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Abstract

This paper studies the environmental performance of electric vehicle subsidy programs in
Canada. I leverage changes in the provincial-level subsidies to study their short-run impact on
sales and charging station deployment using a natural experiment setting. My findings suggest
that subsidies are very effective at increasing electric vehicle adoption, but failed to induce
additional charging station installations in the short-run. I rely on a structural estimation of
the demand for cars and the supply of charging stations to evaluate the environmental impact
of subsidies. My results suggests that Canadian rebate programs led to an increase in adoption
of 93%, and an increase in the size of the charging station network of 19%. I take these results
as additional evidence of weak network effects. I propose a unified framework to conduct a
cost-benefit analysis. I estimate the marginal cost of abating carbon emissions to be between
$311 and $423 per ton, well above conventional estimates of the social cost of carbon. Part
of the reason behind these high estimated costs is that half of the subsidies went to infra-
marginal consumers who would have purchased an electric vehicle whether or not rebates are
available. Finally, I evaluate the performance of two alternative policies: an income threshold
on eligibility and a cash for clunker program. I find that the additional emission reductions tied
to the removal of clunkers are crucial for improving the environmental performance of rebate
programs.

Keywords: electric vehicles, cost-benefit analysis, subsidies, emission abatement, indirect
network effects.
JEL Codes: L, 191, L98, Q5, Q58.
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1 Introduction

Electric vehicles constitute one of the most promising innovations for lowering carbon emis-
sions from the transportation sector, as long as clean energy production is available. Several
barriers exist that prevent the widespread adoption of this technology. The high initial pur-
chase cost or the low availability of charging locations may lead potential buyers to select
internal combustion engines over electric ones, even if they place a high value on reducing
their carbon footprint, factor in future fuel cost savings, or the lower maintenance costs
associated with driving an electric vehicle. At the same time, if demand for these vehicles
is low, there is little incentive for charging station operators to expand local networks of
charging stations, or for car manufacturers to develop better and cheaper products, slowing
down the transition to electric.

In an effort to break this chicken-and-egg problem, policymakers have introduced a wide
range of incentives to convince consumers to adopt this new technology. Perhaps the most
common intervention is to subsidize the purchase of an electric vehicle directly, which helps
close the price gap between fuel and electric vehicles. One narrative in support of financial
incentives is that they generate additional electric vehicle sales beyond the initial recipients
through strong network effects. New electric vehicle owners increase the total demand for
charging, which leads to a larger charging station infrastructure. Since consumers care about
being able to charge on the go, a larger network should lead to more electric vehicle adoption,
potentially at no cost to the government once the rebate program is phased out.

This paper focuses on the introduction of the electric car in Canada and on the role of
financial incentives in speeding up the adoption of this new technology. I evaluate whether
subsidizing electric vehicles is a cost-effective way to reduce emissions from the transporta-
tion sector, which accounted for 22% of all Canadian greenhouse gas emissions in 2021.!
Whether or not subsidizing electric vehicles is cost-effective depends crucially on several
factors. For example, the fuel-efficiency of the vehicles that are being replaced by electrics
or the magnitude of the network effects can radically change the environmental outcome of
the policy, since the deployment of charging stations depends on electric vehicle adoption
and vice versa. [ focus this study around two Canadian provinces, Quebec and Ontario,
which together account for 65% of the country’s population. Both offered generous subsi-
dies (around $8,000-$8,500) to new electric vehicle owners as early as 2010, right when the
technology was made available. Moreover, electricity production in these provinces is almost

exclusively emission-free. This provides a clean setup to study emission abatement.

1Source: Environment and Climate Change Canada.
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In the first part of the paper, I leverage the fact that Ontario’s rebate program was
substantially changed twice between 2012 and 2020 to analyze the short-run impact of rebates
on electric vehicle adoption and the deployment of charging stations. My results suggest that
raising rebates by $1,000 is associated with a 7.7% increase in electric vehicle sales. This is
similar in magnitude to findings by Muehlegger and Rapson (2022), who estimate the impact
of financial incentives on electric vehicle adoption in California using a quasi-experimental
setup. I also analyze the indirect effect of electric vehicle subsidies on charging station
deployment. I find no evidence that the policy changed the network configuration in the
short-run. I also find no evidence that local networks changed along other dimensions. For
example, I see no change in the number of chargers per station, the share of fast charging
stations, or the share of public stations available. Together, these findings suggest that
network provision is rigid in the short-run and do not adjusted quickly enough to satisfy an
unpredicted surge in demand from new electric vehicle owners. To the best of my knowledge,
this is a new result in the literature.

The second part of the paper is devoted to studying the environmental performance of
Quebec’s electric vehicle rebate program. I propose a structural approach to address this
important question. I model demand for cars following the random coefficient specification
in Berry et al. (1995), which allows for consumers to have heterogeneous tastes for car
characteristics. Following Nevo (2001), I augment the model with county-level demographics
which I interact with car characteristics.? I find that these demographic interactions help
with the identification of random coefficients in the absence of a supply side.

I propose a flexible model to explain network supply, in the spirit of Springel (2021) and
Berry and Reiss (2007). I adapt these methodologies to mirror the Quebec market, where
county-level governments are responsible for the provision of a public charging infrastructure
in their region. My specification allows for very flexible patterns for both the supply and
the elasticity of supply of stations. To fix ideas, the model allows for the elasticity of supply
to vary non-linearly with the characteristics of each market, producing more realistic and
varied supply curves across regions and over time.

I conduct a counterfactual analysis to validate the findings from the difference in differ-
ences analysis. I find that electric vehicle rebates led to a 93% increase in sales of electric
vehicles in Quebec between 2012 and 2020. This translates to a 10.8% increase per $1,000
in subsidies. Meanwhile network size increased by 19% over the same period. I interpret

these findings as evidence of weak network effects in the long-run. This is in sharp contrast

2See also Gandhi and Houde (2019) and Lesellier et al. (2023).



with the literature which instead provides evidence that network effects are important in
electric vehicle markets.® This could be a unique feature of the Canadian market. The
significant involvement of the public sector in the provision of stations could explain this
finding. In other countries, the development of a charging station infrastructure is typically
left to private operators which have a stronger incentive to compete for new consumers.

I construct a flexible framework to study the environmental performance of the Canadian
rebate programs. I consider the case of a social planner who maximizes social welfare taking
into account the environmental externalities tied to emissions from new car sales. I use
this framework along with the structural model primitives to conduct a rigorous cost-benefit
analysis. My findings suggest that the marginal abatement cost of emissions is between $311
and $423 per ton of CO, at the current rebate levels. This is above conventional measures
of the social cost of carbons, which suggest an over-investment on subsidies beyond what
is optimal. A competing explanation is that policymakers are instead internalizing future
carbon emission savings not captured by the model, for example, once the program is phased
out. Evaluating these future gains is difficult in practice and outside the scope of this work.

One of the reason that explains these high costs is that the program subsidized a large
number of infra-marginal consumers. I find that 52% of electric vehicle owners would have
purchased an electric vehicle without incentives. The program also led to a modest increase in
total sales of vehicles, which means that the rebates induced some consumers to substitute
from the outside good. This does not generate emission reductions and therefore, lowers
effectiveness. I propose two alternative policies to improve on the current policy. First, I
try to improve targeting by restricting the eligibility to the program to consumers with a
high price sensitivity. In practice, this could be implemented with a simple income threshold
since price sensitivity correlates with income. Second, I attach eligibility to a cash for
clunker condition. While this does not help with targeting, removing old vehicles generates
additional emission savings which lowers the marginal cost of abatement.

I find that restricting access to the program typically does not improve cost-effectiveness
and lead to lower electric vehicle sales. Since consumers preferences vary along several
dimensions, it is very difficult in practice to select a simple criterion that accurately targets
the marginal consumers. On the other hand, the cash for clunker program is more effective
at reducing emissions than current rebates for virtually any level of government spending.
However, it yields the lowest electric vehicle adoption rate. These findings raise an interesting

question about policy design. It is clear from my findings that setting targets in terms of

3See for example Li et al. (2017), Springel (2021), or Remmy (2022).



electric vehicle adoption (as is done in Quebec) does not produce the best environmental

outcome.

Related literature. This paper contributes to the literature on several fronts. First, I con-
tribute the the growing literature that studies electric vehicle markets. Notable contributions
include Li et al. (2017) and Springel (2021) on network effects, Remmy (2022) on driving
range provision, Li (2023) on compatibility across networks, Armitage and Pinter (2021) on
electric vehicle mandates, Dorsey et al. (2022) on the impact of fuel prices on electric vehicle
adoption, and Johansen and Munk-Nielsen (2020) on the synergy between fuel and electric
vehicles within a multi-car household. Tsanko (2023) studies the environmental benefits of
subsidizing plug-in hybrids when consumers do not recharge them optimally. Closest to this
research is the work by Xing et al. (2021) who show that estimating precise substitution
patterns is crucial to estimate the impact of electric vehicle subsidies on the environment.
Other works have studied the environmental performance of subsidies (Beresteanu and Li,
2011; d’Haultfoeuille et al., 2014; Huse and Lucinda, 2014; DeShazo et al., 2017; Azaraf-
shar and Vermeulen, 2020; Sheldon and Dua, 2020) or electric vehicle rebates passthrough
(Beresteanu and Li, 2011; Sallee, 2011; Muehlegger and Rapson, 2022).

This paper fits in the wider literature that studies the environmental regulation of the
car market. Several works have focussed on other policy tools such as gas taxes (Allcott
and Wozny, 2014; Barla et al., 2016; Grigolon et al., 2018), emission standards (Klier et al.,
2013; Durrmeyer and Samano, 2018; Reynaert, 2021), cash for clunker programs (Li et al.,
2013; Grigolon et al., 2016; Li et al., 2022; Kitano, 2023), attribute-based regulation and
taxation (Knittel, 2011; Ito and Sallee, 2018; Chaves, 2019), or comparing financial and
non-monetary incentives (Jenn et al., 2018). Advances on estimating the environmental
impacts of these policies include Durrmeyer et al. (2018) which studies the distributional
impacts of the French rebate program, Holland et al. (2016) on air pollution patterns that
occur upstream in the production process, and Archsmith et al. (2015) and Muehlegger and
Rapson (2020) on air pollution abatement.

Lastly, I contribute to the literature on estimating network effects and their role in the
adoption of breakthrough innovations. Advances in this field touch a wide range of new
products: green cars (Pavan, 2017; Li et al., 2017; Springel, 2021; Remmy, 2022; Li, 2023),
compact discs (Gandal et al., 2000), video games (Clements and Ohashi, 2005; Corts and
Lederman, 2009), software (Gandal, 1995), microcomputer chips (Gandal et al., 1999), and
personal digital assistants (Nair et al., 2004).



The rest of the paper is organized as follows. Section 2 provides background information
on the Canadian electric vehicle market. Section 3 studies the short-run effect of subsidies
on electric vehicle sales and charging station deployment. I describe a structural model of
demand for cars and the supply of a charging station infrastructure in section 4. Estimation
and counterfactual results are presented in section 5. Finally, I conduct a rigorous cost-
benefit analysis in section 6 to assess the environmental performance of subsidy programs.

Section 7 provides concluding remarks.

2 The Canadian Market for Electric Vehicles

I describe the various policies relevant to the analysis. I focus on three financial incentive
programs offered by the provincial government in Ontario, the provincial government in
Quebec, and the federal government of Canada. To paint the broadest picture possible, I
discuss the financial and the non-financial incentives that are offered in both jurisdictions. I
also describe how charging station networks are developed, as there are significant differences
between the two provinces. Ontario relies on a more traditional model which leaves the
development of local networks to the private sector. Meanwhile, the government of Quebec
develops networks in partnership with county-level governments, with little contribution

from private operators. Details on the data are relayed to Appendix B.

2.1 Policy environment

Timeline. The transportation sector is one of the leading contributor to carbon emissions
in Canada. Absent federal initiative, the provincial governments in Ontario and Quebec
launched separate electric vehicle incentive programs in 2010 and 2012 respectively.* The
stated goals of the policies were to support the transition to electric, reward first adopters,
and create a market demand for this new technology. Increasing adoption also creates
a market demand for charging, which encourages investments into charging stations from
private and public operators.

While Quebec’s “Roulez Vert Program” was maintained over time, the government of
Ontario modernized its “Electric Vehicle Incentive Program (EVIP)” in February 2016.° On

4Other Canadian provinces also offer subsidies. These include British Columbia (up to $4,000), Newfound-
land and Labrador (up to $2,500), Prince Edward Island (up to $5,000), New Brunswick (up to $5,000), and
Nova Scotia (up to $3,000).

5The implementation was made retroactive to November of 2015.



that occasion, subsidies for battery electrics and long range plug-in hybrids were significantly
increased, from $8,500 to $14,000. For short range plug-in hybrids, the rebate was slightly
increased as well as made progressive in the capacity of the battery. Policymakers justified
these improvements with Ontario’s poor performance in terms of electric vehicle adoption,
compared to the rest of Canada.

The election of a conservative government in June 2018 led to the abolition of Ontario’s
cap-and-trade carbon tax in early October 2018. Since this carbon tax was the principal
source of funding for electric vehicle subsidies, the “Electric Vehicle Incentive Program” was
terminated at the same time. There is some anecdotal evidence in news reports that con-
sumers were taken by surprise by that sudden change, as the government did not campaign
extensively on environmental policies. With a few weeks warning, there was not a lot of
time to cash in on the rebate before the program expired, since ordering an electric vehicle
typically took between 6 to 12 months at the time.

In May 2019, the federal government of Canada stepped in with its “Incentives for Light-
Duty Zero-Emission Vehicles Program (iZEV)”. The stated objectives were to make subsidies

available to all Canadians and to ensure that electric vehicle sales targets were met.

Financial incentives. The detailed list of incentives is presented in Table 1. Rebates are
obtained automatically at the point of sale and are deducted from the transaction price.’ To
be eligible, consumers must either purchase the vehicle, or sign a long-term lease. Short-term
leases are eligible for a fraction of the rebate, determined on a pro rata basis.

Additional financial incentives are offered in Quebec. For example, the program includes
subsidizing the purchased of a used electric vehicle (up to $4,000), the installation of a home
charger ($600), and the installation of large-scale charging capacity in multi-unit housing
or in workplaces (up to 50% of installation costs). While these policies are interesting and
could play a role in increasing adoption, I am forced to ignore their contribution due to data
limitations.

I do not observe car ownership through time. As such, transactions on the secondary
market are not observable. To assess the relative size of the secondary market, I compare
the total spending on used car subsidies to the total program expenditure. I find that 1.8%
of government funds went to subsidizing used cars. To fix ideas, 94.1% of total spending
went to subsidizing new cars. Back of the enveloppe calculations suggest that the primary

market was around 30 times larger than the secondary market between 2012 and 2020.

6Tesla is an exception, as they did not have points of sale in Canada in that period. In that case,
consumers must fill in additional paperwork and receive a mail-in refund a few weeks later.



Table 1: Canadian incentive programs

Batery electric Plug-in hybrid Plug-in hybrid

(long range) (short range)
Ontario program, phase 1 (2010 — 2015)
MRSP below 150,000, batt. cap. 17 kWh or above 8,500 8,500 8,500
MRSP below 150,000, batt cap. 4 kWh — 17 kWh n/a 5,000 5,000
Non-financial incentives:
— Privileged access to high occupancy vehicle lanes v v v
— Free access to high occupancy toll lanes v v v
— Free parking when charging v v v
Ontario program, phase 2 (2016 — 2018)
MRSP below 75,000, batt. cap. 16 kWh or above 13,000 13,000 n/a
MRSP below 75,000, batt. cap. 5 kWh — 16 kWh n/a n/a 6,000 — 9,600
MRSP below 75,000, 5 seatbelts +1,000 +1,000 +1,000
MRSP between 75,000 and 150,000 3,000 3,000 3,000
Non-financial incentives:
— Privileged access to high occupancy vehicle lanes v v v
— Free access to high occupancy toll lanes v v v
— Free parking when charging v v v
Quebec program (2012 — pres.)
MRSP below 75,000 8,000 8,000 4,000
MRSP between 75,000 and 125,000 3,000 0 0
Other financial incentives:
— Used vehicle (original MRSP below 75,000) 4,000 0 0
— Installation of a home charger 600 600 600
Non-financial incentives:
Privileged access to reserved lanes v v v
— Free access to toll bridges and toll lanes v v v
— Free parking (in some municipalities) v v v
— Free access to several ferries v v v
Federal program (2019 — pres.)
Passenger car, base model MRSP below 55,000 5,000 5,000 2,500
SUV and minivan, base model MRSP below 60,000 5,000 5,000 2,500

NOTE: All values are in current Canadian dollars. The rebate for plug-in hybrids in Ontario (phase 2) increases
from $6,000 to $9,600, in steps of $365 per kWh of battery capacity. The Chevrolet Volt is the only plug-in
hybrid that qualifies as “long range” in Quebec. For the federal rebates, plug-in hybrids with a driving range
above 50km on electric mode qualify as “long range”.

I also ignore the effect of subsiding home chargers due to data limitations. The key
problem is that I do not observe which consumer applied for and received a home charger
subsidy. Furthermore, there is no requirement that owners install a home charger in the
same year as they purchase an electric vehicle. Acquiring a home charger can cost between
a few hundred to a few thousand dollars but is not absolutely necessary to charge at home.

Government spending on home chargers totalized 4% of the total program expenditure.



Non-financial incentives. Several non-financial incentives are offered to encourage elec-
tric vehicle adoption. They are typically tied to registering the car under a green license
plate, which provides advantages all over Canada and in the United States. Registering an
electric vehicle under a green license plate is mandatory for safety reasons. Both provinces
offer similar non-financial incentives. They include a privileged access to dedicated lanes
(e.g. carpool lanes), a free access to toll lanes or bridges, and dedicated free parking spaces.

Additional details on non-financial incentives are available in Table 1.

2.2 Network deployment

Table 2 presents the distribution of all charging locations by province and operating network.
There are striking differences between the two provinces. The first one is the sheer difference
in the size of the networks. In per capita terms, there are more than four times more
stations in Quebec than in Ontario. Second, Ontario’s network is predominantly operated
and developed by private firms (even though most stations are installed on the street and are

considered as public). On the other hand, Quebec’s market is dominated by the government

Table 2: Network operators

Ontario Quebec

Nb. stations Share total Nb. stations Share total

ChargeLab 18 0.02 1 4e-4
ChargePoint Network 219 0.20 70 0.03
Circuit Electrique 29 0.03 1,960 0.70
Electrify Canada 4 4e-3 0 0
EV Connect 20 0.02 0 0
Flo 209 0.19 376 0.13
Ivy 23 0.02 0 0
Petro-Canada 19 0.02 7 2e-3
Shell Recharge 6 5e-3 0 0
SWTCH Energy 20 0.02 0 0
Tesla Destination 222 0.20 160 0.06
Non-networked 318 0.29 237 0.08
Total 1,107 1 2,811 1
Population, in 2020 14.22 8.44

Nb. of counties 49 96

NOTE: Population is in million.



provided platform, Le Circuit Electrique, with little competition from private firms.”

Network provision in Quebec does not follow a traditional model of demand and supply.
Instead, the provincial government enters partnerships with regional governments, shopping
malls, restaurant chains, and workplaces for the development of local charging station in-
frastructures. On one hand, the provincial government provides the platform (including the
software infrastructure, the phone app, and billing services) and takes care of maintenance.
It also regulate both the price paid by the consumer, and the wholesale energy price paid
by the partner. On the other hand, the partner pays for the physical infrastructure (the
actual station) and installation costs. It then collects revenues from operating that station.
Importantly, partners decide where and when to install stations, since they own property
rights on the land.

The vast majority of partners are county-level governments. I assume throughout that
they control the final decision about the size of local networks. In practice, they can forgo
installing some stations if more private installations occur. I also maintain the assumption
that they do not coordinate on a common deployment strategy. There are no unified political
parties in Quebec that span both provincial and regional politics. County-level governments
usually form around local political figures and are normally insulated from provincial poli-
tics. In that context, decisions are taken in isolation from other counties or the provincial

government.

3 The Short-run Impact of Rebates

3.1 Setup

The Canadian market provides an ideal setup to study the short-run impact of electric
vehicles subsidies using a difference in differences analysis. I leverage the fact that Ontario
saw two changes in its electric vehicle rebate program to study the effect of rebates on electric
vehicle adoption and on charging station deployment. Meanwhile, electric vehicle subsidies
have been stable in Quebec which provides me with an adequate control group.

Figure 1 depicts the average rebate received by consumers of each province between 2012
and 2020. All values are converted to 2018 Canadian dollars (CAD). Initially, both province

"Tesla and Flo are the only other firms involved in Quebec. Tesla is involved in the development of its
own network, which insure that Tesla owners can reach every destination in North America. Stations are
typically located in strategic locations that facilitate long distance travels. Flo is the network developed by
AddEnergie, a company based in Quebec that manufactures and sells chargers.

10



Figure 1: Average rebate by province
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had very similar rebate programs. [ will refer the period from 2012 to 2015 as the pre-
treatment period. We observe a first policy shock in 2016 when Ontario’s rebate program
was substantially increased, then a second policy shock at the end of 2018 when Ontario’s
program was phased out. The federal rebate program was introduced in early 2019. Since
the phasing out of Ontario’s program and the introduction of the federal programs occurred
in a short time window, I will consider them as a single policy shock. I will refer to these
periods as the first and second post-treatment periods.

Similarly to the vast majority of studies that rely on a natural experiment for identifica-
tion, it is important to discuss the potential endogeneity of these policy changes. Muehlegger
and Rapson (2022) describe best the threat to the identification of a causal effect between
subsidies and electric vehicle adoption. Their main point is that states are more likely to
offer an incentive if the population they represent is predisposed to purchase an electric ve-
hicle, which leads to the endogeneity issue. There is some anecdotal evidence that points in
that direction: the government in Ontario significantly increased rebates because adoption
of electric vehicles was low compared to other provinces. In this case, endogeneity would
arise from a negative correlation between consumers’ and the policymaker’s preferences. The
program was discontinued after Ontario exited the Canadian carbon market which cut the
main source of funding for subsidies. In this case, there is more chance that the change was
€X0genous.

It is very hard in practice to test the exogeneity assumption. I perform the analysis at
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the county level. This plays the double role of avoiding selection into treatment, but also
differences across counties make it less likely that the policy correlates with the outcomes,
since it is defined at the provincial level. I include several county-level demographics and a
rich set of fixed effects to control as best as possible for the potential unobserved factors that
could bias my estimates. I am also very careful in my interpretation of the results. Summary
statistics are available in Table A.1. There are some significant differences between the two
provinces, especially in terms of household income which is much higher in Ontario. This is
mitigated by the fact that housing costs are also much higher in Ontario than in Quebec.
Ontario residents are also on average more educated, more conservative, more likely to be
homeowners, and more likely to belong to a visible minority group. Finally, Ontario counties

are on average three times as populous as Quebec counties.

3.2 Effect on sales

I first consider the effect of rebates on electric vehicle sales. The dependent variable is the log
of electric vehicle registrations by county and year. Figure 2a plots the raw data averaged
over counties while Figure 2b reports the coefficients from an event study specification.®
I observe a parallel trend in the pre-treatment period and a departure from the common
trend in both post-treatment periods. The effects all have the expected signs and are highly
significant. I observe a smaller effect in 2016 which suggests that consumers responded to the
policy change with lag. This makes sense if information transmission is not perfect and not
all consumers are aware of the change right away. The phasing out of the program however

had an immediate effect on sales compared to the pre-treatment period.

3.3 Effect on networks

I next consider the effect of rebates on network deployment. This channel is often invoked
by policymakers to justify electric vehicle subsidies. The idea is that subsidies increase sales,
which leads to more charging stations. Since consumers care about the the availability of
charging stations, each additional station should generate additional current and future sales
at no additional cost to the policymaker once the program is phased out.

Figure 3a and Figure 3b presents the raw data and the results from the event study. I

consider each charging location to be a single station, even though a typical location can

8 All regressions include demographics, county and year fixed effects, and are weighted by population.
Standard errors are clustered at the county level.
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accommodate 1-4 cars simultaneously. I do not find evidence that electric vehicle subsidies
increased charging station deployment in the short-run. To my knowledge, this is a novel
result that was not studied before. One possible explanation is that installing stations
requires planning (securing funding, finding adequate locations) and thus network size cannot

be adjusted immediately to satisfy a a sudden surge in the demand for charging.

3.4 Robustness analysis

I perform several robustness checks to ensure the validity of my previous results. In par-

ticular, I am concerned that my definition of network could influence the results. Since I
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Table 3: Difference in differences analysis

No Covariates With Demographics
Dependent variable Control mean Observations Treatment 1 Treatment 2 Treatment 1 Treatment 2
Log of sales
(a) All electric vehicles 4.85 1,305 0.240%** -0.7107%+* 0.267%** -0.667F+*
(0.048) (0.078) (0.052) (0.048)
(b) Battery electric only 4.61 1,305 0.163%** -0.539%** 0.188*** -0.533%**
(0.056) (0.095) (0.059) (0.053)
(¢) Plug-in hybrid only 3.12 1,305 0.251 -1.363*** 0.183** -1.4297%F*
(0.157) (0.150) (0.075) (0.092)
Log of network
(d) Nb. of locations 3.02 1,305 0.040 0.188 0.002 0.145
(0.198) (0.250) (0.129) (0.157)
(e) New location openings 2.01 1,305 0.278 0.315 0.188 0.160
(0.322) (0.291) (0.230) (0.196)
(f) Nb. of chargers 3.48 1,305 0.039 0.359 -0.113 0.258
(0.193) (0.243) (0.144) (0.198)
(g) New charger installations 2.42 1,305 0.427 0.521* 0.243 0.313
(0.376) (0.303) (0.297) (0.241)
Network characteristics
(h) Share of Fast DC stations, 0.05 1,305 0.022 0.026 0.051 0.100%**
full network (0.037) (0.041) (0.032) (0.028)
(i) Share of Fast DC stations, 0.09 1,305 0.005 -0.037 0.009 0.010
new locations (0.052) (0.047) (0.057) (0.049)
(j) Share of public stations, 0.96 1,305 0.074 0.100%* 0.015 0.011
full network (0.045) (0.050) (0.030) (0.026)
(k) Share of public stations, 0.97 1,305 0.056 0.092** -0.014 -0.030
new locations (0.048) (0.044) (0.036) (0.043)
(1) Avg. chargers per location, 1.77 1,305 -0.362 0.290 -0.758** 0.059
full network (0.407) (0.338) (0.316) (0.285)
(m) Avg. chargers per location, 1.87 1,305 0.399 0.382 0.192 0.406
new locations (0.313) (0.276) (0.490) (0.380)

NOTE: All regressions include county and year fixed effects, and are weighted by population. Standard errors in parenthesis are
clustered at the county level. Significance: * < 0.10, ** < 0.05, *** < 0.01.

have defined networks as a stock variable rather than a flow variable, it is possible that I
do not pick up an effect if the stock of station is large relative to the flow. Another concern
is that networks could have changed in other dimensions not captured by network size. For
example, a larger proportion of fast charging stations or more chargers per station could
have been installed. These would not require finding additional locations which shortens the
planning horizon of the network operator.

I use a two-way fixed effect specification to address these issues.” Results are presented
in Table 3. I report the results for a specification without covariates, and a specification
with county-level demographics. My results seem robust to the definition of networks. I

use three additional definitions: new location openings, the total number of chargers, and

9The corresponding event studies are available in Appendix A.
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new charger installations. I find insignificant results almost everywhere which confirms that
networks were irresponsive to the policy in the short-run.

I also perform several checks to make sure that networks did not change in terms of their
characteristics. I use as a dependent variable the share of fast charging stations, the share
of public stations, and the average number of chargers per station. I construct the variable
for both the stock and the flow of charging station locations. I find that networks did not

change in their underlying characteristics.

3.5 Continuous treatment effect

In this section, I further the analysis and study the effect of rebates at the intensive margin.
This allows me to identify the underlying elasticity of demand for electric vehicles using a
similar approach to Muehlegger and Rapson (2022). I start by constructing a continuous
measure of the treatment variable, 7,,;, the average rebate received in county m and year ¢.

I then estimate the following continuous treatment effect specification,
In(gra) = Tt + Dy + fim + At + €t

where D,,; is a vector of county-level demographics, and pu,, and \; are fixed effects. The

parameter of interest is «, the semi-elasticity to the rebate. We can recover the elasticity of

demand as
__ alg;Q) CE()
- agLT@ . g_; -E(p)
= —% -E(p)

for any given passthrough p.

The average rebate is constructed by aggregating over individual-level rebates within a
county and year. Therefore, it depends on the composition of the underlying fleet of electric
vehicles and is endogenous by construction. If the proportion of plug-in hybrids is higher
in a given county, the average rebate would decrease mechanically as plug-in hybrids are
usually not eligible for the same subsidy as battery electric vehicles. Endogeneity arises if

unobserved shocks to consumer preferences shift both the total quantity of electric vehicles
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Table 4: Continuous treatment effect

OLS Instrumental variable
(1) (2)
Avg. Rebate 0.067*** 0.076***  0.077***
(0.005) (0.005) (0.005)
First stage
Post 1 x Ontario 5.541%**
(0.122)
Post 2 x Ontario -6.640%**
(0.143)
Avg. rebate in other counties 1.015%%*
(0.010)
Observations 1,232 1,232 1,232

NOTE: Awvg. rebate is in thousand 2018 CAD. All regressions in-
clude county-level demographics, county and year fixed effects, and
are weighted by population. Standard error in parenthesis are clus-
tered at the county level. Significance: * < 0.10, ** < 0.05, *** <
0.01.

sold and the proportion of battery electrics to plug-in hybrids.

I propose two different instrumental variables to address this issue. First, I consider using
the discrete version of the treatment variables as an instrument. These instruments are nat-
urally highly correlated with the average rebate. The exclusion restriction would be satisfied
if the timing of the policy changes in Ontario’s rebate program were uncorrelated with local
shocks. This assumption is difficult to test in practice. I construct a second instrument
in the spirit of Hausman (1996) and Nevo (2001). The idea is to use the cross-sectional
variation in the data to construct a valid instrument for the average rebate. In this context,
this means using the average rebate in other counties within a province to construct basis
functions. The instrument’s validity rests on the assumption that the proportion of battery
electrics to plug-in hybrids in other counties is uncorrelated with local preference shocks.
This assumption would be violated if preference shocks not accounted for by fixed effects
affected the ratio of battery electrics to plug-in hybrids in many counties simultaneously.

Results are presented in Table 4. Both sets of instruments yield a very similar result:
a $1,000 increase in rebates is associated with a 7.7% increase in sales of electric vehicles.
My dataset of car characteristics includes the list price of each model, but not individual

transaction prices. In this context, I cannot identify passthrough using this framework. I can
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Table 5: Implied elasticity of demand

Rebate Passthrough (p)
100% 90% 75% 50% 25%

Implied elasticity (£)  -3.132F%%  _3.480%F% _4.176%%% _6.264%%* _12 528%**
(0.196)  (0.218)  (0.392)  (0.392) (0.784)

E(p) 40.711
a 0.077

NOTE: E(p) is in the average net price, in thousand 2018 CAD. Standard errors are
computed using the Delta method and are clustered at the county level. Significance:
* < 0.10, ** < 0.05, *** < 0.01.

still provide bounds for the implied elasticity of demand using different values of passthrough
and the average net price of electric vehicles.

Results are presented in Table 5. My results are in the same range as the results obtained
by Muehlegger and Rapson (2022). They estimate an own-price elasticities of -2.1. T estimate
an own-price elasticity of -3.13 using the same methodology and a passthrough of 100%. One
of the reason that could explain this difference is that I am using list prices, whereas they
have access to transaction prices which are typically lower after bargaining. My results are
close to other works that focus on a structural estimation of demand. Xing et al. (2021),
Remmy (2022), and Li (2023) find an average own-price elasticity of -2.75, -3.54, and -3.70
respectively. Springel (2021) on the other hand finds an own-price elasticity between -1.49
and 1.07. Pavan (2017) estimate the own-price elasticity of alternative fuel vehicles to be
between -4.42 and -2.85.

Unfortunately, this methodology does not allow for studying the impact of subsidies
on emissions or on other environmental outcomes. To achieve this, I build on the findings
presented in this section and estimate a structural model of demand for cars and the supply of
a charging station infrastructure. I recover fundamental parameters which allow conducting
counterfactual experiments and evaluate the environmental performance of the Canadian

subsidy programs. I present the model and the results in the following sections.

4 The Model

I define a structural model to analyse the cost-effectiveness and the emission reduction

potential of electric vehicle subsidies. Demand for cars is determined using the random
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coefficient logit model as in Berry et al. (1995). I augment the demand specification using
county-level average demographics, following Nevo (2001), Gandhi and Houde (2019) and
Lesellier et al. (2023). I do not model or estimate a supply side for cars. I assume that
car manufacturers set prices at the North American level to avoid arbitrage opportunities
between Canada and the United States. In this context, it is unlikely that manufacturers
would react to local Canadian policies, since Canada represents only a small share of the
North American market. Finally, I derive a model for charging station deployment inspired
by Springel (2021) and Berry and Reiss (2007). I adapt these methodologies to fit the
specific economic and political context in Quebec, where local county-level government are

responsible for developing a charging station infrastructure in their jurisdiction.

4.1 Demand

Consider consumer ¢ living in county m. Each period ¢, this consumer chooses to purchase
one of the 7 = 1, ..., J;,: car makes available or to purchase nothing at all, denoted j = 0.
In choosing which product to purchase, consumers consider the net price of each product,
Pjt — Tjt, but also car characteristics such as horsepower, the driving cost, or the engine type.
I denote the vector of observed product attributes by x;; and unobserved product quality
by &jme. For all models with an electric engine, the number of charging stations that are

available locally enters consumers’ utility as an extra product characteristic, denoted

Ny, ifjeEV
ijt - .
0, otherwise

I follow previous literatures and impose decreasing returns from additional charging station.'®

Finally, I allow for consumers to have heterogenous preferences in the various observed
characteristics. Heterogeneity is introduced in two ways. First, I allow for the average
taste for characteristics to vary across regions by interacting them with county-level average
demographics. Second, I allow for random coefficients to model the heterogeneity within

county. Formally, the utility consumer ¢ receives from product j is

Wijmt = 5})(pjt — Tjt) + BzN In(Njme) + X;‘tﬁ;( + (X;'t ® Dlmt)ﬁD + Sjme + G?jmt‘

10Gee for example Springel (2021), Li (2023), or Remmy (2022).
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Consumers’ taste parameters take the following form,

b7 = B° + 0Py,
AN = BN 4+ oM,
% = Bk + 0k Viks
where the v; are distributed as independent standard normal. The utility of the outside

option is normalized to u;gm = E?Omt in each market. I follow the literature and rewrite the

utility function in terms of a mean utility and a consumer-specific deviation,
_ d
Uijme = 5jmt + Mijmit + Eijmtv
with
Sjmt = BP(pje = Tjt) + B I (Njpny) + XG0 + (%, @ D)) B2 + Ejt,
— P, P N, N k _x X
pijme = 0PVP(pje — Tj1) + oV (1 + Njpt) + Y ahoi v
k

Assuming that the taste shocks eg-mt are independent and identically distributed as extreme

value type I, the probability that consumer ¢ purchases product j is given by

65,7'mt +ijme

1+ Ziztl eOkmt+likmt

Sijmt(pt7Nmt7Xt>Dmt7Vi) =
Taking expectation over all consumers yields the following aggregate demand for product 7,

Sjmt(ptaNmtaxtaDmt) = /Sijmt(ptaNmtaxtaDmtaVi)dF(Vi)-

Given this market demand function, the elasticity of demand takes the following form,

Sk _ 85jmt(pt7 Nmt) ) (pkt - Tkt)
mt

9
Opre Sjimt

where

mt

0Dkt " Opke ONpw 0Q%,  Opr

83jmt(Pt,Nmt) o asjmt 4 8Sjmt ) ON, ) Qs
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4.2 Network supply

I consider the case of county-level governments (henceforth “local planner”) responsible for
supplying charging stations in their region. Throughout, I maintain the assumption that
these local planers do not coordinate on a common deployment strategy, and that they
control both the installation decision and the location of stations within their county. Define
the benefits associated with operating station n as
Bie(n) = Qryy - b(n, Ding), (1)
where (¢, is the current stock of electric vehicles in the county, D, is a vector of county-
level demographics, and b(n, D,,;) is the average per driver benefit derived from operating
station n. I impose three important assumptions on the average benefit function. First, I
assume that local planners are price takers in the charging market. This assumption is easily
satisfied in this setup as Quebec’s provincial government regulates both energy prices and
charging prices. Second, I assume that the average benefit function is weakly decreasing in n,
that is, b(n, Dyye) > b(n+1,D,y) for all n € N. This condition is sufficient to have a unique
equilibrium in network size for a given stock of electric vehicles. In practice, this can be
trivially satisfied if each local planner ranks potential charging sites in order of profitability
and enters in high benefit locations first. Lastly, I assume that there exists a saturation
point S, such that b(n,D,,;) = 0 for all n > S. This last assumption is not absolutely
necessary, but it simplifies the computation of counterfactuals.!! Throughout, I am silent
about what these benefits represent for the local planner. They could correspond to revenues
from charging, but also to political support from electric vehicle owners, some measure of
social welfare, or a combination of these factors.
A local planner which chooses to installs station n pays a one-time fixed cost F,;, then
reaps the lifetime benefits of operating that station. Therefore, the value of station n to the

local planner is

V() = —Fpy + 2 (ﬁ)s_t B¢ Byns (1) (2)

A local planer m will choose to install station n in period t if it is more profitable than

HTn practice, my analysis is very robust to the saturation point assumption, as long as saturation points
are chosen to be well above current network sizes. At the estimation stage, I set Syt = Lint/200 to match
broadly the targets set by the government to have roughly one charging station for every 200 electric vehicle.
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waiting. Its entry decision can be summarized as follows,

( ) Enter, if th (n) Z (ﬁ) ]Eth,Hl(n)
Emt\n) = .
Not enter, otherwise

Denote the last station installed by N. It must be that the local planner found it weakly
profitable to install station /V, but unprofitable to install station N+1. Hence the equilibrium

network size at any given point in time has to satisfy the following two inequality conditions:

V) 2 (17 ) B () 3)

1+r
and
V(N4 1) < (—— ) Voo (N + 1) (4)
mt Ty ) DVme :
Replacing equations (1) and (2) into equations (3) and (4) yields the following inequality
condition which must be satisfied in equilibrium,

1
f;qm)t : b(Na Dmt) Z Fmt - (m) ]EtFm,t—i-l > i:t ' b(N + 17 Dmt)' (5)

[ impose a similar functional form assumption as Springel (2021) on the average benefits. Let
b(n, D) = agn~“ePmt92, Substituting in equation (5) and taking logs gives the following

equilibrium condition,

In(Ny) = A (Q) = DL A° _  In(Ny +1) = A¥n(Q4,) — Dy, AP

w - mt w ’

where €], is unobserved to the econometrician and is assumed to follow the standard normal
distribution. Define S,,; as the network saturation point. Charging station supply can be

written as follows,

Smt_l - ev
Nt = Z k-1 (ln(k) —\@ In(@%) — D;nt>\D < < In(k+1) — 2\Q In(Q,) — D;nt)‘D)

— mt
—1 w w
() — AQIn(Q,) — D!, AP
+ Smt . :[L ( n(s t)) n( mt) mt S 62,Lt) ) (6)
w
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4.3 Elasticity of network supply

One of the key quantities required for economic analysis is the elasticity of network supply,

_ ONp Q5
Mt = ev :
a mt Nmt

The supply equation is a step function, hence its derivative is either zero or it is not
differentiable. Following Blundell and Powell (2004), rewrite the structural function as

Noe = H(QS,, Dy, €2 ), and consider the average structural function,

mt)

ASFyy = Fun (Nypy | Q% Do) = / H(Q,, Dy, ) AF (™).

We can show that if €, is distributed as standard normal, then the average structural

function takes the following form,

Smt _1\Q ev) _ T D
ASFmt:Smt_Zq)(ln(k:) AIn(Q,) — D! A )

w
k=1

The partial effect can be recovered as the derivative of the average structural function, that

is,

w

ONpy _ OASFny _ Si o <ln(k;) — AQIn(Q*,) — D!, tAD) @
0Q5; 0Q5; WQ%.

k=1

4.4 lIdentification and estimation

Demand. I have to deal with several sources of endogeneity. First, prices depend not only
on observed product characteristics but also on unobserved product quality (to the econo-
metrician), leading to the price endogeneity issue described in Berry et al. (1995). Second,
our estimation routine relies on the inversion of the market shares to recover mean utilities
d(s, o). This implies that market shares are also endogenous since they are determined jointly
with unobserved car attributes (Conlon and Gortmaker, 2020; Gandhi and Houde, 2019).
Concretely, this means that instrumental variables are needed for prices and market shares
in the demand model. Finally, network deployment occurs simultaneously with electric ve-
hicle sales, hence network size is also endogenous. Changing the structure of the model to
break this simultaneity (for example, changing the timing of the station entry decision) is not

enough to solve this endogeneity issue completely. Taste for green technologies is captured
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by the residuals in both the demand and the supply models, hence they are correlated.

I solve the various endogeneity issues using instrumental variables. I use two separate
cost shifters to instrument for prices. Similarly to Durrmeyer et al. (2018), I construct a
composite price index to capture variations in the production cost of the various car makes. I
use four key input prices: steel, iron, plastics, and aluminum. I compute a weighted average
cost per ton which I interact with each vehicle’s curb weight to create the composite price
index.'? Next, I follow Grieco et al. (2022) and use the real exchange rate between Canada
and the country each car was manufactured as an additional cost shifter.!® The real exchange
rate captures among other things variations in the cost of labor between Canada and the
car’s country of origin which affects the marginal production cost. Similarly to Grieco et al.
(2022), I lag both cost shifters by one year to reflect planning horizons. I denote the set of
price instruments by zP.

To solve for the endogeneity of the market shares, I use the intuition in Gandhi and
Houde (2019) to construct instruments based on characteristic differences. I use the fact that
the marketing segment is a strong dimension of differentiation, and interact it with other

characteristics to construct basis functions. Formally, I construct the following instruments,

)
Ekgjf 1(k is in same segment as j)
Zkgwf I(k is in same segment as j) x 1(k has same engine type as j)

Z; = 9 Zkgéjf 1(k is in same segment as j) X d;’ij 5

Zk¢Jf 1(k is in same segment as j) x dj ;

\Zkgjf 1(k is in same segment as j) X (D, @ df ;)

where dj ; = x — x; for some continuous characteristic z € x. To put it plainly, these in-
struments are the number of competitors within segment, the number of competitors within
segment with the same engine type, the sum of predicted price differences, and the sum of
exogenous characteristics differences between products of competitors in the same segment.
Interactions between observed characteristics and county-level average demographics are also
used to construct instruments. Since price is endogenous, it cannot be used to construct a

differentiation instrument. It still contains a useful source of variation to identify consumers’

12T assume cars are made of 56% steel, 8% iron, 8% plastics, 10% aluminum, and 18% of other materials
not captured by the index.
13Real exchange rates are obtained from Penn World Tables, version 10.0, pl_con. See Grieco et al. (2022).
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heterogeneity in price sensitivity. To circumvent this issue, I follow Reynaert and Verboven
(2014) and Gandhi and Houde (2019) and use the projection of price on exogenous charac-
teristics and cost shifters, denoted pj; = E(pji | X;t,25;), to construct an instrument based
on the exogenous variation in price.

I now address the endogeneity of charging stations in the demand equation. I follow the
approach in Hausman (1996) and Nevo (2001), which use the panel structure of the data to
construct instruments. Formally, the idea is to use networks in other regions to instrument
for local charging stations. The installation of new stations depends on local consumption
(i.e. the installed base of electric vehicles in a given region) and a common cost component
across regions that does not depend on consumption once we account for region fixed effects.
Networks in other regions are valid instruments for local stations as long as the correlation
between networks comes only from sharing a common cost and not from users charging over
region lines (or from common shocks that affect all markets together). This assumption
cannot hold for markets that are geographically close to each other. People travel between
neighbouring regions for work or other daily activities. These commuting patterns could lead
to a significant portion of charging in a region to come from electric vehicle owners outside
the region and vice-versa. However, it is unlikely that a significant portion of consumers
charge over region lines for two counties that are geographically distant from each other.

I impose a distance threshold to select networks that are far enough to construct a valid

instrument for local network size,

ZN _ Zéyﬁm ]l(dist&m > K) : ln(Njgt)
jmt > o L(disten > K)

I use a radius of 300 km from the county’s centroid to determine which networks enter the
basis function. The choice of a threshold is rather arbitrary. To document the robustness
of my results to this assumption, I estimate a simple logit demand model, and vary the
threshold in increments of 50km. Results are available in Table A.3.

Several factors could break this instrumental variable strategy. A large scale advertise-
ment campaign that raises awareness about environmental issues or a significant investment
into charging stations from the provincial or federal governments that affects all regions
together are examples. To the best of my knowledge, there was no change in the policy
environment over the period of interest that would threaten identification. The full set of
demand instruments is then Z = (zP, 2%, z).

Estimation is done using the Nested Fixed Point algorithm described in Berry et al.
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(1995). I perform the market share inversion to recover (3, o), then minimize the following

objective function,

(B*,0%) = ar%min &(B,0)ZWZ'E(B, o),

where W is some weighting matrix. As usual, the 8 = (8P, N, 5%, 3P) can be partialled out,

N

and the optimization is done over the o = (6P, 0, 0*). Additional details on the estimation

routine can be found in Appendix C.

Station supply. I estimate the parameters of the station supply equation by maximum
likelihood. For €}, distributed as standard normal, the probability of observing a network
of size k is given by the following expression:

— *mt

In(k) = X2n(Qfy) — D A® (k4 1) — A% (@) — D:ntAD>
w w ’

Pr(Nzk:]A,w)zPr( <e

e (m(k +1) = AQUn(Qy,) — D;mAD> e <1n(k:) — AQIn(Q<,) D;ntAD>
w w '

The conditional likelihood is then

(A w ] QD)= InPr(N = Np | Q5% Doty A, w),
t

m

B In(Npt 4+ 1) — AQ1In(Q%,) — D/, AP
St : )

o <ln<Nmt> A% (@) - D'mtADﬂ ,

w

I now address the issue of the endogeneity of the stock of electric vehicles in the sta-
tion supply model. Since the model is highly non-linear, traditional two-stage least-square
estimation is not possible. I rely instead on a control function approach to deal with the
endogeneity issue. Consider a set of valid instruments for Q’, denoted w = (wy, D), and

define the control function to be the linear projection of Q® on w,

ev

it = WL+ Vs, (7)

where (e®,v) L w. The estimation of (\,w) is done in two stages. First, I obtain a consistent

estimate of v,,; by estimating equation (7), then I add v,,; as an extra regressor in the
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conditional log-likelihood,

~ In(N, + 1) — AQ1 ewy _p/ AD L \vp
E(A7W|Q6U7D7V):Zzln [@(n( ¢+ ) Il( mt) mt + (% t)

w

m t

o (m(Nmt) —AQ1In(Q,) — D! AP + )\"ﬁmt>]
. .

Similarly to Springel (2021), I use gas station density, gas prices, and the interaction
between the two to instrument for the fleet of electric vehicles in a given region.'*. Gas prices
and gas station density measure the level of competition in the fuel market and influence the
number of electric vehicle sales through the substitution between fuel and electric. These
instruments satisfy the exclusion restriction, since charging stations and fuel stations do not
compete directly with one another once vehicle sales are realized. Also, common shocks are
unlikely to affect both markets together. Electricity prices are regulated by the provincial
government and do not fluctuate with the price of gas. As such, it is unlikely that shocks

that affect the fuel market also affect charging station entry through higher electricity prices.

5 Estimation Results and Counterfactuals

5.1 Demand

Summary statistics. I estimate both the demand for cars and supply of stations at the
county-year level. I define a product as a make-model-engine combination and I set the
market size to the number of households in each market. Table A.2 presents a summary of
the characteristics of the available products. Battery electric vehicles are on average $18,000
more expansive than traditional combustion engines while plug-in hybrids are on average
$6,000 more expansive. The combined rebates seem to cover the price difference fully for
plug-in hybrids, but not for battery electric vehicles.

The evolution of vehicle sales in Quebec is presented in Figure 4. We can see from Panel
(a) that total sales are roughly constant until 2019, but decrease in 2020 due to supply chain
disruptions and economic uncertainty caused by COVID-19. Panel (b) offers a breakdown by
engine type for electric and hybrid vehicles. Sales of battery electrics and plug-in hybrids are

14Gas station density is calculated as the number of gas station in a given region divided by population,
in 5,000. I construct the gaz price index based on regular, premium and diesel prices yearly average prices
for each region.
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Figure 4: Evolution of sales
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rising steadily, with a sharp increase towards the end of the period. Sales of non-rechargeable
hybrids are rising but only slightly.

Several factors unrelated to the policy under study could explain the surge in sales of
electric vehicles. One of them is the improvement of the electric vehicle offering, summarized
in Table 6. We can see that the offering of battery electric and plug-in hybrid are both rising
steadily between 2012 and 2020. Meanwhile, the offering of internal combustion engines
seems to decline slightly in 2019 and 2020, when sales of electric vehicles are highest. The
increased availability of charging stations could also explain part of the increase in electric
vehicle sales. Table 7 shows the evolution of the charging station infrastructure over time.
The number of stations available goes from 165 stations in 2012 to more than 2800 in
2020. Local networks are also getting denser over time. This is especially important in
predominantly rural counties, which have low population density. A large share of counties
initially had no charging station network. In this case, electric vehicle owners are constrained
to charging at home, which act as a deterrent to the purchase of a fully electric vehicle. By
2020, 76% of counties have more than 10 stations available, 32% have more than 25 stations,

and all counties have at least one open charging location.

Estimation. Results from the demand estimation are presented in Table 8. I include
horsepower (in 100 kW), weight (in 100 kg), driving cost'® (CAD per km), and the engine

15For fuel and hybrid vehicles, driving cost is computed by multiplying fuel consumed for traveling 100km
by gas price in that county and year. For battery electric vehicles, driving cost is measured as power required
for traveling 100km, times an average charging cost of 10.9 cents per kWh. For plug-in hybrid, I compute a
weighted average of both measures based on the share of the total driving range that is achievable driving
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Table 6: Number of available products

Year Fuel Battery Plug-in Hybrid Total
Electric Hybrid

2012 165 4 1 9 179
2013 176 5 3 9 193
2014 187 7 4 9 207
2015 188 7 4 10 209
2016 186 7 6 10 209
2017 184 10 13 13 220
2018 184 10 16 13 223
2019 177 14 15 13 219
2020 173 16 15 13 217

Table 7: Evolution of charging station infrastructure

Year Number of Share of counties with
Stations 0 station 1-5 stations 6-10 stations 11-25 stations > 25 stations

2012 100 0.69 0.24 0.01 0.03 0.02
2013 192 0.48 0.44 0.02 0.04 0.02
2014 339 0.29 0.55 0.07 0.04 0.05
2015 623 0.13 0.50 0.22 0.09 0.05
2016 914 0.03 0.49 0.20 0.22 0.05
2017 1,266 0.02 0.40 0.21 0.31 0.06
2018 1,616 0 0.28 0.29 0.30 0.14
2019 2,371 0 0.11 0.28 0.39 0.22
2020 2,811 0 0.08 0.16 0.44 0.32

type as observed characteristics. I also interact these car characteristics with average county-
level demographics. The chosen demographics are the average income, the average age, the
proportion of female, the population density (number of households per sq. km), and a time
trend.'® T include a large number of fixed effects: car makes (34 different makes), market
segments (subcompact, compact, midsize, large/luxury, crossover utility, sport utility, and
minivan), counties (96 counties), and years (9 years). These fixed effects capture unob-
servables such as brand perception, or local unobserved consumer characteristics. Finally, I
allow for heterogeneous preferences by including a random coefficient on the net price, on the

battery electric dummy, and on the constant. In practice, including a random coefficient on

only on electric.
16 All demographics are demeaned such that they do not affect the coefficients on the observed character-
istics they are interacted with. The choice of the exact specification is discussed in Appendix C.
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Table 8: Demand estimation

ESTIMATE INCOME AGE GENDER POP DENSITY TREND o
Price - Rebate -0.785%*** -0.149%**
(0.032) (0.022)
Log network (0.344%F*
(0.037)
Power 0.923%** 0.072%FF  0.209%**  0.041%**
(0.021) (0.013) (0.020) (0.004)
Weight -0.21%** 0.083*#*
(0.037) (0.004)
Driving cost -0.036%** 0.001
(0.004) (0.003)
Battery electric -2.196%** -0.089 0.175%** -0.337H* 0.161
(0.545) (0.056) (0.029) (0.047) (3.73)
Plug-in hybrid -2.120%F%F  0.215%FF 0.148%** -0.385%**
(0.090) (0.036) (0.025) (0.047)
Hybrid -1.725%** 0.389%** (), 148%**
(0.022) (0.051) (0.016)
Constant 5.884%**
(2.366)
Observations 126,397
Nb. of markets 864
Avg. Own-price elasticity -3.24
Nb. Elasticity > -1 0

NOTE: Includes brand, market segment, county, and year fixed effects. Robust standard errors in parenthesis.
Significance: * < 0.10; ** < 0.05; *** < 0.01.

price (or on one of the continuous characteristics) helps producing more diverse substitution
patterns between products. In this case, it also allows for heterogenous response to the finan-
cial incentives. On the other hand, the random coefficient on the constant is useful to break
the independence to irrelevant alternative between the inside and the outside good. Since
this study aims at measuring the emission reduction potential of electric vehicle subsidies,
it is crucial that we measure the substitution to the outside option accurately.

I estimate the price coefficient and its standard deviation to be -0.785 and 0.149 re-
spectively. Both are highly significant. The average own-price elasticity implied by these
estimates is -3.24, which is in the same range as the estimate I obtain in the reduced form
analysis (-3.13). The coefficient on network size is 0.343 and significant, which means that
consumers care about the availability of charging stations when considering the purchase of
an electric vehicle. Interestingly, the interactions with average demographics seem to cap-
ture fairly well the heterogeneity in preferences for observed characteristics. For example,

the model suggests that the preference for powerful vehicle increases with income or age,
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and that women typically prefer more powerful vehicles compared to men.!” The model
also predict that women prefer electric and hybrid vehicles more than men. The estimates
suggests that consumers in large cities dislike electric vehicles. One explanation is that the
interactions between population density and the electric vehicle dummies capture the poten-
tial for home charging which is lower in urban areas compared to rural areas. Finally, my
estimates suggest that consumers’ preference for weight (a proxy for security) increases over

time.

5.2 Network supply

Results from the network supply estimation are presented in Table 9. I include several demo-
graphics that try to capture regional differences in consumer characteristics that may induce
station operators to install chargers. I use the share of residents that have an undergraduate
degree as a proxy for environmental awareness and the aggregate taste for green technolo-
gies. Additionally, I measure the potential for home charging by the share of homeowners
and an indicator for urban counties. Demand for charging on the network should be higher
if electric vehicle owners cannot install and use a home charger. This in turn should lead to
more station installations. Because of the highly non-linear nature of the model, I cannot
include county fixed effects, as these would not be identified with only nine years of data.
Instead, I include the average income, the average age, and the average household size to
account for any remaining regional differences.

I report both the coefficients of the structural model and the control function. The
share of graduates and the share of homeowners are significant and have the correct sign in
both cases. This reinforce the idea that environmental awareness and the potential for home
charging are two important drivers of charging station entry. Meanwhile, the urban indicator
is significant in the control function, but not in the structural equation. The coefficient on
the log of the stock of electric vehicle is the main coefficient of interest. I estimate it to
be 0.225, significant at the 5% level. The average partial effect implied by this estimate is
0.039. This suggest that one additional station is installed for every 25.9 electric vehicles
sold. This figure seems fairly large, however it is driven by counties with few or no stations.
In this case, even small changes in the stock of electric vehicles are sufficient to generate an

additional station installation.

1"The consumer-level data also suggests that women (on average) purchase larger, hence more powerful
cars than men. Men on the other hand, tend to purchase cars with better acceleration (power-to-weight
ratio).
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Table 9: Staion supply estimation

ESTIMATE CONTROL FUNCTION
Log Q¢ 0.225%*%  (0.110)
Avg. household income 0.105 (0.087) -0.052 (0.117)
Avg. age 0.357 (0.271) -0.661 (0.412)
Avg. household hize 0571 (0.794) 0.763 (0.965)
Share of graduates 4.149*%**  (1.339) 5.249%%* (1.533)
Share of homeowners -3.535%%*  (1.109) -2.651%* (1.387)
Urban 0213 (0.215)  0.856%** (0.195)
v (control function) 0.156 (0.141)
w 0.564%% (0.029)
Gas station density -1.031%* (0.400)
Gas price index -3.713%* (1.651)
Gas price x Gas density 0.266 (0.265)
Observations 864 864
Log-likelihood 2.448
R-squared 0.895
F-stat 20.34
Prob. > F-stat 0.000
Avg. partial effect (%) 0.039

EV for one additional station 25.9

NOTE: Includes year fixed effects. The F-statistic tests for the null hypothesis
that the instruments are jointly zero. Bootstrap standard errors in parenthesis
are clustered at the county level. Significance level: * < 0.10, ** < 0.05, *** <
0.01.

The structural model allows for the estimation of very flexible network supply and net-
work elasticity of supply curves. Figure A.3 and Figure A.4 provide examples for selected
counties. This is one of the strengths of the proposed methodology: it does not restrict the
network elasticity of supply to be fixed across markets, or when the number of potential users
vary within markets. This allows the model to explain the data better if network provision

is not homogeneous across counties or over time in reality.

5.3 Counterfactual analysis

Before we move on to studying the environmental performance of electric vehicle incentives,
it is useful to conduct a few basic counterfactual experiments. We want to assess the quality

of the estimation, and understand the model’s predictions in a simple setup. To that end,
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I perform three counterfactual experiments. First, I remove provincial level subsidies and
evaluate how sales, charging station deployment, and other key economic outcomes change
in this context. Second, I remove federal level subsidies. Finally, I remove both sets of
incentives to provide a baseline case without government intervention. I rely on a simple fixed
point iteration to determine jointly electric vehicle sales and network size in each market.
Since network deployment depends on the stock of electric vehicles, counterfactuals must
be computed iteratively year by year to reconstruct the evolution of both stock variables.
Computational details are available in Appendix D.

The result of the counterfactual experiments are reported in Table 10. As mentioned
above, I set the baseline to be the “no rebates” case. I focus my analysis around the main
counterfactual, presented in column (1). The first salient fact is that financial incentives are
very effective at improving electric vehicle take-up. Sales of battery electric and plug-in hy-
brids which were targeted by the policies increased by 93% compared to baseline. Moreover,
most of these additional electric vehicles (around 68%) are replacing internal combustion
engines, which leads to reductions in total carbon emissions. Around 30% of consumers
which purchased an electric vehicle would not have purchased any vehicle without subsidies.
This affects the performance of the program, since in this case no emission reduction occurs.

The impact of these additional sales on network deployment is modest. The total number
of charging stations increases by 19% compared to baseline. This seems underwhelming
considering that the fleet of electric vehicles almost doubled due to the financial incentives.
I take it as evidence of weak indirect network effects. This contrasts the existing literature
on electric vehicle markets which instead show that network effects are important.!® This
could be a feature of the Canadian market: local governments play an active role in network
deployment and may not respond to the increased demand in the same way a private operator
does.

The provincial and federal rebate programs together are responsible for abating 1.117
million tons of COy emissions. This is equivalent to a 0.78% reduction in total emission
from new car sales. To avoid including additional assumptions on the driving patterns of
consumers, | measure emission abatement over the lifetime of vehicles. The underlying
assumption is that while consumers may change their utilization in response to the program
(if for example they acquire a second vehicle which is electric), the lifetime mileage achievable
on each vehicle is unaffected. This would be satisfied if consumers that switch early to

purchase an electric car resell their old vehicle on the secondary market instead of scraping

18See Li et al. (2017), Springel (2021), or Remmy (2022).
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Table 10: Counterfactual analysis

(1) (2) (3) (4)

Both rebates Federal Provincial No rebates
(Data) rebate only rebate only (Baseline)

Total sales +12,209 +1,752 +9,159 3.236e+06
Sales (fuel) -27,981 -3,922 -21,379 3.147e+06
Sales (battery electric) +24,939 +3,317 +18,770 22,366
Sales (plug-in hybrid) 415,800 +2,445 +12,169 21,069
Sales (hybrid) -549 -87 -402 45,337
Stations +434 +78 +346 2,377
CO sEmissions -1.117 -0.151 -0.856 142.6
Consumer surplus 962.8 78.9 428.0 0
Total cost 723.2 86.7 506.5 0
Total cost (prov) 573.1 0 506.5 0
Total cost (fed) 150.1 86.7 0 0
Avg. cost per ton CO9 647 573 592
Avg. cost per electric vehicle 17,753 15,050 16,371

NOTE: COy emissions is the present-value of CO9 emissions over the lifetime of
vehicles, in million tons. Lifetime emissions are computed based on a 22,053 average
mileage per year and an average lifetime of 12.02 years. Consumer surplus and Total
cost are in million 2018 CAD. Awg. cost per ton COs and Avg. cost per electric
vehicle are in 2018 CAD.

it. It also makes sense from the point of view of the policymaker to consider the present-value
of current and future emissions when investing on financial incentives.

Total spending on subsidies by both levels of government reached $723.2 million by 2020.
I use this figure to compute some preliminary cost measures, which are useful to compare
our results with previous literatures. I estimate the average cost of reducing emissions to be
between $573 and $647 per ton of COq. This is similar to Xing et al. (2021), which estimate
an average abatement cost between $581 and $662 (484 — 552 USD) per ton for a similar
rebate program in the United States. Other studies of similar incentives typically find lower
estimated costs.!? T estimate the average cost per additional electric vehicle to be between
$15,050 and $17,753. This is much higher than the per vehicle subsidy ($8,592). This high
cost can be explained by the high number of infra-marginal consumers that did not need to

be incentivized to purchase an electric vehicle. This suggests that improvements could be

19See for example Huse and Lucinda (2014) on the Swedish green car rebate ($131 — 158), Beresteanu and
Li (2011) on tax incentives on hybrids in the United States ($212), or Azarafshar and Vermeulen (2020) on
the Canadian electric vehicle market ($480)
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achieved if the policymaker targeted switchers more accurately.

6 Cost-Benefit Analysis

6.1 Setup

I propose a calibration exercise to study the cost-effectiveness of the Canadian rebate pro-
grams. [ setup the calibration in a very general way which could be used to study other
types of environmental regulations (e.g. gas taxes, emission standards, etc). Consider the

following social planner objective, where 7 is the targeted policy variable,

7" = argmax W(7) — ¢ Cost(7) — E(r)- P*¥

TEO A / N

TV TV
Value to society Value of emissions

The social planner is looking to pick the policy 7* that maximizes the value to society and
minimize the value of emissions that arise from the policy. For now, we take the carbon
price P¥ as given. The government objective function has three key inputs: a social welfare
function W(7), a cost function ¢ Cost(7) which summarizes government spendings,?’ and
an emission function E(7). Provided all three functions are continuously differentiable, the

optimal policy rule 7*(P¥) can be obtained by inverting the following first-order condition,

OW(1*) O0Cost(7*)

_ = pE 8
OE(7%) ¢ OE(7) —_ (8)
he d Cost of
Marginal Carbon
Abatement
Cost,

I now provide more details on each component of the objective function.

Social welfare function. Let § = (3,0, \,w) be the fundamental parameters governing
consumers’ preferences and network deployment. I define the social welfare function as a
weighted sum of the firms’ profits and consumers’ welfare (defined by consumer surplus).

Let v, and 19 be welfare weights. The social welfare function is

W(r) = WI(1,0) = 1 TI(1,0) + 1 CS(T, 0),

2Tn the case of a tax, government spendings would be negative.
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where

Z Z Z Qjme (T, 0) - (pje — cjt)

are the firms’ aggregated profits, and

XXt ey PO

is the aggregated (expected) consumers’ surplus.?!

Cost function. The cost function accounts for all government expenditures on the policy.
Recall that 7 > 0 represents a subsidy in the utiilty specification (and 7 < 0 a tax). The

cost function can be computed as the sum of all government subsidies,

Cost (1) = Cost(r,0) Zzz%mt 7,0) - Tjt,

weighted by the marginal cost of public funds ¢.

Emission function. Lifetime emissions depend on several parameters, including the car’s
level of emission e, its expected lifetime 7}, and the average mileage by year that a typical
owner travels m,. I assume that the policymaker discounts future emissions at rate r. The

present-value of the aggregated emissions can be computed as

t+T;

B0) = 50.0) = XXX ami(n0)- 3 (145) e

6.2 Calibration

I calibrate the various parameters of the social planner’s objective function. The parameters
are the welfare weights (11, 19), the marginal cost of public funds (¢), the discount rate (),
the average mileage per year (m;), and the expected lifetime of vehicles (77).

I assume that the social planner cares about consumer surplus but not profits, to reflect
the fact that no car production occurs in Quebec. Therefore, I set the welfare weight on profit

to zero. The discount rate is set to 5%. I use data on fuel spending from the Canadian Survey

21This is the usual log-sum formula for consumer surplus, which is identified up to a constant K.
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Table 11: Calibrated parameters

Calibration

Description Parameter Low ¢ High ¢
Social welfare function

(a) Profit weight Y1 0 0

(b) Consumer surplus weight o 1
Cost function

(c) Marginal cost of public funds ) 1 1.15
Emissions function

(d) Discount factor r 0.05 0.05

(e) Avg. mileage by year mjs 22,053 22,053

(f) Avg. lifetime of vehicles T; 12.02  12.02

of Household Spending and local fuel costs to compute the average mileage of a representative
Quebec household in 2017. Unfortunately, the data doesn’t distinguish between households
that own one versus two cars, so I assume that all mileage is done on one vehicle. The
average mileage is set to 22,053 kilometres for all 7 and s. Finally, I compute the expected
lifetime of vehicles using the micro-level car registration data. I have access to the full fleet
of vehicles in 10 successive years which I use to track vehicles of various ages and estimate
their expected lifetime. The expected lifetime of a new vehicle estimated to be 12.02 years.??

I use two different values for the marginal cost of public funds. In the first calibration,
I assume that the government can provide subsidies without friction at no additional cost.
In the second set of results, I assume that governments have to pay an administrative fee
to provide subsidies. In this case the marginal cost of social funds is set to ¢ = 1.15. As a
reference, the calibrated parameters are reported in Table 11.

I restrict the policy space to rebate programs that are proportional to the currently
implemented scheme. To fix ideas, let 7y be the currently available rebate program. The set

of policies that are available to the policymaker satisfies

T=k-T9, KER".

22Combining the expected lifetime with the average mileage by year implies that cars have an expected
total mileage of around 265,000 kilometres.
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With this restriction, the marginal abatement cost can be computed as

_OW(s)

0Cost(k)
~ OE(k) '

OE(k)

MAC(k) —¢

Restricting the policy space serves two purposes. First, it reduces the computational
burden associated with evaluating all possible policies. With J different electric vehicle
models available, solving for the optimal rebate program entails solving a problem of dimen-
sion R’ which is impractical or infeasible. More importantly, there are strong incentives
for policymakers to subsidize all models equally to avoid picking winners and losers among

firms.

6.3 Optimal policy

I study the cost-effectiveness of rebates by considering the social planner’s optimality condi-
tion. I compute counterfactuals on a grid {ky, ..., K }, then estimate the marginal abatement

cost as

W(kni1) — W(En) Cost(kp11) — Cost(ky,)

MAC(k,) = E(kns1) — E(n) N E(kn+1) — E(ky)

I then collect the results to construct the marginal abatement cost curve as a function of
k. There are two interpretations to the social planner’s optimality condition. On one hand,
we can assume that it holds at the current rebates. In this case, equation (8) provides an
estimate for the cost of carbon, PP = MAC(1). On the other hand, we can calibrate the
cost of carbon to known estimates and recover an optimal policy x*(P¥). In what follows, I
focus on the second interpretation.

Figure 5 depicts the marginal abatement cost curve and the optimal policy curve for both
sets of calibrated parameters. Panel (a) and (b) assume that the policymaker can provide
subsidies without friction at no extra cost, while Panel (c) and (d) involve a marginal cost
of public funds of ¢ = 1.15. I obverse that the marginal abatement cost is strictly increasing
in the subsidy, which insures that a stable solution to the planner’s problem exists and is
unique at a given P¥. In practice, we expect rebates to exhibit decreasing returns in term of
emission abatement, since the number of infra-marginal consumers increases with the rebate
but emissions abated per new owner does not. I evaluate the marginal abatement cost at
current rebates to be between $311 and $423. This is higher than contemporaneous measures

of the social cost of carbon.
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Figure 5: Abatement cost and optimal policy curves
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Figure 5 also reports the corresponding average abatement costs (built from the same
social planner’s objective function). A key observation is that the average abatement cost
is below the marginal abatement cost over the full policy space. This has important impli-
cations for policy design. Determining the optimal policy based on the average abatement
cost systematically leads to an over-investment from the social planner.

I invert the marginal abatement cost curves to recover optimal policy curves. I evaluate
the optimal policy for two separate estimates of the social cost of carbon. The chosen
values are $45 and $183, which correspond to the average social cost of carbon and the

95th percentile of the distribution.?® For the lowest estimate, the optimal policy correspond

23Source: Environment and Natural Resources Canada.
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to 4.7 — 25.8% of the current rebate programs. For the highest social cost of carbon, the
optimal policy correspond instead to 39.8 — 65% of current rebates. In all cases, our analysis
suggest that policymakers in Quebec are over-investing on rebates. In the most favorable
scenario, the provincial and federal rebate programs should subsidize battery electric vehicles

by $5,200 and $3,250 respectively. For completeness, Table A.4 summarizes these findings.

6.4 Improving the performance of rebate programs

To provide more perspective on these results, I consider two alternative policies. First, I try
to improve on the emission reduction potential of rebates by combining them with a cash
for clunker component. Specifically, I define a clunker to be any car above 10 years old,
and I allow consumers to trade in their clunker for the electric vehicle subsidy. Since these
clunkers are not resold on the secondary market, their removal leads to additional emission
abatement. I determine the distribution of clunkers in the population by looking at the
full fleet of vehicles at the beginning of each year, and integrating over that distribution to
compute the counterfactual. The additional emission reduction related to these clunkers is
computed using their expected remaining lifetime and their average emissions per kilometre.
These additional calibrated values are available in Table A.5. The second policy tries to
improve the targeting of the current program by restricting the access to subsidies to the
most price sensitive consumers. In practice, this could be implemented by restricting access
to low income households, under the assumption that income and price sensitivity are highly
correlated.

The results of these two experiments are presented in Table 12. One of the key finding
is that these two new programs (henceforth “cash for clunker” and “improved targeting”)
generate far fewer electric vehicle sales than the current program. This follows naturally
from the fact that we are restricting the access to subsidies. The “cash for clunker” and
the “improved targeting” programs reach 25% and 40% respectively of the potential electric
vehicle owners.

To study the cost efficiency of the “cash for clunker” and the “improved targeting”
programs relative to the current rebate schemes, it is useful to use total spending as a point
of comparison. Figure 6 depicts the total emission abatement for various levels of government
spending and the associated policies. T present two sets of results. In Panel (a) and (b), I
plot total emission abatement against total government spending, while Panel (c¢) and (d)
instead plots emissions against the social cost of the policy, defined as cost minus social

welfare. For any level of government spending, the “cash for clunker” program dominates
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Table 12: Counterfactual analysis

(1) (2) (3) (4)

Both rebates Cash for Improved No rebates

(Data) clunker  targeting (Baseline)
Total sales +12,209 43,058 46,014 3.236e+4-06
Sales (fuel) -27,981 -7,128 -13,221 3.147e+06
Sales(battery electric) 424,939 46,319 411,566 22,366
Sales (plug-in hybrid) +15,800 +4,008 +7,925 21,069
Sales (hybrid) -549 -140 -256 45,337
Stations +434 +133 +235 2,377
EV subsidized 84,174 21,033 34,718 0
CO3 Emissions -1.117 -0.732 -0.512 142.6
Consumer surplus 562.8 143,4 229.5 0
Total cost 723.2 180.6 304.3 0
Total cost (prov) 573.1 142,9 236.4 0
Total cost (fed) 150.1 37.63 67.86 0
Avg. cost per ton CO9 647 247 594
Avg. cost per electric vehicle 17,753 17,486 15,612

NOTE: CO; emissions is the present-value of COs equivalent emissions over
the lifetime of vehicles, in million tons. Includes emissions abated from clunker
program. Lifetime emissions are computed based on a 22,053 average mileage
per year, and a total lifetime of 12.02 years. Consumer surplus and Total cost
are in million 2018 CAD. Awvg. cost per ton COs and Avg. cost per electric
vehicle are in 2018 CAD.

both the current rebates and the “improved targeting” programs. My result suggests that
imposing the cash for clunker restriction could lead to 1.5 times more abated emissions for
the same level of costs. While this is a significant improvement over the current program,
there are a few caveats to consider. First, this analysis does not account for reactions on the
secondary market. Our results hold so long as the fall in supply in the secondary market
did not push extra buyers on the primary market. This could lead to more fuel car sales,
increasing emissions, and mitigating my results.

The “improved targeting” program underperforms compared to all other policies under
consideration. To reach the same level of spending, the policymaker needs to increase sub-
sidies substantially in order to convince the same number of buyers to purchase electric
vehicles. Overall, it is more costly at the margin to decrease emissions: there are consumers

in the low price sensitivity group who would convert to electric for cheaper. When we con-
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Figure 6: Cost efficiency
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sider gains to consumer surplus, the “improved targeting” policy vastly underperforms as it
fails to increase surplus at the same rate as the current policy. I general, the main takeaway is
that imposing restrictions do not produce a better environmental outcome, unless additional

emission reductions occur elsewhere, as is the case in the “cash for clunker” program.

7 Conclusion

The Canadian electric car market presents a unique opportunity to study the impact of
subsidizing electric vehicle sales on key economic outcomes. Evaluating the environmental
performance of such policies is important. With limited financial resources, policymakers

should strive to reduce emissions at the lowest cost possible. My findings suggest that electric
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vehicle subsidies are an effective way to diffuse the technology and increase adoption. I find
no evidence that these additional sales generate additional charging station installations in
the short run. In the long run, I find that the program led to a moderately low increase
in network size. This study provides a rigorous cost-benefit analysis to evaluate the cost-
effectiveness of rebate programs. I find in general that the marginal cost of abatement
remains high compared to traditional measures of the social cost of carbon. This suggests
that the provincial and federal governments in Canada over-invest on electric vehicle subsidies
compared to the optimum. I find that one way to improve on the current program is to
restrict the access to rebates to buyers who turn in their old car in exchange for an electric
vehicle subsidy.

These results should be considered as part of a broader set of environmental policies. For
example, investments into cleaner electricity production, reforestation, or the modernization
of particularly polluting industries could abate emissions at a lower marginal cost. This study
contributes to creating a unified framework to study and compare environmental policies and

help policymakers make these crucial decisions.
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A Additional Tables and Figures

Table A.1: County-level demographics

Ontario Quebec
Pre Post 1 Post 2 Pre Post 1 Post 2
Avg. household income 96,484 100,837 114,341 74,594 79322.0 90373.4
(15,509) (15,337) (15,866) (11,134) (10,625) (11,074)
Avg. after-tax household income 80,070 82,742 93,967 61,805 65,007 73,869
(11,229) (10,810) (11,105)  (8,128) (7,658)  (7,921)
Unemployment rate 0.081 0.074 0.12 0.073 0.073 0.075
(0.012)  (0.010)  (0.018) (0.023)  (0.022)  (0.020)
Avg. household size 2.65 2.63 2.62 2.33 2.32 2.28
(0.28) (0.29) (0.28) (0.16) (0.16) (0.16)
Avg. age 40.6 41.0 41.8 42.0 42.0 42.8
(2.66)  (2.02)  (2.03) (3.22)  (241)  (2.653)
Share of graduates 0.25 0.32 0.36 0.20 0.25 0.29
(0.10)  (0.11)  (0.12) (0.09)  (0.11)  (0.12)
Share of conservatives 0.42 0.35 0.33 0.17 0.16 0.16
(0.10) (0.08) (0.08) (0.10) (0.11) (0.11)
Work location < 30 min drive - 0.57 0.61 - 0.61 0.66
(0.14) (0.11) (0.14) (0.11)
Work location within county of residence - 0.74 0.76 - 0.67 0.69
(0.15)  (0.12) (0.24)  (0.21)
Median commuting time 234 - - 22.1 - -
(6.64) (6.57)
Share of homeowners 0.72 0.70 0.69 0.62 0.62 0.60
(0.11)  (0.11)  (0.10) (0.15)  (0.14)  0.14
Share of visible minority 0.27 0.29 0.34 0.12 0.13 0.16
(0.21)  (021)  (0.22) (0.12)  (0.13)  (0.15)
Population, in million 13.07 13.45 14.22 7.95 8.11 8.44
Nb. of counties 49 49 49 98 96 96

NOTE: All values are averaged over counties, weighted by population. Standard deviation in parenthesis.
Pre period is based on the 2011 Canadian Census Survey. Post 1 period is based on the the 2016 Canadian
Census Survey. Post 2 period is based on the 2021 Canadian Census Survey. Income not adjusted for
inflation.
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Table A.2: Average characteristics, by engine type

Fuel Battery Plug-in Hybrid
electric  hybrid

Characteristics
List price, in CAD 36,780 54,531 42,830 36,844
Net price, in CAD 36,780 44,695 35,834 36,844
Rebate, in CAD 0 9,836 6,996 364
Power, in kW 149.6 168.9 154.9 163.5
Length, in m 4.55 4.41 4.63 4.65
Width, in m 1.83 1.85 1.82 1.83
Height, in m 1.57 1.52 1.51 1.58
Weight, in 100kg 15.8 16.9 16.9 16.0
Driving Range, in km 661 349 809 873
Fuel consumption, in L /100km 8.85 0 5.94 5.89
Electricity consumption, in kWh/100km 0 16.1 24.8 0
Cost of driving 100km 11.40 1.74 6.79 7.35
CO? emissions, in g/km 205.6 0 60.1 137.5
Transmission
Manual 0.10
Automatic 0.90 1 1 1
Fuel type
Regular 0.82 0 0.88 1
Premium 0.15 0 0.12
Diesel 0.03 0 0 0
Market segment
Subcompact 0.11 0.19 0.02 0
Compact 0.33 0.59 0.66 0.11
Midsize 0.05 0 0.09 0.19
Luxury/Executive 0.02 0.03 0 0
Crossover Utility (CUV) 0.18 0.18 0.06 0.64
Sport Utility (SUV) 0.27 0.01 0.15 0.05
Minivan 0.03 0 0.02 0

NOTE: All characteristics are weighted by sales. All dollars values are in 2018
CAD.

49



0¢

Table A.3: Robustness to distance threshold

(1) (2) (3) (4) (5) (6) (7) (8) 9) (10) (11) (12)
No instr 0 km 50 km 100 km 150 km 200 km 250 km 300 km 350 km 400 km 450 km 500 km

Price - Rebate -0.662%%* -0.675%F _0.675%%% _0.675%FF -0.675%%F Q.67 -0.676%FF -0.676¥F* -0.677FFF  -0.6TTFRE  -0.678FFF (0 6TR*K*
(0.031)  (0.031)  (0.031)  (0.031)  (0.031)  (0.031)  (0.031)  (0.031)  (0.031)  (0.031)  (0.031)  (0.031)
Log network  0.248%%% 0 411%FF  0.4020%F  (.383%FF  (.366%FF  (0.3621FF  (.379%FF  (.303%FF  (3Q1%FFX  (.397FFF  (.397FFF (383
(0.024)  (0.031)  (0.031)  (0.032)  (0.033)  (0.033)  (0.034)  (0.035)  (0.035)  (0.035)  (0.036)  (0.035)

Observations 126,397 126,397 126,397 126,397 126,397 126,397 126,397 126,397 126,397 126,397 126,397 126,397
R-squared 0.120 0.112 0.112 0.113 0.113 0.113 0.112 0.112 0.112 0.111 0.111 0.111

NOTE: This table highlights how the coeflicients on Log of stations changes as we increase the distance threshold which is used to construct the charging
station instrument. Distance thresholds are in km from centroid to centroid for each region pair. Column (1) instruments for price but not charging
stations. Column (2) uses all stations that are located outside of any given county without filtering for distance. Column (8) is the chosen specification. All
regressions include car characteristics and their interaction with county-level average demographics. All regressions include brand, market segment, county,
and year fixed effects. All regression include cost shifters and Gandhi-Houde differentiation instruments. Standard error in parenthesis are clustered at the
product x county level. Significance: * < 0.10; ** < 0.05; *** < 0.01.



Table A.4: Optimal policy

Calibration
(1) (2)

PANEL A: Low SCC ($45)

Optimal policy k* = 0.258 k" = 0.047

Provincial rebate 2,064 376

Federall rebate 1,290 235
PANEL B: High SCC ($183)

Optimal policy Kk* = 0.650 k* = 0.398

Provincial rebate 5,200 3,184

Federall rebate 3,250 1,990
PANEL C: Abatement cost

Marginal cost of public funds p=1 ¢ =1.15

Marginal abatement cost 311 423

Average abatement cost 160 252

NOTE: Provincial rebate and Federal rebate are based on an
$8,000 and a $5,000 subsidy respectively. Abatement costs are
measured at the current policy (k = 1). All values are in 2018
CAD.

o1



Table A.5: Average lifetime and emissions of clunkers

Age of Vehicle Expected lifetime Avg. COg emissions

NEW 12.02 215.6
1 11.02 214.8
2 10.41 213.4
3 9.96 211.7
4 9.34 210.6
5 8.54 209.2
6 7.78 208.9
7 7.05 208.0
8 6.33 208.2
9 5.64 208.0
10 4.99 206.7
11 4.46 206.1
12 4.05 206.6
13 3.75 206.8
14 3.54 207.6
15 3.42 208.1
16 3.37 210.1
17 3.40 212.1
18 3.50 215.0
19 3.64 217.7
20 3.80 220.8
21 3.94 223.7
22 4.00 227.7
23 3.96 232.4
24 3.81 235.8
25 3.50 236.5
26 3.07 236.7
27 2.49 2354
28 1.77 234.7
29 0.93 234.4
30 0.00 235.8

NOTE: Expected lifetime of vehicles is computed using the micro-
level data on car registrations, which includes all vehicles in circula-
tion. We track each vehicle over 10 years. Average CO2 emissions
are imputed using vehicle weight, the cylinder capacity, and the
number of cylinders which are available for all vehicles in the regis-
tration data, and carbon emissions per kilometre which is available
for cars produced after 2011.

52



Log sales (battery electric)

N\

Log sales (plug-in hybrid)

Avg. log new stations

&
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Figure A.4: Station elasticity of supply curves, for selected counties
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B Details on the Data

I use data from several sources, described below. The data is aggregated at the county
level, following Statistics Canada Census Divisions. Markets are defined as a county-year
combination. I choose this level of aggregation for two reasons. First, counties capture
relatively well the day to day commuting area of car owners: about 72% of them work
within their county of residence. Also, county-level governments are large contributors to
networks, which reinforces the idea that network provision is decided at the level of the

county.

Car registration. The data on car registration comes from two main sources: the Ministry
of Transportation of Ontario (MTO) and the Société d’Assurance Automobile du Québec
(SAAQ). The Ontario dataset includes quarterly car registrations aggregated at the product-
county level for the years 2011-2021. The data includes the make (i.e. Ford), the model (i.e.
Focus), and the engine type (i.e. Electric), and the quantity sold.

The Quebec dataset comprises 10 yearly datasets that detail the full fleet of vehicles in
circulation at the end of each year, from 2011 to 2020. The data includes the make, the
model, the model year, some demographics of the owner (age, gender, county of residence),
as well as additional vehicle characteristics (colour, number of cylinders, cylinder capacity,
and curb weight). The engine type is available from the 2017 dataset onwards. I impute the
engine type in the 2011-2016 datasets using the information available in the 2017 dataset.
Since battery pack are relatively heavy, I find that the make, the model, the model year,
and the curb weight of the vehicles allow me to identify battery electric, plug in hybrids,
and hybrids reliably. In some cutting edge cases, I also leverage information in the other
variables (number of cylinder, cylinder capacity, and the consumer demographics) to assign
an engine type to all vehicles. Vehicles with a model year prior to 2011 are assumed to be
internal combustion engines.

I use the following algorithm to reconstruct sales in Quebec in each year between 2012
and 2020.

1. Take dataset t;
2. Keep model years that could have been sold as new in year t (i.e. t — 1,¢,¢ + 1);

3. Remove vehicles that also appear in dataset ¢ — 1, by comparing the make, the model,
the model year, the colour of the vehicle, the age of the owner, the gender of the owner,

and the county of residence of the owner;
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4. Repeat for dataset ¢t + 1.

Since vehicles could have been resold in the first year of ownership, or owners could have
moved to a different county, I risk overestimating sales. After a careful verification against

governmental statistics, I find that this is not a serious issue.

Car characteristics. The car characteristics were scrapped from The Car Guide?* which
publishes on their website comprehensive information on all makes and models available in
Canada. This website has been one of the go-to reference for information about the different
car makes since the mid-90s and has widespread public recognition in Canada. The car
characteristics dataset includes retail prices and various characteristics such as the engine
type, horsepower, size, fuel consumption and carbon emissions, all recorded at the brand-
model-year-specification level (i.e. Ford Focus 2017 S-Sedan). The data has a non-negligible
number of missing values in key variables. Specifications with a missing price or a missing
curb weight are removed entirely.?> Missing values in other variables are filled in using the
data from other specification that share the same make-model-year. If an information is
missing for all specifications for a make-model-year combination, I use information from
other vehicles with the same make-model but a different model year. Remaining missing

values are imputed using data collected on the Auto Trader website.?0

Product definition. I define a product to be a combination between the make, the model,
and the engine type. The final dataset is aggregated at the product-county-year level. The
car characteristics dataset is at a more disaggregated level than the registration data. I select
the characteristics of the most sold specification over all sales to define product attributes.
To find this most popular specification, I first recover the exact specification for each entry in
the registration data by matching on the make, the model, the engine type, and then picking
the specification with the closest curb weight.?” I then aggregate the data over counties and
keep the specification with the most sales. Once the specification is chosen, I assign these
characteristics to all products.

To avoid the proliferation of products in the structural estimation, I remove all products

with fewer than 1000 sales over all counties and years (100 sales for battery electric and plug-

24GQee https://www.guideautoweb.com/en/.

25Curb weight is particularly important in this context since I use it to match the make-model-year
registration data to the make-model-year-specification characteristics data.

26See https://www.autotrader.ca.

2TIn case two specifications have the same weight in the characteristics data, I keep the specification that
is closest to the base model.
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in hybrid vehicles). I also remove exotic makes, and all vehicles with a retail price above
$150,000. Finally, I remove pick-up trucks which are poor substitutes to electric vehicles and

are not relevant to this study.

Other data sources. I complement these datasets with data from various other sources.
The data on charging stations comes from Natural Resources Canada and Hydro-Quebec.
They contain the exact geographical location of each station, the entry date, the operator’s
name, pricing, and relevant physical attributes such as the type of station, the number of
chargers, and whether a station is publicly or privately owned. I obtain detailed data on
government expenditure on rebates, which include the exact rebate that was given to each
model in each year. Consumer demographics are taken from the Canadian Census Survey,
the Institut de la Statistique du Québec, and Election Canada. Information on gas prices

and gas stations are obtained from the Régie de I’Energie.
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C Details on the Demand Estimation

C.1 Estimation

The estimation of the demand side parameters follows the best practices described in Conlon
and Gortmaker (2020). I include three random coefficients to capture consumers hetero-
geneity. The random coefficient on prices captures differences in price sensitivity, while the
random coefficients on the constant and the battery electric dummy variable control for the
substitution between the inside good and the outside good, and between battery electric
and other vehicles. I find that these are important to make sure I do not overestimate the
environmental gains due to rebate programs.

Estimation is done in two-stages using the Nested Fixed Point algorithm. I set a tight
tolerance threshold on the objective function of le-5 as suggested in Conlon and Gortmaker
(2020). I partial out the 5 parameters and focus the estimation on the o random coefficients.
Fixed effect are differentiated out using Frisch-Waugh-Lovell Theorem. The integration of
the market shares is performed using 1,000 independent Halton draws. Finally, I perform the
inversion of the market shares using the squarem algorithm?® and a tight convergence thresh-
old of 1le-12. Reynaert and Verboven (2014) and Conlon and Gortmaker (2020) both show
that the squarem algorithm is significantly faster than the contraction mapping described in
Berry et al. (1995).

I do not use the optimal instruments described in Reynaert and Verboven (2014) and
Conlon and Gortmaker (2020). I find that they did not work well in this particular applica-
tion, since network size is determined jointly with electric vehicle sales. It is not clear how
to deal with the endogenous network size while computing the optimal instruments since it
is a stock variable. I also do not include a supply side for cars. As pointed out by Conlon
and Gortmaker (2020), including a supply side helps identifying the random coefficients,
but can lead to misleading results in case it is misspecified. Prices for cars are set at the
North American level, hence assuming that manufacturers change prices in response to a
local Canadian policy would lead to one such misspecification. I instead assume that prices
do not respond to the policy, although they are still endogenous since they are correlated to

unobserved car attributes.

28See Varadhan and Roland (2008).
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Table A.6: Choice of the demographic interactions

VARIABLE ESTIMATE INCOME AGE  GENDER POP DENSITY TREND o
Price - Rebate -0.671%+*
(0.031)
Log network 0.394%**
(0.035)
Power 0.885%** 0.105%#%  0.227%4FF  (.043%F*
(0.036) (0.018) (0.035) (0.008)
Weight L0.253%% 0.074%%
(0.055) (0.005)
Driving cost -0.042%+* -0.005
(0.005) (0.003)
Battery electric -2.342%%%* -0.134%%* 0.181%** -0.4147%F*
(0.104) (0.062) (0.038) (0.086)
Plug-in hybrid -2.246%** -0.251%** 0.157*** -0.445%**
(0.100) (0.052) (0.040) (0.070)
Hybrid -1.746%** 0.413%F*%  (.148%**
(0.035) (0.083) (0.028)
Observations 126,397
Nb. of markets 864
Avg. Own-price elasticity -2.97
Nb. Elasticity > -1 0

NOTE: Includes brand, market segment, county, and year fixed effects. Standard errors in parenthesis are
clustered at the product x county level. Significance: * < 0.10; ** < 0.05; *** < 0.01.

C.2 Selection of demographics

I include interactions between car characteristics and average county level demographics to
help in the estimation of random coefficients. The chosen demographics are the average
income, the average age, the share of female, population density, and a time trend. I select
the exact specification using a standard logit model without consumer heterogeneity. I first
estimate the model with all possible interactions,?” then remove interactions one by one
based on the p-value. The process stops when all demographic interactions are significant
at the 1% level. Table A.6 shows the chosen specification. I reintroduce two interactions
in the final specification that did not survive the iterative procedure: income interacted
with driving cost, and income interacted with the battery electric dummy. I find that these

interactions help identify the random coefficients in the full model.

29Population density reflects the home charging potential and is interacted with the engine types only in
the starting specification. The time trend is not interacted with the engine types, to avoid confounding the
estimate on network size.
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C.3 Elasticities

The elasticity to price can be computed following Springel (2021). Using chain rule, we have

that
gk _ asjmt(pmtaNmt) ) (pkt - Tkt)

mt
Ot Sjimt

3

I

where

asjmt(pmtaNmt) _ asjmt asjmt . a]th . a f:z}t <9)
Opit Ok ONpmt  0Q%%  Opre

It can be shown that the terms in (9) are

asjmt f ﬂzp Sijmt (1 — Sijmt) dF(V) 1f] =k

P — [ B Sijmt Sitms dF (V) if j#£k

N . .
05 jmt / fi—mt Sijmt D pepy Siemt AF (V) if j € EV

ONpme . ’
' Nmt ZEEEV ilmt dF( ) if j ¢ EV

Smit Q evy / D v Q
8Nmt Z/ <ln — A9 In(Q%,) — DI AP + A v) A L aF (),
mt

W Wl e

. OSpmt
8 ,,e—:;t o Lmt ZZEEV 8p:;

Opkt 1= Lt - 58 - Sy o2

Demand elasticities are not used in the computation of counterfactuals in this particular
study since I do not include a supply side for cars. Nevertheless, they are useful to assess
the quality of the estimation. Figure A.5 depicts the distribution of own price elasticities.
The average elasticity is -3.24, which is comparable to other studies on the car market.
Springel (2021) and Remmy (2022) both find that the cross price elasticities between electric
vehicles are negative, suggesting that these products become complements once we account
for network effects. I find a similar result as these works. Table A.7 reports the full elasticity

matrix for selected battery electric and plug-in hybrid vehicles, in 2018.
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Figure A.5: Distribution of own-price elasticities
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Table A.7: Average elasticities of electric vehicles, in 2018
Bolt EV Volt Pacifica C-Max Fusion  Soul EV  Outlander Leaf Model 3 e-Golf
Chevrolet Bolt EV -2.916  -0.00415 -0.000813 -0.000134 -0.00139 -0.000581 -0.00578 -0.00342 -0.00310 -0.000947
Chevrolet Volt -0.00224  -2.545  -0.000803 -0.000105 -0.00145 -0.000533 -0.00570 -0.00351 -0.00340 -0.000944
Chrysler Pacifica -0.00244  -0.00433 -3.759 -0.000117 -0.00134 -0.000573  -0.00490 -0.00402 -0.00292 -0.00116
Ford C-Max -0.00176  -0.00258 -0.000583 -2.176 -0.00103 -0.000239  -0.00418  -0.00284 -0.00328 -0.000625
Ford Fusion -0.00231 -0.00409 -0.000796 -0.000135 -3.238  -0.000609 -0.00560 -0.00387 -0.00315 -0.00107
Kia Soul EV -0.00181 -0.00331 -0.000663 -8.75e-05 -0.00116 -2.326 -0.00525  -0.00304 -0.00302 -0.000760
Mitsubishi Outlander -0.00253 -0.00444 -0.000803 -0.000151 -0.00158 -0.000765 -3.545 -0.00406 -0.00322 -0.00114
Nissan Leaf -0.00205 -0.00392 -0.000812 -0.000112 -0.00145 -0.000583 -0.00573 -2.770  -0.00301 -0.000943
Tesla Model 3 -0.00229 -0.00469 -0.000641 -0.000164 -0.00137 -0.000652 -0.00546 -0.00401  -4.162 -0.00114
Volkswagen e-Golf -0.00177 -0.00318 -0.000767 -7.05e-05 -0.00114 -0.000412  -0.00503  -0.00298 -0.00309 -2.349
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D Computing Counterfactuals

Computing counterfactuals relies on a simple fixed point iteration to determine jointly net-

work size and electric vehicle sales. Recall that the structural model can be written as
Nmt - H(nygtv Dmt; i)\mh En)'

In what follow, I adopt the notation which includes the residuals from the control func-
tion ¥,,;. Notice that any structural function N, can be decomposed into it’s conditional

expectation and a residual, that is,

Nmt = ]Ee“ (Nmt | Qz}:ty Dmtai}\mt) + €mt, (10)
- Ee“]Ev(Nmt | Qfﬁta Dmt) + €mt, (11)

where the second equality holds by a simple application of the Law of Iterated Expectations.
Following Blundell and Powell (2004), the conditional expectation in equation (11) can be

computed as

EaEy(Nme | Q8 D) = //H( s Doty v, €)dF (v)dF (€"), (12)
Smt ev / v
_S5., Xk:/‘b (ln(k’) — AQIn( m;) — D/ AP — v) AR ().
(13)

We can estimate € using parameter estimates and the data, that is,

/E\mt = Nmt - EEHEU(Nmt ’ Qev Dmt) (14)

mt’

With this estimate in hand, we can compute counterfactual networks as

Nmt = Ee“Ev(Nmt ‘ e Dmt) +/€\mt7 (15>

mt)

for any Qvf;ft. Since the structural model takes as inputs the stock of electric vehicles and
the stock of available charging stations, we need to solve counterfactuals recursively starting

from ¢t = 1. The algoritm is as follows:

1. Start from ¢t = 1;
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. For each county, the initial fleet of electric vehicles is Q5 y;

. Set initial network size Ngt = Npt—1;

. Compute market shares Sjmt(ﬁ,glt);

. Compute electric vehicle fleet QVBM = Qi1+ Lt - ZjeEV Sjmt(ﬁgu)s
. Update network size N1, = BEawEy(Npy | Q% Dint) +

. Repeat steps 4-6 until convergence in Nmt;

. Repeat steps 2-7 recursively for t = 2,3,...,7T.
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