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Abstract

Antimicrobial resistance (AMR) increases hospital stays, medical costs and mortality. Antibiotic

consumption and the resulting selective pressure on bacteria can create AMR. We study the role of

AMR in changes in prescriptions of antibiotics in France for treating bladder inflammation (cystitis)

using a representative sample of general practitioners between 2002 and 2019. We propose a decision

model for prescriptions when point-of-care rapid bacterial or susceptibility testing is performed or not,

which affects patient-specific infection susceptibility information. The effects of resistance on demand

and substitution behavior are identified by controlling for the endogeneity of resistance via the use of

antibiotic sales in veterinary medicine. As resistance increases, physicians substitute other drugs, and

we test whether physicians consider predictable resistance evolution in their decisions. We perform

counterfactual analysis to assess the impact of decreasing the use of antibiotics in animals and limiting

the use of fluoroquinolone to treat cystitis. Both policies reduce resistance to fluoroquinolones but have

opposite effects on drug substitution and consumer surplus. Finally, we propose a method to evaluate

the value of rapid bacterial detection and antibiotic susceptibility testing.
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demand.
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1 Introduction

Motivation Antibiotic resistance poses an immense threat to modern medicine. The consequences of

infections becoming untreatable with antibiotics range from longer hospital stays and riskier surgeries to

increasing mortality rates. Recent estimates by Murray et al. (2022) attribute 1.27 million deaths to bacterial

antimicrobial resistance (AMR) in 2019 worldwide (with 4.95 million associated with bacterial AMR)1. There

are two reasons for the gravity of the situation. First, there are negative consumption externalities (Ventola,

2015). The greater the degree of antibiotic use is, the faster resistance develops. This effect is also present

in antimicrobial usage in livestock production and agriculture, exacerbating the problem2. Second, a steady

decrease in the number of new antibiotics developed and approved emphasizes that the consequences of

antibiotic resistance will continue to be a concern3 (CDC, 2013). Therefore, it is important to preserve

the antibiotics that are currently effective by limiting their consumption to cases where they are truly

needed. Action plans from health authorities worldwide recognize this issue and are intended to slow the

development of resistance by limiting externalities through antibiotic stewardship programs. To design such

programs, we first need to understand to what extent physicians consider bacterial resistance when treating

an infection. This would help assess the effectiveness of policies intended to provide richer information on

resistance or policies that limit the use of certain antibiotics. We address this question by studying antibiotic

prescriptions for cystitis (bladder inflammation), one of the most common reasons for antibiotic prescription

in the outpatient setting in France.

Contribution In this study, we identify physicians’ response to AMR via their prescriptions for cystitis

using prescription data in France from 2002 to 2019, a period long enough to observe meaningful variation in

the susceptibility of bacteria to antibiotics. We focus on this specific infection because i) it is one of the most

common reasons for antibiotic prescription, ii) in most cases, it is caused by the bacteria Escherichia coli (E.

1For the European Union/European Economic Area, estimates by WHO Regional Office for Europe/European Centre for
Disease Prevention and Control (2022) predict that each year, 670,000 resistant infections lead to 33,000 deaths

2National- or multinational/regional-level plans against AMR address the problem with one health approach, acknowledging
the links between actions regarding animals (such as farming practices), agriculture and the environment, and people.
Examples include France (https://solidarites-sante.gouv.fr/IMG/pdf/brochure_mesures_innovantes_lutte_atbr-en_vf.
pdf (08/14/2022)) and the U.S. (https://www.cdc.gov/onehealth/in-action/combating-ar-in-people-and-animals.html
(08/14/2022)), among many others.

3There is consensus that additional incentives for innovation against AMR are needed, and various incentive policies for
different stages of the research and development of antibiotics have been proposed (Dubois et al., 2022; Majewska, 2022; Simpkin
et al., 2017).
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coli), and iii) the increase in extended-spectrum beta-lactamase-producing E. coli is a concern since it leads

to multidrug-resistant bacteria (Martin et al., 2016). Modeling physicians’ choices for this pathology allows

us to abstract from the physician’s expectation of what bacteria caused the disease because it is usually E.

coli if it is bacterial, and consequently, we can directly use the resistance of E. coli to identify its impact on

decisions.

We develop a decision model in which a physician can use rapid bacterial or susceptibility testing and

then derive the model when tests are not available and information is imperfect. This method allows

the integration of information on the susceptibility of the infection to an antibiotic versus the expected

susceptibility when the physician has no patient-specific information in the decision process. Without a

test, physicians make “empirical” prescribing decisions depending on the expected resistance of E. coli to

each antibiotic. We thus estimate the model, which amounts to a discrete choice model for differentiated

products, as in Berry (1994) and Berry et al. (1995); Nevo (2001), where the expected bacterial susceptibility

(which is exactly the opposite of resistance) to antibiotics serves as an observable product characteristic

and enters the utility function. We consider two information models in terms of how the decision maker

accounts for bacterial susceptibility. We test the model where physicians only account for the publicly known

previous-year susceptibility level against the model where they use an expected value of susceptibility for the

current year, considering the antibiotic consumption of humans and animals in addition to the previous-year

susceptibility level. We do not find evidence that physicians consider the expected susceptibility instead of

the information on past susceptibility only. By estimating demand, we control for the endogeneity of prices

and advertising by instrumenting with competition measures and BLP-type instruments. As there is also a

potential simultaneity problem between demand and susceptibility to bacteria, we leverage the link between

antibiotic use in animals and bacterial resistance in humans. France introduced two consecutive campaigns

and regulations4 that generated substantial exogenous (to human consumption) variations in the sales of

antibiotics for animal production over time.

The decision model estimates show that physicians substitute away in response to an increase in resistance.

Moreover, the degree of substitution varies by region. We also identify a negative price impact with

4In 2016, some groups of antibiotics belonging to third- and fourth-generation cephalosporins and fluoroquinolones were
assigned a status of critical importance by a decree banning preventive use of these drugs and requiring susceptibility testing
before curative use.
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heterogeneity, positive returns to advertisements and a preference for non-generics. We also control for

the financial incentives introduced by performance-based bonuses in addition to fixed visit fees. The

performance-based incentives depend on public health objectives that include i) increasing the share of

generics prescribed (introduced in 2012) and ii) decreasing the share of certain groups of antibiotics (from

2017).

We also estimate a model of antibiotic resistance evolution where resistance depends on past resistance

and antibiotic use by humans and animals and identify the positive effect of antibiotic usage on resistance.

Then, using our demand estimates and resistance evolution model, we study the impact of two policies that

have been considered to curb the increase in resistance to some class of antibiotics. Fluoroquinolones have

shown increasing resistance since the early 2000s, and as broad-spectrum antibiotics with lower resistance

to E. coli than other broad-spectrum antibiotics, such as amoxicillin, they are considered highly valuable for

more complicated infection cases. Policies of interest are thus i) banning fluoroquinolones for the treatment

of cystitis and ii) minimizing the use of fluoroquinolones for animals. The first policy changes prescriptions

and then impacts bacterial resistance and subsequently even more prescriptions. The second policy first

reduces resistance rates by diminishing antibiotic use for animals and then affects prescriptions for humans

due to the lower resistance.

When fluoroquinolones are banned, physicians can substitute not only the most valued narrow-spectrum

alternative but also other broad-spectrum antibiotics. The consumer surplus per prescription decreases

because, on average, the decision makers (patients and physicians) value broad-spectrum antibiotics more,

and fluoroquinolones are an example of this case despite the increasing resistance. When the veterinary use

of antibiotics is reduced, physicians’ prescriptions of fluoroquinolones increase as resistance decreases; this

increases consumer surplus as well as expenses. However, there are also long-term benefits of this policy

since it reduces antibiotic resistance in the future.

Finally, we show how to compute the prescription value of a diagnostic test at the point of care in

terms of savings per prescription as well as the change in treatment success probabilities. Rapid antibiotic

susceptibility testing with high accuracy is one of the key tools in combating AMR5. Given these values, we

5For the French health context, see https://sante.gouv.fr/IMG/pdf/brochure_mesures_innovantes_lutte_atbr-en_

vf.pdf retrieved on 21/06/2023. For the U.S. context, see https://www.cdc.gov/drugresistance/us-activities/

national-action-plan.html. Some recent reviews on testing include Gajic et al. (2022); van Belkum et al. (2020).
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can determine when testing should be performed, depending on the value of being cured by the pathology

and the price of the bacterial susceptibility test.

Literature Our work contributes to the literature on how physicians’ prescription behavior is affected by

the presence of AMR in the outpatient setting6. Earlier studies provided evidence on the substitution of

older drugs, which are potentially less effective, with newer and more expensive drugs in outpatient and

intensive care units Filippini et al. (2009); Heister et al. (2017); Howard (2004). Howard (2004) introduced a

choice model for antibiotics where resistance to penicillin was the main independent variable to capture such

substitution behavior. The study showed that information on an increasing level of resistance encourages

substitution with newer alternatives. At a more aggregate level, Filippini et al. (2009) studied small-area

variations via quarterly data on antibiotic sales in the outpatient setting in Switzerland in 2002. They

proxied for resistance using the incidence rate of infections at the county level. In line with the conclusion

of Howard (2004), the results indicated that the higher the proxies for bacterial resistance are, the more

physicians substitute with newer and more expensive antibiotics. Bokhari et al. (2024) also investigated

antibiotic demand from 2003 to 2013 in the UK via a discrete choice model of demand and supply. They

studied the role of the spectrum in demand and considered different tax policies to address the gap in the

prescription of narrow-spectrum antibiotics against broad-spectrum antibiotics. Therefore, they analyzed

the effects of taxes in the substitution across narrow- and broad-spectrum antibiotics, but they did not allow

bacterial resistance to enter the utility of the patient–physician pair. Our demand model incorporates a wide

range of factors that affect decisions, such as changes in health authorities’ guidelines, detailing, price and

antibiotic susceptibility, and therefore provides a more complete analysis. Moreover, our data allow us to

utilize not only cross-sectional variation but also time series variation in identifying the effects, especially

those of resistance on demand. To the best of our knowledge, this is the first study that incorporates

the susceptibility of the bacteria responsible for the pathology to all possible antibiotics. By doing so, we

can identify the trade-off choice of physicians that depends on the relative susceptibility of the bacteria to

6In our setting, we can focus on the effects of resistance in isolation of other factors that might affect antibiotic prescription
behavior; this is due to the regulations on physician payments in France and the focus on a disease that is almost always
of bacterial cause. First, the physician payment system prevents any supply-side-driven effects on prescription drugs due to
financial benefits to physicians, such as those observed in Japan Iizuka (2007) or China Currie et al. (2014). Moreover, the
gatekeeper system, where each patient has a registered first-contact physician (usually a general practitioner), allows us to
assume the effects of potential competition across physicians Bennett et al. (2015). Second, focusing on cystitis, which is a type
of bladder infection, minimizes the risk of physician- or patient-driven abuse of antibiotics Currie et al. (2011).
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each different antibiotic drug. We control for the endogeneity of resistance. As resistance develops due to

the consumption of antibiotics and the consumption of antibiotics is also affected by resistance, we face a

simultaneity problem. Another novelty of this study is the consideration of the endogeneity of resistance

caused by the use of veterinary antibiotics, which is related to the following literature on AMR evolution.

We also contribute to the literature concerning AMR evolution and its links to the consumption of

antibiotics in humans and animals. There have been small-scale studies that have provided evidence of

animal-originated resistant bacteria in humans (Hammerum and Heuer, 2009; Landers et al., 2012). A

recent report by the European Centre for Disease Prevention and Control (ECDC), the European Food

Safety Authority (EFSA) and the European Medicines Agency (EMA) used EU-wide surveillance networks

for 2016–2018 to document the relationships between antibiotic use in farm animals and resistance in Europe.

The findings for E. coli were mixed for different groups of antibiotics. The authors noted a correlation

between the use of third- and fourth-generation cephalosporins, fluoroquinolones and other quinolones and

aminopenicillins in animals and resistance in humans. At a larger scale, Adda (2020) studied the relationship

between bacterial resistance and antibiotics used in both humans and animals in the U.S. across counties,

time periods and multiple bacteria. He identified a positive correlation with human consumption but no

significant relationship with antibiotic use in animals, which also depends on animal farming regulations

and the population density. In our analysis, we model E. coli resistance as a function of past resistance and

antibiotic use in humans and animals. In line with the dynamics of the epidemiological model (Laxminarayan

and Brown, 2001), we find strong time dependence of resistance. Moreover, we identify a positive correlation

between resistance and past antibiotic use in humans and animals.

Our work also relates to the literature on practice style heterogeneity and point-of-care diagnostic

information showing the role of bacterial susceptibility information in the selection of the correct antibiotic

treatments. We integrate the use of rapid bacterial or susceptibility testing in the decision model. We consider

two information models of how physicians account for bacterial resistance. We test whether physicians use

information on resistance published the year before or try to have more sophisticated behavior to predict

current susceptibility via past consumption of antibiotics. McAdams et al. (2019) reported that rapid

point-of-care resistance diagnostics are key in the fight against antibiotic resistance, improving treatment
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efficacy while limiting the costs of inappropriate antibiotic prescription. We also provide a decision model

that allows us to evaluate the economic value of testing the susceptibility of bacteria before antibiotic

choices. Huang et al. (2022) and Ullrich and Ribers (2023) reported that variation in antibiotic treatment

may be related to variation in diagnostic information. As noted by Huang and Ullrich (2024), practice

style heterogeneity can explain large differences in overall antibiotic use. Ullrich and Ribers (2023) analyzed

how machine learning predictions may improve antibiotic prescribing. By estimating a binary antibiotic

treatment choice model, they find differences in the ability to diagnose bacterial urinary tract infections and

in how general practitioners weigh the expected cost of resistance against the curative benefits of antibiotics.

In the absence of a rapid point-of-care bacterial test, another way to improve decisions consists of providing

physicians with an artificial intelligence algorithm, but Ribers and Ullrich (2024) showed that the algorithm

does not always provide improved outcomes over physicians who face the patient.

The remainder of this paper is organized as follows. Section 2 describes the different datasets we use

and provides details on the institutional background. Section 3 provides the decision model, its estimation

method, and the empirical results on physician prescription behavior. Section 4 presents the results of

counterfactual policies. Section 5 presents the empirical results of the rapid bacterial detection and susceptibility

tests. Section 6 concludes the paper.

2 Data and institutional setting

France has been struggling with high resistance rates and consumption levels, leading to campaigns to

encourage antibiotic use only in necessary cases, such as a nationwide campaign called “Antibiotics are not

Automatic” in 2002. Sabuncu et al. (2009) reported a decrease in antibiotic use, especially in pediatric

patients, following the campaign. Carlet et al. (2020) questioned the continuation and preservation of this

decrease after the campaign. Efforts to decrease the veterinary use of antibiotics have also been on the

agenda for the last decade because they represent a serious threat to the effectiveness of the measures

taken regarding human consumption (Laxminarayan et al., 2015). In 2010, France and the Netherlands

were leading countries in the agricultural consumption of antibiotics. In the past decade, two consecutive

campaigns, named EcoAntibio, targeted this problem in France from 2012-2016 and from 2017-2021. The

first met the goal of reducing antimicrobial use by 25%. The second plan also aimed to reduce the use
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of specific classes of antibiotics, such as fluoroquinolones and third- and fourth-generation cephalosporins,

which are crucial resources for human medicine (ANSES, 2021). France has also taken action to incentivize

physicians to prescribe antibiotics appropriately by attaching financial rewards to issuing fewer antibiotic

prescriptions overall and to broad-spectrum antibiotics (Gökkoca (2024)). To understand how these policies

interact and to provide a view of stewardship program outcomes, it is important to understand the role of

AMR in curbing treatment decisions and the demand for available antibiotic drugs.

In our analysis, we employ multiple data sources to i) observe choice decisions regarding antibiotics

for the treatment of cystitis, ii) measure prices and aggregate sales of antibiotics, iii) account for bacterial

resistance in demand and iv) account for advertising. Regarding demand, we use patient-level proprietary

data from the company Cegedim (Cegedim Health Data); these data consist of prescription records from a

panel of physicians covering the period from 2002 to 2019. We then use publicly available reimbursement

data from the National French Health Insurance to measure total drug-level antibiotic use in France and

the prices of drugs that are uniform across pharmacies by regulation. To account for bacterial resistance,

we employ data made public by the French observatory (ONERBA). As explained in Section 3, resistance

evolves endogenously with antibiotic usage among humans and animals. Thus, we also use data on antibiotic

use in livestock production provided by the French Agency for Food, Environmental and Occupational Health

& Safety ANSES (2021). The data on the veterinary sales of antibiotics serve two purposes. First, they are

used in the demand estimation to control for the endogeneity of resistance. Second, they serve as explanatory

variables in predicting resistance in counterfactual scenarios. Finally, we use proprietary data on advertising

from IMS Health (IQVIA) Global Promotional Track for France.

2.1 Antibiotic Prescriptions

The proprietary patient-level general practitioner visit and prescription data cover the period from 2002

to 2019. From 2002 to 2009, the data consist of an exhaustive record of prescriptions and visits to a

representative panel of approximately 400 general practitioners who have over 1.5 million patients registered7.

From 2009 to 2019, the representative sample size increased to approximately 2000 general practitioners.

Each prescription record is identified by a patient and a physician identifier, date, diagnostic, and product

7These data were used in Dubois and Tunçel (2021) to study the prescription of antidepressants following a drug warning.
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code of the drug prescribed8. Moreover, the age and sex of both the physician and patient are observed

together with the region of operation for the physicians and chronic diseases for patients. We use the data

from 2002-2008, where we observe the visits with and without any prescription to construct the outside good

market shares. We consider the cases where there is a visit with a cystitis diagnosis but no prescription

within seven days following the visit. As the data extraction changed after 2008 and did not allow us to have

information on all physician visits that did not involve a drug prescription, we use the regional average rate

estimated from 2002-2008 to impute the missing information on the outside good market share after 2009.

Table 1: Top 5 diagnoses with antibiotic prescriptions

2002 - 2008 2014 - 2019

Diagnostic Perc. (%) Diagnostic Perc. (%)

Acute nasopharyngitis 13.79 Bronchitis 12.5

Bronchitis 11.12 Acute pharyngitis 12

Acute sinusitis 5.70 Otitis 7.55

Sore throat 4.53 Acute nasopharyngitis 6.13

Cystitis 4.52 Cystitis 6.06

Notes: For the 2009-2013 period, we only have access to the subset of prescriptions related to a cystitis diagnosis, so we cannot check
the top diagnoses with antibiotic prescriptions during that period. However, we have 252,508 prescriptions for that period for cystitis.

We focus on cystitis (bladder infection) for three main reasons. First, it is one of the most prevalent

infections in the outpatient setting. Table 1 presents the most prevalent diagnoses for antibiotic prescriptions,

which are acute nasopharyngitis and bronchitis. However, they are usually caused by viral infections against

which antibiotics have little to no effect. They are followed by sinusitis and otitis, which can be viral or

bacterial in origin. Cystitis is considered bacterial, and guidelines suggest the use of antibiotic therapy9.

Second, the bacteria responsible for cystitis is E. coli in 80% of cases (Kahlmeter, 2000; Rossignol et al.,

2017). Since different antibiotic groups are prescribed for various bacteria (with overlaps), knowing which

bacteria is most likely to be responsible helps us to identify the role of resistance in the prescription behavior

of physicians by abstracting from uncertainty over the type of bacteria. Finally, the increasing prevalence

of extended-spectrum β-lactamase-producing E. coli is a growing concern in France (Martin et al., 2016;

8The medical classification codes used are the International Statistical Classification of Diseases and Related Health Problems
(ICD-10) codes defined by the World Health Organization. CIP7/CIP13 are the standard French drug identification codes that
differentiate products at the box level. Two products with the same brand and active ingredient but different dosages and units
are assigned different CIP codes. The data also include information on active substances and the corresponding Anatomical
Therapeutic Chemical Classification System (ATC) Code.

9See recent guidelines from the French Health Authority (HAS), accessed at https://www.has-sante.fr/upload/docs/

application/pdf/2021-08/fiche_memo_cystite_durees_antibiotherapies_.pdf on 02 November 2022.
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Nicolas-Chanoine et al., 2013) because these bacteria are difficult to treat and complicate the treatment of

infections such as urinary tract infections and cystitis. Therefore, policies aimed at improving the treatment

of infections caused by E. coli and the development of E. coli resistance are very important.

When there is no information on the bacteria and/or its susceptibility profile, the treatment of uncomplicated

cystitis remains an empirical therapy based on the physician’s guess. Until 2016, the only recommended test

to confirm bacterial infection was the urine strip test (Caron et al., 2018). This test does not report the

type of bacteria or the resistance profile of the bacteria causing the infection. For cases of cystitis at risk of

complications or recurrent cystitis, the recent guidelines suggest performing susceptibility testing if delayed

treatment is possible and empirical treatment guidelines if delay is not possible. In this paper, we focus on

uncomplicated cystitis and the role of bacterial resistance in the first-line (empirical) treatment to minimize

the effect of the unobserved heterogeneity in complication risk and differing guidelines based on this risk.

In our sample, we retain only female patients aged 16 to 75 years (male patients represent 5% of cystitis

diagnoses) without a cancer diagnosis (because their complication risk affects prescribing practices) and

exclude all off-label prescriptions (0.6% of all prescriptions concern products with no authorized indication

for cystitis). We also remove observations where multiple antibiotics are prescribed to the same patient on

a given date because some patients may demand antibiotics to stock up for future use (approximately 5% of

all prescriptions).

To address recurrent cystitis cases, we identify a visit as an “initial visit” if there was no other prescription

for cystitis or urinary tract infection in the preceding 30-day period. Visits following another prescription

within the 30 days after the initial visit are defined as a “secondary” prescription. A secondary prescription

could be a result of failed treatment due to bacterial resistance or simply due to the misuse of antibiotics. To

avoid any interference from this channel, we remove observations from secondary infections, which represent

approximately 6.7% of all prescriptions.

Table 2 presents a summary of the prescription shares by chemical substance in 2002, 2010 and 2018

(beginning, middle and end of the data period). We observe that fosfomycin and norfloxacin are initially

prescribed at a high rate, but later, especially in terms of generics, fosfomycin became the main treatment

for cystitis, with more than 50% of the market share. While this is in line with the recommendations
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for uncomplicated cystitis cases owing to its high effectiveness and short treatment period, the remaining

antibiotic market shares do not necessarily follow the order from the guidelines. For example, nitrofurmentation

was used as a substitute in the guidelines before 2008 and was removed after 2008. Similarly, some critical

groups of antibiotics, namely, cefixime, ciprofloxacin, and ofloxacin (fluoroquinolones), which are last-resort

treatments, have considerable market shares, especially in the early 2000s. Whether physicians follow the

guidelines in France for the treatment of urinary tract infections remains an open question with contradictory

results (Denes et al., 2012; Piraux et al., 2021). In our demand estimate, we control for the changing guidelines

with antibiotic-specific time effects10.

10In our sample period, the guidelines were updated three times. The documents were accessed on September
2, 2022, from https://urgences-serveur.fr/IMG/pdf/LIVRET_ANTIBIOGUIDE_2002.pdf, https://www.infectiologie.com/

UserFiles/File/spilf/recos/infections-urinaires-spilf.pdf, https://www.infectiologie.com/UserFiles/File/spilf/

recos/infections-urinaires-spilf-argumentaire.pdf, and https://www.has-sante.fr/upload/docs/application/pdf/

2021-08/fiche_memo_cystite_durees_antibiotherapies_.pdf
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Table 2: Prescription shares by chemical substance

2002 2010 2018

Class / Molecule B
ra
nd
ed

G
en
er
ic

B
ra
nd
ed

G
en
er
ic

B
ra
nd
ed

G
en
er
ic

Amoxicillin 2.53 2.53 1.80 1.80 1.74 1.74

Amoxicillin and beta-lactamase inhibitors

Amoxicillin and enzyme inhibitors 1.62 1.62 1.08 1.08 0.70 0.70

Pivmecillinam 0.26 0.01 6.87

Fluoroquinolones

Ciprofloxacin 8.04 5.47 5.47 3.29 3.29

Enoxacin 2.91 0.94

Levofloxacin 0.02 0.17 0.16 0.16

Lomefloxacin 8.27 17.70 6.05

Norfloxacin 25.71 20.79 20.79 4.94 4.94

Ofloxacin 5.39 4.61 4.61 5.24 5.24

Pefloxacin 0.60 0.40

Other quinolones

Flumequine 1.13 0.17 0.03

Pipemidic acid 3.98 0.99 0.01

Other antibacterials

Fosfomycin 25.72 29.86 29.86 55.76 55.76

Nitrofurantoin 7.28 6.40 4.26

Sulfamethoxazole and trimethoprim 3.19 3.19 2.26 2.26 2.14 2.14

Third generation cephalosporins

Cefixime 1.55 1.55 6.37 6.37 7.82 7.82

Cefpodoxime 0.13 0.24 0.24 0.16 0.16

Notes: Data are from 2002 to 2019. The data from the initial, middle and end of the period years are displayed to show the variations
over time. The percentage points are reported.

2.2 Antibiotic Expenses

We use national health insurance data to measure prices and total antibiotic usage. Antibiotics are prescription

drugs in France and are partly reimbursed11 by the mandatory national health insurance (Assurance Maladie,

Medic’AM). We use publicly available aggregate national data on expenses by the health insurance and

quantities to recover the average prices of drugs. The data provide information for all years between 2002

and 2019 on the total value of reimbursements and the number of boxes (of drugs) reimbursed by CIP

pharmaceutical codes that can then be matched to individual prescriptions.

11Antibiotics are in the “major or important medical service” category and therefore are reimbursed at 65% at the baseline.
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Table 3: Average price by chemical substance (in e per box)

2002 2010 2018

Class / Molecule B
ra
nd
ed

G
en
er
ic

B
ra
nd
ed

G
en
er
ic

B
ra
nd
ed

G
en
er
ic

Amoxicillin 3.31 3.44 2.72 3.07 2.58 2.62

Amoxicillin and beta-lactamase inhibitors

Amoxicillin and enzyme inhibitors 10.99 9.87 7.10 6.80 7.10 6.38

Pivmecillinam 5.40 0.00 5.35

Fluoroquinolones

Ciprofloxacin 25.92 21.96 11.20 11.58 9.26

Enoxacin 8.65 8.18

Levofloxacin 25.14 23.53 12.86 10.75

Lomefloxacin 21.48 19.87 19.98

Norfloxacin 8.22 5.95 4.39 0.00 3.61

Ofloxacin 16.41 10.64 11.12 9.35 8.96

Pefloxacin 31.03 48.38

Other quinolones

Flumequine 11.56 10.94 10.77

Pipemidic acid 9.17 8.68 8.37

Other antibacterials

Fosfomycin 12.12 8.26 5.94 6.27 5.20

Nitrofurantoin 2.41 2.26 2.61

Sulfamethoxazole and trimethoprim 3.13 2.86 2.61 2.13 2.21 1.75

Third generation cephalosporins

Cefixime 13.88 10.57 8.48 8.03 9.15 7.44

Cefpodoxime 13.70 8.18 6.97 7.96 6.22

Table 3 shows the average price per box (across products and brands) of the main chemical substances

prescribed for cystitis. The regulation of prices for patent drugs and generics leads to a gap between the

generic and branded prices of the same molecule. For molecules that experience generic entry during the

period of study, we observe significant price decreases.

2.3 Antibiotic Resistance

We use data on resistance from a French network called REUSSIR (Réseau Epidémiologique des Utilisateurs

du Système SIR), which was founded in 1995. It provides data from France to the European Antimicrobial

Resistance Surveillance Network (EARS-Net). It is a network of hospital laboratories. We extract data on

12



E. coli susceptibility to antibiotics reported by REUSSIR via the ONERBA reports from 2002 to 201812.

Figure 1 shows the evolution over time of the resistance of E. coli to each antibiotic with the average

percentages of resistant strains tested for E. coli13. The most concerning element in this graph is the increase

in resistance to aminoglycosides (gentamicin) and fluoroquinolones, which are crucial last-resort antibiotics.

Notably, resistance to some antibiotics used against E. coli was not detected, which we will account for in

our model using dummy variables for this missing information. The absence of resistance data for some

antibiotic-bacteria pairs is usually due to low and/or relatively stable resistance.

Figure 1: Resistance of E. coli against each antibiotic group

2.4 Antibiotic Consumption by Animals

Data on antibiotic sales for animal use are obtained from the French Agency for Veterinary Medicinal

Products sales survey (ANSES, 2021). We used the sales by antimicrobial class since 1999 in mg of active

ingredient per kilogram of animal body weight (mg/kg). The antimicrobial groups and corresponding ATC

codes used for animal farming are listed in Table 4, which shows that there is a significant overlap between the

chemical substances used for animals and humans that could pose a threat to the development of resistance.

12See activity reports at http://onerba.org/publications/rapports-onerba/.
13As the REUSSIR data do not include resistance data for the year 2014, we impute the resistance value in 2014 by taking

the average of the 2013 and 2015 values.
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Table 4: List of antibiotics used in animals and their use in cystitis cases

Antibiotic Class ATC Code Prescribed for cystitis

Tetracyclines J01AA ✓

Phenicols J01BA

Penicillins J01C ✓

Cephalosporins 1&2G J01DB ✓

Cephalosporins 3&4G J01DD ✓

Sulfonamides+Trimethoprim J01E ✓

Macrolides J01FA ✓

Lincosamides J01FF ✓

Aminoglycosides J01G ✓

Fluoroquinolones J01MA ✓

Quinolones J01MB ✓

Polymyxins J01XB ✓

Pleuromutilins J01XQ

Note: List of antibiotics used in animals from ANSES (2021).

Figure 2 shows the data on the sales of antibiotics (on a log scale) for animals, which are obtained

from ANSES (2021). Regulations on antibiotic use were introduced with the EcoAntibio 2012-2016 and

EcoAntibio 2017-2021 government plans and generated variations in the usage of antibiotics by animals that

we can use to identify the link between animal use and resistance in humans.

Figure 2: (Log) Sales of antibiotics for veterinary medicine (density – mg/kg)
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2.5 Detailing Expenses

Direct-to-consumer advertising of prescription drugs is strictly prohibited in France, but marketing activities

to healthcare professionals (detailing) are allowed. We use monthly data between 2002 and 2013 from the

IMS Health Global Promotional Track on advertising expenses for each product. Figure 3 shows the total

expenses aggregated at the molecule level (ATC5) by year for the top 5 advertised molecules and the total

for others. We can see that firms engage in more advertising at the time of generic entry than earlier in their

patent protection period. Then, as generics enter, detailing expenses decline. It is also typical that detailing

increases when a new indication is approved for an authorized drug. The detailed expenses associated with

all drugs with the same active ingredient may promote the use of antibiotics for any of the possibly allowed

indications, including cystitis, and thus may generate variation in the prescription of each antibiotic. Figure

3 shows an exceptional increase in advertising for levofloxacin in 2010, which comes from a particular case

of entry of a branded drug copy of Tavanic (whose molecule is levofloxacin) by another company14.

Then, advertising stopped in 2012 once generics entered the market. It is common that firms stop

advertising once they face generic competition, which is explained by the fact that generic substitution is

important, as pharmacists have an incentive to propose a generic substitution even if the patient brings in

a branded drug prescription.

14Tavanic was owned by Aventis (later Sanofi-Aventis), and its generic version entered the market in France in 2012, but
another company (Mediwin Limited, UK) produced the same branded drug, which entered the market in 2010 (see history
of drug entry of Sanofi-Aventis product: http://www.codage.ext.cnamts.fr/codif/bdm_it//fiche/index_fic_medisoc.php?

p_code_cip=3400956189861&p_site=AMELI and Mediwin Limited product: http://www.codage.ext.cnamts.fr/codif/bdm_it/
/fiche/index_fic_medisoc.php?p_code_cip=3400949005680&p_site=AMELI). The branded product competition might explain
the peak in detailing in 2010 for Tavanic by Aventis or by Mediwin. Mediwin did not obtain a large market share, as its sales
were only 10% of those of Tavanic in 2011; therefore, the peak is likely due to Aventis.
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Figure 3: Detailing expenses by molecule (millions e per year)

3 Demand Model

To study the role of antibiotic resistance in the prescription choices of antibiotics by physicians, we develop a

demand model that we can estimate via our prescription data. In the case of cystitis, there is no mandatory

rapid bacterial or susceptibility testing during our sample period before antibiotic prescription15. Those

tests are thus rarely used, and drug prescriptions conditional on a test result were not allowed until very

recently. Thus, decisions are made without testing, and physicians cannot observe patient-specific bacterial

resistance information before deciding which antibiotics to ultimately prescribe. However, to evaluate the role

of information and tests in prescription behavior, we develop a decision model allowing the existence of some

testing and show how it simplifies when no test is available. This will allow us to simulate the counterfactual

behavior of physicians if some tests become available and mandatory for antibiotic prescriptions.

3.1 Demand Model

We now define a decision model for the prescription of antibiotic treatments in the case of cystitis. All

physician–patient pairs with a cystitis diagnosis choose among products defined as a “chemical substance”

or molecule16 from a pharmaceutical company (brand)17.

15Rapid bacterial testing with urine strip tests are very infrequently used (Kinouani et al., 2017).
16We create a specific group including antibiotics that are prescribed fewer than 1,000 times during the 18-year period because

they have very small individual market shares. On average, they represent 0.8% of the market in our sample.
17As many laboratories produce generic products with very small market shares, we define a pseudo brand “Fringe”. A brand

is considered Fringe if the maximum market share observed in the 18-year period is less than 3%. The total average market
share of Fringe ranges from 4% to 7% across years.
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We consider a general framework where a physician may have the possibility to use rapid bacterial or

susceptibility testing and then derive the model when tests are not available and information is imperfect.

This will allow us to simulate the counterfactual effects of the availability of rapid bacterial tests that could

be used by physicians at the time of prescription. Decisions will then potentially depend on the regulatory

rules concerning the use of tests and whether physicians would be able to prescribe an antibiotic conditional

on a test result18. Without a test, physicians make “empirical” prescribing decisions depending on the

expected resistance of E. coli to each antibiotic.

3.1.1 Decision model

Two types of tests can be used and sometimes coexist. The first type of tests are rapid bacterial detection

tests that simply confirm whether a cystitis is due to a bacterial infection. We denote by π the probability

that it is a bacterial infection19.

The second type of tests are rapid susceptibility tests, which indicate whether the bacteria is resistant

to a given antibiotic molecule l (susceptibility being the opposite of resistance). This type of test allows

the physician to use patient-specific information that does not consider the expected susceptibility in the

population, denoted µjt for drug j at year t, but the patient-level susceptibility is denoted µijt for patient i.

As the French national health insurance fully reimburses the tests when they are available and then

recommends (or even mandates) the use of a test together with conditional prescriptions, we consider that

the patient is always tested when a rapid test is available; this simplifies the decision model, although it

could be extended to the more general case where tests are not mandatory when they exist.

We start writing the decision model when the best information is available to the physician and then

derive the model when the information is less precise or absent.

In the best case, the physician obtains information from a bacterial detection test and a susceptibility

test for some (or several) antibiotics. We simplify the problem by considering only one susceptibility test

against one antibiotic.

First, if the rapid bacterial test indicates that there is no bacterial infection, no antibiotic is prescribed.

18In the case of sore throat, such rapid tests exist and have been reimbursed and mandatory in France since 2021.
19Here, we assume that all bacterial infections are caused by the bacteria E. coli. According to Bent et al. (2002);

Medina-Bombardo et al. (2003), the rate at which suspected urinary tract infections are indeed caused by a bacterial infection
is approximately 50% in France.
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This happens with probability 1−π. With probability π, the test indicates that there is an E. coli infection.

The susceptibility test is subsequently performed to determine whether the bacteria is susceptible to drug j,

and the test allows the physician to use patient-specific information on susceptibility µijt ∈ {0, 1} for patient

i. While developing the model with various susceptibility tests is straightforward, Thus, the available test

informs the physician whether the bacteria are susceptible to the chemical substance l.

We specify the decision utility uijdt for patient i’s prescription of product j ∈ {1, . . . , Jt} in region d and

year t as additively separable between a mean utility δjdt, a price effect, and the decision maker’s expected

susceptibility of the bacteria to drug j denoted Eµ(µijt):

uijdt = δjdt − βipjt + γ lnEµ(µijt) + εijdt (1)

where pjt is the price of product j and εijdt is an idiosyncratic i.i.d. error term that follows an extreme value

distribution. In this specification, γ represents the opposite of the resistance disutility or the preference

for drugs to which the bacteria are more susceptible20. We allow the price disutility to be heterogeneous

across consumers with a random coefficient βi = β + σpνi, where β is the mean preference, σp captures the

degree of variation in taste and νi ∼ N (0, 1). We also specify an outside good utility with the mean utility

normalized to zero such that ui0dt = εi0dt. This outside good corresponds to the choice to not prescribe any

antibiotics. In practice, we consider that no antibiotic is prescribed when there is no prescription within

seven days following a visit with a cystitis diagnosis.

In the case of fully resistant bacteria, where Eµ(µijt) = 0, the model is equivalent to the case where the

drug j is out of the choice set as uijdt = −∞; this could occur either because there is no uncertainty in the

expectation or because a test provides perfect information on µijt. In the case where Eµ(µijt) = 1, either

because the bacteria are expected to never be resistant to j or because an informative test detects that the

bacteria are not resistant to j, the indirect utility simplifies to uijdt = δjdt − βipjt + εijdt.

We also specify a mean utility δjdt additively separable in several terms as follows:

δjdt = xjdtβ + ξm(j) + ξt + ξd + ζjdt (2)

where xjdt is a vector of observable characteristics of product j (except price and susceptibility), ξm(j) is a

20We specify it with a logarithmic functional form because it appears empirically better.
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molecule fixed effect for the molecule m(j) of product j, ξt is a time fixed effect, ξd is a region fixed effect21

and ζjdt is an unobserved characteristic of product j at period t and region d that affects demand.

Among the time-varying observable characteristics xjdt, we include detailing expenses ajt and dummy

variables for changing health authorities’ guidelines for prescription drugs and for changing national health

insurance financial incentives to physicians. Indeed, some molecules were excluded from the guidelines or

changed from first-line options to second-line options or to the list of antibiotics to be prescribed when

there is a complication risk, as presented in the Appendix A.2. Moreover, some antibiotics were affected

by financial incentives, as, in 2012, a pay-for-performance system was introduced in addition to the existing

fixed-fee scheme for physician payments. The goal of the program was to address increasing healthcare costs

and to improve the standardization of care. Two measures of performance are relevant to our analysis.

First, since 2012, physicians have been provided incentives to prescribe more generics. The impact on

generic prescriptions is captured by the generic dummy interacted with the post-2012 dummy. If we expect

the program to work, the coefficient of the interaction variable should be positive. Second, following an

update in 2017, physicians have also been given financial rewards for decreasing the prescription of certain

groups of antibiotics to a preset level. We call this group “at-risk” antibiotics, and it includes amoxicillin

and clavulanic acid, 3rd and 4th generation cephalosporins, and fluoroquinolones. As we already include

molecule fixed effects, we interact the chemical subgroup dummy with the post-2017 dummy and allow the

effect to follow a trend. Similarly, we expect that if the incentives have been successful, prescriptions of these

drugs should decrease. Thus, given a susceptibility test with respect to drug l, the decision maker behaves

as described in Figure 4, where Eµ(µijt) is the expected susceptibility of the bacteria to drug j when there

is no test available for j.

As shown in Figure 4, the susceptibility information affects the consideration set of the physician by

simply excluding the drugs to which the bacteria are fully resistant. It also increases the probability of

choosing other drugs to which the bacteria are not resistant by an amount that depends on the expected

susceptibility.

As P (µilt = 1) = E(µilt), the decision model above implies that the ex ante choice probability of a drug

21In our specifications, there are eight regions: Center-East, West, Center-West, East, North, South-West, South-East, Paris
(Ile-de-France)
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Figure 4: Prescription probabilities with bacterial and susceptibility testing

j ∈ {1, .., J} can be written as (with the complementary choice probability s0t for the outside good):

sjt =π

(
(1− E(µilt))

∫
exp(δjdt − βipjt + γ lnEµ(µijt))

1 +
∑

k ̸=l exp(δkdt − βipkt + γ lnEµ(µikt))
dϕ(νi) (3)

+ E(µilt)

∫
exp(δjdt − βipjt + γ lnEµ(µijt))

1 +
∑

k exp(δkdt − βipkt + 1{k ̸=l}γ lnEµ(µikt))
dϕ(νi)

)
if j ̸= l

and

slt =π E(µilt)

∫
exp(δldt − βiplt)

1 +
∑

k exp(δkdt − βipkt + 1{k ̸=l}γ lnEµ(µikt))
dϕ(νi) (4)

where ϕ is the N (0, 1) cumulative distribution function.

Without a susceptibility test but only a bacterial test, the choice model becomes:

This implies that, with a bacterial test only, the ex ante choice probability of a drug j ∈ {1, .., J} can be

written as (with the complementary choice probability s0t for the outside good):

sjt = π

∫
exp(δjdt − βipjt + γ lnEµ(µijt))

1 +
∑

k exp(δkdt − βipkt + γ lnEµ(µikt))
dϕ(νi) (5)
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Figure 5: Prescription probabilities with bacterial testing only

and without a bacterial test, it becomes:

sjt =

∫
exp(δjdt − βipjt + γ lnEµ(µijt))

1 +
∑

k exp(δkdt − βipkt + γ lnEµ(µikt))
dϕ(νi) (6)

Thus, in the absence of a rapid detection test for cystitis, the choice probability of each antibiotic

in our sample should follow equation (6). An important determinant of this choice will thus be the

perceived expected susceptibility of E. coli to each antibiotic, which varies over time but can also vary

across regions. The specification of the way the information on susceptibility (or resistance) affects decisions

is then introduced in section 3.1.2.

3.1.2 Information models

Without testing, physicians use the expected susceptibility of each antibiotic and choose prescriptions

according to the choice probabilities of antibiotics, as in equation (6).

The information we observe on resistance is identical to that the physicians can observe from the health

authorities’ annual publications. These data represent the average country resistance levels and vary across

years22.

While in principle, each rational decision maker should use all the information available to predict the

expected susceptibility of E. coli to each possible drug, including past susceptibility and past antibiotic

22Note that some antibiotic drugs are not included in the surveillance resistance data. Therefore, for some drugs, neither we
nor the physicians observe resistance. The chemical subgroups presented in Section 2.3 cover approximately 66% of products
in 2018 and 22% percent in shares. The coverage is greater at the beginning of the sample period and decreases with increasing
market share of fosfomycin, which is more than 50% at the end. The data collected from the different ONERBA networks
indicate that resistance is low (approximately 1%–2%) (retrieved from https://bigdata.onerba.org/ on 27 October 2022) and
does not present time variation. Note that the demand model includes chemical substance (ATC 5) fixed effects, so that what
matters is to capture the physician’s information on the time variation of resistance.
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usage, we consider two possible information models, including an “unsophisticated” model where physicians

simply use the previous year susceptibility level µjt−1 for Eµ(µijt) and a “sophisticated” model where they

act upon the predicted susceptibility Eµ(µijt) via the relevant available information.

Unsophisticated Information Model In this case, we specify the expected susceptibility as the lag

susceptibility and allow the national average susceptibility level to interact with regional dummies to capture

the possible regional variation that may be known to physicians. This approach assumes that

Eµ(µijt) = λd(i)µjt−1

, where λd is a region-specific scalar and d(i) is the region of i.

Sophisticated Information Model In this case, we assume that the prescribers use the expected

susceptibility of the E. coli bacteria. As we do not observe this expectation, we group the unobserved

demand shock ζjdt and the unobserved effect of expected susceptibility to the product j that could be

regional (d) and year (t) specific and define an “expected susceptibility” inclusive demand shock ξjdt defined

as:

ξjdt ≡ ζjdt + γ lnEµ(µijt)

and estimate the demand model with instrumental variables that need to be orthogonal to ξjdt. For this,

a sufficient assumption is that instrumental variables be orthogonal to the demand shock ζjdt and to the

expected susceptibility Eµ(µijt) so that instruments are orthogonal to ξjdt. This identifying assumption

allows us to estimate ξjdt. We then test whether decision makers account for the expected susceptibility

with the following method.

Denoting νjdt as the expectation error such that lnµjt = lnEµ(µijt) + νjdt, we obtain:

ξjdt = ζjdt + γ lnµjt − γνjdt

As νjdt and ζjdt can be correlated with ξjdt−1, we rewrite this equation as follows:

ξjdt = ρξjdt−1 + γ lnµjt + ωjdt (7)
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where ωjdt ≡ ζjdt−γνjdt−ρξjdt−1. As ωjdt is correlated with the susceptibility lnµjt through the expectation

error νjdt, we estimate equation (7) instrumenting susceptibility with the lag susceptibility lnµjt−1; the

lagged total human usage of antibiotic j, qhjt−1; and the lagged total animal usage of antibiotic j, qajt−1

(given the known possible relationship between susceptibility and antibiotic consumption (Adda, 2020; Austin

et al., 1999; Rahman and Hollis, 2023)). Then, if γ is zero, prescribers do not account for the possibility of

predicting susceptibility to antibiotic consumption in animals and humans.

3.2 Identification and Estimation

We estimate the demand model via a standard General Method of Moments (Berry et al., 1995) based on

orthogonality conditions between instrumental variables and unobservable demand shocks ζjlt. As prices

may be correlated with unobserved demand shocks and create endogeneity problems, we use the following

instruments to construct corresponding moment conditions: the number of different brands producing the

same molecule, the number of different products of the same molecule, and their interactions with a generic

indicator and years after generic entry. As we observe generic entry during the sample period in several

chemical subgroups, the instruments serve as indicators of competition in the market and, more importantly,

competition between products that have the same chemical substance.

Moreover, an endogeneity problem may also arise through the evolution of resistance to antibiotics.

Indeed, antibiotic resistance is affected by the use of antibiotics due to the selection of resistant strains

over susceptible strains. Therefore, it is likely that the shocks to resistance and demand are correlated. To

correct for endogeneity, we use antibiotic consumption in animals. Although there are debates on the roles

of different channels (such as the environment, processing, farm environment, and human consumption of

dairy products and meat) through which antibiotic use in farming affects antibiotic resistance in humans,

many results indicate the presence of a link (Phillips et al., 2004; Tang et al., 2017). However, this may

depend on the environmental context, the rules concerning farming and the population density; for example,

Adda (2020) did not find that the animal use of antibiotics affects bacterial resistance from human samples

in the U.S. A recent joint report (European Centre for Disease Prevention and Control et al., 2021) provided

an exhaustive survey of the empirical relationship in Europe between AMR in bacteria from humans and

food-producing animals. As each bacterial and antimicrobial pair behaves differently in terms of the rate of
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Figure 6: Relationship between price or advertising expenses (detailing) and instrumental variables

Notes: The vertical axis corresponds to the residuals of the log price or log advertising regression on the molecule, time, and region
fixed effects. The linear regression lines are displayed.

Figure 7: Relationship between E. coli susceptibility and veterinary use of antibiotics

Notes: The vertical axis corresponds to the residuals of the E. coli log susceptibility regression on the molecule, time, and region fixed
effects. The linear regression line is displayed.

resistance development and transmission, our focus is on the results from E. coli-related cases. Ramchandani

et al. (2005) supported the link between the use of antibiotics in animals and bacterial resistance in humans.

Their results indicated that urinary tract infections (i.e., nest bladder infections (i.e., cystitis)) could be a

food-borne illness, as they reported that the bacteria responsible for the infection in their sample were of

animal origin. Hammerum and Heuer (2009) also noted that animals are the origin of the threat of resistant

E. coli and its relationship to resistant E. coli infections in humans.

Thus, we instrument resistance via antibiotic sales for animal use. The identification of the demand

parameters is achieved via instruments and unobserved product characteristics to form conditional moment

conditions E
(
ζjdt | xexo

jdt , wjdt

)
, where xexo

jdt are the exogenous characteristics in the vector xjdt of (2), and

wjdt consists of price and resistance instruments. To more precisely identify variances in the random

coefficients, we use optimal instruments Chamberlain (1987); Reynaert and Verboven (2014) constructed

as conditional expectations of the derivative of the conditional moment restriction with respect to nonlinear

parameters.

24



As advertising is also included and potentially endogenous in demand, we also instrument it. To evaluate

the power of our instrumental variables in this demand estimation framework with multiple endogenous

variables, Figure 6 shows the relationship between the residual of price or advertising (from a linear regression

controlling for molecule, time, and region fixed effects) and the number of competing brands or number of

competing products of the same molecule, which are used as instruments. The negative relationship is

consistent with the idea that more competition leads to a lower price and that competition is correlated

with lower detailing expenses. Figure 7 shows the decreasing relationship between E. coli susceptibility to

each antibiotic and the veterinary use of that antibiotic, which is also used as an instrument. These figures

show the power of our instrumental variables. The first-stage multivariate regression of these endogenous

variables on all instrumental variables reported in Table 12 in appendix A.4 shows the significant power of

the instrumental variables in explaining prices, advertising and antibiotic susceptibility.

3.3 Demand Estimates

We estimate the demand model using the data described above, which allows us to observe the antibiotic

prescription choice, including the no antibiotic outside option. On average, conditional on the physician’s

diagnosis of cystitis, the no-antibiotic treatment option is chosen approximately 5% of the time. Antibiotic

treatments of the same chemical substance and brand but with different box sizes are aggregated into a

single alternative, and we use the average price for the molecule. We obtain a discrete choice model with, on

average, 77 antibiotic options (molecule-brand) with important variation over time because of the entry of a

few molecules and many generics (33 products from 15 molecules in 2002 to 104 products from 18 molecules

in 2013). The outside option consists of prescriptions other than antibiotics (pain killers can, for example,

be prescribed). We present the main results of the random coefficient logit model in Table 5. Column (1)

assumes that prescribers potentially use sophisticated information and thus does not include the expected

susceptibility to each antibiotic. In this case, the demand estimation step does not separately identify the

unobserved demand shock from the effect of antibiotic susceptibility. Column (2) restricts the prescribing

behavior to be unsophisticated where physicians use the one-year lag of antibiotic susceptibility, in which

case we can directly identify its effect in the demand model.

The results show that the price has a negative effect on mean utility and that there is significant
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heterogeneity in price sensitivity, which may come from the partial reimbursement of antibiotics by the

national mandatory health insurance, the prevalence of complementary insurance (Grandfils et al., 2008) and

the incentives to prescribe cheaper generics provided by the national health insurance system. Advertising

(detailing) has the expected positive effect. We also observe that, on average, the decision maker (physician–patient

pair) values generics less than branded drugs because the generic dummy is negative. With respect to the

coefficients capturing the impact of the pay-for-performance program, we find a positive impact of the policy

incentivizing generic prescriptions and a negative impact of the policy discouraging the prescriptions of

“at-risk” antibiotic groups23. Moreover, the impact of the pay-for-performance program appears to increase

over time.

Then, in the non-sophisticated information case, which allows for the direct identification of the effect of

susceptibility to antibiotics (Column (2)), the effect of lag susceptibility on utility is positive, meaning that

the more resistant E. coli is to a given antibiotic, the less valuable it becomes in the prescribing behavior of

physicians.

Concerning the magnitude of the price coefficient and the detail coefficient, the empirical results show

that a 100,000 euro increase in detailing (the average detailing per year is 90,000 per drug with, on average,

397,820 per branded drug and 3,750 per generic) is equivalent in terms of mean utility to a price decrease

of 3.06e in the model of Column (1) and of 3.46e in the model of Column (2), which seems very plausible

given that the average drug price is 8.15e (6.91 for generics and 12.33 for branded drugs).

With respect to the susceptibility coefficient, the functional form implies that the effect on the mean

utility is not constant over the [0,1] interval. However, as the susceptibility of E. coli to antibiotics is on

average 0.75, ranging from 0.44 to 0.93, a change in susceptibility from the drug to which E. coli is the most

susceptible to the drug where E. coli is the least susceptible is equivalent to a change in the mean utility of

a price increase of 2.16e for the model of Column (1) and 3.31e for the model of Column (2).

23J01DD: third-generation cephalosporins, J01MA: fluoroquinolones, J01CR: amoxicillin and beta-lactamase inhibitors.
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Table 5: Random coefficients logit demand estimates

(1) (2)

Price β -0.346*** (0.077) -0.226*** (0.045)

σp 0.141*** (0.030) 0.106*** (0.022)

log(µj,t−1) 5.791** (1.864)

Detailing (in Mil.) 1.061*** (0.298) 0.782*** (0.157)

Generic -2.836*** (0.082) -2.780*** (0.075)

Dummies for Pay-for-Performance changes

Generic × 1{t≥2012} 0.155 (0.169) 0.329** (0.102)

J01MA × 1{t≥2017} -0.579*** (0.150) -0.512*** (0.133)

J01DD × 1{t≥2017} 0.008 (0.179) 0.054 (0.168)

J01CR × 1{t≥2017} -0.528* (0.213) -1.214*** (0.296)

J01MA × Trend × 1{t≥2017} -0.416*** (0.108) -0.334*** (0.090)

J01DD × Trend × 1{t≥2017} -0.335** (0.125) -0.318** (0.117)

J01CR × Trend × 1{t≥2017} -0.272 (0.155) -0.256 (0.146)

No Obs. 8372 8372

Notes: Standard errors in parentheses. Significance levels: ∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001. The models include fixed
effects for year, region, molecule, guidelines and incentive program controls, and missing indicator variables. The coefficient σp is the
standard deviation of the normally distributed random coefficient on price with mean β.

Robustness checks: We report in appendix A.5 several robustness checks estimates. First, Table 13 shows

the random coefficient logit model when allowing lag susceptibility to affect the mean utility differently across

regions. Although the differences across regional coefficients are not statistically significant, the results are

in line with those of Sabuncu et al. (2009), who reported that physicians are less sensitive to antimicrobial

resistance in the North. These variations could be due to variations in antibiotic use across regions24.

Table 15 shows that the parameters of the same random coefficient logit model are similar when we use a

quantity-weighted average price across different box sizes per molecule, and Table 14 shows that it is also

robust when we have regional specific effects of lag susceptibility. Then, we also test which information lag on

susceptibility matters. Table 16 reports the estimates with up to three years lag and shows that the one-year

lag is the most relevant and that once the one-year lag susceptibility is accounted for, older information on

susceptibility is statistically insignificant. Table 17 also shows the same model estimates with a proxy for

susceptibility using the no revisit regional average rate within 7 days for the patient, as defined in appendix

A.1. This result shows the same positive effect of the proxied susceptibility to each antibiotic in the decision.

24The statistics for 2015, reported in https://www.hauts-de-france.ars.sante.fr/

antibioresistance-agir-tous-ensemble, show that antibiotic consumption varies across regions.
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Finally, in Table 18, we show the estimates of the same model but use the resistance of another bacteria

to each antibiotic, a bacterium that is responsible for less than 10% of the cases of cystitis in France. The

results show that the effect is insignificant.

3.4 Test of Information Models

We now test which information model described in section 3.1.2 is preferred. This depends on the role of

bacterial susceptibility in physician prescription decisions. We thus estimate Equation (7) and report the

results with varying instruments in Table 6.

Table 6: Information model test using ξjlt

(1) (2) (3) (4) (5) (6) (7) (8)

log(µj,t) -0.044 -0.011 0.042 0.010 0.005 0.056 0.072 0.057

(0.055) (0.080) (0.063) (0.064) (0.069) (0.102) (0.072) (0.080)

ξj,t−1 0.733*** 0.733*** 0.733*** 0.733***

(0.010) (0.010) (0.010) (0.010)

Instruments ✓ ✓ ✓ ✓ ✓ ✓

No Obs. 8372 8372 8372 8372 7011 7011 7011 7011

Notes: The standard errors are clustered at the market level. Significance levels: ∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001.
Instrumental variables: lag of animal usage of antibiotics for (2) and (6), lag of human use of antibiotics for (3) and (7), and lag of
animal usage and human use of antibiotics for (4) and (8). The models include a constant that is not presented in the table. Table 19
in appendix A.6 shows the first stages of the 2SLS regressions.

The table shows the OLS results with or without controlling for the lag shock ξj,t−1 in Columns (1) and

(5) and then several 2SLS results with varying instruments. All the results show that current antibiotic

susceptibility is never significant, meaning that we cannot reject the hypothesis that physicians do not

account for factors that potentially affect current susceptibility or allow us to predict susceptibility.

This result shows that providing physicians with better information on the antibiotic susceptibility of

bacteria could aid them in their decision-making processes. They might make better decisions, as they may

overestimate or underestimate current susceptibility via lagged susceptibility information, as shown in Table

5. However, the mistakes will be more or less important depending on the change in susceptibility over time

and thus on the use of antibiotics by humans or animals during the previous year. For the counterfactuals

that follow, we thus use the preferred demand results from Column (2) of Table 5.
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Figure 8: Comparison of prediction errors and one-year changes in antibiotic susceptibility

Notes: Prediction errors Eµ(µijt) − µjt when Eµ(µijt) = µ̂jt or when Eµ(µijt) = µjt−1, where µ̂jt is the prediction of the resistance
model via antibiotic usage information.

To evaluate how lag susceptibility differs from realized or predicted susceptibility25, Figure 8 displays a

scatter plot of the susceptibility prediction error (µ̂jt−µjt) over the yearly susceptibility change (µjt−1−µjt).

This finding shows that they are not identical; thus, using the lag susceptibility information instead of a

prediction using past antibiotic usage makes a difference. The results also reveal that susceptibility to

antibiotics varies from year to year. The correlation of the prediction error using the prediction with antibiotic

usage with that using lag susceptibility is only 0.65, whereas the R2 of the regression is 0.43. This shows

that there are meaningful differences between these errors in prediction, although not surprisingly, they are

positively correlated.

4 Regulating the Use of Antibiotics in Humans and Animals

We use our demand model to study counterfactual scenarios that target antibiotic resistance externalities

by regulating antibiotic use in humans and animals. The first policy consists of a ban on fluoroquinolone

prescriptions. The second consists of limiting the use of fluoroquinolones in veterinary practices. While the

policy goals are the same, how these policies affect the market, consumer surplus and expenses differ and

are affected by the response to bacterial resistance.

25The prediction model used is the one presented below in section 4.1.
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When simulating these counterfactuals, we always keep the prices of drugs fixed. We thus assume that the

price regulation would not change significantly in these counterfactual scenarios. Indeed, the reimbursement

prices of prescription drugs that are still on patent are regulated and defined in a negotiation with drug

companies where the regulator (the CEPS - comité économique des produits de santé) accounts for the

clinical merit of the drug and the price of comparable products. Prices are set for several years and revised

downward over time (almost never upward) when the product is aging. The generic prices are also set by

regulations and fixed by regulations at 40% of the price of the corresponding branded drug.

For the period of our data, we thus take prices as given in our counterfactuals. Actually, in the

counterfactual case where fluoroquinolones are banned for prescriptions in the case of cystitis, this does

not mean that fluoroquinolones have to exit the market. The regulated price of a drug is unique for all

indications. While banning fluoroquinolones in the case of cystitis reduces the market size for these products

(the cystitis indication represents, on average, 40% of all sales of fluoroquinolones), they do not exit and

thus do not change the degree of competition for other antibiotics that are also used in other indications for

which competition is not affected by our counterfactual. We thus consider that our counterfactuals should

not affect the price setting with the regulator too much.

Banning fluoroquinolones as a treatment option for the case of simple cystitis is equivalent to removing

them from the choice set of the decision maker; this will inevitably reduce fluoroquinolone antibiotic use,

leading to decreased resistance of E. coli to fluoroquinolones, but substitutions toward other antibiotics will

occur, as predicted by our demand estimates. Regulating the veterinary use of fluoroquinolones decreases

resistance, ceteris paribus. However, the demand model predicts that decreased resistance increases the

prevalence of fluoroquinolones in humans in response to increased susceptibility26.

Banning the Use of Fluoroquinolones Financial incentives to limit the prescription of fluoroquinolones

have been provided to physicians in France since 2017. However, we still observe they were prescribed for

cystitis even after 2017 and constituted a substantial share before that. Therefore, we simulate the effects of

a stricter rule regarding the prescription of fluoroquinolones from 2002 by banning their use for the treatment

of cystitis. This policy is interesting for two reasons. First, despite the increase in bacterial resistance to

26We take as given the use of antibiotics for other infections. Modeling the changes in treatments of other bacterial diseases
due to the change in resistance is beyond the scope of this paper.
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fluoroquinolones, they remain effective in treating bacteria that are resistant to many other drugs. Therefore,

fluoroquinolones need to be saved for cases where first-line antibiotics fail27. Second, a large proportion of

fluoroquinolone antibiotics are prescribed for cystitis.

Figure 9: Shares of cystitis diagnosis among fluoroquinolone prescriptions (2014-2019)

Figure 9 shows the percentage of cases of cystitis (or cystitis and urinary tract infection (UTI)) among the

prescriptions of fluoroquinolone molecules for women from 2014-2019. The largest share is for lomefloxacin

(J01MA07). Among all prescriptions of lomefloxacin, more than 50% were prescribed for cystitis. It

is followed by norfloxacin (J01MA06), with a value of approximately 40%. Hence, this policy targeting

fluoroquinolone prescriptions for cystitis would have a significant effect on the overall prescription of fluoroquinolones

in outpatient care.

Limiting the Use of Fluoroquinolones for Animals This counterfactual policy is motivated by the

fact that limiting antibiotic use for animals rather than humans may be less costly for the population. In fact,

France implemented restrictions on the use of fluoroquinolones in animals starting in 2012 with a program

aimed at increasing awareness and monitoring (a program called EcoAntibio starting in 2012), followed

in 2017 until 2021 by another campaign (called EcoAntibio2) with stricter measures28 and the ban since

March 2016 of preventive use of several fluoroquinolones for animal farming (exemptions were granted for

treatment purposes and after a susceptibility test). As a result, Figure 10 shows the decrease in the number

27These are also the reasons why fluoroquinolones are in the “at-risk” group defined by the financial incentive scheme.
28See https://agriculture.gouv.fr/le-plan-ecoantibio-2-2017-2022.
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of antibiotics sold for veterinary use in terms of mg per kilogram of animal body weight after 2014. In our

counterfactual simulation, we thus set sales to the minimum observed in 2018. We then examine the change

in resistance and how demand has responded to this change since this policy was implemented in 2002.

Figure 10: Sales (mg/kg) of fluoroquinolones, Source: ANSES

To simulate those counterfactuals, we must first identify the link between the consumption of antibiotics

and the evolution of resistance. We do so by estimating a simple model of resistance evolution in the following

section. Using the demand estimates from Column 2 of Table 5 and the resistance evolution model, we then

study the changes in market shares, consumer surplus and expenses in the two counterfactual cases. Note

that the estimates of consumer surplus and expenses are those at the time of prescription, not accounting

for the long-term value of lower resistance.

4.1 Escherichia Coli Resistance Evolution

In line with the literature on the evolution of resistance, which highlights the role of antibiotic consumption

in both humans and animals, as well as epidemiological models of infections (Adda, 2020; Austin et al., 1999;

Čižman et al., 2001; Hammerum and Heuer, 2009; López-Lozano et al., 2000), we model E. coli resistance as

a function of antibiotic use in humans and animals and past resistance levels. As some veterinary antibiotic

uses are provided at the ATC3 aggregate level (penicillins, aminoglycosides), others are reported at the ATC4

aggregate level (without overlap), whereas the E. coli resistance of each molecule (ATC5) is observed, we use

the ATC4 or ATC3 level of antibiotic use for animals in our resistance model (see Table 4). Moreover, the
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resistance data do not provide resistance information for all the molecules. However, the molecules for which

no resistance information is collected are unlikely to bias the model estimates because the data collection

on resistance started before the increasing resistance trend occurred. Missing resistance data dummies

are used as control variables in the demand model and remain identical across all counterfactuals. After

some specification searches for functional forms, we obtain a model where a nonlinear transformation of the

expected resistance is linearly additive in the explanatory variables. This leads to the following fractional

logit model of Papke and Wooldridge (1996):

E

(
ln

rjt
1− rjt

)
= β0t+ ρ rjt−1︸ ︷︷ ︸

Lag resistance

+β1 qhjt−1 + β2 qh
2

jt−1 + β3 qhATC4(−j)t−1︸ ︷︷ ︸
Human prescriptions

+ϕ1 qaATC4(j)t−1 + ϕ2 qaATC3(j)t−1︸ ︷︷ ︸
Veterinary sales

(8)

where rjt = 1−µjt and j represent the chemical substance, t denotes years, qaATC4(j)t and qaATC3(j)t represent

the veterinary sales in mg of active ingredient per kilogram of animal body weight (mg/kg) of products of

the ATC 4 and ATC 3 classes of j in period t, qhjt represents the total community-level quantity of molecules

j and qhATC4(−j)t−1 represents the quantity of other drugs in the same class because of possible resistance

spillovers across antibiotics of the same family. Notably, we are not using data on hospital prescriptions of

antibiotics, but in France, they represent a small fraction (approximately 10%) of the total antibiotics used.

The antibiotic sales for veterinary use data come from ANSES (2021). The functional form implies that

the resistance (rjt) is an increasing function of the right-hand side of equation (8), but it can be convex or

concave depending on the parameters.
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Table 7: Resistance model estimates

(1) (2) (3)

Lag resistance (rjt−1) 0.061*** 0.065***

(0.002) (0.002)

Human antibiotic consumption

qhjt−1 0.158*** 0.036*** 0.025**

(0.009) (0.008) (0.009)

qh
2

jt−1 -0.002*** -0.001*** -0.001**

(0.000) (0.000) (0.000)

qhATC4(−j)t−1 -0.128*** 0.030*** 0.041***

(0.012) (0.008) (0.007)

Animal antibiotic consumption

qaATC4(j)t−1 3.176*** 0.834*** 0.452

(0.424) (0.199) (0.351)

qaATC3(j)t−1 0.170*** 0.092*** 0.087***

(0.015) (0.010) (0.010)

Year Fixed Effects ✓

No Obs. 337 337 337

Notes: Standard errors are in parenthesis. Significance levels: ∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001. One observation per
molecule and year.

Table 7 shows the estimates of equation (8), including the lag resistance or not and with or without

year fixed effects. Once we control for lag resistance, we find that the effect of antibiotic consumption

by humans is positively correlated with resistance, but the marginal effect decreases in quantity. Given

the parameters estimated, the functional form is such that resistance is an increasing concave function

of antibiotic consumption (we draw that function in Figure 16 in appendix A.7). There is also a positive

relationship between the use of other molecules within the same chemical subgroup, indicating cross-resistance

effects. Veterinary sales of antibiotics also positively affect resistance. Next, we use the results in Column

(2) (as preferred by the BIC and AIC) to simulate the counterfactual resistance in each policy scenario.

4.2 Counterfactual Policies’ Impacts on Resistance

Simulating our two counterfactuals consists of using equation (8) and the demand model with either a ban of

fluoroquinolones for humans or a reduction in fluoroquinolones for animals. In each case, we start from the

initial period (2002) and simulate year by year the counterfactuals given that any year t+1 depends on the

susceptibility (resistance) to each antibiotic and the consumption of antibiotics in year t so that the effects of
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the counterfactual policies accumulate in parallel with the observed and unchanged time variations in other

determinants, such as animal consumption of non-fluoroquinolones, the human consumption of antibiotics

for other indications (using the rates shown in 9) and the entry or exit of drugs.

We first present the obtained counterfactual resistance against fluoroquinolones for each policy separately

for CF1 and CF2) and in combination in Figure 11. As a result of each policy, resistance to fluoroquinolones

is always lower. However, the increase in resistance from 2002 to 2011 remains, even if it is at a slightly

lower rate when fluoroquinolones are banned for human prescriptions in the case of cystitis. In contrast, the

other policy manages to curb the increase starting in 2007 because it prevents fluoroquinolone consumption

in animals from continuing to increase until 2001, which is why resistance has increased.

By 2011, the effect of the policies reaches a stable difference of approximately 1 percentage point for the

ban on fluoroquinolones for cystitis and 4 percentage points in the minimum veterinary sales case.

Figure 11: E. coli resistance under counterfactual policies

4.3 Counterfactual Market Shares

We now turn to examining the changes in the market shares of antibiotics in each counterfactual. Figure 12

shows the changes in the market shares of four antibiotic groups that represent significant market shares and

are important in terms of assessing the consequences of policies for AMR. These groups or molecules are the

fluoroquinolones, the fosfomycin, which has the highest market share and is the first-line therapy throughout

the sample, the 3rd generation cephalosporins and the family of amoxicillin and β-lactamase inhibitors, both
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of which are included in the “at-risk” antibiotic groups that are crucial to preserve.

Figure 12: Change in the market shares in percentage points

Notes: The lines represent the average across France of the change in prescription probability, and the vertical bars indicate the range
of variation across regions. The left graph shows the counterfactual where fluoroquinolones are banned from prescriptions in the case
of cystitis, and the right graph shows the counterfactual where fluoroquinolone use for animals is reduced to its minimal quantity.

Figure 12 shows that when fluoroquinolones are banned from prescription, physicians largely replace

fosfomycin with 3rd generation cephalosporins. Fosfomycin (J01XX01) is a narrow-spectrum antibiotic to

which E. coli responds at a high rate and is recommended as a first-line therapy in uncomplicated cystitis

cases. However, cefixime (J01DD08) is a 3rd generation cephalosporin that belongs to the “at-risk” list

with increasing resistance of bacteria. This finding shows that policies targeting fluoroquinolones can have

unintended spillover effects on other antibiotics for which antimicrobial resistance is also problematic.

In the counterfactual where animal use of fluoroquinolones is reduced to a minimum, we observe an

increase in the prescription share of fluoroquinolones because resistance to fluoroquinolones decreases owing

to the reduction in fluoroquinolone consumption in animals. This increase corresponds to a substitution of

mostly fosfomycin and partly 3rd generation cephalosporins with fluoroquinolones.

Neither counterfactual policy substantially affects the share of amoxicillin and β-lactamase inhibitors.

Overall, although both policies lead to a reduction in antibiotic resistance, they have opposite impacts on

the market shares of fluoroquinolones and their substitutes.

4.4 Counterfactual Changes in Consumer Surplus and Expenses

We then compute the consumer surplus change per patient following the usual method Small and Rosen

(1981) due to the ban of fluoroquinolone prescriptions (MacFadden et al., 2018). Note that we abstract from
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the impacts of the policy on potential follow-up visits that could change with different treatment choices.

This impact is likely limited in our case because we focus on “first visits” to capture nonrecurring/initial

diagnoses. More importantly, we do not account for the benefits from a potential decrease in bacterial

resistance beyond the treatment of cystitis or beyond the time period of our prescription data.

Figure 13 shows the change in average consumer surplus and expenses per prescription, with vertical

bars showing the minimum and maximum averages by region in a given year. The fluoroquinolone ban

leads to greater effects in magnitude. On average, the loss of consumer surplus is 10 e, and the decrease in

expenses is approximately 2 e until 2010 to 5 e for consumer surplus and 1 e for expenses. The decreases

in magnitude after 2010 are partly a result of the generic entry of fosfomycin products with incentives for

generic prescriptions. For the counterfactual that reduces the animal use of antibiotics, the changes are

opposite but smaller in magnitude than when fluoroquinolones are banned. On the one hand, a decrease in

resistance increases consumer surplus. On the other hand, this decrease leads to higher market shares for

fluoroquinolones, whose price is greater than that of antibiotics, such as fosfomycin, from which prescriptions

are substituted.

Figure 13: Changes in consumer surplus per patient and expenses per prescription in e

Notes: The time variation in the mean differences is plotted. The vertical bars indicate the range of variation across regions.

5 Value of Diagnostic Tests

We now use our framework to derive the value of diagnostic tests such as bacterial tests or susceptibility tests.

As discussed by Firth et al. (2023), policymakers are also considering the use of bacterial tests to combat
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increasing AMR. We therefore use our decision model to simulate the counterfactual prescriptions in the case

of a rapid bacterial test as well as in the case of a rapid susceptibility test that could be used by physicians

at the time of prescription. As shown in section 3, without a test, physicians make “empirical” prescribing

decisions affected by the expected susceptibility of E. coli to each antibiotic. With a test, physicians become

able to prescribe an antibiotic conditional on a test result.

Rapid Bacterial Detection Test As a rapid bacterial test allows physicians to confirm whether the

cystitis is due to an infection, the prescription choice will essentially be scaled down by the average infection

rate π by E. coli of this cystitis diagnosis, as shown in equation (5).

As the test leads to a reduction in antibiotic prescriptions, it reduces pharmaceutical spending. We

define the prescription value of a rapid bacterial test vRapidTest
t as the savings per prescription if a test is

available29:

vRapidTest
t (π)︸ ︷︷ ︸

Prescription value

of rapid bacterial test

=
∑

j∈{1,...,Jt}

pjt(s
NoTest
jt (µt−1)− sbactjt (π, µt−1)︸ ︷︷ ︸
Additional expenses on drug j

if no test vs bacterial test

(9)

where sNoTest
jt (µt−1) is the choice probability of prescribing j in the absence of testing, as in equation (6), and

sbactjt (π, µt−1) is the choice probability when a bacterial test is available given the average infection rate π,

as in equation (5), with, in both cases, the use of the result that the expected susceptibility rates physicians

use is the one-year lag vector µt−1.

Rapid Antibiotic Susceptibility Testing When a susceptibility test for molecule l is available, the

physician can use patient-specific susceptibility information.

We define the prescription value of the susceptibility test as the savings per prescription, that is, the

difference in expenses per prescription with susceptibility testing for drug l and without susceptibility testing

29Note that the value of the test here represents only the healthcare savings per prescription without considering the impact
on resistance. Using this test will save antibiotic use overall and hence help to limit resistance externalities. As bacterial
resistance is associated with increased hospitalizations, deaths, and productivity loss, slowing resistance growth is likely to
generate greater returns on such tests in the future.

To account for the changes in resistance that would result from the reduced use of antibiotics, one needs to approximate the
effect of the test for other diseases, which is beyond the scope of this paper. However, knowing the scale factor ψj of drug j
consumption for the diagnostic for which the test is used, one can calculate the counterfactual usage q̃hjt of antibiotic j as

q̃hjt = (1− ψj)q
h
jt + ψjq

h
jts

testl
jt (π)/sjt

. Then, using the counterfactual quantities, it is possible to compute the path of counterfactual resistance and the paths of
prescriptions, expenses and consumer surplus and compare them to diagnostic test spending.
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(but with testing for bacterial infection). The value is thus:

vSusc.Testl
t (π)︸ ︷︷ ︸

Prescription value

of rapid susceptibility test

=
∑

j∈{1,...,Jt}

pjts
Susc.Testl
jt (π, µt−1, µlt)︸ ︷︷ ︸

Expenses on drug j when using

susceptibility test to drug l

−
∑

j∈{1,...,Jt}

pjts
bact
jt (π, µt−1)︸ ︷︷ ︸

Expenses on drug j

without test

(10)

where sSusc.Testl
jt (π, µt−1, µlt) is the choice probability from equations (3) and (4), and sbactjt (π, µt−1) is again

the one from equation (5).

Example of Bacterial Detection and Rapid Susceptibility Testing to Amoxicillin We then

calculate the prescription value of a rapid antibiotic susceptibility test, which would indicate whether the

bacteria were susceptible to amoxicillin in 2018, where the resistance rate of E. coli was approximately 51%.

We chose amoxicillin because of its relevance in this context. In the recent treatment guidelines by the

French health authority (“Haute autorité de santé”) for cystitis30, differential treatment following antibiotic

sensitivity testing suggests amoxicillin as the first choice. Table 8 shows the expenses per prescription in

2018 for the treatment of cystitis for three values of the bacterial infection rate π: in the absence of any test

(current situation), when a bacterial test is available, and when an amoxicillin susceptibility test is available.

The empirical treatment without a test costs e 6.78 per prescription. If rapid susceptibility testing for

amoxicillin is available, one would save from e 3.21 for π = 0.75 to e 5.59 for π = 0.25. The results show

that the higher the probability of bacterial infection is, the lower the savings from using a bacterial test or

amoxicillin susceptibility test. With a bacterial detection test, the savings are always smaller, although when

the infection rate is small, a larger part of the savings is achieved with a bacterial test without susceptibility

testing.

30Accessed from https://www.has-sante.fr/upload/docs/application/pdf/2021-08/fiche_memo_cystite_durees_

antibiotherapies_.pdf on 31 October 2022
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Table 8: Expenses per prescription in 2018 (e)

Bacterial Infection Rate No Bacterial Amoxicillin

π Test Detection Test Susceptibility Test

(e) ∆% (e) ∆%

0.25 6.78 1.70 -75.0% 1.19 -82.4%

0.50 6.78 3.39 -50.0% 2.38 -64.8%

0.75 6.78 5.09 -25.0% 3.57 -47.3%

Notes: Each cell reports the drug prescription cost per patient diagnosed with cystitis according to the true bacterial infection rate in
the population and the availability (with mandatory use) of different tests. We also report the change in cost in % compared to the
absence of a test. In the case of a bacteria test only, savings are inversely proportional to the bacterial infection rate as prescriptions
decisions do not change but are scaled down by the rate of a positive result.

Value of Tests From a welfare perspective, even without considering the long-term effects on resistance,

we should also value the health outcome implied by the change in treatment that the test will lead to. We

approximate this effect by assuming that in the case of bacterial infection (π), the success rate of treatment is

equal either to the susceptibility rate of the bacteria to the antibiotic j prescribed, µjt, or to the probability

that the patient does not revisit the physician within 7 days, µno revisit
jt (which is the rate we used to check

the robustness of our demand model to the susceptibility measure and varies across regions and years). In

the case of nonbacterial infection (1 − π), the success rate of treatment does not change regardless of the

antibiotic prescribed or not.

The mean probability of being cured is thus the sum over all antibiotics j of the drug choice probability

sjt(µt−1), which, according to our demand model, depends on the lag susceptibility rate vector µt−1

multiplied by the success probability of the treatment. Thus, this probability of being cured is
∑

j=1∈{1,...,Jt} sjt(µt−1)µjt

or
∑

j∈{1,...,Jt} sjt(µt−1)µ
no revisit
jt .

Upon susceptibility testing to antibiotic l, the drug choice probability becomes sSusc.Testl
jt (π, µt−1, µlt).

Thus, the change in the probability of being cured if we assume the probability of each treatment success if

the susceptibility to the antibiotic is prescribed is as follows:

∆l
treat(π) ≡ π

∑
j∈{1,...,Jt}

[(
sSusc.Testl
jt (π, µt−1, µlt)− sjt(µt−1)

)
µjt

]
(11)

while if we assume it is the no revisit rate, it becomes:

∆l
treat(π) ≡ π

∑
j∈{1,...,Jt}

[(
sSusc.Testl
jt (π, µt−1, µlt)− sjt(µt−1)

)
µno revisit
jt

]
(12)
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Table 9 shows the probability estimates of being cured for both assumptions of successful treatment, with

or without susceptibility testing31. Notably, both measures of being cured yield similar results; one is based

on observed data from physicians visiting patients with antibiotic treatment within a week after the first

treatment, and the other is based on antibiotic susceptibility rates. When the antibiotic susceptibility rates

are used, the probabilities of being cured are slightly greater than when the rate of no revisit is used, but

the change in this probability due to susceptibility testing is slightly greater when the physician revisit rate

is not used. We find, in both cases, that this probability is very large even without testing and that testing

increases this probability by 4.3 or 5.8 percentage points, depending on the success rate used. Table 9 also

shows that there is variation across regions, although it is relatively small in the end.

Table 9: Treatment success with and without susceptibility testing for π = 1

Using success rate µjt Using success rate µno revisit
jt

Amoxicillin Susceptibility Test No Yes ∆Amoxicillin
treat No Yes ∆Amoxicillin

treat

All 0.923 0.967 0.043 0.887 0.945 0.058

Region

Center-East 0.925 0.967 0.042 0.894 0.948 0.054

Center-West 0.929 0.969 0.040 0.890 0.946 0.056

East 0.918 0.965 0.047 0.884 0.943 0.059

North 0.921 0.966 0.045 0.881 0.942 0.060

West 0.921 0.965 0.044 0.889 0.946 0.057

Paris 0.916 0.963 0.047 0.893 0.948 0.055

South-East 0.929 0.969 0.040 0.880 0.941 0.061

South-West 0.926 0.968 0.042 0.886 0.944 0.058

Notes: Columns 1 and 2 present respectively the average probability of being cured without or with susceptibility testing and success
probability µjt. Columns 4 and 5 present respectively the average probability of being cured without or with susceptibility testing and

success probability µno revisit
jt . Column 3 corresponds to equation (11) and Column 6 to equation (12).

Then, the conditions under which susceptibility testing should be used will depend on the value of curing

a patient. This value may depend on the opportunity costs of sick leave, the healthcare savings of not

revisiting one’s physician and the welfare loss in terms of quality of life in the particular case of each disease

(cystitis in this particular application). We thus determine the set of values of being cured per patient V and

the price of test plT such that it is optimal to mandate a bacterial susceptibility test before the prescription

of drug l. It is indeed desirable if the value of the test due to an increased probability of being cured,

31For 2018, we calculate the probabilities based on the resistance rates from the REUSSIR network, where the missing values
for fosfomycin, cefixime, pivmecillinam and sulfamethoxazole and trimethoprim are taken from the OSCAR Network of Onerba,
a network of private laboratories from the Bourgogne Franche-Comte region.
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∆l
treat(π) × V , is greater than the healthcare cost of treatment with a rapid susceptibility test, which is

plT − vSusc.Testl
t (π), where the prescription value of the susceptibility test comes from Equation (10). In

other words, imposing testing will be valuable if and only if

∆l
treat(π) ≥

plT − vSusc.Testl
t (π)

V
(13)

With respect to the values of (plT , V ) satisfying Condition (13), the higher the value of V is, the higher

the maximum price that should be accepted.

Using the prescription savings from Table 8 and the change in the probability of successful treatment of

equation (11) from Table 9, Figure 14 displays the regions in the (plT , V ) space where mandatory testing is

optimal for the case of rapid susceptibility testing for amoxicillin in 201832.

Figure 14: Optimality of susceptibility testing

Notes: The shaded region corresponds to the optimality of testing for π = 0.5

While ∆l
treat(π) fixes the slope of the relationship between the maximum price of the susceptibility test

for antibiotic l that should be used and the value of being cured, the prescription value (vSusc.Testl
t (π))

determines the intercept. Notably, the probability of bacterial infection π affects both the level and slope, as

it increases the level of the maximum price with optimal testing at the origin but decreases the slope of the

indifference line. Moreover, all the indifference lines for each value of π cross at (V = 110.70 e, plT = 6.78

e) because both ∆l
treat(π) and vSusc.Testl

t (π) are linear in π.

Thus, for values of being cured V ≤ 110.70e, the lower the probability of bacterial infection π is, the

32We assume that susceptibility testing also indicates the bacterial status of the suspected infection.
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higher the upper bound on the price of the test that is beneficial for society. This is because as the rate of

infection decreases, the savings from avoided useless treatments increase. However, the lower the probability

of bacterial infection is, the smaller the slope. Thus, an incremental value of being cured is (ex ante) valued

less than in the case in which the bacterial infection rate is higher. This is because the change in the

probability of the treatment is weighted by the rate of infection. Therefore, for the value of being cured

V > 110.70e, the maximum price of the test one should use is greater when the probability of infection

is greater; this exemplifies where the use of susceptibility testing makes a difference in addition to using a

detection test.

6 Conclusion

In this work, we develop a decision model for drug prescriptions in the case of infections whose responsible

bacteria can be resistant to different antibiotics. We show how to account for the expected susceptibility to

each antibiotic in a decision model such that we can evaluate the value of bacterial and antibiotic susceptibility

testing. We first study the empirical effects of bacterial resistance to antibiotics on drug prescription choice

via an exhaustive panel of general practitioner visits over a long period in France. We identify the effects of

antimicrobial resistance on treatment choices and control for the endogeneity of prices and resistance using

data on the veterinary use of antibiotics that affect resistance. The results indicate that bacterial resistance

affects prescription behavior, as physicians replace antibiotics for which the resistance is higher. We explore

two ways in which the physicians responses account for resistance. We test whether physicians act upon the

expectation of current resistance instead of using resistance in the last period, a “sophisticated” information

model, and find that the “unsophisticated” information model is preferred and shows that physicians consider

one year lagged resistance in their prescription decisions. We find that physicians start to prescribe more

generics upon the introduction of a pay-for-performance bonus in 2012. Similarly, we observe a decline in

preference for specific antibiotic groups that have been targeted by the same pay-for-performance program

since 2017.

We then performed counterfactual analysis via a resistance evolution model for E. coli bacteria. We study

the effects of a policy in which the use of fluoroquinolones is banned for the treatment of cystitis or is reduced

to a minimum quantity for veterinary use. While both policies reduce resistance to fluoroquinolone, they have
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opposite effects on consumer surplus, expenses, and drug substitutions. In the case of the fluoroquinolone

ban, the results highlight the substitution toward other antibiotics that are valuable but need to be saved

for more complicated cases. In the case of a reduction in veterinary use of fluoroquinolone, the market share

for fluoroquinolone prescriptions for humans increases due to increased susceptibility, which attenuates the

impact of the policy. These findings highlight the importance of a unifying approach that considers the

entire ecosystem (such as the “One Health” approach)33. In all the counterfactual studies we conduct, note

that we do not account for the value of the long-term gains from lower antimicrobial resistance, indicating

that our results can be regarded as the lower bound in terms of the benefits of the policies.

Finally, we use our demand model to assess the value of bacterial detection and susceptibility testing. We

examine the savings per prescription and probability of being cured in the case where a rapid susceptibility

test for amoxicillin is introduced and mandatory. We show how to determine the maximum price of a

susceptibility test that one should use, depending on the value of being cured. The results allow for the

determination of the optimal testing policy, which also depends on the prevalence rate of bacterial infections.

This maximum price that is optimal for testing should be interpreted as a lower bound because we focus

only on a particular infection and do not incorporate the social value generated by testing through reduced

antibiotic resistance in the future and for other types of infections. As the data on resistance increased with

improved surveillance of bacteria and data collection, future work could address this question while including

the long-term effects on public health.

33One Health French National Action Plan on Antimicrobial Resistance. Retrieved from https://sante.gouv.fr/IMG/pdf/

brochure_mesures_innovantes_lutte_atbr-en_vf.pdf on 06/21/2023.
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Tang, K. L., N. P. Caffrey, D. B. Nóbrega, S. C. Cork, P. E. Ronksley, H. W. Barkema, A. J. Polachek,

H. Ganshorn, N. Sharma, J. D. Kellner, et al. (2017). Restricting the use of antibiotics in food-producing

animals and its associations with antibiotic resistance in food-producing animals and human beings: a

systematic review and meta-analysis. The Lancet Planetary Health 1 (8), e316–e327.

48



Ullrich, H. and M. A. Ribers (2023). Machine predictions and human decisions with variation in payoffs and

skill: the case of antibiotic prescribing. Berlin School of Economics Discussion Papers (27), 52.

van Belkum, A., C.-A. D. Burnham, J. W. Rossen, F. Mallard, O. Rochas, and W. M. Dunne Jr (2020).

Innovative and rapid antimicrobial susceptibility testing systems. Nature Reviews Microbiology 18 (5),

299–311.

Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and

Therapeutics 40 (4), 277.

WHO Regional Office for Europe/European Centre for Disease Prevention and Control (2022). Antimicrobial

resistance surveillance in europe 2022 – 2020 data. Available at https://www.ecdc.europa.

eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data

(2022/08/14).

49

https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data
https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data


A Appendix

A.1 Repeated visit rates

Table 10 reports the national average rates of repeated visits (in percentages) by chemical subgroup across
years. A repeat visit is defined as a revisit to a physician that results in an antibiotic prescription after
an initial antibiotic treatment for a urinary tract infection. The no revisit within 7 days rate is computed
regionally and used as a proxy for susceptibility to each antibiotic in our robustness checks.

Table 10: Average time (days) between two prescriptions in the case of a repeat visit

All ATC 4 Avg. time between

Year J01CA J01CR J01DD J01MA J01XX Two repeat visits

2009 6.42 8.97 9.96 6.46 5.76 7.27 12.00

2010 6.43 8.32 12.66 7.44 5.78 6.96 12.00

2011 6.31 8.88 7.69 7.40 5.64 6.84 11.87

2012 6.43 8.53 7.00 7.18 5.73 7.10 12.13

2013 6.39 8.28 7.53 8.10 5.47 7.14 11.83

2014 6.71 8.66 10.59 7.22 5.93 7.14 11.86

2015 6.39 8.83 9.95 6.47 5.37 6.95 11.86

2016 6.60 7.81 10.59 6.71 5.72 6.97 11.69

2017 6.68 7.76 12.91 6.75 5.76 6.81 12.00

2018 7.03 8.51 7.45 7.15 6.34 7.02 11.96

2019 6.65 8.06 10.69 6.74 5.86 6.52 11.73

Notes: The visits that are not followed by another prescription within 30 days are excluded. We also exclude repeat visits, that is,
those resulting in a second prescription within a month.

A.2 Guidelines

Currently, the guidelines in the U.S. for treating cystitis include a more diverse set of drugs in 2024 than their
French counterparts did. In the case of uncomplicated cystitis, the recommendations include nitrofurantoin,
trimethoprim-sulfamethoxazole, fosfomycin, ciprofloxacin and B-lactams such as amoxicillin-clavulanate
(Colgan and Williams, 2011; Lala and Leslie, 2023) and no predefined treatment for complicated cases.
As our study covers a long period, the guidelines around 2011 suggest fosfomycin, nitrofurantoin and
trimethoprim-sulfamethoxazole as first-line treatment; several fluoroquinolones for second-line treatment;
and amoxicillin-clavulanate, cefdinir and cefpodoxime as third-line treatment.
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Table 11: Evolution of treatment recommendations in France

Before 2008

First-line J01XE01, J01XX01

Second-line J01MA01, J01MA02, J01MA04, J01MA06

Complication risk J01CA04, J01CR02, J01DD08

2008-2013

First-line J01XX01

Second-line J01MA01, J01MA02, J01MA06, J01MA07, J01XE01

Complication risk J01DD08, J01MA01, J01MA02, J01MA04, J01MA06, J01XE01

2014-2017

First-line J01XX01

Second-line J01CA08

Complication risk J01DD08, J01MA01, J01MA02

After 2017

First-line J01XX01

Second-line J01CA08

Complication risk J01CA04, J01CA08, J01XE01

Notes: ATC classes corresponds to the following molecules: J01CA04: amoxicillin, J01CA08: pivmecillinam, J01DD08: cefixime,
J01MA01: ofloxacin, J01MA02: ciprofloxacin, J01MA04: enoxacin, J01MA06: norfloxacin, J01MA07: lomefloxacin, J01XE01:
nitrofurantoin, and J01XX01: fosfomycin

A.3 Market shares, guidelines and generics

Figure 15 displays the changes in market shares of the main antibiotics. The dashed vertical lines show
when the health authorities’ prescription guidelines changed, and the solid vertical lines show when generics
entered the market. Except in the case of fosfomycin (J01XX01), there are no important increases (or
changes in trends) in the use of a molecule when generics enter the market, whereas there are more changes
when health authorities’ guidelines changed.
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Figure 15: Evolution of the market shares of the molecules with generic entry during the sample period

Notes: The solid lines indicate the year of generic entry. The dashed lines indicate the changes in the guidelines. The ATC5 codes are
as follows: J01CA08: pivmecillinam, J01DD13: cefpodoxime, J01MA01: ofloxacin, J01MA06: norfloxacin, J01MA12: levofloxacin, and
J01XX01: fosfomycin

A.4 First-stage regressions
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Table 12: First-stage regressions

Price Advertising Susceptibility

Nb. of competing brands -0.949*** -0.183*** 0.008***

(0.136) (0.033) (0.001)

Nb. of competing generic brands -0.085** 0.053*** -0.000*

(0.029) (0.005) (0.000)

Nb. of competing brands after 2012 -0.045 0.032*** -0.003***

(0.052) (0.004) (0.000)

Nb. of competing generic brands after 2012 0.006 -0.033*** 0.001**

(0.042) (0.005) (0.000)

Nb. of competing products -0.034 -0.041*** -0.005***

(0.046) (0.011) (0.000)

Nb. of competing brands sq. 0.038*** 0.006*** -0.000

(0.006) (0.001) (0.000)

Nb. of competing products sq. -0.001 0.000 0.000***

(0.001) (0.000) (0.000)

Veterinary antibiotics density (ATC4 level) 10.146 1.226 -0.136***

(6.703) (0.772) (0.023)

Veterinary antibiotics density (ATC3 level) 0.160* -0.034*** -0.001

(0.064) (0.009) (0.000)

No Obs. 8372 8372 8372

F-stat 128 32 171

Notes: (1) Competing products are defined as products with the same active substance, i.e., molecule (ATC 5 level), in the Anatomical
Therapeutic Chemical (ATC) Classification System. (2) The year, region, and molecule FE as well as the included exogenous variables
are not reported
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A.5 Robustness Checks on the Demand Estimation

Table 13: Random coefficients logit demand estimates with regional specific susceptibility effect

(1) (2)

Price β -0.346*** (0.077) -0.236*** (0.045)

σp 0.141*** (0.030) 0.110*** (0.021)

log(µj,t−1) × Center-East 6.090** (1.880)

log(µj,t−1) × Center-West 6.495*** (1.893)

log(µj,t−1) × East 5.996** (1.882)

log(µj,t−1) × North 4.724* (1.888)

log(µj,t−1) × West 5.681** (1.888)

log(µj,t−1) × Paris 6.334*** (1.891)

log(µj,t−1) × South-East 5.293** (1.885)

log(µj,t−1) × South-West 5.750** (1.885)

Detailing (in Mil.) 1.061*** (0.298) 0.814*** (0.157)

No Obs. 8372 8372

Notes: Standard errors in parentheses. Significance levels: ∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001. Models include fixed effects
for year, region, molecule, guideline and incentive program controls, and missing indicator variables. The coefficient σp is the standard
deviation of the normally distributed random coefficient on price with mean β.

Table 14: Random coefficient logit demand estimates with susceptibility regional effects and quantity
weighted price

(1) (2)

Price β -0.347*** (0.049) -0.337*** (0.051)

σp 0.081* (0.032) 0.081* (0.033)

log(µj,t−1) × Center-East 4.795* (2.060)

log(µj,t−1) × Center-West 5.099* (2.064)

log(µj,t−1) × East 4.677* (2.062)

log(µj,t−1) × North 3.432 (2.069)

log(µj,t−1) × West 4.481* (2.072)

log(µj,t−1) × Paris 5.131* (2.068)

log(µj,t−1) × South-East 4.021 (2.063)

log(µj,t−1) × South-West 4.515* (2.067)

Detailing (in Mil.) 1.010*** (0.150) 1.056*** (0.151)

No Obs. 8372 8372 8372

Notes: Price is calculated for each molecule and brand using the sales weighted price of different doses. Standard errors in parentheses.
Significance levels: ∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001. The models include year, region, and molecule FEs, guideline controls,
and missing indicator variables.

54



Table 15: Random coefficients logit demand estimates with quantity weighted prices

(1) (2)

Price β -0.353*** (0.049) -0.322*** (0.053)

σp 0.085** (0.033) 0.065 (0.037)

log(µj,t−1) 4.627* (2.078)

Detailing (in Mil.) 1.021*** (0.150) 1.023*** (0.157)

No Obs. 8372 8372

Notes: Standard errors in parentheses. Significance levels: ∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001. The models include fixed
effects for year, region, and molecule, guideline and incentive program controls, and missing indicator variables. The coefficient σp is
the standard deviation of the normally distributed random coefficient on price with mean β.
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Table 16: Random coefficients logit demand estimates with varying information lags

(1) (2) (3) (4)

Price β -0.226*** -0.226*** -0.148*** -0.153***

(0.045) (0.046) (0.032) (0.041)

σp 0.106*** 0.086*** 0.000 0.067*

(0.022) (0.024) (.) (0.029)

log(µj,t−1) 5.791** 5.396**

(1.864) (1.850)

log(µj,t−2) 3.843** 1.968

(1.393) (1.658)

log(µj,t−3) 2.314*** -0.100

(0.618) (1.773)

Detailing (in Mil.) 0.782*** 0.846*** 0.613*** 0.587***

(0.157) (0.167) (0.134) (0.128)

Generic -2.780*** -2.785*** -2.716*** -2.767***

(0.075) (0.076) (0.071) (0.077)

Generic × 1{t≥2012} 0.329** 0.304** 0.306** 0.423***

(0.102) (0.102) (0.096) (0.095)

J01MA × 1{t≥2017} -0.512*** -0.525*** -0.467*** -0.469***

(0.133) (0.135) (0.131) (0.129)

J01DD × 1{t≥2017} 0.054 -0.021 -0.029 0.046

(0.168) (0.171) (0.170) (0.170)

J01CR × 1{t≥2017} -1.214*** -0.871*** -0.651** -1.345***

(0.296) (0.237) (0.204) (0.298)

J01MA × Trend × 1{t≥2017} -0.334*** -0.334*** -0.263** -0.282**

(0.090) (0.092) (0.088) (0.088)

J01DD × Trend × 1{t≥2017} -0.318** -0.287* -0.255* -0.287*

(0.117) (0.118) (0.116) (0.114)

J01CR × Trend × 1{t≥2017} -0.256 -0.395* -0.310* -0.311*

(0.146) (0.156) (0.148) (0.144)

No Obs. 8372 8372 8372 8372

Notes: Standard errors in parentheses. Significance levels: ∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001. Models include fixed effects for
year, region, molecule, guidelines and incentive program controls, and missing indicator variables. The coefficient σp is the standard
deviation of the normally distributed random coefficient on price with mean β. Instruments when we use different lags of susceptibility
rates: for susc. rate at t, the instruments come from the veterinary use at t − 1.
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Table 17: Random coefficients logit demand estimates with susceptibility proxied by the nonrepeat rates

(1) (2) (3)

Price β -0.244*** (0.045) -0.226*** (0.045) -0.210*** (0.044)

σp 0.113*** (0.021) 0.106*** (0.022) 0.110*** (0.021)

log(µj,t−1) 5.791** (1.864)

log(µno revisit
j,t−1 ) 3.458* (1.638)

Detailing (in Mil.) 0.737*** (0.156) 0.782*** (0.157) 0.550*** (0.156)

No Obs. 8372 8372 8372

Notes: Standard errors in parentheses. Significance levels: ∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001. The models include fixed
effects for year, region, and molecule, guideline and incentive program controls, and missing indicator variables. The coefficient σp is
the standard deviation of the normally distributed random coefficient on price with mean β. Column 3 uses the no revisit rates as a
proxy for susceptibility.

Table 18: Random coefficients logit demand estimates with Klebsiella pneumoniae susceptibility rates

(1) (2)

Price β -0.226*** (0.045) -0.196*** (0.045)

σp 0.106*** (0.022) 0.066* (0.026)

log(µj,t−1) 5.791** (1.864)

log(µK.Pneumonie
j,t−1 ) -0.798 (0.668)

Detailing Expenses (in mill.) 0.782*** (0.157) 0.680*** (0.156)

Generic -2.780*** (0.075) -2.718*** (0.076)

Generic × 1{t≥2012} 0.329** (0.102) 0.240* (0.100)

J01MA × 1{t≥2017} -0.512*** (0.133) -0.628*** (0.138)

J01DD × 1{t≥2017} 0.054 (0.168) -0.234 (0.197)

J01CR × 1{t≥2017} -1.214*** (0.296) -0.573** (0.199)

J01MA × Trend 1{t≥2017} -0.334*** (0.090) -0.054 (0.115)

J01DD × Trend 1{t≥2017} -0.318** (0.117) -0.030 (0.136)

J01CR × Trend 1{t≥2017} -0.256 (0.146) -0.242 (0.144)

No Obs. 8372 8372

Notes: Standard errors are in parenthesis. Significance levels: ∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001.
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A.6 First-stage regressions of the information test

Table 19: First stage regression of the 2SLS regressions of Table 6

(1) (2) (3) (4) (5) (6)

ξj,t−1 -0.001 -0.002** -0.002***

(0.001) (0.001) (0.000)

Animal antibiotic consumption

qaATC4(j)t−1 0.432*** 0.103* 0.444*** 0.115*

(0.066) (0.042) (0.067) (0.045)

qaATC3(j)t−1 0.004* -0.003* 0.005** -0.003

(0.002) (0.002) (0.002) (0.002)

Human antibiotic consumption

qhjt−1 -0.014*** -0.010*** -0.014*** -0.010***

(0.001) (0.001) (0.001) (0.001)

qhATC4(−j)t−1 0.003*** -0.000 0.003*** -0.001

(0.000) (0.000) (0.000) (0.000)

No Obs. 8372 8372 8372 7011 7011 7011

Notes: Standard errors are in parenthesis. Significance levels: ∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001. The models include dummy
variables for missing data on some animal antibiotic consumption data that are not shown in the table.

A.7 Figures

Figure 16: Resistance as a function of quantity (other variables set at means): rjt =
exp f(qjt)

1+exp f(qjt)

Notes: The 95% quantile of the distribution of quantity is 19.29245, meaning that the function is increasing concave over most of the
data range.
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