t( f , β)|zj′t]

︸ ︷︷ ︸
=0

+ E
j′
[x′1j′t(β − β̃)|zj′t]

︸ ︷︷ ︸
= 0 a.s does not hold from the completeness

Now let us assume that f̃ ̸= f and we want to show that ∀β̃ ∈ Rk, ∃j′ such that:

E
j′

[
ρ−1

j′ (ŝt, x̂2t, f̃ )− x′1j′t β̃

∣∣∣∣zjt

]
= 0 a.s does not hold

First, note that ∀j′,

E
j′

[
ρ−1

j′ (ŝt, x̂2t, f̃ )− x′1j′t β̃
∣∣zj′t

]
= E

j′

[
ξ j′t( f , β)

∣∣zj′t
]

︸ ︷︷ ︸
=0

+E
j′

[
ρ−1

j′ (ŝt, x̂2t, f̃ )− ρ−1
j′ (ŝt, x̂2t, f )− x′1j′t(β̃− β)

∣∣zj′t
]

Thus, we need to show that ∃j′
∣∣∣∣ E

j′

[
ρ−1

j′ (ŝt, x̂2t, f̃ )− ρ−1
j′ (ŝt, x̂2t, f )− x′1j′t(β̃ − β)

]
= 0 a.s

doesn’t hold. From the completeness condition, a sufficient condition is: ∃j′
∣∣∣∣ ρ−1

j′ (ŝt, x̂2t, f̃ )−
ρ−1

j′ (ŝt, x̂2t, f )− x′1j′t(β̃ − β) = 0 a.s does not hold. Let γ = (β̃ − β).

By contradiction, it can be easily be shown that ρ(δ̂t, x̂2t, f )− ρ(δ̂t + x̂1tγ, x̂2t, f̃ ) ̸= 0 =⇒
∃j′ ρ−1

j′ (ŝt, x̂2t, f̃ ) ̸= ρ−1
j (ŝt, x̂2t, f )+γ′x1j′t. Indeed, assume that ρ(δ̂t, x̂2t, f )− ρ(δ̂t + x̂1tγ, x̂2t, f̃ ) ̸=
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0 and ∀j′ ρ−1
j′ (ŝt, x̂2t, f̃ ) = ρ−1

j′ (ŝt, x̂2t, f ) + γ′x1j′t. Then, we have: ρ(ρ−1(ŝt, x̂2t, f̃ ), x̂2t, f̃ ) =

ρ(ρ−1(ŝt, x̂2t, f ) + x̂1tγ, x̂2t, f̃ ) = ρ(δ̂t + x̂1tγ, x̂2t, f̃ ) ̸= ρ(δ̂t, x̂2t, f ) = ŝt. Therefore, we have a
contradiction.

Thus, the next step is to show that ∀γ, f̃ ̸= f =⇒ ρ(δ̂t, x̂2t, f0)− ρ(δ̂t + x̂1tγ, x̂2t, f ) = 0 a.s
does not hold.

To this end, we are going to exploit the identification result shown by Wang (2022). Fol-
lowing the notations in this paper, we define µi = x̂1tΓ + x̂2tvi = x̂tv with vi = (Γ, vi). Here
Γ is a degenerate random variable characterized by constant c such that P(Γ = c) = 1. Let
Gµ|x̂t the distribution of µi|x̂t under f † = (c = 0, f ) and Gµ̃|x̂t the distribution of µi|x̂t under
f̃ † = (c = γ, f̃ ). The following result is shown in Wang (2022): for any ˆ̄xt ∈ Supp(x̂t)

∃j′ | ρj′(δ̂t, Gµ| ˆ̄xt
)− ρj′(δ̂t, Gµ̃| ˆ̄xt

) = 0 on open set D ⊂ RJ =⇒ Gµ| ˆ̄xt
= Gµ̃| ˆ̄xt

Note that thanks to the real analytic property of the demand functions ρ, Wang (2022) does
not require a full support assumption on δ̂t

Fix the value of x̂t as follows: x̂t = M̄t x̄t = ˆ̄xt.By assumption, there exists x̄t ∈ Supp(xt)
such that x̄′t x̄t is dp and δt = x̄1tβ + ξt varies on an open set D̄ almost surely.These properties
naturally transmit to ˆ̄xt. The chosen permutation M̄t doesn’t matter. Given the result in Wang
(2022), in order to prove that ρ(δ̂t, x̂2t, f0)− ρ(δ̂t + x̂1tγ, x̂2t, f ) = 0 a.s does not hold, we just
need to prove that ∀γ, f̃ ̸= f =⇒ Gµ̃| ˆ̄xt

̸= Gµ| ˆ̄xt
. As the density functions are assumed to be

continuous, f̃ ̸= f =⇒ ∃v∗ ∈ RK2 F̃(v∗) ̸= F(v∗). Take x∗ = (0K1 , ˆ̄x2tv∗)′ = ˆ̄xt(0K1 , v∗)′:

Gµ| ˆ̄xt
(x∗) = P(xtvi ≤ x∗|xt = ˆ̄xt) = P((x′txt)

−1x′txtvi ≤ (x′txt)
−1x′t x̄t(0K1 , v∗)′|xt = ˆ̄xt)

= (1K1 , P(vi ≤ v∗|xt = ˆ̄xt))
′ = (1K1 , F(v∗))′

The last equality comes from independence of vi and xt. Likewise, Gµ̃| ˆ̄xt
(x∗) = (1{γ >

0}, F̃(v∗))′

Therefore, ∃x∗, ∀γ Gµ̃| ˆ̄xt
(x∗) ̸= Gµ| ˆ̄xt

(x∗). Following the result in Wang (2022), we have
that for all γ ∈ RK1 , ρ(δ̂t, x̂2t, f ) − ρ(δ̂t + x̂1tγ, x̂2t, f̃ ) = 0 a.s does not hold which in turn
implies that for all γ ∈ RK1 , ∃j′ ρ−1

j (ŝt, x̂2t, f̃ )− ρ−1
j (ŝt, x̂2t, f ) + x̂′1jtγ = 0 a.s does not hold.

To conclude: ∀β ∈ Rk, there exists j′ such that:

ρ−1
j′ (ŝt, x̂2t, f̃ )− ρ−1

j′ (ŝt, x̂2t, f )− x′1j′t(β̃ − β) = 0 a.s does not hold

which is what we wanted to show.
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B.1.2 Proof of Corollary ??

Let us assume that specification F0 , instruments hE(zjt) and weighting matrix yields a unique
pseudo true value θ0.

θ0 = Argmin
θ̃

E[ξ jt( f0(.|λ̃, θ̃)hE(zjt)
′]WE[hE(zjt)ξ jt( f0(.|λ̃, θ̃)]

Under H0 : f ∈ F0 and f = f0(·|λ). By the mean independence assumption on the
unobserved quality ξ jt, we have at the true θ = (β, λ):

ξ jt( f0(.|λ), β) = ρ−1
j (st, x2t, f0(.|λ))− x′1jtβ = ξ jt =⇒ E[

(
ξ jt( f0(.|λ), β)hE(zjt)] = 0

Thus, θ is solution to the previous minimization problem and as the solution is unique:
θ0 = θ. As a consequence, ξ jt( f0(.|λ0), β0)) = ξ jt and E[ξ jt( f0(.|λ0), β0)|zjt] = 0 as

Under an alternative specification: f /∈ F0, we know from the identification proof that
∀θ̃ = (β̃, λ̃),

E

[
ρ−1

j (st, x2t, f0(.|λ̃))− x′1jt β̃

∣∣∣∣zjt

]
= 0 a.s does not hold

In particular, the last equation holds for θ̃ = θ0

B.2 Detecting misspecification: the most powerful instrument

Proof of Proposition 3.1.

• Under H0 : ( f , β) = ( f0, β0). By assumption, the data are i.i.d. across markets,
E[∥ξ jt( f0, β0)hD(zjt)∥2] = 1

J E[∑j∥ξ jt( f0, β0)hD(zjt)∥2] < +∞, the CLT applies:

1√
TJ ∑

j,t
hD(zjt)ξ jt( f0, β0) =

1√
TJ ∑

j,t
hD(zjt)ξ jt −→

T→+∞
N (0, Ω̃0),
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with:

Ω̃0 = E

[(
1√

J

J

∑
j=1

hD(zjt)ξ jt

)(
1√

J

J

∑
j=1

hD(zjt)ξ jt

)′]

=
1
J

E

[
J

∑
j=1

hD(zjt)hD(zjt)
′ξ2

jt +
J

∑
j=1

∑
k ̸=j

hD(zjt)hD(zkt)
′ξ jtξkt

]

=
1
J

E

[
J

∑
j=1

hD(zjt)hD(zjt)
′ξ2

jt

]
+

1
J

J

∑
j=1

∑
k ̸=j

E


hD(zjt)hD(zkt)

′ E[ξ jtξkt|zjt, zkt]︸ ︷︷ ︸
=0




= E
[

hD(zjt)hD(zjt)
′ξ2

jt

]

= Ω0.

Third line comes from ξ jt ⊥⊥ ξkt|zt. By assumption, Ω0 has a full rank. Thus, we have by
the CMT:

ST(hD, f0, β0) = TJ

(
1

TJ ∑
j,t

ξ jt( f0, β0)hD(zjt)

)′
Ω̂−1

0

(
1

TJ ∑
j,t

ξ jt( f0, β0)hD(zjt)

)
d−→

T→+∞
χ2
|hD|0 .

• Under H′
a : E

[
hD(zjt)ξ jt( f0, β0)

]
̸= 0. The data are i.i.d. across markets, by the law of

large numbers: 1
TJ ∑j,t hD(zjt)ξ jt( f0, β0)

P→ E
[

1
J ∑j hD(zjt)ξ jt( f0, β0)

]
. It follows by the

continuous mapping theorem:

ST(hD, f0, β0)

T
P→JE

[
1
J ∑

j
hD(zjt)ξ jt( f0, β0)

]′
Ω−1

0 E

[
1
J ∑

j
hD(zjt)ξ jt( f0, β0)

]

= J E
[
hD(zjt)ξ jt( f0, β0)

]′ Ω−1
0 E

[
hD(zjt)ξ jt( f0, β0)

]
︸ ︷︷ ︸

κ(hD, f0,β0)

Under H′
a, κ(hD, f0, β0) is strictly positive because Ω0 is positive definite. Thence,

∀q ∈ R, lim
T→∞

P(ST(hD, f0, β0) > q) = lim
T→∞

P

(
S(hD, f0, β0)− q

T
> 0

)

= P(Jκ(hD, f0, β0) > 0)

= 1,
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where the second equality holds because convergence in probability implies convergence in
distribution.

Proof of Proposition 3.2. To shorten notations, let ξ jt0 ≡ ξ jt( f0(·|λ0), β0), ξ jta ≡ ξ jt( fa, βa) and
ξt0 and ξta their stacked versions over j. Likewise, we define hD(zt) = (hD(z1t), ..., hD(zJt))

′

The asymptotic slope of the test writes:

chD( fa, βa) = E

(
∑

j
ξ jt0hD(zjt)

)′
E

((
∑

j
ξ jt0hD(zjt)

)(
∑
j′

ξ j′t0hD(zj′t)

)′)−1

E

(
∑

j
ξ jt0hD(zjt)

)

= E(ξ ′t0hD(zt))E(hD(zt)
′ξt0ξ ′t0hD(zt))

−1E(hD(zt)
′ξt0)

= E(∆ξt
0,a

′
hD(zt))E(hD(zt)

′E(ξt0ξ ′t0|zt)hD(zt))
−1E(hD(zt)

′∆ξt
0,a)

Third line comes from E(∆ξt
0,a

′
hD(zt)) = E((ξt0 − ξta)′hD(zt)) = E(ξ ′t0hD(zt)) because ξta is

the true structural error. Then the slope of the test taking h∗D = E(ξt0ξ ′t0|zt)−1E(∆ξt
0,a|zt) is

equal to:

ch∗D( fa, βa) = E
(

E(∆ξt
0,a|zt)

′E(ξt0ξ ′t0|zt)
−1E(∆ξt

0,a|zt)
)

To finish the proof, we must show that for any set of instruments hD, we have: ch∗D( fa, βa) ≥
chD( fa, βa).

Denote h̃D(zt) = E(ξt0ξ ′t0|zt)1/2hD(zt) and h̃∗D(zt) = E(ξt0ξ ′t0|zt)1/2h∗D(zt).With these new
notations, we have:

ch∗D( fa, βa)− chD( fa, βa) = E
(
h̃∗D(zt)

′h̃∗D(zt)
)
− E

(
h̃∗D(zt)

′h̃D(zt)
)

E
(
h̃D(zt)

′h̃D(zt)
)−1

E
(
h̃D(zt)

′h∗D(zt)
)

= G′




E
(
h̃∗D(zt)′h̃∗D(zt)

)
E
(
h̃∗D(zt)′h̃D(zt)

)

E
(
h̃D(zt)′h̃∗D(zt)

)
E
(
h̃D(zt)′h̃D(zt)

)


G

= G′E
(

H̃H̃′)G ≥ 0

with H̃ = (h̃∗D(zt), h̃D(zt))′ and G =
(

1,−E
(
h̃∗D(zt)′h̃D(zt)

)
E
(
h̃D(zt)′h̃D(zt)

)−1
)′

Proof of Proposition 3.3.
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Under Assumption A, Proposition 2.1 implies the following:

Ha : ( f , β) = ( fa, βa) ̸= ( f0, β0) =⇒ E[ξ jt( f0, β0)|zjt] ̸= 0 a.s.

=⇒ E[ξ jt( f0, β0)|zjt]
2 > 0 a.s.

=⇒ E
[
E[ξ jt( f0, β0)|zjt]

2] > 0

=⇒ E
[
E[ξ jt( f0, β0)E[ξ jt( f0|zjt]|zjt]

]
> 0

=⇒ E
[
ξ jt( f0, β0)E[ξ jt( f0|zjt]

]
> 0

=⇒ H′
a : E

[
ξ jt( f0, β0)E[∆

ξ jt
0,a|zjt]︸ ︷︷ ︸

h∗D(zjt)

]
̸= 0

Under the same assumptions as 3.1, we have the following:

H′
a : E

[
ξ jt( f0, β0)h∗D(zjt)

]
̸= 0 =⇒ ∀q ∈ R+, P(ST(h∗D,F0, θ̂) > q) → 1

Proof of Proposition 3.4.
Let H the set of measurable functions of zjt, we want to show under H̄a:

∀α ∈ R∗, αE[∆
ξ jt
0,a|zjt] ∈ arg max

h∈H
corr(ξ jt( f0, β0), h(zjt))

We proceed in 2 steps. First, we derive the upper bound by showing that for any h ∈ H,
we have:

corr
(
ξ jt( f0, β0), h(zjt)

)
≤

√√√√var
(

E[∆
ξ jt
0,a|zjt]

)

var(ξ jt( f0, β0))

To do so, we use the definition of the conditional expectation and the Cauchy Schwarz

inequality. First, notice that we have: E[∆
ξ jt
0,a|zjt] = E[ξ jt( f0, β0)|zjt]. By definition of the

conditional expectation, we have for any h ∈ H,

E[h(zjt)ξ jt( f0, β0)] = E[h(zjt)E[ξ jt( f0, β0)|zjt]]

It follows that:

∣∣cov
(
h(zjt), ξ jt( f0, β0)

)∣∣ = cov
(
h(zjt), E[ξ jt( f0, β0)|zjt]

)
≤
√

var(h(zjt))var
(
E[ξ jt( f0, β0)|zjt]

)
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The inequality comes from the Cauchy Schwarz inequality. The result follows by using the
definition of the correlation coefficient.

Second, we show that the upper bound is reached by taking for any α ∈ R∗, h∗(zjt) =

αE[∆
ξ jt
0,a|zjt].

cov
(

ξ jt( f0, β0), αE[∆
ξ jt
0,a|zjt]

)
= α cov

(
∆

ξ jt
0,a, E[∆

ξ jt
0,a|zjt]

)

= α var
(

E[∆
ξ jt
0,a|zjt]

)

Consequently,

corr
(
ξ jt( f0, β0), h∗(zjt)

)
=

α√
α2

√√√√var
(

E[∆
ξ jt
0,a|zjt]

)

var(ξ jt( f0, β0))
=⇒

∣∣corr
(
ξ jt( f0, β0), h∗(zjt)

)∣∣ =

√√√√var
(

E[∆
ξ jt
0,a|zjt]

)

var(ξ jt( f0, β0))

B.2.1 Connection with optimal instruments

In the parametric case, the BLP parameter θ is identified by the following non-linear condi-
tional moment restriction E[ξ jt(θ)|zjt] = 0. The derivation of the optimal instruments in this
context has been studied by Amemiya (1974). For an arbitrary choice of hE(zjt), the GMM
estimator with the 2-step efficient weighting matrix has the following asymptotic distribution:

√
T(θ̂ − θ)

d→ N
(

0, (Γ(F0, θ, hE)
′Ω(F0, hE)

−1Γ(F0, θ, hE))
−1
)

with the same notations as previously:

Ω(F0, hE) = E

[(
∑

j
ξ jt(θ)hE(zjt)

)(
∑

j
hE(zjt)ξ jt(θ)

)′]

Γ(F0, θ0, hE) = E

[
∑

j
hE(zjt)

∂ξ jt(θ)

∂θ̃′

]

For the sake of exposition, we will assume that unobserved demand shock ξ jt is indepen-

dent across observations, namely: E
[
ξ jt(θ)ξ j′t(θ)|zt

]
= 0 for j ̸= j′. The general case extends

naturally. The optimal instrument h∗E(zjt) are chosen to minimize the asymptotic variance
covariance matrix. We derive the form of the optimal instruments in the context of BLP by

adapting well known results in Chamberlain (1987) and Amemiya (1974)
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Lemma 2.1 Optimal instruments in the BLP model
In our setting and assuming f ∈ F0, the optimal instruments h∗E(zjt) write:

h∗E(zjt) = E[ξ jt(θ)
2|zjt]

−1E

[
∂ξ jt(θ)

∂θ

∣∣∣∣zjt

]

and the corresponding efficiency bound (obtained by setting hE = h∗E) writes:

V∗ = E

[
∑

j
E

[
∂ξ jt(θ)

∂θ

∣∣∣∣zjt

]
E

[
∂ξ jt(θ)

∂θ

∣∣∣∣zjt

]′
E[ξ jt(θ)

2|zjt]
−1
]−1

Proof. To shorten the notations, we denote: σ2(zjt) = E[ξ jt(θ)
2|zjt] and d(zjt) = E

[
∂ξ jt(θ)

∂θ

∣∣∣∣zjt

]
.

Likewise, we define

Ω0(hE) = E

[
∑

j
E[ξ jt(θ)

2|zjt]hE(zjt)hE(zjt)
′
]

We want to prove that for any set of instruments hE(zjt) that V∗(zjt)−Γ0(hE)
′Ω0(hE)

−1Γ0(hE)

matrix is semi definite positive.

V∗(zjt)− Γ0(hE)Ω0(hE)
−1Γ0(hE)

′ =

= E

[
∑

j
d(zjt)d(zjt)

′σ2(zjt)

]
− E

[
∑

j

∂ξ jt(θ)

∂θ
hE(zjt)

′
]

Ω0(hE)
−1E

[
∑

j

hE(zjt)∂ξ jt(θ)

∂θ

′]

= E

[
∑

j
d(zjt)d(zjt)

′σ−2(zjt)

]
− E

[
∑

j
d(zjt)hE(zjt)

′
]

E

[
∑

j
σ2(zjt)hE(zjt)hE(zjt)

′
]

E

[
∑

j
hE(zjt)d(zjt)

′
]

= E

[
D̃(zjt)

′D̃(zjt)

]
− E

[
D̃(zjt)

′H̃E(zjt)

]
E

[
H̃E(zjt)

′H̃E(zjt)

]−1

E
[
H̃E(zjt)

′D̃(zjt)
]

The second line comes from law of iterated expectations. Third line is a matricial way to
rewrite the second line. D̃(zjt) a matrix which stacks d(zjt)/σ(zjt) over the set of prod-
ucts (each line corresponds to one product j). Likewise, let H̃E(zjt) a matrix which stacks
hE(zjt)σ(zjt) over the set of products (each line corresponds to one product j). Now let us
define the following matrices.

X̃ =

(
D̃(zjt) H̃E(zjt)

)
and M̃ =

(
I|`0| −E

[
D̃(zjt)

′H̃E(zjt)

]
E

[
H̃E(zjt)

′H̃E(zjt)

]−1
)′
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We have: V∗(zjt)− Γ0(hE)Ω0(hE)
−1Γ0(hE) = M̃′E[X̃′X̃]M̃

The matrix above is clearly semi definite positive.

B.3 Feasible most powerful instrument

B.3.1 Local approximation of the MPI

Proof of Proposition 4.1

Proof. First, we define s0
t = ρ(δt, x2t, f0(.|λ0)) with δt the true mean utility. From Lemma

2.2 ρ−1 is C∞ and in particular, ρ−1 is C1. Thus, the Taylor expansion of ρ−1(s0
t , x2t, f0(.|λ0))

around st writes:

ρ−1(s0
t , x2t, f0(.|λ0)) = ρ−1(st, x2t, f0(.|λ0)) +

∂ρ−1(st, x2t, f0(.|λ0))

∂s

∣∣∣∣
s=st

(s0
t − st) + o

(
||s0

t − st||
)

δt = ρ−1(st, x2t, f0(.|λ0)) +
∂ρ−1(st, x2t, f0(.|λ0))

∂s

∣∣∣∣
s=st

(s0
t − st) + o

(
||s0

t − st||
)

We now derive an expression for the first derivative of the inverse function. We make use
of Lemma 2.3: for any δ ∈ RJ , ∂ρ(δ,x2t, f )

∂δ is invertible.

∂ρ(ρ−1(st, x2t, f0(.|λ0)), x2t, f0(.|λ0))

∂s
= IJ ⇐⇒ ∂ρ−1(st, x2t, f0(.|λ0))

∂s

(
∂ρ(ρ−1(st, x2t, f0(.|λ0)), x2t, f0(.|λ0))

∂ρ−1(st, x2t, f0(.|λ0))

)
= IJ

⇐⇒ ∂ρ−1(st, x2t, f0(.|λ0))

∂s
=

(
∂ρ(δ0

t , x2t, f0(.|λ0))

∂δ

)−1

with δ0
t = ρ−1(st, x2t, f0(.|λ0)).Consequently,

ρ−1(st, x2t, f0(.|λ0))− δt︸ ︷︷ ︸
∆(st,x2t, f0, fa)

= −
(

∂ρ(δ0
t , x2t, f0(.|λ0))

∂δ

)−1

(s0
t − st) + o

(
||s0

t − st||
)

(B.13)

with δ0
t = ρ−1

j (st, x2t, f0(.|λ0))

Now let us show that there exists a constant M such that ||s0
t − st|| ≤ Mτ( f0(.|λ0)− fa).

with τ( f0 − fa) =
∫

RK2 | f0(v|λ0)− fa(v)|dv. Norms are equivalent in a finite vectorial space
and without loss of generality, we will derive the results with the L1 norm. By definition:
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s0
t − st =

∫

RK2

exp(δt + x2tv)

1 + ∑J
k=1 exp

{
δkt + x′2jkv

} ( f0(v|λ0)− fa(v))dv

Taking the L1 norm of this vector:

||s0
t − st||1 =

J

∑
j=1

∣∣∣∣
∫

RK2

exp(δjt + x2jtv)

1 + ∑J
k=1 exp

{
δkt + x′2jkv

} ( f0(v|λ0)− fa(v))dv
∣∣∣∣

≤
J

∑
j=1

∫

RK2

∣∣∣∣
exp(δjt + x2jtv)

1 + ∑J
k=1 exp

{
δkt + x′2jkv

}
∣∣∣∣

︸ ︷︷ ︸
≤1

| f0(v|λ0)− fa(v)|dv

≤ J
∫

RK2
| f0(v|λ0)− fa(v)|dv = Jτ( f0(.|λ0)− fa)

This proves the statement. As a consequence, we have: ||s0
t − st||1 = O(τ( f0(.|λ0)− fa))

and o
(
||s0

t − st||
)
= o(τ( f0(.|λ0)− fa))

The problem with the term s0
t − st is that it is an expression of δt which we do not know

under misspecification. As we want to be able to compute this approximation of the error
term, it is not convenient in practice to have an expression which depends on δt. On the other
hand, we know δ0

t and thus, the simple idea that we exploit is to take a Taylor expansion of
the term above around δ0

t . First, let us remark that from equation B.13, we have that:

||δt − δ0
t || = ||δt − ρ−1(st, x2t, f0(.|λ0)|| = O(||s0

t − st||) = O(τ( f0(.|λ0)− fa))

Now let us take the Taylor expansion of s0
t − st around δ0

t :

s0
t − st =

∫

RK2

exp(δ0
t + x2tv)

1 + ∑J
k=1 exp

{
δ̃kt + x′2jkv

} ( f0(v|λ0)− fa(v))dv

+
∫

RK2

∂

∂δ′

{
exp(δ0

t + x2tv)

1 + ∑J
k=1 exp

{
δ0

kt + x′2jkv
}
}
(δt − δ0

t )( f0(v|λ0)− fa(v))dv

︸ ︷︷ ︸
B

+ o
(
||δt − δ0

t ||
)

From what precedes, we know that o
(
||δt − δ0

t ||
)
= o(τ( f0(.|λ0)− fa)). Now, let us show

that term B in the previous expansion is also o(τ( f0(.|λ0)− fa)). Again taking the L1 norm:
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||B||1 =
J

∑
j=1

∣∣∣∣
J

∑
l=1

∫

RK2

∂

∂δl

{ exp(δ0
jt + x′2jtv)

1 + ∑J
k=1 exp

{
δ̃kt + x′2jkv

}
}
(δlt − δ0

lt)( f0(v|λ0)− fa(v))dv
∣∣∣∣

≤
J

∑
j=1

J

∑
l=1

∫

RK2

∣∣∣∣
∂

∂δl

{ exp(δ0
jt + x′2jtv)

1 + ∑J
k=1 exp

{
δ0

kt + x′2jkv
}
}∣∣∣∣

︸ ︷︷ ︸
≤1

|δlt − δ̃lt|| f0(v|λ0)− fa(v)|dv

≤ J2τ( f0(.|λ0)− f )O(τ( f0(.|λ0)− fa)) = O(τ( f0(.|λ0)− fa)
2) = o(τ( f0(.|λ0)− fa))

Thus, ||B||1 = o(τ( f0(.|λ0)− fa)) and by combining all the results together, we get the
final result. When f0(.|λ0) gets ‘’close “ to fa, we have the following approximation:

∆(st, x2t, f0, fa) =

(
∂ρ(δ0

t , x2t, f0(.|λ0))

∂δ

)−1 ∫

RK2

exp(δ0
t + x2tv)

1 + ∑J
k=1 exp

{
δ0

kt + x′2jkv
} ( fa(v)− f0(v|λ0))dv

+ o(τ( fa − f0(.|λ0)))

δ0
t = ρ−1(st, x2t, f0(.|λ0)) and τ( fa − f0(.|λ0)) =

∫
RK2 | fa(v)− f0(.|λ0)(v)|dv .

B.3.2 Global approximation of the MPI

Derivation of ∆j(st, x2t, f0, fa)

Proof.

1 =
ρ(δjt, x2t, fa)

ρ(δ0
jt, x2t, f0)

=

∫
RK2

exp(δjt+x′2jtv)

1+∑J
k=1 exp{δkt+x′2ktv}

fa(v)dv

∫
RK2

exp(δ0
jt+x′2jtv)

1+∑J
k=1 exp{δ0

kt+x′2ktv}
f0(v)dv

⇐⇒
exp(δ0

jt)

exp(δjt)
=

∫
RK2

exp(x2tv)
1+∑J

k=1 exp{δkt+x′2ktv}
fa(v)dv

∫
RK2

exp(x′2jtv)

1+∑J
k=1 exp

{
δ0

jt+x′2ktv
} f0(v)dv

B.3.3 Approximation of the MPI in the mixed logit case

Proof of Proposition 1.1. By definition, we have:

gj(xi, ., f ) : RK1 → [0, 1]

β 7→
∫

RK2

exp
{

x′ij1β + x′2ijv
}

1 + ∑J
k=1 exp

{
x′ik1β + x′2ikv

} f (v)dv

143



g is C∞ on RK1 . Thus, we can take a first order Taylor expansion of gj(xi, ., f1) around β∗
0:

gj(xi, β1, f1) = gj(xi, β∗
0, f1) +

∂g(xi, β, f1)

∂β

∣∣∣∣
β=β∗0

(β1 − β∗
0) + o(||β1 − β∗

0||)

This yields immediately,

g(xi, β∗
0, f ∗0 )− g(xi, β1, f1) =

∫

RK2

exp(x′1ijβ
∗
0 + x′2ijv)

1 + ∑J
k=1 exp

{
x′1ikβ∗

0 + x′2ikv
} ( f ∗0 (v)− f1(v))dv+

∂g(xi, β, f1)

∂β

∣∣∣∣
β=β0

(βa − β0) + o(||β−β∗
0||)

Now let us show that ||β1 − β∗
0|| = ...

By construction, the pseudo true values β∗
0 and β∗

1 maximize the conditional expectation
of the log-likelihood:

β∗
0 = argmax

β∈RK1

E
[
L(xi, yi, β, f ∗0 )

∣∣xi
]

with L(xi, yi, β, f ∗0 ) =
J

∑
j=0

1{yij = 1}log(gj(xi, β, f ∗0 ))

The same goes for β∗
1:

β∗
1 = argmax

β∈RK1

E
[
L(xi, yi, β, f ∗1 )

∣∣xi
]

with L(xi, yi, β, f ∗1 ) =
J

∑
j=0

1{yij = 1}log(gj(xi, β, f ∗1 ))

When the true distribution of RC is f1, we have:

E
[
L(xi, yi, β, f ∗0 )

∣∣xi
]
=

J

∑
j=0

gj(xi, β∗
1, f1)log(gj(xi, β, f ∗0 ))

E
[
L(xi, yi, β, f1)

∣∣xi
]
=

J

∑
j=0

gj(xi, β∗
1, f1)log(gj(xi, β, f1))

B.4 Specification test: composite hypothesis

In this section, we prove Theorem 5.1, which is the main asymptotic result of the paper.
The section is organized as follows. First, we establish the equivalence between the moment
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condition around which we build our test E
[
∑jt ξ jt( f0(·|λ0), β0)hD(zjt)

]
= 0 and the one

characterizing H′
0 : E

[
ξ jt( f0(·|λ0), β0)hD(zjt)

]
= 0. Then, we introduce the notations used in

the proofs and we decompose ξ̂ according to the BLP approximations. Second, we provide
technical lemmas which prove that under the assumptions in E, the BLP approximations
vanish asymptotically. Third, we prove that the BLP estimator is consistent and asymptotically
normal. Finally, we prove the main theorem and we show that under the null the test is pivotal
in the 2 polar cases described in the main text.

B.4.1 Equivalence between moment conditions

Let hD(zjt) our detection instruments. For conciseness, we omit the dependence in f0 and
denote ξ jt( f0(·|λ0), β0) = ξ jt(θ0). We want to prove that the following two moment conditions
are equivalent:

E
[
ξ jt(θ0)hD(zjt)

]
= 0 ⇐⇒ E

[
J

∑
j=1

ξ jt(θ0)hD(zjt)

]
= 0

Let Rt a categorial random variable which exogenously selects a product j with probability
1
J . Formally, we have (ξ jt(θ0), zjt) ⊥ Rjt. By construction, we have:

E
[
ξ jt(θ0)hD(zjt)

]
=

J

∑
k=1

E [ξkt(θ0)hD(zkt)Rkt] =
J

∑
k=1

E [ξkt(θ0)hD(zkt)]E[Rkt]

=
1
J

E

[
J

∑
k=1

ξkt(θ0)hD(zkt)

]

The second line results from independence of (ξ jt(θ0), zjt) and Rjt. This proves the result.

B.4.2 Notations

In the proofs, we will adopt the following notations. If the derivations are done under the
parametric assumption H0 : f ∈ F0 then we omit the dependence in f0 and interchangeably
use ξ jt( f0(.|λ), β) and ξ jt(θ). We also omit the dependence of the BLP pseudo true value in W
and hE(zjt)

37. Then define the following objectives of the GMM minimization

37The BLP pseudo true value depends on W and hE(zjt) when the model is misspecified
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Q̂T(θ̃) =

(
1
T ∑

j,t
ξ̂ jt(θ̃)hE(zjt)

)′
Ŵ

(
1
T ∑

j,t
ξ̂ jt(θ̃)hE(zjt)

)

QT(θ̃) =

(
1
T ∑

j,t
ξ jt(θ̃)hE(zjt)

)′
Ŵ

(
1
T ∑

j,t
ξ jt(θ̃)hE(zjt)

)

Q(θ̃) = E

[
∑

j
ξ jt(θ̃)hE(zjt)

]′
WE

[
∑

j
ξ jt(θ̃)hE(zjt)

]

We also define the following moments

ĝT(θ̃, h) =
1
T ∑

jt
ξ̂ jt(θ̃)h(zjt)

gT(θ̃, h) =
1
T ∑

jt
ξ jt(θ̃)h(zjt)

g(θ̃, h) = E

[
∑

j
ξ jt(θ̃)h(zjt)

]

And recall the definition of Γ(F0, θ̃, h) which is used interchangeably with Γ(θ̃, h)

Γ̂T(θ̃, h) =
1
T ∑

j,t
h(zjt)

∂

∂θ
ξ̂ jt(θ̃)

′

ΓT(θ̃, h) =
1
T ∑

j,t
h(zjt)

∂

∂θ
ξ jt(θ̃)

′

Γ(θ̃, h) = E

[
∑

j
h(zjt)

∂

∂θ
ξ jt(θ̃)

′
]

Furthermore, unless specified, all limits are taken with respect to T; Additionally, we denote
by the expression X = oP(Tκ) a random variable or statistic which is asymptotically degener-
ate of order Ta, ie X = oP(Tκ) ⇔ ∀e > 0 P(|X|T−κ > e) →

T→∞
0, and denote by X = Op(Tκ)

a random variable which is (bounded in probability) of order Tκ, ie ∀e1 > 0∃e2 > 0, ∃TN :
∀T ⩾ TN P(|X|T−κ > e2) < e1. Properties of oP(1) and OP(1) random variables are used
throughout these proofs.
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B.4.3 Feasible Structural Error and BLP approximations

We now decompose the difference between the true structural error ξ jt(θ̃) and the feasible
structural error ξ̂ jt(θ̃) in terms of the different approximations involved in the derivation of
the feasible structural error ξ̂ jt(θ̃). In market t given an assumption F0, a parameter λ̃, market
shares st and product characteristics with preference heterogeneity x2t there exists a unique
δt ∈ RJ such that st = ρ(δt, x2t, f0(·|λ̃)) (Brouwer’s fixed point theorem, see Berry (1994))
so that δt = ρ−1(st, x2t, f0(·|λ̃)). There is no closed form for ρ−1(st, x2t, f0(·|λ̃)) so the NFP
algorithm is used. Denote as C the contraction used to find the mean utilities which solve the
demand equal market share constraint

C(·, st, x2t, f0(·|λ̃)) : δ ∈ RJ 7→ δ + log(st)− log(ρ(δ, x2t, f0(·|λ̃)))
So that for some starting mean utility δ0 ∈ B ⊂ RJ where B is bounded, the mean utility
obtained via NFP at the limit is equal to the unique vector which solves the constraint

δt( f0(·|λ̃)) = ρ−1(st, x2t, f0(·|λ̃)) = lim
H→∞

C(H)(δ0, st, x2t, f0(·|λ̃))

Similarly the error generated by ( f0(·|λ̃, β̃)) can be obtained from NFP at the limit

ξt( f0(·|λ̃), β̃) = δt( f0(·|λ̃))− x1t β̃ = lim
H→∞

C(H)(δ0, st, x2t, f0(·|λ̃))− x1t β̃

This way we obtain a vector of mean utilities for each market t. There are 3 approximations to
consider, market shares are not truly observed, the demand integral has to be simulated, and
the contraction is never taken to its limit, so define ξ̂( f0, λ̃)) δ̂( f0, λ̃)) and Ĉ for some starting
value δ0

ξ̂t( f0(·|λ̃), β̃) = Ĉ(H)(δ0, ŝt, x2t, f0(·|λ̃))− x1jt β̃, δ̂( f0, λ̃)) = Ĉ(H)(δ0, ŝt, x2t, f0, λ̃))

Ĉ : δ 7→ δ + log(ŝt)− log(ρ̂(δ, x2t, f0(·|λ0)))

Consequently, we decompose the difference between the error generated by ( f0(·|λ̃), β̃) and
its feasible approximation into 3 differences

ξ jt( f0(·|λ̃), β̃)− ξ̂ jt( f0(·|λ̃), β̃) = δjt( f0(·|λ̃))− δ̂jt( f0(·|λ̃))
= lim

H→∞
C(H)

j (δ0, st, x2t, f0(·|λ̃)))− Ĉ(H)
j (δ0, ŝt, x2t, f0(·|λ̃))

= lim
H→∞

C(H)
j (δ0, st, x2t, f0(·|λ̃)))− C(H)

j (δ0, st, x2t, f0(·|λ̃))

+ C(H)
j (δ0, st, x2t, f0(·|λ̃)))− C(H)

j (δ0, ŝt, x2t, f0(·|λ̃))
+ C(H)

j (δ0, ŝt, x2t, f0(·|λ̃))− Ĉ(H)
j (δ0, ŝt, x2t, f0(·|λ̃))

≡ ρ−1
j (st, x2t, f0(·|λ̃))− Dj(ρ, st, λ̃)

+ Dj(ρ, st, λ̃)− Dj(ρ, ŝt, θ̃)

+ Dj(ρ, ŝt, θ̃)− Dj(ρ̂, ŝt, θ̃)
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In the fourth line, we simply introduce shortened notations for the same objects.

B.4.4 Technical lemmas

The 1st and 2nd lemma establish the smoothness of ρ−1 and the invertibility of the Jacobian
matrix of ρ with respect to δ. In the 3rd lemma, we derive the Lipschitz constant of the contrac-
tion and we prove that it is bounded away from 0 and 1. The 4th lemma ensures that for key
moments and quantities the BLP approximations can be ignored uniformly asymptotically.

Lemma 2.2 ρ−1 is C∞

Proof. We know that the demand function ρ is C∞ and invertible on RJ . Moreover,∀δ ∈ RJ ,
∂ρ(δ,x2t, f )

∂δ ̸= 0. As a consequence, ρ−1 : [0, 1]J → RJ the inverse demand function is also
C∞.

Lemma 2.3 For any δ ∈ RJ , ∂ρ(δ,x2t, f )
∂δ is invertible.

Proof. ∂ρ
∂δ is a J × J matrix such that

(
∂ρ
∂δ

)
j,k

is:

∂ρj (δt, x2t, f )
∂δkt

=





∫
Tjt(v) (1 − Tkt(v)) f (v)dv i f j = k

−
∫
Tjt(v)Tkt(v) f (v)dv i f j ̸= k

with Tjt(v) ≡
exp{δjt+x′2jtv}

1+∑J
j′=1

exp{δj′t+x′
2j′tv}

One can easily check that ∂ρ
∂δ is strictly diagonally dominant. Indeed for each row j:

∣∣∣∣
∂ρj (δt, x2t, f )

∂δkt

∣∣∣∣− ∑
k ̸=j

∣∣∣∣
∂ρj (δt, x2t, f )

∂δkt

∣∣∣∣ =
∫

Tjt(v)

(
1 −

J

∑
k=1

Tkt(v))

)

︸ ︷︷ ︸
>0

f (v)dv > 0

Lemma 2.4 (Contraction mapping Lipschitz constant)
Given parametric assumption F0, under assumptions B-E, assume that starting mean utility δ0 is in
B where B is compact, then without loss of generality there exists some (a, ā) ∈ R2 with ā > a such
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that for any b ∈ B for any j = 1, . . . , J a ⩽ bj ⩽ ā, furthermore denote by X the compact support of
x2jt. Then on B the map C(·, st, x2t, f0(·|λ̃0)) is a contraction with Lipschitz constant

ϵ = max
j=1,...,J

sup
a∈B,b∈[0;ā−a]J ,x2∈X ,λ̃∈Λ0

1 −

∫ exp(aj+bj+x′2jv)

(1+∑k exp(ak+bk+x′2kv))
2 f0(v|λ̃)dv

∫ exp(aj+bj+x′2jv)
1+∑k exp(ak+bk+x′2kv) f0(v|λ̃)dv

which is in (0; 1)

Proof. This proof is inspired by the proof of the Theorem in Appendix 1 of Berry et al. (1995).
Let Cj(·) ≡ C(·, st, x2t, f0(·|λ̃0)), we first determine the partial derivative of Cj(·)

∂Cj(a)
∂aj

= 1 − 1
ρj(a, x2t, f0(·|λ̃))

∫ exp(aj + x′2ktv)(1 + ∑J
k=1 exp(ak + x′2ktv))− exp(2(aj + x′2ktv))

(1 + ∑J
k=1 exp(ak + x′2ktv))

2
f0(v|λ̃)dv

=
1

ρj(a, x2t, f0(·|λ̃))

∫ exp(2(aj + x′2jtv))

(1 + ∑J
k=1 exp(ak + x′2ktv))

2
f0(v|λ̃)dv

∂Cj(a)
∂aj′

=
1

ρj(a, x2t, f0(·|λ̃))

∫ exp(aj + x′2jtv)exp(aj′ + x′2j′tv)

(1 + ∑J
k=1 exp(ak + x′2ktv))

2
f0(v|λ̃)dv

Note that for any j = 1, . . . , J all partial derivatives of Cj(·) are strictly positive and that
the sum of its derivatives evaluated in a equals

J

∑
k=1

∂Cj(a)
∂ak

=
1

ρj(a, x2t, f0(·|λ̃))

∫ exp(aj + x′2jtv)∑J
k=1 exp(ak + x′2ktv)

(1 + ∑J
k=1 exp(ak + x′2ktv))

2
f0(v|λ̃)dv

=
1

ρj(a, x2t, f0(·|λ̃))

∫ exp(aj + x′2jtv)(1 + ∑J
k=1 exp(ak + x′2ktv)− 1)

(1 + ∑J
k=1 exp(ak + x′2ktv))

2
f0(v|λ̃)dv

= 1 −

∫ exp(aj+x′2jtv)

(1+∑J
k=1 exp(ak+x′2ktv))

2
f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
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For any (a1, a2) ∈ B2 let ã = (||a1 − a2||∞, . . . , ||a1 − a2||∞) ∈ RJ then

Cj(a1)− Cj(a2) = Cj(a2 + a1 − a2)− Cj(a2) ⩽ Cj(a2 + ã)− Cj(a2)

⩽
∫ ||a1−a2||J∞

0J

∂Cj(a2 + b)
∂a

db

⩽ ||a1 − a2||∞ sup
a∈B,b∈[0;ā−a]J

J

∑
k=1

∂Cj(a + b)
∂ak

⩽ ||a1 − a2||2 max
j=1,..J

sup
a∈B,b∈[0;ā−a]J ,x2∈X ,λ̃∈Λ0

J

∑
k=1

∂Cj(a + b)
∂ak

≡ ||a1 − a2||2 ϵ

where the 1st inequality holds because Cj(·) is increasing in all its inputs, the 2nd inequal-
ity holds by the fundamental theorem of calculus and by the total derivative formula, the 3rd
and 4th inequalities hold by properties of norms.

We now prove that sup
a∈B,b∈[0;ā−a]J ,λ̃∈Λ0

∑J
k=1

∂Cj(a+b)
∂ak

∈ (0; 1) which will imply that ϵ ∈ (0; 1).

To do so we have to prove that ∑J
k=1

∂Cj(a,st,x2t, f0(·|λ̃))
∂ak

is continuous in (a, x2t, λ̃) and takes values
in (0; 1) almost surely, this way because B, X and Λ0 are compact by Weierstrass’ extreme
value Theorem the sum of partial derivatives will also take values in a compact which is inside
(0; 1), then the supremum will become a maximum which can be attained and which is inside
(0; 1). The sum of partial derivatives is almost surely in (0; 1) because
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∫ exp(aj + x′2jtv)

(1 + ∑J
k=1 exp(ak + x′2ktv))

2
f0(v|λ̃)dv − ρj(a, x2t, f0(·|λ̃))

=
∫ exp(aj + x′2jtv)

(1 + ∑J
k=1 exp(ak + x′2ktv))

2
f0(v|λ̃)dv −

∫ exp(aj + x′2jtv)

1 + ∑J
k=1 exp(ak + x′2ktv)

f0(v|λ̃)dv

=−
∫ exp(aj + x′2jtv)∑J

k=1 exp(ak + x′2ktv)

(1 + ∑J
k=1 exp(ak + x′2ktv))

2
f0(v|λ̃)dv < 0

⇒

∫ exp(aj+x′2jtv)

1+∑J
k=1 exp(ak+x′2ktv)

f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
< 1

⇒
J

∑
k=1

∂Cj(a, x2t, f0(·|λ̃))
∂ak

= 1 −

∫ exp(aj+x′2jtv)

1+∑J
k=1 exp(ak+x′2ktv)

f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
> 0

−

∫ exp(aj+x′2jtv)

1+∑J
k=1 exp(ak+x′2ktv)

f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
< 0

⇒
J

∑
k=1

∂Cj(a, x2t, f0(·|λ̃))
∂ak

= 1 −

∫ exp(aj+x′2jtv)

1+∑J
k=1 exp(ak+x′2ktv)

f0(v|λ̃)dv

ρj(a, x2t, f0(·|λ̃))
< 1

Continuity of the sum of the partial derivatives in (a, x2t) is trivial, continuity in λ̃ also
holds because f0(·|λ̃) must be continuously differentiable via Assumption D. ∀e1 > 0, ∃e2 :
∀(λ1, λ2) : ||λ1 − λ2||2 ⩽ e2 implies | f0(v|λ1)− f0(v|λ2)| < e1 for all v which in turn implies

∀x2 ∈ X , ∀a ∈ B
∣∣∣∣∣
∫ exp(aj + x′2jv)

1 + ∑J
k=1 exp(ak + x′2kv)

( f0(v|λ1)− f0(v|λ2))dv

∣∣∣∣∣

⩽
∫ exp(aj + x′2jv)

1 + ∑J
k=1 exp(ak + x′2kv)

| f0(v|λ1)− f0(v|λ2)|dv ⩽ e1

∣∣∣∣∣
∫ exp(aj + x′2jv)

(1 + ∑J
k=1 exp(ak + x′2kv))2

( f0(v|λ1)− f0(v|λ2))dv

∣∣∣∣∣ ⩽ e1

thus both λ̃ 7→ ρj(a, x2t, f0(·|λ̃)) and λ̃ 7→
∫ exp(aj+x′2jtv

(1+∑J
k=1 exp(ak+x′2ktv))

2
f0(v|λ̃)dv are continuous and

so is their ratio.

Lemma 2.5 (Uniform convergence of objective function wrt BLP approximations)
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Given parametric assumption F0, under assumptions B-E and ∀h which satisfies D

sup
θ̃∈Θ0

√
T||ĝT(θ̃, h)− gT(θ̃, h)||2 P→ 0

sup
θ̃∈Θ0

||Γ̂T(θ̃, h)− ΓT(θ̃, h)||2 P→ 0

sup
θ̃∈Θ0

|Q̂T(θ̃)−Q(θ̃)| P→ 0

Proof. Parts of this proof are inspired from Freyberger (2015). We prove the 3 statements of
the lemma in order

1. Using the properties of the sup, the fact that ∀(A, B) rv, ∀e > 0, ∀α ∈ (0, 1), P(A + B >

e) ⩽ P(A > αe) + P(B > (1 − α)e) and the previous decomposition of the difference
between ξ and ξ̂ we can find an upper bound on the probability that that the difference
between ĝT(·) and gT(·) is above a deviation: For any e1 > 0

P(sup
θ̃

√
T||ĝT(θ, h)− gT(θ, h)||2 > e1) = P(sup

θ̃

√
T

1
T
||∑

j,t
(ξ̂t( f0(·|λ̃), β̃)− ξt( f0(·|λ̃), β̃))h(zjt)||2 > e1)

⩽ P(sup
λ̃

√
T|| 1

T ∑
j,t
(ρ−1(st, x2t, f0(·|λ̃0))− Dj(ρ, st, λ̃))h(zjt)||2 >

e1

3
)

+ P(sup
λ̃

√
T|| 1

T ∑
j,t
(Dj(ρ, st, λ̃)− Dj(ρ, ŝt, λ̃))h(zjt)||2 >

e1

3
)

+ P(sup
λ̃

√
T|| 1

T ∑
j,t
(Dj(ρ, ŝt, λ̃)− Dj(ρ̂, ŝt, λ̃))h(zjt)||2 >

e1

3
)

Then we can prove that each element of the upper bound converges to 0

(a) By properties of contractions and using Lemma 2.4 we have

|ρ−1(st, x2t, f0(·|λ̃0))− Dj(ρ, st, λ̃)| ⩽ ϵH|ρ−1(st, x2t, f0(·|λ̃0))− δ0| ⩽ ϵHκ

for some constant κ which exists due to the compactness of Λ0, X and B. Thus
using the iid nature of the data ??(i), the speed of the NFP algorithm Assumption
E(iii), the triangle inequality, Markov inequality and Cauchy-Schwarz inequality
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the 1st element converges to 0

P(sup
λ̃

√
T|| 1

T ∑
j,t
(ρ−1(st, x2t, f0(·|λ̃0))− Dj(ρ, st, λ̃))h(zjt)||2 >

e1

3
)

⩽ P(
√

TϵHκ|| 1
T ∑

j,t
h(zjt)||2 >

e1

3
) ⩽ P(

√
TϵH 1

T ∑
j,t
||h(zjt)||2 >

e1

3
)

⩽ 3κ

e1

√
TϵH ∑

j

√
E(||h(zjt)||22) →

T→∞
0

(b) Note that Dj is continuously differentiable in s ∈ (0; 1) so that it is uniformly
continuous in s. Indeed C is C∞ in s so that

∂D(ρ, st, λ̃)

∂s
=

H

∏
h=1

∂C(C(h−1)(δ0, st, x2t, f0(·|λ̃)), st, x2t, f0(·|λ̃))
∂s

Next because Λ0 is compact it can be covered by some finite union of closed balls
in RK2 , ie Λ0 ⊂ ∪N

c=1ΛN
0,c with ∀c = 1, . . . , N ΛN

0,c = {λ̃ : ||λ̃ − λc||2 ⩽ rN}, λc ∈ Λ0

and rN →
N→∞

0. Consequently

P(sup
λ̃

1√
T
||∑

j,t
(Dj(ρ, st, λ̃)− Dj(ρ, ŝt, λ̃))hE(zjt)||2 >

e1

3
)

⩽ P( max
c=1,...,N

sup
λ̃∈ΛN

0,c

1√
T
||∑

j,t
(Dj(ρ, st, θ̃)− Dj(ρ, ŝt, θ̃))hE(zjt)||2 >

e1

3
)

⩽
N

∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t
|Dj(ρ, st, λ̃)− Dj(ρ, ŝt, λ̃)| ||hE(zjt)||2 >

e1

3
)

⩽
N

∑
c=1

P(
1√
T
||∑

j,t
(Dj(ρ, st, λc)− Dj(ρ, ŝt, λc))hE(zjt)||2 >

e1

9
)

+
N

∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t
|Dj(ρ, st, λ̃)− Dj(ρ, st, λc)| ||hE(zjt)||2 >

e1

9
)

+
N

∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t
|Dj(ρ, ŝt, λc)− Dj(ρ, ŝt, λ̃)| ||hE(zjt)||2 >

e1

9
)

where the last inequality was obtained using the triangle inequality. Then by uni-
form continuity of Dj in s it follows that ∃e2 > 0 such that ∀c 1√

T
||∑j,t(Dj(ρ, st, λc)−

Dj(ρ, ŝt, λc))hE(zjt)||2 > e1
9 implies 1√

T
||∑j,t(st − ŝt)||2 > e2 thence letting P∗ =

P(·|nt, xt, ξt)
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P∗(
1√
T
||∑

j,t
(Dj(ρ, st, λc)− Dj(ρ, ŝt, λc))hE(zjt)||2 >

e1

9
) ⩽ P∗(

1√
T
||∑

j,t
(st − ŝt)||2 > e2)

⩽ J ∑t E∗(||st − ŝt||2)
e2
√

T
=

J ∑t E∗
(√

∑j(sjt − ŝjt)2
)

e2
√

T
⩽

J ∑t

√
∑j E∗ ((sjt − ŝjt)2

)

e2
√

T

⩽
J ∑t

√
∑j E∗

(
( 1

nt
∑nt

i=1 yijt − E∗(yijt))2
)

e2
√

T
=

J ∑t

√
∑j Var∗( 1

nt
∑nt

i=1 yijt)

e2
√

T

⩽
J ∑t

√
∑j

1
nt

Var∗(yijt)

e2
√

T
⩽ J3/2

e2

1√
T

∑
t

1√
nt

where Markov inequality, Jensen inequality, the fact that yijt ∈ {0; 1}, that εijt is
iid extreme-value type 1 distributed across i, j and t, and the fact that nt is iid and
independent of all other variables have been used. Then taking the expectations
and summing over N on both sides implies by Assumption E(i)

N

∑
c=1

P(
1√
T
||∑

j,t
(Dj(ρ, st, λc)− Dj(ρ, ŝt, λc))hE(zjt)||2 >

e1

9
) ⩽ J3/2N

e2

√
TE(n−1/2

t ) →
T→∞

0

Next using continuity of Dj in λ̃ it must be that for any e1 > 0 there exists some N
such that ∀λ̃ ∈ ΛN

0,c such that ||λ̃ − λc||2 ⩽ rN implies

1√
T

∑
j,t
|Dj(ρ, st, λ̃)− Dj(ρ, st, λc)| ||hE(zjt||2 ⩽

e1

9

because rN →
N→∞

0. By definition of the supremum it also implies that

sup
λ̃∈Λ0,c

1√
T

∑
j,t

|Dj(ρ, st, λ̃)− Dj(ρ, st, λc)| ||hE(zjt||2 ⩽
e1

9

The contraposition is that

sup
λ̃∈Λ0,c

1√
T

∑
j,t
|Dj(ρ, st, λ̃)− Dj(ρ, st, λc)| ||hE(zjt||2 >

e1

9

implies ∀λ̃ ∈ ΛN
0,c ||λ̃ − λc||2 > rN which is impossible by definition of ΛN

0,c.
Consequently

N

∑
c=1

P( sup
λ̃∈Λ0,c

1√
T

∑
j,t
|Dj(ρ, st, λ̃)− Dj(ρ, st, λc)| ||hE(zjt||2 >

e1

9
)

⩽
N

∑
c=1

P(∩λ̃∈ΛN
0,c
||λ̃ − λc||2 > rN) = 0
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Similarly

N

∑
c=1

P( sup
λ̃∈Λ0,c

1√
T

∑
j,t
|Dj(ρ, ŝt, λ̃)− Dj(ρ, ŝt, λc)| ||hE(zjt||2 >

e1

9
) = 0

(c) With the same arguments as in (b)

P(sup
λ̃

1√
T
||∑

j,t
(Dj(ρ, ŝt, λ̃)− Dj(ρ̂, ŝt, λ̃))hE(zjt)||2 >

e1

3
)

⩽
N

∑
c=1

P(
1√
T
||∑

j,t
(Dj(ρ, ŝt, λc)− Dj(ρ̂, ŝt, λc))hE(zjt)||2 >

e1

9
)

+
N

∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t
|Dj(ρ, ŝt, λ̃)− Dj(ρ, ŝt, λc)| ||hE(zjt)||2 >

e1

9
)

+
N

∑
c=1

P( sup
λ̃∈ΛN

0,c

1√
T

∑
j,t
|Dj(ρ̂, ŝt, λc)− Dj(ρ̂, ŝt, λ̃)| ||hE(zjt)||2 >

e1

9
)

=
N

∑
c=1

P(
1√
T
||∑

j,t
(Dj(ρ, ŝt, λc)− Dj(ρ̂, ŝt, λc))hE(zjt)||2 >

e1

9
)

where Dj(ρ, st, λc) = C(H)(δ0, st, x2t, f0(·|λc)). Dj is C∞ in ρ ∈ (0; 1), moreover
ρj(δt, x2t, f0(·|λ̃)) and ρ̂j(δt, x2t, f0(·|λ̃)) are continuously differentiable in Λ0. There-
fore there exists some e2 > 0 such that

1√
T

∑
j,t

|Dj(ρ, ŝt, λc)− Dj(ρ̂, ŝt, λc)| ||hE(zjt)||2 >
e1

9

implies sup
a∈B

1√
T ∑j,t ||ρ(a, x2t, f0(·|λc)− ρ̂(a, x2t, f0(·|λc))||2 > e2, and as B is compact

we can cover it by Ñ closed balls BÑ
b = {a ∈ B : ||a − ab|| ⩽ rÑ} with ab ∈ B for

any b = 1, . . . , Ñ so that

N

∑
c=1

P(
1√
T

∑
j,t
|Dj(ρ, ŝt, λc)− Dj(ρ̂, ŝt, λc)| ||hE(zjt)||2 >

e1

9
)

⩽
N

∑
c=1

P(sup
a∈B

1√
T

∑
j,t
||ρ(a, x2t, f0(·|λc)− ρ̂(a, x2t, f0(·|λc))||2 > e2)

⩽ ∑
c,b

P( sup
a∈BÑ

b

1√
T

∑
j,t
||ρ(a, x2t, f0(·|λc)− ρ̂(a, x2t, f0(·|λc))||2 > e2)

=∑
c,b

P(
1√
T

∑
j,t
||ρ(ab, x2t, f0(·|λc)− ρ̂(ab, x2t, f0(·|λc))||2 > e2)
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where the last equality was obtained reusing arguments from (b). As a conse-

quence let Fjt(v) =
exp(abj+x′2jtv)

1+∑k exp(abk+x′2ktv)
and P∗(·) = P(·|xt, ξt) then using Markov

inequality and Cauchy-Schwarz inequality

P∗(
1√
T

∑
j,t

||ρ(ab, x2t, f0(·|λ̃))− ρ̂(ab, x2t, f0(·|λ̃))||2 > e2)

⩽ J ∑t E∗(||ρ̂(ab, x2t, f0(·|λ̃))− ρ(ab, x2t, f0(·|λ̃))||2)
e2
√

T

⩽
J ∑t

√
∑j E∗

(
( 1

R ∑R
r=1 Fjt(vR)− E∗(Fjt(vR)))2

)

e2
√

T
=

J ∑t

√
∑j Var∗( 1

R ∑R
r=1 Fjt(vr))

e2
√

T

⩽ J3/2

e2

√
T
R

where the fact that vr are iid draws from f0(·|λ̃) independent from all other vari-
ables has been used. It follows by taking the expectation and summing over N and
Ñ that

P(sup
λ̃

1√
T

∑
j,t

|Dj(ρ, ŝt, λ̃)− Dj(ρ̂, ŝt, λ̃)| hE(zjt)||2 →
T→∞

0

by Assumption E(i).

2. The 2nd statement is not formally proven as it largely builds on the proof of the 1st
statement. To see why recall that

Γ̂T(θ̃, h)− ΓT(θ̃, h) =
1
T ∑

jt
h(zjt)

∂

∂θ
(ξ̂(θ̃)− ξ jt(θ̃))

′

More precisely let e′j = (0 . . . 0 1︸︷︷︸
j-th coordinate

0 . . . 0) then

∂ξ jt(θ̃)

∂β
= −x1jt,

∂

∂λ
ξ jt(θ̃) = −e′j

(
∂ρ(δt(λ̃), x2t, f0(·|λ̃))

∂δ

)−1 ∫ exp(δjt(λ̃) + x′2jtv)

1 + ∑J
k=1 exp(δkt(λ̃) + x′2ktv)

∂

∂λ
f0(v|λ̃)dv

Thus the columns of the matrix Γ̂T(θ̃, h)− ΓT(θ̃, h) associated to the derivative in β are

equal to 0. Furthermore using an uniform continuity argument
∣∣∣∣

∂ξ̂ jt(θ̃)

∂λ − ∂ξ jt(θ̃)

∂λ

∣∣∣∣ > e1 is

implied by ||δ̂t(λ̃) − δt(λ̃)||2 > e2 for some e2 > 0. Using the compactness of Λ0 and

Assumption E it is straightforward that sup
λ̃

||Γ̂T(θ̃, h)− ΓT(θ̃, h)||2 P→ 0 for any h which

satisfies the conditions in Assumption D.
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3. The 3rd statement follows from the 1st. Indeed using Cauchy-Schwarz and properties
of the supremum

sup
θ̃∈Θ0

|Q̂T(θ̃)−QT(θ̃)| =|(ĝT(θ̃, hE)− gT(θ̃, hE))
′Ŵ(ĝT(θ̃, hE)− gT(θ̃, hE))

− 2(ĝT(θ̃, hE)− gT(θ̃, hE))
′ŴgT(θ̃, hE))|

⩽ sup
θ̃∈Θ0

||(ĝT(θ̃, hE)− gT(θ̃, hE))||22µ̄(Ŵ)

+ 2 sup
θ̃∈Θ0

||(ĝT(θ̃, hE)− gT(θ̃, hE))||2 sup
θ̃∈Θ0

||gT(θ̃, hE))||2µ̄(Ŵ)

where µ̄(·) maps a square matrix towards its maximum eigenvalue. By D(iv) and

definition of the L2 matrix norm, µ̄(Ŵ)
P→ µ̄(W). Then we apply Jennrich’s ULLN: the

data is iid, Θ0 is compact, and gT(θ̃, hE) = ∑j ξ jt( f0(·|λ̃), β̃)hE(zjt) has an enveloppe with
finite absolute 1st moment because ξ jt( f0(·|λ̃), β̃) = ρ−1(st, x2t, λ̃) − x′1jt β̃ and ρ−1(·)
has a maximum because it is continuous and its input are in a compact and because
β̃ is in a compact and x1jt has finite 4th moments, see Assumption B; Thus by the

CMT sup
θ̃∈Θ0

||gT(θ̃, hE))||2 P→ sup
θ̃∈Θ0

||g(θ̃, hE)||2; Finally using the 1st statement we have

||(ĝT(θ̃, hE)− gT(θ̃, hE))||2 P→ 0 therefore by the CMT

sup
θ̃∈Θ0

|Q̂T(θ̃)−QT(θ̃)| P→ 0

B.4.5 Asymptotic Properties of the BLP estimator

Lemma 2.6 (Consistency of BLP estimator)
Given parametric assumption F0 and under assumptions B-E

θ̂
P→ θ0

Proof. We prove consistency using arguments for the consistency of M-estimators. For any
e1 > 0 such that |θ̂ − θ0| > e1 then by Assumption D(iii) there exists some e2 > 0 such that
Q(θ̂)−Q(θ0) > e2 as θ0 is the unique minimizer of the objective. Thence for any e1 > 0, ∃e2 >
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0 such that

P(|θ̂ − θ0| > e1) ⩽ P(Q(θ̂)−Q(θ0) > e2)

= P(Q̂T(θ0)−Q(θ0) +Q(θ̂)− Q̂T(θ̂) + Q̂T(θ̂)− Q̂T(θ0) > e2)

⩽ P(Q̂T(θ0)−Q(θ0) +Q(θ̂)− Q̂T(θ̂) > e2)

⩽ P(Q̂T(θ0)−Q(θ0) > (1 − α)e2) + P(Q(θ̂)− Q̂T(θ̂) > αe2)

where α ∈ (0; 1), the 2nd inequality comes from the fact that Q̂T(θ̂)− Q̂T(θ0) is almost surely
negative by definition of θ̂, and the 3rd inequality is obtained by utilizing properties of indi-
cator functions. Then by a direct implication of Lemma 2.5 the right-hand-side converges to
0.

Lemma 2.7 (Asymptotic normality of BLP estimator)
Given parametric assumption F0, under assumptions B-E and under H0 : f ∈ F0

√
T(θ̂ − θ0) =

(
Γ′(θ0, hE)WΓ(θ0, hE)

)−1 √TΓ′(θ0, hE)WgT(θ0, hE) + oP(1)

Furthermore under H0; f ∈ F0

√
T(θ̂ − θ0)

d→N (0, (Γ′(θ0, hE)WΓ(θ0, hE))
−1Γ′(θ0, hE)WΩ(F0, hE)WΓ(θ0, hE)

(Γ′(θ0, hE)WΓ(θ0, hE))
−1)

Proof. We prove asymptotic normality using arguments from M-estimators asymptotics. From
Taylor’s Theorem there exists some θ̃ such that ||θ̃ − θ0||2 ⩽ ||θ̂ − θ0||2 and

ĝT(θ̂, hE) = ĝT(θ0, hE) + Γ̂T(θ̃, hE)(θ̂ − θ0)

⇒
√

TΓ̂′
T(θ̂, hE)ŴĝT(θ̂, hE) =

√
TΓ̂′

T(θ̂, hE)ŴĝT(θ0, hE) + Γ̂′
T(θ̂, hE)ŴΓ̂T(θ̃, hE)

√
T(θ̂ − θ0) = 0

⇔
√

T(θ̂ − θ0) = −
(
Γ̂′

T(θ̂, hE)ŴΓ̂T(θ̃, hE)
)−1 √

TΓ̂′
T(θ̂, hE)ŴĝT(θ0, hE)

where the 1st implication is due to the FOC Assumption D(v). Then, we apply the CMT to
(A, B) 7→ (A′BA)−1A′B which is a continuous mapping if A and B are full rank so that when
taking A = Γ̂T(θ̂, hE) and B = Ŵ we obtain:

√
T(θ̂ − θ0) = −

(
Γ′(θ0, hE)WΓ(θ0, hE)

)−1 √TΓ′(θ0, hE)WgT(θ0, hE) + oP(1)

To prove that plim Γ̂T(θ̂, hE) = plim Γ̂T(θ̃, hE) = Γ(θ0, hE) we make the following decomposi-
tion

Γ̂T(θ̂, hE)− Γ(θ0, hE) = Γ̂T(θ̂, hE)− ΓT(θ̂, hE) + ΓT(θ̂, hE)− Γ(θ̂, hE) + Γ(θ̂, hE)− Γ(θ0, hE)
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where the 1st difference is oP(1) by Lemma 2.5, the 3rd difference is oP(1) by the CMT and
the consistency of θ̂, see Lemma 2.6, and the 2nd difference is oP(1) by Jennrich’s ULLN. The

ULLN can be applied if and only if ∑j hE(zjt)
∂ξ jt(θ)

∂θ has an enveloppe with finite 1st absolute

moments: ξ jt(θ) = ρ−1(st, x2t, f0(·|λ))− x′1jtβ and
∂ξ jt(θ)

∂β = x1jt with x1jt has finite moments of

order 4 by Assumption B(iv), whereas
∂ξ jt(θ)

∂λ = ∂ρ−1(st,x2t, f0(·|λ̃))
∂λ and ρ−1 is C∞ with arguments

(st, x2t, λ) which take values in a compact thus ∂ρ−1

∂λ has bounds.

Thence plim Γ̂T(θ̂, hE) = plim Γ̂T(θ̃, hE) = Γ(θ0, hE) which is full rank by Assumption D(ii),
plim Ŵ = W which is full rank by Assumption D(iv), and by Lemma 2.5 plim

√
T(ĝT(θ0, hE)−

gT(θ0, hE)) = 0 so we can apply the aforementioned CMT and by the CLT which can be
applied because g(θ0, hE) = 0 under the null

√
T(θ̂ − θ0) =−

(
Γ′(θ0, hE)WΓ(θ0, hE)

)−1 √TΓ′(θ0, hE)WgT(θ0, hE) + oP(1)
d→N (0, (Γ′(θ0, hE)WΓ(θ0, hE))

−1Γ′(θ0, hE)WΩ(F0, hE)WΓ(θ0, hE)

(Γ′(θ0, hE)WΓ(θ0, hE))
−1)

B.4.6 Asymptotic distribution of the test statistic

Proof of Theorem 5.1

Proof. This proof leans heavily on the proof of Lemma 2.7. By Taylor’s Theorem there exists θ̃

such that ||θ̃ − θ0||2 ⩽ ||θ̂ − θ0||2
√

TĝT(θ̂, hD) =
√

TĝT(θ0, hD) + Γ̂T(θ̃, hD)
√

T(θ̂ − θ0)

= (I|hD|0 − Γ(θ0, hD)(Γ′(θ0, hD)WΓ(θ0, hD))
−1Γ′(θ0, hD)W)

√
T




gT(θ0, hD)

gT(θ0, hE)


+ oP(1)

≡ (I|hD|0 G)
√

T




gT(θ0, hD)

gT(θ0, hE)


+ oP(1)

The second equality is obtained by relying on the proof of Lemma 2.7 to express
√

T(θ̂ − θ0) as
a function of moments, by relying on Lemma 2.5 so that plim

√
TĝT(θ0, hD) = plim

√
TgT(θ0, hD)

and plim Γ̂T(θ̃, hD) = plim ΓT(θ0, hD), and by using the CMT.
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• Under H0 : f ∈ F0 then E
[
∑j hD(zjt)ξ jt(θ0)

]
= 0 by LIE. So using the CLT and Slutsky’s

Lemma we obtain √
TĝT(θ̂, hD)

d→ Z ∼ N (0, Ω0)

where

Ω0 =

(
I|hD|0 G

)



Ω(F0, hD) Ω(F0, hD, hE)

Ω(F0, hD, hE)
′ Ω(F0, hE)







I|hD|0

G′




with

Ω(F0, hD) = E

[(
∑

j
ξ jt( f (.|λ0), β0)hD(zjt)

)(
∑

j
hD(zjt)ξ jt( f0(.|λ0), β0)

)′]

Ω(F0, hD, hE) = E

[(
∑

j
ξ jt( f (.|λ0), β0)hD(zjt)

)(
∑

j
hE(zjt)ξ jt( f0(.|λ0), β0)

)′]

G = −Γ(θ0, hD)
[
Γ(θ0, hE)

′WΓ(θ0, hE)
]−1 Γ(θ0, hE)

′W

Thence by the continuous mapping theorem:

S(hD,F0, θ̂) = ĝT(θ̂, hD)
′Σ̂ĝT(θ̂, hD)

d→ Z′ΣZ

• Under H′
1 : E

[
∑j hD(zjt)ξ jt( f0(·|λ0), β0)

]
̸= 0, we have by Lemma 2.5, by consistency

of θ̂
P→ θ0 and the CMT:

ĝT(θ̂, hD) = gT(θ0, hD) + oP(1)

Thus by Assumption D(iv) and the CMT

S(hD,F0, θ̂)

T
P→ E

[
∑

j
hD(zjt)ξ jt( f0(·|λ0), β0)

]′
ΣE

[
∑

j
hD(zjt)ξ jt( f0(·|λ0), β0)

]

︸ ︷︷ ︸
κ(hD,F0,θ0)

Under H′
1, κ(hD,F0, θ0) is strictly positive because Σ is positive definite. Thence,

∀q ∈ R lim
T→∞

P(S(hD,F0, θ̂) > q) = lim
T→∞

P

(
S(hD,F0, θ̂)− q

T
> 0

)

= P(κ(hD,F0, θ0) > 0)

= 1
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where the 2nd equality holds because convergence in probability implies convergence
in distribution.

B.4.7 Application of Theorem 5.1 to the 2 polar cases

1. Sargan-Hansen J test
If hD = hE, with W and Σ are set to be equal to the GMM 2-step optimal weighting
matrix

Σ = W = E

[(
∑

j
ξ jt( f0(·|λ0), β0)hE(zjt)

)(
∑

j
ξ jt( f0(·|λ0), β0)hE(zjt)

)′ ]−1

= Ω(F0, hE)
−1

Then under H0:
S(hD,F0, θ̂)

d→ χ2
|hE|0−|θ|0

Proof. By applying Theorem 5.1, we have:

S(hD,F0, θ̂)
d→ Z′ΣZ with Z ∼ N (0, Ω0)

If hD = hE and W = Ω(F0, hE)
−1 then Ω0 simplifies to

Ω0 = Ω(F0, hE)− Γ(θ0, hE)
[
Γ(θ0, hE)

′Ω(F0, hE)
−1Γ(θ0, hE)

]−1
Γ(θ0, hE)

′

= Ω(F0, hE)
1/2MΩ(F0,hE)−1/2Γ(θ0,hE)

Ω(F0, hE)
1/2

with MΩ(F0,hE)−1/2Γ(θ0,hE)
≡ I|hE|0 − PΩ(F0,hE)−1/2Γ(θ0,hE)

is the orthogonal projection on the
space orthogonal to Ω(F0, hE)

−1/2Γ(θ0, hE). Let Z̃ ∼ N (0, I|hE|0), we have by definition:

Z = Ω(F0, hE)
1/2MΩ(F0,hE)−1/2Γ(θ0,hE)

Z̃ =⇒ Σ1/2Z = MΩ(F0,hE)−1/2Γ(θ0,hE)
Z̃

=⇒ Z′ΣZ = Z̃′MΩ(F0,hE)−1/2Γ(θ0,hE)
Z̃

The second line comes from symmetry and idempotence of MΩ(F0,hE)−1/2Γ(θ0,hE)
. Orthog-

onal projections have eigenvalues equal to either 0 or 1 with the number of eigenvalues
equal to one corresponding to the rank of the space it projects into, which in our case is
|hE| − |θ|0. If we denote by V the matrix of eigenvectors of MΩ(F0,hE)−1/2Γ(θ0,hE)

then note
that V′Z̃ ∼ N (0, I|hE|0) so that

Z′ΣZ =
|hE|0−|θ|0

∑
k=1

(V′Z̃)2
k ∼ χ2

|hE|0−|θ|0
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2. Non-overlapping hD and hE
If Ω0 is full rank and if the econometrician sets Σ = Ω−1

0 , then our test statistic has the
following asymptotic distribution under H0:

S(hT,F0, θ̂)
d→ χ2

|hD|0

One sufficient condition for Ω0 being full rank is (ξ jt( f (·|λ0), β0))
J
j=1 is independent

across j and (hE(zjt), hD(zjt)) not being perfectly colinear.

Proof. The asymptotic result is direct; (ξ jt( f0(·|λ0), β0))
J
j=1 being independent across j

and (hE(zjt), hD(zjt)) not being perfectly colinear implies that

Ω(F0, hE, hD) = ∑
j

E
[
ξ jt( f0(·|λ0), β0)

2hE(zjt)hD(zjt)
′
]

⇒ Ω0 = ∑
j
(I|hD|0 G)Var


ξ jt( f0(·|λ0), β0)




hD(zjt)

hE(zjt)










I|hD|0

G′




Thus Ω0 is positive definite because it is the sum of positive definite matrices.

B.5 Properties of the MPI in the composite specification test: f ∈ F0

Proof of Proposition 3.3.

From Corollary ??. Under Assumption A,

Ha : f /∈ F0 =⇒ E[ξ jt( f0(·|λ0), β0)|zjt] ̸= 0 a.s

=⇒ E[ξ jt( f0(.|λ0), β0)|zjt]
2 > 0 a.s

=⇒ E
[
E[ξ jt( f0(.|λ0), β0)|zjt]

2] > 0

=⇒ E
[
E[ξ jt( f0(.|λ0), β0)E[ξ jt( f0(.|λ0)|zjt]|zjt]

]
> 0

=⇒ E
[
ξ jt( f0(.|λ0), β0)E[ξ jt( f0(.|λ0)|zjt]

]
> 0

=⇒ ∀α ̸= 0 H′
1 : E

[
ξ jt( f0(.|λ0), β0) αE[∆

ξ jt
0,a|zjt]︸ ︷︷ ︸

h∗D(zjt)

]
̸= 0

From Theorem 5.1, under assumptions B-E,

Ha =⇒ ∀q ∈ R+, P(S(h∗D,F0, θ̂) > q) → 1
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C Additional results and comments

C.1 Literature on the identification of the distribution of RC

In this section, we briefly summarize some recent findings on the identification of random
coefficients in multinomial choice models has been extensively studied in the literature. In
their seminal paper, Berry and Haile (2014) shows the identification of the demand functions ρ
in a framework that encompasses the BLP model but their result does not entail identification
of the random coefficients’ distribution per se. To achieve their identification result, they
require a completeness condition on the instruments as well as additional conditions (eg:
connected substitutes) to ensure invertibility of the demand functions. They also need to
impose that at least one of the product characteristic has a coefficient that is not random
and that is equal to 1. Notice that in BLP model, the structure implied by the logit shock
guarantees invertibility of the demand functions.

Fox et al. (2012) provides conditions under which the distribution of random coefficients
is identified in a mixed logit model with micro-level data and no endogeneity. Their iden-
tification result requires continuous characteristics in x2t and rules out interaction terms (eg
polynomial terms of x2jt). Moreover, their result is restricted to distributions of random co-
efficients with a compact support - excluding for instance a normally distributed random
coefficient.

Fox and Gandhi (2011) investigates the identification of the joint distribution of random
coefficients vi and idiosyncratic shocks εijt in aggregate demand models without endogeneity.
They also consider a setting where endogeneity is introduced in a very restrictive way. They
show identification under a special regressor assumption and finite support of the unobserved
heterogeneity. The special regressor assumption assumes that a variable in x1t has full support
and has an associated coefficient that is either 1 or -1. This special regressor assumption
is very common in the literature on the identification of random coefficients (see Ichimura
and Thompson (1998), Berry and Haile (2009), Matzkin (2007) and Lewbel (2000)). Their
framework does not nest the standard BLP model as ϵijt and vi are both assumed to have
a finite support but it is more general in other dimensions. They do not exploit the logit
distributional assumption on εijt, they do not impose independence between vi and εijt, their
identification argument can be extended to the case where multiple goods are purchased.

In a setting much closer to ours, Dunker et al. (2022) studies the identification of the
distribution of random coefficients in endogenous aggregate demand models which includes
the BLP model as a special case (in particular, no parametric assumption is made on the
idiosyncratic shock εijt). They make a clever use of the Radon transform to identify f . The
price they have to incur for flexibility is that they need to make stringent assumptions on the
product characteristics: variables in xt are required to be continuous and to satisfy a joint full
support assumption. The idea is to exploit the variation in the covariates in order to trace out
the distribution of rc f . Unfortunately, these requirements are rarely met in real data sets.
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In contrast to the rest of the literature, Wang (2022) adopts all the parametric assumptions
in the standard BLP model and looks for the set of minimal assumptions under which the
distribution of random coefficients is identified. This approach allows him to obtain sufficient
conditions which are much less stringent than the rest of the literature (no special regressor
assumption, no full support assumption, no continuity assumption). To be more specific, he
shows that if the demand functions are identified on an open set of RJ38, then the distribution
of random coefficients is identified. His proof astutely exploits the real analytic property of
the demand functions39.

C.2 Feasible MPI: conditional expectation

C.3 Choice of the large-T asymptotics

In this paper, we study the asymptotics of our test when the number of markets T grows to
infinity. We could also develop an asymptotic theory with J growing to infinity and T staying
fixed but there are many arguments against it. First, from an economic stand point, it’s hard
to conceptually think of a market with a very large number of products and some form of
independence across products. Second, from a theoretical point of view there is a tension
between the identification of demand which require all market shares to be strictly positive,
see Berry and Haile (2014), and the large market asymptotics which require all market shares
to tend to 0 as J grows to infinity, see Berry et al. (2004). At the same time it is well established
that a many (weak) instruments problem can easily occur in a BLP model with a fixed number
of markets and many products especially when using the traditional BLP instruments, see
Armstrong (2016).

Consequently, only markets with perfect competition and a careful choice of instruments
could somehow fit the assumptions necessary for the BLP model to yield consistent estimators
and valid tests with large J. Yet in the majority of empirical IO papers the markets have
imperfect competition, sometimes oligopolies, and use the traditional BLP instruments. Thus
we establish our theory with a large number of independent markets, which is a natural
setting for empirical IO papers and which is not plagued with the aforementioned theoretical
problems.

C.4 Construction of the interval instruments in practice

We now provide more details on how to construct the interval instruments in practice. The
procedure to construct the interval instruments is as follows:

38which can be achieved using Theorem 1 in Berry and Haile (2014)
39In particular, the real analytic property yields that the local identification of ρ on D ⊂ RJ implies identifica-

tion of ρ on RJ . From global identification of ρ, he is then able to show that the random coefficients’ distribution
is identified under a simple rank condition on x2t
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1. Given (F0, Ŵ, hE), the researcher derives the BLP estimator θ̂

2. Then the researcher chooses L points (vl)
L
l=1 ∈ RL in the presumed support of f0(·|λ̂).

3. Finally, the researcher can construct a set of L interval instruments based on the approx-
imations of the MPI that we develop in sections 4.2 and 4.1.

• Global approximation: {πj,l(zjt)}l=1,...,L interval instruments which are such that:

E
[
∆j(st, x2t, f0, fa)|zjt

]
≈ log

(
L

∑
l=1

ωl πj,l(zjt)

)
with πj,l(zjt) =

exp(x′2jtvl)

1+∑J
k=1 exp{δ̂0

kt+x′2ktvl}
∫

RK2

exp(x′2jtv)

1+∑J
k=1 exp

{
δ̂0

jt+x′2ktv
} f0(v)dv

with δ̂0
t the linear projection of δ0

t on zjt (or a carefully chosen subset of zjt).

• Local approximation: {π̄j,l(zjt)}l=1,...,L interval instruments such that

E[∆j(st, x2t, f0, fa)|zjt] ≈
L

∑
l=1

ω̄l π̄j,l(zjt)

with π̄j,l(zjt) =

(
∂ρ(δ̂0

t , x2t, f0)

∂δ

)−1 [
exp(δ̂0

t + x2tvl)

1 + ∑J
k=1 exp

{
δ̂0

kt + x′2ktvl
} − ρj(δ̂

0
t , x2t, f0)

]

with δ̂0
t the linear projection of δ0

t on zjt (or a carefully chosen subset of zjt).

Choice of the L points in the domain of fa The researcher doesn’t know a priori the support
of the true density fa. Thus, he/she must choose points in the domain of definition of fa.
If this choice coincides with points of the support where | f0(·|λ0) − fa| is large, then this
choice generates more informative instruments. In practice, one can take points in the high
density regions of f0(·|λ0) (eg if F0 is the Gaussian family, then one can take points around
the mean λ0). The choice of of the number of instruments N obeys a usual bias variance
tradeoff. On the one hand, a large L allows to better approximate the MPI and thus increases
the detection ability of the instruments. On the other hand, it is well-known that a larger
number of instruments can induce finite sample bias and can distort asymptotic distributions
of estimators and tests such as the over-identification test40; For these reasons we advise not
to use too few or too many interval instruments, in our simulations and application we use
between 10 and 20 instruments. We leave a formal analysis of the optimal choice of L and of
the general approximations properties of the interval instruments for future work.

40see Roodman (2009) for a review on the effect of many possibly weak moments on estimation and testing
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C.5 Feasible MPIs for estimation

As for the global approximation we derived in section 4.2, it is straightforward to show that
for any candidate f0(·|λ0), we can rewrite this approximation of the non-linear part of the
MPI as follows:

E[∆j(st, x2t, f0(·|λ0), fa)|zjt] ≈ log

(
L

∑
l=1

¯̄ωl( f0(·|λ0), fa) ˆ̄̄πj,l(zjt)

)
with ˆ̄̄πj,l(zjt) =

exp(x′2jtvl)

1 + ∑J
k=1 exp

{
ˆ̄δa
jt + x2jkvl

}

and ¯̄ωl( f0, fa) =
ω̄l( fa)

∫
RK2

exp(x′2jtv)

1+∑J
k=1 exp

{
δ0

jt+x′2jkv
} f0(·|λ0)(v)dv

with ˆ̄δa
jt projected first stage estimates of δa

jt, which can be obtained, for example, under the

logit specification. ˆ̄̄πj,l(zjt) don’t depend on f0 and can be used for estimation.

C.6 Estimation procedure when the distribution of RC is a mixture

In this section, we present a procedure to estimate the BLP model when the distribution of
RC is parametrized as a mixture. Namely, we perform the estimation under H0 : f ∈ F0 with
F0 the family of Gaussian mixtures with L components. The pdf of a Gaussian mixture writes
as follows:

∀x ∈ R , f0(x|λ0) =
L

∑
l=1

pl0 fl(x|λl0)
L

∑
l=1

pl0 = 1 L ⩾ 1

where fl0(·|λl0) is the pdf of a N (µl0, σ2
l0).

As long as the means are different (µl0 ̸= µl′0 ∀l ̸= l′), the gaussian mixture is uniquely
characterized by the vector λ0 = (p10, . . . , pL0, µ10, . . . , µL0, σ2

10, . . . , σ2
L0) up to permutations

of indexes41. The objective of our procedure is to estimate the parameters of the model
θ0 = (β0, λ0) where λ0 characterizes the mixture. In general, the problem of estimating a
density by a mixture is solved through the use of the well-known Expectation-Maximization
(EM) algorithm. In our case, the application of this algorithm is made difficult by two main
obstacles. First, we do not observe directly the random coefficients. Second, we do not have
individual choice data which would have enabled us to construct a likelihood as in Train
(2008). As an alternative, we propose to adapt the BLP estimation procedure to estimate the
parameters of a mixture of gaussians instead of the single normal distribution. The mixture
affects the derivation of the market shares. The random coefficient vi is now a gaussian

41If for some l ̸= l′ we have µl0 = µl′0 then the Gaussian mixture becomes observationally equivalent to an
infinite number of other Gaussian mixtures
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mixture. Hence, vi = ∑L
l=1 1{Di = l}vil where (vil)

n
i=1 are iid and have density fl0(·|λl0)

known up to λl0 for l = 1, . . . , L, and where (Di)
n
i=1 are iid categorically distributed with pmf

P(Di = l) = pl0. For all market t and product j, the demand functions are as follows:

ρj(δt, x2t, f0(.|λ0)) = P(j chosen in market t by i|x1t, x2t, ξt)

=
∫

R

exp{x′1jtβ0 + x′2jtv + ξ jt}
1 + ∑J

j′=1 exp{x′1j′tβ0 + x′2j′tv + ξ j′t}
f0(v|λ0)dv

=
L

∑
l=1

pl0

∫

R

exp{δjt + x′2jtv}
1 + ∑J

j′=1 exp{δj′t + x′2j′tv}
fl0(v|λl0)dv

Reparametrization The parameter λ associated with the mixture consists of the means, the
standard deviation and the probability of each component. As highlighted by Ketz (2019) in
the simple Gaussian case, the way we parametrize the model can greatly affect the asymptotic
properties of the estimator as well as the quality of the estimation. In particular, he shows
that the standard deviations σ should be reparametrized in order to avoid boundaries issues
when σ close to 0. We follow this parametrization and perform the minimization with re-
spect to {(+/−)

√
σl}L

l=1 instead and (σl)
L
l=1 directly. An additional difficulty in the case of

mixtures concerns the estimation of the probabilities associated to each component. These
probabilities must all be between 0 and 1 and their sum must be equal to 1. To smoothly
integrate these constraints, we perform the optimization with respect to γ = (γ2, . . . , γL) with
p = (p1, p2, . . . , pL) = ( 1

1+∑L
l=2 exp(γl)

, exp(γ2)

1+∑L
l=2 exp(γl)

, . . . , exp(γL)

1+∑L
l=2 exp(γl)

).

Estimation details Apart from the modification in the computation of the market shares
and the new parametrization of the model, the estimation procedure with a mixture follows
closely the traditional one and the parameters of interest are estimated by minimizing a GMM
criterion. Let Q(θ) the GMM objective function:

Q(θ) = ξ̂(θ)′hE(Z)WhE(Z)′ξ̂(θ)

We now describe the derivation of the Gradient that we provide to the minimization program.

∂Q
∂θ

= 2

[
∂ξ̂(θ)

∂θ

]′
hE(Z)WhE(Z)′ξ̂(θ)

Where ∂ξ̂(θ)
∂β = −x1 and where by the implicit function theorem we have ρ̂j(δt, x2t, λ)− sjt =

0 ∀j, t which implies:
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∂ξ̂(θ)

∂λ
=

∂δ̂(θ)

∂λ
= −

[
∂ρ̂(δ, x2, λ)

∂δ

]−1 ∂ρ̂(δ, x2, λ)

∂λ

• ∂ρ
∂δ is a JT × JT diagonal by block matrix such that:

∂ρj (δt, x2t, λ)

∂δkt
=





∑l pl
∫
Tjlt(v) (1 − Tklt(v)) ϕl(v)dv i f j = k

−∑l pl
∫
Tjlt(v)Tklt(v)ϕl(v)dv i f j ̸= k

with Tjlt(v) ≡
exp{δjt+x′2jtvl}

1+∑J
j′=1

exp{δj′t+x′
2j′tvl}

• ∂ρ
∂λ is a JT × (3L − 1) matrix such that:

∂ρj (δt, x2t, λ)

∂µl
= pl

∫
Tjlt

(
x2jt − ∑

j′
Tj′ltx2j′t

)
ϕ(v)dv

∂ρj (δt, x2t, λ)

∂σl
= pl

∫
Tjlt

(
x2jt − ∑

j′
Tj′ltx2j′t

)
vϕ(v)dv

∂ρj (δt, x2t, λ)

∂γl
=

L

∑
l′=1

ζ(l, l′)
∫

Tjlt

With ζ(l, l′) = −exp(γl)
1+∑k ̸=1 exp(γk)

× exp(γl′ )
1+∑k ̸=1 exp(γk)

+ 1{l = l′} exp(γl)
1+∑k ̸=1 exp(γk)

= −pl × pl′ + 1{l =

l′}pl

C.7 Properties of the feasible approximations of the MPI

So far we have studied the properties of the MPI, which is an ideal instrument that cannot
be derived in practice. Nevertheless, in light of the previous results, the MPI provides a
useful upper bound on the power that can be reached using our specification test. More
precisely, the asymptotic slope reached by the MPI can be interpreted as a power envelope on
our specification test. Ideally, we want our specification test, with the approximated MPIs as
instruments, to achieve slopes close to the ones reached by the MPI. For the sake of exposition,
let us assume homoskedasticity. We now distinguish 2 situations.

First, we consider the case where the econometrician tests H0 against the true alternative
H̄a : ( f , β) = ( fa, βa). This situation is not interesting in practice as the econometrician usually
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doesn’t know the true alternative and doesn’t want to specify an alternative. Nevertheless,
it illustrates that in this specific case, we can (in theory) derive a consistent estimator of the
MPI. Indeed, in this particular case, we can directly derive an analytical expression for the

correction term ∆
ξ jt
0,a either using its definition or the expression in 4.2. Next, we must to

compute the conditional expectation of our the correction term with respect to zjt. This step
is quite challenging because the dimension of zjt is large and because the correction term is
heavily non-linear and non-separable with respect to the endogenous variables. In theory, a
solution is to perform a Sieve non-parametric estimation of the conditional mean and under

standard regularity conditions recover a consistent estimator of E[∆
ξ jt
0,a|zjt]. Unfortunately, the

rate of converge will be extremely slow given the dimension of zjt and we don’t recommend
to do this in practice. Instead, we suggest to use the global approximation and to “exogenize”
the endogenous variables by projecting them on the space spanned by a relevant subset of zjt.
As we show in the Appendix, this strategy yields an estimator which converges faster to a
first order approximation of the MPI.

Second, we consider the more realistic situation where the econometrician tests H0 against
an unspecified alternative. This is the situation of interest in this paper. In this case, we
use the interval instruments that we developed in section 4 as an approximation of the MPI.
Due to the different layers of approximations which intervene in the construction of these
instruments and the absence of knowledge of fa, it is quite difficult to establish conditions
under which these instruments can reach the optimal slope of the MPI. A thorough analysis
of the properties of these instruments is beyond the scope of this paper and may constitute
an interesting starting point for future research. In the Appendix, we present a preliminary
investigation on the theoretical properties of the local approximation. In spite of the lack of
theoretical analysis, our Monte Carlo exercises show that the interval instruments perform
really well in finite sample.

Approximation properties of the interval instruments The interval instruments, ie the ap-
proximation of the MPI denoted as ĥ∗T, work well in practice in the sense that they yield a
valid test which is powerful. However it is difficult to prove that the speed of divergence of
our test when using them is as large as the speed of divergence when using the true MPI
without further assumptions. As described in the previous subsection there are 3 levels of
approximation to the MPI: First, only the 1st order of the expansion of the difference between
the true error and generated error is considered, another term R0 remains42; Second, the
conditional expectation with respect to the full set of instruments is approximated via pro-
jections; Third, the integral which appears within this 1st order approximation is estimated
via a Riemann sum of N points. Consequently, if R0 is negligible, if N is very large, and if
projecting the difference between the generated error and the true error is equivalent to taking

42we have obtained the formula of the approximation of the difference between the true error and the generated
error up to the second order
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its conditional expectation with respect to the instruments, then the slope Cĥ∗T
is equal to Ch∗T .

This result is summarized in the following proposition:

Proposition 3.1
Under Assumption B and C, and assuming strict homoskedasticity E(ξt0ξ ′t0|zt) = IJ then under
H1 : f ̸∈ F0 there exists some sequence (α)N

l=1 such that

ĥ∗T(zjt)
′α + errjt + ˜errjt −→

N→+∞
h∗T(zjt)

almost surely, for some errors errjt ∈ RN and ˜errjt ∈ R such that ˜errjt
as−→

N→+∞
0. As a consequence

Cĥ∗T
= E

(
∑

j
α′ĥ∗T(zjt)ĥ∗T(zjt)

′α

)
+ error + ˜error

for some error ∈ R and some ˜error ∈ R such that ˜error as−→
N→+∞

0. If error = 0 then

Cĥ∗T
−→

N→+∞
Ch∗T = E

(
∑

j
E(∆̃jt(st, x2t,F0, f )|zjt)

2

)

To further comment on this result errjt (error) corresponds to the first and second errors of
approximations of the MPI described above and ˜errjt ( ˜error) corresponds to the third; On the
other hand (α)N

l=1 is a sequence of integration weights whose empirical mean converge to 0.
In addition there are 2 conditions necessary for error = 0. The first and most important one is
that R0 shoud be close to 0, in other words the 1st order approximation should explain most of
the difference between the generated error and the true error. The second condition for error
to be close to 0 is very likely to be satisfied in practice: We need to be able to approximate well
the conditional expectation with respect to zjt of the 1st order approximation of ∆̃. As noted
by Reynaert and Verboven (2014), because most product characteristics are uncorrelated with
the unobserved product characteristics, using a Sieve estimator of the conditional expectation
or a more practical method as is described in our paper or theirs does not seem to make a
lot of difference. If these two conditions are satisfied then errjt is small and therefore error is
small.

C.7.1 Proof of Proposition 3.1

Using the strict homoskedasticity assumption then from ?? we know that

Ch∗T = E(E(∆̃t(F0, f )|zt)
′E(∆̃t(F0, f )|zt)) = E(h∗T(zt)

′h∗T(zt))
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Our goal is therefore to prove that under some conditions

lim
N→+∞

Cĥ∗T
= Ch∗T

and we do so in four steps: First, we prove that there exists some (err1, err2, err3) such that

ĥ∗T(zt)
′α + err1t + err2t + err3t →

N→+∞
h∗T(zt)

Second, we show that err3t →
N→+∞

0 almost surely; Third, we show that there exists some

h̃∗T(zt) and some (error, ˜error) such that

Cĥ∗T
= Ch̃∗T

, Ch∗T = α′E(h̃∗T(zt)
′h̃∗T(zt))α + error + ˜error

and ˜error as→
N→+∞

0; Fourth we conclude. We prove each point in order:

• Denote and recall

ηjt =
∫ exp(δ̂0

jt + x′2jtv)

1 + ∑J
k=1 exp(δ̂0 + x′2ktv)

( f (v)− f0(v|λ0))dv

η̂jt,l =
exp(δ̂0

jt + x′2jtvl)

1 + ∑J
k=1 exp(δ̂0 + x′2ktvl)

⇒ η̂′
jtα = ∑

l
αl

exp(δ̂0
jt + x′2jtvl)

1 + ∑J
k=1 exp(δ̂0 + x′2ktvl)

Mt(·) = x1t

(
E

[
∑

j
x1jthE(zjt)

′
]

WE

[
∑

j
hE(zjt)x′1jt

])−1

E

[
∑

j
x1jthE(zjt)

′
]

WE

[
∑

j
hE(zjt) ·

]

M̂ = x̂1

[
x′1hE(z)(hE(z)′hE(z))−1hE(z)′x1

]−1
x′1hE(z)ŴhE(z)′

M−1
t,∂ρ =

(
∂ρ(δ0

t , x2t, f0(·|λ0)

∂δ

)−1

M̂−1
t,∂ρ =

(
∂ρ(δ̂0

t , x̂2t, f0(·|λ̂)
∂δ

)−1

where (x̂1, x̂2, δ̂0) are transformations of (x1, x2, δ0) (for instance their projection on the
instruments) as described in ??. Then define M̂∂ρ of dimension (J × T)× (J × T) which
is block diagonal with T blocks of dimension J × J equal to M̂−1

t,∂ρ, and define η̂ which is
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the stacked versions of η̂jt. Consequently

h∗T(zt) = E(∆̃(F0, f )|zt) = E ((id − Mt)∆(st, x2t,F0, f )|zt)

= E
(
(id − Mt)(M−1

t,∂ρηt +R0)|zt

)

ĥ∗T(zt)α = AtĥT(z)α

= At(IJ×T − M̂)∆̂′
Nα

= At(IJ×T − M̂)M̂−1
∂ρ η̂α

where At is the matrix which picks the J observations in t, ie At is a J × (J × T) matrix
of zeros except the block from column (J − 1)t + 1 to Jt which is equal to IJ . In other
words

h∗T(zt) = ĥ∗T(zt)α + E ((id − Mt)R0|zt)

+

[
E((id − Mt)M−1

t,∂ρηt|zt)− At(IJ×T − M̂)M̂−1
∂ρ lim

N→+∞
η̂α

]

+

[
lim

N→+∞
(ĥ∗T(zt)α)− ĥ∗T(zt)α

]

≡ ĥ∗T(zt)α + err1t + err2t + err3t

• Next clearly if (vl, cl,N)
N
l=1 are chosen so that ∀l vl is in the support of f (·)− f0(·|λ̂) and

vl+1 − vl+1 = cl,N →
N→+∞

0 then the Riemann sum

η̂′
jtα = ∑

l
αl

exp(δ̂0
jt + x′2jtvl)

1 + ∑J
k=1 exp(δ̂0 + x′2ktvl)

= ∑
l

cl,N

N
( f (vl)− f0(vl|λ̂))

exp(δ̂0
jt + x′2jtvl)

1 + ∑J
k=1 exp(δ̂0 + x′2ktvl)

converges to
∫ exp(δ̂0

jt+x′2jtv)

1+∑J
k=1 exp(δ̂0+x′2ktv)

( f (v)− f0(v|λ̂))dv almost surely when N → +∞, see

arguments for the convergence of Riemann sums. This integral exists by Assumption
C(ii) and implicitly by Assumption ??(i)-(ii). Therefore for any t err3t →

N→+∞
0 almost

surely, which corresponds to ˜errt in the proposition.

• Next for a fixed N, by Assumption ?? using the LLN and the CMT, there exists some
h̃∗T(zt) which is the “probability limit" of ĥ∗T(zt) in the sense that

1
T

S(ĥ∗T,F0, θ0) =
1
T

S(h̃∗T,F0, θ0) + oP(1), h̃∗T(zt) = (id − M̃)M̃−1
t,∂ρη̃t, Cĥ∗T

= Ch̃∗T
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where BLP(·|zt) is the best linear projection operator and

M̃t(·) = x̃1t

(
E

[
∑

j
x1jthE(zjt)

′
]

WE

[
∑

j
hE(zjt)x′1jt

])−1

E

[
∑

j
x1jthE(zjt)

′
]

WE

[
∑

j
hE(zjt) ·

]

M̃t,∂ρ =

(
∂ρ(δ̃0

t , x̃2t,F0, λ0)

∂δ

)−1

η̃jt,l =
exp(δ̃0

jt + x̃′2jtvl)

1 + ∑k exp(δ̃0
kt + x̃′2ktvl)

δ̃0
t = δ0

t − BLP(δ0
t |zt)

x̃1t = x1t − BLP(x1t|zt)

x̃2t = x2t − BLP(x2t|zt)

As a consequence h∗T(zt) rewrites

h∗T(zt) = h̃∗T(zt)α + E ((id − Mt)R0|zt)

+

[
E((id − Mt)M−1

t,∂ρηt|zt)− (id − M̃t)(M̃−1
t,∂ρ lim

N→+∞
η̃tα)

]

+

[
lim

N→+∞
(h̃∗T(zt)α)− h̃∗T(zt)α

]

≡h̃∗T(zt)α + ˜err1t + ˜err2t + ˜err3t

⇒ Ch∗T(zt) ≡ α′E(h̃∗T(zt)
′h̃∗T(zt))α + ˜error + error

where ˜error is a function of ˜err3t and therefore converges to 0 almost surely as N → +∞
and error is a function of h̃∗T(zt), ˜err1t and ˜err2t.

• From the previous point if ˜err1t = ˜err2t = 0, ie

R0 = 0,
[

E((id − Mt)M−1
t,∂ρηt|zt)− (id − M̃t)(M̃−1

t,∂ρ lim
N→+∞

η̃tα)

]
= 0

Then h∗T(zt) =
N→+∞

h̃∗T(zt)α thus Ch∗T =
N→+∞

Ch̃∗Tα = Cĥ∗Tα. Finally using the properties of

best linear projections it can be shown that Cĥ∗T
= Ch̃∗T

⩾ Ch̃∗Tα = Cĥ∗Tα so that lim
N→+∞

Cĥ∗T
=

Ch∗Tα because Ch∗Tα also constitutes an upper bound on Cĥ∗T
. Indeed

Ch̃∗T
= E

(
∆̃t(F0, f )′h̃∗T(zt)

)
E
(
h̃∗T(zt)

′ξ0tξ
′
0th̃

∗
T(zt)

)−1
E
(
h̃∗T(zt)

′∆̃t(F0, f )
)

= E
(
∆̃t(F0, f )′h̃∗T(zt)

)
E
(
h̃∗T(zt)

′h̃∗T(zt)
)−1

E
(
h̃∗T(zt)

′∆̃t(F0, f )
)

⩾ Ch̃∗Tα = E
(
∆̃t(F0, f )′h̃∗T(zt)

)
αE
(
α′h̃∗T(zt)

′h̃∗T(zt)α
)−1

αE
(
h̃∗T(zt)

′∆̃t(F0, f )
)
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where the first second equality is due to the fact that we assume strict exogeneity
E(ξ0tξ0t|zt) = IJ , and the inequality is due to the fact that the best linear projection of
∆̃t(F0, f ) on the subspace h̃∗T(zt)α always has lower second moment compared to the
best linear projection of ∆̃t(F0, f ) on the space h̃∗T(zt).

D Monte Carlo experiments

D.1 Counterfactuals under an alternative distribution

Expressions for price and cross-price elasticities as a function of p1 in the simulation exercise
presented in section 6.2

• Price elasticity:

ξ1 =
p1

s1

∂s1

∂p1
=
∫

−α

(
1 − exp{ui1}

1 + ∑j′∈{1,2} exp{uij′}

)
exp{ui1}

1 + ∑j′∈{1,2} exp{uij′}
fθ(v)dvϕ(α)dα

• Cross price elasticity:

ξ2/1 =
p1

s2

∂s2

∂p1
=
∫

α


 exp{ui1}

1 + ∑J
j′∈{1,2} exp{uij′}


 exp{ui2}

1 + ∑J
j′∈{1,2} exp{uij′}

fθ(v)dvϕ(α)dα

Here, we plot the demand functions generates by the different approximations of the true
densities
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Figure 9: Demand function
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D.2 Finite sample performance of the test

Practical implementation of the test For each setting, we estimate the model for 1000 repli-
cations. Minimization is performed with nloptr ( algorithm: NLOPT-LD-LBFGS). We provide
an analytical gradient. The Threshold for the outer loop is 1e-9 while the threshold for the
inner loop is 1e-13. We use squarem and a C++ implementation for the computation of the
market shares to speed up the contraction. We also parallelize the contraction over markets
using 7 independent cores. Now we formally describe the instruments included in each test.

Instruments

• J(1): differentiation instruments + exogenous characteristics (polynomial terms) + cost
shifters (15 instruments/ degrees of over-identification:8)
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• I(1): first stage instruments: instruments J(1). testing instruments: Interval Instruments:
7 instruments. Points chosen as follows: {µ̂, (µ̂+ k(max(0.25, σ̂)), k(max(0.25, σ̂))} ( f or k =
1, 2, 3)

• J(2): first stage: instruments: instruments J(1). second stage instruments: optimal in-

struments (approximation of E

[
∂ρ−1

j (st,x2t,λ)
∂λ

∣∣∣∣zt

]
)+ exogenous characteristics (polynomial

terms) + cost shifters (12 instruments)

• I(2): first stage instruments: instruments J(2). Testing instruments: Interval Instruments:
7 instruments. Points chosen as follows: {µ̂, (µ̂+ k(max(0.25, σ̂)), k(max(0.25, σ̂))} ( f or k =
1, 2, 3)

Power against local alternatives We now assess the local power properties of our test by
assuming that the random coefficient vi is distributed according to a local alternative. Namely,
we assume vi ∼

(
1 − 1√

T

)
N (2, 1) + 1√

T
Y where Y is an alternative distribution including

exponential, Chi-square, Student, Uniform. We ensure that Y has mean 2 and variance 1. The
results are reported in 13. First, we can observe that except for the uniform local alternative,
our test appears to have non-trivial power against all the other local alternatives. For the
exponential and chi-square distributions, it is clear that our test with interval instruments
outperforms the Sargan-J test with traditional instruments. For the student local alternative,
the results seem quite unstable for small sample sizes but as T increases, interval instruments
also seem to perform better. For the uniform alternative, it appears that we don’t have power
against this local alternative.

Table 13: Empirical power, local alternatives (1000 replications)

Number of markets T=50 T=100 T=200

Test type J I J I Local J I Local J I J I Local J I Local

Exponential 0.266 0.704 0.227 0.677 0.222 0.869 0.272 0.868 0.236 0.982 0.394 0.975

Chi-square 0.217 0.219 0.134 0.174 0.13 0.167 0.096 0.151 0.099 0.171 0.086 0.15

Student 0.212 0.139 0.33 0.436 0.115 0.115 0.127 0.093 0.082 0.13 0.134 0.312

Uniform 0.198 0.1 0.126 0.074 0.107 0.062 0.095 0.051 0.073 0.049 0.084 0.044
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D.3 Finite sample performance of Interval instruments for estimation

Practical implementation of the estimation procedure To assess the performance of our
instruments in estimating the non-linear parameters with a flexible distribution of random
coefficients, we simulate data with a distribution of random coefficients following a mixture
of gaussians and we estimate the parameters of this mixture. For each setting, we estimate
the model for 1050 replications. We select the replications with an objective function below
a certain threshold (in order to avoid local minima). Minimization is performed with nloptr
(algorithm: NLOPT-LD-LBFGS). We provide an analytical gradient, which we describe sub-
sequently. The Threshold for the outer loop is 1e-9 while the threshold for the inner loop is
1e-13. We use squarem and a C++ implementation for the computation of the market shares
to speed up the contraction. We also parallelize the contraction over markets using 7 inde-
pendent core. Before we formally define the different sets of instruments, let us present the
estimation procedure when the distribution of random coefficients is assumed to be a mixture.

Instruments Now we formally describe the instruments present in each different sets used
for estimation

• Differentiation instruments: differentiation instruments + exogenous characteristics (poly-
nomial terms) + cost shifters (20 instruments)

• Optimal instruments are computed in two stages. The first stage instruments consist
of differentiation instruments and exogenous characteristics (polynomial terms). Sec-
ond stage instruments consist of polynomial terms of exogenous characteristics and
the approximation of optimal instruments proposed in Reynaert and Verboven (2014)

(approximation of E

[
∂ρ−1

j (st,x2t,λ)
∂λ

∣∣∣∣zt

]
). The set called optimal instruments includes 15

instruments.

• Interval Instruments are computed in two stages. The first stage instruments consist of
differentiation instruments and exogenous characteristics (polynomial terms). Second
stage instruments are the interval instruments couples with some exogenous charac-
teristics. A total of 23 instruments. The points in the support to compute the inter-
val instruments are chose as follows: we take equally spaced points in the interval
{β3L − 0.5(β3H − β3L), β3H + 0.5(β3H − β3L)}.

Comparison of the performance between the different sets of instruments We now re-
port the mean biases and the empirical

√
MSE of the estimates for each set of instruments

and for different sample sizes. We also plot the distributions of estimates for the non-linear
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parameters for the different sets of instruments. First, we plot the distribution of estimates
obtained when the set of differentiation instruments from Gandhi and Houde (2019) is used
with a sample of T = 200 markets and J = 12 products. We observe that despite a relatively
large sample, the differentiation instruments perform rather poorly in estimating the non-
linear parameters associated with the mixture of Gaussians. In particular, the estimates of the
standard deviation parameters associated to each component are very dispersed and a large
portion of the estimates are bunched at zero. Second, we plot the distribution of non-linear
estimates obtained with the optimal instruments from Reynaert and Verboven (2014). They
tend to perform better than the differentiation instruments as we can see that the estimates are
more concentrated around the true value. Yet, it is important to emphasize that the optimal
instruments display large failure rates caused by perfect colinearity of the instruments. We
report the percentage of replications that subject to perfect colinearity issues for each sam-
ple size (39%, 34%, 31%, 26%, 23%). Finally, we plot the distribution of estimates for the non
linear parameters when we use the interval instruments developed in section ??. It appears
clearly that the interval instruments yield a more concentrated distribution of estimates than
the two other sets of instruments. For the sake of conciseness, we do not report the results
with a mixture with 3 components but the observations we make with two components are
even more exacerbated.

Table 14: Estimation mixture with “differentiation” instruments (1000 replications)

Parameter β0 α β1 β2 β3L σ3L β3H σ3H pL

Sample size true 2 -2 1.5 1 -2 0.5 4 0.5 0.25

T=50, J=12
bias -0.12 0.022 -0.016 -0.018 0.214 0.184 -0.022 -0.045 0.027

√
MSE 0.308 0.06 0.215 0.215 0.633 0.734 0.281 0.35 0.075

T=50, J=20
bias -0.064 0.011 -0.01 -0.011 0.189 0.347 0.022 -0.081 0.025

√
MSE 0.231 0.044 0.165 0.166 0.566 0.887 0.184 0.291 0.059

T=100, J=12
bias -0.058 0.01 -0.012 -0.012 0.233 0.226 0.02 -0.066 0.027

√
MSE 0.204 0.041 0.147 0.148 0.592 0.703 0.256 0.305 0.072

T=100, J=20
bias -0.04 0.006 -0.007 -0.007 0.198 0.423 0.047 -0.101 0.025

√
MSE 0.165 0.032 0.117 0.116 0.552 0.89 0.164 0.27 0.055

T=200, J=12
bias -0.038 0.007 -0.003 -0.003 0.184 0.167 0.011 -0.049 0.019

√
MSE 0.152 0.03 0.11 0.11 0.466 0.601 0.176 0.262 0.053
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Table 15: Estimation mixture with “Optimal” instruments(1000 replications)

Parameter β0 α β1 β2 β3L σ3L β3H σ3H pL

Sample size true 2 -2 1.5 1 -2 0.5 4 0.5 0.25

T=50, J=12
bias -0.09 0.016 -0.012 -0.013 0.076 0.059 0.026 -0.111 0.01

√
MSE 0.296 0.057 0.234 0.232 0.361 0.483 0.212 0.281 0.036

T=50, J=20
bias -0.046 0.007 0 0.001 0.074 0.11 0.028 -0.089 0.01

√
MSE 0.225 0.044 0.178 0.176 0.328 0.563 0.163 0.228 0.033

T=100, J=12
bias -0.041 0.007 -0.004 -0.003 0.054 0.037 0.019 -0.066 0.007

√
MSE 0.202 0.039 0.157 0.158 0.279 0.4 0.154 0.211 0.028

T=100, J=20
bias -0.029 0.004 -0.003 -0.003 0.074 0.107 0.033 -0.074 0.01

√
MSE 0.153 0.03 0.126 0.124 0.311 0.52 0.129 0.194 0.034

T=200, J=12
bias -0.029 0.005 -0.001 -0.001 0.026 0.011 0.021 -0.061 0.004

√
MSE 0.136 0.026 0.111 0.111 0.184 0.313 0.113 0.172 0.018

Table 16: Estimation mixture with Global Interval instruments(1000 replications)

Parameter β0 α β1 β2 β3L σ3L β3H σ3H pL

Sample size true 2 -2 1.5 1 -2 0.5 4 0.5 0.25

T=50, J=12
bias -0.154 0.029 -0.043 -0.045 0.017 0 -0.045 0.004 0.005

√
MSE 0.341 0.067 0.257 0.258 0.277 0.391 0.227 0.259 0.024

T=50, J=20
bias -0.092 0.017 -0.02 -0.021 0.013 0.042 -0.018 -0.003 0.004

√
MSE 0.245 0.048 0.19 0.19 0.248 0.415 0.166 0.22 0.021

T=100, J=12
bias -0.07 0.013 -0.017 -0.019 0.004 -0.012 -0.027 0.005 0.002

√
MSE 0.2 0.039 0.161 0.161 0.167 0.282 0.157 0.201 0.013

T=100, J=20
bias -0.047 0.008 -0.006 -0.007 -0.009 -0.005 -0.008 -0.009 0.001

√
MSE 0.158 0.031 0.13 0.129 0.115 0.264 0.115 0.169 0.005

T=200, J=12
bias -0.039 0.007 -0.004 -0.003 -0.006 -0.027 -0.015 -0.001 0.001

√
MSE 0.141 0.027 0.109 0.109 0.088 0.219 0.108 0.164 0.003
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Table 17: Estimation mixture with Local Interval instruments(1000 replications)

Parameter β0 α β1 β2 β3L σ3L β3H σ3H pL

Sample size true 2 -2 1.5 1 -2 0.5 4 0.5 0.25

T=50, J=12
bias -0.134 0.025 -0.023 -0.024 -0.006 -0.005 -0.039 -0.001 0.003

√
MSE 0.307 0.059 0.26 0.259 0.251 0.34 0.214 0.244 0.019

T=50, J=12
bias -0.084 0.016 -0.024 -0.025 0.019 0.033 -0.023 0.01 0.003

√
MSE 0.245 0.047 0.188 0.186 0.228 0.38 0.15 0.184 0.018

T=50, J=12
bias -0.075 0.015 -0.018 -0.016 0 0 -0.028 0.007 0.001

√
MSE 0.199 0.039 0.159 0.16 0.127 0.225 0.143 0.164 0.005

T=50, J=12
bias -0.039 0.007 -0.011 -0.011 -0.003 0.004 -0.01 0.004 0.001

√
MSE 0.162 0.032 0.129 0.129 0.104 0.226 0.103 0.125 0.004

T=50, J=12
bias -0.037 0.007 -0.008 -0.007 0.002 -0.007 -0.016 0.006 0.001

√
MSE 0.136 0.026 0.11 0.109 0.091 0.174 0.099 0.123 0.003

Figure 10: Distribution of estimates for non-linear parameters with “Differentiation” instru-

ments (T = 200, J = 12)

0

50

100

150

3.5 4.0 4.5

co
un

t

beta_3H

0

50

100

150

0.0 0.5 1.0

co
un

t

sigma_3H

0

100

200

−2 −1 0 1

co
un

t

beta_3L

0

50

100

150

200

0 1 2 3

co
un

t

sigma_3L

180



Figure 11: Distribution of estimates for non-linear parameters with “Optimal” instruments

(T = 200, J = 12)
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Figure 12: Distribution of estimates for non-linear parameters with “Global Interval” instru-

ments (T = 200, J = 12)
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Figure 13: Distribution of estimates for non-linear parameters with “Local interval” instru-

ments (T = 200, J = 12)
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D.3.1 Estimation with a single Gaussian

Table 18: Estimation with a single Gaussian (1000 replications)

Instruments Differentiation ”Optimal” Interval Global Interval Local

Parameter β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3

Sample size true 2 -2 1.5 1 1.5 0.5 2 -2 1.5 1 1.5 0.5 2 -2 1.5 1 1.5 0.5 2 -2 1.5 1 1.5 0.5

T=50, J=12
bias -0.16 0.032 -0.031 -0.028 -0.032 -0.004 -0.09 0.018 -0.016 -0.014 -0.018 -0.003 -0.15 0.03 -0.028 -0.026 -0.03 -0.004 -0.15 0.03 -0.028 -0.026 -0.03 -0.001

√
MSE 0.292 0.057 0.212 0.209 0.138 0.069 0.27 0.053 0.214 0.211 0.138 0.067 0.288 0.056 0.212 0.209 0.138 0.066 0.286 0.056 0.212 0.209 0.138 0.064

T=50, J=20
bias -0.091 0.018 -0.022 -0.022 -0.015 0.001 -0.047 0.009 -0.013 -0.013 -0.006 0.001 -0.084 0.017 -0.021 -0.021 -0.013 0 -0.086 0.017 -0.021 -0.021 -0.014 0.002

√
MSE 0.209 0.041 0.159 0.16 0.106 0.05 0.199 0.039 0.16 0.161 0.106 0.05 0.206 0.041 0.16 0.16 0.106 0.052 0.208 0.041 0.159 0.16 0.106 0.052

T=100, J=12
bias -0.088 0.017 -0.001 0 -0.027 0.001 -0.052 0.01 0.007 0.007 -0.02 0.001 -0.082 0.016 0 0.001 -0.026 0.001 -0.074 0.014 -0.016 -0.016 -0.013 0.001

√
MSE 0.199 0.039 0.146 0.145 0.1 0.045 0.189 0.037 0.148 0.147 0.099 0.047 0.197 0.039 0.146 0.146 0.1 0.044 0.185 0.036 0.151 0.152 0.099 0.044

T=100, J=20
bias -0.043 0.009 -0.011 -0.012 -0.006 -0.001 -0.021 0.004 -0.007 -0.008 -0.002 -0.001 -0.04 0.008 -0.011 -0.012 -0.006 -0.001 -0.035 0.007 -0.01 -0.009 -0.004 0

√
MSE 0.145 0.028 0.115 0.114 0.075 0.035 0.141 0.028 0.115 0.114 0.075 0.035 0.145 0.028 0.115 0.114 0.076 0.035 0.14 0.027 0.116 0.115 0.076 0.035

T=100, J=20
bias -0.038 0.007 -0.012 -0.012 -0.004 0.001 -0.017 0.003 -0.006 -0.007 -0.001 0 -0.032 0.006 -0.009 -0.01 -0.004 0 -0.033 0.006 -0.009 -0.01 -0.004 0.001

√
MSE 0.132 0.026 0.11 0.11 0.073 0.032 0.127 0.025 0.109 0.109 0.069 0.032 0.129 0.026 0.109 0.109 0.069 0.032 0.129 0.026 0.109 0.109 0.069 0.031
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E Empirical application

First stage regression: instruments on price
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Table 19: Estimation results - Logit and Nested Logit

OLS instrumental

variable

(1) (2) (3) (4) (5)

Price/income −0.354∗∗∗ −2.907∗∗∗ −2.356∗∗∗ −2.729∗∗∗ −2.615∗∗∗

(0.041) (0.133) (0.124) (0.053) (0.052)

log(within market shares) 0.420∗∗∗ 0.407∗∗∗

(0.006) (0.006)

Fuel Cost −0.210∗∗∗ −0.138∗∗∗ −0.247∗∗∗ −0.074∗∗∗ −0.126∗∗∗

(0.008) (0.006) (0.009) (0.004) (0.006)

Size(m2) 0.031 0.001 0.158∗∗∗ −0.001 0.104∗∗∗

(0.038) (0.040) (0.041) (0.025) (0.026)

Horsepower(KW/100) 0.136 3.151∗∗∗ 2.511∗∗∗ 2.586∗∗∗ 2.431∗∗∗

(0.089) (0.183) (0.172) (0.080) (0.078)

Foreign 0.351∗∗∗ 0.083 0.120∗ −0.106∗∗ −0.101∗∗

(0.064) (0.073) (0.070) (0.046) (0.044)

Height(m) 0.870∗∗∗ 1.505∗∗∗ 3.487∗∗∗ 1.121∗∗∗ 2.270∗∗∗

(0.216) (0.197) (0.228) (0.125) (0.145)

Gasoline 1.399∗∗∗ 0.625∗∗∗ 1.118∗∗∗ 0.190∗∗∗ 0.422∗∗∗

(0.055) (0.061) (0.063) (0.039) (0.041)

Fuel costimes income 0.020∗∗∗ −0.002∗∗ 0.014∗∗∗ −0.002∗∗∗ 0.007∗∗∗

(0.002) (0.001) (0.002) (0.001) (0.001)

Size imes income −0.005∗∗∗ −0.002∗∗∗ −0.006∗∗∗ 0.0003 −0.002∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Horsepowerimes income 0.009∗∗∗ −0.026∗∗∗ −0.017∗∗∗ −0.027∗∗∗ −0.024∗∗∗

(0.002) (0.002) (0.002) (0.001) (0.001)

Horsepowerimes time −0.084∗∗∗ −0.068∗∗∗ −0.083∗∗∗ −0.038∗∗∗ −0.045∗∗∗

(0.006) (0.007) (0.007) (0.004) (0.004)

Foreign imes income −0.019∗∗∗ −0.015∗∗∗ −0.016∗∗∗ −0.008∗∗∗ −0.008∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Height imes income −0.006 0.032∗∗∗ −0.002 0.016∗∗∗ −0.003

(0.004) (0.004) (0.005) (0.003) (0.003)

Height imes density −0.037∗∗∗ −0.003∗∗∗ −0.037∗∗∗ −0.001∗∗∗ −0.021∗∗∗

(0.004) (0.0003) (0.004) (0.0002) (0.003)

Gasolineimes income −0.016∗∗∗ −0.003∗∗∗ −0.010∗∗∗ 0.0004 −0.003∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

X2p2015s −0.024 −0.019

(0.019) (0.012)

Constant −7.937∗∗∗ −12.482∗∗∗ −11.171∗∗∗ −9.144∗∗∗ −8.506∗∗∗

(0.167) (0.149) (0.167) (0.092) (0.102)

State FE/ Year FE Yes No Yes No Yes

Observations 39,888 39,888 39,888 39,888 39,888

R2 0.385 0.217 0.272 0.686 0.709

Adjusted R2 0.384 0.216 0.271 0.686 0.709

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Baseline specifications: logit and nested logit

Construction of the interval instruments

• Discretization of the support

• normalization of the instruments

E.0.1 Results differentiation instruments

Table 20: counterfactual quantities under different specifications on RCs (20 most popular

cars)

Counterfactual quantity Price elasticity Curvature Marginal cost Mark-up Pass-through

car Manufacturer Logit Gaussian Mixture Logit Gaussian Mixture Logit Gaussian Mixture Logit Gaussian Mixture Logit Gaussian Mixture

Golf Volkswagen -1.09 -0.95 -3.03 1.00 1.14 1.21 1260 -9670 15436 24098 35028 9922 0.92 - 1.30

Polo Volkswagen -0.74 -0.70 -2.50 1.00 1.15 1.09 -6643 -14366 9073 23819 31542 8103 1.05 - 1.09

Passat Volkswagen -1.43 -1.21 -2.27 1.00 1.17 1.57 9488 -1033 17826 24631 35153 16294 1.02 - 2.65

Corsa PSA -0.66 -0.63 -2.28 1.00 1.14 1.07 -8432 -11246 8410 24088 26902 7246 1.02 - 1.12

Fiesta Ford -0.62 -0.60 -2.18 1.00 1.15 1.07 -8983 -10806 7657 23487 25310 6847 1.03 - 1.10

Tiguan Volkswagen -1.32 -1.14 -2.28 1.00 1.17 1.55 6831 -2919 16211 24118 33868 14738 1.01 - 2.62

Golf Volkswagen -1.17 -1.03 -3.12 1.00 1.18 1.27 3128 -7932 16582 23828 34888 10374 0.99 - 1.41

up! Volkswagen -0.53 -0.52 -1.92 1.00 1.14 1.05 -11231 -17703 4594 23278 29749 7453 1.04 - 0.96

Tiguan Volkswagen -1.34 -1.15 -3.09 1.00 1.19 1.38 7051 -4117 19186 23842 35009 11706 1.01 - 1.66

1er-Reihe BMW -1.16 -1.03 -3.09 1.00 1.18 1.28 3845 -769 19179 25138 29753 9805 0.99 - 1.39

Octavia Volkswagen -1.23 -1.08 -2.33 1.00 1.17 1.50 4629 -4504 15464 24211 33345 13377 1.01 - 2.34

A4 Volkswagen -1.56 -1.30 -2.26 1.00 1.19 1.56 13209 1995 20260 25865 37079 18814 1.01 - 2.66

Clio Renault -0.73 -0.70 -2.49 1.00 1.16 1.10 -6240 -8684 9817 23120 25563 7063 1.03 - 1.17

T-Roc Volkswagen -0.87 -0.81 -2.80 1.00 1.17 1.14 -3645 -12275 11578 23798 32427 8575 1.06 - 1.16

Kuga Ford -1.16 -1.03 -3.09 1.00 1.18 1.28 3654 -518 18214 23684 27856 9124 1.03 - 1.39

Golf Volkswagen -1.10 -0.99 -2.34 1.00 1.16 1.44 1548 -7284 13678 23929 32762 11799 0.96 - 2.13

A-Klasse Daimler -1.28 -1.10 -3.07 1.00 1.19 1.35 6608 562 20662 25066 31112 11013 1.01 - 1.56

Golf Volkswagen -1.05 -0.94 -2.33 1.00 1.16 1.42 417 -8115 13135 24177 32710 11460 0.72 - 2.11

Golf Volkswagen -1.18 -1.05 -3.15 1.00 1.18 1.27 3202 -8230 16705 23921 35353 10418 0.98 - 1.40

Octavia Volkswagen -1.05 -0.95 -3.02 1.00 1.17 1.21 380 -8835 14808 23862 33077 9433 0.78 - 1.30

Counterfactual quantities under different specifications
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Figure 14: Estimated demand functions under different specifications

0e+00

1e+05

2e+05

3e+05

4e+05

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

Golf

0

50000

100000

150000

200000

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

Polo

0

50000

100000

150000

200000

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

Passat

0

40000

80000

120000

160000

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

Corsa

5e+04

1e+05

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

Fiesta

0

50000

100000

150000

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

Tiguan

0

50000

100000

150000

200000

250000

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

Golf

25000

50000

75000

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

up!

0

50000

100000

150000

200000

250000

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

Tiguan

0

50000

100000

150000

200000

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

1er−Reihe

0e+00

5e+04

1e+05

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

Octavia

0

50000

100000

150000

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

A4

0

30000

60000

90000

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

Clio

0e+00

5e+04

1e+05

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

T−Roc

0

50000

100000

150000

−50 0 50 100
Price variation (in %)

D
em

an
d 

cu
rv

e

Kuga

Random coefficients specification Logit Gaussian Gaussian Mixture Observed Demand

186



Chapter 3: Selecting Strong and Exogenous
Instruments via Structural Error Criteria

Abstract

Instrumental variables (IVs) allow consistent estimation of the causal effect of endoge-
nous variables on outcomes. However, if IVs are not exogenous and jointly strong, esti-
mators are inconsistent and t-test based Gaussian confidence intervals are invalid. Thus,
in this paper I design a procedure to select a subset of strong and exogenous IVs among
a larger set of potentially weak and / or endogenous IVs in a linear setting. To do so I
formally build losses, risks and risk estimators which are based on the structural errors
being implicitly minimized when performing IV estimation. I shed light into the empirical
and theoretical properties of the risks and find that IV subset selection via risk estimators
minimization consistently select strong and exogenous subsets of IVs for the two-stage
least squares (2SLS) estimator. More specifically, efficiency and consistency results are es-
tablished by considering standard asymptotics, weak IV asymptotics and locally invalid IV
asymptotics, while maintaining the total number of IVs fixed. I confirm the performances
of my IV selection procedures against competing ones’ using Monte Carlo simulations and
lastly I estimate the causal effect of pre-trial detention on offenders guilt by selecting judge
dummy IVs in the first stage.

Keywords: Instrument Selection, Valid Instrument, Weak Instrument, Model Selection
JEL Codes: C52, C14
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1 Introduction

IVs are used to estimate and infer on the causal effect of endogenous variables on outcomes.
Yet applied researchers still struggle in their choice of IVs and specification because of a
complicated trade-off between the quality and number of IVs, and the bias, the efficiency, and
the asymptotic distribution of their IV estimator. Thus, when econometricians have multiple
IVs at their disposal one conventional solution is to use all of them. But for this solution to
work all IVs must be exogenous and jointly strong, which may not be the case in practice.
Another common solution is to use a single IV, typically the IV for which exogeneity can
be best justified. However, this choice is not data-driven and can actually be quite arbitrary.
Instead, in this paper I assume that there exists a strong and exogenous subset of IVs and
propose data-driven methods to find this subset based on out-of-sample validation. To do
so I formally define losses, risks and propose risk estimators in order to consistently choose
strong and exogenous IV subsets even in the presence of endogenous and weak IVs.

Prior work It is well-known that in the presence of weak or endogenous and possibly many
IVs the traditional 2 stage least squares estimator (2SLS) is inconsistent and confidence in-
tervals (CI) built from its Gaussian asymptotics have low coverage. See Stock, Wright, and
Yogo (2002), Hahn and Hausman (2003), Hahn, Hausman, and Kuersteiner (2004), Kiviet and
Kripfganz (2021) for general reviews on weak, many weak, many, and endogenous IVs prob-
lems respectively. The literature has treated each problem separately even tough in practice
they are likely to occur at the same time.

Regarding weak IVs the literature has developed in the last 25 years with the maintained
assumption that IVs are exogenous. It has mainly focused on detecting weak IVs, see Stock
and Yogo (2005), Kleibergen (2007), and Olea and Pflueger (2013), and on inference procedures
which are robust to weak identification, see Anderson and Rubin (1949), Kleibergen (2002),
Moreira (2003), with their subvector counterparts, see Guggenberger, Kleibergen, Mavroeidis,
and Chen (2012), and their nonlinear first stage counterparts, see Antoine and Lavergne (2022)
and Boucher (2022). The current consensus being that if weak IVs are detected such inference
procedures should be used.

The literature on many (weak) IVs has studied the behavior of different k-class estimators
under a many exogenous IVs or a many weak exogenous IVs assumption. Compared to 2SLS,
other k-class estimators reduce finite sample bias, can be consistent under specific assump-
tions on the types of asymptotics, see Hahn et al. (2004), and can allow for valid inference,
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see Mikusheva and Sun (2021) and Andrews, Marmer, and Yu (2019) for reviews on inference
under many weak IVs, and many IVs asymptotics respectively. Part of this literature has fo-
cused on regularizing these estimators, selecting IVs based on first stage fit, see Donald and
Newey (2001), Bai and Ng (2010), Carrasco (2012), Belloni, Chen, Chernozhukov, and Hansen
(2012), Chen, Chen, and Lewis (2021).

Lastly, to deal with (many) endogenous but strong IVs, the literature has focused on de-
tecting endogeneity at the vector or subvector level using overidentifying restrictions types
of tests with more recent papers allowing for heteroskedasticity and possibly many IVs, see
Sargan (1958), K. Newey (1985), Hahn and Hausman (2002), Carrasco and Doukali (2021),
and also focused on devising procedures to select the exogenous IVs directly or indirectly
via regularization, see Andrews (1999), Hall and Peixe (2003), Caner (2009), Kang, Zhang,
Cai, and Small (2016), Windmeijer, Farbmacher, Davies, and Smith (2018), Gautier and Rose
(2021). More recently, several papers on sensitivity analysis derive falsification sets1 for the
linear IV model with homogenous effect and potentially endogenous IVs, see Masten and
Poirier (2021), and Apfel and Windmeijer (2022).

Contribution In a context with a finite number of IVs which is most common in practice,
a strong argument can be made in favor of constructing criteria in order to select a strong
and exogenous subset of IVs. Such criteria do not yet exist and would allow to remove the
irrelevant and misleading information contained in the full set of IVs. Indeed, in case all
the IVs are exogenous or exogenous and strong, IV selection can only improve inference and
lower finite sample bias by reducing the number of IVs and improving their overall strength.
On the other hand when IVs can be endogenous selection is a necessity otherwise the true
causal effect cannot be estimated consistently and valid inference cannot be performed. But
thus far current popular methods for IV selection are either unable to pick exogenous IVs
if endogenous IVs are present as in Donald and Newey (2001), Bai and Ng (2010), Belloni
et al. (2012), or Carrasco and Tchuente (2016), either unable to pick up strong exogenous IVs
if weak exogenous IVs are present as in Andrews (1999) or Kang et al. (2016), either require
an a priori consistent estimator as in Donald and Newey (2001) or Windmeijer et al. (2018).

Accordingly, I consider a linear IV model where the total number of IVs remain fixed,
where IVs can be correlated but also individually weak or strong, and where some IVs enter
the structural equation. This setting with a finite number of IVs and an unknown subset of

1Falsification sets contain the effects which are estimated by different 2SLS estimators when using a single IV
for instrumentation and the rest of the IVs as control variables.
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exogenous IVs is the most common in practice. Note that the endogenous IVs may directly
affect the outcome or indirectly through some unobserved regressor which they are correlated
to. The goal is then to find a subset of strong and exogenous IVs among the full set of IVs. This
is a model selection problem (see Arlot and Celisse (2010) and Bates, Hastie, and Tibshirani
(2021) for recent surveys on model selection) thus I design selection criteria for IV subsets
based on the structural error being implicitly minimized in an IV setting. Hence I define three
prediction losses for IV subsets: A loss based on the exogeneity condition; The mean squared
error of prediction where the endogenous variable has been projected on the IVs; And the
mean squared error of prediction. Then I define the corresponding risks, which are average
prediction losses, and their corresponding cross-validation estimators for IV subsets. Finally,
the IV subset which minimizes the risk is selected and used as IVs whereas the rest of the
IVs are considered endogenous and therefore used as control variables. In terms of theory,
I provide a decomposition of the risks and show that the IV subset selection procedures are
efficient and consistent. If in the full set of IVs there exists a subset which is strong and
exogenous, it will be selected with probability one at the limit. These results are established
by allowing for weak IVs (in the sense of Staiger and Stock (1997) and Andrews and Cheng
(2012)), and by allowing for locally invalid IVs (as in the literature on local misspecificaiton,
see Maasoumi and Phillips (1982), and on sensitivity analysis, see Andrews, Gentzkow, and
Shapiro (2017)). I confirm these findings by looking at the performances of the 2SLS estimator
and at the performances of the weak-identification robust inference procedure from Moreira
(2003) in an extensive simulation exercise. I also apply my methods and select judge dummy
variables in order to estimate the effect of pre-trial detention on the likelihood of being found
guilty.

Outline The outline of the paper is as follows. In the second section of this paper I present
the linear IV model when considering subset of IVs and interpret the estimated parameter in
terms of losses. Then in the third section I define the losses, risks and risk estimators which
are relevant for IV subset selection and present the selection procedure. In the fourth section I
present theoretical guaranties that strong and exogenous sets of IVs are systematically selected
compared to weak and endogenous subsets. In the fifth section I show through simulations
that the methods consistently select strong and exogenous IV subsets and therefore yield
estimators and inference procedures with great performances. In the sixth section I apply my
methods and estimate the effect of pre-trial detention on offenders’ probability of being found
guilty. I conclude in the seventh and final section.
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2 Model, estimator, and loss interpretation

2.1 Linear IV model with endogenous IVs

Consider the following linear IV model with outcome yi, a single endogenous variable xi, Kz

IVs zi among which ziE is a strong exogenous subset and its complement ziE is endogenous
and enter the structural equation linearly

yi = xiβ + z′iEα + ui, E(ui|zi) = 0, E(u2
i |zi) = σ2

u, E(uivi|zi) = ρ (2.1)

xi = z′iπ + vi, E(vizi) = 0, E(v2
i |zi) = σ2

v (2.2)

for i = 1, . . . , n where z′iπ ≡ z′iEπE + z′iEπE and πE is non-zero and fixed with n. To simplify
exposition and calculation, I also impose that the data is centered. The model characterized
by the structural equation or second stage (2.2) and the reduced form equation or first stage
(2.1) is very common in applied work. A single causal effect β is of interest and a few IVs
are used to try to consistently estimate it, see the example below. The set of IVs may be the
result of some interactions between IVs and exogenous controls, or the result of modeling
non-linearly the relation between the endogenous variable and IVs. The only departure from
the usual linear IV model is that only the subset of IVs ziE is exogenous. Intuitively, the
subset of IVs ziE does not satisfy the exclusion restriction and affects yi either directly or
indirectly through some unobservable, see figure 1 in appendix A.1 for some visualization.
To go further, endogeneity as in correlation between ui and zi as in Masten and Poirier (2021)
is already incorporated into this model. Indeed, z′iĒα can be viewed as the linear projection
of the “error” on the IVs2. In fact, when α = 0 then the model reduces to the usual IV model
under exogeneity.

Note that the selection procedures and the formal results are later established under an
independent and identically distributed and conditional homoskedasticity assumption which
can be relaxed to allow for conditional heteroskedasticity without modifying the selection
criteria. Extending the results to the case where xi is a vector is also possible but requires a

2If the model is defined as

yi = x′i β + ũi, E(ziũi) = η, Var(ũ2
i |zi) = σ2

u , Cov(ũi, vi|zi) = ρ

xi = z′iπ + vi, E(vizi) = 0, E(vi2|zi) = σ2
v

then ũi can be projected on zi so that ũi = z′iζ + ui where E(uizi) = 0 and ζ ≡ E(ziz′i)
−1E(ziũi) = E(ziz′i)

−1η.
Consequently, ζ = 0 ⇔ η = 0 although if ∃j : ζ j ̸= 0 then ζ j′ = 0 ̸⇔ .ηj′ = 0.
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more complex modelization of IV weakness at the vector level and additional assumptions
to obtain the consistency of the selection procedures. As for exogenous controls, they can be
projected out a la Firsch-Waugh with little consequences and are therefore omitted. A setting
with many IVs or a fully non-linear modelization of the first stage are outside the scope of
this paper.

Clearly β is identified when using ziE as IVs and ziE as control variables but in practice it
cannot be estimated consistently because E is unknown. For this reason it is key to reformulate
the model and consider the 2SLS estimator for a specific subset of IVs but before that consider
the following simple example of the model characterized by (2.1) and (2.2).

Example: weather IVs Consider estimating the following demand curve for fish at the Ful-
ton fish market as in Graddy (2006)

Qi = Piβ + X′
iδ + ui

where i denotes the day, Qi the total amount of fish sold during day i, Pi the average daily
price of the fish, and Xi various control variables. Clearly Pi is endogenous because it is
determined simultaneously with Qi. Consequently, the demand curve must be augmented by
the following reduced form first stage equation

Pi = π1coldi + π2windi + π3raini + π4stormyi + π5mixedi + X′
iγ + vi

where coldi, windi, raini, stormyi, and mixedi are available weather IVs. Then to identify β it
must be that the weather variables are cost shifters which affect demand only through price.
But some IVs such as windi may not affect supply significantly, and some IVs such as coldi may
not have a direct effect on demand. Thus, it is unclear which weather IV is truly exogenous
and strong. Therefore, instead of arguing (with difficulty) for the validity of specific weather
IVs it seems much more natural to select a strong and exogenous subset of IVs in a data
driven way.

2.2 Subset model and subset IV 2SLS

Before describing the IV subset selection method, the model and the 2SLS estimator for a
given subset of IVs must be defined and additional notations must be introduced.

In the rest of the paper, let S denote the collection of all non-empty subsets of

{zi1; zi2; . . . ; ziKz}
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The cardinality of S is therefore 2Kz − 1. The complement of S is denoted as S in the sense
that S ∪ S = {zi1; zi2; . . . ; ziKz} and S ∩ S = ∅. The IVs associated to S ∈ S are denoted as
ziS which is a random vector of dimension s = |S|0 where | · |0 denotes the counting norm,
and πS is the subvector of π of dimension s associated to S. Let Σ ≡ E(ziz′i), and for any
S ∈ S let ΣS = E(ziSz′iS). In addition, to simplify notations, I denote wi ≡ (yi, xi, z′i)

′ the
observed variables for individual i. Furthermore, let y ≡ (y1, y2, . . . , yn)′ be the n × 1 vector
of stacked outcomes over the sample, let x ≡ (x1, x2, . . . , xn)′ be the n × 1 vector of stacked
endogenous variables, let z ≡ (z1 z2 . . . zn)′ be the n × Kz matrix of stacked IVs, and let
w ≡ (w1 w2 . . . wn)′ be the n × (Kz + 2) matrix of stacked observed variables. Similarly,
u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn), and zS = (z1S z2S . . . znS)

′ for any S ∈ S .

As discussed the subset of exogenous IVs E is unknown a priori, thus without selection
it is not possible to estimate β consistently. As a consequence, some candidate S has to be
considered for instrumentation and its complement S has to enter as a vector of control vari-
ables. When S is picked for instrumentation and S ⊂ E the model is called valid, whereas
when S = E the model is called the oracle model. In both these cases β can be estimated
consistently, see figure 2 in appendix A.1. If the full vector of IVs zi is used for instrumenta-
tion, then no instrument should be included as a control variable. Consequently, if subset S is
considered for instrumentation the model can be rewritten as

yi = xiβ + z′iSαS + uiS, xi = z′iSπS + z′iSπS + vi, E(zivi) = 0 (2.3)

for some (αS, uiS). Since ziS is considered a vector of control variables, it can be projected
out a la Frisch-Waugh. Thus, except in the rest of the paper except the proofs, I denote
(yi, xi, ziS) ≡ (yi, xi, ziS) − BLP((yi, xi, ziS)|ziS) where BLP(·|ziS) is the best linear projection
on ziS. Consequently, the model instrumented by S (2.3) can be rewritten as

yi = xiβ + uiS, E(uiSziS) = E(xiziS) = 0 (2.4)

xi = z′iSπS + vi, E(vizi) = 0 (2.5)

where uiS = z′iEα + ui, Var(uiS|zi) = σ2
u, Var(vi|zi) = σ2

v and Cov(uiS, vi|zi) = ρ. Hence,
if subset S is considered for instrumentation the fact that β can be estimated consistently
depends on whether E(ziSuiS) is close to zero or not, which is the case when α is close to zero
and when S is close to E, and on whether πS is equal to zero or not.

From the model instrumented by S characterized by (2.4) and (2.5) I define the 2SLS subset
IV estimator

β̂S =
x′PzS y
x′PzS x

= β +
x′PzS uS

x′PzS x
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where PzS = zS(z′SzS)
−1zS is the orthogonal projection on zS. For exposition, the paper focuses

on 2SLS, but the criteria and results developed for 2SLS also work for any k-class estimators
(which possess moments). In fact, using k-class estimators allow to relax some of the assump-
tions required for the consistency of the selection procedures.

2.3 Interpreting the causal effect in terms of losses

Having rewritten the model and estimator when subset S is considered for instrumentation,
it is necessary to understand what are the losses of interest in the linear IV model. This will
guide the choice of criteria for IV subset selection.

Traditionally, the causal effect β is defined as the parameter for which the exogeneity
condition is satisfied. Consequently, when instrumenting with S the structural parameter β is
the minimizer of a weighted sum of the squared correlations between the subset of IVs S and
the error

β(S, W) = Argmin
β̃

E((yi − xi β̃)z′iS)WE(ziS(yi − xi β̃))

for some symmetric full ranked weighting matrix W. β(S, W) is the set of parameters that
can be estimated given weights W and IVs S, it is the set of pseudo true values or target
set induced by the minimization of the loss based on the exogeneity condition. Taking some
empirical counterpart of the population moments in the objective and assuming validity of
the IVs will yield the different k-class and GMM estimators. A natural candidate for W is
W = Σ−1

S , ie the correlation structure of the IVs is controlled for. Therefore, given IV set S
let βS be the target parameter set in IV estimation which minimizes the following exogeneity
based loss

βS = Argmin
β̃

E((yi − xi β̃)z′iS)Σ
−1
S E(ziS(yi − xi β̃)) (2.6)

If S is irrelevant as in πS = 0 then βS = R, if S is relevant but possibly endogenous as in
πS ̸= 0 then βS = β + (π′

SΣSπS)
−1π′

SE(ziSz′iE)α, if S is relevant and exogenous as in πS ̸= 0
and π′

SE(ziSz′iE)α = 0 then and only then is the parameter to be estimated equal to the causal
effect βS = β. Hence, as the mean square error is the loss of interest in linear model, a loss of
specific interest in linear IV models is based on the exogeneity condition.

More historically, the goal behind IV estimation is trying to perform ordinary least squares
minimization while circumventing the endogenous nature of the regressor. So instead of
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using xi as a regressor only its (potentially) exogenous part BLP(xi|ziS) = z′iSπS the best
linear projection of xi on ziS is used. In that sense βS can be rewritten as

βS = Argmin
β̃

E((yi − z′iSπS β̃)2)

As before βS = R if πS = 0, βS = β + (π′
SΣSπS)

−1π′
SE(ziSz′iE)α if πS ̸= 0, and βS = β if

πS ̸= 0 and π′
SE(ziSz′iE)α = 0. Hence, a second natural loss to minimize in a linear IV model

given IV set S is the mean square error with the endogenous variable projected on the IVs.
See appendix D.1 and Proposition 4.1 and 4.2 for formal results.

Having defined the IV subset estimator and the losses of interest in linear IV models for
any candidate for instrumentation S, I formally design the criteria for the selection of IV
subsets in the next section.

3 Risks for IV sets

In statistics and machine learning model selection is now understood within a common frame-
work, see Arlot and Celisse (2010), and IV subset selection can also be understood within this
framework. Thus, in this section I introduce prediction losses, risks, and risk estimators for
IV subsets. In practice these risk estimators are computed for each IV subset and the subset
which minimizes them will be chosen for instrumentation. Lastly, I describe the desirable
properties of IV subset selection procedures.

3.1 Model selection for IV subsets

Prediction losses In model selection the performances of an estimator (or of an IV subset
in this case) are measured with prediction losses. Indeed, if the right model is picked then
it should perform very well with new data. Prediction losses are usually defined as average
prediction errors or average out-of-sample discrepancies with respect to a new observation w∗

conditional on the original sample (wi)
n
i=1 where w∗ has the same DGP but is independent of

(wi)
n
i=1. Let En(·) ≡ E(·|(wi)

n
i=1) denote the expectation conditional on the original sample,
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then define the following losses for any IV subset S

LEXO(w∗; β̃, S) = En

(
(y∗ − x∗ β̃)z∗

′
S

)
Σ−1

S En
(
z∗S(y

∗ − x∗ β̃)
)

LPMSE(w∗; β̃, S) = En

(
(y∗ − z∗

′
S πS β̃)2

)

LMSE(w∗; β̃) = En

(
(y∗ − x∗ β̃)2

)

LEXO corresponds to an out-of-sample counterpart of the exogeneity based loss defined in
the previous section, if a new observation w∗ is at disposal then the correlation between the
error and the IVs should be small and therefore LEXO should be small. LPMSE corresponds
to an out-of-sample counterpart of the mean square error of prediction after projecting the
endogenous variable on the IVs, again for a new observation it should naturally be small if
the right IV subset was picked. LMSE is the mean square error of prediction of the structural
equation. While LMSE is not of direct interest in the context of linear-IV models, it is already
extensively used for nuisance parameter selection (bandiwdth, Lasso penalty, basis size, etc...)
of various IV estimators and procedures, see Chernozhukov, Hansen, and Spindler (2015) or
Kang et al. (2016), thus its IV subset selection properties are also studied. As will be shown
in the next section, the risk based on the mean square error of prediction can actually select
strong and exogenous IV subsets in certain conditions.

Other types of prediction losses can be discussed, but they are less appealing. Excess
losses are versions of losses which are “centered” with respect to the true β, but in the linear-
IV context “centering” is difficult because β is identified by IV subset E which is unknown
a priori. Losses which do not depend on S are in line with the literature on predictors
selection in linear models but too different from the losses being implicitly minimized during
IV estimation. Alternatively, losses built from the log-likelihood of (y∗, x∗) given z∗S could be
used. However, they require the first stage (2.5) to be causal which is very hard to argue for.
Finally, integrated losses are much more suited to a non-linear setting with fewer variables.
See Arlot and Celisse (2010) for formal definitions.

Risks To properly assess the performances of β̂S, losses have to be evaluated at β̂S and
averaged because they are random. These average prediction losses are called risks. The risks
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for any IV subset S to consider are therefore

REXO(S) = E
(

En

(
(y∗ − x∗ β̂S)z∗

′
S

)
Σ−1

S En
(
z∗S(y

∗ − x∗ β̂S)
))

RPMSE(S) = E
(

En

(
(y∗ − z∗

′
S πS β̂S)

2
))

RMSE(S) = E
(

En

(
(y∗ − x∗ β̂S)

2
))

for some new observation w∗. The risks are thoroughly decomposed and interpreted in section
4.1. Two other risks have been formalized in the literature, Donald and Newey (2001) assume
that all IVs are exogenous and strong and directly consider the conditional mean squared
error of β̂

∀S ∈ S RDN(S) = E
[
(β̂S − β)2|(zi)

n
i=1

]

which the authors approximate using an a priori consistent estimator of β. More precisely,the
authors use Nagar (1959) expansions to approximate the bias of different IV estimators and
make use of an a priori consistent estimator of β. These expansions are known to be unstable
even in the best case scenario and do not hold if the IVs being considered are weak, very weak
or endogenous, see Chaudhuri and Zivot (2011). On the other hand Andrews (1999) assumes
that all IVs are strong and coins different criteria based on Sargan-Hansen J statistics to pick
the largest set of exogenous IVs. Hence the risk the author actually estimate is

∀S ∈ S RA(S) = E
[
(yi − xi β̂S)z′iS

]
Var

[
ziS(yi − xi β̂S)

]−1
E
[
ziS(yi − xi β̂S)

]

up to some normalization to account for s = |S|0. Note that RA(S) is a normalized in-sample
version of REXO(S).

Risk estimators The risks REXO, RPMSE and RMSE are unknown and need to be estimated.
I consider their cross-validation average estimators3 denoted as R̂EXO, R̂PMSE, and R̂MSE. To
obtain them in practice the following steps can be followed:

Cross-validation average risk estimator

1. Split the original sample into a validation sample of size nb and a training sample of size
n − nb

2. Compute β̂S using the data from the training sample only

3In practice other methods such as out-of-bag bootstrap validation or k-fold cross-validation can be used,
moreover instead of the average risk the median risk or most voted risk can also be used.
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3. Use the validation sample to estimate REXO, RPMSE and RMSE but plug-in the estimator
β̂S created using the training sample

4. Repeat the process B times and average

To be more specific let B be the number of times the original sample is split, nb be the
validation sets sample size, and n − nb be the training sets sample size. Then for any b =

1, . . . , B let (wi)i∈Ib be the validation sample for split b of size nb and let (wi)i∈Ib
be the training

sample for split b of size n − nb. Finally, let β̂S,b be the 2SLS estimator associated to split b
which uses the training sample Ib only. Formally for any S ∈ S the risk estimators are

R̂EXO(S) =
1
B

B

∑
b=1

1
nb(s + 1)σ̂2

b
∑
i∈Ib

(
(yi − xi β̂S,b)z′iS

)
Σ̂−1

S
1
nb

∑
i∈Ib

(
ziS(yi − xi β̂S,b)

)

R̂PMSE(S) =
1
B

B

∑
b=1

1
nbσ̂2

b
∑
i∈Ib

(
(yi − z′iSπ̂S β̂S,b)

2)

R̂MSE(S) =
1
B

B

∑
b=1

1
nbσ̂2

b
∑
i∈Ib

(
(yi − xi β̂S,b)

2)

where σ̂2
b is a normalization which controls for differences in variations across splits. This nor-

malization is useful in finite sample, for instance σ̂2
b = 1

nb
∑nb

i∈Ib
(yi − y)2 or σ̂2

b = 1
nb

∑nb
i∈Ib

(xi −
x)2, in large samples one can set σ̂2

b = 1. Other types of normalizations are possible for in-
stance adding a degenerate bonus term in s as in Andrews (1999) would allow to select larger
subsets of IVs. The practical choice of B, nb and n − nb is up to the researcher. A standard
choice in machine learning is forty splits with a third of the data used for validation and
two thirds of the data used for training, ie B = 20, nb = n

3 , and n − nb = 2n
3 . To establish

asymptotic results a requirement is that B, nb, and n − nb increase with n.

Selection procedure For a certain risk k ∈ {EXO; PMSE; MSE} the selected subset of IVs is
simply the minimizer of the risk estimator

ŜR̂k
= Argmin

S∈S
R̂k(S)

In that sense if Kz is large it becomes very time-consuming to compute R̂k(S) for all 2Kz − 1
subsets in S . However, even if Kz ⩾ 10 it is still possible to simplify the problem by minimiz-
ing the risks over only part of S or if there are groups of uncorrelated IVs by minimizing the
risks in each group as in Windmeijer, Liang, Hartwig, and Bowden (2021).
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3.2 Ideal properties of risk estimators

Before deriving the theoretical performances of the selection procedures, I characterize their
ideal properties.

Efficiency A selection method ŜR̂k
is deemed efficient if its minimum converges to the min-

imum of the risk it is trying to estimate

min
S∈S

R̂k(S)

min
S∈S

Rk(S)
P→ 1 (3.7)

A procedure being efficient does not directly imply that the selection procedure will select a
"good" model however. This is especially the case in linear IV models.

Consistency A consistent model selection procedure is a procedure which selects the true
model with probability 1 at the limit. But defining a true or good model in the linear IV
context is difficult. A candidate set of good models of interest may be set of all IV subsets
which allow to identify β

Sid = {S ∈ S : α = 0, πS ̸= 0}
If Sid is non-empty then there exists at least one valid subset of IVs and therefore β is identi-
fied. But identification of β does not guarantee its consistent estimation, in fact a local lack of
identification does not prevent consistent estimation and.

Thus, IV subsets of much more interest are the subsets for which β̂S is a consistent esti-

mator of β and the subsets for which the t-statistic tS = β̂S−β
ˆVar(β̂S)

is asymptotically standard
normal. To characterize these sets, I let aS and bS represent respectively the strength of IV ziS,
ie πS ∝ n−aS , and the level of endogeneity of IV ziS, ie E(ziSuiS) ∝ n−bS . Allowing πS and
E(ziSuiS) to depend on sample size is a way to model IV weakness and IV local endogene-
ity. This generalization resembles that of Andrews and Cheng (2012) and is a theoretical way
to approximate the behavior of IV estimators and inference procedures under unfavorable
conditions in practice. Hence, define the three following categories of IV subsets

Sc = {S ∈ S : bS − aS > 0, aS < 1/2}
San = {S ∈ S : aS < 1/2, bS > 1/2}

It can be shown that Sc represents all the subsets of IVs such that plim β̂S = β whereas San

represents all the IV subsets such that β̂S is consistent and asymptotically normal in the sense
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that under the null H0 : β = 0 the ration β̂S and an estimator of its standard deviation is
asymptotically standard normal and therefore the usual Gaussian confidence intervals are
valid. Another category of IV subsets of specific interest is

Sr = {S ∈ S : bS > 1/2}

which characterizes the subsets which yield valid weak identification robust confidence sets
for β via test inversion as in Anderson and Rubin (1949). See appendix D.2 and Proposition
4.3 for formal proofs.

Going forward ŜR̂k
is c-consistent where c ∈ {c; an; r} if

P(ŜR̂k
∈ Sc) → 1 (3.8)

Efficiency and consistency of IV selection via R̂EXO, R̂PMSE and R̂MSE are proven in the next
section.

Valid post model selection inference Lastly, let CIα,S(β) be a confidence interval with nom-
inal coverage α using subset of IVs S based on either weak identification robust methods,
either t-tests Gaussian asymptotics. Then, if there exists some S ∈ Sr or S ∈ San valid infer-
ence is possible, ie lim P(β ∈ CIα,S(β)) ⩾ α. Ideally post-selection inference should also be
valid however ŜR̂k

is correlated with the data therefore

P(β ∈ CIα,ŜR̂k
(β)|ŜR̂k

= S) ̸= P(β ∈ CIα,S(β))

Valid inference on β post selection via R̂EXO, R̂PMSE and R̂MSE is not formally proven in this
paper. But from the extensive simulation exercise in section 5 this contamination does not
seem to be a concern as confidence intervals have nominal coverage.

Still, this issue can be completely bypassed and exact inference can be recovered by using
sample-splitting4 with one sample used for finding ŜR̂k

and the other used for estimation
and inference. Other common methods for valid-post-selection inference in econometrics
and statistics systematically involve immunization of either the inference procedure or the
estimation procedure to the choice of nuisance parameter or to the models. For instance,
if the estimator is modified by Neyman orthogonalization of the score of the criterion it is
built from, as in Chernozhukov et al. (2015) or Singh and Sun (2021) in the IV context, it will

4Note that sample splitting will effectively reduce sample size and therefore could aggravate weak IVs prob-
lems but at the same time it could improve the level of exogeneity of the IVs.
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require all the IVs to be exogenous. A partial identification approach immune to the choice
of IVs and therefore endogeneity itself may be used however the confidence interval will be
very large unless strong additional assumptions are made. Thus, these approaches are not
very appealing, even more so because the IV estimator is taken as given. In fact ideally the
estimator and inference procedure should not be immune to the choice of IV subset otherwise
it would be impossible to assert the performances of each IV subset.

On a final note San being non-empty implies that there exists at least some IVs which are
only locally endogenous, if instead San is empty valid post-selection inference may be possible
for a pseudo-true-value instead.

4 Theoretical properties

To understand the properties of IV selection methods via minimization of R̂EXO, R̂PMSE and
R̂MSE defined in section 3.1, the risks are first decomposed then their theoretical asymptotic
properties are derived.

4.1 Risks decomposition

In linear models the mean square error of prediction decomposes into the squared bias and
variance of estimators and the same decomposition exercise can be performed with REXO,
RPMSE and RMSE, formal proofs are in appendix D.3. For any S ∈ S the risks can be rewritten
as

REXO(S) = E
(
||Σ−1/2

S E(z∗Sz∗
′

E )α − Σ1/2
S πS(β̂S − β)||2

)

RPMSE(S) = E
(
(u∗ + v∗β)2

)
+ E

(
||z∗′E α − z∗

′
S πS(β̂S − β)||2

)

RMSE(S) = E
(
(u∗ − v∗(β̂S − β))2

)
+ E

(
||z∗′E α − z∗

′
S πS(β̂S − β)||2

)

Clearly the risks do not decompose into squared bias and variance. Instead, they mainly
depend on some average distance between z∗

′
E α and z∗

′
S πS(β̂S − β) and it is possible to go

further.

Strong and endogenous IVs Assume that IV subset S is strong but endogenous, ie assume
that πS ̸= 0 and is fixed and that E(ziSuiS) = E(ziSz′iE)α ̸= 0 and is fixed. Then it can be
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shown that

β̂ − β =
π′

Sz′SzEα

π′
Sz′SzSπS

+ oP(1) =
π′

SE(ziSz′iE)α
π′

SE(ziSz′iS)πS
+ oP(1)

where oP(1) is the small o in probability notation5. As a consequence, the risks can be rewrit-
ten as

REXO(S) = α′E(z∗Ez∗
′

S )M1E(z∗Sz∗
′

E )α + oP(1)

RPMSE(S) = E
(
(u∗ − v∗β)2

)
+ α′M2α + oP(1)

RMSE(S) = E
(
(u∗ − v∗(β̂S − β))2

)
+ α′M2α + oP(1)

where M1 and M2 are positive semi-definite matrices defined as

M1 = Σ−1
S − πS(π

′
SΣSπS)

−1π′
S, M2 = ΣE − E(z∗Ez∗

′
S )πS(π

′
SΣSπS)

−1π′
SE(z∗Sz∗

′
E )

From this decomposition it is clear that the risks are mainly quadratic functions of E(z∗Sz∗
′

E )α

because β̂S − β is also a function of E(z∗Sz∗
′

E )α. Thus, the larger the amount of endogeneity or
equivalently the larger E(z∗Su∗

S) = E(z∗Sz∗
′

E )α is, the larger are the risks. Note the first term in
RMSE also depends on β̂S − β thus this risk may miss-classify some IV subsets.

Exogenous IVs This time assume that the right IVs were chosen S = E, or that all the IVs
are exogenous α = 0, then the risks reduce to quadratic terms of β̂S − β

REXO(S) = E
(
||Σ1/2

S πS(β̂S − β)||2
)

RPMSE(S) = E
(
(u∗ − v∗β)2

)
+ E

(
||z∗′S πS(β̂S − β)||2

)

RMSE(S) = E
(
(u∗ − v∗(β̂S − β))2

)
+ E

(
||z∗′S πS(β̂S − β)||2

)

Thus, if the subset S is strong then β̂S is a consistent estimator of β and the three risks further
reduce asymptotically, whereas if the subset S is weak then β̂S does not converge to β and the
three risks are large.

To summarize, when ranking IV subsets the risks are not weighting subsets to balance
bias and variance, instead they are larger if IVs are endogenous and slightly larger if the IVs

5Formally if random sequence Xn = oP(1) then ∀ε > 0 P(|Xn| > ε) → 0. If random sequence Xn = OP(1)
then ∀ε > 0 ∃M > 0, ∃N > 0 : ∀n > N P(|Xn| > M) < ε.
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are weak. In that sense endogeneity is first order whereas weakness is second order, this is a
desirable property because valid inference on β can still be performed regardless of the level
of strength as long as the IVs being picked are exogenous.

4.2 Asymptotic results

In order to establish the efficiency of the selection procedures three sets of assumptions are
made. Assumption A characterizes the model and the data generating process (DGP). As-
sumption B places restrictions on the k-class of IV subset estimators. Assumption C charac-
terizes the risk estimator to make sure it convergences towards the risk.

Assumption A
(i) The sample (yi, xi, zi)

n
i=1 is iid such that (2.1) and (2.2) hold at β

(ii) zi, xi and yi possess finite moments of order 4, zi is not perfectly colinear
(iii) Without loss of generality for any S ∈ S , πS ≡ n−aSκS for some fixed κS ∈ Rs

∗ and some
aS ∈ R+ ∪ {+∞}
(iv) Without loss of generality for any S ∈ S , E(ziSuiS) = E(ziSz′iE)α = n−bS δS for some fixed
δS ∈ Rs

∗ and some bS ∈ R+ ∪ {+∞}

Assumption A(i) determines the model whereas A(ii) is a common moments condition.
Alternatively, conditional heteroskedasticity could be assumed. A(iii) and A(iv) formally
allow the level of weakness and the level of endogeneity of any subset of IVs to vary with
n, thus the asymptotic behavior of the IV estimator and risk estimators is characterized by
the values of (aS, bS). For instance, when aS ⩾ 1/2, IV subset S is weak and therefore the
estimator β̂S is random at the limit. See lemma in appendix C for details.

Assumption B
For any S ∈ S there exists some e > 0 such that

• If aS ⩾ 1/2
P(x′PzS x < e) = 0

• If aS < 1/2
P(n2aS−1x′PzS x < e) = 0
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Assumption B is a condition which ensures the existence of moments of the 2SLS estimator
(more precisely, they ensure the uniform integrability of the risk estimators). B is almost
always satisfied in practice, for instance if xi is continuous, or if it is discrete but doesn’t have
zero in its support. An unnatural counterexample would be the case where x is binary with a
very large probability to be equal to zero.

Assumption C
For k ∈ {EXO; PMSE; MSE} let R̂k,b(S) be the risk estimator computed for split b. Then nb and B
are such that
(i) nb →

n→+∞
+∞, n − nb →

n→+∞
+∞, and B →

n→+∞
+∞

(ii) There exists some c ∈ (0; 1) such that for k ∈ {EXO; PMSE; MSE}, for any S ∈ S , for any
b = 1, . . . , B

B

∑
b′=1

Cov(R̂k,b(S), R̂k,b′(S)) ⩽
nb

∑
nt=0

Var(R̂k,b(S))cnb−nt

Assumption C characterizes the sampling process used to obtain the risk estimators. This
assumption is specific to the linear IV context with potentially endogenous and potentially
weak IVs. As such, from C(i) the training sample size and validation sample size need to
increase with n, this implies that leave-one-out cross-validation cannot be used for risk esti-
mation. This is necessary in order to estimate the out-of-sample correlation between the IVs
and the error. C(ii) is a sufficient condition to ensure convergence of the average risk and can
be ignored when all IVs are strong. Intuitively, it forces the correlation between the estimated
risk across splits to be proportional to the number of common observations across splits. Con-
sequently, even when 2SLS is random at the limit because the IVs are weak, the estimators
across splits are not too correlated. A simple way to satisfy C(ii) which is quite common in
the machine learning literature is to randomly split the data into B folds of size n/B and
split those B folds again into training and validation samples. This way, the risk estimators
across folds are effectively independent. Note that C(ii) is always satisfied in practice from
simulation evidence (the constant c can be close to 1).

Theorem 4.1 states that under the above assumptions IV subset selection via cross-validation
is efficient, its proof is in appendix C.

Theorem 4.1
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Under assumptions A, B, and C, for k ∈ {EXO, PMSE, MSE}
min
S∈S

R̂k(S)

min
S∈S

Rk(S)
P→ 1

An almost sure version of this result cannot be obtained unless one assumes that all IVs
are strong (aS < 1/2). This is due to the fact the 2SLS estimator is random at the limit when
IVs are weak (aS ⩾ 1/2). As mentioned, efficiency in this context does not guarantee the
selection of good IV subsets.

Consistency can be established with another assumption.

Assumption D
(i) If k = MSE then at least one of the following conditions must hold for any S

• sign(ρ) ̸= sign(δ′SκS)

• δ′SκS = 0

(ii) Let Kw denote the dimension of the largest subset S ∈ S such that aS ⩾ 1/2 then at least one of
the following conditions hold

• Kw ⩽ 2

• σ2
uσ2

v
ρ2 > max{Kw − 1, Kw

2 , Kw(Kw−1)
2 }

Assumption D(i) ensures that RMSE will correctly rank subsets with varying levels of endo-
geneity. As mentioned in section 4.1, RMSE decomposes into a first term E

(
(u∗ − v∗(β̂S − β))2)

and a term which is quadratic in E(z∗Sz∗
′

E )α. Under specific conditions, the dependence of the
first term on β̂S − β may lead RMSE to miss-classify some IV subsets, typically when the sign ρ

of the OLS endogenous bias is the same as the endogenous bias δ′SκS of 2SLS using IV subset
S. D(ii) ensures that when 2SLS is used the three risks will correctly rank strong subsets be-
low weak subsets. Indeed, 2SLS is close to OLS in terms of behavior when IVs are weak and
numerous, in fact it can be shown that on average 2SLS behaves like OLS in such conditions
therefore on average it can be very efficient and therefore misclassified. Consequently, D(ii) is
unnecessary when using other k-class estimators due to their lower bias.

Theorem 4.2 establishes consistency under the above assumptions, its proof is in appendix
C.
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Theorem 4.2
Under assumptions A, B, C and D

• If Sc ̸= ∅ and assumption D hold then for k ∈ {EXO, PMSE}

P(Argmin
S∈S

R̂k(S) ∈ Sc) → 1

• If San ̸= ∅ then for k ∈ {EXO, PMSE, MSE}

P(Argmin
S∈S

R̂k(S) ∈ San) → 1

• If Sr ̸= ∅ then for k ∈ {EXO, PMSE, MSE}

P(Argmin
S∈S

R̂k(S) ∈ Sr) → 1

Intuitively, if there exists some IV subset such that the estimator is consistent or asymptot-
ically normal then one such subset will be picked with probability one at the limit. Similarly,
if there exists some IV subset such that valid weak identification robust inference can be per-
formed then one of such subset will be picked with probability at the limit. This result has
some caveats, however. If the mean square error of prediction RMSE is used to pick the IV
subset, then it may not detect endogeneity in certain situations. If the 2SLS estimator is used,
it may lead the risks to not detect weak IVs if they are too numerous.

It is very difficult to establish more precise results regarding the exact identity of the IV
subsets being picked. Such results could be established by either assuming normality of the
data and that IVs are non-random, which are very unrealistic assumptions, or assuming that
all IVs are strong and use Nagar expansions as in Nagar (1959), which are known to be
unreliable. In the next section, I assess the empirical performances of the IV subset selection
procedures.

5 Simulations

In this section, I perform an extensive simulation exercise in order to assess the behavior
of different IV selection procedures in different settings: The general case where IVs can be
endogenous and / or weak; The case where IVs are strong but can be endogenous IVs are
exogenous but some may be weak; The case where IVs are exogenous but can be weak.
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Performance Measures I evaluate the performances of the selection methods through the
performances of the 2SLS estimator post selection and a weak identification robust confi-
dence interval based on the conditional likelihood ratio test with normal approximation of
Mikusheva (2010) post selection. Thus, I consider the following metrics over 20, 000 simula-
tions: The interquartile range of the estimators across simulations; The median absolute bias;
The median squared bias; The empirical coverage of β using normal asymptotics for inference
with nominal coverage 95%; The median length of the confidence interval (CI) using normal
asymptotics; The average number of IVs being picked; The empirical coverage of β using the
weak identification robust confidence interval (RCI); The median length of the the weak iden-
tification RCI; And the percentage of times the weak identification robust confidence interval
exists and is finite.

Selection methods The risk estimators from section 3.1 are computed using the cross-validation
risk estimators with B = 40 resamples and nb = n/2. Furthermore, to make comparisons, I
compute the same post selection metrics using the following selection methods: The “mean
square error” criterion of Donald and Newey (2001) using the jacknife and the 2SLS using
all the IVs as a first stage; The GMM-BIC procedure of Andrews (1999); The post-lasso of
Kang et al. (2016) with the penalty obtained by cross-validation; The post-adaptive-lasso of
Windmeijer et al. (2018) with the penalty obtained by cross-validation and using the median
estimator as a first stage; The oracle which only uses strong and exogenous IVs. To extend
on the introduction, Donald and Newey (2001) should fail in case some IVs are endogenous,
Andrews (1999) should fail in case some IVs are weak, Kang et al. (2016) should fail unless the
majority of IVs are exogenous and all IVs are strong, and Windmeijer et al. (2018) should fail
unless the “largest group” of IVs is exogenous and all IVs are strong. Note that the Lasso and
post-lasso are much better suited to a setting with a larger number of IVs unlike the methods
developed in this paper.

Data generating process The data generating process I consider through the simulations is
of the following form

yi = 2xi + α2zi2 + α4zi4 + α6zi6 + ui (5.9)

xi = 0.5
(

zi1 + zi2 +
c1√

n
zi3 +

c1√
n

zi4 +
c2

n
zi5 +

c2

n
zi6

)
+ vi

where (ui, vi, z′i)
n
i=1 is iid, normally distributed with mean 0, individual variance 1, correlation

between IVs is equal to 0.1, and correlation between ui and vi is equal to 0.5. Thus, there are
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six IVs, with three which potentially do not satisfy the exclusion restriction. The parameters
which determine the different settings are (c1, c2) ∈ R2 and (α2, α4, α6) ∈ R3. I also allow the
sample size n to be equal to either 400 or 4000.

Note that using this specification some IV subsets end up at the exact cutoff levels in
terms of endogeneity and strength which determine the asymptotics of the risks, and some
IVs have exactly the same level of strength, therefore it constitutes a worst-case scenario for
the selection procedures. Moreover, this specification also resembles the simulation designs
in Belloni et al. (2012). In addition, this specification is of specific interest because it allows to
control for the range of IVs strength and for the level of bias in terms of pseudo-true-value
for all the possible sets of IVs. In each setting I mention the bias of the OLS estimator, the
range of the concentration parameters divided by the number of IVs and the range of the
(pseudo-true-value) bias of the 2SLS estimator over all the possible subsets S in S . The bias
of the OLS estimator can be written as

Bias(OLS) =

∣∣∣∣∣
ρ + π′E(ziz′iE)α

E(x2
i )

∣∣∣∣∣

The pseudo-true-value bias due to using subset S as IVs is

Bias(PseudoS) =

∣∣∣∣∣
π′

SE(ziSz′iE)α
π′

SE(ziSz′iS)πS

∣∣∣∣∣

The concentration parameter of set S is a measure of strength of the IVs S which is defined as

µ2
S =

nπ′
SE(ziSz′iS)πS

sσ2
v

It is typically considered low and IVs are typically considered jointly weak when it is inferior
to 20, see Stock et al. (2002).

5.1 General case

The general setting I consider is such that c1 = 1, c2 = 1, and α2 = α4 = α6 = 1. Thus, model
5.9 can be rewritten as

yi = 2xi + zi2 + zi4 + zi6 + ui, xi = 0.5
(

zi1 + zi2 +
1√
n

zi3 +
1√
n

zi4 +
1
n

zi5 +
1
n

zi6

)
+ vi

In addition, Bias(OLS) = 0.83, for any S ∈ S Bias(PseudoS) ∈ [0; 800] and µ2
S ∈ [0; 100] for

n = 400 whereas Bias(PseudoS) ∈ [0; 8000] and µ2
S ∈ [0; 1000] for n = 4000. Consequently,
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there are some very weak and endogenous IV subsets and some strong and exogenous IV
subsets. The IV subsets which will yield an asymptotically normal estimator are therefore
composed of zi1 and possibly of zi3 and zi5

San = {zi1; {zi1; zi3}; {zi1; zi5}; {zi1; zi3; zi5}}
The oracle only uses zi1 for instrumentation.

Simulations results for 2SLS in this general setting are in table 1 of appendix A.2. The
criterion of Donald and Newey (2001) balances bias and variance assuming exogeneity of
all IVs and therefore picks a subset of strong IVs regardless of their level of endogeneity.
Consequently, the estimator has high bias, very low coverage, but is efficient. Andrews (1999)
fails to pick any decent subset of IVs because it requires all of them to be strong, and for
there to be no corner solutions. Its estimates post-selection are extremely biased and are
very different across simulations, this indicates that weak IVs were picked. Lastly, the post-
lasso of Kang et al. (2016) and the post-adaptive-lasso of Windmeijer et al. (2018) have high
dispersion, which means that for each simulation very different IV subsets are picked. As a
consequence, the performance of the post-lasso and post-adaptive-lasso are not great, there
is bias and coverage is low. This is due to the fact that IVs are allowed to be weak and that
the exogeneity conditions required for these procedures to work do not hold. The three risks
REXO, RPMSE, and RMSE are performing as well as the oracle in large sample in terms of bias,
coverage and length of Gaussian confidence interval, and dispersion. Note that RPMSE picks
more IVs than the other two methods. In addition, in smaller samples, some coverage seems
to be lost especially when REXO is used for selection.

Simulations diagnostics for the RCI using the CLR test are in the first three columns of
table 5 in appendix A.2. As with the performances of the post selection 2SLS estimator, the
RCI using REXO, RPMSE, and RMSE for selection performs at oracle level in terms coverage,
interval lengths, and percentage of finite confidence interval. In small sample this is less the
case, using RMSE the RCI undercovers and using REXO the RCI can be of infinite length. Other
selection methods perform worse in terms of coverage and interval length.

5.2 Strong IV case

I consider two strong IV specifications. In the first strong IV setting I let c1 =
√

n, c2 = n,
α2 = α4 = α6 = 1 and model 5.9 can be rewritten as

yi = 2xi + zi2 + zi4 + zi6 + ui, xi = 0.5
6

∑
k=1

zik + vi

209



Thus, Bias(OLS) = 0.84, for any S ∈ S Bias(PseudoS) ∈ [0; 2] and for n = 400 µ2
S ∈ [100; 150]

whereas for n = 4000 µ2
S ∈ [1000; 1500]. Hence, all IV subsets are strong, some are very

endogenous however, and this time San is composed of any combination of zi1, zi3 and zi5.
The oracle uses (zi1, zi3, zi5).

Simulations results for 2SLS in this strong IV setting are in table 2 of appendix A.2. Again
Donald and Newey (2001) selects strong IVs thus it picks all six IVs because all of them are
strong leading to an efficient but very biased estimator and to a confidence interval with
coverage 0. Andrews (1999) J statistic criterion fails to pick the exogenous IVs, thus the 2SLS
estimator post-selection is still highly biased, and coverage of the Gaussian confidence interval
is low. This is most likely due to the fact that in this setting the J test statistic is low even when
IVs are endogenous, indeed in many settings the J test has low power under the alternative,
see Kiviet and Kripfganz (2021) for a recent review and for formal conditions under which
the J test has no power. As before the post-lasso and post-adaptive Lasso perform badly, this
is due to the fact that the IVs do not satisfy the right exogeneity conditions. Thus, only REXO,
RPMSE and RMSE are selecting strong IV subsets and have performances comparable to the
oracle with a large sample, and slightly lower performances in small sample.

The second strong IV setting which I call favorable setting is one where a strict majority
of IVs is exogenous and where the levels of endogeneity of the endogenous IVs are different
from each other and large. In such setting the Sargan Hansen J statistic will be large if
endogenous subsets are picked, the median IV estimator which is used to set up the weights
in the adaptive Lasso procedure is consistent, and there can be no confusion between weak
and exogenous IV subsets and weak and endogenous IV subsets in the Lasso procedure. Let
c1 =

√
n, c2 = n, α2 = 0, α4 = 1, and α6 = 3 and 5.9 can be rewritten as

yi = 2xi + zi4 + 4zi6 + ui, xi = 0.5
6

∑
k=1

zik + vi

Then Bias(OLS) = 1.07, for any S ∈ S Bias(PseudoS) ∈ [0; 6], for n = 400 µ2
S ∈ [100; 150] and

for n = 4000 µ2
S ∈ [1000; 1500]. The oracle uses (zi1, zi2, zi3, zi5).

Simulations results for 2SLS in this strong and favorable setting are in table 3 of appendix
A.2. All the selection procedures are performing well except Donald and Newey (2001) which
does not recognize endogenous IVs. Note that the 2SLS estimators obtained after selection
via Lasso and adaptive Lasso are slightly more dispersed across simulations, have higher bias
and their Gaussian confidence intervals have lower coverage compared to estimators after
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selection using Andrews (1999), REXO, RPMSE or RMSE. This is not surprising, Lasso and
adaptive Lasso can be useful when the total number of IVs is large and when sample size is
large. When the total number of IVs is low there is few reason to use Lasso, just like there is
no reason to use Lasso for control variable selection in linear models when there aren’t many
control variables in the first place.

In these two strong IV settings, simulations diagnostics for the RCI using the CLR test
are in the fourth to ninth columns of table 5 in appendix A.2. Once again because Donald
and Newey (2001) picks endogenous IVs, using it to select IVs yields an RCI with very low
coverage in both strong IV settings. Andrews (1999) doesn’t pick exogenous IVs in the first
setting whereas it does in the second, this is reflected in the performances of its RCI which is
at oracle level in the second setting but not in the first. The RCI after Lasso or adaptive-lasso
selection perform very badly in the first setting for the same reasons post-lasso and post-
adaptive-lasso perform badly, in the setting they perform very well but not at oracle level.
Lastly, the RCI using REXO, RPMSE, and RMSE for selection have oracle level performances in
both settings.

5.3 Exogenous IV case

Lastly, I consider an exogenous IVs setting such that c1 = c2 = 1 and α2 = α4 = α6 = 0

yi = 2xi + ui, xi = 0.5
(

zi1 + zi2 +
1√
n

zi3 +
1√
n

zi4 +
1
n

zi5 +
1
n

zi6

)
+ vi

Then Bias(OLS) = 0.32, whereas Bias(PseudoS) = 0 for any S ∈ S , µ2
S ∈ [0; 100] for n = 400

and µ2
S ∈ [0; 1000] for n = 4000. Therefore, there are very weak sets of IVs and strong sets of

IVs and as long as a set of strong IVs is picked the estimator should estimate the true causal
parameter of interest. The oracle use (zi1, zi2) for instrumentation.

Simulation results for 2SLS in this exogenous setting are in table 4 of appendix A.2. In
this case, there are very little differences in terms of estimator performances between each
selection method, it seems all of them are picking strong IVs and some of them also pick
weaker IVs. Post-lasso seem to select too few IVs which is why it seems less efficient. On
another note, in principle Andrews (1999) picks the largest IV subset which is exogenous, this
explains why it picks all six IVs. As for simulations diagnostics for the RCI using the CLR
test they are in the tenth to twelfth columns of table 5 in appendix A.2. All methods yield a
post selection RCI with oracle performances except, as argued previously, Lasso which select
too few IVs and thus has an RCI with a slightly greater length.
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In the next section I estimate the effect of pre-trial detention on guilt and I select judge
dummies which act as instrumental variables with the methods designed in this paper.

6 Application

Since Kling (2006) a large literature in Economics and Law which utilizes the random assign-
ment of judges to cases and differences in the degree of severity of judges has developed in
order to estimate the causal effect of prison on offenders’ outcomes. It is now well-established
that, controlling for the offender’s characteristics, for the case’s characteristics, for other time
and place variables, judges differ significantly in their propensity to send offenders to prison,
including their propensity to send offenders to pre-trial detention. Thus, in practice judge
dummies generate supposedly exogenous variation in detention / pre-trial detention which
allow to identify and estimate causal effects, most often the JIVE estimator is used instead
of 2SLS leading to the famous judge leniency IV or jacknifed judge IV. This identification
strategy can fail for multiple reasons, however.

First, judges may not differ significantly in their leniency, which can generate a weak IVs’
problem. Second, the identity of the judge assigned to a case (and his level of leniency) is
known by the offender and his lawyer before the trial is held, this can lead to voluntary
postponement of the trial in order to get a more lenient judge, bribing of the judge, differ-
ing defenses during the trial depending on the judges’ leniency, plea deals before the actual
trial, etc... Furthermore, when evaluating the effect of pre-trial detention on detention, the
identity of the judge present during the pre-trial hearing is also known by the judge present
for the actual trial. Consequently, the judge present during the trial has the possibility of
doubling-down on the signal sent by the judge during the pre-trial hearing if they deem them
trustworthy, or on the contrary compensate for the pre-trial judgement if they deem the judge
present during the pre-trial hearing untrustworthy. Finally, judges are never completely ran-
domly assigned to a case, at best a judge among a subset of available judges is randomly
assigned to a case. As a consequence, the identity of the judge can directly affect the of-
fender outcomes or indirectly through unobserved cofounders such as offender income, level
of education, lawyer quality, defense strategy, psychological state.

For the aforementioned reasons, selecting the judges which differ most in their leniency
and which satisfy best the exclusion restriction is a priority. In this specific application I use
data on 331,971 court cases in Philadelphia and Miami from September 2006 until February
2013 and study the effect of pre-trial detention on the likelihood of being found guilty using
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8 judge dummy variables as IVs. Among other control variables the data includes the case
characteristics, the offender criminal history and some of their characteristics such as their
race, the date and time of the day when the pre-trial hearing is held. Most information about
the actual trial are unknown, including the identity of the judge present during the trial. To
be more specific, after their arrest an offender is assigned a judge who will preside over a pre-
trial hearing, in Philadelphia and Miami pre-trial hearings happen at most a few days after
initial arrest. During this hearing, the judge decides whether they offer the offender a plea
deal, whether they offer the offender a bail deal, or whether they directly send the offender
to prison before their trial. Note that because the data is from the US, failure of the exclusion
restriction due to bribing is unlikely. Heterogenous effects are also unlikely because pre-trial
detention sends the same signal to the judge which presides over the actual trial. Finally, from
table 7 in appendix A.3 the observable covariates seem relatively balanced across judges. See
Stevenson (2018) for more details on the data and the set-up.

To be more specific, the oracle model to estimate is

guilti = predetiβ + X′
iδ + ∑

j∈E
αj1{judgei = j}+ ui

predeti =
8

∑
j=1

πj1{judgei = j}+ X′
iγ + vi

where guilti is a dummy variable which equals 1 if the offender was found guilty and equals
0 otherwise, predeti is a dummy variable which equals 1 if the offender was kept in prison
before his trial and equals 0 otherwise, for j = 1, . . . , 8 1{judgei = j} is a dummy variable
which equals 1 if judge j is the judge who oversees the pre-trial hearing of individual i and
equals 0 otherwise, Xi is a vector of control variables which include an intercept, and there
exists some j such that αj = 0. Of course a priori it is unknown which judge dummy enters the
structural equation, ie E is unknown, which is why the judge dummy IVs must be selected.

In table 6 in appendix A.3 are pre-trial judges’ descriptive statistics including what per-
centage of cases they oversaw and what percentage of offenders were sent to prison before
their trial unconditionally and conditionally on different control dummy variables. All 8
judges have supervised a high number of cases but some more than others, across all judges
offenders are sent to prison before their trial between 39% and 44% of the time. When con-
ditioning on offender characteristics and criminal record such as race, gender or the number
of prior offense, the differences in judge propensities to send offenders to prison before the
trial are maintained. On the other hand, when conditioning on the case characteristics such
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as the time when the offender was arrested or the reason for their arrest, differences in judge
propensities for pre-trial detention become very different. This clearly indicates that judges
greatly differ in their leniency, that offenders demographics enter linearly in the first stage as
fixed effects but that case characteristics do not.

In table 8 in appendix A.3 are the first stage estimates, heteroskedasticity robust standard
errors, and relevance p-values, of the judge dummy variables on the endogenous dummy
variable pre-trial detention for three different specifications: (1) only includes time and date
fixed effects, (2) also includes the case characteristics, and (3) also includes the offender char-
acteristics and their criminal history. First stage F-statistics are also reported, and so are
Sargan-Hansen J statistics after using the 2SLS estimator with the full set of IVs. Note that
because an intercept is included a judge dummy variable must be excluded to prevent multi-
colinearity, I excluded judge 2. As a consequence, the judge fixed effects on pre-trial detention
are all relative to judge 2. This choice is made mainly because judge 2 oversees the lowest
amount of cases which limits potential endogeneity bias, and because judge 2 has the highest
probability to send anyone to pre-trial detention which increases the amount of strong IV
subsets. A thorough explanation and analysis of the choice of excluded judge and its impact
along with a guess on which IV is likely to be endogenous are in appendix B. After excluding
judge 2, for any specification the effect of judge 6 is insignificant, ie judge 6 is as harsh as
judge 2. On the other hand, judge 1 and judge 5 seem to have the same moderate effect on
the likelihood of the offender going to pre-trial detention. Judge 4 and judge 8 are signifi-
cantly are the most lenient judges. Taken jointly the IVs are not weak but are not very strong
either given that the first stage F statistic is close to 40 across all specifications. Consequently,
small size and power distortions of tests are to be expected. Regarding the Sargan-Hansen
J statistics, they cannot tell us whether or not the IVs are exogenous. As mentioned, the
Sargan-Hansen test is known to have poor power properties, see Kiviet and Kripfganz (2021),
and indeed specification (1) with the fewest controls is the least likely to satisfy the exclusion
restriction and yet it has the lowest J statistic compared to the J statistics in specification (2)
and (3) which both reject exogeneity at level 10%.

Next, in table 9 of appendix A.3 I report the OLS estimator, the 2SLS estimator using all
the IVs, the 2SLS estimator after selection via Donald and Newey (2001) (DN), via Andrews
(1999) (AN), via Kang et al. (2016) (Post-lasso), via Windmeijer et al. (2018) (Post-adalasso),
and my methods along with their heteroskedasticity-robust standard errors. I also report the
set of judges selected for instrumentation IVs by each method. Thus, the judges which are

214



not included as IVs were used as control variables except for judge 2 which was excluded. In
addition, in table 10 are the first stage F statistics and the J statistics computed post selection
for each method.

From table 9 for the three specifications the OLS estimate of the effect of pre-trial detention
on guilt is close to zero. This is in accordance with the literature, it is believed that OLS
underestimates the effect of pre-trial detention on the likelihood of being found guilty due to
omitted variables. Indeed, variables such as the offender level of education or the offender
income are unobserved and negatively correlated with pre-trial detention. On the other hand,
the 2SLS estimates using all the judge dummies as IVs lie between 15% and 18.5% in the three
specifications which is slightly lower than what is expected in the literature, see Kling (2006)
or Dobbie, Goldin, and Yang (2018). Regarding the selection procedures, quite interestingly
the AN and DN use all the judges as IVs in the three specifications. A possible explanation is
that all IVs are exogenous and strong, but based on the J test statistics in table 10 the full set
of IVs is unlikely to be exogenous. Thus, the most plausible explanation is that the conditions
for these two procedures to work are not met. Next, note that the Lasso uses judge 4 as the
sole IV and the 2SLS estimator is approximately equal to 0.25 in all specifications. Judge 4
is both the most lenient judge and is the judge with the highest number of cases, so this IV
could be endogenous. This cannot be confirmed by the implied J statistic in table 10 because
they are equal to zero by construction. Conceptually, the Lasso will work if a majority of the
IVs are exogenous. Thus, it is not clear why it picks the same judge dummy in (1) and (3)
even tough the judge dummies in (1) are most likely endogenous. The selection via adaptive
Lasso is difficult to interpret, it uses judge 4 and 6 in specification (1), all judges except
judge 1 as IVs in specification (2), and judges 6 in specification (3). The post adaptive Lasso
2SLS estimates vary between 0.20 and 0.52 and are significant except in setting (3), and the J
statistics are small. In addition, the selection procedure is quite sensitive to the choice to the
penalty choice, different non-nested IV sets can be picked depending on the penalty value.
A plausible explanation is that there is no “largest group” of exogenous IVs. In addition,
the adaptive Lasso can fail when some IVs are weak, which is the case for judge 6 which is
selected by the adaptive Lasso in (2) and (3).

Regarding the procedures developed in this paper REXO selects judges 6 and 7 in specifi-
cations (1) and (2), and judges 4 and 8 in specification (3). This choice in specifications (1) and
(2) seem to be linked to the fact that there are not enough control variables and therefore that
the true effect of pre-trial detention on guilt cannot be properly captured. This would also
explain why the J statistics are so low, the procedure may have focused on picking the most
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exogenous IV subsets possible. In (3) it selects a completely different set of judges, the effect
is significant and close to 0.26, and the J statistic is very small. RPMSE selects judge 4 in (1)
and (3) and selects judges 4 and 8 in specification (2). Similar IV subsets are selected across
specifications and are very close to that of Lasso. The estimates post-selection with RPMSE

are close to 0.25 and are significant in all specifications. Finally, RMSE selects judges 1, 3, 7
and 8 in specification (1) and (2), and judges 1 and 6 in specification (3). The corresponding
estimators are not statistically significant, indeed the corresponding first F statistics are not
large (< 30). In addition, the estimator is negative in specification (3). This is most likely
due to the fact that the sign conditions for RMSE to rank properly IV subsets are not satisfied.
Indeed, the OLS estimator is smaller than the 2SLS estimator thus the OLS bias is negative,
ie ρ < 0. Additionally, as mentioned some judges which supervise pre-trials may be positive
signal for the judge during the actual trial. Hence, judge dummies which enter the structural
equation may have a positive effect on the likelihood of being found guilty, ie E(ziSziĒ)α > 0.
This would violate assumption D(i).

The estimates post-selection with REXO and RPMSE in specification (3) appear quite trust-
worthy compared to other procedures, especially in light of the simulation exercise. This
means that the effect of pre-trial detention on the likelihood of being found guilty is actually
equal to 25%. This is more in line with the literature compared to a 2SLS estimator equal to
18% found using all the judge dummies.

7 Concluding Remarks

In this paper I formally define and study losses, risks, and risk estimators for the selection of
strong and exogenous subsets of IVs in the linear IV model for the 2SLS estimator. To do so, I
utilize the losses implicitly minimized during IV estimation and obtain three risk: one based
on the exogeneity condition, one based on the mean square error of prediction after projecting
the endogenous variable on the IVs, and the mean square error of prediction. These risks
do not balance squared bias and variance, instead they trade in priority endogenous IVs for
exogenous ones. I show that choosing the IV subsets which minimize these risks is a consistent
procedure to obtain an estimator which converges towards the true structural parameter of
interest and is asymptotically normal. This implies that in practice, applied researchers can
use this IV selection method to easily strengthen the credibility of their results. If they have
multiple IVs at their disposal they have theoretical guarantees that they will select a strong
and exogenous subset. These results are corroborated by the simulation exercise and the
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application.

From a broader perspective, this paper resembles earlier works on the selection of regres-
sors via risk minimization when the number of regressors is finite. It is no surprise then that,
given a fixed and small total number of IVs, the risks developed in this paper have better
chances to select exogenous IV subsets compared to the Lasso and adaptive Lasso which are
best suited to a setting with many IVs. A next natural step in the investigation of risks in IV
models is understanding when the procedures developed in this paper might fail. Introduc-
ing heteroskedasticity, non-linearity, or heterogeneity in the structural equation may affect the
selection methods in which case they would require correction. In fact it may be possible to
derive new predictions losses and risks for non-linear IV models. These risks could then be
used to select the tuning parameters of regularized two-step IV estimators. For instance, the
penalty terms of the Lasso and adaptive Lasso could be chosen using risks similar to the ones
coined in this paper.
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A Figures and tables

A.1 Directed acyclic graphs
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Figure 1: Linear IV model with endogenous IVs DAG, direct effect (top); Linear IV model
with endogenous IVs DAG, indirect effect (bottom)
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Figure 2: Linear IV model with endogenous IVs DAG, oracle model (top); Linear IV model
with endogenous IVs DAG, valid model (bottom)
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A.2 Simulation results

Table 1: 2SLS diagnostics by selection method, general setting

Diagnostics

Intrqr Med Abs Bias Med Sq Bias Emp Cov CI An Med Len CI An Avg # of IVs

n=400

DN 0.299 1.087 1.181 0.000 0.392 3.421

AN 4.434 2.143 4.592 0.337 0.889 3.268

Post-lasso 1.687 0.730 0.532 0.657 0.996 1.610

Post-adalasso 1.819 0.726 0.527 0.562 0.705 2.576

REXO 0.155 0.079 0.006 0.935 0.400 2.064

RPMSE 0.144 0.072 0.005 0.928 0.389 2.995

RMSE 0.172 0.087 0.008 0.816 0.373 2.566

Oracle 0.144 0.072 0.005 0.954 0.399 1.000

n=4000

DN 0.201 1.112 1.237 0.000 0.133 3.422

AN 0.130 2.013 4.053 0.278 0.227 2.720

Post-lasso 1.925 0.929 0.863 0.602 0.241 2.284

Post-adalasso 1.752 1.203 1.448 0.562 0.246 2.440

REXO 0.046 0.023 0.001 0.948 0.126 2.058

RPMSE 0.043 0.022 0.000 0.951 0.125 2.998

RMSE 0.044 0.022 0.000 0.947 0.125 2.407

Oracle 0.044 0.022 0.000 0.948 0.126 1.000
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Table 2: 2SLS diagnostics by selection method, strong IVs setting

Diagnostics

Intrqr Med Abs Bias Med Sq Bias Emp Cov CI An Med Len CI An Avg # of IVs

n=400

DN 0.076 0.995 0.991 0.000 0.199 6.000

AN 1.992 1.801 3.243 0.489 0.250 2.997

Post-lasso 1.654 0.986 0.972 0.348 0.369 2.096

Post-adalasso 0.133 0.992 0.984 0.172 0.209 4.303

REXO 0.082 0.042 0.002 0.908 0.217 2.766

RPMSE 0.078 0.040 0.002 0.892 0.212 2.990

RMSE 0.083 0.042 0.002 0.843 0.208 3.127

Oracle 0.074 0.037 0.001 0.940 0.211 3.000

n=4000

DN 0.025 1.001 1.002 0.000 0.063 6.000

AN 1.997 1.944 3.778 0.458 0.109 2.999

Post-lasso 0.041 1.001 1.003 0.151 0.064 4.163

Post-adalasso 0.025 1.001 1.002 0.000 0.063 6.000

REXO 0.026 0.013 0.000 0.919 0.068 2.868

RPMSE 0.023 0.012 0.000 0.934 0.068 2.998

RMSE 0.023 0.011 0.000 0.945 0.068 3.000

Oracle 0.023 0.011 0.000 0.945 0.068 3.000
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Table 3: 2SLS diagnostics by selection method, strong IVs favorable setting

Diagnostics

Intrqr Med Abs Bias Med Sq Bias Emp Cov CI An Med Len CI An Avg # of IVs

n=400

DN 0.146 1.328 1.764 0.000 0.368 6.000

AN 0.064 0.032 0.001 0.939 0.176 3.946

Post-lasso 0.079 0.040 0.002 0.865 0.185 3.539

Post-adalasso 0.066 0.033 0.001 0.920 0.177 3.898

REXO 0.069 0.035 0.001 0.911 0.178 3.771

RPMSE 0.064 0.032 0.001 0.935 0.176 3.986

RMSE 0.064 0.032 0.001 0.927 0.175 4.014

Oracle 0.063 0.032 0.001 0.939 0.176 4.000

n=4000

DN 0.046 1.335 1.783 0.000 0.117 6.000

AN 0.020 0.010 0.000 0.948 0.056 3.986

Post-lasso 0.024 0.013 0.000 0.880 0.058 3.463

Post-adalasso 0.026 0.015 0.000 0.862 0.066 3.078

REXO 0.021 0.011 0.000 0.932 0.056 3.909

RPMSE 0.020 0.010 0.000 0.947 0.056 3.998

RMSE 0.020 0.010 0.000 0.949 0.056 4.000

Oracle 0.020 0.010 0.000 0.949 0.056 4.000
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Table 4: 2SLS diagnostics by selection method, exogenous IVs setting

Diagnostics

Intrqr Med Abs Bias Med Sq Bias Emp Cov CI An Med Len CI An Avg # of IVs

n=400

DN 0.091 0.046 0.002 0.944 0.263 3.417

AN 0.091 0.046 0.002 0.933 0.258 5.923

Post-lasso 0.116 0.063 0.004 0.947 0.384 1.230

Post-adalasso 0.097 0.048 0.002 0.930 0.259 5.760

REXO 0.118 0.058 0.003 0.927 0.275 3.099

RPMSE 0.091 0.045 0.002 0.940 0.257 5.982

RMSE 0.091 0.045 0.002 0.935 0.257 5.104

Oracle 0.091 0.046 0.002 0.953 0.271 2.000

n=4000

DN 0.029 0.015 0.000 0.942 0.085 3.421

AN 0.029 0.015 0.000 0.941 0.083 5.971

Post-lasso 0.038 0.020 0.000 0.945 0.124 1.577

Post-adalasso 0.032 0.016 0.000 0.929 0.084 5.460

REXO 0.033 0.016 0.000 0.925 0.086 3.269

RPMSE 0.029 0.015 0.000 0.946 0.083 5.993

RMSE 0.029 0.015 0.000 0.946 0.083 5.806

Oracle 0.030 0.015 0.000 0.942 0.086 2.000
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A.3 Application figures and tables

Table 6: Judge descriptive statistics

Descriptive Statistic Judge 1 Judge 2 Judge 3 Judge 4 Judge 5 Judge 6 Judge 7 Judge 8

% cases allocated 0.065 0.039 0.163 0.170 0.101 0.166 0.125 0.170

% pre-trial detention 0.402 0.432 0.418 0.395 0.413 0.432 0.413 0.398

% pre-trial detention, cond. male 0.423 0.450 0.448 0.422 0.440 0.462 0.437 0.423

% pre-trial detention, cond. black 0.452 0.487 0.467 0.451 0.473 0.487 0.465 0.452

% pre-trial detention, cond. one prior 0.438 0.479 0.466 0.433 0.462 0.475 0.460 0.445

% pre-trial detention, cond. three priors 0.474 0.529 0.511 0.468 0.514 0.523 0.508 0.490

% pre-trial detention, cond. possess 0.213 0.255 0.182 0.160 0.167 0.186 0.197 0.219

% pre-trial detention, cond. agg assault 0.515 0.475 0.524 0.530 0.541 0.577 0.555 0.486

% pre-trial detention, cond. felony 0.568 0.566 0.589 0.583 0.604 0.609 0.588 0.545

% pre-trial detention, cond. misdemeanor 0.389 0.414 0.403 0.385 0.400 0.419 0.402 0.389
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Table 7: Balance check: mean variable by judge and by pretrial detention status

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5 Judge 6 Judge 7 Judge 8 Pretrial detention No pretrial detention

Prior # cases 4.820 4.660 4.890 4.880 4.990 4.830 4.920 4.910 3.900 6.290

Prior # felony charges 0.999 0.808 1.320 1.320 1.580 1.320 1.480 1.300 0.984 1.810

Prior # guilt 1.440 1.360 1.630 1.640 1.790 1.640 1.740 1.640 1.320 2.110

Felony 0.518 0.522 0.503 0.509 0.512 0.512 0.503 0.503 0.360 0.720

Misdemeanor 0.932 0.932 0.932 0.935 0.933 0.933 0.935 0.935 0.953 0.906

Summary offense 0.049 0.049 0.060 0.059 0.063 0.057 0.065 0.059 0.056 0.064

Felony type 1 0.142 0.149 0.141 0.144 0.137 0.142 0.137 0.138 0.056 0.262

Felony type 2 0.110 0.111 0.116 0.117 0.116 0.114 0.115 0.112 0.052 0.205

Felony type 3 0.223 0.218 0.202 0.204 0.194 0.203 0.195 0.201 0.126 0.312

Other felony 0.133 0.153 0.129 0.135 0.142 0.138 0.131 0.135 0.127 0.147

Misdemeanor type 1 0.365 0.357 0.364 0.364 0.355 0.360 0.360 0.356 0.260 0.504

Misdemeanor type 2 0.374 0.363 0.373 0.368 0.363 0.366 0.363 0.366 0.285 0.484

Misdemeanor type 3 0.078 0.079 0.081 0.078 0.076 0.079 0.085 0.078 0.075 0.085

Other misdemeanors 0.425 0.444 0.409 0.419 0.415 0.419 0.411 0.422 0.512 0.283

Robbery 0.078 0.076 0.070 0.077 0.068 0.076 0.072 0.070 0.021 0.148

Aggravated assault 0.085 0.079 0.092 0.090 0.096 0.091 0.091 0.090 0.072 0.117

Drug possession 0.156 0.133 0.133 0.137 0.118 0.137 0.134 0.136 0.186 0.062

Selling drugs 0.125 0.144 0.121 0.127 0.132 0.128 0.123 0.127 0.124 0.131

1st offense DUI 0.063 0.059 0.067 0.066 0.068 0.063 0.067 0.065 0.099 0.016

Guilt 0.450 0.452 0.491 0.489 0.523 0.495 0.505 0.492 0.492 0.493

Bail date 13, 858 13, 667 14, 542 14, 522 15, 018 14, 497 14, 804 14, 512 14, 514 14, 548

White 0.283 0.278 0.289 0.282 0.273 0.285 0.287 0.284 0.300 0.260

Black 0.604 0.586 0.569 0.576 0.568 0.576 0.575 0.577 0.524 0.651

Age 32.1 32.1 32.6 32.4 32.7 32.4 32.6 32.6 32.8 32.0

Male 0.830 0.831 0.829 0.836 0.828 0.837 0.829 0.831 0.795 0.885

One prior 0.759 0.753 0.761 0.761 0.768 0.759 0.764 0.762 0.704 0.844

Three priors 0.513 0.518 0.523 0.519 0.532 0.522 0.524 0.522 0.444 0.635

Waiting for another trial 0.638 0.638 0.636 0.643 0.646 0.638 0.640 0.638 0.567 0.744

Morning pretrial 0.326 0.309 0.355 0.343 0.363 0.350 0.364 0.351 0.359 0.337

Evening pretrial 0.344 0.352 0.321 0.331 0.336 0.328 0.332 0.333 0.335 0.326

Early morning pretrial 0.329 0.339 0.324 0.326 0.301 0.322 0.304 0.316 0.306 0.337

Weekend pretrial 0.029 0.039 0.038 0.034 0.029 0.031 0.033 0.035 0.034 0.033

Day of the year 168 142 199 200 221 197 217 199 198 199

Monday 0.577 1 0.234 0.238 0 0.258 0 0.243 0.242 0.237

Tuesday 0.423 0 0.169 0.174 0 0.177 0.219 0.176 0.173 0.170

Wednesday 0 0 0.161 0.168 0.252 0.151 0.213 0.160 0.165 0.152

Thursday 0 0 0.144 0.146 0.254 0.148 0.193 0.150 0.150 0.145

Friday 0 0 0.150 0.137 0.252 0.135 0.196 0.143 0.145 0.144

Saturday 0 0 0.142 0.137 0.242 0.131 0.178 0.127 0.126 0.152



Table 8: Estimates of judge fixed effects on pre-trial detention, robust standard errors

(1) (2) (3)

Judge 1 −0.0322∗∗∗∗ −0.0306∗∗∗∗ −0.0305∗∗∗∗

(0.0056) (0.0052) (0.0050)

Judge 3 −0.0232∗∗∗∗ −0.0211∗∗∗∗ −0.0189∗∗∗∗

(0.0051) (0.0047) (0.0046)

Judge 4 −0.0455∗∗∗∗ −0.0452∗∗∗∗ −0.0440∗∗∗∗

(0.0051) (0.0047) (0.0045)

Judge 5 −0.0326∗∗∗∗ −0.0311∗∗∗∗ −0.0296∗∗∗∗

(0.0056) (0.0052) (0.0050)

Judge 6 −0.0086∗ −0.0080∗ −0.0071

(0.0051) (0.0047) (0.0046)

Judge 7 −0.0298∗∗∗∗ −0.0272∗∗∗∗ −0.0250∗∗∗∗

(0.0055) (0.0050) (0.0049)

Judge 8 −0.0419∗∗∗∗ −0.0373∗∗∗∗ −0.0358∗∗∗∗

(0.0051) (0.0047) (0.0046)

Time effects Yes Yes Yes

Case characteristics - Yes Yes

Offender characteristics - - Yes

F statistic 35.22∗∗∗∗ 40.39∗∗∗∗ 43.06∗∗∗∗

J statistic 8.43 10.88∗ 12.16∗

∗∗∗∗p < 0.001; ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

230



Table 9: Estimates of effect of pre-trial detention on guilt, robust standard errors

(1) (2) (3)

OLS Est 0.0002 0.0563∗∗∗∗ 0.0289∗∗∗∗

Sd (0.0018) (0.0019) (0.0019)
2SLS Est 0.1509 0.1879∗∗∗ 0.1818∗∗∗

Sd 0.06526 0.06457 0.06403
Judge IV {1;3;4;5;6;7;8} {1;3;4;5;6;7;8} {1;3;4;5;6;7;8}

2SLS AN Est 0.1509∗∗ 0.1879∗∗∗ 0.1818∗∗∗

Sd 0.06526 0.06457 0.06403
Judge IV {1;3;4;5;6;7;8} {1;3;4;5;6;7;8} {1;3;4;5;6;7;8}

2SLS DN Est 0.1509∗∗ 0.1879∗∗∗ 0.1818∗∗∗

Sd 0.06526 0.06457 0.06403
Judge IV {1;3;4;5;6;7;8} {1;3;4;5;6;7;8} {1;3;4;5;6;7;8}

2SLS Post-lasso Est 0.2549∗∗ 0.2552∗∗ 0.2594∗∗

Sd 0.1166 0.1108 0.1127
Judge IV {4} {4} {4}

2SLS Post-adalasso Est 0.2117∗∗∗ 0.2018∗∗∗ 0.5206
Sd 0.07552 0.06505 0.7508
Judge IV {4;6} {3;4;5;6;7;8} {6}

2SLS REXO Est 0.3832∗∗ 0.5025∗∗∗ 0.2595∗∗

Sd 0.1504 0.1606 0.1126
Judge IV {6;7} {6;7} {4;8}

2SLS RPMSE Est 0.2549∗∗ 0.2556∗∗ 0.2594∗∗

Sd 0.1166 0.1108 0.1127
Judge IV {4} {4;8} {4}

2SLS RMSE Est 0.06212 0.1190 -0.01643
Sd 0.1086 0.1171 0.1477
Judge IV {1;3;7;8} {1;3;7;8} {1;6}

Time effects Yes Yes Yes
Case characteristics - Yes Yes
Demographics and other - - Yes
∗∗∗∗p < 0.001; ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1 231



Table 10: Diagnostics post selection when estimating the effect of pre-trial detention on guilt,
cluster robust standard errors

Selection method (1) (2) (3)

No selection F statistic 35.2162∗∗∗∗ 40.3948∗∗∗∗ 43.0605∗∗∗∗

J statistic 8.4281 10.8814∗ 12.1602∗

AN F statistic 35.2162∗∗∗∗ 40.3948∗∗∗∗ 43.0605∗∗∗∗

J statistic 8.4281 10.8814∗ 12.1602∗

DN F statistic 35.2162∗∗∗∗ 40.3948∗∗∗∗ 43.0605∗∗∗∗

J statistic 8.4281 10.8814∗ 12.1602∗

Lasso F statistic 80.2850∗∗∗∗ 97.8957∗∗∗∗ 99.6765∗∗∗∗

J statistic 0.0000 0.0000 0.0000
Adalasso F statistic 93.9719∗∗∗∗ 46.5946∗∗∗∗ 2.5798

J statistic 0.2422 6.9497 0.0000
REXO F statistic 25.9478∗∗∗∗ 26.3822∗∗∗∗ 49.9060∗∗∗∗

J statistic 0.0416 0.0050 0.0019
RPMSE F statistic 80.2850∗∗∗∗ 48.9627∗∗∗∗ 99.6765∗∗∗∗

J statistic 0.0000 0.0439 0.0000
RMSE F statistic 21.8693∗∗∗∗ 21.2626∗∗∗∗ 27.8508∗∗∗∗

J statistic 7.1293∗ 9.0086∗∗ 0.6231

Time effects Yes Yes Yes
Case characteristics - Yes Yes
Demographics and other - - Yes
∗∗∗∗p < 0.001; ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Table 11: 2SLS estimators and p-values by excluded judge dummy and by judge used as IV,
robust standard errors, specification (1)

Excluded judge dummy variable

1 2 3 4 5 6 7 8

Judge IV

1 - 0.1205 -0.8127 0.5811 19.3040 -0.02174 -3.3776 0.4673

2 0.1205 - 0.4841∗ 0.2549∗∗ 0.3633∗∗ 0.5105 0.4096∗∗ 0.2008

3 -0.8127 0.4841∗ - 0.01663 0.0668 0.4684∗∗ 0.1470 -0.1495

4 0.5811 0.2549∗∗ 0.01663 - -0.02023 0.1952∗∗ -0.03786 0.8918

5 19.3040 0.3633∗∗ 0.0668 -0.02023 - 0.3105∗∗ -0.1168 -0.3692

6 -0.02174 0.5105 0.4684∗∗ 0.1952∗∗ 0.3105∗∗ - 0.3685∗∗ 0.1208

7 -3.3776 0.4096∗∗ 0.1470 -0.03786 -0.1168 0.3685∗∗ - -0.3096

8 0.4673 0.2008 -0.1495 0.8918 -0.3692 0.1208 -0.3096 -

∗∗∗∗p < 0.001; ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Table 12: 2SLS estimators and p-values by excluded judge dummy and by judge used as IV,
robust standard errors, specification (2)

Excluded judge dummy variable

1 2 3 4 5 6 7 8

Judge IV

1 - 0.05449 -0.7387 0.6742∗∗ 21.3701 -0.0888 -3.4442 1.0862

2 0.05449 - 0.4113∗ 0.2552∗∗ 0.4229∗∗ 0.4563 0.4928∗∗ 0.2396∗

3 -0.7387 0.4113∗ - 0.1188 0.4473 0.3835∗ 0.7754 0.01574

4 0.6742∗∗ 0.2552∗∗ 0.1188 - -0.1147 0.2117∗∗∗ -0.1025 0.3281

5 21.3701 0.4229∗∗ 0.4473 -0.1147 - 0.4112∗∗∗ -0.05897 -0.6879

6 -0.0888 0.4563 0.3835∗ 0.2117∗∗∗ 0.4112∗∗∗ - 0.5081∗∗∗ 0.1800∗

7 -3.4442 0.4928∗∗ 0.7754 -0.1025 -0.05897 0.5081∗∗∗ - -0.4422

8 1.0862 0.2396∗ 0.01574 0.3281 -0.6879 0.1800∗ -0.4422 -

∗∗∗∗p < 0.001; ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Table 13: 2SLS estimators and p-values by excluded judge dummy and by judge used as IV,
robust standard errors, specification (3)

Excluded judge dummy variable

1 2 3 4 5 6 7 8

Judge IV

1 - 0.05902 -0.5675 0.7104∗∗ -12.5002 -0.08053 -2.2185 1.3849

2 0.05902 - 0.4449 0.2594∗∗ 0.4376∗∗ 0.5206 0.5577∗∗ 0.2560∗

3 -0.5675 0.4449 - 0.1202 0.4248 0.3995 0.9041 0.04559

4 0.7104∗∗ 0.2594∗∗ 0.1202 - -0.1062 0.2093∗∗∗ -0.1330 0.2740

5 -12.5002 0.4376∗∗ 0.4248 -0.1062 - 0.4115∗∗∗ -0.2176 -0.6094

6 -0.08053 0.5206 0.3995 0.2093∗∗∗ 0.4115∗∗∗ - 0.5724∗∗∗ 0.1908∗

7 -2.2185 0.5577∗∗ 0.9041 -0.1330 -0.2176 0.5724∗∗∗ - -0.4430

8 1.3849 0.2560∗ 0.04559 0.2740 -0.6094 0.1908∗ -0.4430 -

∗∗∗∗p < 0.001; ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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B Application appendix

In this section, I justify the choice of “excluding” judge 2 from the set of eight potential judge
dummy IVs and guess which judge dummy is possibly endogenous. First, notice that by
projecting out the exogenous regressors except the intercept the model can be written as

guilti = γ0 + predetiβ + ∑
j∈E

αj1{judgei = j}+ ui

predeti = δ0 +
8

∑
j=1

πj1{judgei = j}+ vi

Then let for j = 1, . . . , 8 pj = P(judgei = j), predet = E(predeti) and guilt = E(guilti) so
that the demeaned variables can be written for j = 1, . . . , 8 as Dij = 1{judgei = j} − pj,

˜predeti = predeti − predet and ˜guilti = guilti − guilt. The intercept can then be projected out
so that the model can be rewritten as

˜guilti =
˜predetiβ + ∑

j∈E

αjDij + ũi

˜predeti =
8

∑
j=1

πjDij + ṽi

Thus, because ∑8
j=1 Dij = 0 there is a multicollinearity problem in the first stage and some

judge variable must be removed.
Then what if, for instance, judge 8 is excluded and not used either as an IV or as a control

variable? Can it still enter the structural equation? If judge 8 is excluded and enters the
structural equation, then it is actually Di8 = 1{judgei = 8}− p8 = ∑7

j=1(pj − 1{judgei = j}) =
∑7

j=1 Dij which enters the structural equation. Hence, affirming that excluded judge 8 enters
the structural equation implies that there is at least one other judge dummy variable which
is endogenous which is the usual case considered in the paper. On the other hand, affirming
that judge 8 doesn’t enter the structural equation, and thus doesn’t imply that all other judge
dummy variables are exogenous hence it is also the usual case. Consequently, endogeneity or
exogeneity of the excluded variable is entirely tied to endogeneity or exogeneity of the rest of
the judge dummy variables which can be dealt with IV selection methods.

Still, in order to limit as much as possible the overall amount of endogeneity I exclude the
judge which has the lowest amount of cases, ie judge 2 with p̂2 = 0.039, see 6 in appendix
A.3. Indeed, if judge 2 is excluded but still enters the structural equation through the sum of
the other dummies, endogeneity is limited compared to when excluding other judges. When
the model is instrumented by subset S with S projected out

˜guilti =
˜predetiβ + ũiS, ˜predeti = ∑

j∈S
πjDij + vi
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where the error is ũiS = α2Di2 +∑j∈E αjDijũi. Thus, for any S part of its level of endogeneity is

determined by E
(

∑j∈S DijDi2

)
= −P(judgei = 2)∑j∈S P(judgei = j) which is small because

P(judgei = 2) is the smallest out of all judge propensity to take a case.
In addition, as mentioned before, excluding judge j implies that all other judge effects

are relative to judge j in the first stage. This means that the IVs which are individually
insignificant in the first stage depend on the judge which is excluded. Thus, the excluded
judge determines which IV subsets are weak, this is quite problematic because IV selection
methods are sensitive to weak IVs, including the ones developed in this paper to some extent.
For this reason excluding judge 2 is a great choice because judge 2 has the largest propensity
to send someone to pre-trial detention, thus when excluding judge 2 other judge dummies
are more likely to be individually significant.

In tables 11, 12, and 13 are 2SLS estimators computed for specification (1), (2) and (3) re-
spectively, where each column correspond to which judge was excluded, and where each row
corresponds to which judge was used as the sole IV to construct 2SLS (other judge dummies
act as controls). First, notice that the tables are symmetric, this is due to the fact that if in the
model six judge dummies and an intercept are controlled for then the two last judge dummy
variables are equal to each other hence excluding one or the other does not change the es-
timator. Second, note that across specifications when judge 2 and to a lesser extent judge 8
are excluded (or used as the IV) the 2SLS estimators are much more likely to be significant,
this is because they are the harshest judges and relative to them other judge dummies have
a significant effect on pre-trial detention. Third, notice that across specifications some entries
are extremes, sometimes negative, especially when judge 5 or judge 7 are excluded (or used
as the IV). This is either due to the fact that being imprisoned before a trial is taken as a signal
that the offender is not guilty, which is implausible, or this is due to these judge dummy
variables being endogenous and producing a negative bias. Indeed, if the true model is Dij is
used as the sole IV but enters the structural equation as in

˜guilti =
˜predetiβ + αjDij + ũi, ˜predeti = πjDij + ṽi

This can generate a negative bias when sign(αj) ̸= sign(πj). If a pre-trial judge is too lenient
with a negative πj then the judge which supervises the trial may compensate and be harsher
with a positive αj. Fourth the differences between the individual judge IV estimators in tables
11, 12 and 13 could also be due (in part) to heterogeneity in β or to endogeneity of all judge
IVs, although both are unlikely.

To conclude, there are very good reasons to exclude judge 2.

C Main theorems proofs

The proofs of the main asymptotic results are divided in three parts. First, the limit in dis-
tribution of all the risks, risk estimators and the limit of their expectation are found, then I
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rank IV sets in accordance to the limits of each risk. Second, I prove that the feasible risk
estimators and the risks have the same limit in probability. Third, I combine these results to
prove the efficiency and the consistency of selection via risk estimator minimization. Note
that, in order to simplify calculations throughout this proof, instead of considering R̂EXO and
REXO I consider nbR̂EXO and R̃EXO (which is defined below).

Before writing the proofs, some notations and conventions are introduced. Unless spec-
ified, all limits are taken with respect to n. Additionally, we denote by the expression
X = oP(na) a random variable or statistic X which is asymptotically degenerate of order na,
ie X = oP(na) ⇔ ∀e > 0 P(|X|n−a > e) →

n→∞
0, and denote by X = Op(na) a random variable

which is (bounded in probability) of order na, ie ∀e > 0 ∃M > 0, ∃N : ∀n ⩾ N P(|X|n−a >
M) < e. The usual properties of oP and OP random variables are used throughout these
proofs. In adition, plim X denotes the limit in probability of a random variable or statistic X
whereas dlim X denotes its limit in distribution.

In all the proofs, denote the difference between the subset IV estimator and the true pa-

rameter as ĈS ≡ β̂S − β =
x′PzS uS
x′PzS x for any S ∈ S . Then, I define the following risks for IV

subsets based on exogeneity as

R̃EXO(S) = E
(

En

(
(y∗ − x∗ β̂S)

′z∗SΣSz∗
′

S (y
∗ − x∗ β̂S)

))

REXO(S) =

{
REXO(S) if bS ⩽ 1/2
R̃EXO(S) if bS ⩾ 1/2

In the later parts of the proof, REXO and R̃EXO are used altenatively to rank IV subsets.
Finally, I define the out-of-sample risk estimators

R̂EXO,o(S) =
1
n2 (y

∗ − x∗ β̂S)
′z∗SΣSz∗

′
S (y

∗ − x∗ β̂S)

R̂PMSE,o(S) =
1
n

n

∑
i=1

(y∗i − z∗
′

iSπS β̂S)
2

R̂MSE,o(S) =
1
n

n

∑
i=1

(y∗i − x∗i β̂S)
2

where β̂S was computed from the original sample (wi)
n
i=1 and the sample (w∗

i )
n
i=1 has the

same DGP but is independent of (wi)
n
i=1.

C.1 Technical lemmas: expected risk estimators asymptotics and ranking

Lemma 3.1
Under Assumption A, for any S ∈ S
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• If aS ∈ [0; 1/2) then

– If bS > aS then plim ĈS = plim Ĉ2
S = 0, in addition if bS ⩾ 1/2 then n1/2−aS ĈS =

OP(1)

– If bS = aS then plim ĈS =
κ′SδS

κ′SΣSκS

– If bS < aS then ĈS has no limit but n−aS ĈS = OP(1) and if bS = 0 then plim n−aS ĈS =
κ′SδS

κSΣSκS

• If aS = 1/2 then

– If bS > 1/2 then dlim ĈS =
λ′

vSλu
||λvS||2

– If bS = 1/2 then dlim ĈS =
λ′

vS(λu+Σ−1/2
S δS)

||λvS||2

– If bS < 1/2 then ĈS has no limit but n−1/2ĈS = OP(1) and if bS = 0 then dlim n−1/2ĈS =
λ′

vSΣ−1/2
S δS

||λvS||2

• If aS > 1/2 then

– If bS > 1/2 then dlim ĈS = λ′
vλu

||λv||2

– If bS = 1/2 then dlim ĈS =
λ′

v(λu+Σ−1/2
S δS)

||λv||2

– If bS < 1/2 then ĈS has no limit but n−1/2ĈS = OP(1) and if bS = 0 then dlim n−1/2ĈS =
λ′

vΣ−1/2
S δS

||λv||2

where (λu, λv) is Gaussian and λvS = λv + Σ1/2
S κS. Furthermore, if bS ⩾ 1/2 then ĈS = OP(1).

Proof. Take note of the following decomposition of ĈS

ĈS =
x′PzS u
x′PzS x

=
π′

Sz′Sz′Ēα + v′PzS zĒα + v′PzS u + π′
Sz′Su

π′
Sz′SzSπS + 2π′

SzSv + v′PzS v

=
n1−aS−bS κ′SδS + n1−bS v′zS(z′SzS)

−1δS + v′PzS u + n−aS κ′Sz′Su
n−2aS κ′Sz′SzSκS + 2n−aS κ′SzSv + v′PzS v

+
n−aS κ′Sz′SzĒα − n1−aS−bS κ′SδS + v′PzS zĒα − n1−bS v′zS(z′SzS)

−1δS

n−2aS κ′Sz′SzSκS + 2n−aS κ′SzSv + v′PzS v

=
n1−aS−bS κ′SδS + n1/2−bS 1√

n v′zS(
1
n z′SzS)

−1δS + v′PzS u + n1/2−aS κ′S
1√
n z′Su

n1−2aS κ′S
1
n z′SzSκS + 2n1/2−aS κ′S

1√
n zSv + v′PzS v

+
n1−aS−bS κ′S(n

bS−1z′SzĒα − δS) + n1/2−bS 1√
n v′zS(

1
n z′SzS)

−1(nbS−1z′SzĒα − δS)

n1−2aS κ′S
1
n z′SzSκS + 2n1/2−aS κ′S

1√
n zSv + v′PzS v
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Then by assumption A the (weak) law of large numbers (LLN), the central limit theorem
(CLT) and the continuous mapping theorem (CMT) can be applied to obtain the limits of the
components of ĈS

1√
n

v′zS
d→ N (0, σ2

v ΣS)

1√
n

u′zS
d→ N (0, σ2

uΣS)

1
n

z′SzS
P→ ΣS

nbS−1z′SzĒα
P→ δS

Then denote

λu ≡ dlim(n−1/2z′SuΣ−1/2
S ) ∼ N (0, σ2

u Is)

λv ≡ dlim(n−1/2z′SvΣ−1/2
S ) ∼ N (0, σ2

v Is)

∀S, λvS ≡ dlim(n−1/2z′SvΣ−1/2
S + Σ1/2

S κS) ≡ λv + Σ1/2
S κS ∼ N (Σ1/2

S κS, σ2
v Is)

and note that for any j = 1, . . . , s E(λu,jλv,j) = E(λu,jλvS,j) = ρ but E(λu,jλv,j′) =

E(λu,jλvS,j′) = 0 if j′ ̸= j. Thus, by properties of Gaussian vectors for any S

λu =
ρ

σ2
v

λv + ε =
ρ

σ2
v

λvS −
ρ

σ2
v

Σ1/2
S κS + ε

where ε j is independent of λv,j and ε ∼ N
(

0, (σ2
u − ρ2

σ2
v
)Is

)
.

Consequently, with a slight abuse of notations ĈS can be rewritten in terms of OP orders

ĈS =
OP(n1−aS−bS) + OP(n1/2−bS) + OP(1) + OP(n1/2−aS)

OP(n1−2aS) + OP(n1/2−aS) + OP(1)

+
OP(n1−aS−bS)oP(1) + OP(n1/2−bS)oP(1)

OP(n1−2aS) + OP(n1/2−aS) + OP(1)

Thus, (aS, bS) determines the asymptotic behavior of ĈS and there are six cases

• When aS < 1/2 (S is a semi-strong IV subset) ĈS can be rewritten as
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ĈS = ĈS
n2aS−1

n2aS−1 =
naS−bS κ′SδS + n2aS−1/2−bS 1√

n v′zS(
1
n z′SzS)

−1δS + n2aS−1v′PzS u + naS−1/2κ′S
1√
n z′Su

κ′S
1
n z′SzSκS + 2naS−1/2κ′S

1√
n zSv + n2aS−1v′PzS v

+
naS−bS κ′S(n

bS−1z′SzĒα − δS) + n2aS−1/2−bS 1√
n v′zS(

1
n z′SzS)

−1(nbS−1z′SzĒα − δS)

κ′S
1
n z′SzSκS + 2naS−1/2κ′S

1√
n zSv + n2aS−1v′PzS v

=
OP(naS−bS) + OP(n2aS−1/2−bS) + OP(n2aS−1) + OP(naS−1/2)

OP(1) + OP(naS−1/2) + OP(n2aS−1)

+
OP(naS−bS)oP(1) + OP(n2aS−1/2−bS)oP(1)

OP(1) + OP(naS−1/2) + OP(n2aS−1)

But OP(1)+OP(naS−1/2)+OP(n2aS−1) = OP(1), OP(n2aS−1) = oP(1), and OP(naS−1/2) =

oP(1) because aS < 1/2 thus

ĈS = OP(naS−bS) + OP(n2aS−1/2−bS) + oP(1)

Then there are three cases

– When bS > aS (S is an exogenous IV subset) then OP(naS−bS) = oP(1) and OP(naS−1/2+aS−bS) =

oP(1) because aS < 1/2 so that ĈS = oP(1) and β̂S is consistent. In addition, when

bS ⩾ 1/2 then n1/2−aS ĈS = OP(1) so that if bS > 1/2 then dlim n1/2−aS ĈS =
κ′SΣ1/2

S λu
κ′SΣSκS

and

E( dlim n1/2−aS ĈS) = 0, E

(
dlim

(
n1/2−aS ĈS

)2
)
=

σ2
u

κ′SΣSκS

and so that if bS = 1/2 then dlim n1/2−aS ĈS =
κ′SΣ1/2

S (λu+Σ−1/2
S δS)

κ′SΣSκS
and

E( dlim n1/2−aS ĈS) =
κ′SδS

κ′SΣSκS
, E

(
dlim

(
n1/2−aS ĈS

)2
)
=

σ2
u + (κ′SδS)

2

κ′SΣSκS

– When bS = aS (S is a locally endogenous IV subset) then OP(naS−bS) = OP(1) and
OP(naS−1/2+aS−bS) = oP(1) because aS = bS < 1/2 so that ĈS = OP(1) and β̂S is
inconsistent. More precisely, when bS = aS < 1/2 the limit in probability of ĈS is

κ′SδS
κ′SΣSκS

thus β̂S is inconsistent unless κ′SδS = 0.
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– When bS < aS (S is an endogenous IV subset) then ĈS has no limit and β̂S is

inconsistent. But n−aS ĈS =





oP(1) if bS > 0

OP(1)if bS = 0
and more precisely if bS = 0 then

plim n−aS ĈS =
κ′SδS

κ′SΣSκS
.

• When aS = 1/2 (S is a weak IV subset) ĈS can be rewritten as

ĈS =
n1/2−bS κ′SδS + n1/2−bS 1√

n v′zS(
1
n z′SzS)

−1δS + v′PzS u + κ′S
1√
n z′Su

κ′S
1
n z′SzSκS + 2κ′S

1√
n zSv + v′PzS v

+
n1/2−bS κ′S(n

bS−1z′SzĒα − δS) + n1/2−bS 1√
n v′zS(

1
n z′SzS)

−1(nbS−1z′SzĒα − δS)

κ′S
1
n z′SzSκS + 2κ′S

1√
n zSv + v′PzS v

= OP(n1/2−bS) + OP(1) + oP(1)

Then there are three cases

– When bS > 1/2 (S is an exogenous IV subset) then OP(n1/2−bS) = oP(1) so that
ĈS = OP(1) and β̂S is inconsistent. More precisely, when bS > aS = 1/2 the limit in
distribution of ĈS is

dlim ĈS =
(λv + Σ1/2

S κS)
′λu

(λv + Σ1/2
S κS)′(λv + Σ1/2

S κS)
=

λ′
vSλu

||λvS||2

In addition, note that

dlim ĈS =
ρ

σ2
v
+

ε′λvS

||λvS||2
− ρ

σ2
v

κ′SΣ1/2
S

λvS

||λvS||2

dlim Ĉ2
S =

ρ2

σ4
v
+

ε′PλvS ε

||λvS||2
+

ρ2

σ4
v

κ′SΣ1/2
S

PλvS

||λvS||2
Σ1/2

S κS+

+ 2
ρ

σ2
v

ε′λvS

||λvS||2
− 2

ρ

σ2
v

κ′SΣ1/2
S

PλvS

||λvS||2
ε − 2

ρ2

σ4
v

κ′SΣ1/2
S

λvS

||λvS||2
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⇒ E( dlim ĈS) =
ρ

σ2
v

(
1 − κ′SΣ1/2

S E

(
λvS

||λvS||2
))

⇒ E( dlim Ĉ2
S) =

ρ2

σ4
v

(
1 − 2κ′SΣ1/2

S E

(
λvS

||λvS||2
)
+ κ′SΣ1/2

S E

(
PλvS

||λvS||2
)

Σ1/2
S κS

)

+

(
σ2

u −
ρ2

σ2
v

)
E(||λvS||−2)

=
ρ2

σ4
v

E

((
1 − λ′

vS
||λvS||2

Σ1/2
S κS

)2
)
+

(
σ2

u −
ρ2

σ2
v

)
(σ2

v (s − 2))−1

– When bS = 1/2 (S is a locally endogenous IV subset) then ĈS = OP(1) and β̂S is
inconsistent. More precisely, when bS = aS = 1/2 the limit in distribution of ĈS is

dlim ĈS =
κ′SδS + λ′

vΣ−1/2
S δS + (λv + Σ1/2

S κS)
′λu

(λv + Σ1/2
S κS)′(λv + Σ1/2

S κS)
=

λ′
vS(λu + Σ−1/2

S δS)

||λvS||2

In addition, note that

dlim ĈS =
ρ

σ2
v
+

ε′λvS

||λvS||2
+ (δ′SΣ−1/2

S − ρ

σ2
v

κ′SΣ1/2
S )

λvS

||λvS||2

dlim Ĉ2
S =

ρ2

σ4
v
+

ε′PλvS ε

||λvS||2
+ (δ′SΣ−1/2

S − ρ

σ2
v

κ′SΣ1/2
S )

PλvS

||λvS||2
(Σ−1/2

S δS −
ρ

σ2
v

Σ1/2
S κS)

+ 2
ρ

σ2
v

ε′λvS

||λvS||2
+ 2(δ′SΣ−1/2

S − ρ

σ2
v

κ′SΣ1/2
S )

PλvS

||λvS||2
ε + 2

ρ

σ2
v
(δ′SΣ−1/2

S − ρ

σ2
v

κ′SΣ1/2
S )

λvS

||λvS||2

⇒ E( dlim ĈS) =
ρ

σ2
v
+

(
δ′SΣ−1/2

S − ρ

σ2
v

κ′SΣ1/2
S

)
E

(
λvS

||λvS||2
)

⇒ E( dlim Ĉ2
S) =

ρ2

σ4
v
+ 2

ρ

σ2
v
(δ′SΣ−1/2

S − ρ

σ2
v

κ′SΣ1/2
S )E

(
λvS

||λvS||2
)

+ (δ′SΣ−1/2
S +

ρ

σ2
v

κ′SΣ1/2
S )E

(
PλvS

||λvS||2
)
(Σ−1/2

S δS +
ρ

σ2
v

Σ1/2
S κS)

+

(
σ2

u −
ρ2

σ2
v

)
E(||λvS||−2)

= E

((
ρ

σ2
v
+

λ′
vS

||λvS||2
(Σ−1/2

S δS −
ρ

σ2
v

Σ1/2
S κS

)2
)
+

(
σ2

u −
ρ2

σ2
v

)
(σ2

v (s − 2))−1

– When bS < 1/2 (S is an endogenous IV subset) then ĈS has no limit and β̂S is
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inconsistent. But n−1/2ĈS =





oP(1) if bS > 0

OP(1)if bS = 0
and more precisely if bS = 0 then

dlim n−1/2ĈS =
λvSΣ−1/2

S δS
||λvS||2 .

• When aS > 1/2 (S is a very weak IV subset) recall that ĈS can be rewritten as

ĈS =
n1−aS−bS κ′SδS + n1/2−bS 1√

n v′zS(
1
n z′SzS)

−1δS + v′PzS u + n1/2−aS κ′S
1√
n z′Su

n1−2aS κ′S
1
n z′SzSκS + 2n1/2−aS κ′S

1√
n zSv + v′PzS v

+
n1−aS−bS κ′S(n

bS−1z′SzĒα − δS) + n1/2−bS 1√
n v′zS(

1
n z′SzS)

−1(nbS−1z′SzĒα − δS)

n1−2aS κ′S
1
n z′SzSκS + 2n1/2−aS κ′S

1√
n zSv + v′PzS v

=
OP(n1−aS−bS) + OP(n1/2−bS) + OP(1) + OP(n1/2−aS)

OP(n1−2aS) + OP(n1/2−aS) + OP(1)

+
OP(n1−aS−bS)oP(1) + OP(n1/2−bS)oP(1)

OP(n1−2aS) + OP(n1/2−aS) + OP(1)

But OP(n1/2−aS) = oP(1) and OP(n1−2aS) = oP(1) because aS > 1/2 thus

ĈS = OP(n1−aS−bS) + OP(n1/2−bS) + OP(1) + oP(1)

Then there are three cases

– When bS > 1/2 (S is an exogenous IV subset) then OP(n1/2−bS) = oP(1) and
OP(n1−aS−bS) = oP(1) so that ĈS = OP(1) and β̂S is inconsistent. More precisely,
when bS > aS = 1/2 the limit in distribution of ĈS is

dlim ĈS =
λ′

vλu

||λv||2

In addition, note that

dlim ĈS =
ρ

σ2
v
+

ε′λv

||λv||2

dlim Ĉ2
S =

ρ2

σ4
v
+

ε′Pλv ε

||λv||2
+ 2

ρ

σ2
v

ε′λv

||λv||2
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⇒ E( dlim ĈS) =
ρ

σ2
v

⇒ E( dlim Ĉ2
S) =

ρ2

σ4
v
+

(
σ2

u −
ρ2

σ2
v

)
E(||λv||−2)

=
ρ2

σ4
v
+

(
σ2

u −
ρ2

σ2
v

)
(σ2

v (s − 2))−1

– When bS = 1/2 (S is a locally endogenous IV subset) then OP(n1−aS−bS) = oP(1)
so that ĈS = OP(1) and β̂S is inconsistent. More precisely,when bS = aS = 1/2 the
limit in distribution of ĈS is

dlim ĈS =
λ′

v(λu + Σ−1/2
S δS)

||λv||2

In addition, note that

dlim ĈS =
ρ

σ2
v
+

ε′λv

||λv||2
+ δ′SΣ−1/2

S
λv

||λv||2

dlim Ĉ2
S =

ρ2

σ4
v
+

ε′Pλv ε

||λv||2
+ δ′SΣ−1/2

S
Pλv

||λv||2
Σ−1/2

S δS + 2
ρ

σ2
v

ε′λv

||λv||2
+ 2δ′SΣ−1/2

S
Pλv

||λv||2
ε + 2

ρ

σ2
v

δ′SΣ−1/2
S

λv

||λv||2

⇒ E( dlim ĈS) =
ρ

σ2
v
+ δ′SΣ−1/2

S E

(
λv

||λv||2
)

⇒ E( dlim Ĉ2
S) =

ρ2

σ4
v
+ 2

ρ

σ2
v

δ′SΣ−1/2
S E

(
λv

||λv||2
)
+ δ′SΣ−1/2

S E

(
PλvS

||λvS||2
)

Σ−1/2
S δS

+

(
σ2

u −
ρ2

σ2
v

)
E(||λvS||−2)

= E

((
ρ

σ2
v
+

λ′
vS

||λvS||2
Σ−1/2

S δS

)2
)
+

(
σ2

u −
ρ2

σ2
v

)
(σ2

v (s − 2))−1

– When bS < 1/2 (S is an endogenous IV subset) then ĈS has no limit and β̂S is

inconsistent. But n−1/2ĈS =





oP(1) if bS > 0

OP(1) if bS = 0
and more precisely if bS = 0 then

dlim n−1/2ĈS =
λvΣ−1/2

S δS
||λv||2 .

245



Lemma 3.2

Under Assumption A, for any S ∈ S then R̂EXO,o(S) =
(

OP(n−1/2) + OP(n−bS)

)2

and

• If bS > 0 then plim R̂EXO,o(S) = lim REXO(S) = 0

• If bS = 0 then

– If aS < 1/2 then plim R̂EXO,o(S) = lim REXO(S) = ||Σ−1/2
S δS − δ′SκS

κ′SΣSκS
Σ−1/2

S δS||2

– If aS = 1/2 then dlim R̂EXO,o(S) = ||Σ−1/2
S δS − λ′

vSΣ−1/2
S δS

||λvS||2 λ∗
vS||2

– If aS > 1/2 then dlim R̂EXO,o(S) = ||Σ−1/2
S δS − λ′

vΣ−1/2
S δS

||λv||2 λ∗
v||2

Proof. With a slight abuse of the OP notation

R̂EXO,o(S) =
1
n
(u∗

S − x∗ĈS)
′z∗SΣ−1

S
1
n

z∗
′

S (u
∗
S − x∗ĈS)

=
1
n
(z∗Eα + u∗ − ĈS(z∗SπS + v∗))′z∗SΣ−1

S
1
n

z∗
′

S (z
∗
Eα + u∗ − ĈS(z∗SπS + v∗))

=
(

OP(n−1/2) + OP(n−bS)− ĈS

(
OP(n−aS) + OP(n−1/2)

))2

Then going case by case, using the LLN, the CMT and results from the proof of Lemma 3.1,
the limit of R̂EXO,o(S) can be found for any S

• When aS < 1/2 then ĈS = OP(naS−bS) + OP(n2aS−1/2−bS) + oP(1) and

R̂EXO,o(S) =
(

OP(n−1/2) + OP(n−bS)− OP(n−bS)− 2OP(naS−bS−1/2)− OP(n2aS−1−bS)

− oP(1)
(

OP(n−aS) + OP(n−1/2)
))2

=

(
OP(n−1/2) + OP(n−bS)

)2

where the last equality holds by the OP rules and because aS − bS − 1/2 < −bS and
2aS − bS − 1 < −bS. Then case by case

– If bS > aS then ĈS = oP(1) so that R̂EXO,o(S) = oP(1)
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– If bS = aS then ĈS = OP(1) so that R̂EXO,o(S) =





oP(1) if bS > 0

OP(1) if bS = 0
. More precisely

when bS = aS = 0 then plim ĈS =
κ′SδS

κ′SΣSκS
so that

plim R̂EXO,o(S) =
(

Σ−1/2
S δS −

κ′SδS

κ′SΣSκS
Σ1/2

S κS

)′ (
Σ−1/2δS −

κ′SδS

κ′SΣSκS
Σ1/2

S κS

)

= ||Σ−1/2
S δS −

κ′SδS

κ′SΣSκS
Σ1/2

S κS||2

– If bS < aS then ĈS has no limit however because ĈS = OP(naS−bS)+OP(n2aS−1/2−bS)+

oP(1) then

R̂EXO,o(S) =
(

OP(n−1/2) + OP(n−bS)− OP(n−bS)− 2OP(naS−bS−1/2)− OP(n2aS−1−bS)

− oP(1)
(

OP(n−aS) + OP(n−1/2)
))2

=





oP(1) if bS > 0

OP(1) if bS = 0

More precisely when bS = 0 < aS then plim n−aS ĈS =
κ′SδS

κ′SΣSκS
so that once again

plim R̂EXO,o(S) =
(

Σ−1/2
S δS −

κ′SδS

κ′SΣSκS
Σ1/2

S κS

)′ (
Σ−1/2δS −

κ′SδS

κ′SΣSκS
Σ1/2

S κS

)

= ||Σ−1/2
S δS −

κ′SδS

κ′SΣSκS
Σ1/2

S κS||2

• When aS = 1/2 then ĈS = OP(n1/2−bS) + OP(1) + oP(1) and

R̂EXO,o(S) =
(

OP(n−1/2) + OP(n−bS)− OP(n−bS)− (OP(1) + oP(1))OP(n−1/2)

)2

=

(
OP(n−1/2) + OP(n−bS)

)2

where the last equality holds by the OP rules. Then case by case

– If bS ⩾ 1/2 then ĈS = OP(1) so that R̂EXO,o(S) = oP(1)

– If bS < 1/2 then ĈS has no limit however

R̂EXO,o(S) =





oP(1) if bS > 0

OP(1) if bS = 0
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More precisely when bS = 0 then dlim n−1/2ĈS =
λ′

vSΣ−1/2
S δS

||λvS||2 so that

dlim R̂EXO,o(S) =

(
Σ−1/2

S δS −
λ′

vSΣ−1/2
S δS

||λvS||2
λ∗

vS

)′(
Σ−1/2

S δS −
λ′

vSΣ−1/2
S δS

||λvS||2
λ∗

vS

)

= ||Σ−1/2
S δS −

λ′
vSΣ−1/2

S δS

||λvS||2
λ∗

vS||2

• When aS > 1/2 then ĈS = OP(n1−aS−bS) + OP(n1/2−bS) + OP(1) + OP(n1/2−aS) and

R̂EXO,o(S) =
(

OP(n−1/2) + OP(n−bS)− OP(n1−2aS−bS)− 2OP(n1/2−aS−bS)− OP(n−bS)

− (OP(n−aS) + OP(n−1/2))(OP(1) + OP(n1/2−aS))

)2

=

(
OP(n−1/2) + OP(n−bS)

)2

where the last equality holds by the OP rules and because 1 − 2aS − bS < −bS and
1/2 − aS − bS < −bS. Then case by case

– If bS ⩾ aS then ĈS = OP(1) so that R̂EXO,o(S) = oP(1)

– If bS < aS then ĈS has no limit however

R̂EXO,o(S) =





oP(1) if bS > 0

OP(1) if bS = 0

More precisely when bS = 0 then dlim n−aS ĈS =
λ′

vΣ−1/2
S δS

||λv||2 so that

dlim R̂EXO,o(S) =

(
Σ−1/2

S δS −
λ′

vΣ−1/2
S δS

||λv||2
λ∗

v

)′(
Σ−1/2

S δS −
λ′

vΣ−1/2
S δS

||λv||2
λ∗

v

)

= ||Σ−1/2
S δS −

λ′
vΣ−1/2

S δS

||λv||2
λ∗

v||2

Then, from D.3 it can be shown that for any S : aS < 1/2, E( dlim R̂EXO,o(S)) = lim REXO(S).
Indeed,

REXO(S) = E
(
||Σ−1/2

S E(z∗Sz∗
′

E )α − Σ1/2
S πSĈS||2

)

The statement of the lemma is obtained by combining the results derived above.
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Lemma 3.3

Under Assumption A, for any S ∈ S then nR̂EXO,o(S) =
(

OP(n1/2−bS) + OP(1)
)2

and

• If bS < 1/2 then nR̂EXO,o(S) and R̃EXO(S) have no limit and explode

• If bS = 1/2 then E( dlim nR̂EXO,o(S)) = lim R̃EXO(S) and

– If aS < 1/2 then dlim nR̂EXO,o(S) = ||λ∗
u + Σ−1/2

S δS − (λu+Σ−1/2
S δS)

′Σ1/2
S κS

κ′SΣSκS
Σ1/2

S κS||2

– If aS = 1/2 then dlim nR̂EXO,o(S) = ||λ∗
u + Σ−1/2

S δS − (λu+Σ−1/2
S δS)

′λvS
||λvS||2 λ∗

vS||2

– If aS > 1/2 then dlim nR̂EXO,o(S) = ||λ∗
u + Σ−1/2

S δS − (λu+Σ−1/2
S δS)

′λv
||λv||2 λ∗

v||2

• If bS > 1/2 then E( dlim nR̂EXO,o(S)) = lim R̃EXO(S) and

– If aS < 1/2 then dlim nR̂EXO,o(S) = ||λ∗
u −

λ′
uΣ1/2

S κS
κ′SΣSκS

Σ1/2
S κS||2

– If aS = 1/2 then dlim nR̂EXO,o(S) = ||λ∗
u − λ′

uλvS
||λvS||2 λ∗

vS||2

– If aS > 1/2 then dlim nR̂EXO,o(S) = ||λ∗
u − λ′

uλv
||λv||2 λ∗

v||2

Proof. With a slight abuse of the OP notation

nR̂EXO,o(S) =
1√
n
(uS − xĈS)

′zSΣ−1
S

1√
n

z′S(uS − xĈS)

=
1√
n
(zEα + u − ĈS(zSπS + v))′zSΣ−1

S
1√
n

z′S(zEα + u − ĈS(zSπS + v))

=
(

OP(n1/2−bS) + OP(1)− ĈS

(
OP(n1/2−aS) + OP(1)

))2

Then case by case, using the LLN, the CMT and results from the proofs of Lemma 3.1 and
Lemma 3.2 the limit of R̂EXO,o(S) can be found for any S

• When aS < 1/2

– If bS > 1/2 then dlim nR̂EXO,o(S) = ||λ∗
u −

λ′
uΣ1/2

S κS
κ′SΣSκS

Σ1/2
S κS||2

– If bS = 1/2 then dlim nR̂EXO,o(S) = ||λ∗
u + Σ−1/2

S δS − (λu+Σ−1/2
S δS)

′Σ1/2
S κS

κ′SΣSκS
Σ1/2

S κS||2

– If bS < 1/2 then nR̂EXO,o(S) = OP(n1/2−bS) has no limit
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• When aS = 1/2

– If bS > 1/2 then dlim nR̂EXO,o(S) = ||λ∗
u − λ′

uλvS
||λvS||2 λ∗

vS||2

– If bS = 1/2 then dlim nR̂EXO,o(S) = ||λ∗
u + Σ−1/2

S δS − (λu+Σ−1/2
S δS)

′λvS
||λvS||2 λ∗

vS||2

– If bS < 1/2 then nR̂EXO,o(S) = OP(n1/2−bS) has no limit

• When aS > 1/2

– If bS > 1/2 then dlim nR̂EXO,o(S) = ||λ∗
u − λ′

uλv
||λv||2 λ∗

v||2

– If bS = 1/2 then dlim nR̂EXO,o(S) = ||λ∗
u + Σ−1/2

S δS − (λu+Σ−1/2
S δS)

′λv
||λv||2 λ∗

v||2

– If bS < 1/2 then nR̂EXO,o(S) = OP(n1/2−bS) has no limit

Then, from D.3 it can be again shown that for any S : bS ⩾ 1/2, E( dlim nR̂EXO,o(S)) =

lim R̃EXO(S) and that for any S : bS < 1/2, R̃EXO(S) also explodes. The statement of the
lemma is obtained by combining the results derived above.

Lemma 3.4
Under Assumption A, for any S ∈ S then R̂PMSE,o(S) = OP(1) + OP(n−2bS)

• If bS > 0 then plim R̂PMSE,o(S) = lim RPMSE(S) = E((v∗β + u∗)2)

• If bS = 0 then E( dlim R̂PMSE,o(S)) = lim RPMSE(S) and

– If aS < 1/2 then plim R̂PMSE,o(S) = E((v∗β+u∗)2)+ α′ΣEα− δ′SΣ−1/2
S PΣ1/2

S κS
Σ−1/2

S δS

– If aS = 1/2 then dlim R̂PMSE,o(S) = E((v∗β+ u∗)2)+ α′ΣEα+ δ′SΣ−1/2
S PλvS Σ−1/2

S δS −
2δ′SκS

λ′
vSΣ−1/2

S δS
||λvS||2

– If aS > 1/2 then dlim R̂PMSE,o(S) = E((v∗β + u∗)2) + α′ΣEα + δ′SΣ−1/2
S Pλv Σ−1/2

S δS −
2δ′SκS

λ′
vΣ−1/2

S δS
||λv||2

Proof. With a slight abuse of the OP notation

R̂PMSE,o(S) =
1
n
||v∗β + u∗ + z∗Eα − z∗SπSĈS||2

=
1
n
||v∗β + u∗||2 + 1

n
||z∗Eα − z∗SπSĈS||2 +

2
n
(v∗β + u∗)′(z∗Eα − z∗SπSĈS)

= OP(1) + OP(n−2bS) + OP(n−2aS)Ĉ2
S − 2OP(n−aS−bS)ĈS + 2OP(n−1/2−bS)− 2OP(n−1/2−aS)ĈS
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• When aS < 1/2 then ĈS = OP(naS−bS) + OP(n2aS−1/2−bS) + oP(1) and

R̂PMSE,o(S) = OP(1) + OP(n−2bS) + OP(n−aS−bS)− 2OP(n−2bS) + oP(1)

– If bS > aS then ĈS = oP(1) so that plim R̂PMSE,o(S) = E((v∗β + u∗)2)

– If bS = aS then plim ĈS =
κ′SδS

κ′SΣSκS
so that

plim R̂PMSE,o(S) =





E((v∗β + u∗)2) if bS = aS > 0

E((v∗β + u∗)2) + α′ΣEα − δ′SΣ−1/2
S PΣ1/2

S κS
Σ−1/2

S δS if bS = aS = 0

– If bS < aS then plim n−aS ĈS =





0 if aS > bS > 0
κ′SδS

κ′SΣSκS
if aS > bS = 0

so that

plim R̂PMSE,o(S) =





E((v∗β + u∗)2) if aS > bS > 0

E((v∗β + u∗)2) + α′ΣEα − δ′SΣ−1/2
S PΣ1/2

S κS
Σ−1/2

S δS if aS > bS = 0

• When aS = 1/2 then ĈS = OP(n1/2−bS) + OP(1) + oP(1) and

R̂PMSE,o(S) = OP(1) + OP(n−2bS) + OP(n−2bS)− 2OP(n−2bS) + oP(1)

– If bS > 1/2 then ĈS = OP(1) so that plim R̂PMSE,o(S) = E((v∗β + u∗)2)

– If bS = 0 then dlim n−1/2ĈS =
λ′

vSΣ−1/2
S δS

||λvS||2 so that

dlim R̂PMSE,o(S) = E((v∗β + u∗)2) + α′ΣEα + δ′SΣ−1/2
S PλvS Σ−1/2

S δS − 2δ′SκS
λ′

vSΣ−1/2
S δS

||λvS||2

• When aS > 1/2 then ĈS = OP(n1−aS−bS) + OP(n1/2−bS) + oP(1) and

R̂PMSE,o(S) = OP(1) + OP(n−2bS) + oP(1)

– If bS > 0 then ĈS = OP(1) so that plim R̂PMSE,o(S) = E((v∗β + u∗)2)

– If bS = 0 then dlim n−1/2ĈS =
λ′

vΣ−1/2
S δS

||λv||2 so that

dlim R̂PMSE,o(S) = E((v∗β + u∗)2) + α′ΣEα + δ′SΣ−1/2
S Pλv Σ−1/2

S δS − 2δ′SκS
λ′

vΣ−1/2
S δS

||λv||2

Then, from D.3 it can be again shown that for any S, E( dlim R̂PMSE,o(S)) = lim RPMSE(S).
Indeed,

RPMSE = E((v∗β + u∗)2) + E(||z∗′E α − z∗
′

S πSĈS||2)

The statement of the lemma is obtained by combining the results derived above.
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Lemma 3.5
Under Assumption A, for any S ∈ S

• If bS < 1/2 then

– If aS < bS then plim R̂MSE,o(S) = lim RMSE(S) = σ2
u

– If aS = bS = 0 then

plim R̂MSE,o(S) = lim RMSE(S) = σ2
u + σ2

v

δ′SΣ−1/2
S PΣ1/2

S κS
Σ−1/2

S δS

κ′SΣSκS
− 2ρ

κ′SδS

κ′SΣSκS

+ α′ΣEα − δ′SΣ−1/2
S PΣ1/2

S κS
Σ−1/2

S δS

– If 0 < aS = bS < 1/2 then

plim R̂MSE,o(S) = lim RMSE(S) = σ2
u + σ2

v

δ′SΣ−1/2
S PΣ1/2

S κS
Σ−1/2

S δS

κ′SΣSκS
− 2ρ

κ′SδS

κ′SΣSκS

– If aS > bS then R̂MSE,o(S) and RMSE(S) have no limit and explode

plim R̂MSE,o(S) = lim RMSE(S) have no limit and explode

• If bS = 1/2 then E( dlim R̂MSE,o(S)) = lim RMSE(S) and

– If aS < 1/2 then plim R̂MSE,o(S) = σ2
u

– If aS = 1/2 then dlim R̂MSE,o(S) = σ2
u +σ2

v
(λu+Σ−1/2

S δS)
′PλvS

(λu+Σ−1/2
S δS)

||λvS||2 − 2ρ
(λu+Σ−1/2

S δS)
′λvS

||λvS||2

– If aS > 1/2 then dlim R̂MSE,o(S) = σ2
u +σ2

v
(λu+Σ−1/2

S δS)
′Pλv (λu+Σ−1/2

S δS)

||λv||2 − 2ρ
(λu+Σ−1/2

S δS)
′λv

||λv||2

• If bS > 1/2 then E( dlim R̂MSE,o(S)) = lim RMSE(S) and

– If aS < 1/2 then dlim R̂MSE,o(S) = σ2
u

– If aS = 1/2 then dlim R̂MSE,o(S) = σ2
u + σ2

v
λ′

uPλvS
λu

||λvS||2 − 2ρ λ′
uλvS

||λvS||2

– If aS > 1/2 then dlim R̂MSE,o(S) = σ2
u + σ2

v
λ′

uPλv λu
||λv||2 − 2ρ λ′

uλv
||λv||2

Proof. With a slight abuse of the OP notation

R̂MSE,o(S) =
1
n
||u∗ − v∗ĈS + z∗Eα − z∗SπSĈS||2

=
1
n
||u∗ − v∗ĈS||2 +

1
n
||z∗Eα − z∗SπSĈS||2 +

2
n
(u∗ − v∗ĈS)

′(z∗Eα − z∗SπSĈS)

= OP(1) + OP(1)Ĉ2
S − 2OP(1)ĈS + OP(n−2bS) + OP(n−2aS)Ĉ2

S − 2OP(n−aS−bS)ĈS

+ 2OP(n−1/2−bS)− 2OP(n−1/2−aS)ĈS − 2OP(n−1/2−bS)ĈS + 2OP(n−1/2−aS)Ĉ2
S
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• When aS < 1/2 then ĈS = OP(naS−bS) + OP(n2aS−1/2−bS) + oP(1) and

R̂MSE,o(S) = OP(1) + OP(n2aS−2bS)− 2OP(n2aS−1/2−bS) + OP(n−2bS) + OP(n−aS−bS)− 2OP(n−2bS) + oP(1)

– If bS > aS then ĈS = oP(1) so that plim R̂MSE,o(S) = σ2
u

– If bS = aS then plim ĈS =
κ′SδS

κ′SΣSκS
so that if bS = aS > 0 then

plim R̂MSE,o(S) = σ2
u + σ2

v

δ′SΣ−1/2
S PΣ1/2

S κS
Σ−1/2

S δS

κ′SΣSκS
− 2ρ

κ′SδS

κ′SΣSκS

and so that if bS = aS = 0

plim R̂MSE,o(S) = σ2
u +σ2

v

δ′SΣ−1/2
S PΣ1/2

S κS
Σ−1/2

S δS

κ′SΣSκS
− 2ρ

κ′SδS

κ′SΣSκS
+ α′ΣEα− δ′SΣ−1/2

S PΣ1/2
S κS

Σ−1/2
S δS

– If bS < aS then ĈS has no limit so R̂MSE,o(S) has no limit

• When aS = 1/2 then ĈS = OP(n1/2−bS) + OP(1) + oP(1) and

R̂MSE,o(S) = OP(1) + OP(n1/2−bS) + OP(1) + OP(n−2bS) + OP(n−2bS)− 2OP(n−2bS) + oP(1)

– If bS > 1/2 then ĈS = λ′
uλvS

||λvS||2 so that dlim R̂MSE,o(S) = σ2
u + σ2

v
λ′

uPλvS
λu

||λvS||2 − 2ρ λ′
uλvS

||λvS||2

– If bS = 1/2 then dlim ĈS =
λ′

vS(λu+Σ−1/2
S δS)

||λvS||2 so that

dlim R̂MSE,o(S) = σ2
u + σ2

v
(λu + Σ−1/2

S δS)
′PλvS(λu + Σ−1/2

S δS)

||λvS||2
− 2ρ

(λu + Σ−1/2
S δS)

′λvS

||λvS||2

– If bS < 1/2 then ĈS has no limit so R̂MSE,o(S) has no limit

• When aS > 1/2 then ĈS = OP(n1−aS−bS) + OP(n1/2−bS) + oP(1) and

R̂MSE,o(S) = OP(1) + OP(n1−aS−bS) + OP(n1/2−bS) + OP(n−2bS) + oP(1)

– If bS > 1/2 then ĈS = OP(1) so that dlim R̂PMSE,o(S) = σ2
u + σ2

v
λ′

uPλv λu
||λv||2 − 2ρ λ′

uλv
||λv||2

– If bS = 1/2 then dlim ĈS =
λ′

v(λu+Σ−1/2
S δS)

||λv||2 so that

dlim R̂MSE,o(S) = σ2
u + σ2

v
(λu + Σ−1/2

S δS)
′Pλv(λu + Σ−1/2

S δS)

||λv||2
− 2ρ

(λu + Σ−1/2
S δS)

′λv

||λv||2

– If bS < 1/2 then ĈS has no limit so R̂MSE,o(S) has no limit
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Then, from D.3 it can be again shown that for any S : bS ⩾ 1/2 or any S : aS ⩽ bS < 1/2,,
E( dlim R̂MSE,o(S)) = lim RPMSE(S). The statement of the lemma is obtained by combining
the results derived above.

Lemma 3.6
Under Assumptions A and D

• For k = {r; c; an} if S ∈ Sk then for any S′ ̸∈ Sk

lim
REXO(S′)− REXO(S)

REXO(S)
> 0

• For k = {r; c; an} if S ∈ Sk then for any S′ ̸∈ Sk

lim
RPMSE(S′)− RPMSE(S)

RPMSE(S)− (σ2
u + σ2

v β2 + 2ρβ)
> 0

• If S ∈ Sc then for any S′ ̸∈ Sc

lim
RMSE(S′)− RMSE(S)

RMSE(S)− σ2
u

> 0

Proof. The proof is in two parts, first I prove that endogenous sets have higher risks, second I
prove that strong sets have higher risks.

Let S ∈ Sr so that bS > 1/2. Then from lemmas 3.3 and 3.5 for any S′ : bS′ < 1/2 then
R̃EXO(S′) and RMSE(S′) explode thus lim R̃EXO(S) − R̃EXO(S′) = −∞ and lim RMSE(S) −
RMSE(S′) = −∞. Furthermore, for any S′ : bS′ = 1/2 then R̃EXO(S′) is equal to the mean
of a non-central chi-square distribution with s′ + 1 degrees of freedom, and it is strictly
superior to R̃EXO(S) which is equal to the mean of a non-central chi-square distribution
with s′ + 1 degrees of freedom, thus lim R̃EXO(S) − R̃EXO(S′) < 0. On the other hand, for
any S′, REXO(S)′ = O(n−2bS′ ), RPMSE(S′) = E((v∗β + u∗)2) + O(n−2bS′ ), and RMSE(S′) =

σ2
u + σ2

vO(n1−2bS′ )− 2ρO(n1/2−bS′ ) thus for any S′ : bS = 1/2, for k ∈ {EXO; PMSE; MSE},
lim Rk(S)− Rk(S′) < 0. This proves the first bullet point of the lemma.
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C.2 Technical Lemmas: convergence of risk estimators

Lemma 3.7
Consider B samples ((Xi,b)

nb
i=1)

B
b=1 coming from the original sample (Xi)

n
i=1 of random variables

(Xi)
n
i=1 and a resampled statistic Ŝb = f ((Xi,b)

nb
i=1) such that Var(Ŝb) < +∞, ((Xi,b)

nb
i=1)

B
b=1 is

identically distributed across b, nb →
n→+∞

+∞, and B →
n→+∞

+∞. Then

plim
∣∣∣∣

1
B

B

∑
b=1

Ŝb − E(Ŝb|(Xi)
n
i=1)

∣∣∣∣ = 0

Furthermore, if the B samples are independent or if for any b, ∑B
b′=1 Cov(Ŝb, Ŝb′) ⩽ ∑nb

n∗=0 Var(Ŝb)cnb−n∗

for some c ∈ (0; 1) then

plim
∣∣∣∣

1
B

B

∑
b=1

Ŝb − E(Ŝb)

∣∣∣∣ = 0

Proof. By Chebyshev’s inequality and using the fact that conditionally on (Xi)
n
i=1, ((Xi,b)

nb
i=1)

B
b=1

and therefore (Ŝb)
B
b=1 is iid across b, for any e > 0

P(| 1
B

B

∑
b=1

Ŝb − E(Ŝb|(Xi)
n
i=1)| > e

∣∣(Xi)
n
i=1) ⩽

1
B2 Var(∑B

b=1 Ŝb|(Xi)
n
i=1)

e2

=
1
B Var(Ŝb|(Xi)

n
i=1)

e2

⇒ P(| 1
B

B

∑
b=1

Ŝb − E(Ŝb|(Xi)
n
i=1)| > e) ⩽

1
B E(Var(Ŝb|(Xi)

n
i=1))

e2 → 0

because E(Var(Ŝb|(Xi)
n
i=1)) ⩽ Var(Ŝb) < +∞. On the other hand note that

B

∑
b′=1

Cov(Ŝb, Ŝb′) ⩽
nb

∑
n∗=0

Var(Ŝb)cnb−n∗
= Var(Ŝb)cnb

(
1 +

1 − c−nb−1

1 − c−1

)
= Var(Ŝb)

(
cnb +

cnb − c−1

1 − c−1

)

⇒ 1
B2

B

∑
b,b′

Cov(Ŝb, Ŝb′) ⩽ Var(Ŝb)

(
cnb

B
+

cnb
B − 1

Bc

1 − 1
c

)
→ 0

Consequently, if the B samples are independent then Cov(Ŝb, Ŝb′) = 0 so that

P

(∣∣∣∣
1
B

B

∑
b=1

Ŝb − E(Ŝb)

∣∣∣∣ > e

)
⩽

1
B Var(Ŝb)

e2 → 0

And if ∑B
b′=1 Cov(Ŝb, Ŝb′) ⩽ ∑nb

n∗=0 Var(Ŝb)cnb−n∗
for any (b, b′) then

P(| 1
B

B

∑
b=1

Ŝb − E(Ŝb)| > e) ⩽
1

B2 ∑b,b′ Cov(Ŝb, Ŝb′)

e2 → 0
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Lemma 3.8
Under assumptions A and B, for k ∈ {EXO; PMSE; MSE}, for any S, R̂k(S) is uniformly integrable
and has finite second moment. Under the same conditions, for any S such that bS ⩾ 1/2, nbR̂EXO(S)
is uniformly integrable and has finite second moment.

Proof. The proof is straightforward. First, from the previous lemmas 3.2, 3.3, 3.4, 3.5, all the
criteria are bounded in probability for any S and nbR̂EXO(S) is bounded in probability for any
S : bS ⩾ 1/2. Second, using assumptions A and B (more specifically that the data has finite
moments of order 4, and the fact that the denominator of 2SLS is bounded away from 0) and
Cauchy-Schwarz inequality, it is simple to prove that for k ∈ {EXO; PMSE; MSE}, for any
S, E(R̂k(S)2) < +∞ and similarly that for any S : bS ⩾ 1/2, E(n2

bR̂EXO(S)2) < +∞. Third,
as a direct consequence, uniform integrability holds for any S (such that bS ⩾ 1/2 in case of
nbR̂EXO(S))

E(R̂k(S)1{(R̂k(S) > e}) ⩽ E(R̂2
k(S))P(R̂k(S) > e) −→

e→+∞
0

E(nbR̂EXO(S)1{(nbR̂EXO(S) > e}) ⩽ E(n2
bR̂2

EXO(S))P(nbR̂EXO(S) > e) −→
e→+∞

0

Lemma 3.9
Under assumptions A, B, and C, for k ∈ {EXO; PMSE; MSE} and for any S

plim |R̂k(S)− Rk(S)| = 0

moreover under the same conditions, for any S : bS ⩾ 1/2

plim |nbR̂EXO(S)− R̃EXO(S))| = 0

Proof. First, note that for k ∈ {EXO; PMSE; MSE} and for any e > 0

P(|R̂k(S)− Rk(S)| > e) ⩽ P(|R̂k(S)− E(R̂k(S))| > e/2)

+ P(|E(R̂k(S))− Rk(S)| > e/2)

because P(A + B > e) ⩽ P(A > e/2) + P(B > e/2) for any random variables (A, B).
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Next, the second term on the right converges to zero because

lim |E(R̂k(S))− Rk(S)| ⩽ lim |E(R̂k(S))− E(R̂k,o(S))|+ lim |E(R̂k,o(S))− Rk(S)| = 0

Indeed by Lemma 3.2, Lemma 3.4, and Lemma 3.5, lim |E(R̂k,o(S)) − Rk(S)| = 0, and due
to the fact that the resampled data is identically distributed E(R̂k(S)) = 1

B ∑b E(R̂k,b) =

E(R̂k,b) = E(R̂k,o) so that lim |E(R̂k(S))− E(R̂k,o(S))| = 0. Then (almost) sure convergence
implies convergence in probability.

Next, by Lemma 3.7 whose assumptions are satisfied

P(|R̂k(S)− E(R̂k(S))| > e/2) = P

(∣∣∣∣
1
B

B

∑
b=1

R̂k,b(S)− E(R̂k,b(S))
∣∣∣∣ > e/2

)
→ 0

Therefore, for k ∈ {PMSE; MSE}, for any S

plim |R̂k(S)− Rk(S)| = 0

With a similar argument, using Lemma 3.3 on the limit of R̃EXO(S)) and Lemma 3.7 on
the convergence of risk estimators to their mean, for any S

plim |nbR̂EXO(S)− R̃EXO(S))| = 0

C.3 Proof of Theorem 4.1

The proof is in 2 steps. First, I prove that for k ∈ {EXO; PMSE; MSE} for any S ∈ S ,

plim |R̂k(S)−Rk(S)|
Rk(S)

= 0. Second, I prove that this implies plim
R̂k(ŜR̂k

)

min
S∈S

Rk(S)
= 1.

• If k ∈ {PMSE; MSE} notice that for any β̃ ∈ R

E((u∗ − v∗ β̃)2) = 0 ⇔ σ2
u + σ2

v β̃2 − 2ρβ̃

But discriminant 4(ρ2 − σ2
uσ2

v ) is strictly negative thus ∀β̃ ∈ R E((u∗ − v∗ β̃)2) > 0.
Hence for k ∈ {PMSE; MSE}, looking at the decomposition of Rk(S) from section 4.1,
there exists c > 0 such that ∀S P(Rk(S) ⩽ c) = 0. Consequently, for any S ∈ S , for any
e > 0

P

(∣∣∣∣
R̂k(S)− Rk(S)

Rk(S)

∣∣∣∣ > e
)
⩽ P

(
|R̂k(S)− Rk(S)| > ec

)
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which converges to zero by Lemma 3.9.

If k = EXO, then

R̃EXO(S) = E
(

En

(
(y∗ − x∗ β̂S)z∗

′
S Σ−1

S z∗S(y
∗ − x∗ β̂S)

))

= E
(

En

(
||Σ−1/2

S z∗S(u
∗ − v∗ĈS)||2

))
+ π′

SΣSπSEn
(
Ĉ2

S
)

which is strictly positive because the first term is strictly positive. Similarly, when bS = 0
then

REXO(S) = E
(
||Σ−1/2

S E(z∗Sz∗
′

E )α − Σ1/2
S πSĈS||2

)

is also strictly positive.

Consequently, for any S there exists some c > 0 such that

P

(∣∣∣∣
R̂EXO(S)− REXO(S)

REXO(S)

∣∣∣∣ > e
)
⩽ P

(
|R̂EXO(S)− REXO(S)| > ec

)

which converges to zero from Lemma 3.9.

• If for any S and for k ∈ {PMSE; MSE}, plim R̂k(S)−Rk(S)
Rk(S)

= 0, then plim max
S∈S

R̂k(S)−Rk(S)
Rk(S)

=

0 because S is finite. Then denote by S∗ = Argmin Rk(S) and notice that

R̂k(S∗) ⩾ Rk(S∗), R̂k(S∗) ⩾ R̂k(ŜR̂k
), (Rk(ŜR̂k

))−1 ⩽ (αRk(ŜR̂k
)+ (1− α)Rk(S∗))−1

for some α ∈ (0; 1). Therefore,

Rk(ŜR̂k
)− Rk(S∗)

Rk(ŜR̂k
)

⩽
Rk(ŜR̂k

)− Rk(S∗)

αRk(ŜR̂k
) + (1 − α)Rk(S∗)

⩽
Rk(ŜR̂k

)− Rk(S∗) + R̂k(S∗)− R̂k(ŜR̂k
)

αRk(ŜR̂k
) + (1 − α)Rk(S∗)

⩽
|Rk(ŜR̂k

)− R̂k(ŜR̂k
)|+ |R̂k(S∗)− Rk(S∗)|

αRk(ŜR̂k
) + (1 − α)Rk(S∗)

⩽ 2
α

max
S∈S

|R̂k(S)− Rk(S)|
Rk(S)

P→ 0

On the other hand because Rk(ŜR̂k
) ⩾ Rk(S∗),

Rk(ŜR̂k
)−Rk(S∗)

Rk(ŜR̂k
)

⩾ 0 thus

Rk(ŜR̂k
)− Rk(S∗)

Rk(ŜR̂k
)

= 1 − Rk(S∗)
Rk(ŜR̂k

)

P→ 0
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By the CMT this implies
Rk(ŜR̂k

)

Rk(S∗)
P→ 1 thus again by the CMT

R̂k(ŜR̂k
)

Rk(S∗)
=

Rk(ŜR̂k
)

Rk(S∗)
+

R̂k(ŜR̂k
)− Rk(ŜR̂k

)

Rk(S∗)
=

Rk(ŜR̂k
)

Rk(S∗)
+ oP(1)

P→ 1

With the exact same arguments, it can be proven that plim
R̂EXO(ŜR̂EXO

)

min
S∈S

REXO(S)
= 1 because

REXO(S) is equal to 1
nb

R̃EXO(S) when bS ⩾ 1/2 and is equal to REXO(S) otherwise.

C.4 Proof of Theorem 4.2

For k ∈ {EXO; PMSE; MSE} and using REXO as the target risk in case k = EXO, from
Lemma 3.6 on the rankings between IV sets based on different expected risks, if there exists
some S ∈ Sc then for any S ∈ Sc, for any S′ ̸∈ Sc the inequality lim Rk(S) < lim Rk(S′) holds
so that lim Rk(S) = lim min

S∈S
Rk(S). At the same time, from Lemma 3.9 and Theorem 4.1

on the convergence of risk estimators plim min
S

R̂k(S) = lim min
S

Rk(S). As a consequence,

plim ŜR̂k
= plim Argmin

S∈S
R̂k(S) = lim Argmin

S∈S
Rk(S) and at the limit Argmin

S∈S
Rk(S) belongs

to Sc (surely), therefore ŜR̂k
belongs to Sc with probability one at the limit. The exact same

reasoning can be applied to prove that if there exists some S ∈ San then ŜR̂k
belongs to San

with probability one at the limit, and that if there exists some S ∈ Sr then ŜR̂k
belongs to Sr

with probability one at the limit.

D Additional theoretical results

In this section, are formal results of statements made in the paper. First, are formal character-
izations of the target parameter sets from section 2.3. Second are formal proofs that the “true
models” from section 3.1 are well defined and well characterized by conditions on aS and bS.
Third is the step-by-step decomposition of the risks from section 4.1. Fourth, I provide differ-
ent assumptions for the consistency of the risk estimators using k-class estimators instead of
2SLS. Refer to appendix C for notations and conventions.

D.1 IV estimation target sets

In this subsection, I characterize the target parameter set in case the objective behind IV
estimation is minimizing the weighted sum of exclusion restrictions or minimizing the mean
squared error after projection of the endogenous variable on the IVs from section 2.3.
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First, let βS = Argmin
β∈S

E((yi − xi β̃)z′iS)Σ
−1
S E(ziS(yi − xi β̃)). It turns out that the target

space is the whole real line if the IVs being considered are irrelevant, a pseudo true value if
the IVs considered are endogenous but not irrelevant, and the true causal effect β in case the
IVs are relevant and exogenous. This is summarized in the following proposition.

Proposition 4.1
Let βS = Argmin

β∈S
E((yi − xi β̃)z′iS)Σ

−1
S E(ziS(yi − xi β̃)) then assuming that (yi, xi, ziS)

n
i=1 is iid

such that (2.4) and (2.5) hold

βS = R if πS = 0

βS = β + (π′
SΣSπS)

−1π′
SE(ziSz′iE)α if πS ̸= 0

βS = β if πS ̸= 0 and E(ziSz′iE)α = 0

Proof. The objective function can be decomposed in the following way

Ω(β̃) ≡ E((yi − xi β̃)z′iS)Σ
−1E(ziS(yi − xi β̃))

= E((ui + z′iEα + xi(β − β̃))z′iS)Σ
−1
S E(ziS(ui + z′iEα + xi(β − β̃)))

= α′E(ziEz′iS)Σ
−1
S E(ziSz′iE)α + 2(β − β̃)π′

SE(ziSz′iE)α + (β − β̃)2π′
SΣSπS

Then case by case

• If πS = 0 then

Ω(β̃) = α′E(ziEz′iS)Σ
−1
S E(ziSz′iE)α ⇒ βS = Argmin

β̃

Ω(β̃) = R

• If πS ̸= 0 then taking the FOC yiels

βS : −2π′
SE(ziSz′iE)α − 2(β − βS)π

′
SΣSπS = 0 ⇔ βS = β + (π′

SΣSπS)
−1π′

SE(ziSz′iE)α

• If πS ̸= 0 and E(ziSz′iE)α = 0 then using the result in case πS ̸= 0

βS = β

On the other hand if βS = Argmin
β∈S

E((yi − z′iSπS β̃)2) then the parameter target space

turns out to be exactly the same, see the following proposition.
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Proposition 4.2
Let βS = Argmin

β∈S
E((yi − z′iSπS β̃)2) then assuming that (yi, xi, ziS)

n
i=1 is iid such that (2.4) and

(2.5) hold

βS = R if πS = 0

βS = β + (π′
SΣSπS)

−1π′
SE(ziSz′iE)α if πS ̸= 0

βS = β if πS ̸= 0 and E(ziSz′iE)α = 0

Proof. The objective function can be decomposed in the following way

Ω(β̃) ≡ E((yi − z′iSπS β̃)2)

= E((ui + z′iEα + viβ + z′iSπS(β − β̃))2)

= E((ui + viβ)
2) + 2(β − β̃)π′

SE(ziSz′iE)α + (β − β̃)2π′
SΣSπS

Note that except for the first component which doesn’t depend on β̃ the criterion has exactly
the same decomposition as in the criterion considered in Proposition 4.1 and therefore the
same solutions.

D.2 True models in the linear IV context

In this subsection, I prove that the conditions given in section 3.1 on the level of strength aS
and the level of endogeneity bS of the IVs in the sets Sid, Scv, San, and Sr are right. As long as
there exists some set S such that it is exogenous and relevant then β is identified. If there is
some S such that the IVs are not weak and their endogeneity level is sufficiently low relative
to their strength level then 2SLS will converge. If there is some S such that the IVs are not
weak and their endogeneity level is low then 2SLS will be asymptotically normal in the sense
that a standard t-test confidence interval will have nominal coverage asymptotically. If there is
some S such that endogeneity is sufficiently low then there exists a valid inference procedure
for β. This is summarized in the following proposition.

Proposition 4.3
Assuming that (yi, xi, zi)

n
i=1 is iid such that (2.1) and (2.2) hold where for any S ∈ S , πS = n−aSκS,

E(ziSz′iE)α = n−bS δS, κS ∈ RS
∗ is fixed and δS ∈ RS

∗ is fixed then

• β is identified if Sid ̸= ∅

• There exists some S such that plim β̂S = β if Sc ̸= ∅
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• There exists some S such that β̂S−β√
(x′PzS x)−1σ̂2

u

d→ N (0, 1) if San ̸= ∅

• There exists some S such that a valid inference method exists if Sr ̸= ∅

Proof. Case by case:

• Identification directly follows from the fact that for some S, πS ̸= 0 and αE = 0. Indeed,
for any such S, β can be expressed as β = E(ω′ziSxi)

−1E(ω′ziSyi) for some non-random
vector ω such that E(ω′ziSxi) ̸= 0. Therefore, for β to be identified Sid must be non-
empty.

• Recall that ĈS ≡ β̂S − β then for any S such that aS ⩾ 1/2

dlim ĈS ̸= 0

which is proven in Lemma 3.1. This also prevent proper inference. Therefore, β can be
consistently estimated only if there is some S such that aS < 1/2.

Next, recall that uiS = z′iEα + ui where E(ui|zi) = 0 and E(ziSz′iE)α = n−bS δS. Then if
aS < 1/2 with a slight abuse of the OP notations

ĈS =
x′PzS uS

x′PzS x
= n2aS−1 n−aSκ′Sz′Su + n−aSκSz′SzEα + v′PzS u + v′PzS zEα

n−1κ′Sz′SzSκS + 2naS−1/2κ′Sz′Sv + n2aS−1vPzS v

= n2aS−1 OP(n1/2−aS) + OP(n1−aS−bS) + OP(1) + OP(n1/2−bS)

OP(1)

=
OP(naS−1/2) + OP(naS−bS) + OP(n2aS−1) + OP(n2aS−bS−1/2)

OP(1)

Consequently, ĈS = oP(1) if and only if aS < 1/2 and bS − aS > 0 which are the
conditions which characterize the sets in Sc.

• For the t-statistic to be asymptotically normal β̂S must be consistent, so aS < 1/2, then

262



with a slight abuse of the OP notations the statistic can be written as

t =
β̂S − β√

(x′PzS x)−1σ̂2
u
= σ̂−1

u
x′PzS uS√

x′PzS x

= σ̂−1
u naS−1/2 n−aS κ′Sz′Su + n−aS κSz′SzEα + v′PzS u + n−bS v′PzS zEα√

n−1κ′Sz′SzSκS + 2naS−1/2κ′Sz′Sv + n2aS−1vPzS v

= σ̂−1
u naS−1/2 OP(n1/2−aS) + OP(n1−aS−bS) + OP(1) + OP(n1/2−bS)

OP(1)

= σ̂−1
u

OP(1) + OP(n1/2−bS) + OP(naS−1/2) + OP(naS−bS)

OP(1)

Clearly dlim t = dlim σ̂−1
u

1√
n κ′Sz′Su

√
1
n κ′Sz′SzSκS

if and only if bS > 1/2 and aS < 1/2. Finally

σ̂2
u =

1
n

n

∑
i=1

(yi − xi β̂S)
2 =

1
n

n

∑
i=1

u2
i −

2ĈS

n

n

∑
i=1

uixi +
Ĉ2

S
n

n

∑
i=1

x2
i

=
1
n

n

∑
i=1

u2
i + oP(1)

because aS < 1/2 and bS − aS > 0 imply ĈS = oP(1). Thus, if aS < 1/2 < bS then

dlim t = dlim σ−1
u

1√
n κ′Sz′SεS

√
1
n κ′Sz′SzSκS

= N (0, 1)

• All weak-identification robust inference procedures are based on the fact that under
H0 : β = β0 the statistic

S =
(y − xβ0)

′zS(z′SzS)
−1/2

√
1
n (y − xβ0)′MzS(y − xβ0)

converges in distribution towards N (0, Is). Consider the numerator, with an abuse of
OP notations it can be written as

(y − xβ0)
′zS(z′SzS)

−1/2 =
1√
n

u′
SzS(

1
n

z′SzS)
−1/2 =

1√
n

u′zS(
1
n

z′SzS)
−1/2 + n−1/2α′z′EzS(

1
n

z′SzS)
1/2

= OP(1) + OP(n1/2−bS)

Therefore, if and only if bS > 1/2 can the nominator converges to a Gaussian asymp-
totically. With similar arguments it can be proven that the denominator converges to σ2

u

if and only if bS > 0.
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Consequently, weak-identification robust inference can only be performed if there exists
some S such that bS > 1/2, ie if and only if Sr ̸= ∅.

D.3 Risks decomposition

In this subsection, I show prove the statements on the decomposition of the risks from section
4.1. Assumption A is maintained throughout the subsection.

The three risk can be decomposed into quadratic forms which depend on z∗
′

E α and β̂S − β.
This is shown using the orthogonality between the errors (ui, vi) and the IVs zi and using the
independence between (y∗, x∗, z∗) and (yi, xi, zi)

n
i=1, see the subset model (2.4) and (2.5).

Starting with REXO

REXO(S) = E
(

En

(
(y∗ − x∗ β̂S)z∗

′
S

)
Σ−1

S En
(
z∗S(y

∗ − x∗ β̂S)
))

= E
(

En

(
(u∗

S − x∗(β̂S − β))z∗
′

S

)
Σ−1

S En
(
z∗S(u

∗
S − x∗(β̂S − β))

))

= E
(

En

(
(u∗ + z∗

′
E α − (z∗

′
S πS + v∗)(β̂S − β))z∗

′
S

)
Σ−1

S En

(
z∗S(u

∗ + z∗
′

E α − (z∗
′

S πS + v∗)(β̂S − β))
))

= E
(

En

(
(z∗

′
E α − z∗

′
S πS(β̂S − β))z∗

′
S

)
Σ−1

S En

(
z∗S(z

∗′
E α − z∗

′
S πS(β̂S − β))

))

= α′E(z∗Ez∗
′

S )Σ
−1
S E(z∗Sz∗

′
E )α + E((β̂S − β)2)π′

SΣSπS − 2π′
SΣ−1/2

S E(z∗Sz∗
′

E )α

= E
(
||Σ−1/2

S E(z∗Sz∗
′

E )α − Σ1/2
S πS(β̂S − β)||2

)

Then with RPMSE

RPMSE(S) = E

(
En

(
y∗ − z∗

′
S πS β̂S

)2
)
= E

(
En

(
x∗β + u∗

S − z∗
′

S πS β̂S

)2
)

= E

(
En

(
u∗ + v∗β + z∗

′
E α − z∗

′
S πS(β̂S − β)

)2
)

= E
(
(u∗ + v∗β)2)+ E

(
||z∗′E α − z∗

′
S πS(β̂S − β)||2

)

And finally with RMSE

RMSE(S) = E
(

En
(
y∗ − x∗ β̂S

)2
)
= E

(
En
(
x∗β + u∗

S − x∗ β̂S
)2
)

= E

(
En

(
u∗ − v∗(β̂S − β) + z∗

′
E α − z∗

′
S πS(β̂S − β)

)2
)

= E
(
(u∗ − v∗(β̂S − β))2)+ E

(
||z∗′E α − z∗

′
S πS(β̂S − β)||2

)
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Strong and endogenous IVs In case IVs subset S is strong and endogenous, as in aS = bS =
0, the difference between the IV subset estimator and β is

β̂S − β =
π′

Sz′SzEα

π′
Sz′SzSπS

+ oP(1) =
π′

SE(ziSz′iE)α
π′

SΣSπS
+ oP(1) =

π′
SE(z∗Sz∗

′
E )α

π′
SΣSπS

+ oP(1)

The proof is omitted, a more general result is derived for the proof of the main asymptotic
results in appendix C. Then the risks can be rewritten as a quadratic functions of α and
E(z∗Sz∗

′
E )α.

For any S ∈ S such that aS = bS = 0 the risk REXO can be rewritten as

REXO(S) = E

(
||Σ−1/2

S E(z∗Sz∗
′

E )α − Σ1/2
S πS

π′
SE(z∗Sz∗

′
E )α

π′
SΣSπS

||2
)
+ oP(1)

= E

(
||
(

Σ−1/2
S − Σ1/2

S πSπ′
S

π′
SE(ziSz′iS)πS

)
E(z∗Sz∗

′
E )α||

2

)
+ oP(1)

= E

(
||
(

Is −
Σ1/2

S πSπ′
SΣ1/2

S
π′

SΣSπS

)
Σ−1/2

S E(z∗Sz∗
′

E )α||
2

)
+ oP(1)

≡ E
(
||MΣ1/2

S πS
Σ−1/2

S E(z∗Sz∗
′

E )α||
2
)
+ oP(1)

REXO(S) ≡ α′E(z∗Ez∗
′

S )M1E(z∗Sz∗
′

E )α + oP(1)

where MΣ1/2
S πS

= Is − Σ1/2
S πS(π

′
SΣSπS)

−1π′
SΣ1/2

S is the projection matrix on the space orthog-

onal to Σ1/2
S πS, and M1 = Σ−1/2

S MΣ1/2
S πS

Σ−1/2
S = Σ−1

S − π′
S(π

′
SΣSπS)

−1πS is a symmetric
positive semi-definite matrix of rank s − 1 by properties of projection matrices.

Similarly, for any S ∈ S such that aS = bS = 0 RPMSE can be rewritten as

RPMSE(S) = E
(
(u∗ + v∗β)2

)
+ E

(
||z∗′E α − z∗

′
S πS(β̂S − β)||2

)

= E
(
(u∗ + v∗β)2

)
+ E

(
||z∗′E α − z∗

′
S πS

π′
SE(z∗Sz∗

′
E )α

π′
SΣSπS

||2
)
+ oP(1)

= E
(
(u∗ + v∗β)2

)
+ E

(
||BLOP(z∗E|z

∗′
S πS)

′α||2
)
+ oP(1)

= E
(
(u∗ + v∗β)2

)
+ α′E

(
BLOP(z∗E|z

∗′
S πS)BLOP(z∗E|z

∗′
S πS)

′
)

α + oP(1)

RPMSE(S) = E
(
(u∗ + v∗β)2

)
+ α′M2α + oP(1)

where BLOP(z∗E|z
∗′
S πS) = z∗E − E(z∗Ez∗

′
S )πS(π

′
SΣSπS)

−1z∗
′

S πS is the best linear projection of
z∗E on the space orthogonal to z∗

′
S πS, and M2 = ΣE − E(z∗Ez∗

′
S )πS(π

′
SΣSπS)

−1π′
SE(z∗Sz∗

′
E ) is a

symmetric positive semi-definite matrix by properties of projection matrices.
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And finally, for any S ∈ S such that aS = bS = 0 RMSE can be rewritten as

RMSE(S) = E
(
(u∗ − v∗(β̂S − β))2

)
+ E

(
||z∗′E α − z∗

′
S πS(β̂S − β)||2

)

RMSE(S) = E
(
(u∗ − v∗(β̂S − β))2

)
+ α′M2α + oP(1)

Exogenous IVs In case the IVs subset S is exogenous, ie if E(z∗Sz∗
′

E )α = α = 0, the three risks
can be rewritten as

REXO(S) = E
(
||Σ1/2

S πS(β̂S − β)||2
)

RPMSE(S) = E
(
(u∗ + v∗β)2

)
+ E

(
||z∗′S πS(β̂S − β)||2

)

RMSE(S) = E
(
(u∗ − v∗(β̂S − β))2

)
+ E

(
||z∗′S πS(β̂S − β)||2

)
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Chapter 4: Nonparametric Specification Testing with
SpeTestNP

Co-authored with Pascal Lavergne

Introduction

In applied work in order to evaluate the effect of a set of exogenous variables on an outcome
it is very common to estimate a parametric model such as the linear model with ordinary
least squares (OLS). But such parametric specifications may not capture the true relationship
between outcome and exogenous variables. In fact if the chosen parametric model is a bad
approximation of the true model then counterfactual analysis will be flawed. For this reason
in the past forty years a literature on specification tests has developed in order to know
if a parametric specification is right or wrong. SpeTestNP is a package which implements
heteroskedasticity-robust specification tests of parametric models from Bierens (1982), Zheng
(1996), Escanciano (2006), Lavergne and Patilea (2008), and Lavergne and Patilea (2012).

Hippolyte Boucher (Hippolyte.Boucher@outlook.com) is the author of SpeTestNP and Pascal
Lavergne (lavergnetse@gmail.com) is a contributor. Both Hippolyte Boucher and Pascal
Lavergne are maintainers and any question or bug should be reported to one of them. This
vignette describes the principle behind each test available in SpeTestNP, then how to use
SpeTestNP to test a parametric specification in practice with an illustration using the expected
earnings conditional on education and age.

Testing for a parametric specification

In order to present the specification tests available in SpeTestNP we first describe the model
being considered and define the null and alternative hypothesis, second we highlight the
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principle behind each test, third we derive the test statistics and their rejection rules (based on
either the bootstrap or Gaussian asymptotics), and fourth we briefly discuss and compare the
tests size and power performances.

Model

Consider a sample (yj, x′j)
n
j=1 of independent observations with yj the scalar outcome and xj a

k × 1 vector of exogenous explanatory variables. Then as long as E(|yj|) < +∞ there exists
some Borel-measurable regression function g(·) such that g(xj) = E(yj|xj) a.s. That is the true
model linking yj and xj writes

yj = g(xj) + ε j, E(ε j|xj) = 0 a.s

for j = 1, 2, . . . , n and where ε j denotes the part of yj which is unexplained by xj in terms of
the mean. But instead in practice some parametric model characterized by a parametric family
of functions F = { f (·, θ̃) : θ̃ ∈ Θ ⊂ Rk} is considered

yj = f (xj, θ) + uj

where θ = Argmin
θ̃∈Θ

E((yj − f (xj, θ̃))2) is the parameter which yields the best mean square

error fit for this parametric model, and where uj is the error induced by this parametric model.
A typical estimator of θ is the non-linear least squares (NLS) estimator denoted by θ̂, thus when
F is the family of linear functions then θ̂ is the OLS estimator. Next notice that if g(·) ∈ F
then E(uj|xj) = 0 a.s or equivalently E(yj|xj) = f (xj, θ). Indeed if g(·) ∈ F then by properties
of projections

g(·) = Argmin
g̃

E((yj − g̃(xj))
2) = Argmin

g̃∈F
E((yj − g̃(xj))

2) = Argmin
θ̃∈Θ

E((yj − f (xj, θ̃))2) = f (·, θ)

Consequently when modeling the true relationship between y and x with a parametric model,
the implicit null hypothesis is

H0 : E(uj|xj) = 0 a.s
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And the alternative hypothesis is

H1 : P(E(uj|xj) = 0) < 1

Equivalently the null and alternative hypothesis write

H0 : g(xj) = f (xj, θ) a.s, H1 : P(g(xj) = f (xj, θ)) < 1

Tests principle

Next to construct specification tests the null hypothesis is reformulated into moments condi-
tions from which statistics can be derived. The five reformulations of the null hypothesis are
in order.

Bierens (1982)

Bierens (1982) proves that the conditional moment condition of the null hypothesis is equivalent
to an infinite number of moment conditions which is equivalent to an integrated conditional
moment condition

H0 : E(uj|xj) = 0 a.s ⇔ E(ujexp(iβ′xj)) = 0 ∀β ∈ Rk ⇔
∫

Rk

∣∣E(ujexp(iβ′xj))
∣∣2 dµ(β) = 0

where µ(·) is any positive almost everywhere measure, | · | denotes the modulus, and i is the
imaginary unit.

Zheng (1996)

Instead Zheng (1996) finds an equivalence between the conditional moment condition and an
unconditional one

H0 : E(uj|xj) = 0 a.s ⇔ E(ujE(uj|xj) f (xj)) = 0

where f (·) denotes the probability density function of xj.
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Escanciano (2006)

Escanciano (2006) proves the equivalence between the null hypothesis, an infinite number of
moment conditions which differ from Bierens (1982), and an integrated moment condition

H0 : E(uj|xj) = 0 a.s ⇔ E(uj1{β′xj ⩽ l}) = 0 ∀(t, l) ∈ Sk × R

⇔
∫

Sk×R
E2(uj1{β′xj ⩽ l}) fβ(l)dβdl = 0

where 1{·} denotes the indicator function, Sk = {β ∈ Rk : |β| = 1} denotes the unit sphere,
and fβ(·) denotes the probability density function of β′xj.

Lavergne and Patilea (2008)

Lavergne and Patilea (2008) show that the null hypothesis is equivalent to an infinite number
of unconditional moment conditions

H0 : E(uj|xj) = 0 a.s ⇔ max
||β||=1

E(ujE(uj|β′xj)ω(β′xj)) = 0

for any ω(·) such that ∀β ∈ Rk, ω(β′xj) > 0 on the support of E(uj|β′xj). This condition
resembles that of Zheng (1996) with β′xj replacing xj in an effort to remove the curse of
dimensionality.

Lavergne and Patilea (2012)

Finally Lavergne and Patilea (2012) prove the equivalence between the null and an integrated
moment condition

H0 : E(uj|xj) = 0 a.s ⇔
∫

B
E(E2(uj|β′xj) fβ(β′xj))dβ = 0

where B ⊆ Sk and fβ(·) denotes the density of β′xj. This moment condition combines the
integrated moments approaches of Bierens (1982) and Escanciano (2006) and the dimension
reduction devise used in Lavergne and Patilea (2008).
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Test statistics

Each test relies on reformulating the null hypothesis into a moment condition for which an
empirical counterpart exist. Thus the test statistics are sample analogs of the moments defining
the null hypothesis, possibly multiplied by the sample size in order to obtain variation at the
limit. Denote by θ̂ a consistent estimator of θ and let ûj = yj − f (xj, θ̂) denote the residual for
individual j. The five test statistics are derived in order.

Bierens (1982)

An empirical counterpart of the integrated conditional moment
∫

Rk

∣∣E(ujexp(iβ′xj))
∣∣2 dµ(β)

of Bierens (1982) is

Ticm =
∫

Rk

∣∣∣∣∣
1√
n

n

∑
j=1

ûjexp(iβ′xj)

∣∣∣∣∣

2

dµ(β)

with some positive almost everywhere measure µ(·) and where | · | denotes the modulus.
Using properties of the modulus and of the Fourier transform it can then be shown that

Ticm =
1
n ∑

j,j′
ûjûj′K(xj − xj′) =

1
n

û′Wicmû

where K(·) is the Fourier transform of µ(·), û = (û1, . . . , ûn)′ is the n × 1 vector of stacked
residuals, and Wicm is the matrix with entries K(xj − xj′) for any row j and column j′. Although
this statistic can be used as is, µ(·) is typically assumed to be a symmetric probability measure
which is strictly positive almost everywhere. This simplifies the asymptotic theory and the
derivation of the test statistic in practice. Indeed as a consequence the Fourier transform of µ(·)
denoted as K(·) is a symmetric bounded density. Hence candidates for K(·) include logistic,
triangular, normal, student, or Cauchy densities, see Johnson, Kotz and Balakrishnan (1995,
section 23.3) and Dreier and Kotz (2002). Furthermore to control for scale, we impose that
either the integral of K(·) to the square equals one or that the distribution associated to K(·)
has variance one.
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Zheng (1996)

Zheng (1996) test statistic is the sample analog of E(ujE(uj|xj) f (xj)) which is derived by
estimating both the density f (·) of xj and the conditional mean E(uj|xj = ·) with Kernels. For
any x̃ ∈ Rk define

f̂ (x̃) =
1

nhk ∑
j

K
(

x̃ − xj

h

)
, Ê(uj|xj = x̃) =

1
nhk ∑

j

uj

f̂ (x̃)
K
(

x̃ − xj

h

)

where K(·) is a Kernel function which is nonnegative, symmetric, bounded, continuous and
which integrates to one, and h a bandwidth such that h →

n→+∞
0 and nhk →

n→+∞
+∞. Then the

test statistic is the sample analog of the moment E(ujE(uj|xj) f (xj))

Tzheng =
1
n ∑

j
ûjÊ(uj′ |xj′ = xj) f̂ (xj)

It can be rewritten as

Tzheng =
1

n(n1)hk ∑
j,j ̸=j

ûjûjK
(

xjxj

h

)
=

1
n(n1)hk ûWzhengû

where Wzheng is a matrix whose diagonal elements are equal to zero and its other entries are

equal to K
(

xjxj
h

)
for any row j any column j such that j ̸= j.

Escanciano (2006)

Escanciano (2006) test statistic is the sample analog of
∫

Sk×R
E2(uj1{β′xj ⩽ l}) fβ(l)dβdl times

n which is derived by approximating the density fβ(·) by a probability mass function. Let
f̂β(l) = 1

n ∑r 1{β′xr = l} then the statistic is

Tesca =
∫

Sk×R

(
1√
n ∑

j
ûj1{β′xj ⩽ l}

)2

f̂β(l)dβdl

It can be proven that it has the same form as the other test statistics
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Tesca =
1
n ∑

j,j′
ûjûj′

1
n ∑

r

∫

Sk
1{β′xj ⩽ β′xr, β′xj′ ⩽ β′xr}dβ =

1
n

û′Wescaû

where Wesca has elements 1
n ∑r Wesca,j,j′,r with Wesca,j,j′,r =

∫
Sk 1{β′xj ⩽ β′xr, β′xj′ ⩽ β′xr}dβ for

any row j and column j′. Approximating the integrals in Wesca is unnecessary because

Wesca,j,j′,r = W(0)
esca,j,j′,r

πk/2 − 1
Γ(k/2 + 1)

, W(0)
esca,j,j′,r =

∣∣∣∣∣π − arccos

(
(xj − xr)′(xj′ − xr)

|xj − xr||xj′ − xr|

)∣∣∣∣∣

See appendix B in Escanciano (2006) for more details. Note that n3 operations are necessary to
compute Wesca which means that this statistic takes much more time to compute.

Lavergne and Patilea (2008)

Lavergne and Patilea (2008) consider a sample analog of the moment E(ujE(uj|xj)ω(β′xj))

and replace ω(·) by fβ(·) the density of β′xj. In addition they replace β by the value in the
unit hypersphere which maximizes the moment taken to the square. This way the test is given
the direction which best reject the null hypothesis under the alternative. Thus first define for
any t ∈ Sk

Q(β) =
1

n(n − 1)h ∑
j,j′ ̸=j

ûjûj′K

(
β′(xj − xj′)

h

)

where K(·) is a bounded symmetric density with bounded variation, h is a bandwidth such that

h −→
n→+∞

0 and (nh2)δ

log(n) −→
n→+∞

+∞ for some δ ∈ (0; 1). Q(β) cannot be directly used, instead define

β̂ the direction which best captures the correlation between the residuals and the explanatory
variables

β̂ = Argmax
β∈Sk

|n
√

hQ(β)αn1{β ̸= β∗}|

where β∗ represents a favored direction chosen a priori, and αn →
n→+∞

0 is the weight given to

this favored direction. β∗ and αn improve significantly the power properties of the test in small
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sample. Note that in practice the unit hypersphere Sk is approximated by a finite number of
points. Thus the test statistic is the criterion evaluated at β̂

Tpala = Q(β̂) =
1

n(n1)h ∑
j,j ̸=j

ûjûjK

(
β̂(xjxj)

h

)
=

1
n(n1)h

ûWpalaû

where Wpala is a matrix with diagonal elements equal to zero and its other entries equal to

K
(
(̂xjxj)

h

)
for any row j and column j such that j ̸= j.

Lavergne and Patilea (2012)

Finally, Lavergne and Patilea (2012) use the sample analog of
∫

B E(E2(uj|β′xj) fβ(β′xj))dβ = 0
for some B ⊆ Sk as a test statistic. To derive it notice that an empirical counterpart of
E(E2(uj|β′xj) fβ(β′xj)) is Q(β) as defined in previously. Hence, their test statistic which they
call smooth integrated conditional moment statistic writes

Tsicm =
∫

B
Q(β)dβ =

∫

B

1
n(n − 1)h ∑

j,j′ ̸=j
ûjûj′K

(
β′(xj − xj′)

h

)
dβ =

1
n(n − 1)h

û′Wsicmû

where Wsicm has diagonal elements equal to zero and its other elements are equal to
∫

B K
(

β′(xj−xj′ )
h

)
dβ for any row j and any column j′ ̸= j. Clearly Tsicm is a smooth version of

Ticm because of the bandwidth h. Furthermore, it is also a smooth version of Tpala in the sense
that instead of being based on the squared error in the worst direction of β′xj, it is based on a
continuum of directions. In practice, to compute the integral a finite number of points are
drawn randomly from B and B doesn’t have to be the whole unit hypersphere Sk. For instance,
half hyperspheres can be considered such as {β ∈ Rk : βm ⩾ 0, ||β|| = 1} where βm denotes
the m-th element of the vector β.

Normalization

The five test statistics can be normalized. Not only does this improve the finite sample
properties of the tests, but it allows to use Gaussian asymptotics when deciding to reject the
null hypothesis with the tests of Zheng (1996), Lavergne and Patilea (2008), and Lavergne and
Patilea (2012). This is extremely useful in large samples instead of using the bootstrap.
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The normalized test statistics are of the following form:

T̂icm = ûŴicmû, Ŵicm = Wicm

√
2 ∑

j,j
σ̂2

j σ̂2
j K2(xjxj)

T̂zheng = ûŴzhengû, Ŵzheng = Wzheng

√√√√2 ∑
j,j ̸=j

σ̂2
j σ̂2

j′K
2
(

xjxj

h

)

T̂esca = ûŴescaû, Ŵesca = Wesca

√√√√2 ∑
j,j

σ̂2
j σ̂2

j

(
1
n ∑

r

∫

Sk
1{βxj ⩽ βxr, βxjβxr}dβ

)2

T̂pala = ûŴpalaû, Ŵpala = Wpala

√√√√2 ∑
j,j ̸=j

σ̂2
j σ̂2

j′K
2
(
(̂xjxj)

h

)

T̂sicm = ûŴsicmû, Ŵsicm = Wsicm

√√√√2 ∑
j,j ̸=j

σ̂2
j σ̂2

j′

(∫

B
K
(

β(xjxj)

h

)
dβ

)2

where σ̂2
j controls for the conditional variance of the error uj. A naive approach to the

normalization which works very well in large sample is to directly replace σ̂2
j by the squared

residuals û2
j . Another approach to the normalization is to replace σ̂2

j by an estimator such the
as the nonparametric kernel variance estimator of Yin, Geng, Li and Wang (2010) which writes

σ̂2(x̃) =
1

nhv
∑j(yjy(x̃))2K

(
x̃xj
hv

)

1
nhv

∑j K
(

x̃xj
hv

) , y(x̃) =
1

nhv
∑j yjK

(
x̃xj
hv

)

1
nhv

∑j K
(

x̃xj
hv

)

where K is a Kernel function and hv is a bandwidth which can be different from h.

Both the naive and nonparametric approaches to the normalization are implemented.

Rejection rules

To decide whether to reject or not the null hypothesis we need to compute quantiles of the
distribution of each statistic under the null conditional on x = (x1, . . . , xn). Then H0 is rejected
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at level 5% if the test statistic is above the quantile 95% of its distribution under the null. To
compute these quantiles we propose two solutions.

First we consider computing the quantiles using the fixed design bootstrap. x is held fixed
so for each test statistic their central W is held fixed, and a n×1 vector of residuals ^ub is
drawn using the fixed design wild bootstrap of Wu (1986) or the smooth conditional moment
bootstrap of Gozalo (1997). It will also control for potential heteroskedasticity. Using this
bootstrapped vector of residuals and the maintained central matrix W a bootstrapped statistic
can be computed. After repeating this operation many times we obtain a vector of bootstrapped
statistics. The quantiles of this vector can then be used to reject or not H0. As an example if
the test we consider is that of Bierens (1982) a bootstrapped statistic is

Ticm,b =
1
n

ûbWicmûb

By repeating this operation B times we obtain B bootstrapped statistics (Ticm,b)
B
b=1 which mimic

the behavior of Ticm under the null hypothesis. Consequently the parametric specification will
be rejected at level 5% if Ticm > q95% where q95% is the 95% quantile of (Ticm,b)

B
b=1. The same

procedure can be applied to other tests and their normalized versions to decide whether or not
to reject the null hypothesis.

Second we consider using the quantiles of the standard normal. As mentioned, the normalized
versions of the statistics of Zheng (1996), Lavergne and Patilea (2008), and Lavergne and Patilea
(2012) are asymptotically standard normal. Thus if one of these normalized test statistics are
used, we can use the quantiles of a standard normal to reject or not H0. As an example if the
test we consider is that of Zheng (1996) with a normalization then the parametric specification
will be rejected at level 5% if |T̂zheng| > 1.96.

Validity, consistency and power properties

Each test can be proven to be valid, as in under the null hypothesis the probability to reject
the null converges to nominal level, and to be consistent, as in under any fixed alternative the
probability to reject the null converges to one.

But these five tests differ significantly in terms of power in practice. The test of Zheng (1996)
seem to be the least powerful test in practice, it has no power against Pitman alternatives and
has difficulty rejecting the null when the number k of exogenous variables is large. The test of
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Bierens (1982) possesses more than trivial power against Pitman alternatives but it also has
trouble rejecting the null when k is large. The test of Escanciano (2006) does not depend on a
choice of weighting function and does not require numerical integration however to derive
its statistic it requires n3 operations making it very slow and hard to apply in practice. In
addition its power however largely depends on the true alternative and is low when k is large.
The tests of Lavergne and Patilea (2008), and Lavergne and Patilea (2012) are more powerful
than the other two when k is large because of their use of a continuum of single index βxj

to summarize the correlation between uj and xj. At the same time when k is small the two
tests are at least as powerful as the others. As mentioned the power of Lavergne and Patilea
(2008) test comes from the “worst” single-index alternative whereas the power of Lavergne and
Patilea (2012) test comes from a continuum of single-index alternatives. Thus in practice under
the alternative the nature of the correlation between uj and xj will determine which of these
two tests is more powerful.

See the references for more details.

Using SpeTestNP

Previously we have described the principle behind the five nonparametric specification tests,
how to derive the test statistics and the rejection rules, and discussed their properties. Next we
show how to use SpeTestNP to test parametric models in practice, with first the installation,
second a description of how to use the test, third a thorough description of the arguments of
the package main function SpeTest, and fourth an illustration to determine the true shape of
expected wages conditional on years of education and age.

Installation

To install SpeTestNP from CRAN simply run the following command:

install.packages("SpeTestNP")

To install SpeTestNP from Github the package devtools should be installed and the following
commands should be run:

install.packages("devtools")
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library("devtools")

install_github("HippolyteBoucher/SpeTestNP")

To choose where and how the package is installed check help(install_github) and
help(install.packages). Alternatively users can download the package and directly install
it with the CMD. SpeTestNP requires the packages stats (already installed and loaded by
default in Rstudio), foreach, parallel and doParallel (if parallel computing is used to
generate the vector) to be installed.

Testing with SpeTestNP

Recall the true model and the model induced by the parametric specification characterized by
F = { f (·, θ̃) : θ̃ ∈ Θ ⊂ Rk}

yj = g(xj) + ε j, yj = f (xj, θ) + uj

where E(yj|xj) = g(xj) a.s and θ = Argmin
θ̃∈Θ

E((yj − f (xj, θ̃))2).

Then to test the parametric specification or equivalently to test H0 : E(uj|xj) = 0 a.s the
function SpeTest of the package SpeTestNP can be directly used by filling the first argument
eq with a fitted model of class lm or nls. In case the parametric specification is linear or can be
rewritten in a linear form eq should be an object of class lm. In case of non-linear models eq
should be an object of class nls which stands for non-linear least squares (from the package
stats). Note that in order to perform the specification test by feeding SpeTest with an nls
model then the arguments in nls must be given in the right order. Then by running the
following command the parametric specification characterized by F is tested

SpeTest(eq)

The function returns an object of class STNP which when printed with print or print.STNP
returns the test statistic and its p-value. An object of type STNP is a list which not only contains
the test statistic stat and its p-value pval but also the type of the test type, the rejection rule
rejection, the test statistic normalization norma, the Kernel function denoted as K(·) used to
compute the test statistic central matrix ker, the standardization method of test the statistic
central matrix knorm, the type of bootstrap used to compute the p-value boot, the number of
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bootstrap samples used to compute the p-value nboot, the bandwidths cch and hv, etc. . . To
obtain a summary of the test and its options the method summary or summary.STNP can be used
on objects of class STNP.

By default the test of Bierens (1982) with the standard normal density as the central matrix
function is applied and the test p-value is obtained using 50 wild bootstrap samples with a
naive estimator of the conditional variance of the errors. Among many options, by changing
the argument rejection from bootstrap (the default) to asymptotics if type = "zheng" or
type = "pala" or type = "sicm" the test p-value is then based on the asymptotic normality
of these normalized test statistics under the null. In addition by default the test statistic is
not normalized as in by default the denominator in Tzheng, Tpala and Tsicm is set to one. This
can be changed by setting norma = "naive" to normalize the statistic using a naive estimator
of the errors conditional variance, or by setting norma = "np" to normalize the statistic using
a nonparametric estimator of the errors conditional variance. If rejection = "bootstrap"
setting para to TRUE greatly speeds up the computation of the p-value by deriving bootstrapped
statistics in parallel. For more details refer to the next section or help(SpeTest).

Note that the functions SpeTest_Stat and SpeTest_Dist are also available. Both functions
take similar arguments to SpeTest. SpeTest_Stat computes the specification test statistic,
while SpeTest_Dist generates a vector of size nboot from the specification test statistic distri-
bution under the null hypothesis using the bootstrap. The argument para is also available to
SpeTest_Dist. SpeTest_Stat and SpeTest_Dist allow to easily perform simulation exercises.

Arguments description and additional features

To be more specific about the arguments of the function SpeTest:

• Argument eq should be the fitted parametric model of class lm or nlsof the parametric
specification of interest F

• Argument type refers to the type of the test

If type = "icm" the test of Bierens (1982) is performed (default)

If type = "zheng" the test of Zheng (1996) is performed

If type = "esca" the test of Escanciano (2006) is performed, significantly increases
computing time
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If type = "pala" the test of Lavergne and Patilea (2008) is performed

If type = "sicm" the test of Lavergne and Patilea (2012) is performed

• Argument rejection refers to the rejection rule

If rejection = "bootstrap" the p-value of the test is based on the bootstrap (default)

If rejection = "asymptotics" and type = "zheng" or type = "esca" or type =
"sicm" the p-value of the test is based on asymptotic normality of the normalized version
of one of these test statistic under the null hypothesis

If type = "icm" or type = "esca" the argument rejection is ignored and the p-value
is based on the bootstrap

• Argument norma refers to the normalization of the test statistic

If norma = "no" the test statistic is not normalized (default)

If norma = "naive" the test statistic is normalized with a naive estimator of the errors
variance

If norma = "np" the test statistic is normalized with a nonparametric estimator of the
errors variance

• Argument boot refers to the bootstrap method used to compute the test p-value when
rejection = "bootstrap"

If boot = "wild" the wild bootstrap of Wu (1986) is used (default)

If boot = "smooth" the smooth conditional moments bootstrap of Gozalo (1997) is used

• Argument nboot is the number of bootstraps used to compute the test p-value, by default
‘nboot = 50}

• Argument para determines if parallel computing is used or not when rejection =
"bootstrap"

If para = FALSE parallel computing is not used to generate the bootstrap samples to
compute the test p-value (default)

If para = TRUE parallel computing is used to generate the bootstrap samples to compute
the test p-value, significantly decreases computing time, makes use of all CPU cores
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except one

• Argument ker refers to the Kernel function used in the central matrix and for the
nonparametric covariance estimator if there is any

If ker = "normal" the central matrix Kernel function is the normal p.d.f (default)

If ker = "triangle" the central matrix Kernel function is the triangular p.d.f

If ker = "logistic" the central matrix Kernel function is the logistic p.d.f

If ker = "sinc" the central matrix Kernel function is the sine cardinal function

• Argument knorm refers to the normalization of the Kernel function

If knorm = "sd" then the standard deviation using the Kernel function equals 1 (default)

If knorm ="sq" then the integral of the squared Kernel function equals 1

• Argument cch is the central matrix Kernel bandwidth

If type = "icm" or type = "esca" then cch always equals 1

If type = "zheng" the "default" bandwidth is the scaled rule of thumb: cch =
1.06*nˆ(-1/5)

If type = "sicm" and type = "pala" the "default" bandwidth is the scaled rule of
thumb: cch = 1.06*nˆ(-1/(4+k)) where k is the number of regressors

The user may change the bandwidth when type = "zheng", type = "sicm" or type =
"pala".

• Argument hv is the bandwidth the nonparametric errors covariance estimator when
norma = "np" or rejection = "bootstrap" and boot = "smooth"

By "default" the bandwidth is the scaled rule of thumb hv = 1.06*nˆ(-1/(4+k))

• Argument nbeta refers to the number of elements β used to represent the unit hyper-
sphere Sk when type = "pala" or type = "sicm"

Computing time increases as nbeta gets larger

By "default" it is equal to 20 times the square root of the number of exogenous control
variables
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• Argument direct refers to the default “directions” for the tests of Lavergne and Patilea
(2008) and Lavergne and Patilea (2012)

If type = "pala", direct is the favored direction for β, by "default" it is the OLS
estimator if class(eq) = "lm"

If type = "sicm", direct is the initial direction for β. This direction should be a vector
of 0 (for no direction), 1 (for positive direction) and -1 (for negative direction)

For example, c(1,-1,0) indicates that the user thinks that the 1st regressor has a positive
effect on the dependent variable, that the 2nd regressor has a negative effect on the
dependent variable, and that he has no idea about the effect of the 3rd regressor

By "default" no direction is given to the hypersphere

• Argument alphan refers to the weight given to the favored direction for β when type =
"pala"

By "default" it is equal to log(n)*nˆ(-3/2)

Before changing the default options of arguments norma, direct and alphan we strongly advise
the user to read the tests references.

Illustration

To finish we use data on 1,000 individuals from the Current Population Survey as in Stock and
Watson (2007) to find the true shape of their expected earnings conditional on their years of
education and their age using the test of Bierens (1982).

library(SpeTestNP)
library(AER)

### Loading the data and taking a first look

data( CPSSW8 )

summary ( CPSSW8 )

#> earnings gender age region
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#> Min. : 2.003 male :34348 Min. :21.00 Northeast:12371
#> 1st Qu.:11.058 female:27047 1st Qu.:33.00 Midwest :15136
#> Median :16.250 Median :41.00 South :18963
#> Mean :18.435 Mean :41.23 West :14925
#> 3rd Qu.:23.558 3rd Qu.:49.00
#> Max. :72.115 Max. :64.00
#> education
#> Min. : 6.00
#> 1st Qu.:12.00
#> Median :13.00
#> Mean :13.64
#> 3rd Qu.:16.00
#> Max. :20.00

Thus the dependent variable we consider is earnings and the explanatory variables we use to
build the conditional expectation are education and age. First we fit a linear specification of
conditional earnings.

lm_lin <- lm( earnings ~ age + education,
data = CPSSW8[1:1000,] )

summary ( lm_lin )

#>
#> Call:
#> lm(formula = earnings ~ age + education, data = CPSSW8[1:1000,
#> ])
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -27.313 -6.464 -1.445 4.804 42.092
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -14.18639 2.10661 -6.734 2.78e-11 ***
#> age 0.15846 0.02747 5.767 1.07e-08 ***
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#> education 1.93904 0.12286 15.782 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 9.465 on 997 degrees of freedom
#> Multiple R-squared: 0.2176, Adjusted R-squared: 0.216
#> F-statistic: 138.7 on 2 and 997 DF, p-value: < 2.2e-16

Both variables are very significant. Then we perform two tests of the linear specification, the
bootstrap test of Bierens (1982) using the bootstrap decision rule, and the asymptotic test of
Zheng (1996) with a naive normalization.

SpeTest( lm_lin , type = "icm" , rejection = "bootstrap" )

#>
#> Bierens (1982) integrated conditional moment test
#>
#> Test statistic : 27.31333
#> Bootstrap p-value : 0
#>

SpeTest( lm_lin , type = "zheng" , rejection = "asymptotics" )

#>
#> Zheng (1996) test
#>
#> Normalized test statistic : 1.47353
#> Asymptotic p-value : 0.0703
#>

The linear specification is rejected at level below 1% for the test of Bierens (1982) and at level
below 10% for the test of Zheng (1996). So we fit a quadratic specification and perform the
same tests.

lm_quad <- lm( earnings ~ age + I(ageˆ2) + education + I(educationˆ2),
data = CPSSW8[1:1000,] )

summary( lm_quad )
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#>
#> Call:
#> lm(formula = earnings ~ age + I(age^2) + education + I(education^2),
#> data = CPSSW8[1:1000, ])
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -32.167 -6.242 -1.412 4.665 41.753
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -3.353005 8.633125 -0.388 0.69781
#> age 1.011953 0.212083 4.772 2.1e-06 ***
#> I(age^2) -0.010051 0.002456 -4.093 4.6e-05 ***
#> education -2.079218 1.041245 -1.997 0.04611 *
#> I(education^2) 0.140968 0.036501 3.862 0.00012 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 9.323 on 995 degrees of freedom
#> Multiple R-squared: 0.2424, Adjusted R-squared: 0.2393
#> F-statistic: 79.58 on 4 and 995 DF, p-value: < 2.2e-16

SpeTest( lm_quad , type = "icm" , rejection = "bootstrap" )

#>
#> Bierens (1982) integrated conditional moment test
#>
#> Test statistic : 1.45746
#> Bootstrap p-value : 0.18
#>

SpeTest( lm_quad , type = "zheng" , rejection = "asymptotics")

#>
#> Zheng (1996) test
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#>
#> Normalized test statistic : -0.98736
#> Asymptotic p-value : 0.16173
#>

Both age and education to the square are very significant. In addition the p-values of both
tests are above 15% so we cannot reject the quadratic specification. Finally we test a highly
non-linear specification with age, age to the square, education, education to the square, and
their products included as controls:

lm_nlin <- lm( earnings ~ age + I(ageˆ2) + education + I(educationˆ2)
+ I(education*age) + I(educationˆ2*age)
+ I(education*ageˆ2) + I(educationˆ2*ageˆ2),
data= CPSSW8[1:1000,] )

summary( lm_nlin )

#>
#> Call:
#> lm(formula = earnings ~ age + I(age^2) + education + I(education^2) +
#> I(education * age) + I(education^2 * age) + I(education *
#> age^2) + I(education^2 * age^2), data = CPSSW8[1:1000, ])
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -33.135 -6.212 -1.485 4.515 41.920
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 6.006e+01 1.334e+02 0.450 0.653
#> age -3.545e-01 6.060e+00 -0.058 0.953
#> I(age^2) -1.043e-02 6.707e-02 -0.155 0.876
#> education -9.404e+00 1.924e+01 -0.489 0.625
#> I(education^2) 3.335e-01 6.815e-01 0.489 0.625
#> I(education * age) 1.277e-01 8.738e-01 0.146 0.884
#> I(education^2 * age) -2.053e-03 3.093e-02 -0.066 0.947
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#> I(education * age^2) 6.633e-04 9.669e-03 0.069 0.945
#> I(education^2 * age^2) -4.410e-05 3.420e-04 -0.129 0.897
#>
#> Residual standard error: 9.316 on 991 degrees of freedom
#> Multiple R-squared: 0.2467, Adjusted R-squared: 0.2406
#> F-statistic: 40.56 on 8 and 991 DF, p-value: < 2.2e-16

SpeTest( lm_nlin , type = "icm" , rejection = "bootstrap" )

#>
#> Bierens (1982) integrated conditional moment test
#>
#> Test statistic : 0.02541
#> Bootstrap p-value : 0.64
#>

SpeTest( lm_nlin , type = "zheng" , rejection = "asymptotics")

#>
#> Zheng (1996) test
#>
#> Normalized test statistic : -1.8227
#> Asymptotic p-value : 0.03417
#>

This time none of the variables are considered (individually) significant. This does not mean
that this specification is wrong, in fact it nests the quadratic specification. Note that the p-value
of the test of Bierens (1982) is very high while the p-value of asymptotic test of Zheng (1996) is
3%. This difference can be explained by the fact that both tests have important size distortions
when the number of explanatory variables is “large”. Thus we perform a final check with the
asymptotic tests of Lavergne and Patilea (2008) and Lavergne and Patilea (2012).

SpeTest( lm_nlin, type = "pala", rejection = "asymptotics", nbeta = 40 )

#>
#> Lavergne and Patilea (2008) test
#>
#> Normalized test statistic : -0.80158
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#> Asymptotic p-value : 0.2114
#>

SpeTest( lm_nlin, type = "pala", rejection = "bootstrap" , nboot = 10 , nbeta = 10 )

#>
#> Lavergne and Patilea (2008) test
#>
#> Test statistic : -128.10515
#> Bootstrap p-value : 0.5
#>

Both p-values are high so we cannot reject this highly non-linear specification.
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