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NASH EQUILIBRIA FOR DIVIDEND DISTRIBUTION WITH COMPETITION

TIZIANO DE ANGELIS, FABIEN GENSBITTEL, STÉPHANE VILLENEUVE

Abstract. We construct a Nash equilibrium in feedback form for a class of two-person stochastic
games with absorption arising from corporate finance. More precisely, the paper focusses on a
strategic dynamic game in which two financially-constrained firms operate in the same market. The
firms distribute dividends and are faced with default risk. The strategic interaction arises from the
fact that if one firm defaults, the other one becomes a monopolist and increases its profitability.

To determine a Nash equilibrium in feedback form, we develop two different concepts depending
on the initial endowment of each firm. If one firm is richer than the other one, then we use a
notion of control vs. strategy equilibrium. If the two firms have the same initial endowment (hence
they are symmetric in our setup) then we need mixed strategies in order to construct a symmetric
equilibrium.

1. Introduction

In this paper, we construct competitive Nash equilibria for a two-player nonzero-sum game of
singular controls with an exogenous absorbing boundary for the state-dynamics of each player.
Players’ optimal strategies in Nash equilibria are obtained as a fixed point of so-called best reply
maps but what constitutes an admissible map depends crucially on the game’s formulation and on
the class of players’ admissible actions. We assume that players have complete information about
the dynamics of the system (including the initial states), the class of admissible controls and the
game’s payoffs. A delicate point in our analysis concerns the rigorous mathematical formulation of
the information available to each player regarding the strategy played by their opponent. In this
respect we introduce in Definition 3.1 a notion of strategies in feedback form which we refer to as
control vs. strategy. Remark 3.2 and Remark 3.3 offer a careful comparison of our strategies to
standard game-theoretical notions.

From a modelling perspective, we build on the modern formulation of De Finetti’s dividend
problem [8] which is the most popular application of singular control theory in corporate finance.
We consider two identically-efficient firms acting on a single-good market in which the demand for
the good is random. Both firms have a capital evolution which is driven by the same arithmetic
Brownian motion (aBm). Firms are not identical though, because they may have different initial
endowments and they can choose different dividend policies. At time zero, the two firms are
in duopoly but if/when one of the two firms defaults, the surviving firm becomes a monopolist
with an increase of its profitability. Default of a firm occurs when its cash reserves are depleted,
which corresponds to the firm’s state process reaching zero value for the first time. We model the
duopoly/monopoly transition with a change of drift in the aBm of the surviving firm. In this context
the standard trade-off between exerting controls (paying dividends) and keeping a high level of cash
reserves is exacerbated by the presence of a rival and the prospect of becoming monopolist. In this
paper we focus on understanding how competition impacts on firms optimal dividend policies. In
particular, we observe non-trivial deviations from the optimal dividend policy of the De Finetti’s
dividend model.
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In recent years, there is a concern, particularly in the digital economy, that cash-rich firms
may engage in predatory strategies to drive poorer rivals out of the market and thus benefit from
monopolistic profits. In the deep-pocket theory of predation (see [15] for a general presentation),
predatory behavior may arise when a firm adopts a strategy intended to induce the exit from the
market of a financially constrained competitor by depletion of its resources. Our paper contributes
to this literature from a theoretical perspective by analyzing how a richer firm adapts its dividend
strategy to ensure that its rival goes bankrupt.

There exists an abundant literature on single-agent singular control problems, dating back to
seminal work by, e.g., Bather and Chernoff [2], Benes et al. [3], Karatzas [14] and many others. In
terms of applications in corporate finance, the two papers Jeanblanc and Shiryaev [13] and Radner
and Shepp [18] set the benchmark case for the analysis of corporate cash management in continuous
time based on the work of De Finetti’s [8]. In the pioneering papers [13] and [18], the cumulative
net cash flow generated by the firm follows an arithmetic Brownian motion. The constant drift
represents the firm’s profitability per unit time, the Brownian motion carries the uncertainty and
external financing is costly, which creates a precautionary demand for cash. Our paper is set within
this simplified modelling framework but it extends the classical setup from [13] and [18] to one with
two competing firms.

From a mathematical perspective, the literature on nonzero-sum stochastic games of singular
control is still in its infancy. Kwon and Zhang [16] find Markov perfect equilibria in a game of
competitive market share control, in which each player can make irreversible investment decisions
via singular controls as well as deciding to strategically exit the market. De Angelis and Ferrari
[7] and Dammann et al. [9] obtain Nash equilibria in the class of Skorokhod-reflection policies for
a nonzero-sum game where two players control the same one-dimensional state dynamics. In [7]
an equilibrium is found by establishing a connection between the nonzero-sum game of monotone
controls and a nonzero-sum stopping game. In [9] an equilibrium is found by solving a free boundary
problem. There are two important differences of our work compared to [7], [9] and [16]. The two
players in those papers control the same dynamics and no default may occur (in [16] players may
decide to exit the game and therefore the transition from duopoly to monopoly occurs only because
of optimality considerations). In our paper instead each player controls her own dynamics and
default may occur also in the absence of control (actually, controlling will increase the probability
of default). Each player in [7] and [9] chooses a point on the real line and exerts control in order
to reflect the dynamics at that point (one player pushes the dynamics upwards and the other one
pushes it downwards). Equilibria in [16] are sought in a class of barrier strategies, which is close
in spirit to the classical Skorokhod reflection. Another related paper is by Ekström and Lindensjö
[11]. They study a N -player competitive game in an extraction problem from a common resource
with Brownian dynamics. Ekström and Lindensjö find a Nash equilibrium for a class of regular
Markov strategies of bang-bang type. That is, each player extracts at the maximum rate when the
controlled dynamics is above a certain critical value. Since the game is symmetric, it turns out
that all players act simultaneously (i.e., they all choose the same critical value). All players control
the same dynamics and therefore they all default at the same time once the resources are depleted.
Again, our setup is different because each player controls their own cash reserve and we allow for
singular controls. Finally, we emphasise that [7], [9], [11] and [16] stipulate to look for equilibria in
various classes of threshold policies. We do not make such an ansatz in our paper.

Now, we describe the structure of our solution and highlight its economic interpretation. When
the two firms have different initial endowment our control vs. strategy Nash equilibrium is fully
characterized by solving two interconnected free-boundary problems. The free-boundary for the
“poorer” firm is constant whereas the free-boundary of the “richer” firm moves with the state-
variable associated to the other firm’s cash-reserves. Along the equilibrium trajectory, the poorer
firm acts as if it were alone in the single-good market by following the classical optimal policy from
[13] and [18] (we refer to it as the De Finetti’s dividend policy). The richer firm instead controls
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the level of its cash reserves in order to stay ahead of its rival, making sure that the other firm
defaults first. In doing so, the richer firm adapts its dividend policy whenever the poorer firm
deviates from equilibrium. On the contrary, once the richer firm’s strategy is given, the poorer
firm’s best response across all dividend policies (be it control or strategy) is to use the De Finetti’s
dividend policy. We emphasise that our equilibrium is sub-game Markov perfect, in the sense
that the equilibrium strategies are Markovian (jointly with the controlled dynamics), they form
an equilibrium for any starting point Y0 > X0 and guarantee that after time zero the controlled
dynamics are always ordered as Yt > Xt (thus, optimality is preserved at any future time).

When the two firms have the same initial endowment our game is fully symmetric. As soon as
one of the two firms distributes dividends, the symmetry is broken and the firms are back into the
previous asymmetric situation. Therefore, the crucial step in the construction of an equilibrium is
the choice of the time at which each firm starts paying dividends. In order to construct a symmetric
equilibrium we allow firms to start making dividend payments at a randomized stopping time. This
requires to characterize the equilibrium intensity of stopping as well as to rigorously define the
actions of each player after the randomised stopping time within our context of control vs. strategy
equilibria.

From an economic viewpoint, our paper highlights how a company adapts its dividend policy
to the presence of a competitor. In a nutshell, we conclude that cash-rich firms are less likely to
pay dividends, because its shareholders have more interest in waiting for their competitor to go
bankrupt than in receiving early dividends.

The paper is organised as follows. In Section 2 we set up the problem and recall some useful
facts about the classical dividend problem. In Section 3 we introduce our notions of equilibrium in
control vs. strategy and we construct an equilibrium for the game with firms having different initial
endowments. In Section 4 we introduce randomisation and construct a symmetric equilibrium for
firms with the same initial endowment. A short Appendix with a small technical result completes
the paper.

2. Problem setting

On a complete probability space (Ω,F ,P) we consider a standard 1-dimensional Brownian motion
(Bt)t≥0 and denote (Ft)t≥0 its filtration augmented with P-null sets. We have two firms operating
on the same market and whose cash reserves increase at a rate µ0 > 0 but are subject to a volatility
σ > 0. The firms could default if their cash reserve drops below zero. In that case, the surviving
firm becomes a monopolist, resulting in an higher rate of increase of its cash reserve, i.e., µ̂ > µ0.

We denote by (Xt)t≥0 and (Yt)t≥0 the cash reserve dynamics of the first and second firm, respec-
tively. Then, for t ≥ 0 and x, y ∈ [0,∞), we have

Xt = x+ µ0t+ σBt − Lt

Yt = y + µ0t+ σBt −Dt
(2.1)

where Lt is the cumulative amount of dividends paid by the first firm up to time t, and Dt is the
analogue for the second firm. We will often use XL and Y D to emphasise the dependence of the
processes on their controls. The processes L and D are drawn from the admissible class defined
next:

Definition 2.1 (Admissible dividend policies). A pair of processes (Lt, Dt)t≥0 is called a pair of
admissible dividend policies if L and D are non-decreasing, adapted to (Ft)t≥0 and right-continuous.
Moreover, letting (x)+ := max{0, x}, it must hold

Lt − Lt− ≤ (XL
t−)

+ and Dt −Dt− ≤ (Y D
t−)

+, for all t ≥ 0, P-a.s.(2.2)
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Condition (2.2) ensures that the firms cannot pay dividends in excess of their cash reserve1. We
denote default times by γX and γY , with

γX = inf{t ≥ 0 : XL
t ≤ 0} and γY = inf{t ≥ 0 : Y D

t ≤ 0}.(2.3)

Finally, we denote Px,y( · ) = P( · |X0− = x, Y0− = y).
Given a pair (L,D) of admissible dividend policies the expected payoffs J 1 and J 2, for the first

and second firm, respectively, read

J 1
x,y(L,D) := Ex,y

[ ∫
[0,γX∧γY ]

e−rtdLt + 1{γY <γX}e
−rγY v̂(XL

γY
)
]
,

J 2
x,y(D,L) := Ex,y

[ ∫
[0,γX∧γY ]

e−rtdDt + 1{γX<γY }e
−rγX v̂(Y D

γX
)
]
.

(2.4)

Here, r > 0 is a discount rate and v̂ is the value function of the classical dividend problem with
cash reserves growing at the rate µ̂. That, is

v̂(x) := sup
ξ

Ex

[ ∫
[0,γC ]

e−rtdξt

]
,(2.5)

with underlying dynamics given by

Cξ
t = x+ µ̂t+ σBt − ξt, t ≥ 0,(2.6)

and with γC = inf{t ≥ 0 : Cξ
t ≤ 0}. The supremum is taken over all admissible dividend policies,

according to Definition 2.1. Here we emphasise the dependence of the problem’s structure on the
drift of the underlying process, because we will later use results for the dividend problem when the
drift is either µ0 or µ̂. In particular, we will use the notation v̂(x) = w(x; µ̂) and Cξ = C µ̂;ξ, when
convenient. An account of useful facts about the classical dividend problem will be provided below
in Section 2.1.

The integral term in each one of the two payoffs in (2.4) is the discounted value of the cumulative
dividends paid by the firm until both firms are active. At the (random) time γX ∧ γY one of the
two firms goes bankrupt and the surviving firm is a monopolist2 with a larger cashflow rate µ̂. At
this point in time, say γX < γY , the remaining firm (i.e., firm 2) is faced with the classical dividend
problem but with an initial cash reserve Y D

γX
. Hence, the payoff at time γX reads v̂(Y D

γX
).

Using admissible dividend policies, the two firms’ managers are faced with the optimisation
problems:

v1(x, y;D) = sup
L

J 1
x,y(L,D) and v2(x, y;L) = sup

D
J 2
x,y(D,L),(2.7)

where v1 refers to the optimal expected payoff of the first firm and v2 to the second one. Our
problem is a nonzero-sum game of singular controls with absorption and our aim is to construct a
Nash equilibrium.

Since we deal with a game, we will unambiguously refer to the first and second firm as first
and second player, respectively. By the symmetry of the set-up it is clear that the player with the
largest initial cash reserve has an advantage on her opponent. We will show that this allows a rather
explicit construction of a Nash equilibrium in control vs. strategy (Definition 3.1). Furthermore, in
the completely symmetric situation in which x = y, we will construct a symmetric equilibrium in
which the players use randomised strategies.

1Condition (2.2) could be replaced by the weaker condition XL
γX

= 0 on {γX < ∞}, or equivalently Lt−Lt− ≤ XL
t−

for all t ≤ γX , as only the trajectory up to γX is relevant. Our choice is motivated by Definition 3.1 of controls and
strategies as functionals on the canonical space, in which for simplicity we avoid to define controls only up to a
stopping time.

2If γX = γY then no firm survives and the continuation payoff for both players is zero. One may equivalently
notice that the monopolist’s payoff is equal to zero when the initial cash reserve is zero.
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2.1. Useful facts about the classical dividend problem. Here we recall a few well-known
results concerning the classical dividend problem for a generic drift µ of the cash reserve. In
the notation of (2.5) and (2.6) we consider a generic value function w(x;µ) when the underlying
dynamics Cµ;ξ has drift µ (so that for (2.5) we have v̂(x) = w(x; µ̂)). All the results listed here can
be found, for instance, in [20, Ch. 2.5.2].

It is well-known that the optimal dividend policy in the classical dividend problem is of the form

ξ∗t = ξ∗t (µ) := sup
0≤s≤t

(
x− a∗ + µs+ σBs

)+
, ξ∗0− = 0,(2.8)

where a∗ = a∗(µ) is an optimal boundary and dividends are paid so that the cash reserve process

(Cµ;ξ∗

t )t≥0 is reflected downwards at a∗. The solution is generally constructed by showing that the
value function w belongs to the class C2([0,∞)) and that the pair (w, a∗) is the unique solution of
the free boundary problem

σ2

2 w′′(x;µ) + µw′(x;µ)− rw(x;µ) = 0, x ∈ (0, a∗(µ)),

σ2

2 w′′(x;µ) + µw′(x;µ)− rw(x;µ) ≤ 0, x ∈ [a∗(µ),∞),

w′(x;µ) ≥ 1 for all x ∈ [0,∞),

w′(x;µ) > 1 ⇐⇒ x ∈ (0, a∗(µ)),

w(0;µ) = 0.

(2.9)

The value of the optimal boundary a∗(µ) is determined by the smooth-pasting condition

w′′(a∗(µ);µ) = 0(2.10)

and it can be calculated explicitly. In order to simplify the notation, we omit the dependence on µ
from w and a∗ when no confusion shall arise.

For x ∈ (0, a∗) the expression for w reads

w(x) = C
(
eβ1x − eβ2x

)
,(2.11)

where C = C(µ) > 0 is a constant that can be determined explicitly, while β1 = β1(µ) > 0 >

β2(µ) = β2 are the two roots of the equation σ2

2 β2 + µβ − r = 0.
Finally, we notice that the conditions w′(a∗) = 1 and w′′(a∗) = 0 and the first equation in (2.9)

imply rw(a∗) = µ. Since w is non-decreasing, then

rw(x) > µ ⇐⇒ x ∈ (a∗,∞).(2.12)

Moreover, the condition w′(x) = 1 for x ≥ a∗ leads to w(x) = (x − a∗) + w(a∗) for x ≥ a∗. Then,
simple algebra yields, for x ∈ [0,∞),

σ2

2 w′′(x) + µw′(x)− rw(x) = −r[x− a∗]
+ = −[rw(x)− µ]+,(2.13)

where [p]+ := max{p, 0}.
There are two particular values of µ which will crop up in our analysis below, i.e., µ = µ0 and

µ = µ̂, corresponding to the drift for the duopoly and for the monopoly, respectively. Then we
denote

v̂(x) := w(x; µ̂), v0(x) := w(x;µ0), â := a∗(µ̂), a0 := a∗(µ0)

ξ̂t := ξ∗t (µ̂) and ξ0t := ξ∗t (µ0).
(2.14)
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2.2. Notation. We close the section with some more notation which will be used throughout the
paper. Given a set A ⊂ R2 we denote its closure by A. Given a function f : R2 → R and and open
set A ⊂ R2 we write f ∈ Ck(A) for k ∈ N to indicate that f is k times continuously differentiable in
A. We write f ∈ Ck(A) to indicate that the function f with all its k derivatives admit a continuous
extension to the boundary ∂A. Given two open sets A ⊊ B in R2, letting E := B \A, for k ∈ N we
use the notation f ∈ Ck(A∪E) to indicate that f ∈ Ck(A)∩Ck(E) with derivatives which may be
discontinuous across the boundary ∂A.

3. Nash equilibrium with asymmetric initial endowment

Here we consider firms with different initial endowments. With no loss of generality we specifically
address the case y > x. Moreover, we allow Player 2 to use a strategy (in the case x > y it
would be Player 1 using a strategy). For a proper definition of strategy we need to introduce two
classes of functions. The class C0([0,∞)) represents continuous functions φ : [0,∞) → R with
φ(0) = 0. The class D+

0 ([0,∞)) represents càdlàg non-decreasing functions ζ : [0,∞) → [0,∞) with
ζ(0−) = 0. We introduce the canonical space C0([0,∞)) × D+

0 ([0,∞)) equipped with the Borel
σ-algebra. The coordinate mapping on the canonical space is denoted Wt(φ, ζ) := (φ(t), ζ(t)) for
any (φ, ζ) ∈ C0([0,∞))×D+

0 ([0,∞)) and t ∈ [0,∞). Its raw filtration is denoted (FW
t )t≥0. We say

that a mapping
χ : [0,∞)× C0([0,∞))×D+

0 ([0,∞)) → R
is non-anticipative if χ(t, φ, ζ) is FW

t -measurable for all t ≥ 0. In order to avoid further notation, in
what follows we treat mappings Θ : [0,∞)× C0([0,∞)) → R as mappings defined on the canonical
space but with no dependence on the coordinate process ζ.

Definition 3.1 (Control and Strategy). A mapping

Φ : [0,∞)× C0([0,∞)) → [0,∞)

is an admissible control for Player 1 with initial condition x if Φ is non-anticipative, t 7→ Φ(t, φ) is
càdlàg and non-decreasing for any φ ∈ C0([0,∞)), with the convention Φ(0−, φ) = 0, and

Φ(t, φ)− Φ(t−, φ) ≤ (x+ µ0t+ σφ(t)− Φ(t−, φ))+ ,(3.1)

for all φ ∈ C0([0,∞)) and t ≥ 0.
A mapping

Ψ : [0,∞)× C0([0,∞))×D+
0 ([0,∞)) → [0,∞)

is an admissible strategy for Player 2 with initial condition y if Ψ is non-anticipative, t 7→ Ψ(t, φ, ζ)
càdlàg and non-decreasing for any (φ, ζ) ∈ C0([0,∞))×D+

0 ([0,∞)), with the convention Ψ(0−, φ, ζ) =
0, and

Ψ(t, φ, ζ)−Ψ(t−, φ, ζ) ≤ (y + µ0t+ σφ(t)−Ψ(t−, φ, ζ))+ ,(3.2)

for all (φ, ζ) ∈ C0([0,∞))×D+
0 ([0,∞)) and t ≥ 0.

In the game with initial conditions (x, y), every pair (Φ,Ψ) induces a unique pair of admissible
controls (t, φ) → (Φ(t, φ),Ψ(t, φ,Φ(t, φ)), and thus a unique pair of dividend policies defined by

Lt = Φ(t, B) and Dt = Ψ(t, B, L).

Notice that indeed conditions (3.1) and (3.2) guarantee (2.2). Similarly, a pair (L,Ψ) where L is an
admissible dividend policy for Player 1 and Ψ an admissible strategy for Player 2, induces a unique
pair of admissible dividend policies (Lt,Ψ(t, B, L)).

Remark 3.2 (Controls). The set of controls is introduced only to relate our definitions with the
classical definition of equilibria in “control against strategy” appearing in the (stochastic) differential
game literature. Indeed, in all the definitions of equilibrium we use, we allow the players to deviate
by using any dividend policy and not only controls.
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Formally, the set of admissible dividend policies (Definition 2.1) is larger than the set of controls.
The latter can be identified with the dividend policies which are adapted with respect to the raw
filtration of B. However, one can prove3 that any admissible dividend policy L is indistinguishable on
[0, γX(L)] from a process Φ(t, B) where Φ : [0,∞)×C0([0,∞)) → [0,∞) is a non-anticipative map,
such that, for all φ outside of a P-negligible set, the trajectories t → Φ(t, φ) are right-continuous and
non-decreasing and satisfy (3.1). Therefore, L and Φ induce the same payoff for Player 1 (against
any control, strategy or dividend policy) in the game we consider.

Remark 3.3 (Strategies). Defining strategies as non-anticipative maps with respect to the raw
filtration of the coordinate process on D+

0 ([0,∞)) is conceptually important. Indeed, the ζ variable in
Player 2’s strategy Ψ(t, φ, ζ) represents the realized trajectory of the dividend policy used by Player
1. As such it might depend on the Brownian motion and also on some exogenous randomisation
variable (see Definition 4.1), but could as well be deterministic. Therefore, it is natural to use the
raw filtration on D+

0 ([0,∞)) to model the information available to a player using the strategy Ψ.

The payoffs in the game are well-defined if one of the players uses a strategy and the other one
uses a dividend policy (or a control). We may thus define a notion of Nash equilibrium in “control
vs. strategy” adopting a terminology from the literature on (stochastic) differential games. Let us
emphasize that this definition is asymmetric among the players: Ψ produces a dividend policy which
depends on Φ, while Φ produces a dividend policy which depends only on the Brownian trajectory.

Definition 3.4 (Nash Equilibrium in control against strategy). Given (x, y) ∈ [0,∞)2, a
pair (Φ∗,Ψ∗) is a Nash equilibrium if and only if

J 1
x,y(L,Ψ

∗(·, B, L)) ≤ J 1
x,y(Φ

∗(·, B),Ψ∗(·, B,Φ∗(·, B)),

J 2
x,y(D,Φ∗(·, B)) ≤ J 2

x,y(Ψ
∗(·, B,Φ∗(·, B)),Φ∗(·, B)),

(3.3)

for all other pairs of admissible dividend policies (L,D).

Notice that we allow Player 2 to deviate from the equilibrium strategy with any admissible
dividend policy D. In particular, if Ψ is another strategy, then Player 2’s payoff induced by the pair
(Φ∗,Ψ), is the same as the one induced by the pair (Φ∗, D) with D = Ψ(·, B,Φ∗(·, B)). Similarly,
we could consider Player 1’s deviations from equilibrium using strategies for which there exists an
outcome against the strategy Ψ∗ of Player 2 (i.e. any strategy Ψ′ for Player 1 such that there exist
dividend policies (L,D) satisfying Lt = Ψ′(t, B,D) and Dt = Ψ∗(t, B, L)).

The main result of this section is the construction of a Nash equilibrium in “control vs. strategy”.

Theorem 3.5 (NE with asymmetric endowment). Let y > x and recall â, a0 and (ξ0t )t≥0 as
in (2.14). Then there exists a continuous function b : [0,∞) → [0,∞) and a constant α > 0 with

(i) b(0) = â,
(ii) b ∈ C1([0, a0]),
(iii) b strictly decreasing on [0, a0],
(iv) b(x) = α > 0 for x ≥ a0,

such that, setting L∗ = ξ0, X∗ = XL∗
and Y ∗ = Y D∗

, with

D∗
t = sup

0≤s≤t

(
y − x+ L∗

s − b(X∗
s )
)+

, D∗
0− = 0,(3.4)

the pair (L∗, D∗) is a Nash equilibrium in control vs. strategy.

The proof of the theorem will be distilled in a series of intermediate results which will be illustrated
in the rest of this section. Before addressing those results, some remarks are in order.

3This follows from classical arguments, as developed in greater generality in [10] Appendix I. Our particular claim
follows from Lemma 5.2 and Lemma 5.3 in [6].
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The function x 7→ b(x) is actually constructed explicitly as the unique solution of an algebraic
equation in (3.11). In equilibrium Player 1 is “forced” by Player 2 to solve the classical dividend
problem with drift µ0. Therefore, Player 1’s equilibrium payoff reads v1(x, y) := J 1

x,y(L
∗, D∗) =

v0(x). Moreover, it will be clear from our analysis below (Proposition 3.7) that the equilibrium
payoff of Player 2 is a C1 function v2(x, y) := J 2

x,y(L
∗, D∗) that solves a suitable free boundary

problem.

Remark 3.6. Recalling the notation in Definition 3.1 and a0 in (2.14), we have

L∗
t = Φ∗(t, B) and D∗

t = Ψ∗(t, B, L∗),(3.5)

with

Φ∗(t, φ) := sup
0≤s≤t

(
x− a0 + µ0s+ σφ(s)

)+
,

Ψ∗(t, φ, ζ) := sup
0≤s≤t

(
y − x+ ζ(s)− b

(
x+ µ0s+ σφ(s)− ζ(s)

))+
,

(3.6)

for t ≥ 0. Notice for later use that the above control and strategy depend in a measurable way on
the initial positions x and (x, y), respectively. When necessary, in Section 4 we will denote them
Φ∗(x, t, φ) and Ψ∗(x, y, t, φ, ζ) to emphasise that dependence. Throughout the current section x and
y are fixed, with y > x, and we use notations as in (3.6).

Our analysis in the rest of the section is organised as follows: first, we construct the solution of
a suitable free boundary problem (Proposition 3.7); second, we illustrate properties of the dividend
policy D∗ (Lemma 3.8) and show that it is best response against the dividend policy L∗ (Proposition
3.9); third, we show that L∗ is best response against D∗ (Lemma 3.11); finally, combining these
results we obtain the proof of Theorem 3.5.

It is convenient to change our reference system and consider the state variables (x, z) with z =

y − x. Letting ZL,D
t := Y D

t −XL
t it is immediate to check that ZL,D

t = y − x+ Lt −Dt, for t ≥ 0.

Moreover, for the default times we have γY = inf{t ≥ 0 : ZL,D
t ≤ −XL

t } =: γZ and YγX = ZγX ,
P-a.s. It should be clear that γX = γX(L) and γZ = γZ(D), therefore we omit the dependence on
the controls, for ease of notation.

Let us assume that Player 1 uses the control L∗ = ξ0 and we will focus the first part of our analysis
on constructing Player 2’s best response. It is well-known from the classical dividend problem (and
it can be easily verified from (2.8)) that L∗

0− = 0 and L∗ is continuous except for a possible jump
at time zero of size L∗

0 = (x− a0)
+. Moreover, the Skorokhod condition dL∗

t = 1{X∗
t =a0}dL

∗
t holds

for all t > 0, P-a.s. Finally X∗
t ≤ a0 for all t ≥ 0, P-a.s. In summary, L∗ reflects the dynamics of

X∗ at the boundary a0 and it is well-known to be optimal for the dividend problem with drift µ0.
Then, Player 2 must solve the singular control problem with value

v2(x, y;L
∗) = sup

D
J 2
x,y(D,L∗).(3.7)

Changing variables we define u2(x, z) := v2(x, z + x;L∗) and we have

u2(x, z) = sup
D

Ex,z

[ ∫
[0,γX∗∧γZ ]

e−rtdDt + 1{γX∗<γZ}e
−rγX∗ v̂(ZL∗,D

γX∗ )
]
.(3.8)

It suffices to define the function u2 on the set

H = {(x, z) ∈ [0, a0]× R | z ≥ −x}.

Indeed, if x > a0, the initial jump of the control process L∗ shifts the x coordinate to the value
X∗

0 = a0. Then, we can simply extend the definition of u2 as

u2(x, z) := u2(a0, z), for x > a0.(3.9)



NASH EQUILIBRIA FOR DIVIDEND DISTRIBUTION WITH COMPETITION 9

We will characterise properties of the function u2, along with an optimal control, using a verification
approach.

In the next proposition we use three closed sets defined as follows: given a decreasing function
b ∈ C([0, a0]) with α := b(a0) > 0,

H≤ := {(x, z) ∈ H | z ≤ 0}, H[0,α] := {(x, z) ∈ H | z ∈ [0, α]},
H[α,b] := {(x, z) ∈ H |α ≤ z ≤ b(x)}.

(3.10)

Proposition 3.7. Recall v̂, v0, â and a0 from (2.14). There is a unique pair (u, b) with the following
properties:

(i) The function b is continuous on [0,∞), strictly decreasing on [0, a0] with b ∈ C1([0, a0]),
b(0) = â and b(a0) = α > 0. Here α is the unique solution of v̂′(α) = v′0(0). Moreover, b(·)
satisfies

(3.11) b(x) = [(v̂′)−1 ◦ v′0](a0 − x), ∀x ∈ [0, a0].

(ii) Defining C := {(x, z) ∈ H : z < b(x)} and S = H \ C, it holds
u ∈ C1(H) ∩ C2(H≤ ∪H[0,α] ∪H[α,b] ∪ S),

with uxz continuous across the boundary x 7→ b(x).
(iii) The function u solves the variational system

(
σ2

2 ∂xxu+ µ0∂xu− ru
)
(x, z) = 0, for (x, z) ∈ C,(

σ2

2 ∂xxu+ µ0∂xu− ru
)
(x, z) ≤ 0, for (x, z) ∈ S,

∂zu(x, z) > 1, for (x, z) ∈ C,
∂zu(x, z) = 1, for (x, z) ∈ S,
∂zxu(x, b(x)) = 0, for x ∈ [0, a0],
u(0, z) = v̂(z), for z ∈ [0,∞),
u(x,−x) = 0, for x ∈ (0, a0],
(∂zu− ∂xu)(a0, z) = 0, for z ∈ [−a0,+∞).

(3.12)

Proof. We proceed with the construction of the function u and of the boundary b in four steps,
considering first the region H[α,b], then the region H[0,α] and finally the regions H≤ and S. We
emphasise that in steps 1–3 we will produce candidates for the function u(x, z) (or its derivative ∂zu)
and the boundary b(x). In Step 4 we will verify that such candidate pair solves the free boundary
problem (3.12). With a slight abuse of notation, we use u and b to denote those candidates.

We begin with some basic preliminaries. Let β2 < 0 < β1 be the solutions of the quadratic

characteristic equation σ2

2 β2 + µ0β − r = 0. Since b must be strictly decreasing on [0, a0], we can

equivalently consider its inverse c(z) := b−1(z), which must be continuous, decreasing on some
interval [b(a0), b(0)], with c(b(a0)) to be determined and c(b(0)) = 0. From the first equation in
(3.12) we must have for (x, z) ∈ C

(3.13) u(x, z) = A(z)eβ1x +B(z)eβ2x,

for some maps A(z) and B(z) which we find it convenient to define (with a slight abuse of notation)
as A,B : C → R. In particular, in order to guarantee that u satisfies the regularity required in (ii),
it must be

A,B ∈ C1(C) ∩ C2(H≤ ∪H[0,α] ∪H[α,b]).

For z ≥ 0, the boundary condition at x = 0 (sixth equation in (3.12)) leads to A(z) +B(z) = v̂(z),
and by differentiation

(3.14) A′(z) +B′(z) = v̂′(z), z ∈ [0, b(0)].

We are now ready to construct the solution to the free-boundary problem.

Step 1. Here we take (x, z) ∈ H[α,b].
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The fourth equation in (3.12) yields ∂zu(x, b(x)) = 1, which can be written equivalently as
∂zu(c(z), z) = 1. That is,

(3.15) A′(z)eβ1c(z) +B′(z)eβ2c(z) = 1, z ∈ [b(a0), b(0)].

We deduce from (3.14) and (3.15) that:

(3.16) A′(z)(eβ1c(z) − eβ2c(z)) = 1− v̂′(z)eβ2c(z).

The fifth equation in (3.12) (so-called smooth-pasting condition) can be written equivalently as
∂zxu(c(z), z) = 0. That is,

(3.17) A′(z)β1e
β1c(z) +B′(z)β2e

β2c(z) = 0, z ∈ [b(a0), b(0)].

Combining (3.17) with (3.14) yields

(3.18) A′(z)(β1e
β1c(z) − β2e

β2c(z)) = −v̂′(z)β2e
β2c(z) z ∈ [b(a0), b(0)].

Solving (3.18) and (3.16) for A′(z) and equating the two expressions, we find

(3.19) v̂′(z) =
β1e

β1c(z) − β2e
β2c(z)

(β1 − β2)e(β1+β2)c(z)
.

Next we show that for each z ∈ [b(a0), b(0)] there is a unique c(z) that solves (3.19). More precisely,
we notice that (3.19) was derived only for z ≥ 0 (because we used (3.14)). Therefore, as part of the
proof we must show that b(a0) ≥ 0 (and even b(a0) > 0).

Setting

(3.20) ϕ(ℓ) :=
β1e

β1ℓ − β2e
β2ℓ

(β1 − β2)e(β1+β2)ℓ
, ℓ ∈ [0,∞),

it is immediate to see that ϕ(0) = 1 and simple algebra allows to check that ϕ′ > 0 on (0,∞) and
that lim+∞ ϕ = +∞. Since v̂′(z) > 1 for z ∈ [0, â) and v̂′(â) = 1, we then obtain c(â) = 0. Letting
z decrease, starting from z = â, the function c(z) increases. That is, z 7→ c(z) is strictly decreasing
in a left-neighbourhood of â. Moreover, in such neighbourhood we have

c(z) = ϕ−1
(
v̂′(z)

)
.(3.21)

For the inverse function b(x) = c−1(x) we have b(0) = â and x 7→ b(x) (strictly) decreasing on a
right-neighbourhood of 0. Now we want to show that b(x) > 0 for x ∈ [0, a0].

Recall from (2.11) that v′0(x) = C0(β1e
β1x−β2e

β2x), that v′0(a0) = 1 and v′′0(a0) = 0. From those
expressions we deduce

(3.22) C0 =
1

β1eβ1a0 − β2eβ2a0
and β2

1e
β1a0 = β2

2e
β2a0 .

In particular, plugging the second expression into the first one yields C0 = β2/[β1(β2 − β1)]e
−β1a0 .

We can thus rewrite (3.20), for ℓ ∈ [0, a0], as

ϕ(ℓ) =

(
β1e

β1ℓ − β2e
β2ℓ

)
e−(β1+β2)ℓ

(β1 − β2)

=
β2

β1(β2 − β1)
e−β1a0 [β1e

β1(a0−ℓ) − β2e
β2(a0−ℓ)] = v′0(a0 − ℓ).

The equation (3.19) is therefore equivalent to

(3.23) v̂′(z) = v′0(a0 − c(z)) ⇐⇒ v̂′
(
b(x)

)
= v′0

(
a0 − x

)
.

We notice that v̂ ≥ v by definition of the problem: any admissible dividend policy for the problem
with drift µ0 is admissible for the problem with drift µ̂ and it gives a weakly larger payoff in the
latter because µ̂ > µ0. Therefore v̂′(0+) ≥ v′0(0+) since v̂(0) = v0(0) = 0.
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Arguing by contradiction, let us assume x0 := inf{x > 0 : b(x) = 0} ∈ [0, a0]. Then v̂′(0+) =
v′0(a0−x0) ≤ v′0(0+), where the final inequality is by concavity of v0. Combining with the inequality
from the paragraph above it must be v̂′(0+) = v′0(0+) > 0. Recalling the ODE solved by the value
function of the optimal dividend problem (cf. (2.9)) and using v̂(0) = v0(0) = 0 and v̂′(0+) =
v′0(0+) > 0, we deduce

v̂′′(0+)− v′′0(0+) =
2

σ2
(µ0 − µ̂)v′0(0+) < 0.

The latter implies v̂′(x) − v′0(x) < 0 for x ∈ (0, ε) and sufficiently small ε > 0. Thus v̂(x) < v0(x)
for x ∈ (0, ε), which contradicts v̂ ≥ v0. Then we conclude x0 /∈ [0, a0], as needed. The latter also
implies that α = b(a0) is the unique solution of v̂′(α) = ϕ(a0) = v′0(0).

By construction (cf. (3.21)), b(x) = [(v̂′)−1 ◦ ϕ](x) is continuous for x ∈ [0, a0]. Moreover, using
that v̂ ∈ C2([0,∞)) with v̂′′(z) < 0 for z ∈ [0, â) we have

b′(x) =
ϕ′(x)

(v̂′′ ◦ (v̂′)−1 ◦ ϕ)(x)
=

ϕ′(x)

(v̂′′ ◦ b)(x)
∈ (−∞, 0), for x ∈ (0, a0].

Letting x ↓ 0 we have b(0) = â and v̂′′(â) = 0 in the denominator of the equation above. However,
also the numerator vanishes. Then, using De L’Hopital’s rule, in the limit as x ↓ 0 we have

b′(0+) ≈ ϕ′′(0)

v̂′′′
(
b(0)

)
b′(0+)

=⇒
[
b′(0+)

]2
=

ϕ′′(0)

v̂′′′(â)
.(3.24)

Simple algebra yields ϕ′′′(0) = −β1β2. Differentiating once the ODE for v̂ and imposing the bound-
ary conditions v̂′(â) = 1 and v̂′′(â) = 0 yields v̂′′′(â) = 2r/σ2. Hence, from (3.24) we conclude

b′(0+) = σ
√

|β1β2|/(2r) and b ∈ C1([0, a0]) as claimed.
Note that (3.18) (or (3.16)) together with the explicit expression of c in (3.21) determine A′,

on the interval [α, â]. They also determine B′ on [α, â] by (3.14) and, finally, ∂zu on H[α,b]. More
precisely, (3.18) and (3.17) yield

A′(z) =
−β2e

β2c(z)

β1eβ1c(z) − β2eβ2c(z)
v̂′(z) > 0,

B′(z) = (−β1/β2)e
(β1−β2)c(z)A′(z) =

β1e
β1c(z)

β1eβ1c(z) − β2eβ2c(z)
v̂′(z) > 0.

(3.25)

For future reference notice that

A′(α) = − β2
β1 − β2

e−β1a0 .(3.26)

Combining the above we have an explicit expression for ∂zu(x, z) = A′(z)eβ1x + B′(z)eβ2x for
(x, z) ∈ H[α,b]. We use that to compute ∂xzu(x, z) for (x, z) ∈ H[α,b]. In particular, for x < c(z),
z ∈ [α, â],

∂xzu(x, z) = A′(z)β1e
β1x +B′(z)β2e

β2x

< A′(z)β1e
β1c(z) +B′(z)β2e

β2c(z) = 0,

where the final equality holds due to (3.17). Since ∂zu(c(z), z) = 1 (c.f. (3.15)), then ∂zu(x, z) > 1
for x < c(z), z ∈ [α, â]. This verifies the third condition in (3.12) in the set C ∩H[α,b]. Finally, it is
a matter of simple algebra to check that ∂xxu and ∂zzu are also continuous on H[α,b].

In this step we have obtained formulae for the coefficients A′(z), B′(z) and the boundary b(x)
(or its inverse c(z)). Then we have a candidate expression for ∂zu(x, z) and for b(x). To emphasise
that these are just candidates for now, we adopt the notation

Q1(x, z) := A′(z)eβ1x +B′(z)eβ2x = ∂zu(x, z), (x, z) ∈ H[α,b].(3.27)

Step 2. Here we take (x, z) ∈ H[0,α].
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For z ∈ [0, α), recall the reflection condition at (a0, z) as given in the final equation in (3.12).
Differentiating that condition with respect to z yields ∂zzu(a0, z) = ∂xzu(a0, z). Using (3.13), the
latter reads

A′′(z)eβ1a0 +B′′(z)eβ2a0 = A′(z)β1e
β1a0 +B′(z)β2e

β2a0 .(3.28)

Differentiating also (3.14) we obtain B′′(z) = v̂′′(z) − A′′(z), which we plug in the equation above
to obtain

A′′(z)eβ1a0 + (v̂′′(z)−A′′(z))eβ2a0 = A′(z)β1e
β1a0 + (v̂′(z)−A′(z))β2e

β2a0 .

Thus, A′ satisfies a linear non-homogeneous ODE on the interval [0, α] given by

(3.29) A′′(z)(eβ1a0 − eβ2a0) = A′(z)(β1e
β1a0 − β2e

β2a0) + v̂′(z)β2e
β2a0 − v̂′′(z)eβ2a0 .

We impose the boundary condition at z = α given by (3.26). That ensures that

A′ is continuous in [0, b(x)] for every x ∈ [0, a0] (hence in H[0,α] ∪H[α,b]).(3.30)

Knowledge of A′ yields also the function B′ thanks to (3.14). Therefore, by continuity of A′ we
deduce that A′′ is also continuous by (3.29) and, thanks to (3.28) and (3.13),

functions B′, B′′, ∂zu, ∂zzu, ∂zxu and ∂zxxu are continuous in H[0,α] ∪H[α,b].(3.31)

Now we analyse properties of A′ in more detail. Plugging the expression for A′(α) from (3.26)
into (3.29) and recalling that c(α) = a0, we have

A′′(α−) = − v̂′′(α)eβ2a0

eβ1a0 − eβ2a0
> 0.(3.32)

We want to prove that A′′(z) > 0 on [0, α]. Arguing by contradiction we assume that A′′ vanishes
on [0, α) and we let z̃ denote the largest zero of A′′. Clearly z̃ < α by (3.32). By differentiating
(3.29) and taking z = z̃, we obtain

A′′′(z̃)(eβ1a0 − eβ2a0) = g′(z),(3.33)

where
g(z) := v̂′(z)β2e

β2a0 − v̂′′(z)eβ2a0 .

We claim (and we prove it later) that g′(z) < 0 for z ∈ [0, α]. Thus A′′′(z̃) < 0 because eβ1a0 > eβ2a0 .
Since A′′(z̃) = 0 and A′′ does not change its sign on (z̃, α) (by definition of z̃), it then follows that
A′′(z) < 0 for z ∈ (z̃, α). That contradicts (3.32).

We want to show that g is strictly decreasing for z ∈ [0, α]. With the notation from (2.14),
recalling the expression for the value function of the classical dividend problem in (2.11) and setting

β̂j = βj(µ̂), j = 1, 2 and Ĉ = C(µ̂), we can express g as

g(z) = Ĉeβ2a0
(
β2(β̂1e

β̂1z − β̂2e
β̂2z)− β̂2

1e
β̂1z + β̂2

2e
β̂2z

)
= Ĉeβ2a0

(
(β2 − β̂1)β̂1e

β̂1z + β̂2(β̂2 − β2)e
β̂2z

)
,

on the interval z ∈ [0, â) ⊃ [0, α]. Differentiating that expression yields

g′(z) = Ĉeβ2a0
(
(β2 − β̂1)β̂

2
1e

β̂1z + β̂2
2(β̂2 − β2)e

β̂2z
)
,

Observing that µ̂ > µ0 =⇒ β̂2 < β2 we deduce that g′(z) < 0 from the expression above (recall

that Ĉ > 0).
Next, we want to check the third condition in (3.12), i.e., ∂zu(x, z) > 1 for (x, z) ∈ H[0,α]. By

direct calculation we have

∂zzu(x, z) = A′′(z)eβ1x + (v̂′′(z)−A′′(z))eβ2x,

∂zzxu(x, z) = A′′(z)β1e
β1x + (v̂′′(z)−A′′(z))β2e

β2x.
(3.34)
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As shown earlier, for z ∈ [0, α] we have A′′(z) > 0. Moreover, v̂ is concave and therefore v̂′′(z) −
A′′(z) < 0. We deduce for (x, z) ∈ H[0,α]

∂zzu(x, z) = A′′(z)eβ1x + (v̂′′(z)−A′′(z))eβ2x

≤ A′′(z)eβ1a0 + (v̂′′(z)−A′′(z))eβ2a0

= ∂zzu(a0, z) = ∂zxu(a0, z) ≤ 0,

(3.35)

where in the third equality we use the reflection condition from the final equation in (3.12) and it
remains to prove the final inequality. For that, it is sufficient to observe that β2(v̂

′′(z)−A′′(z)) > 0
implies

∂zzxu(a0, z) = A′′(z)β1e
β1a0 + (v̂′′(z)−A′′(z))β2e

β2a0 > 0.

Then, thanks to the fact that A′ is continuous at α, choosing z = α in (3.18) so that c(α) = a0
(recall B′(α) = v̂′(α)−A′(α)) we have

∂zxu(a0, α) = A′(α)β1e
β1a0 + (v̂′(α)−A′(α))β2e

β2a0 = 0.

Combining these last two expressions yields the final inequality in (3.35).
Finally, by construction ∂zu is continuous at (x, α) for all x ∈ [0, a0] and the value of ∂zu(x, α) > 1

was determined in Step 1 of this proof. Therefore, (3.35) implies that ∂zu(x, z) > 1 for all (x, z) ∈
H[0,α] as needed.

As in Step 1, also in this step we have obtained expressions for the coefficients A′(z) an B′(z).
We use them to construct a candidate expression for ∂zu(x, z). To emphasise this fact we set

Q2(x, z) := A′(z)eβ1x +B′(z)eβ2x = ∂zu(x, z), (x, z) ∈ H[0,α].(3.36)

Step 3. The set (x, z) ∈ H≤ is analysed in this step.
The boundary condition u(x,−x) = 0 reads, for z = −x,

(3.37) A(z)e−β1z +B(z)e−β2z = 0,

and by differentiation

(3.38) B′(z) = [(β1 − β2)A(z)−A′(z)]e(β2−β1)z.

Note that in particular B(0) = −A(0). The reflection condition (∂zu−∂xu)(a0, z) = 0 (last equation
in (3.12)) implies

(3.39) A′(z)eβ1a0 +B′(z)eβ2a0 = A(z)β1e
β1a0 +B(z)β2e

β2a0 .

Combining (3.38) and (3.39), we obtain

A′(z)eβ1a0 + [(β1 − β2)A(z)−A′(z)]e(β2−β1)zeβ2a0 = A(z)β1e
β1a0 −A(z)e(β2−β1)zβ2e

β2a0 ,

which leads to A′(z) = β1A(z) and thus

A(z) = A(0)eβ1z and B(z) = −A(0)eβ2z for z ∈ [−a0, 0).

Plugging this expression back into (3.37) yields the form of A(z) and B(z), and then

(3.40) u(x, z) = A(0)(eβ1(x+z) − eβ2(x+z)), (x, z) ∈ H≤ .

In order to determine A(0) we can, for example, impose ∂zu(a0, 0+) = ∂zu(a0, 0−), noticing that
∂zu(a0, 0+) = Q2(a0, 0+) > 1 is obtained from Step 2 (see (3.36)). More precisely, we have

(3.41) A(0) =
Q2(a0, 0+)

β1eβ1a0 − β2eβ2a0
>

1

β1eβ1a0 − β2eβ2a0
= C0,

where the last equality is (3.22). Therefore, for z < 0,

∂zu(x, z) =
Q2(a0, 0+)

β1eβ1a0 − β2eβ2a0
(β1e

β1(x+z) − β2e
β2(x+z)).(3.42)



14 DE ANGELIS, GENSBITTEL, VILLENEUVE

Taking one more derivative and observing that β1(x + z) ≤ β1a0, β2z ≥ 0 and β2x ≥ β2a0 for
(x, z) ∈ H≤ we obtain

∂zzu(x, z) =
∂zu(a0, 0+)

β1eβ1a0 − β2eβ2a0
(β2

1e
β1(x+z) − β2

2e
β2(x+z))

≤ ∂zu(a0, 0+)

β1eβ1a0 − β2eβ2a0
(β2

1e
β1a0 − β2

2e
β2a0)

=
∂zu(a0, 0+)

β1eβ1a0 − β2eβ2a0

v′′0(a0)

C(µ0)
= 0,

where the penultimate equality follows from (2.11), upon recalling that we are working with β1 =
β1(µ0) and β2 = β2(µ0), and the final equality is by the smooth pasting condition (2.10). We then
conclude that ∂zu(x, z) > 1 for (x, z) ∈ H≤.

It is important to notice that, differently from Steps 1 and 2, here we have obtained an expression
for the candidate value function u(x, z), (x, z) ∈ H≤, instead of a candidate for its z-derivative. We
are going to use this fact in the fourth and final step of the proof.

Step 4. In this step we piece together the functions obtained in the previous steps and confirm
that our candidate pair (u, b) solves the free boundary problem (3.12) as claimed.

Recalling Q1 and Q2 from (3.27) and (3.36), we define on [0, a0]× [0,∞)

Q(x, z) := Q11H[α,b]
(x, z) +Q21H[0,α]

(x, z) + 1S(x, z).

By construction and thanks to the smooth pasting condition ∂zxu(x, b(x)) = 0, the functions Q and
∂xQ(x, z) are continuous on [0, a0]× [0,∞) (see (3.30) and (3.31)). Its derivative ∂xxQ is continuous
on H[0,α] ∪H[α,b] and it belongs to L∞([0, a0]× [0,∞)). Next we define

(3.43) u(x, z) = u(x, 0−) +

∫ z

0
Q(x, ζ)dζ, for (x, z) ∈ [0, a0]× [0,∞),

where u(x, 0−) is given by (3.40) in Step 3. On the set H≤ the function u(x, z) is defined by (3.40).
It is then clear that u ∈ C(H). By Step 3 we have ∂xu, ∂xxu, ∂zu ∈ C(H≤). By dominated

convergence in [0, a0]× [0,∞) we have

∂xu(x, z) = ∂xu(x, 0−) +

∫ z

0
∂xQ(x, ζ)dζ,

∂xxu(x, z) = ∂xxu(x, 0−) +

∫ z

0
∂xxQ(x, ζ)dζ.

Moreover, it is clear that ∂zu(x, z) = Q(x, z) on [0, a0]× [0,∞). Then, thanks to the regularity of Q
stated above, these derivatives paste continuously with the corresponding derivatives in H≤. That
is, u ∈ C1(H) and ∂xxu(x, z) ∈ C(C ∪ S) as required in the free boundary problem.

By construction u solves the free boundary problem in H≤. Next, for (x, z) ∈ H[0,α] ∪H[α,b] ∪ S
we can compute directly(

σ2

2 ∂xxu+ µ0∂xu− ru
)
(x, z)

=
(
σ2

2 ∂xxu+ µ0∂xu− ru
)
(x, 0−) +

∫ z

0

(
σ2

2 ∂xxQ+ µ0∂xQ− rQ
)
(x, ζ)dζ.
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In particular, for (x, z) ∈ H[0,α]∪H[α,b] the right hand side of the equation above vanishes using the
explicit expressions (3.40), (3.36) and (3.27). Instead, for (x, z) ∈ S we can compute(

σ2

2 ∂xxu+ µ0∂xu− ru
)
(x, z)

=
(
σ2

2 ∂xxu+ µ0∂xu− ru
)
(x, 0−)

+

∫ b(x)

0

(
σ2

2 ∂xxQ+ µ0∂xQ− rQ
)
(x, ζ)dζ − r(z − b(x))

= −r(z − b(x)) ≤ 0.

This shows validity of the first two equations in (3.12). The third, fourth, fifth and seventh condition
in (3.12) hold by construction and by properties of (3.40), (3.36) and (3.27) illustrated in Steps 1–3.
For the sixth condition in (3.12) we observe that u(0, 0) = 0 due to (3.40) and therefore

u(0, z) = u(0, 0−) +

∫ z

0
Q(0, ζ)dζ

=

∫ â∧z

0

(
A′(ζ) +B′(ζ)

)
dζ +

∫ z

â∧z
1dζ = v̂(z),

where the final equality is due to (3.14), and the facts that v̂′ = 1 on [â,∞) and v̂(0) = 0. The final
condition in (3.12) can be checked as follows: for z ∈ [−a0, 0],

(
∂zu− ∂xu

)
(a0, z) = 0 by (3.39); for

z ∈ [0, α] (
∂zu− ∂xu

)
(a0, z) = Q2(a0, z)− ∂xu(a0, 0−)−

∫ z

0
∂xQ2(a0, ζ)dζ

= Q2(a0, z)− ∂xu(a0, 0−)−
∫ z

0
∂zQ2(a0, ζ)dζ

= Q2(a0, 0)− ∂xu(a0, 0−) = 0

where the second equality is by (3.28) and the final one by (3.42), upon recalling that ∂xu(a0, 0−) =
∂zu(a0, 0−) by construction; finally, for z ∈ [α,∞), we have(

∂zu− ∂xu
)
(a0, z) = Q(a0, z)− ∂xu(a0, 0−)−

∫ z

0
∂xQ(a0, ζ)dζ

= 1− ∂xu(a0, 0−)−
∫ α

0
∂zQ2(a0, ζ)dζ

= Q2(a0, 0)− ∂xu(a0, 0−) + 1−Q2(a0, α) = 0,

where in the second equality we use that Q(a0, z) = 1 for z ∈ [α,∞) and in the final one we use
Q2(a0, α) = 1 (thanks to (3.30) and (3.31)) and Q2(a0, 0) = ∂xu(a0, 0−) as above. □

The pair (u, b) constructed in the previous proposition is going to be used in a verification result
to determine u2 (cf. (3.8)) and to prove optimality of D∗ for Player 2 (cf. (3.4)). Let us start by
noticing that for t ≥ 0

D∗
t = sup

0≤s≤t

(
Y 0
s −X∗

s − b(X∗
s )
)+

,

where Y 0
s = y+µ0s+ σBs. As a result the controlled pair (X∗, Y ∗) introduced in Theorem 3.5 can

be expressed as  X∗
t = X0

t − sup0≤s≤t

(
X0

s − a0

)+
,

Y ∗
t = Y 0

t − sup0≤s≤t

(
Y 0
s −X∗

s − b(X∗
s )
)+

,
(3.44)

with X0
s = x+ µ0s+ σBs.
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It is useful to determine some properties of (L∗, D∗) relatively to the pair (X∗, Z∗), where Z∗ :=
Y ∗ −X∗. Let us set γ∗ := γX∗ ∧ γZ∗ = inf{t ≥ 0 : Z∗

t ≤ −X∗
t orX

∗
t ≤ 0}.

Lemma 3.8. For b constructed in Proposition 3.7 and (L∗, D∗) defined as in Theorem 3.5, the
following hold:

(i) D∗ is continuous except for a possible jump at time zero of size

D∗
0 =

(
y − x+ L∗

0 − b(X∗
0 )
)+

=
(
y − x ∧ a0 − b(x ∧ a0)

)+
.

Therefore, Z∗ is continuous except for a possible jump at time zero of size

Z∗
0 − Z∗

0− = L∗
0 −D∗

0 = (x− a0)
+ −

(
y − x ∧ a0 − b(x ∧ a0)

)+
.

(ii) P(Z∗
t∧γ∗ ≤ b(X∗

t∧γ∗), ∀t ≥ 0) = 1.
(iii) For any T > 0, we have P-a.s.∫

(0,T∧γ∗]
1{Z∗

t <b(X∗
t )}dD

∗
t = 0.

Proof. Continuity of the mapping t 7→ D∗
t∧γ∗ on (0,∞) is clear because of continuity of the mapping

t 7→ L∗
t∧γ∗ − b(X∗

t∧γ∗) on (0,∞). The expression for D∗
0 is also clear by the explicit formula (3.4)

and thus the one for Z∗
0 − Z∗

0− follows immediately.
The condition in item (ii) can be verified easily upon noticing that D∗

t∧γ∗ ≥ z+L∗
t∧γ∗ − b(X∗

t∧γ∗)
for every t ≥ 0. It remains to check the condition in item (iii). The argument is carried out path-
wise. Fix ω ∈ Ω and assume Z∗

t (ω) < b(X∗
t (ω)) (with no loss of generality it suffices to consider

t < γ∗(ω)). Then

Z∗
t (ω) = z + L∗

t (ω)−D∗
t (ω) < b

(
X∗

t (ω)
)

=⇒ D∗
t (ω) > z + L∗

t (ω)− b
(
X∗

t (ω)
)
.

Therefore, by continuity there is δω > 0 such that

D∗
t (ω) > sup

t≤s≤t+δω

(
z + L∗

s(ω)− b
(
X∗

s (ω)
))+

.

The latter implies D∗
s(ω)−D∗

t (ω) = 0 for s ∈ [t, t+ δω) which proves the claim. □

Next we state our verification result.

Proposition 3.9. Let (u, b) be the pair constructed in Proposition 3.7 and recall u2 from (3.8) and
(3.9). Set u(x, z) = u(a0, z) for x > a0 and z ≥ −x. Then,

u(x, z) = u2(x, z), for x ∈ [0,∞) and z ≥ −x.

Moreover, D∗ as in (3.4) is an optimal control, in the sense that u2(x, z + x) = v2(x, y;L
∗) =

J 2
x,y(D

∗, L∗) for all (x, y) ∈ [0,∞)2.

Proof. In Proposition 3.7 we showed that u solves the free boundary problem (3.12). Take an
arbitrary admissible control D and take the admissible pair (D,L∗). Denote ZD = ZL∗,D, γ =

γZ ∧ γX∗ and A := σ2

2 ∂xx + µ0∂x − r, for simplicity. Fix (x, z) ∈ H. We wish to apply Dynkin’s

formula to calculate Ex,z[e
−r(t∧γ)u(X∗

t∧γ , Z
D
t∧γ)]. This can be done, for example, invoking [4, Thm.

2.1]. We must notice that

(X∗
s∧γ , Z

D
s∧γ) ∈ H, for all s ∈ [0,∞),

and, for any T > 0,∫ T

0
Px,z

(
ZD
s = b(X∗

s ), Z
D
s > α

)
ds =

∫ T

0
Px,z

(
X∗

s = c(ZD
s ), ZD

s > α
)
ds

=

∫ T

0
Px,z

(
X0

s = c(ZD
s ) + L∗

s, Z
D
s > α

)
ds = 0,

(3.45)
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where the final equality holds due to Lemma A.1. Equation (3.45) guarantees Assumption A.1 in
[4, Thm. 2.1], while the other assumptions are satisfied in our set-up thanks to the regularity of u
and b.

Applying Dynkin’s formula, up to a standard localisation argument that makes the stochastic
integral a martingale, we obtain

Ex,z

[
e−r(t∧γ)u(X∗

t∧γ , Z
D
t∧γ)

]
= u(x, z) + Ex,z

[ ∫ t∧γ

0
e−rs(Au)(X∗

s , Z
D
s )ds

]
+ Ex,z

[ ∫ t∧γ

0
e−rs

(
∂zu− ∂xu

)
(X∗

s , Z
D
s )dL∗,c

s −
∫ t∧γ

0
e−rs∂zu(X

∗
s , Z

D
s )dDc

s

]
+ Ex,z

[ ∑
s∈[0,t∧γ]

e−rs
(
u(X∗

s , Z
D
s )− u(X∗

s−, Z
D
s−)

)]
,

(3.46)

where (L∗,c, Dc) is the continuous part of the control pair (L∗, D). Thanks to (3.45) we have for
a.e. s ∈ [0, γ(ω)]

(Au)
(
X∗

s (ω), Z
D
s (ω)

)
= (Au)

(
X∗

s (ω), Z
D
s (ω)

)
1{(X∗

s (ω),Z
D
s (ω))∈S} ≤ 0,(3.47)

where the first equality is by the first equation in (3.12) and the inequality by the second equation
therein.

Jumps of D do not affect the dynamics of X∗ and therefore, by definition of L∗ and the fact that
X∗

0− ≤ a0 we have L∗
t = L∗,c

t for t ≥ 0. The sum of jumps then reads∑
s∈[0,t∧γ]

e−rs
(
u(X∗

s , Z
D
s )− u(X∗

s−, Z
D
s−)

)
=

∑
s∈[0,t∧γ]

e−rs
(
u(X∗

s , Z
D
s )− u(X∗

s , Z
D
s−)

)
= −

∑
s∈[0,t∧γ]

e−rs

∫ |∆ZD
s |

0
∂zu(X

∗
s , Z

D
s− − ζ)dζ ≤ −

∑
s∈[0,t∧γ]

e−rs∆Ds,

where we use that ∆ZD
s = −∆Ds ≤ 0 and the third and fourth equation in (3.12). By the same

two conditions we also obtain∫ t∧γ

0
e−rs∂zu(X

∗
s , Z

D
s )dDc

s ≥
∫ t∧γ

0
e−rsdDc

s.

Combining these terms we obtain∑
s∈[0,t∧γ]

e−rs
(
u(X∗

s , Z
D
s )− u(X∗

s−, Z
D
s−)

)
−
∫ t∧γ

0
e−rs∂zu(X

∗
s , Z

D
s )dDc

s

≤ −
∑

s∈[0,t∧γ]

e−rs∆Ds −
∫ t∧γ

0
e−rsdDc

s = −
∫
[0,t∧γ]

e−rsdDs.

(3.48)

Finally, the last equation in (3.12) gives∫ t∧γ

0
e−rs

(
∂zu− ∂xu

)
(X∗

s , Z
D
s )dL∗,c

s =

∫ t∧γ

0
e−rs

(
∂zu− ∂xu

)
(a0, Z

D
s )dL∗

s = 0,(3.49)

where we used that dL∗,c
s = dL∗

s = 1{X∗
s=a0}dL

∗
s for s > 0 in the first equality.
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Combining (3.46), (3.47), (3.48) and (3.49) we obtain

u(x, z) ≥ Ex,z

[ ∫
[0,t∧γ]

e−rsdDs + e−r(t∧γ)u(X∗
t∧γ , Z

D
t∧γ)

]
.

On the event {γ ≤ t, γZ > γX} we have u(X∗
t∧γ , Z

D
t∧γ) = u(0, ZD

γX
) = v̂(ZD

γX
) by the sixth equation

in (3.12). On the event {γ ≤ t, γZ ≤ γX} we have u(X∗
t∧γ , Z

D
t∧γ) = u(X∗

γZ
,−X∗

γZ
) = 0 by the

seventh equation in (3.12). Therefore

e−r(t∧γ)u(X∗
t∧γ , Z

D
t∧γ) = 1{γ≤t,γZ>γX}e

−rγX v̂(ZD
γX

) + 1{γ>t}e
−rtu(X∗

t , Z
D
t )

≥ 1{γ≤t,γZ>γX}e
−rγX v̂(ZD

γX
),

where the final inequality uses u ≥ 0 which is due to u(x,−x) = 0 and ∂zu ≥ 1. Then

u(x, z) ≥ Ex,z

[
1{t≥γ}

(∫
[0,γX∧γZ ]

e−rsdDs + 1{γZ>γX}e
−rγX v̂(ZD

γX
)
)]

.

Letting t → ∞ and using Fatou’s lemma, yields

u(x, z) ≥ Ex,z

[ ∫
[0,γX∧γZ ]

e−rsdDs + 1{γZ>γX}e
−rγX v̂(ZD

γX
)
]
,(3.50)

upon noticing that Px,z(γX ∧ γZ < ∞) = 1.
Let us now consider the pair (L∗, D∗) with (D∗

t )t≥0 as in (3.4). Denote the controlled dy-
namics (X∗, Z∗) = (XL∗

, ZL∗,D∗
) and the associated stopping time γ∗ := γZ∗ ∧ γX∗ . The con-

trolled process is bound to evolve in C in the random time-interval ((0, γ∗]], thanks to Lemma 3.8.
Then, we can repeat the arguments from above based on Dynkin’s formula but now (3.47) reads
(Au)(X∗

s (ω), Z
∗
s (ω)) = 0 for s ∈ (0, γ∗(ω)] and the inequality in (3.48) becomes an equality, due to

Lemma 3.8-(iii) and ∂zu(x, b(x)) = 1 (see the fourth equation in (3.12)). Thus we obtain

u(x, z) = Ex,z

[ ∫
[0,t∧γ∗]

e−rsdD∗
s + 1{γ∗≤t,γZ∗>γX∗}e

−rγX∗ v̂(ZD
γX∗ ) + 1{γ∗>t}e

−rtu(X∗
t , Z

∗
t )
]
.

Now we let t → ∞. Since (X∗
t , Z

∗
t ) ∈ C for all t ∈ ((0, γ∗]] and C is compact, then u is bounded on

C and clearly

lim
t→∞

Ex,z

[
1{γ∗>t}e

−rtu(X∗
t , Z

∗
t )
]
= 0.

Monotonce convergence also implies

u(x, z) = lim
t→∞

Ex,z

[ ∫
[0,t∧γ∗]

e−rsdD∗
s + 1{γ∗≤t,γZ∗>γX∗}e

−rγX∗ v̂(ZD
γX∗ )

]
= Ex,z

[ ∫
[0,γX∗∧γZ∗ ]

e−rsdD∗
s + 1{γZ∗>γX∗}e

−rγX∗ v̂(ZD
γX∗ )

]
,

(3.51)

where, in particular, we used that for each ω ∈ Ω there is Tω > 0 sufficiently large that γ∗(ω) < t
for all t ≥ Tω and therefore∫

[0,t∧γ∗]
e−rsdD∗

s(ω) =

∫
[0,γ∗]

e−rsdD∗
s(ω), for all t ≥ Tω.

Combining (3.50) and (3.51) we obtain that u = u2 on H and optimality of D∗. Notice that the
equivalence u(x, z) = u2(x, z) extends to all x ∈ [0,∞) and z ≥ −x because of (3.9). □

Remark 3.10. Recalling that v0(a0) = C0(e
β1a0 − eβ2a0), it follows from (3.40) and (3.41), that

v2(a0, a0) = u2(a0, 0) > v0(a0).

Using that ∂zu2(a0, z) ≥ 1 for z ≥ 0 and v′0(y) = 1 for y ≥ a0, we deduce that

v2(a0, y) = u2(a0, y − a0) > v0(y), for all y ≥ a0.
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The proposition above has established that when Player 1 uses the control L∗
t = Φ∗(t, B) from

(3.5), the best response of Player 2 is the strategy Ψ∗(t, B, L∗). Now we want to show the viceversa,
i.e., when Player 2 uses the strategy map Ψ∗(t, B, L) against any dividend policy L of Player 1’s,
then Player 1’s best action is to use L∗. That will establish the Nash equilibrium in the game with
asymmetric endowment.

Lemma 3.11. Assume Player 2 uses the strategy map Ψ∗. Then Player 1’s best-response is the
control map Φ∗, i.e., for every y > x ≥ 0,

v1(x, y; Ψ
∗) = sup

L
J 1
x,y(L,Ψ

∗(·, B, L)) = J 1
x,y(L

∗,Ψ∗(·, B, L∗)),(3.52)

with L∗ = Φ∗(·, B).

Proof. Recalling the expression of Ψ∗ in Remark 3.6 and using that b(x) ≥ α > 0, for all x ≥ 0,
then Ψ∗(t, B, L) ≤ (y − x + Lt − α)+ for all t ≥ 0 and any dividend policy L. That implies for
Player 2’s dynamics:

Y ∗
t = y + µ0t+ σBt −Ψ∗(t, B, L)

= X0
t + (y − x)−Ψ∗(t, B, L) ≥ XL

t + (y − x+ Lt) ∧ α > XL
t ,

(3.53)

for all t ≥ 0, any realisation B(ω) = (Bs(ω))s≥0 of the Brownian path and any choice of Player
1’s dividend policy L = (Ls)s≥0. Therefore, γY ∗ > γXL , Px,y-a.s. and Player 1’s expected payoff
reduces to

J 1
x,y(L,Ψ

∗) = Ex,y

[ ∫
[0,γX ]

e−rtdLt

]
.

Thus, Player 1 is faced with the classical dividend problem and L∗ is optimal. □

Combining the results above we have a simple proof of Theorem 3.5.

Proof of Theorem 3.5. From Proposition 3.7 we have J 2
x,y(D

∗, L∗) ≥ J 2
x,y(D,L∗) for any dividend

policy D. From Lemma 3.11 we have J 1
x,y(L

∗, D∗) ≥ J 1
x,y(L,D

∗) for any dividend policy L. □

In the remainder of the paper we simplify our notation and adopt

v1(x, y) = v1(x, y; Ψ
∗) and v2(x, y) = v2(x, y; Φ

∗),(3.54)

for the equilibrium payoffs when 0 ≤ x < y.

Remark 3.12. Notice that by continuity of the mappings (x, y) 7→ (v1(x, y), v2(x, y)), we can
actually extend the formulae in (3.54) to points on the diagonal {(x, y) ∈ [0,∞)2 : x = y}. For x = y
by exchanging the roles of the players, we obtain two different equilibria with asymmetric payoffs
(i.e., (Φ∗,Ψ∗) and (Ψ∗,Φ∗) with payoffs [v1(x, x; Ψ

∗), v2(x, x; Φ
∗)] and [v1(x, x; Φ

∗), v2(x, x; Ψ
∗)],

respectively). In these equilibria, despite the players’ initial position being symmetric, one of the
two players has an advantage and she is allowed to play a strategy; the other player can only play
a control and obtains the smaller payoff v0(x) (notice that v1(x, x; Ψ

∗) = v2(x, x; Ψ
∗) = v0(x)).

These equilibria may appear unrealistic as none of the players would agree to be in the dominated
position when starting from a symmetric position. Situations of this kind arise in classical “war
of attrition” models (see [12] for a complete study of the deterministic model in continuous-time),
where typically there exists also a symmetric equilibrium (i.e., with players using the same strat-
egy) in randomised strategies. Equilibria of this type are constructed in [21] in a continuous-time
stochastic model and an extension to a model with incomplete information is given in [17]. A com-
plete characterization of the equilibria in randomised strategies in the continuous-time stochastic
framework with complete information for one dimensional diffusions is given in [5].

In the next section we construct a symmetric equilibrium with randomised strategies for our game
with symmetric initial endowment.
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4. Nash equilibrium with symmetric initial endowment

When the two players have the same initial endowment, i.e., x = y, the game is fully symmetric.
As soon as one of the players pays an arbitrarily small amount of dividends the symmetry is broken
and the game falls back into the situation analysed in the previous section. From a game-theoretic
point of view there is a second mover advantage and it is not clear whether a symmetric equilibrium
can be found only using pure strategies. We allow players to use a randomised stopping time
to decide the time of their first move. By symmetry, we only need to consider one function that
describes the ‘intensity of stopping’ (in equilibrium) for both players. This function will be specified
later.

We formally introduce the class of admissible mixed strategies for the problem starting at x. This
definition follows the idea proposed by Aumann [1], in the sense that it is a family of strategies
depending on an auxiliary randomisation variable u, which is jointly measurable in all its variables.

Definition 4.1 (Randomised Strategy). A measurable mapping (u, t, φ, ζ) 7→ Ξ(u, t, φ, ζ) with

Ξ : [0, 1]× [0,∞)× C0([0,∞))×D+
0 ([0,∞)) → [0,∞)

is an admissible randomised strategy with initial condition x if:

(i) Ξ(u, ·, ·, ·) is non-anticipative for each u ∈ [0, 1],
(ii) t 7→ Ξ(u, t, φ, ζ) is càdlàg and non-decreasing for any (u, φ, ζ) ∈ [0, 1] × C0([0,∞)) ×

D+
0 ([0,∞)),

(iii) For all (u, φ, ζ) ∈ [0, 1]× C0([0,∞))×D+
0 ([0,∞)) and t ≥ 0.

Ξ(u, t, φ, ζ)− Ξ(u, t−, φ, ζ) ≤ (x+ µ0t+ σφ(t)− Ξ(u, t−, φ, ζ))+ ,

with the convention Ξ(u, 0−, φ, ζ) = 0.

Since we are looking for a symmetric equilibrium, we will consider players using strategy against
strategy (either randomised or not). We say that a pair of (non-randomised) strategies (Ψ1,Ψ2)
(cf. Definition 3.1) induces a pair of dividend policies (L,D) if L(t, φ) and D(t, φ) are measurable
maps from [0,∞)× C0([0,∞)) to [0,∞) such that for all (t, φ) ∈ [0,∞)× C0([0,∞)), the pair

L(t, φ) = Ψ1(t, φ,D(· ∧ t, φ)) and D(t, φ) = Ψ2(t, φ, L(· ∧ t, φ)),

is well-defined. Here we use the notations D(· ∧ t, φ) and L(· ∧ t, φ) to indicate dependence on the
whole path of the dividend policies (L,D) up to time t. Similarly, we say that a pair of randomised
strategies (Ξ1,Ξ2) induces a pair of dividend policies (L̄, D̄) if L̄(u1, u2, t, φ) and D̄(u1, u2, t, φ) are
jointly measurable maps from [0, 1]2 × [0,∞) × C0([0,∞)) to [0,∞) such that for Lebesgue a.e.
(u1, u2) ∈ [0, 1]2 and any (t, φ) ∈ [0,∞)× C0([0,∞)), the pair

L̄(u1, u2, t, φ) = Ξ1(u1, t, φ, D̄(u1, u2, · ∧ t, φ)) and D̄(u1, u2, t, φ) = Ξ2(u2, t, φ, L̄(u1, u2, · ∧ t, φ)),

is well-defined. The pair (L̄, D̄) is said to be unique if it is unique up to a set of pairs (u1, u2) with
zero Lebesgue measure.

With a slight abuse of notation, we identify the unique pair of dividend policies (L̄, D̄) induced
by a pair of mixed strategies (Ξ1,Ξ2) with the pair of mixed strategies itself. With the notation
L̄u1,u2 = L̄(u1, u2, ·, ·) and D̄u1,u2 = D̄(u1, u2, ·, ·), we define the associated payoff

J 1
x,y(Ξ1,Ξ2) = J 1

x,y(L̄, D̄) :=

∫ 1

0

∫ 1

0
J 1
x,y(L̄

u1,u2 , D̄u1,u2)du1du2,

and similarly for J 2
x,y(D̄, L̄) = J 2

x,y(Ξ2,Ξ1).
Note also that a pair (L,Ξ2) with L an admissible dividend policy and Ξ2 a randomised strategy

induces a pair of admissible dividend policies (L, D̄) with D̄(u2, t, B) = Ξ2(u2, t, B, L) for all t ≥ 0



NASH EQUILIBRIA FOR DIVIDEND DISTRIBUTION WITH COMPETITION 21

(recall that L = Φ(t, φ), by Remarm 3.2). The associated payoff of Player 1, reads

J 1
x,y(L,Ξ2) = J 1

x,y(L, D̄) :=

∫ 1

0
J 1
x,y(L, D̄

u2)du2,

and we use a similar notation for the payoff of Player 2 associated to a pair (L̄,D) = (Ξ1, D).

Definition 4.2 (Nash Equilibrium in mixed strategies). Given (x, y) ∈ [0,∞)2, a pair of
admissible mixed strategies (Ξ∗

1,Ξ
∗
2) is a Nash equilibrium if and only if it induces a unique pair of

dividend policies and

J 1
x,y(L,Ξ

∗
2) ≤ J 1

x,y(Ξ
∗
1,Ξ

∗
2) and J 2

x,y(D,Ξ∗
1) ≤ J 2

x,y(Ξ
∗
2,Ξ

∗
1),

for all other pairs of admissible dividend policies (L,D).

Remark 4.3. Existence and uniqueness of a pair of dividend policies induced by a pair of strategies
must be part of the definition of a Nash equilibrium in strategy-against-strategy, as in Definition
4.2. That is because, in continuous-time games, existence and uniqueness of a pair (L,D), induced
by an arbitrary pair of strategies (Ψ1,Ψ2), are not guaranteed. Indeed, simultaneous reaction may
cause some trouble.

For example, let us consider the pure strategies Ψ†(t, φ, ζ) = 1{ζ(0)>0} and Ψ♯(t, φ, ζ) = 1{ζ(0)=0},

which do not depend on φ. It is easy to verify that the pair (Ψ†,Ψ†) induces both the constant
processes (0, 0) and (1, 1). Hence, uniqueness is lost. Instead, there exists no pair (L,D) induced
by (Ψ†,Ψ♯). Hence, existence is also lost.

In preparation for the proof of the main result of this section we need to introduce some new
objects. For ζ ∈ D+

0 ([0,∞)), set σ(ζ) = inf{t ≥ 0 : ζt > 0}. Then, σ(ζ) is an (FW
t )-optional

time because it is an entry time to an open set for a càdlàg process (recall that (FW
t )t≥0 is the raw

filtration of the canonical process Wt(φ, ζ) = (φ(t), ζ(t))).
We also extend the definition of Φ∗ to account for an activation at an arbitrary time s ∈ [0,∞):

Φ∗
s(t, φ) := sup

s≤u≤t

(
x− a0 + µ0u+ σφ(u)

)+
, for φ ∈ C0([0,∞)).

In order to construct equilibrium randomised strategies, we let ℓ : [0,∞) → [0,∞) be a measurable
function to be determined at equilibrium and we define, for φ ∈ C0([0,∞))

Γ̄ℓ
t(φ) :=

∫ t

0
e−

∫ s
0 ℓ
(
x+µ0u+σφ(u)

)
duℓ

(
x+ µ0s+ σφ(s)

)
ds.

Then, for u ∈ [0, 1] we also introduce

γ̄ℓ(φ, u) := inf{t ≥ 0 : Γ̄ℓ
t(φ) ≥ u}.

Notice that γ̄ℓ(φ, u) is a (FW
t )-stopping time as an entry time of a continuous process to a closed

set. In particular, for each ω ∈ Ω we denote

Γℓ
t(ω) := Γ̄ℓ

t(B(ω)) =

∫ t

0
e−

∫ s
0 ℓ(X0

u(ω))duℓ
(
X0

s (ω)
)
ds = 1− e−

∫ t
0 ℓ(X0

s (ω))ds,(4.1)

where X0
t = x + µ0t + σBt. Further, given two random variables Ui ∼ Unif(0, 1), i = 1, 2, defined

on (Ω,F ,P), mutually independent and independent of the Brownian motion B, we define the
randomised stopping times for the raw Brownian filtration

γℓi := γ̄ℓ(B,Ui) = inf{t ≥ 0 : Γℓ
t ≥ Ui}, for i = 1, 2.(4.2)

In order to find an equilibrium the two players need to find a function ℓ∗ that generates a pair of
optimal randomised stopping times (γ∗1 , γ

∗
2). At equilibrium, on the event {γ∗1 < γ∗2} Player 1 makes

the first move and gives her opponent the second mover advantage. After the first move, the game
can be analysed with the arguments from Section 3. Indeed, we will show that Player 1 is going
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to adopt the control L∗ as in Theorem 3.5, while Player 2 is going to use the strategy D∗. On the
event {γ∗1 > γ∗2} the first move is made by Player 2 and the situation is analogous but symmetric.

In particular, an important role will be played by the map Ξ∗ defined below. Let

ℓ∗(x) :=
[rv0(x)− µ0]

+

v2(a0, x)− v0(x)
, for x ≥ 0,

with v0 from (2.14). Notice that ℓ∗(x) > 0 ⇐⇒ x ∈ (a0,∞) by (2.13) and since v2(a0, x) > v0(x)
for x ∈ [a0,∞) by Remark 3.10. Given (u, φ, ζ) ∈ [0, 1] × C0([0,∞)) ×D+

0 ([0,∞)), set γ̄∗(φ, u) :=

γ̄ℓ
∗
(φ, u) and simplify the notation to γ̄∗ = γ̄∗(φ, u), σ = σ(ζ). The mixed strategy map Ξ∗ is

defined as

Ξ∗(u, t, φ, ζ) := 1{t≥γ̄∗∧σ}

[
1{σ≥γ̄∗}Φ

∗
γ̄∗(t, φ) + 1{σ<γ̄∗}Ψ

∗(t, φ, ζ)
]
,(4.3)

where Ψ∗ is defined as in Remark 3.6 with the initial condition (x, x). The fact that Ξ∗ satisfies the
non-anticipative property in Definition 4.1 is not straightforward, because σ is only a (FW

t )-optional
time of the canonical filtration. Checking non-anticipativity of the map will be part of the proof of
Theorem 4.4.

The next theorem provides a symmetric equilibrium in randomised strategies in the symmetric
set-up and it is the main result of this section.

Theorem 4.4 (NE with symmetric endowment). Set γ∗i := γℓ
∗

i , i = 1, 2, as in (4.2). There
exists a unique admissible pair (L̄∗, D̄∗) of dividend policies which satisfy for all (u1, u2) ∈ [0, 1]2

L̄∗(u1, u2, t, B) := Ξ∗(u1, t, B, D̄∗) and D̄∗(u1, u2, t, B) := Ξ∗(u2, t, B, L̄∗), for t ≥ 0.

The pair (Ξ∗,Ξ∗) is a Nash equilibrium in randomised strategies and the equilibrium payoffs for
the two players read

J 1
x,x(L̄

∗, D̄∗) = J 2
x,x(D̄

∗, L̄∗) = v0(x), x ∈ [0,∞),

with v0 as in (2.14).

A few remarks are in order before we proceed with the proof of the theorem. Due to the symmetry
of the set-up, all the considerations that we make for one player’s strategy also hold for the other
player’s strategy.

Remark 4.5 (War of attrition and indifference principle). Our equilibrium shares some
important features with stopping games with a second mover advantage, and especially with the so
called “war of attrition” games. Once one of the players —say Player 1— activates her control
(i.e., she pays dividends), we reach a position XL < Y D. At that point both players play an
asymmetric equilibrium in which Player 1 is in a dominated position. Thus, a player’s activation
of her control can be thought of as “conceding”, in the sense that the first mover accepts to be in
a dominated position. Assuming that, when reaching a position XL ̸= Y D after the first move,
these continuation equilibria will be played, none of the players wants to be the first to activate her
control. Because of discounting and the risk of default, waiting is costly for both players. Then,
there is a trade-off —say for Player 2— between the potential gains at the time Player 1 activates
her control (i.e., v2(X,Y )− v0(Y ) > 0) and the effect of discounting and default risk. The strategy
Ξ∗ for Player 2 can be described as follows: Player 2 will wait for a random amount of time γ∗2 and
one of two mutually exclusive outcomes is possible:

(a) Player 1 activates her control strictly before γ∗2 and concedes (that corresponds to the event
{σ < γ̄∗} in (4.3)); Then the players start playing a continuation equilibrium in which
Player 1 is in a dominated position;

(b) Player 1 does not activate her control before γ∗2 (that corresponds to the event {σ ≥ γ̄∗} in
(4.3)) and Player 2 concedes; Then at γ∗2 players play a continuation equilibrium in which
Player 2 is in a dominated position.
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The function ℓ∗ is constructed in order to make each player indifferent between conceding and
waiting at any moment of time when X0

t > a0 (the so-called indifference principle). That guarantees
that waiting a random time γ∗ before conceding is a best reply. As this is true for both players, it is
then a Nash equilibrium. In particular, we notice that γ∗ is the first jump time of a Poisson process
with a stochastic intensity ℓ∗(X0

t ), which is positive if and only if X0
t > a0.

Remark 4.6 (Observable quantities for the two players). The random time γ∗2 depends on
the realization of a private randomization device U2 used by Player 2. As such, it is not directly
observable by Player 1. Then, the definition of Player 1’s strategy cannot depend explicitly on γ∗2 .
Instead, Player 1’s strategy is allowed to depend on the trajectories of B and D̄∗ and on γ∗1 , which
are observable quantities for Player 1. Actually, the former claim remains valid for any admissible
dividend policy D chosen by Player 2. Since D may depend on a randomised stopping time γ2 of
Player 2’s, then the Player 1’s strategy depends indirectly on γ2.

Remark 4.7 (Our notion of equilibrium). The definition of Nash equilibrium we use is non-
standard (Definition 4.2). Indeed, both players use strategies. The pair of dividend policies induced
by (Ξ∗,Ξ∗) is unique and well-defined (we check this carefully in Step 1 of the proof below), and
no player can do better by choosing any other admissible dividend policy (Step 2 in the proof
below). It implies that no player can do better by choosing another (randomised) strategy Ξ such
that the pair (Ξ∗,Ξ) induces a pair of admissible dividend policies (uniqueness is not necessary here).
However, for some strategies Ξ, the pair (Ξ∗,Ξ) may not induce any pair of admissible dividend
policies (see Remark 4.3) and such strategies cannot be considered in our definition. In this sense,
our notion of equilibrium lies in between the “strategy vs. strategy” (which would require delays or
other constraints for example) and “strategy vs. control”.

Proof. The proof is divided into five main steps. In the first step, we show that Ξ∗ satisfies the
conditions of Definition 4.1. In the second step we show that the pair

L̄∗
t = Ξ∗(U1, t, B, D̄∗) and D̄∗

t = Ξ∗(U2, t, B, L̄∗),(4.4)

is well-defined. In the third step we calculate the players’ payoffs associated to the pair (L̄∗, D̄∗).
Then we show optimality of such pair in two subsequent steps.

Step 1. Notice first that (u, t, φ, ζ) 7→ Ξ∗(u, t, φ, ζ) is jointly measurable. For every u ∈ [0, 1], the
trajectory

t → Ξ∗(u, t, φ, ζ) = 1{t≥γ̄∗∧σ}

[
1{σ≥γ̄∗}Φ

∗
γ̄∗(t, φ) + 1{σ<γ̄∗}Ψ

∗(t, φ, ζ)
]
,

is non-decreasing, right-continuous and it satisfies the admissibility condition in Definition 4.1(iii)
thanks to analogous properties of Φ∗ and Ψ∗. It only remains to check that t → Ξ∗(u, t, φ, ζ)
is non-anticipative. Using that b(x) ≥ α > 0 for x ∈ [0,∞), we deduce that for all (t, φ, ζ) ∈
[0,∞)× C0([0,∞))×D+

0 ([0,∞))

Ψ∗(t, φ, ζ) = sup
0≤s≤t

(
ζ(s)− b

(
x+ µ0s+ σφ(s)− ζ(s)

))+
= 1{t≥τα(ζ)}Ψ

∗(t, φ, ζ),

where we set τα(ζ) = inf{t ≥ 0 : ζt ≥ α} for ζ ∈ D+
0 ([0,∞)). It follows that, denoting τα = τα(ζ)

Ξ∗(u, t, φ, ζ) = 1{t≥γ̄∗∧σ}

[
1{σ≥γ̄∗}Φ

∗
γ̄∗(t, φ) + 1{σ<γ̄∗}1{t≥τα}Ψ

∗(t, φ, ζ)
]

= 1{t≥γ̄∗∧σ}

[
1{ζγ̄∗−=0}Φ

∗
γ̄∗(t, φ) + 1{ζγ̄∗−>0}1{t≥τα}Ψ

∗(t, φ, ζ)
]

= 1{t≥γ̄∗∧τα}

[
1{ζγ̄∗−=0}Φ

∗
γ̄∗(t, φ) + 1{ζγ̄∗−>0}Ψ

∗(t, φ, ζ)
]
,

where we used that τα ≥ σ, and that {ζγ̄∗− = 0} = {σ ≥ γ̄∗}. The final expression guarantees the
non-anticipativity property because γ̄∗(u, ·) and τα are (FW

t )-stopping times.
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Step 2. Here we show that there is a unique solution of (4.4). By independence of (U1, U2) from
the Brownian motion, we can work on a product space

(Ω,F) := (Ω0 × [0, 1]2,F0 × B([0, 1]2))
equipped with the product measure P := Q × λ × λ. Here λ denotes the Lebesgue measure and
(Ω0,F0,Q) denotes a probability space on which the Brownian motion B is defined. Fix a treble
(ω, u1, u2) ∈ Ω0 × [0, 1]2 so that (U1, U2) = (u1, u2) and the trajectory of the Brownian motion
t 7→ Bt(ω) is fixed (so is the trajectory t 7→ X0

t (ω)). Then, the random times γ∗i , i = 1, 2, from (4.2)
are uniquely determined. Here we should use the notation γ∗i (ui, ω), for i = 1, 2, L̄∗(ω, u1, u2) and
D̄∗(ω, u1, u2) to stress the dependence of these quantities on (ω, u1, u2). This is rather cumbersome,
so we drop the explicit dependence on the treble (ω, u1, u2) but we emphasise that the rest of the
construction in this step is performed pathwise.

First we show that (4.4) admits at most one solution. Let us assume that (L̄∗, D̄∗) is a solution pair
for (4.4). Then, we show that t < γ∗1 ∧γ∗2 =⇒ L̄∗

t = D̄∗
t = 0 (actually L̄∗

s = D̄∗
s = 0 for s ∈ [0, t], by

monotonicity). Arguing by contradiction, assume L̄∗
t > 0 and t < γ∗1 ∧ γ∗2 . Then from the definition

of L̄∗ and (4.4), it must be σ(D̄∗) < t and L̄∗
t = Ψ∗(t, B, D̄∗). Moreover, using the definition of Ψ∗

and recalling that b(x) ≥ α for x ∈ [0,∞), yields L̄∗
t = Ψ∗(t, B, D̄∗) > 0 =⇒ D̄∗

t > α. Then,

XL̄∗
t = X0

t −Ψ∗(t, B, D̄∗) ≥ X0
t − (D̄∗

t − α)+ = X0
t − D̄∗

t + α = Y D̄∗
t + α.(4.5)

However, since t < γ∗1 ∧ γ∗2 and L̄∗
t > 0 imply D̄∗

t > α, then we should also have t < γ∗1 ∧ γ∗2 and
D̄∗

t > 0. Therefore, we can repeat the argument above swapping the roles of the two players, and
obtain

Y D̄∗
t ≥ XL̄∗

t + α.(4.6)

Combining (4.5) and (4.6) leads to a contradiction and it must be t < γ∗1 ∧ γ∗2 =⇒ L̄∗
t = D̄∗

t = 0,
as claimed.

Next, we notice that γ∗1 ≤ γ∗2 =⇒ σ(D̄∗) ≥ γ∗1 , because Player 2 starts paying dividends only
after γ∗2 ∧ σ(L̄∗). Therefore L̄∗

t = Φ∗
γ∗
1
(t, B)1{t≥γ∗

1} and D̄∗
t = Ψ∗(t, B, L̄∗)1{t≥γ∗

1} (notice that γ∗1 =

σ(L̄∗) in this case). Similarly, γ∗2 ≤ γ∗1 =⇒ D̄∗
t = Φ∗

γ∗
2
(t, B)1{t≥γ∗

2} and L̄∗
t = Ψ∗(t, B, D̄∗)1{t≥γ∗

2}.

Then, if a solution of (4.4) exists, it is uniquely determined by the properties above.
The existence of the pair (L̄∗, D̄∗) is now easy. Indeed, the pair (γ∗1 , γ

∗
2) is exogenously determined

by the realisation of the pair (U1, U2) and the trajectory of B. Moreover, the definition of ℓ∗ and
(2.12) imply ℓ∗(x) > 0 ⇐⇒ x ∈ (a0,∞). Therefore

t 7→ Γℓ∗
t (ω) defines a measure on [0,∞)

which is supported by the set {t ≥ 0 : X0
t (ω) ∈ [a0,∞)}.

(4.7)

That implies that γ∗1 and γ∗2 can only occur during excursions of the process X0 into the half-line
[a0,∞), and thus that X0

γ∗
i
∈ [a0,∞) for all (ui, ω), i = 1, 2. Hence, it follows that P-almost surely

Φ∗
γ∗
i
(t, B) > 0 for all t ≥ γ∗i , i = 1, 2. We deduce that if γ∗1 < γ∗2 , then P-almost surely σ(L̄∗) = γ∗1

and, viceversa, if γ∗1 > γ∗2 , then P-almost surely σ(D̄∗) = γ∗2 .
Then, the solution of (4.4) is given by

(L̄∗
t , D̄

∗
t ) =

 1{t≥γ∗
1}

(
Φ∗
γ∗
1
(t, B),Ψ∗(t, B,Φ∗

γ∗
1
(·, B)

))
on {γ∗1 < γ∗2},

1{t≥γ∗
2}

(
Ψ∗(t, B,Φ∗

γ∗
2
(·, B)

)
,Φ∗

γ∗
2
(t, B)

)
on {γ∗2 < γ∗1}.

(4.8)

Notice that γ∗1(u1, ω) ̸= γ∗2(u2, ω) ⇐⇒ u1 ̸= u2 and that (λ × λ)(U1 = U2) = 0, so that (4.8)
characterises the pair (L̄∗, D̄∗) up to a P-null set.

Step 3. Here we calculate the players’ payoffs under the strategy pair (L̄∗, D̄∗). We denote

X∗ = XL̄∗
, Y ∗ = Y D̄∗

with the associated default times γX∗ and γY ∗ . We also denote γ0 = inf{t ≥
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0 : X0
t = 0}. In order to keep track of randomisation, for any realisation (U1, U2) = (u1, u2) we use

the notation

(X∗, Y ∗) = (X∗;u1u2 , Y ∗;u1u2) and (D̄∗, L̄∗) = (D̄∗;u1,u2 , L̄∗;u1,u2).

These maps are measurable in (u1, u2) by construction.
Player 2’s payoff reads

J 2
x,x(D̄

∗, L̄∗) =

∫ 1

0

∫ 1

0
J 2
x,x(D̄

∗;u1,u2 , L̄∗;u1,u2)du1du2.(4.9)

For a fixed pair (u1, u2) we have

J 2
x,x(D̄

∗;u1,u2 , L̄∗;u1,u2)

= Ex,x

[ ∫
[0,γX∗;u1,u2∧γY ∗;u1,u2 ]

e−rtdD̄∗;u1,u2
t

+ 1{γX∗;u1,u2<γY ∗;u1,u2 }e
−rγX∗;u1,u2 v̂(Y ∗;u1,u2

γX∗;u1,u2
)
]
.

(4.10)

The expression under expectation is zero on the event {γ∗1(u1) ∧ γ∗2(u2) ≥ γ0}, because default for
both firms occurs before they actually start paying any dividends.

On the complementary event, we consider separately the cases γ∗1(u1) < γ∗2(u2) and γ∗1(u1) >
γ∗2(u2). Here it is convenient to recall the notation from Remark 3.6, i.e., Φ∗(x, t, φ) and Ψ∗(x, y, t, φ, ζ),
in order to keep track of the position of the process X0 at the time when the strategies of the two
players are activated. We also introduce a shift for the trajectories in the canonical space, defined
as θt(φ(·)) = φ(t+ ·)− φ(t) for φ ∈ C0([0,∞)). Finally, from the definition of Φ∗

s and Ψ∗ it is not
hard to see that for t ≥ γ∗i (ui), i = 1, 2,

Φ∗
γ∗
i (ui)

(t, B) = Φ∗(X0
γ∗
i (ui)

, t− γ∗i (ui), θγ∗
i (ui)(B·)

)
=: Φ̃∗(t, θγ∗

i (ui)(B·)
)

Ψ∗(t, B,Φ∗
γ∗
i (ui)

)
= Ψ∗

(
X0

γ∗
i (ui)

, X0
γ∗
i (ui)

, t− γ∗1(ui), θγ∗
i (ui)(B·), Φ̃

∗(t, θγ∗
i (ui)(B·)

))
=: Ψ̃∗

(
t, θγ∗

i (ui)(B·), Φ̃
∗
)
.

Notice that, for example, on the event {γ∗1(u1) < γ∗2(u2)} we have L̄∗
t = Φ̃∗(t, θγ∗

1 (u1)(B·)) for

t ≥ γ∗1(u1), which is the optimal control in the classical dividend problem starting at X0
γ∗
1 (u1)

. Then

D̄∗
t = Ψ̃∗(t, θγ∗

1 (u1)(B·), Φ̃
∗) for t ≥ γ∗1(u1) is Player 2’s response in the game starting at X0

γ∗
1 (u1)

,

when Player 1’s concedes. From this dicusssion it follows that

{γ∗1(u1) < γ∗2(u2)} ⊂ {γX∗;u1,u2 < γY ∗;u1,u2}.

A symmetric situation occurs on the event {γ∗1(u1) > γ∗2(u2)}.
Continuing from (4.10), on the event {γ∗1(u1) < γ∗2(u2)} we have

Ex,x

[
1{γ∗

1 (u1)<γ0}1{γ∗
1 (u1)<γ∗

2 (u2)}

(∫
[γ∗

1 (u1),γX∗;u1,u2 ]
e−rtdD̄∗;u1,u2

t + e−rγX∗;u1,u2 v̂(Y ∗;u1,u2
γX∗;u1,u2

)
)]

= Ex,x

[
1{γ∗

1 (u1)<γ0}1{γ∗
1 (u1)<γ∗

2 (u2)}Ex,x

[ ∫
[γ∗

1 (u1),γX∗;u1,u2 ]
e−rtdD̄∗;u1,u2

t

+ e−rγX∗;u1,u2 v̂(Y ∗;u1,u2
γX∗;u1,u2

)
∣∣∣Fγ∗

1 (u1)

]]
.

Using the strong Markov property, on the event {γ∗1(u1) < γ0} ∩ {γ∗1(u1) < γ∗2(u2)} we can write

Ex,x

[ ∫
[γ∗

1 (u1),γX∗;u1,u2 ]
e−rtdD̄∗;u1,u2

t +e−rγX∗;u1,u2 v̂(Y ∗;u1,u2
γX∗;u1,u2

)
∣∣∣Fγ∗

1 (u1)

]
= J 2

X0
γ∗1 (u1)

,X0
γ∗1 (u1)

(Ψ̃∗, Φ̃∗),



26 DE ANGELIS, GENSBITTEL, VILLENEUVE

where the final expression is Player 2’s expected payoff when the game starts from (X0
γ∗
1 (u1)

, X0
γ∗
1 (u1)

),

Player 1 uses Φ̃∗ and Player 2 uses Ψ̃∗. From the analysis in Section 3 we know that

J 2
X0

γ∗1 (u1)
,X0

γ∗1 (u1)
(Ψ̃∗, Φ̃∗) = v2

(
X0

γ∗
1 (u1)

, X0
γ∗
1 (u1)

)
,

with v2 as in (3.54). Since X0
γ∗
1 (u1)

∈ (a0,∞) by (4.7) and, by construction, v2(x, y) = v2(a0, y) for

x ≥ a0, then

J 2
X0

γ∗1 (u1)
,X0

γ∗1 (u1)
(Ψ̃∗, Φ̃∗) = v2

(
a0, X

0
γ∗
1 (u1)

)
.

That yields

Ex,x

[
1{γ∗

1 (u1)<γ0}1{γ∗
1 (u1)<γ∗

2 (u2)}

(∫
[γ∗

1 (u1),γX∗;u1,u2 ]
e−rtdD̄∗;u1,u2

t +e−rγX∗;u1,u2 v̂(Y ∗;u1,u2
γX∗;u1,u2

)
)]

= Ex,x

[
1{γ∗

1 (u1)<γ0}1{γ∗
1 (u1)<γ∗

2 (u2)}e
−rγ∗

1 (u1)v2
(
a0, X

0
γ∗
1 (u1)

)]
.

(4.11)

On the event {γ∗2(u2) < γ∗1(u1)} the roles of the two players are reversed, in the sense that Player
2 adopts the strategy Φ∗

γ∗
2 (u2)

and Player 1 uses Ψ∗. Continuing from (4.10), arguments analogous

to the ones that yield (4.11) allow us to deduce

Ex,x

[
1{γ∗

2 (u2)<γ0}1{γ∗
1 (u1)>γ∗

2 (u2)}

∫
[γ∗

2 (u2),γY ∗;u1,u2 ]
e−rtdD̄∗;u1,u2

t

]
= Ex,x

[
1{γ∗

2 (u2)<γ0}1{γ∗
1 (u1)>γ∗

2 (u2)}e
−rγ∗

2 (u2)v0
(
X0

γ∗
2 (u2)

)]
,

(4.12)

where we also use that γX∗;u1,u2 > γY ∗;u1,u2 on the event {γ∗1(u1) > γ∗2(u2)}.
Combining (4.11) and (4.12) with (4.10) and (4.9) yields

(4.13) J 2
x,x(D̄

∗, L̄∗) = Ex,x

[
1{γ∗

2<γ∗
1∧γ0}e

−rγ∗
2 v0(X

0
γ∗
2
) + 1{γ∗

1<γ∗
2∧γ0}e

−rγ∗
1 v2(a0, X

0
γ∗
1
)
]
.

By the same arguments we obtain an analogous expression for J 1
x,x(L̄

∗, D̄∗). Therefore the two

players’ payoffs are well-defined under the strategy pair (L̄∗, D̄∗).

Step 4. In this step and in the next one we show that D̄∗ is Player 2’s best response to Player 1’s
playing L̄∗. In particular, in this step we are going to show that

J 2
x,x(D, L̄∗) ≤ V (x), for any admissible dividend policy D,(4.14)

where

V (x) = sup
τ

Ex

[
e−rτv0(X

0
τ )(1− Γ∗

τ )1{τ<γ0} +

∫ τ∧γ0

0
e−rtv2(a0, X

0
t )dΓ

∗
t

]
,(4.15)

with Γ∗ = Γℓ∗ and the supremum is taken over (Ft)-stopping times (recall that (Ft) is the Brownian
filtration). By independence of U1 from F∞ the expected payoff in V (x) can be rewritten as

Ex

[
e−rτv0(X

0
τ )(1− Γ∗

τ )1{τ<γ0} +

∫ τ∧γ0

0
e−rtv2(a0, X

0
t )dΓ

∗
t

]
= Ex

[
e−rτv0(X

0
τ )1{τ<γ∗

1}1{τ<γ0} + 1{γ∗
1≤τ∧γ0}e

−rγ∗
1 v2(a0, X

0
γ∗
1
)
]
,

(4.16)

which coincides with the right-hand side of (4.13) with τ instead of γ∗2 . There is no loss of generality
in taking stopping times for the filtration (Ft), because it is a well-known fact that the value function
in (4.15) does not change if we allow τ to be chosen from the class of randomised stopping times.
Then, a priori it must be J 2

x,x(D̄
∗, L̄∗) ≤ V (x).

In order to prove (4.14), we will work with the filtration Gt generated by Ft and the random
variable U1 so that γ∗1 is a (Gt)-stopping time. It is well-known and it is not hard to prove that,
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thanks to independence of B and U1, B is also a (Gt)-Brownian motion. Given an admissible
dividend policy D, Player 2’s payoff reads

J 2
x,x(D, L̄∗) = Ex,x

[ ∫
[0,γX∗∧γY ]

e−rtdDt + 1{γX∗<γY }e
−rγX∗ v̂(Y D

γX∗ )
]

= Ex,x

[
1{Dγ∗1−>0}

∫
[0,γY ]

e−rtdDt

+ 1{Dγ∗1−=0}

(∫
[0,γX∗∧γY ]

e−rtdDt + 1{γ∗
X<γY }e

−rγ∗
X v̂(Y D

γ∗
X
)
)]

,

(4.17)

where in the second equality we use that on {Dγ∗
1− > 0} it must be γY ≤ γX∗ by definition of L̄∗

(recall that γY only depends on D whereas γX∗ also depends on D because of the structure of L̄∗).
We now make two claims which we will prove separately after the end of this proof, for the ease

of exposition. The claims are:

Ex,x

[
1{Dγ∗1−=0}

(∫
[0,γX∗∧γY ]

e−rtdDt + 1{γX∗<γY }e
−rγX∗ v̂(Y D

γX∗ )
)]

≤ Ex,x

[
1{Dγ∗1−=0}1{γ∗

1≤γX∗∧γY }e
−rγ∗

1 v2(a0, X
0
γ∗
1
)
]
.

(4.18)

and

Ex,x

[
1{Dγ∗1−>0}

∫
[0,γY ]

e−rtdDt

]
≤ Ex,x

[
1{Dγ∗1−>0}∩{γY ≥σ(D)}e

−rσ(D)v0
(
X0

σ(D)

)]
,(4.19)

where we recall σ(D) = inf{t ≥ 0 : Dt > 0}.
We substitute (4.18) and (4.19) into (4.17). Then we use {Dγ∗

1− > 0} = {σ(D) < γ∗1} and
{γY ≥ ρ} ⊂ {γ0 ≥ ρ} for any (Gt)-stopping time ρ, to obtain

J 2
x,x(D, L̄∗)

≤ Ex,x

[
1{Dγ∗1−>0}1{γY ≥σ(D)}e

−rσ(D)v0
(
X0

σ(D)

)
+ 1{Dγ∗1−=0}1{γX∗∧γY ≥γ∗

1}e
−rγ∗

1 v2
(
a0, X

0
γ∗
1

)]
≤ Ex,x

[
1{σ(D)<γ∗

1}1{γ0≥σ(D)}e
−rσ(D)v0

(
X0

σ(D)

)
+ 1{σ(D)≥γ∗

1}1{γ0≥γ∗
1}e

−rγ∗
1 v2

(
a0, X

0
γ∗
1

)]
≤ sup

τ
Ex,x

[
1{τ<γ∗

1}1{γ0≥τ}e
−rτv0(X

0
τ ) + 1{τ≥γ∗

1}1{γ0≥γ∗
1}e

−rγ1v2(a0, X
0
γ∗
1
)
]
= V (x),

where the supremum ranges over all stopping times of the filtration (Ft) and we notice that

1{γ0=τ}v0(X
0
τ ) = 1{γ0=τ}v0(0) = 0.(4.20)

Thus, we have established (4.14).

Step 5. In this step we show that J 2
x,x(D̄

∗, L̄∗) = V (x) so that optimality of D̄∗ against L̄∗ follows
from (4.14). Thanks to the symmetry of the set-up, that will conclude the proof of the theorem
and show that (L̄∗, D̄∗) is a Nash equilibrium.
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Our observation (4.20) and an application of Itô’s formula yield for any stopping time τ (see
(3.46) for the notation)

Ex,x

[
e−rτv0(X

0
τ )
(
1− Γ∗

τ

)
1{τ<γ0}+

∫ τ∧γ0

0
e−rtv2(a0, X

0
t )dΓ

∗
t

]
= Ex

[
e−r(τ∧γ0)v0(X

0
τ∧γ0)

(
1− Γ∗

τ∧γ0
)
+

∫ τ∧γ0

0
e−rtv2(a0, X

0
t )dΓ

∗
t

]
= v0(x) + Ex

[ ∫ τ∧γ0

0
e−rs(1− Γ∗

s)
(
Av0

)
(X0

s )ds
]

+ Ex

[ ∫ τ∧γ0

0
e−rs−

∫ s
0 ℓ∗(X0

u)du
(
v2(a0, X

0
s )− v0(X

0
s )
)
ℓ∗(X0

s )ds
]
.

By definition of Γ∗ (see (4.1)) and (2.13) we see that

(1− Γ∗
s)
(
Av0

)
(X0

s ) = −e−
∫ s
0 ℓ∗(X0

u)du
[
rv0(X

0
s )− µ0

]+
= −e−

∫ s
0 ℓ∗(X0

u)du
(
v2(a0, X

0
s )− v0(X

0
s )
)
ℓ∗(X0

s )

Therefore, for any τ

Ex,x

[
e−rτv0(X

0
τ )
(
1− Γ∗

τ

)
1{τ<γ0}+

∫ τ∧γ0

0
e−rtv2(a0, X

0
t )dΓ

∗
t

]
= v0(x),(4.21)

which yields V (x) = v0(x) for all x ∈ [0,∞).
Starting from (4.13) and integrating out the randomisation device U2 of Player 2, we have

J 2
x,x(D̄

∗, L̄∗)

=

∫ 1

0
Ex,x

[
1{γ∗

2 (u)<γ∗
1∧γ0}e

−rγ∗
2 (u)v0(X

0
γ∗
2 (u)

) + 1{γ∗
1<γ∗

2 (u)∧γ0}e
−rγ∗

1 v2(a0, X
0
γ∗
1
)
]
du

=

∫ 1

0
Ex,x

[
e−rγ∗

2 (u)v0(X
0
γ∗
2 (u)

)
(
1− Γ∗

γ∗
2 (u)

)
1{γ∗

2 (u)<γ0}+

∫ γ∗
2 (u)∧γ0

0
e−rtv2(a0, X

0
t )dΓ

∗
t

]
du

= v0(x),

where the second equality is due to (4.16) and the final one is by (4.21).
Therefore, we have shown J 2

x,x(D̄
∗, L̄∗) = V (x) = v0(x), as needed. □

It remains to prove the formulae in (4.18) and (4.19).

Proof of (4.18) and (4.19). Let us start with the proof of (4.18).
First we recall that by construction v2(x, y) = v2(a0, y) for x ≥ a0. Second we recall that

XL̄∗
γ∗
1

= X0
γ∗
1
≥ a0 on {Dγ∗

1− = 0} by definition of L̄∗ and γ∗1 (c.f. (4.7)). Finally we recall that

v2(x, y) = u2(x, y − x) (see (3.8)) and that ZL̄∗,D
t = ZD

t = Y D
t −XL̄∗

t . Then, on {Dγ∗
1− = 0}, we

have

e−rγ∗
1 v2(a0, Y

D
γ∗
1
) = e−rγ∗

1 v2(X
0
γ∗
1
, Y D

γ∗
1
) = e−rγ∗

1 v2(X
∗
γ∗
1
, Y D

γ∗
1
) = e−rγ∗

1u2(X
∗
γ∗
1
, ZD

γ∗
1
).
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For any (Gt)-stopping time ρ ≤ γX∗ ∧ γZ , Itô’s formula yields (c.f. (3.46) for the notation)

e−rγ∗
1u2(X

∗
γ∗
1
, ZD

γ∗
1
) = Ex,x

[
e−r(γ∗

1∨ρ)u2(X
∗
γ∗
1∨ρ, Z

D
γ∗
1∨ρ)−

∫ γ∗
1∨ρ

γ∗
1

e−rs(Au2)(X
∗
s , Z

D
s )ds

∣∣∣Gγ∗
1

]
− Ex,x

[ ∫ γ∗
1∨ρ

γ∗
1

e−rs
(
∂zu2 − ∂xu2

)
(X∗

s , Z
D
s )dL̄∗,c

s

∣∣∣Gγ∗
1

]
+ Ex,x

[ ∫ γ∗
1∨ρ

γ∗
1

e−rs∂zu2(X
∗
s , Z

D
s )dDc

s

∣∣∣Gγ∗
1

]
− Ex,x

[ ∑
s∈(γ∗

1 ,γ
∗
1∨ρ]

e−rs
(
u2(X

∗
s , Z

D
s )− u2(X

∗
s−, Z

D
s−)

)∣∣∣Gγ∗
1

]
,

(4.22)

where we removed the stochastic integral, which is a (Gt)-(local)martingale (standard localisation
arguments may be used if needed).

Now we recall from Step 5 in the proof of Proposition 3.7 that (Au2)(X
∗
s , Z

D
s ) ≤ 0 for a.e. s ≥ 0,

∂zu2(X
∗
s , Z

D
s ) ≥ 1 for all s ≥ 0. Moreover, on the event {Dγ∗

1− = 0} we have that L̄∗
s = Φγ∗

1
(s,B)

for s ≥ γ∗1 . That implies L̄∗
s = L̄∗,c

s and dL̄∗
s = 1{X∗

s=a0}dL̄
∗
s for s > γ∗1 . Thus, for every s > γ∗1 we

have
(∂zu2 − ∂xu2)(X

∗
s , Z

D
s )dL̄∗,c

s = (∂zu2 − ∂xu2)(a0, Z
D
s )dL̄∗,c

s = 0,

and, using ∂zu2 ≥ 1,

u2(X
∗
s , Z

D
s )− u2(X

∗
s−, Z

D
s−)

)
= u2(X

∗
s , Z

D
s )− u2(X

∗
s , Z

D
s−)

)
≤ −∆Ds.

Combining these observations with (4.22) and rewriting u2 in terms of v2 leads us to

1{Dγ∗1−=0}e
−rγ∗

1 v2(a0, Y
D
γ∗
1
) = 1{Dγ∗1−=0}e

−rγ∗
1 v2(X

∗
γ∗
1
, Y D

γ∗
1
)

≥ 1{Dγ∗1−=0}Ex,x

[
e−r(γ∗

1∨ρ)v2(X
∗
γ∗
1∨ρ, Y

D
γ∗
1∨ρ) +

∫
(γ∗

1 ,γ
∗
1∨ρ]

e−rsdDs

∣∣∣Gγ∗
1

]
.

(4.23)

Choose ρ = γX∗ ∧ γY . On the event {Dγ∗
1− = 0} ∩ {γ∗1 < γX∗ ∧ γY } we have

v2(X
∗
γX∗∧γY , Y

D
γX∗∧γY ) = 1{γX∗<γY }v2(X

∗
γX∗∧γY , Y

D
γX∗∧γY ) = 1{γX∗<γY }v̂(Y

D
γX∗ ),

where the first equality holds because v2(x, 0) = 0 and the second one because v2(0, y) = v̂(y). For
ω ∈ {Dγ∗

1− = 0} ∩ {γ∗1 = γX∗ ∧ γY } the process D has no jump at γ∗1 because of the admissibility

condition (2.2). Hence it must be also γX∗(ω) = γY (ω) = γ0(ω) andX∗
γ0(ω) = Y D

γ0 (ω) = X0
γ0(ω) = 0.

Thus, on the event {Dγ∗
1− = 0} ∩ {γ∗1 = γX∗ ∧ γY } we have

v2(X
∗
γ∗
1
, Y D

γ∗
1
) +

∫
(γ∗

1 ,γ
∗
1 ]
e−rsdDs = v2(0, 0) = 0 = v̂(Y D

γ∗
1
),

where for the integral we use that (γ∗1 , γ
∗
1 ] = ∅.

Since {γ∗1 ≤ γX∗ ∧ γY } ∈ Gγ∗
1
, combining the observation above with (4.23), we conclude that

Ex,x

[
1{Dγ∗1−=0}∩{γ∗

1≤γX∗∧γY }e
−rγ∗

1 v2(a0, Y
D
γ∗
1
)
]

≥ Ex,x

[
1{Dγ∗1−=0}∩{γ∗

1≤γX∗∧γY }

(∫
(γ∗

1 ,γX∗∧γY ]
e−rsdDs + 1{γX∗<γY }e

−rγX∗ v̂(Y D
γX∗ )

)]
.

(4.24)

Notice that
v2(a0, Y

D
γ∗
1
)− v2(a0, Y

D
γ∗
1−) ≤ −∆Dγ∗

1
,

because ∂yv2 = ∂zu2 ≥ 1. Moreover, on the event {Dγ∗
1− = 0} ∩ {γ∗1 ≤ γX∗ ∧ γY }∫

(γ∗
1 ,γX∗∧γY ]

e−rsdDs + e−rγ∗
1∆Dγ∗

1
=

∫
[0,γX∗∧γY ]

e−rsdDs.
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Then, adding on both sides of (4.24) the quantity e−rγ∗
1∆Dγ∗

1
we obtain

Ex,x

[
1{Dγ∗1−=0}∩{γ∗

1≤γX∗∧γY }e
−rγ∗

1 v2(a0, Y
D
γ∗
1−)

]
≥ Ex,x

[
1{Dγ∗1−=0}∩{γ∗

1≤γX∗∧γY }

(∫
[0,γX∗∧γY ]

e−rsdDs + 1{γX∗<γY }e
−rγX∗ v̂(Y D

γX∗ )
)]

.
(4.25)

Finally, we notice that

1{Dγ∗1−=0}∩{γ∗
1>γX∗∧γY }

(∫
[0,γX∗∧γY ]

e−rsdDs + 1{γX∗<γY }e
−rγX∗ v̂(Y D

γX∗ )
)

= 1{Dγ∗1−=0}∩{γ∗
1>γX∗∧γY }1{γX∗<γY }e

−rγX∗ v̂(X0
γX∗ ) = 0,

where the final equality uses that for every ω ∈ {Dγ∗
1− = 0} ∩ {γ∗1 > γX∗ ∧ γY } we have Dt(ω) =

L̄∗
t (ω) = 0 for all t ∈ [0, γX∗(ω)∧γY (ω)], hence implying that γX∗(ω) = γY (ω) = γ0(ω)

4. Combining
with (4.25) we arrive at

Ex,x

[
1{Dγ∗1−=0}∩{γ∗

1≤γX∗∧γY }e
−rγ∗

1 v2(a0, Y
D
γ∗
1−)

]
≥ Ex,x

[
1{Dγ∗1−=0}

(∫
[0,γX∗∧γY ]

e−rsdDs + 1{γX∗<γY }e
−rγX∗ v̂(Y D

γX∗ )
)]

.

The expression in (4.18) is finally obtained upon noticing that on {Dγ∗
1− = 0} we have Y D

γ∗
1−

= X0
γ∗
1
.

Now we prove (4.19). Recall σ(D) = inf{t ≥ 0 : Dt > 0}. For any (Gt)-stopping time ρ ≤ γY ,
Itô’s formula yields

e−rσ(D)v0(Y
D
σ(D))

= Ex,x

[
e−r(ρ∨σ(D))v0

(
Y D
ρ∨σ(D)

)
−
∫ ρ∨σ(D)

σ(D)
e−rs

(
Av0

)
(Y D

s )ds+

∫ ρ∨σ(D)

σ(D)
e−rs∂yv0(Y

D
s )dDc

s

−
∑

s∈(σ(D),σ(D)∨ρ]

e−rs
(
v0(Y

D
s )− v0(Y

D
s−)

)∣∣∣Gσ(D)

]
,

(4.26)

where we removed the stochastic integral (using standard localisation if needed). From (2.9) we
know that for all s ≥ 0

(
Av0

)
(Y D

s ) ≤ 0, ∂yv0(Y
D
s ) ≥ 1, v0(Y

D
s )− v0(Y

D
s−) ≤

∫ Y D
s

Y D
s−

∂yv0(u)du ≤ −(Ds −Ds−).

Combining these with (4.26) and taking ρ = γY , we obtain

1{Dγ∗1−>0}∩{γY >σ(D)}e
−rσ(D)v0(Y

D
σ(D))

≥ 1{Dγ∗1−>0}∩{γY >σ(D)}Ex,x

[ ∫
(σ(D),γY ]

e−rsdDs

∣∣∣Gσ(D)

]
.

4Notice that X∗
t (ω) = Y D

t (ω) = X0
t (ω) for t ∈ [0, γX∗(ω) ∧ γY (ω)]. So even if we consider the event {γX∗ ≤ γY }

instead of {γX∗ < γY } we obtain 1{γX∗≤γY }e
−rγX∗ v̂(X0

γX∗ ) = 1{γX∗≤γY }e
−rγX∗ v̂(0) = 0.
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Since v0(Y
D
σ(D)) − v0(Y

D
σ(D)−) ≤ −∆Dσ(D), then adding e−rσ(D)∆Dσ(D) on both sides in the

expression above and recalling that Y D
t (ω) = X0

t (ω) for t ∈ [0, σ(D)(ω)), yields

1{Dγ∗1−>0}∩{γY >σ(D)}e
−rσ(D)v0(X

0
σ(D))

≥ 1{Dγ∗1−>0}∩{γY >σ(D)}Ex,x

[ ∫
[σ(D),γY ]

e−rsdDs

∣∣∣Gσ(D)

]
= 1{Dγ∗1−>0}∩{γY >σ(D)}Ex,x

[ ∫
[0,γY ]

e−rsdDs

∣∣∣Gσ(D)

]
.

(4.27)

Now we notice that on {γY = σ(D)} we have Y D
σ(D) = Y D

γY
= 0 and Y D

σ(D)− = X0
σ(D). It follows

that ∆Dσ(D) = X0
σ(D) and v0(Y

D
σ(D))− v0(Y

D
σ(D)−) = v0(0)− v0(X

0
σ(D)) = −v0(X

0
σ(D)). Since v′0 ≥ 1

on [0,∞), then

−v0(X
0
σ(D)) = v0(Y

D
σ(D))− v0(Y

D
σ(D)−) = −

∫ ∆Dσ(D)

0
v′0(Y

D
σ(D)− − y)dy ≤ −∆Dσ(D).

We deduce that on the event {Dγ∗
1− > 0} ∩ {γY = σ(D)}∫

[0,γY ]
e−rsdDs = e−rσ(D)∆Dσ(D) ≤ e−rσ(D)v0(X

0
σ(D)).

Notice also that on the event {Dγ∗
1− > 0} ∩ {γY < σ(D)},∫

[0,γY ]
e−rsdDs = 0.

Taking expectation in (4.27) and using these observations we can conclude

Ex,x

[
1{Dγ∗1−>0}

∫
[0,γY ]

e−rsdDs

]
≤ Ex,x

[
1{Dγ∗1−>0}∩{γY ≥σ(D)}e

−rσ(D)v0
(
X0

σ(D)

)]
,

as claimed in (4.19). □

Appendix A.

In this short appendix we recall a simple useful lemma (see, e.g., [17, Lem. 4.4]).

Lemma A.1. Let (νt)t≥0 be a càdlàg process of bounded variation and let (Mt)t≥0 be a continuous
semimartingale. Assume there is a positive, (locally) integrable process (mt)t≥0 such that

⟨M⟩t =
∫ t

0
msds, t ≥ 0,

and mt ≥ ε for all t ≥ 0, for some ε > 0. Then

E
[ ∫ T

0
1{Ms=νs}ds

]
= 0.

Proof. Set N := M − ν and let hδ(z) := 1(−δ,δ)(z). By the occupation time formula (see, e.g., [19,
Thm. IV.45.1]) we have∫ T

0
hδ(Ns)d⟨N⟩s =

∫
R
hδ(z)ℓ

z
Tdz =

∫ δ

−δ
ℓzTdz, P− a.s.

where (ℓzt )t≥0 is the local time at z ∈ R of the process N . The left-hand side of the expression
above is finite and therefore ℓzT < ∞, P-a.s., for a.e. z ∈ (−δ, δ). Letting δ ↓ 0, using the dominated
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convergence theorem on both sides of the expression, we obtain

0 =

∫ T

0
1{Ns=0}d⟨N⟩s =

∫ T

0
1{Ms=νs}d⟨M⟩s

=

∫ T

0
1{Ms=νs}msds ≥ ε

∫ T

0
1{Ms=νs}ds, P− a.s.,

where for the second equality we recall that ν is of bounded variation. The final expression yields
the claim of the lemma. □
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