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Abstract

We propose and implement an approach to inference in linear instrumental

variables models which is simultaneously robust and computationally

tractable. Inference is based on self-normalization of sample moment

conditions, and allows for (but does not require) many (relative to the

sample size), weak, potentially invalid (i.e., the exclusion restriction fails)

or potentially endogenous instruments, as well as for many regressors

and conditional heteroskedasticity. Our coverage results are uniform and

can deliver a small sample guarantee. We develop a new computational

approach based on semidefinite programming, which we show can equally

be applied to rapidly invert existing tests (AR, LM, CLR, etc.).
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ments, invalid instruments, endogenous instruments.
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1. Introduction

Instrumental variables are widely used in applied econometrics, yet computationally

tractable robust inference remains challenging. It is well known that inference

robust to weak instruments can be conducted by inverting robust tests. However,

to our knowledge there do not exist inference methods which are simultaneously

robust to weak instruments, many instruments/regressors (e.g., larger than the

sample size), potentially invalid instruments (i.e., an exclusion restriction may be

violated) and potentially endogenous instruments, nor which can offer coverage

guarantees in small samples. Moreover, inverting robust tests can be computation-

ally challenging (Andrews et al., 2019) because their non-rejection regions are not

convex (Mikusheva, 2010) and a grid search is infeasible with just a handful of

regressors (see Andrews (2016), supplementary material).

We address both the statistical and computational challenges. First, we provide

an approach to inference based on self-normalized sample moment conditions,

which we refer to as Self-Normalized Instrumental Variables (SNIV). Due to the

minimal assumptions it requires, SNIV simultaneously allows for weak instruments

and conditional heteroskedasticity, and can be applied equally to the standard

low-dimensional setting (large sample size, few regressors, few instruments) and to

the high-dimensional setting in which the number of instruments and/or regressors

can be large, possibly much larger than the sample size. For example, in a model

with a single endogenous regressor, SNIV could be used to construct a confidence

interval which is simultaneously robust to many and to weak instruments.1 We

1To further motivate our framework, there are several reasons to expect models with multiple
endogenous regressors to become increasingly popular. Potential applications include demand
systems with many goods and endogenous expenditure (Gautier and Rose, 2021) or prices (Belloni
et al., 2022), as well as models of peer effects with unknown peer relationships (Rose, 2018). More
broadly, due to increasing availability of rich datasets and the potential to allow for heterogeneous
treatment effects by using interactions of the treatment with individual characteristics, applied
research has recently considered models with multiple exogenous variables of interest (e.g., Farrell
et al. (2020)). A natural extensionis to allow for endogenous treatment (Belloni et al., 2022).
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extend SNIV to settings in which one or more instrument may be ‘invalid’ (i.e.,

the exclusion restriction fails, see Kolesár et al. (2015); Kang et al. (2016)) or

endogenous without requiring a pre-test, and propose the use of an a-priori upper

bound on the number of invalid/endogenous instruments for settings in which the

set of identifiable parameters would otherwise be unbounded.

Second, we provide a computational implementation of SNIV which we show

can also be applied to rapidly invert other robust tests. This is because test

inversion can typically be cast as a semi-algebraic optimization problem, hence we

can apply methods from the literature on semi-algebraic optimization. The basic

idea to deal with computational intractability is to attempt to solve a hiearchy of

semidefinite optimization problems. Solving each optimization problem delivers

an outer bound on the confidence region. As we proceed up the hierarchy, the

bounds become sharper at the expense of greater computational burden. This

allows the researcher to effectively trade off sharpness with available computational

resources. In practice, the bounds obtained towards the beginning of the hierarchy

are often exact. A simple diagnostic informs the researcher if exact bounds have

been attained. Similar computational approaches have been applied by Gautier

et al. (2018), Lee (2020) and Auerbach (2022).

In contrast to a grid search, our approach can be applied to settings with

multiple regressors. In contrast to heuristic/local optimization methods, our

approach guarantees an outer bound on the confidence region, hence does not

risk compromising the coverage guarantee. We illustrate how our computational

approach can be used to rapidly invert existing robust tests by combining it with the

results of Guggenberger et al. (2012), Guggenberger et al. (2019) and Guggenberger

et al. (2021) to obtain weak instrument robust Anderson-Rubin (AR) confidence

intervals which can be computed near instantaneously, even when a grid search is

infeasible. We also show that our approach can be applied to rapidly invert other
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robust tests such as the Lagrange-multiplier (LM) test (Kleibergen, 2002; Moreira,

2002) and the Conditional Likelihood Ratio (CLR) test (Moreira, 2003).

We conduct a Monte-Carlo experiment in which we demonstrate SNIV and

AR confidence regions are both easily implemented in a setting in which a grid

search is computationally intractable. SNIV has similar coverage to the AR test in

designs with either strong or weak instruments. With many instruments, SNIV

maintains coverage close to the nominal level but AR does not. We also show that

SNIV can be applied to conduct informative inference with invalid instruments

and endogenous instruments in challenging designs, to which existing approaches

cannot be applied.

1.1. Related literature

Our work is related to the literature on many instruments (e.g., Bekker (1994);

Angrist et al. (1999); Donald and Newey (2001); Anderson (2005); Chao and

Swanson (2005); Stock and Yogo (2005); Hansen et al. (2008); Ackerberg and

Devereux (2009); van Hasselt (2010); Chao et al. (2012); Hausman et al. (2012);

Anatolyev (2013); Hansen and Kozbur (2014); Kolesár (2018); see Anatolyev (2019)

for a recent review) and weak instruments (e.g., Anderson and Rubin (1949);

Kleibergen (2002); Moreira (2002, 2003); Mikusheva (2010); Guggenberger et al.

(2012); Andrews (2016); Guggenberger et al. (2019, 2021); see Andrews et al. (2019)

for a recent review), but allows simultaneously for weak instruments and for the

number of regressors and/or instruments to be large, possibly much larger than the

sample size. This is because we conduct inference based on moderate deviations of

self-normalized sample moments (e.g., Pinelis (1994); Bertail et al. (2008); Jing

et al. (2003)) instead of using a Central Limit Theorem.

The most closely related papers are Gautier and Tsybakov (2011), Belloni et al.

(2012), Gold et al. (2020), Gautier and Rose (2021) and Belloni et al. (2022), all
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of which also consider the linear instrumental variables model in a potentially

high-dimensional setting. Gautier and Tsybakov (2011) and Gautier and Rose

(2021) suggest to combine a point estimator with lower bounds on its sensitivity

characteristics to perform robust inference, but their confidence region is larger than

ours and the authors do not provide a disciplined way to trade off computational

complexity and sharpness when implementing their approach. Belloni et al. (2012)

discuss inference based on self-normalization, but do not propose a practical

computational solution, nor allow for invalid/endogenous instruments. Gold et al.

(2020), Gautier and Rose (2021) and Belloni et al. (2022) propose confidence regions

for a subset of parameters of interest (e.g., confidence intervals) but these rely

on stronger assumptions than we use below. For example, these papers propose

methods which are not robust to weak instruments and do not allow for potentially

invalid nor endogenous instruments. We view our work as complementary to Gold

et al. (2020), Gautier and Rose (2021) and Belloni et al. (2022), providing the

applied researcher with a more robust alternative, but one which may sometimes

yield wider bounds in practice.

Finally, our extensions of SNIV are related to the literature on invalid and

endogenous instruments. Regarding invalid instruments (e.g., Kolesár et al. (2015);

Kang et al. (2016)), we allow for a setting with multiple endogenous regressors,

potentially weak instruments, and for the number of instruments and/or regressors

to be larger than the sample size. Regarding endogenous instruments (e.g., Sargan

(1958); Hansen (1982); Anatolyev and Gospodinov (2011); Lee and Okui (2012);

Chao et al. (2014)), we do not perform specification tests, but instead perform

inference directly, accounting for potential endogeneity of an unknown subset of

instruments.

We proceed as follows. Section 2 sets out our model. Section 3 defines SNIV,

establishes its coverage guarantee, and provides extensions to potentially invalid and
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endogenous instruments. Section 4 presents our computational method, which we

apply to invert existing robust tests in Section 5. Section 6 presents a Monte-Carlo

experiment and Section 7 concludes. All proofs are gathered in the appendix.

1.2. Setup & notation

To simplify the exposition we consider an i.i.d. sample of size n. The i.i.d.

setting is not critical for our results and can be relaxed by using an alternative

choice of rn below, for which we provide appropriate references. The population

model comprises an outcome Y , regressors X ∈ RdX , and instrumental variables

Z ∈ RdZ of joint distribution P. E is the expectation under P and En is its

sample counterpart. Our results apply to a sequence of models indexed by n. For

simplicity of exposition we do not make this explicit, but we occasionally note that

certain objects can depend on n. To allow for high-dimensional data, the relative

magnitudes of n, dX and dZ are unrestricted, and both dX and dZ can grow with

n. For b ∈ RdX , U(b) , Y −X>b, P(b) is the distribution of (X,Z, U(b)) implied

by P. For S ⊆ [d] , {1, 2, ..., d}, |S| is its cardinality and Sc its complement.

For ∆ ∈ Rd, S(∆) , {k ∈ [d] : ∆k 6= 0} and |∆|p is the `p-norm of ∆. For a

polynomial p, deg(p) is its degree. We use M < 0 to say that the matrix M is

positive semidefinite.

2. Model

The linear instrumental variables model is

E [ZU(β)] = 0, (1)

β ∈ B, P(β) ∈ P , (2)
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where B ⊆ RdX is the parameter space and P is a nonparametric class. The set I

collects the vectors which satisfy (1)-(2). As will be made clear below, our results

are for all β ∈ I, hence for the true value β∗. We use the class P to permit the

use of results on moderate deviations of self-normalized sums for inference. We

consider four classes, including

Class 1. There exists δ in (0, 1] and µ2+δ > 0 such that∣∣∣∣((E [|ZlU(β)|2+δ
]) (

E
[
Z2
l U(β)2

])−(2+δ)/2
)
l∈[dZ ]

∣∣∣∣
∞
≤ µ2+δ,

and dZ ≤ α/(2Φ(−n1/2−1/(2+δ)µ
−1/(2+δ)
2+δ )),

where α ∈ (0, 1) is a confidence level and Φ the normal CDF;

Class 2. ∃µ4 > 0 : maxl∈[dZ ] E[Z4
l U(β)4](E[Z2

l U(β)2])−2 ≤ µ4,

dZ < α exp (n/µ4) /(2e+ 1) and n− µ4 log(dZ(2e+ 1)/α) ≥ n/2;

Class 3. ZlU(β) is symmetric for all l ∈ [dZ ] and dZ < 9α/ (4e3Φ (−
√
n)).

Classes 1-2 require mild bounds on ratios of moments, whereas Class 3 requires

no bounds but uses symmetry. Further classes allowing for dependence and non

i.d. data can be found in Chen et al. (2016) and references therein. In Section

3.1 we consider a fourth class based on Gaussian approximation rather than

self-normalization.

Remark 1 The model in (1)-(2) can be obtained by first partialling-out a low-

dimensional vector of exogenous regressors. To simplify the exposition we do not

make this explicit.
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3. Self Normalized Instrumental Variables

The 1− α SNIV confidence set is

Ĉ , {β ∈ B : |D(β)En[ZU(β)]|∞ ≤ rn} , (3)

where D(β) is the dZ × dZ positive, diagonal matrix with lth diagonal element

En[Z2
l U(β)2]−1/2 used to self-normalize the dZ moments and rn depends on the

class. Under Class 1 we set rn = −Φ−1 (α/(2dZ)) /
√
n. Under Class 2 we set

rn = 2
√

log(dZ(2e+ 1)/α)/n. Under Class 3 we set rn = −Φ−1(9α/(4dZe
3))/
√
n.

Proposition 1 Consider the model in (1)-(2). If P is Class 1 we have

lim
n→∞

inf
(β,P):β∈I

P(β ∈ Ĉ) ≥ 1− α. (4)

If P is either Class 2 or Class 3 we have

inf
(β,P):β∈I

P(β ∈ Ĉ) ≥ 1− α. (5)

Proposition 1 shows that the coverage of SNIV is at least the nominal level

uniformly over the identifiable parameters and the distributions of the data they

imply. Beyond the class used, no further assumptions are needed. Classes 1-3 allow

for conditional heteroscedasticity, do not restrict the joint distribution of X and

Z (hence are robust to weak instruments) and have very mild requirements on

the relative magnitudes of n and dZ (hence are robust to many regressors and/or

instruments). For Class 1 the coverage guarantee is asymptotic in n in such a way

that dX and dZ can grow with (and be much larger than) n. For Classes 2-3 the

coverage guarantee is for any n.

The SNIV confidence set collects vectors for which the `∞ deviation from zero
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of the self-normalized sample moment is at most rn. The core components which

deliver uniformity, finite sample validity and robustness to identification are the

`∞-norm and self-normalization of the moments. The `∞-norm is crucial so as to

allow for dZ larger than n because it permits rn to be of the order log(dZ)/
√
n.

This means that the SNIV confidence set can be small even when the number

of instruments is much larger than the sample size.2 Note also that dX can be

arbitrarily large with respect to n.

Remark 2 If B is defined by polynomial (in)equalities of degree at most 2, the

SNIV confidence set is defined by polynomial inequalities of degree at most 2 (we

show this in Proposition 3), so it can be empty, unbounded or disconnected depending

on the (random) values of the polynomial coefficients. Possible unboundedness is

unavoidable for confidence sets which are robust to identification (Dufour, 1997).

3.1. Gaussian approximation

The SNIV confidence set may be conservative when the instruments are

strongly correlated with one another because rn is based on a union bound

over dZ self-normalized sample moments. Gautier and Rose (2021) propose

an alternative to self-normalization based around the multiplier bootstrap of

Chernozhukov et al. (2013), which we implement here. We modify the SNIV

confidence set by replacing D(β) by En[U(β)]−1/2DZ and rn by the 1− α quantile

of |DZEn[ZW ]|∞ (computed by simulation) in its definition, where DZ is a

dZ × dZ diagonal matrix with lth diagonal element En[Z2
l ]−1/2 and W is a stan-

dard normal random variable which is independent of Z. The corresponding class is

Class 4. There exist constants C and c, and Bn such that, for all (β,P): β ∈ I,

2For Class 3, rn ≤ 2 log
(
4dZe

3/(9α)
)
/
√
n, ∀α ∈ [0, 1], dZ ≥ 1(because Φ−1(a) ≥ 2 log(a) if

0 < a ≤ exp(−1/(4π))).
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U(β) ⊥ Z; |Z|∞ ≤ Bn (a.s.); E[U(β)4] ≤ C; and B4
n log(dZn)7/n ≤ Cn−c,

which delivers the following coverage guarantee.

Proposition 2 Consider the model in (1)-(2). If P is Class 4, then, for Ĉ based

on the multiplier bootstrap, we have

lim
n→∞

inf
(β,P):β∈I

P(β ∈ Ĉ) ≥ 1− α. (6)

Further classes based on Gaussian approximation but allowing for non i.d. and

dependent data can be found in Zhang and Wu (2017) and references therein.

3.2. Sparsity

In the high-dimensional setting with dX larger than n, a natural and commonly

used restriction is that β is sparse, meaning that it has many elements exactly

equal to zero but the researcher does not know which ones. Sparsity implies that

there exists an underlying parsimonious model which is unknown to the researcher.

It can be used to motivate `1 penalized estimators such as the LASSO of Tibshirani

(1996) for regression or the STIV of Gautier and Rose (2021) for instrumental

variables. In the instrumental variables context, sparsity can be interpreted as

imposing exclusion restrictions of unknown locations. As explained below, this

is particularly useful in the underidentified case with dZ < dX , which can arise,

for example, when there is uncertainty as to which candidate instruments can be

excluded, implying that some instruments may be invalid (Kolesár et al., 2015;

Kang et al., 2016).

The SNIV confidence set can easily accommodate sparsity. We define SQ ⊆ [dX ]

as the indices of the regressors of questionable relevance (i.e., whose entry of β∗ may
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be zero). We denote by dQ , |SQ| and modify I and Ĉ to include the restriction

|S(β) ∩ SQ| ≤ s, (7)

where s ∈ [dQ] is an upper bound chosen by the researcher, and recalling that

S(β) ⊆ [dX ] is the support of β. Though we do not make it explicit, both s and

SQ can depend on n. Since the choice of s provides a guarantee on the sparsity,

we refer to it as a sparsity certificate. When the sparsity certificate s is used, we

use the notation Is and Ĉs in place of I and Ĉ. Clearly, IdQ = I and ĈdQ = Ĉ.

Remark 3 The restriction in (7) is weaker than imposing dQ − s exclusion re-

strictions on the parameters in SQ.

Remark 4 In practice, the researcher may not know how to choose the sparsity

certificate. In this case nested confidence sets can be computed by varying s over

reasonable alternatives. This allows for an assessment of the information content

of progressively stronger assumptions on the sparsity.

Interestingly, Is can be a singleton even when I is not. This means that sparsity can

lead to point identification even in ‘underidentified’ models (i.e., when dZ < dX). In

general, Is is a singleton if there is a solution for only one of the
(
dQ
s

)
overdetermined

systems based on (1)-(2) and it is unique. For example, Is can be a singleton

when s+ dX − dQ < dZ < dX and sparsity implies that some exogenous regressors

have a zero coefficient (i.e., they are excluded, see Kang et al. (2016)). The basic

idea is that excluded exogenous regressors can serve as instruments for included

endogenous regressors, but we need not necessarily know which regressors are

excluded. Finally, if SQ = [dX ], Is is a singleton if all matrices formed from 2s

columns of E[ZX>] have rank 2s (Candes and Tao, 2007). The corresponding

order condition is s ≤ dZ/2, which does not depend on dX .
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Figure 1: The Identified Set, SNIV Confidence Set and its Outer Approximations

I1 Ĉ1

fu(β) ≥ f ∗(u) fu(β) ≥ f ∗h(u)

Notes: In this example, dZ = 1, dX = 2, B = RdX , dQ = [dX ] and s = 1.

However, SNIV does not require that Is be a singleton. For example, Is can

comprise a finite union of singletons. Figure 1 depicts such an example with dZ = 1,

dX = 2, B = RdX , dQ = [dX ] and s = 1, in which case Is is the intersection of

the line E[Zy] = E[ZX>]β with the set {β ∈ R2 : β1 = 0 or β2 = 0}. The SNIV

confidence set allows for such partially identified cases due to the uniformity over s

and Is in the coverage guarantee, which is obtained by replacing inf(β,P):β∈I P(β ∈ Ĉ)

by mins∈[dQ] inf(β,P):β∈Is P(β ∈ Ĉs) in Propositions 1 and 2.

3.3. Endogenous instruments

Testing instrument exogeneity is a classical problem to which our framework can

be applied. Introducing θ ∈ RdZ to account for the possible failure of exogeneity,
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we replace (1)-(2) by

E[ZU(β)− θ] = 0, (8)

(β, θ) ∈ B ×Θ, P (β, θ) ∈ P , (9)

where θl 6= 0 means that Zl is endogenous, P (b, t) is the distribution of

(X,Z, ZU(b)− t) implied by P and Θ ⊆ RdZ encodes restrictions on θ. For

example, Θ may be such that the sign of the correlation of a regressor and the

structural error is known. An important restriction encoded by Θ is θS⊥ = 0 for

S⊥ ⊆ [dZ ], which indexes the instruments known to be exogenous. The remaining

instruments are potentially endogenous. We can use a sparsity certificate to place

an upper bound on the number of endogenous instruments, given by

|S(θ)| ≤ s̃, (10)

for a given s̃ ∈ [d̃Q], where d̃Q , dZ − |S⊥|. Thus, though the identities of the

endogenous instruments may not be known, their number can be restricted. The

counterpart of Is, denoted by Is,s̃, collects the vectors which satisfy (8)-(9) and

the sparsity restrictions in (7) and (10). Under Classes 1-3,3 SNIV is

Ĉs,s̃ ,

(β, θ) ∈ B ×Θ :
|D(β, θ)(En[ZU(β)]− θ)|∞ ≤ rn,

|S(β) ∩ SQ| ≤ s, |S(θ)| ≤ s̃

 , (11)

where D(β, θ) is the dZ × dZ positive, diagonal matrix with lth diagonal element

En[(ZlU(β) − θl)2]−1/2. This set allows one to simutaneously perform inference

on β∗ and θ∗, without requiring, for example, a pilot estimator and subsequent

test of instrument exogeneity. The coverage guarantee is obtained by replac-

ing inf(β,P):β∈I P(β ∈ Ĉ) by mins̃∈[d̃Q] mins∈[dQ] inf(β,θ,P):(β,θ)∈Is,s̃ P((β, θ) ∈ Ĉs,s̃) in

3Class 4 is not applicable with possibly endogenous instruments.
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Proposition 1. Both S̃Q and s̃ can depend on n.

4. Computation

To implement SNIV the researcher needs some way to summarize the vectors which

lie in the confidence set. Belloni et al. (2012) propose to use a grid for a confidence

set with no sparsity constraints nor potentially endogenous instruments. This

involves checking whether the inequalities in the definition of the SNIV confidence

set are verified for every β on a grid over B, and is a practical solution when dX

is small. However, a grid search quickly becomes infeasible for moderate dX . In

a low-dimensional setting, one can first partial-out a small number of exogenous

regressors (see Remark 1) so that dX is the number of endogenous regressors, which

may be sufficiently small so as to use a grid. Otherwise we require an alternative.

We propose a method based on solving convex optimization problems. For

a given direction u ∈ RdX+dZ normalized to satisfy |u|2 = 1 and the function

fu(β, θ) , u>(β>, θ>)> we seek to compute

f ∗(u) , inf
(β,θ)∈Ĉs,s̃

fu(β, θ), (12)

which is the support function of Ĉs,s̃. By solving (12) for all directions u ∈ {u ∈

RdX+dZ : |u|2 = 1}, we obtain the convex envelope of Ĉs,s̃ defined by the inequalities

fu(β, θ) ≥ f ∗(u) for all u ∈ {u ∈ RdX+dZ : |u|2 = 1}.4

If Ĉs,s̃ is convex, solving (12) is straightforward. In general Ĉs,s̃ is not convex

because none of the inequalities in its definition define a convex set. This is

unavoidable because Is,s̃ need not be convex. We now show that Ĉs,s̃ is a semi-

algebraic set (i.e., a set defined by polynomial inequalities) and apply methods in

semi-algebraic optimization to problem (12).

4In practice, we consider only a finite number of directions.
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Proposition 3 If B and Θ are semi-algebraic, the SNIV confidence set is semi-

algebraic, taking the form

Ĉs,s̃ =
{

(β, θ) : ∃γ ∈ [0, 1]dQ+d̃Q : ĝ(β, θ, γ) ≥ 0
}

(13)

where ĝ is a dg × 1 vector of polynomials, the form of which is given in the proof.

If B and Θ are defined by polynomial inequalities of degree at most e then ĝ has

degree max(2, e).

The requirement that B and Θ are semi-algebraic is mild. For example, B = Rdx

is semi-algebraic. The additional parameter γ is required to model the sparsity

constraints in (7) and (10). Proposition 3 implies that

f ∗(u) = inf
(β,θ,γ):ĝ(β,θ,γ)≥0

fu(β, θ), (14)

which can be computed by solving a polynomial optimization problem. Due to

non-convexity, exact computation of f ∗(u) is NP-hard. Instead, we focus on

solving convex relaxations of (14). Convex relaxation is routinely used to construct

computationally tractable estimators. For example, LASSO uses an `1 penalty

as a convex relaxation of a sparsity constraint such as (7). We solve a sequence

of convex relaxations, delivering a hierarchy of convex optimization problems.

Following the seminal paper of Lasserre (2001), such hierarchies have attracted

much attention in the optimization literature in recent years. We first provide a

general summary of the approach, then explain the specific hierarchy we propose.

The most important feature of a hierarchy is that it is disciplined, meaning that

it delivers a monotone sequence of lower bounds converging to f ∗(u). If f ∗h(u) is

the optimal value obtained by solving the hth convex optimization problem in the

hierarchy, we have f ∗h(u) ≤ f ∗h+1(u) ≤ f ∗(u) for all h ∈ N and f ∗h(u)→ f ∗(u) as

h→∞. As h increases, though convex, the optimization problems become more
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computationally intensive. It is also generically the case that there exists finite h∗

such that f ∗h∗(u) = f ∗(u), and that the researcher can identify when such h∗ has

been encountered.

Monotonicity of the sequence of lower bounds on f ∗(u) is crucial. This is

because it allows us to construct bounds on the convex envelope of the SNIV

confidence set defined by the linear inequalities fu(β, θ) ≥ f ∗h(u) for all u ∈ U

and some h ∈ N, where U is a finite collection of directions. Since we construct a

superset, the coverage guarantee cannot fall below 1−α. The larger is h, the closer

the superset becomes to the SNIV confidence set. Hence, by varying h and U ,

we can trade off the computational burden with the quality of the approximation

without compromising the coverage guarantee. Such a trade-off cannot be achieved

by local or heuristic optimization methods nor by adjusting the spacing of a grid,

both of which may compromise the coverage guarantee. Figure 1 illustrates the

SNIV confidence set and its outer approximations for a partially identified model

with dZ = 1, dX = 2, B = RdX , dQ = [dX ], s = 1 and all instruments known to be

exogenous.

4.1. Low-dimensional objects of interest

The method we propose can also be used to compute bounds on a polynomial

function of interest p(β∗, θ∗). For example, to obtain a confidence interval for β∗1 ,

we can solve (12) for fu1 and f>u2
, where u1 = (1, 0, ..., 0)> and u2 = −u1 (i.e., use

the projection method). More generally one can consider a vector p of functions

of interest. If the dimension of p is small relative to dX , it is well known that the

projection method can be conservative. A leading case with dX = dim(p) = 1 is

a confidence interval in a model with one endogenous regressor. In this case, the

projection method is not conservative and SNIV is simultaneously robust to weak

instruments and to dZ much larger than n.
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4.2. A hierarchy of semidefinite optimization problems

Since it is straightforward to implement, we present our application of the seminal

hierarchy first proposed by Lasserre (2001). This hierarchy is sufficiently com-

putationally tractable to deal with problems of size likely to be encountered in

empirical work. Recent advances allowing for even larger problems are provided

by Lasserre et al. (2017) and Weisser et al. (2018).

To simplify the exposition, we denote the decision variable in problem (14) by

δ , (β>, θ>, γ>)> of size dδ , dX + dZ + dQ + d̃Q. The hierarchy uses the decision

variable µ, each entry of which represents a monomial of δ. For example, if dδ = 2

then µ = (1, δ1, δ2, δ
2
1, δ1δ2, δ

2
2, ...)

>, so the polynomial p(δ) = δ2 +2δ2
1 is equivalently

expressed as µ3 + 2µ4. This allows us to define the Riesz linear functional of p

as Lµ(p) = µ3 + 2µ4.
5 Now let the vector me(δ) comprise all monomials of δ of

degree no larger than e. For example, m1(δ) = (1, δ1, δ2)
>. Then we can define

the moment matrix Me(µ) , Lµ(me(δ)me(δ)
>). For example, if dδ = 2 and e = 1,

we have

m1(δ)m1(δ)> =


1 δ1 δ2

δ1 δ2
1 δ1δ2

δ2 δ1δ2 δ2
2

⇒M1(µ) =


µ1 µ2 µ3

µ2 µ4 µ5

µ3 µ5 µ6

 . (15)

Given another polynomial q(δ), we can similarly define the localizing matrix

Me(qµ) , Lµ(q(δ)me(δ)me(δ)
>).

5We present the case in which he order of the entries of µ is a graded lexicographic order.
Other orderings are possible. None of our results depend on the ordering used.
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At level h of the hierachy we solve the semidefinite program

f ∗h(u) , inf
µ
Lµ(fu) subject to Mh(µ) < 0,

Mh−ej(ĝjµ) < 0, j ∈ [dg],

µ1 = 1, (16)

where ej is the smallest integer which is at least as large as deg(ĝj)/2 for j ∈ [dg].

This program has a linear objective function and dg + 1 semidefinite constraints.

The semidefinite constraint on Mh(µ) arises because mh(δ)mh(δ)
> has rank 1. In

principle we would like to impose that Mh(µ) has rank 1. However, the set of

rank 1 matrices is not convex. To obtain a convex problem, we use instead the

set of positive semidefinite matrices. The intuition is the same for the other dg

semidefinite constraints because the polynomials ĝ are restricted to be non-negative.

Corollary 1 If B and Θ are compact then f ∗h(u) ≤ f ∗h+1(u) ≤ f ∗(u) for all h ∈ N

and f ∗h(u)→ f ∗(u) as h→∞.

Corollary 1 follows from Proposition 3 due to Theorem 4.2 of Lasserre (2001). The

only assumption beyond the class P is a technical assumption requiring that the

parameter space be compact. Compactness is useful because it allows us to find B

sufficiently large such that the redundant polynomial constraint

B − |β|22 − |θ|22 ≥ 0 (17)

holds. In practice, we augment the constraints ĝ(β, θ, γ) ≥ 0 to include (17) prior

to applying the semidefinite hierarchy.

Though compactness is a common technical assumption, in practice we may

often not have compact B and Θ. For example, we may have B = RdX . In this

case we suggest increasing B until (17) ceases to bind at the solution. If the SNIV
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confidence set is unbounded in direction u, (17) will always bind. In practice this

is of little consequence since there is little distinction between f ∗(u) being −∞

or an arbitrarily small finite constant. Thus, when the parameter space is not

compact, our approach characterizes the intersection of the SNIV confidence set

with an arbitrarily large `2 ball.

The intuition for the result that f ∗h(u) ≤ f ∗(u) for all h ∈ N comes from

convex relaxation. By replacing rank 1 constraints for the moment and localizing

matrices by positive semidefinite constraints, we minimize over a larger set, hence

it must be that we obtain a lower bound on the optimal value. The intuition

for f ∗h(u) ≤ fh+1(u) for all h ∈ N is that increasing h reduces the size of the

set over which we minimize, hence must always deliver a larger optimal value.

The computational trade-off is also clear from the form of problem (16) because

the dimension of the moment matrix Mh(µ) is
(
dδ+h
h

)
, which is increasing in h.

Similarly, the dimensions of the localizing matrices are combinatorically increasing

in h. Thus, increasing h delivers a tigher bound but at increased computational

cost.

We implement the hierarchy using the following algorithm proposed by Lasserre

(2015).

Algorithm 1 Inititialize h = 1 and the largest level of the hierachy h ∈ N. Then,

1. Solve the semidefinite optimization problem in (16) to obtain optimal value

f ∗h(u) and optimal solution µ∗ (if it exists).

2. If there is no optimal solution µ∗ and h < h then increase h by one and go

to step 1. If there is no optimal solution µ∗ and h = h then terminate the

algorithm with bound f ∗h−1(u).

3. If rank Mh(µ
∗) = rank Mh−e(µ

∗) (where e , maxj∈[dg ] ej) then we know

f ∗h(u) = f ∗(u). Terminate the algorithm with the exact bound f ∗h(u).

19



4. If rank Mh(µ
∗) 6= rank Mh−e(µ

∗) and h < h then increase h by one and go

to step 1. Else, if h = h, terminate the algorithm with the lower bound f ∗h(u).

The basic idea is to begin with the most computationally tractable semidefinite

program with h = 1 and continue to increase h until either we know that f ∗h(u) =

f ∗(u) (step 3) or we hit the largest computationally feasible level of the hierarchy

(h). In practice, h is determined by the size of the problem and the available

computational resources. In our Monte-Carlo experiment we use h = 2 on a

standard desktop machine. Step 3 provides a stopping criterion which can be used

to establish finite convergence of the hierarchy. For brevity, we do not provide

technical conditions under which finite convergence is possible, which can be found

in Lasserre (2015) (see Theorem 6.5) and involve standard Karusch-Kuhn-Tucker

conditions for an optimal solution to be a local minimizer of a nonlinear program.

In fact, these conditions imply that finite convergence is achieved generically

(Lasserre, 2015) (see Theorem 7.6), though there is no guarantee that it is achieved

for small values of h. In our Monte-Carlo experiment we achieve finite convergence

with high frequency in some designs but with low frequency in others.

5. Inverting other robust tests

In the standard linear instrumental variables setting with large n and fixed dZ ≥ dX ,

robust inference can be conducted by inverting robust tests (Andrews et al., 2019).

In this section we show that the computational approach of Section 4 can be

applied to do so. There are myriad such tests, including but not limited to, the

Anderson Rubin (AR) test (Anderson and Rubin, 1949), Lagrange-multiplier (LM)

test (Kleibergen, 2002; Moreira, 2002) and the Conditional Likelihood Ratio (CLR)

test (Moreira, 2003). All of these tests have a non-rejection region (i.e., a confidence
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set) of the form

C̃ , {β ∈ B : p̂(β) ≤ q̂α(β)}, (18)

where p̂ and q̂α are polynomials and the coefficients of q̂α depend on the confidence

level α. As with the SNIV confidence set, C̃ is semi-algebraic whenever B is. The

polynomial inequality in the definition of C̃ can be degree 2 (AR test, CLR test

with dX = 1) or larger (LM test, CLR test with dX > 1). For example, the AR

test under homoskedasticity uses p̂(β) = p̂AR(β) and q̂α(β) = q̂AR,α(β), where

p̂AR(β) , U(β)>Z(Z>Z)−1Z>U(β), q̂AR,α(β) , Cα(dZ)q̂AR(β), (19)

q̂AR(β) , (1,−β>)(y,X)>(In − Z(Z>Z)−1Z>)(y,X)(1,−β>)>/(n− dZ), (20)

y is the n× 1 vector of outcomes, X is the n× dX matrix of regressors, U(β) ,

y−Xβ, Z is the n×dZ matrix of instruments and Cα(d) is the 1−α quantile of the

χ2
d distribution. None of the above tests yield a convex confidence set (Mikusheva,

2010), making a grid search computationally demanding (see Andrews (2016),

supplementary material). Alternatives to a grid search (e.g., Mikusheva (2010) for

the CLR test) can also be computationally intensive for moderate dX . Hierarchies

of semidefinite optimization problems provide a practical alternative.

Sometimes the object of interest may be a function of β∗ of dimension smaller

than dX (see Section 4.1). For example, one may be interested in a sub-vector

of β∗. To obtain coverage probability 1− α for a confidence set for a sub-vector

(e.g., a confidence interval), we need to adjust q̂α. Guggenberger et al. (2012),

Guggenberger et al. (2019) and Guggenberger et al. (2021) provide appropriate

adjustments for the AR test. Decomposing β = (β>1 , β
>
2 )>, the results of Guggen-

berger et al. (2012) imply that an asymptotic 1− α confidence set for β∗1 under
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homoskedasticity is

C̃AR ,
{
β1 : inf

β2

p̂AR(β)

q̂AR(β)
≤ Cα(dZ − dX + dX1)

}
, (21)

where dX1 is the dimension of β1.6 Thus, for a given direction u1 ∈ RdX1 normalized

to have |u1|2 = 1 we seek to compute infβ1∈C̃AR u
>
1 β1, equivalently expressed as

inf
β:p̂AR(β)≤Cα(dZ−dX+dX1

)q̂AR(β)
u>β, (22)

where u = (u>1 ,0
>)> is dX × 1. This is a polynomial optimization problem, hence

we can apply convex hierarchies to find a monotonic sequence of lower bounds. For

the special case of a confidence interval we have dX1 = 1 hence only need consider

u1 = ±1. Guggenberger et al. (2019) replace Cα(dZ−dX +dX1) with an alternative

which delivers a less conservative confidence set in a finite sample and Guggenberger

et al. (2021) extend the approach to allow for conditional heterokskedasticity. Thus,

we can apply hierarchies of semidefinite optimization problems to (22) in order to

obtain AR confidence intervals which can be rapidly computed.

6. Monte-Carlo

To illustrate our approach, we consider a setting with dX = 10 endogenous

regressors. We choose this design because dX is large enough to render a grid

search infeasible yet small enough to permit many replications of our experiment

on a standard desktop machine within a reasonable timeframe.

We consider an i.i.d. sample of size n = 2000 satisfying (1)-(2). The instruments

are related to the regressors according to E[ZV (Π)] = 0 where V (Π) , X −ΠZ

and Π is dX × dZ . We set β∗ = (1,−1, 0, ..., 0)> and vary Π∗ by design, as

6This decomposition is without loss of generality because the regressors can be reordered.
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explained below. The instruments follow N (0, IdZ ) and the error terms verify

(U(β∗), V (Π∗)>)> ∼ N (0,Ω), where Ω11 = 1 (homoskedasticity) or Ω11 = Z2
1

(conditional heteroskedasticity), Ω1j = (−1)j(1 − π∗)/5, Ωjj = 1 − π∗ for j > 1

and all other entries are equal to zero. The parameter π∗ ∈ [0, 1] determines the

fraction of the variance of each regressor which is due to the instruments. In all

designs, the variances of each regressor and the structural error are equal to 1.

To compute the SNIV confidence set we choose rn using Class 1 and Class 3

with α = 0.05. To implement the hierarchy, we use h = 2 and B = 1000. We

compute the coverage probability for the SNIV confidence set, and, for designs

in which it is feasible, the AR confidence set and confidence intervals. For the

SNIV and AR confidence sets, we also report the coverage probability for their

outer approximations obtained by solving hierarchies of semidefinite optimization

problems, defined by fu(β) ≥ f ∗h(u) for all u ∈ U , where, for U we use a grid of

1600 points over the surface of an `2 ball of radius 1.7

Our results are collected in Table 1. We focus the discussion of SNIV on

Class 1, which, identically to AR, provides an asymptotic coverage guarantee.

Class 3 provides a finite guarantee, hence a larger confidence set in all designs.

Nevertheless, we find that whenever Class 1 provides an informative confidence

set, so does Class 3.

Classical design. We set dZ = dX = 10, π∗ = 0.3 and Π∗ =
√
π∗IdZ and do

not impose any sparsity constraint. The SNIV and AR confidence sets have

similar coverage, both of which are marginally below the nominal level. The

SNIV confidence set is marginally narrower than the AR confidence set. The

coverage of the AR confidence intervals are almost exactly equal to the nominal

level, and their width is narrower than either of the confidence sets, as expected.

7In practice we parallelize over u ∈ U .
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Almost all optimization problems solved yielded an exact global optimum (i.e.,

f ∗h(u) = f ∗(u)). The time taken to solve an optimization problem is a little over

one second for SNIV and the AR confidence set/interval. In the design with

conditional heteroskedasticity the SNIV confidence set is marginally wider than

under homoskedasticity and attains the nominal coverage.

Many instruments. We take the classical design and add 1989 redundant

instruments, all drawn from the standard normal distribution. This yields

dZ = 1999 instruments and n = 2000 observations. The SNIV confidence sets have

coverage almost identical to the nominal level but are wider than the classical

design. However, they remain sufficiently narrow as to be informative on the sign

of the nonzero entries of β∗. In contrast, the AR confidence sets and intervals do

not have the correct coverage and are too wide so as to be informative. We also

consider an identical design but with dZ = 2100. The SNIV confidence sets are

similar to the case of dZ = 1999, whereas AR confidence sets and intervals are

not defined. Almost all optimization problems solved yielded a global optimum.

The SNIV optimization problems are solved more slowly than the classical

design, taking around 4 seconds on average. In the designs with conditional

heteroskedasticity the SNIV confidence set has nominal coverage but is marginally

narrower than under homoskedasticity, likely because a greater fraction of the

optimization problems yielded an exact global optimum.

Weak instruments. We take the classical design and set π∗ = 0.03. The AR

confidence sets are narrower than SNIV but have coverage further from the

nominal level. The AR confidence intervals have coverage slightly larger than the

nominal level. Almost all optimization problems solved yielded a global optimum.

In the design with conditional heteroskedasticity the SNIV confidence set is
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marginally wider than under homoskedasticity with coverage close to the nominal

level. Computation timings are similar to the classical design.

Invalid instruments. We take the classical design with one endogenous regressor

and dZ = 9 instruments, all of which are included as regressors (i.e., Xk=Zk−1

for k = 2, 3, ..., dX). Hence there are dX = 10 regressors, but only the first is

endogenous. We set Π∗ = (0, 0, ..., 0,
√
π∗/2,−

√
π∗/2)> so that only the final

two instruments are correlated with the endogenous regressor. We suppose that

SQ = [dX ] (i.e., the relevance of all regressors is questionable) and consider the

sparsity certificates s ∈ {2, 3} (recalling that β∗ has two nonzero entries). This

design is such that I2 is a singleton, I3 is not a singleton but is bounded, and Is
is unbounded for s > 3. When s = 3, though β∗1 = 1 we have minβ∈I3 β1 = 0 and

maxβ∈I3 β1 = 1. The AR confidence sets and intervals cannot be computed.

The SNIV confidence set has coverage slightly larger than the nominal level.

For s = 2, SNIV is sufficiently narrow so as to be informative on the sign of

the nonzero entries of β∗. For s = 3, the width of SNIV for β1 is around 1.25

on average, which is not sufficiently narrow so as to be informative on the

sign of β∗1 . This is expected because β∗1 is not point identified (the identified

set has width 1), as explained in the previous paragraph. In the design with

conditional heteroskedasticity the SNIV confidence set is marginally wider

than under homoskedasticity. Each optimization problem is solved in around

17-27 seconds depending on the sparsity certificate used. This is likely due to

the non-convex nature of the sparsity constraint. Nevertheless, the problems

are sufficiently tractable so as to allow informative inference on a standard machine.

Endogenous instruments. We take the classical design and but add the instru-

ments Z11 = X1 and Z12 = X2 (i.e., include the first two regressors as additional
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instruments). This results in dZ = 12 instruments, two of which are endogenous,

with θ11 = Ω1,2 and θ12 = Ω1,3. We suppose that the researcher questions the

exogeneity of the two endogenous instruments and the final three exogenous in-

struments, hence S⊥ = [7]. This implies that are seven instruments known to be

exogenous, whereas dX = 10, hence the model using only the instruments known to

be exogenous is underidentified. Thus, classical tests of overidentifying restrictions

are infeasible.

Since the identified set is otherwise unbounded, we restrict the number of

endogenous instruments using the sparsity certificate s̃ on θ∗. We do not make any

sparsity restriction on β∗. Using s̃ = 2 corresponds to the case where we assume

that there are ten exogenous instruments, but we do not know all of their identities.

This design is such that IdX ,2 is a singleton. In contrast, IdX ,s̃ is unbounded for

s̃ > 2. We compute the SNIV confidence set for s̃ = 2.

The SNIV confidence set has coverage almost exactly equal to the nominal

level and is sufficiently narrow so as to be informative on the sign of the nonzero

entries of β∗. Moreover, the SNIV confidence set allows the null hypotheses of

θSc⊥ = 0 to be (correctly) rejected with probability 0.84. In the design with

conditional heteroskedasticity the SNIV confidence set is marginally wider than

under homoskedasticity. Each optimization problem is solved more slowly than

under the classical design, taking around 36 seconds on average. Nevertheless,

the problems are sufficiently tractable so as to allow informative inference on a

standard machine.

7. Conclusion

We use self-normalization of sample moments to conduct robust, computationally

tractable inference in linear instrumental variables models. We also show that our

computational approach is not unique to self-normalzation, and can be applied to
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perform fast inversion of other tests. In our view there are two avenues for future

work.

First, though SNIV requires minimal assumptions and has desirable statistical

and computational properties, when dX is large it can be conservative when the

object of interest is low dimensional (e.g., a single treatment effect). Though this is

not an issue in the leading case in which dX is small (e.g., one endogenous regressor,

possibly after partialing our a small number of exogenous regressors) and dZ may

be large (with possibly weak instruments), future work may seek to adapt our

approach to perform robust inference directly on a sub-vector of parameters of

interest.

Second, we believe that our computational approach is applicable beyond the

instrumental variables context. An obvious setting to which our results may be

applied is that of inference in partially identified models, which is often based

on solving programming problems such as (12). A simple example in which the

optimization problem is semi-algebraic (hence our approach is applicable) is the

2× 2 entry game considered by Kaido et al. (2019).
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Appendix

Proof of Proposition 1. The result follows by applying a union bound to the

bounds in Jing et al. (2003) (Class 1), Bertail et al. (2008) (Class 2) or Pinelis

(1994) (Class 3), which yield the corresponding values of rn in the main text.

For Class 1, the coverage is asymptotic because C1µ2+δ (1 +
√
nrn)

2+δ
n−δ/2 → 0

where C1 is an unknown universal constant. For Class 2, the results of Bertail

et al. (2008) yield the bound
√

2/(n/ log(dZ(2e+ 1)/α)− µ4) and we use

n − µ4 log(dZ(2e + 1)/α) ≥ n/2 to obtain rn which does not depend on the
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unknown µ4. �

Proof of Proposition 2. The result follows from Corollary 2.1 in Chernozhukov

et al. (2013) and the fact that En[U(β)2] is consistent for E[U(β)2] under the

conditions of Class 4. �

Proof of Proposition 3. Under Classes 1-3, the first inequality in the definition

of the SNIV confidence set can be rewritten as

En[(ZlU(β)− θl)2]−1/2|En[ZlU(β)]− θl| ≤ rn ∀l ∈ [dZ ]. (23)

Squaring both sides and rearranging yields the equivalent degree 2 polynomial

inequalities

r2
nEn[(ZlU(β)− θl)2]− (En[ZlU(β)]− θl)2 ≥ 0 ∀l ∈ [dZ ]. (24)

Under Class 4 (which is not applicable with potentially endogenous instruments),

we obtain instead the degree 2 polynomial inequalities

r̂2En[Z2
l ]En[U(β)2]− En[ZlU(β)]2 ≥ 0 ∀l ∈ [dZ ]. (25)

Without loss of generality, suppose that we order the indices of the regressors such

that SQ = [dQ]. The second inequality in the definition of the SNIV confidence set

is equivalently expressed using the polynomial (in)equalities

∃ζ ∈ [0, 1]dQ : ζak (1− ζk)b = 0 ∀k ∈ SQ, (a, b) ∈ N2,

(1− ζk)aβk = 0 ∀k ∈ SQ, a ∈ N,

s−
∑
k∈SQ

ζk ≥ 0, (26)
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where, due to the constraint ζk(1 − ζk) = 0, ζ comprises dQ indicators for the

nonzero entries of βSQ (see Feng et al. (2013)). The third inequality in the

definition of the SNIV confidence set is obtained identically introducing η ∈ [0, 1]d̃Q .

Since equalities can be defined using two inequalities of opposing directions we

can stack all of the polynomial inequalities as ĝ(β, θ, γ) ≥ 0 where γ , (ζ>, η>)>. �
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Table 1: Monte Carlo

Classical (dZ = 10, π∗ = 0.3)
β1 β2 β3 β4 β5 Cover Exact Time (s) θ 6= 0

AR 0.361 0.361 0.360 0.361 0.360 0.942 1.000 1.08
(0.994)

SNIV (Class 1) 0.343 0.343 0.341 0.342 0.343 0.944 1.000 1.34
(0.992)

SNIV (Class 1, het.) 0.349 0.349 0.347 0.348 0.349 0.946 1.000 12.10
(0.996)

SNIV (Class 3) 0.419 0.420 0.418 0.419 0.419 0.988 1.000 15.57
(1.000)

AR (CI) 0.163 0.163 0.163 0.163 0.163 0.949 1.000 1.07
Many instruments (dZ = 1999, π∗ = 0.3)

AR 19.373 19.427 19.374 19.391 19.399 0.324 0.995 0.73
(1.000)

SNIV (Class 1) 0.634 0.635 0.632 0.633 0.633 0.956 0.855 4.17
(1.000)

SNIV (Class 1, het.) 0.608 0.610 0.607 0.608 0.606 0.954 0.874 8.29
(1.000)

SNIV (Class 3) 0.734 0.736 0.733 0.733 0.733 0.988 0.692 9.48
(1.000)

AR (CI) 19.373 19.427 19.374 19.391 19.399 1.000 0.993 0.73
Many instruments (dZ = 2100, π∗ = 0.3)

SNIV (Class 1) 0.635 0.632 0.635 0.632 0.634 0.954 0.863 4.41
(1.000)

SNIV (Class 1, het.) 0.609 0.608 0.611 0.608 0.609 0.952 0.878 8.50
(1.000)

SNIV (Class 3) 0.735 0.732 0.736 0.732 0.735 0.988 0.681 9.73
(1.000)

Weak instruments (dZ = 10, π∗ = 0.03)
AR 6.4959 6.314 6.208 6.253 6.189 0.942 0.991 1.22

(1.000)
SNIV (Class 1) 12.776 12.833 12.782 12.892 12.875 0.944 0.999 1.59

(1.000)
SNIV (Class 1, het.) 12.771 12.823 12.775 12.886 12.869 0.946 1.000 12.48

(1.000)
SNIV (Class 3) 13.819 13.886 13.852 13.950 13.935 0.988 1.000 15.95

(1.000)
AR (CI) 0.7021 0.695 0.680 0.688 0.688 0.963 1.000 1.23

Invalid instruments (dZ = 9, π∗ = 0.3)
SNIV (Class 1, s = 2) 0.276 0.136 0.000 0.000 0.000 0.968 0.000 17.09

(0.968)
SNIV (Class 1, s = 3) 1.251 0.163 0.096 0.095 0.096 0.968 0.000 16.51

(0.968)
SNIV (Class 1, het., s = 2) 0.280 0.220 0.000 0.000 0.000 0.972 0.000 25.26

(0.972)
SNIV (Class 1, het., s = 3) 1.253 0.245 0.100 0.099 0.099 0.972 0.000 25.05

(0.972)
SNIV (Class 3, s = 2) 0.335 0.157 0.000 0.000 0.000 0.988 0.000 27.21

(0.988)
SNIV (Class 3, s = 3) 1.279 0.188 0.111 0.110 0.111 0.972 0.000 26.64

(0.988)
Endogenous instruments (dZ = 12, π∗ = 0.3)

SNIV (Class 1, s̃ = 2) 0.946 0.958 1.238 1.236 1.225 0.948 0.000 36.01 0.840
(0.976) (0.304)

SNIV (Class 1, het., s̃ = 2) 0.956 0.959 1.237 1.253 1.236 0.956 0.000 36.42 0.824
(0.992) (0.308)

SNIV (Class 3, s̃ = 2) 1.206 1.211 1.543 1.553 1.537 0.984 0.000 36.83 0.760
(1.000) (0.296)

Notes: dX = 10, n = 2000, β∗ = (1,−1, 0, ..., 0)>. We report the mean width of the confidence region for
β1, ..., β5. ‘het’ is the design with conditional heteroskedasticity. ‘Cover’ is for (β>, θ>)> for SNIV and β
for AR. In parentheses, we include the coverage probability of the outer approximation of the confidence set
(fu(β) ≥ f∗h(u) for all u ∈ U). For U we use a grid of 1600 points over the surface of `2 ball of radius 1. ‘Exact’
is the fraction of optimization problems solved exactly (f∗h = f∗). ‘Time (s)’ is the mean time taken to solve
an optimization problem in seconds. ‘θ 6= 0‘ is the fraction of datasets in which an endogenous instrument was
detected. In parentheses, both were detected. All programs use h = 2, B = 100. 500 replications.
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