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Abstract

Judge-lenciency designs are very popular. Evaluating whether conventional inference
procedures apply to it is not immediate. We frame such designs as an inference
problem from grouped data in a setting with a growing number of groups and limited
variation between groups. Such an asymptotic approximation is well suited for the
data sets encountered in practice. The two-stage least-squares estimator should never
be used. The jackknife instrumental-variable estimator can present a reliable tool for
inference, provided that a non-standard asymptotic-variance estimator is used along
with it. Conventional decision rules to gauge instrument strength are typically not
valid in our setting. An alternative such decision rule is provided and is found to
perform well.
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In an influential study, Kling (2006) exploited the random assignment of court cases to

judges to estimate the effect of the duration of incarceration spells on employment and

earnings prospects of individuals upon their release from prison. The underlying idea is

that variation in the severity of judges induces exogenous variation in incarceration length

that can be leveraged via an instrumental-variable strategy. This so-called judge-leniency
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design (or examiner design) extends naturally to a variety of other settings and has become

very popular in empirical work.1

The leniency of a judge is not unobserved in the data. In a two-stage least-squares

procedure it is estimated by (in the context of Kling 2006) the average incarceration length

across all cases of a given judge, i.e., as a judge fixed effect. This first-stage estimation

introduces bias. Several studies have used versions of a jackknife instrumental-variable

estimator. However, the few papers that spell out which asymptotic scheme they use to

perform inference tend to work under asymptotics where the number of judges is fixed

(a recent example is Frandsen, Lefgren and Leslie 2023). Under such a framework both

estimators have the same asymptotic distribution, and so such a limit theory does not

provide an argument for the use of the jackknife estimator.

It is fruitful to frame the judge-leniency design as a problem concerning data with a

group structure. With n judges and (say) m cases per judge the data can be partitioned

into n non-overlapping groups of size m. Below we show that the bias in the two-stage

least-squares estimator invalidates inference based on it unless, at a minimum, n/m → 0.

This rate is familiar from the panel-data literature, although it usually shows up there in

the context of nonlinear problems (Hahn and Newey 2004, Dhaene and Jochmans 2015).

Kling’s (2006) data contain 4609 cases distributed over 52 judges, yielding an average of

88 cases per judge. Similarly, in the data of Bhuller, Dahl, Loken and Mogstad (2020) each

of 500 judges handled an average of 258 cases while in the study of González-Uribe and

Reyes (2021) 50 judges were involved in the evaluation of 135 grant applications, yielding

an average of less than 3 cases per judge. These examples suggest that working under an

approximation based on asymptotics where n/m is bounded away from zero (and, possibly,

even diverges to infinity) is more suitable.

Not treating the number of judges as fixed leads to asymptotics with a growing number

of instruments (as first considered in Kunitomo 1980, Morimune 1983, and Bekker 1994).

1Just a few examples of different applications are in Maestas, Mullen and Strand (2013), Aizer and

Doyle Jr. (2015), Doyle Jr, Graves, Gruber and Kleiner (2015), Arnold, Dobbie and Yang (2018), Dobbie,

Goldin and Yang (2018), Bhuller, Dahl, Loken and Mogstad (2020), and González-Uribe and Reyes (2021).
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The jackknife estimator is known to perform better than two-stage least-squares under

such a paradigm (Chao and Swanson 2005). In our setting it can yield correct inference

under asymptotics where m remains fixed as n grows. To highlight why this is so we will

frame the first stage as an error-component model where judge decisions are composed

of a judge-specific component and an idiosyncratic case-specific component. When cases

are uncorrelated conditional on the judge effect, the decisions made by a given judge on

cases other than the one under consideration constitute valid and relevant instrumental

variables. With two cases per judge this yields a just-identified setting. Hence, consistent

estimation of the judge effect is not needed. This idea is reminiscent to an identification

argument used in the literature on peer effects (Jochmans 2023). The jackknife estimator

can be obtained from this by averaging over all available other cases. This interpretation,

while simple, does not appear to be well-appreciated in the literature.

In our formulation instrument strength is governed by the cross-sectional variance of

the judge-specific component, say σ2
nm. A relevant concern may be that this variance is

small relative to the number of judges n. When σ2
nm is allowed to shrink with the sample

size, the jackknife estimator continues to deliver asymptotically-valid inference provided

that σ2
nm

√
nm diverges as the sample size grows large. However, the convergence rate of

the estimator is affected and the usual first-order asymptotic variance is no longer correct,

in general. Moreover, unless σ2
nmm diverges, the variance needs to be adjusted. Below

we provide a simple variance estimator that adapts to the severity of the weak-instrument

problem. This variance estimator needs to be constructed with care, as naive plug-in

estimators of the variance components will have biases that vanish only as m grows, and so

are ill-suited for situations where judges are assigned only few cases. Our variance formula

is similar to Chao, Swanson, Hausman, Newey and Woutersen (2012). Adjusting standard

errors for the jackknife estimator to handle limited variation in judge leniency is important

but does not appear to be common practice in empirical work. As part of our numerical

illustrations, we highlight how this can lead to standard errors that dramatically understate

the true sampling variability of the jackknife estimator, and so lead to substantially too

many false positive test results.
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Finally, it is useful to have some measure of instrument strength in the judge-leniency

design. Classic rules-of-thumb based on the first-stage F-statistic, as in Staiger and Stock

(1997) and Stock and Yogo (2005), cannot be used here unless σ2
nm

m/n→∞. We redo their

exercise in our context and look for a statistic that can be informative about the maximal

overrejection of a test based on the jackknife estimator under asymptotics where σ2
nm

√
nm

remains bounded. The test statistic is a scaled version of the estimated signal-to-noise ratio

in the error-component model. Here, again, the variances of both the signal and the noise

need to be estimated with care. Although some of the details are different, our approach

turns out to yield the same decision rule as the one recently proposed by Mikusheva and

Sun (2022).

1 The judge-leniency design

Consider a setting where n ×m individuals (e.g., cases or applications) are assigned to n

groups (e.g., judges or examiners) so that each group contains m individuals. Let ygi and

xgi denote observable random variables for individual i in group g, taken to be related via

ygi = β0 + βxgi + εgi. (1)

Interest lies in learning (the constant β0 and) the slope coefficient β when xgi is suspected

to be correlated with the latent variable εgi. To this end the specification is completed with

xgi = α0 + σnmαg + ugi. (2)

Here, α0 and σnm > 0 are unknown coefficients while αg and ugi are latent variables. We

impose the following assumptions throughout to complete the model.

A.1 The αg are i.i.d. with mean zero and variance one.

A.2 The (εgi, ugi) are i.i.d. across g and i with mean zero and finite fourth-order moments.

A.3 The αg are independent of (εg′i, ug′i) for all g, g′ and all i.
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These assumptions are meant to capture the essence of the judge-leniency design.2 They

state that xgi is endogenous unless σuε := E(ugiεgi) is equal to zero but also imply that the

presence of group-specific effects αg introduces exogenous variation that can be leveraged

in an instrumental-variable strategy. In A.1 the group effects have been normalized so that

α0 + σnmαg ∼ i.i.d.(α0, σ
2
nm).

This is without loss of generality and convenient for our purposes as the instrument strength

is governed by the single parameter σnm.

2 Estimators

Oracle estimator We begin by considering the infeasible instrumental-variable estimator

that uses the unobservable αg as instrument. This reduces the setting to a just-identified

problem on group-averaged data. The oracle estimator of β equals

β̂oracle :=
n∑
g=1

αg ỹg

/
n∑
g=1

αg x̃g,

where ỹg := ȳg − ȳ for ȳg := 1/m
∑m

i=1 ygi and ȳ := 1/n
∑n

g=1 ȳg, and x̃g and x̄ are defined in

the same manner. This estimator can be applied in settings where we observe only a single

individual per group.

Re-arranging terms using (1)–(2) and scaling up both numerator and denominator by

the square-root of the sample size gives.

β̂oracle − β =

√
m/n
∑n

g=1 αgε̄g +Op(1/
√
n)

√
nmσnm +

√
m/n
∑n

g=1 αgūg +Op(
√
mσnm)

. (3)

2The assumptions are stronger than necessary and can be substantially relaxed, e.g., by allowing for

heteroskedasticity in both equations. This would not alter our main points but would require additional

technical conditions to validate the use of asymptotics, clouding the exposition. Under A.1–A.3 all

asymptotic statements below follow from standard arguments for the i.i.d. case when n → ∞ while m is

fixed, and from the limit theorems of Hall and Heyde (1980) on martingale arrays when n,m→∞ jointly.
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Now, as n→∞ with m fixed or n,m→∞, √
m/n
∑n

g=1 αgε̄g√
m/n
∑n

g=1 αgūg

 d→ N

  0

0

 ,

 σ2
ε σuε

σuε σ2
u

  ,

where σ2
ε := E(ε2gi) and σ2

u := E(u2gi). We thus have three possible cases depending on the

behavior of σnm as the sample size grows.

1. If nmσ2
nm →∞ the noise in the denominator is of a smaller order than the signal. Then,

β̂oracle
p→ β and

√
nm(σnm/σε)(β̂oracle − β)

d→ N(0, 1).

This covers the strong-instrument setting where σnm → σ ∈ (0,∞) but also allows for σnm

to vanish, provided that it does so at a rate slower than 1/√nm. In the former case the

estimator converges at the parametric rate of 1/√nm. In the latter case the rate slows down

to 1/
√
nmσ2

nm.

2. If nmσ2
nm → c ∈ (0,∞) we are in a setting that corresponds to the weak-instrument

framework of Staiger and Stock (1997). The estimator stays random in the limit and,

hence, is inconsistent. Its limit distribution is complicated to state but in our case follows

readily from the calculations in Hinkley (1969) (see also Marsaglia 1965).

3. If nmσ2
nm → 0, β̂oracle−β behaves like the ratio of two zero-mean (but not independent)

normal variables. Hence (see, e.g., Geary 1930),

β̂oracle − β
d→ Cauchy

(
ρ σε/σu,

√
1−ρ2 σu/σε

)
,

where ρ := σuε/σuσε. This limit distribution is the same as what would be obtained with

instruments that are completely irrelevant.

Two-stage least-squares estimator Now turn to the case where the group effects are

unobserved. With multiple observations per group one can estimate αg by the sample

average

x̄g = α0 + σnmαg + ūg =: α̂g,
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and construct the feasible two-stage least-squares estimator

β̂2sls :=
n∑
g=1

α̂g ỹg

/
n∑
g=1

α̂g x̃g.

The introduction of the first stage creates complications compared to the oracle estimator.

We have

β̂2sls − β =
σnm

√
m/n
∑n

g=1 αgε̄g +
√

m/n
∑n

g=1 ūgε̄g +Op(σnm/√n + 1/√nm)
√
nmσ2

nm + 2σnm
√

m/n
∑n

g=1 αgūg +
√

n/m
∑n

g=1 ū
2
g +Op(σnm/√n + 1/nm)

. (4)

Both numerator and denominator now feature (scaled averages of) V-statistics. These

satisfy

√
m/n

n∑
g=1

ūgε̄g =
√

n/mσuε +Op(1/
√
m),

√
m/n

n∑
g=1

ū2g =
√

n/mσ2
u +Op(1/

√
m).

The former introduces a bias of order 1/m into the two-stage least-squares, implying that it is

inconsistent as n→∞ for fixed m. The issue can be understood through many-instrument

asymptotics as in Bekker (1994) and others, but in our setting with grouped data it can

simply be viewed as a manifestation of the incidental-parameter problem (Neyman and

Scott 1948).

When m grows with n the bias shrinks but can remain important. First, inspection of

(4) reveals that, in large samples, the bias term dominates all stochastic terms. Moreover,

σ2
nmm→∞

is required for consistency of the two-stage least-squares estimator. Under this condition,

√
nm(σnm/σε)(β̂2sls − β) =

√
m/n

n∑
g=1

αgε̄g +
√

n/σ2
nmmσuε + op(1),

which is asymptotically standard normal provided that

σ2
nm

m/n→∞.

When σnm → σ ∈ (0,∞) this requirement amounts to n/m → 0, which is reminiscent to

rates obtained in the literature on nonlinear models for panel data; see, e.g., Hahn and
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Newey (2004). Thus, even in this case, the validity of conventional inference procedures

based on two-stage least-squares requires m to be much larger than n. Such a situation is

very rarely met in practice.

The bias issue could be mitigated by working with the bias-corrected estimator(
n∑
g=1

α̂g ỹg − σ̂uεn/m

)/
n∑
g=1

α̂g x̃g,

where σ̂uε is an estimator of σuε. If the latter estimator is constructed using residuals from

the two-stage least-squares estimator this will yield an asymptotically-unbiased estimator

provided that

σ2
nm

m3/n→∞.

While this is an improvement over two-stage least squares, a better approach to debiased

estimation is to rely on cross-fitting, which we turn to next.

Jackknife instrumental-variable estimator To motivate the use of cross-fitting in

the judge-lenciency design note that xg1, . . . , xgm are all noisy signals of αg. Furthermore,

conditional on αg, these signals are all uncorrelated and unbiased for α0 + σnmαg while,

unconditionally, their covariance is σ2
nm.3 It follows that

cov(xgj, ygi) = cov(xgj, xgi) β

for any j 6= i. Thus, each such xgj is a valid and relevant instrumental variable for xgi.

Averaging over all possible j gives

zgi := 1/m−1
∑
j 6=i

xgj

and the estimator

β̌jive :=
n∑
g=1

m∑
i=1

zgiỹgi

/
n∑
g=1

m∑
i=1

zgix̃gi,

3Lack of correlation between the xgi conditional on αg may be evaluated by a test for serial correlation

in fixed-effect models for panel data; see Jochmans (2020a,b).
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where ỹgi := ygi − ȳ and x̃gi := xgi − x̄. This is a jackknife instrumental-variable estimator

as in Angrist, Imbens and Krueger (1999). Indeed,

zgi = α0 + σnmαg + 1/m−1
∑
j 6=i

ugj

can be seen as an estimator of α0 + σnmαg that, in contrast to α̂g, is uncorrelated with εgi.

The use of cross-fitting prevents the noise in the estimated group effects from inducing

bias. The numerator of the jackknife estimator satisfies

1/nm
n∑
g=1

m∑
i=1

zgiỹgi = σn,m/n
n∑
g=1

αgε̄g + 1/nm(m−1)

n∑
g=1

m∑
i=1

∑
j 6=i

ugjεgi +Op(σn,m/n√m + 1/nm).

It differs from the numerator of two-stage least-squares in that it features the (degenerate)

U-statistic

1/nm(m−1)

n∑
g=1

m∑
i=1

∑
j 6=i

ugjεgi = Op(1/
√
nm)

instead of the V-statistic 1/nm2
∑n

g=1

∑m
i=1

∑m
j=1 ugjεgi = σuε/m + Op(1/

√
nm) from before,

which was the source of bias.

Re-arranging terms reveals that

β̂jive − β = 1/σnmn

n∑
g=1

αgε̄g + 1/σ2
nmnm(m−1)

n∑
g=1

m∑
i=1

∑
j 6=i

ugjεgi +Op(1/σn,mn
√
m + 1/σ2

n,mnm).

The leading two terms on the right-hand side are of the order 1/
√
σ2
nmnm and 1/σ2

nm

√
nm,

respectively. Therefore, consistency requires that

σ2
nm

√
nm→∞.

Notice that this condition can be satisfied when n → ∞ as m is held fixed. Moreover, in

contrast to with two-stage least-squares, consistent estimation is possible as soon as two

individuals per group are available.

The asymptotic distribution of the estimator depends on the relative importance of the

two leading terms. We have three possible cases.

1. The first term converges slower than the second term when

σ2
nmm→∞.
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This is the same requirement that was needed for two-stage least squares to be consistent.

In this case,
√
nm(σnm/σε)(β̂jive − β)

d→ N(0, 1).

and the jackknife estimator has (to first order) the same limit distribution as the oracle

estimator. However, this oracle property is clearly not attainable under asymptotics where

m is held fixed.

2. Both terms converge at the same rate when

σ2
nmm→ c2 ∈ (0,∞).

In this case we retain the same convergence rate as in Case 1 but the asymptotic variance

is affected. We have

√
nm(σnm/σε)

√
σ2
nmm/σ2

nmm+σ2
u(β̂jive − β)

d→ N(0, 1).

Note that σ2
nmm/σ2

nmm+σ2
u → c2/c2+σ2

u ∈ (0, 1) and so the the asymptotic variance in Case 2 is

strictly larger than in Case 1. This case covers asymptotics where n→∞ while m remains

fixed and σnm → σ ∈ (0,∞). It also covers drifting sequences of the form σnm = c/√n for a

constant c when n and m grow large at the same rate. This drifting sequence is interesting

as it captures the idea that the group effect αg may explain little of the cross-sectional

variation in the xgi.

3. The first term converges faster than the second term when

σ2
nmm→ 0.

Here, the second term dominates. This affects the convergence rate and the asymptotic

variance. We now have

√
nm(σ2

nm/σuσε)(β̂jive − β)
d→ N(0, 1).

This final case is important as it covers situations where σnm → 0 when n → ∞ and m

remains fixed. It equally applies to drifting sequences of the form σnm = c/√n when n grows
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faster than m, although the consistency requirement in such a case would still demand that

n/m2 → 0.

Compared to the oracle estimator, we observe two important differences. First, inference

based on the former requires that σ2
nmnm → ∞ while the jackknife requires the stronger

condition that σ2
nm

√
nm→∞. Second, the feasible estimator will often have an asymptotic

variance that is different from the one of the oracle estimator. Both these differences can

be attributed to the presence of the U-statistics, which arise because the group effects are

unobserved.

3 Inference

Estimators for variance components The above results show that there is no basis to

further entertain the two-stage least-squares estimator and so we proceed with the jackknife

estimator. For inference estimators of the various components of the asymptotic variances

above are needed. Mindful of the potential bias induced by estimating group effects we

propose to use

σ̂2
nm := 1/nm

n∑
g=1

m∑
i=1

zgix̃gi, and σ̂2
u := 1/nm(m−1)

n∑
g=1

m∑
i=1

∑
j 6=i

1/2(xgi − xgj)2,

as estimators of σ2
nm and σ2

u, respectively. Both can be seen to be cross-fit type estimators.

This avoids bias of order 1/m that would arise from conventional plug-in estimators. This is

important because we want to cover cases where m may be held fixed as n→∞. In fact,

both of the proposed estimators are exactly unbiased. Furthermore,

σ̂2
u = 1/nm

n∑
g=1

m∑
i=1

u2gi − 1/nm(m−1)

n∑
g=1

m∑
i=1

∑
j 6=i

ugiugj = σ2
u +Op(1/

√
nm) +Op(1/

√
nm),

while

σ̂2
nm = σ2

nm + σnm2/n

n∑
g=1

αgūg + 1/nm(m−1)

n∑
g=1

m∑
i=1

∑
j 6=i

ugiugj +Op(σ
2
nm/√n + σnm/n√m + 1/nm),

and so both estimators are consistent as n→∞ whether or not m grows with n. Note that

σ̂2
nm is nothing else than the denominator of the jackknife instrumental-variable estimator.
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To estimate σ2
ε , finally, we will make use of

σ̂2
ε := 1/nm

n∑
g=1

m∑
i=1

ε̂2gi,

where ε̂gi := ỹgi − x̃giβ̂jive. Let ω := β̂jive − β = Op(1/σ2
nm

√
nm). A small calculation shows

that

σ̂2
ε = σ2

ε − 2σuε ω + (σ2
nm + σ2

u)ω
2 +Op(1/

√
nm + ω2/√n + ω2/n√m).

Consistency of the jackknife estimator—i.e., ω
p→ 0 or σ2

nm

√
nm → ∞—therefore implies

that σ̂2
ε

p→ σ2
ε .

Studentization The jackknife estimator can be studentized in a manner so that it is

asymptotically standard normal no matter the case which we are in. With the estimators

from the previous paragraph,

t̂ :=
√
nm(σ̂nm/σ̂ε)

√
σ̂2
nmm/σ̂2

nmm+σ̂2
u (β̂jive − β)

d→ N(0, 1),

independent of the behavior of σ2
nmm, provided, of course, that σ2

nm

√
nm → ∞. Indeed,

the factor,
√

σ̂2
nmm/σ̂2

nmm+σ̂2
u makes the studentization adapt to σ2

nmm. Therefore, we do not

need to know which of the three cases we are in to perform asymptotically-valid inference.

Evaluating instrument strength Under asymptotics where σ2
nm

√
nm → c < ∞ the

jackknife estimator is inconsistent. Indeed,

ω
p→ 1/√nm

n∑
g=1

m∑
i=1

∑
j 6=i

ugjεgi

/(
c+ 1/√nm

n∑
g=1

m∑
i=1

∑
j 6=i

ugjugi

)
d→ ω1/ω2,

where  ω1

ω2

 ∼ N

  0

c

 ,

 σ2
uσ

2
ε σ2

uσuε

σ2
uσuε σ2

uσ
2
u

  .

The estimator stays random in the limit, following a distribution that can be obtained from

Hinkley (1969) (a Cauchy distribution is obtained in the limit where c → 0). Using the

expansions from the previous paragraph a small calculation reveals that the studentized
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statistic from above remains bounded in probability under such asymptotic sequences.

Moreover,

t̂ 2
d→ ω2

1/(σ
2
uσ

2
ε − 2σ2

uσuε ω + σ4
u ω

2) ∼ $2
1/(1− 2ρ$ +$2),

where the last transition follows from normalising the random variables ω1 and ω2, and

uses $ := $1/$2 for  $1

$2

 ∼ N

  0

c0

 ,

 1 ρ

ρ 1

  ,

where c0 := c/σ2
u and, recall, ρ = σuε/σuσε is the correlation of the disturbances. Following

Staiger and Stock (1997) and Stock and Yogo (2005) we can then calculate the asymptotic

size of a two-sided t-test with nominal size a0, i.e.,

aρ,c0(a0) := P(|t̂| > Φ−1(1− a0/2)),

under sequences where σ2
nm

√
nm→ c <∞ given values for the nuisance parameters ρ and

c0. The maximal rejection probability of the t-test with nominal size a0, as a function of

c0, then is maxρ∈[−1,1] aρ,c0(a0) = a1,c0(a0). Table 1 reports this worst-case size for various

combinations of a0 and c0. For example, a test with nominal level a0 = .01 has actual size

a1,c0(a0) ≤ .05 for c0 ≥ 3.

When σ2
nm

√
nm → c < ∞ the scaled jackknife denominator satisfies

√
nm σ̂2

nm
d→ ω2.

Estimating its standard deviation by σ̂2
u and studentizing by it gives rise to the test statistic

τ̂ :=
√
nmσ̂2

nm/σ̂2
u

d→ $2 ∼ N(c0, 1).

Moreover, P(τ̂ > w) = 1−Φ(w− c0). It follows that, for wc0(a0) := c0 +Φ−1(1− a0), as the

sample size grows large, the power of the test that E($2) ≤ c0 under the alternative that

E($2) = c1, i.e.,

ba0(c0 − c1) := P(τ̂ > wc0(a0)) = 1− Φ(c0 − c1 + Φ−1(1− a0))

is monotone decreasing in the difference c0−c1, and equals a0 when c0−c1 = 0. The values

wc0(a0) as a function of (a0, c0) are tabulated in Table 2. The power curves for different

values of a0 are provided in Figure 1.
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4 Numerical illustrations

Design We simulated unobservables by drawing αg from a standard-normal distribution

and (εgi, ugi) from a bivariate normal distribution with zero mean, unit variances, and

correlation ρ = 1/2. We then generated xgi from (2) with α0 = 0 and σ2
nm ∈ {1, 1/n},

and finally, ygi from (1) with β0 = 0 and β = 1. For the sample size, all combinations

of n ∈ {25, 50, 100, 250, 500, 1000} and m ∈ {5, 25, 50, 100, 250, 500} are considered. All

simulation results are based on 100,000 replications.

Two-stage least-squares estimator To begin, Table 3 and Figures 2 and 3 concern

the two-stage least-squares estimator. The table reports the (median) bias in the point

estimator and the size of a two-sided t-test for the null that β = 1 (with a nominal size of

5%) for the different sample sizes and instrument strength. Figure 2 plots the cumulative

distribution function of the studentized estimator (i.e., the t-statistic) (full black curve)

against the standard-normal distribution (dashed black curve) when σ2
nm = 1. Figure 3

does the same for the case where σ2
nm = 1/√n.

Table 3 clearly shows that, when σ2
nm = 1, the bias is roughly proportional to 1/m and

largely constant in n. The bias is important relative to the estimator’s standard error and

so the t-test suffers from substantial over-rejection, except in the cases where m = 500

and n ≤ 100. All of this is in full accordance with the theory. Figure 2 reveals that the

distribution of the t-statistic stochastically dominates the standard-normal distribution

in all but the most upper-right plots, a consequence of the (positive) bias in the point

estimator.

When σ2
nm = 1/√n the bias becomes substantially larger for all samples sizes and now also

increases with n. The rejection frequencies further go up and, now, no longer improve as

n/m becomes smaller. The plots in Figure 3 show large discrepancies between the estimators

distribution and the standard-normal curve. In many cases the difference is so pronounced

that the former curve falls completely outside the [-4,4] interval, where 99.99% of the total

mass of a standard normal lies (and so is absent from the plots).

14



Jackknife instrumental-variable estimator Table 3 and Figures 4 and 5 deal with

the jackknife estimator. In all designs where σ2
nm = 1 the cross-fitting cleanly avoids the

bias issue that plagues the two-stage least-squares estimator. The bias is small in all designs

and the rejection frequency of the t-test is close to its nominal size of 5%. Moreover, as

the plots in Figure 4 illustrate, the normal approximation to the jackknife estimator is very

accurate throughout.

When σ2
nm = 1/√n the jackknife estimator suffers from substantial bias in the shortest

data sets, where m = 5. This can be explained by the fact that, in this set of designs,

σ2
nm

√
nm =

√
m2/n. Thus, consistency of the jackknife estimator requires that m2/n diverges,

and so bias is to be expected even in large samples unless m2 is not small relative to n.

When this is the case, the bias is small and the t-statistic constitutes a reliable tool for

inference. The latter is confirmed both by the rejection frequencies reported in the table

and by the accuracy of the normal approximations to the jackknife’s distribution in Figure

5.

It is important to use the adaptive variance estimator from above to obtain reliable

inference. To illustrate this Table 5 reports

(σ2
nmm+σ2

u)/σ2
nmm

for the various combinations of (n,m) when σ2
nm = 1/√n. This is the factor by which

the actual (asymptotic) variance of the jackknife estimator in our theory exceeds variance

obtained through the conventional first-order approximation. Even in cases where both n

and m are large, naive approximations lead to variances that can be three to six times too

small.

Evaluating instrument strength Finally, Table 6 reports the value of σ2
nm

√
nm in the

designs where σ2
nm = 1/√n together with the rejection frequency of the test procedure that

rejects the null of weak identification with nominal size of 5%. Here, weak identification is

used to mean that a two-sided t-test with nominal size of 5% based on the jackknife has

an actual size of more than 10%. This is a test of the null that c0 ≤ 2.5 based on the limit

15



distribution of τ̂ . Clearly, when n is large and m is small—and so c0 is very small—this test

almost always fails to reject this null. In contrast when m is of a comparable magnitude

as n, or larger, the test virtually always rejects. The approach thus seems to perform quite

satisfactory here. Of course, when c0 is only little larger than the cut-off of 2.5 there is

some probability of false negatives.

Tables and figures

Figure 1: ba0(c0 − c1) for a0 ∈ {.01, .05, .10} (full, dashed, dashed-dotted) as a function of

c0 − c1
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Table 1: a1,c0(a0) as a function of a0, c0

c0\a0 0.010 0.050 0.100 c0\a0 0.010 0.050 0.100

0.0 1.000 1.000 1.000 2.3 0,062 0.103 0.134

0.1 0.611 0.657 0.683 2.4 0,059 0.101 0.131

0.2 0.471 0.528 0.562 2.5 0,057 0.098 0.129

0.3 0.378 0.440 0.477 2.6 0,055 0.096 0.127

0.4 0.310 0.374 0.413 2.7 0,054 0.094 0.125

0.5 0.260 0.322 0.362 2.8 0,052 0.092 0.123

0.6 0.221 0.282 0.321 2.9 0,050 0.090 0.121

0.7 0.191 0.249 0.287 3.0 0,049 0.088 0.119

0.8 0.167 0.224 0.261 3.1 0,047 0.087 0.117

0.9 0.148 0.202 0.239 3.2 0,046 0.085 0.116

1.0 0.133 0.185 0.221 3.3 0,045 0.083 0.114

1.1 0.121 0.172 0.206 3.4 0,043 0.082 0.113

1.2 0.111 0.160 0.194 3.5 0,042 0.081 0.111

1.3 0.103 0.150 0.183 3.6 0,041 0.079 0.110

1.4 0.096 0.142 0.174 3.7 0,040 0.078 0.109

1.5 0.090 0.135 0.167 3.8 0,039 0.077 0.108

1.6 0.085 0.130 0.161 3.9 0,038 0.076 0.106

1.7 0.080 0.125 0.156 4.0 0,037 0.075 0.105

1.8 0.076 0.120 0.151 4.1 0,037 0.074 0.104

1.9 0.073 0.116 0.147 4.2 0,036 0.073 0.103

2.0 0.070 0.112 0.143 4.3 0,035 0.072 0.102

2.1 0.067 0.109 0.140 4.4 0,034 0.071 0.101

2.2 0.064 0.106 0.137 4.5 0,034 0.070 0.100
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Table 2: wc0(a0) as a function of a0, c0

c̄\α0 0.010 0.050 0.100 c̄\α0 0.010 0.050 0.100

0.0 2.326 1.645 1.282 2.3 4.626 3.945 3.582

0.1 2.426 1.745 1.382 2.4 4.726 4.045 3.682

0.2 2.526 1.845 1.482 2.5 4.826 4.145 3.782

0.3 2.626 1.945 1.582 2.6 4.926 4.245 3.882

0.4 2.726 2.045 1.682 2.7 5.026 4.345 3.982

0.5 2.826 2.145 1.782 2.8 5.126 4.445 4.082

0.6 2.926 2.245 1.882 2.9 5.226 4.545 4.182

0.7 3.026 2.345 1.982 3.0 5.326 4.645 4.282

0.8 3.126 2.445 2.082 3.1 5.426 4.745 4.382

0.9 3.226 2.545 2.182 3.2 5.526 4.845 4.482

1.0 3.326 2.645 2.282 3.3 5.626 4.945 4.582

1.1 3.426 2.745 2.382 3.4 5.726 5.045 4.682

1.2 3.526 2.845 2.482 3.5 5.826 5.145 4.782

1.3 3.626 2.945 2.582 3.6 5.926 5.245 4.882

1.4 3.726 3.045 2.682 3.7 6.026 5.345 4.982

1.5 3.826 3.145 2.782 3.8 6.126 5.445 5.082

1.6 3.926 3.245 2.882 3.9 6.226 5.545 5.182

1.7 4.026 3.345 2.982 4.0 6.326 5.645 5.282

1.8 4.126 3.445 3.082 4.1 6.426 5.745 5.382

1.9 4.226 3.545 3.182 4.2 6.526 5.845 5.482

2.0 4.326 3.645 3.282 4.3 6.626 5.945 5.582

2.1 4.426 3.745 3.382 4.4 6.726 6.045 5.682

2.2 4.526 3.845 3.482 4.5 6.826 6.145 5.782
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Table 5: Variance-inflation factor (σ2
nmm+σ2

u)/σ2
nmm when σ2

nm = 1/√n

n\m 5 25 50 100 250 500

25 6.00 2.00 1.50 1.25 1.10 1.05

50 11.00 3.00 2.00 1.50 1.20 1.10

100 21.00 5.00 3.00 2.00 1.40 1.20

250 51.00 11.00 6.00 3.50 2.00 1.50

500 101.00 21.00 11.00 6.00 3.00 2.00

1000 201.00 41.00 21.00 11.00 5.00 3.00

Table 6: Instrument strength and evaluation when σ2
nm = 1/√n

σ2
nm

√
nm

n\m 5 25 50 100 250 500

25 1.000 5.000 10.000 20.000 50.000 100.000

50 0.707 3.536 7.071 14.142 35.355 70.711

100 0.500 2.500 5.000 10.000 25.000 50.000

250 0.316 1.581 3.162 6.325 15.811 31.623

500 0.224 1.118 2.236 4.472 11.180 22.361

1000 0.158 0.791 1.581 3.162 7.906 15.811

Rejection frequency of null that c0 ≤ 2.5 using τ̂

n\m 5 25 50 100 250 500

25 0.0585 0.5286 0.9120 0.9974 1.0000 1.0000

50 0.0352 0.3317 0.8254 0.9963 1.0000 1.0000

100 0.0209 0.1620 0.6133 0.9863 1.0000 1.0000

250 0.0117 0.0536 0.2626 0.8549 1.0000 1.0000

500 0.0095 0.0252 0.1080 0.5555 0.9998 1.0000

1000 0.0081 0.0136 0.0432 0.2553 0.9848 1.0000
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