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Abstract

This article sheds light on the relationship between compositional data (CoDa) regression
models and multiplicative competitive interaction (MCI) models, which are two approaches
for modeling shares. We demonstrate that MCI models are special cases of CoDa models
and that a reparameterization links both. Recognizing this relation offers mutual benefits
for the CoDa and MCI literature, each with its own rich tradition. The CoDa tradition,
with its rigorous mathematical foundation, provides additional theoretical guarantees and
mathematical tools that we apply to improve the estimation of MCI models. Simultane-
ously, the MCI model emerged from almost a century-long tradition in marketing research
that may enrich the CoDa literature. One aspect is the grounding of the MCI specification
in intuitive assumptions on the behavior of individuals. From this basis, the MCI tradition
also provides credible justifications for heteroskedastic error structures – an idea we develop
further and that is relevant to many CoDa models beyond the marketing context. Addi-
tionally, MCI models have always been interpreted in terms of elasticities, a method only
recently revealed in CoDa. Regarding this interpretation, the change from the MCI to the
CoDa perspective leads to a decomposition of the influence of the explanatory variables into
contributions from relative and absolute information. This decomposition also opens the
door for testing hypothesis about the importance of each information type.
Keywords: Marketing, MCI, Compositional Data, Regression
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1 Introduction
The MCI models of Cooper and Nakanishi (1989) are well-established regression techniques in
marketing research, used extensively to analyze market shares. Their long history can be traced
back to the law of retail gravitation of Reilly (1931) whose lasting influence is reviewed by
Friske and Choi (2013). Reilly’s original approach translates Newton’s formula for gravitational
attraction into a retail context. Huff (1964) apply this idea to model the attraction of stores on
individuals living in different districts of a city and further convert these attractions to shares.
Nakanishi and Cooper (1974) study a generalized version of Huff’s model, which they name MCI
model, and also show how its parameters can be estimated by ordinary least squares (OLS). In
their textbook Cooper and Nakanishi (1989) introduce several extensions of the original MCI
model, which they refer to as the simple effects MCI model. Its two extensions, the differential
effects and fully extended MCI models relate the dependent shares in increasingly complex ways
to the explanatory variables.

Although the CoDa literature also aims to analyze shares, it developed independently from the
MCI approach. The origins of CoDa date back to Aitchison (1982), who noticed the importance
of a unified mathematical framework for the analysis of share vectors. Since share vectors must
be positive and usually sum to one, most classical statistical methods do not apply, but Aitchison
(1982, 1986) popularized using log-ratios to overcome these constraints. Working with log-ratio
transformations has since become a principle of all CoDa analysis and also underpins the CoDa
regression approach that has been developed by Daunis-i-Estadella et al. (2002), Hron et al.
(2012), Egozcue et al. (2012), Chen et al. (2017), Coenders et al. (2017), Chen et al. (2018) and
Morais and Thomas-Agnan (2021), among others. The link between CoDa regression and MCI
was uncovered by Morais (2017), who identify the simple effects MCI model as an instance of
CoDa regression and showed that the attraction formulation of MCI models can also be used
to represent CoDa models. While Wang et al. (2013) already use a CoDa model that can be
classified as a simple effects MCI model, the authors do not emphasize this connection. In this
article, we develop the equivalence between all MCI models and CoDa regression, which has the
obvious benefit that all findings in each strand of the literature carry over to the other.

An asset of the CoDa approach is its insights into the geometric structure of log-ratio spaces
and their relationship to the simplex, which is the sample space for share vectors. This includes
well-understood distance measures and notions for the expectation and variance of simplex-
valued variables. These notions allow, for example, to formalize an unbiasedness property for
predictions that was already remarked by Boogaart et al. (2021). Additionally, it is common
to use isometric log-ratio (ilr) transformations (Egozcue et al. 2003) in CoDa regression. This
solves the issue of a singular covariance structure in MCI models and enables us to improve their
estimation efficiency.

One intuitively appealing side of the MCI models is their development as extensions of the
gravity formula, which can be more accessible than the abstract formalism usually employed in
CoDa analysis. Cooper and Nakanishi (1989) also link the MCI models to the random utility
framework of McFadden (1974), which can thus be used to derive a microeconomic foundation
for the CoDa regression specification. The grounding of MCI models in individual behavior
also justifies heteroskedastic error structures whenever the dependent shares are calculated by
aggregating individual choices. While Nakanishi and Cooper (1974) already recognize this point,
we will simplify their heteroskedasticity structure, making it more practical for MCI as well as
general CoDa models.

A rare example of cross-fertilization between the two approaches is Morais and Thomas-
Agnan (2021), who developed the interpretation of CoDa models in terms of elasticities that do
not depend on any log-ratio transformation. This interpretation is well known for MCI models
since Cooper and Nakanishi (1989) and, indeed, commonplace in economics and marketing. In
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Dargel and Thomas-Agnan (2023), we further develop the use of elasticities differences, whose
advantage is that they are constant over observations. In the present article, we show that the
MCI models can be interpreted with the CoDa version of these elasticities, which corresponds
to a decomposition of the explanatory variables’ influence into contributions from relative and
absolute information.

Before entering into the body of the article we want to highlight some differences in the
vocabulary used in both strands of the literature. For CoDa regression it is commonplace to
refer to observations as the statistical individual of the model and to components or parts for
the elements of the dependent CoDa vector. In the MCI approach the statistical individual is
a choice situation, which usually refers to specific geographic and temporal window, i.e. a city
district in the year 2023. Instead of components the MCI approach refers to options among which
consumer in a given choice situations can choose. These options are usually a set of products,
brands, or stores, and the dependent CoDa vectors contain the market shares of each option in
a all choice situation.

The following two sections briefly review the relevant MCI and CoDa literature. Section 4
demonstrates the link between the two approaches, covering the subjects of model specifications,
error structures, estimation, and interpretation. Section 5 presents an illustrative application
and a Monte Carlo study, and the final section concludes.

2 Review of MCI models
The use of interaction models in marketing research can be traced back to Reilly (1929, 1931).
According to Reilly’s law of retail gravitation, a population center in a region (j) attracts indi-
viduals living in another region (i) with force proportional to the population mass and negatively
proportional to the square of the distance between the two regions

Aij ∝
populationj

distance2ij
. (1)

Reilly presents this formula as a rule of thumb to estimate the volume of retail customers that live
in location i and chose region j as a destination for their shopping trip. Converse (1949) uses (1)
to determine the points where the attraction of two possible shopping destinations is equal, which
he called balance points. These balance points can be used to trace the borders of trading areas
for multiple retail destinations (j = 1, ..., D) on a map. Customers in location i would then be
allocated to the trading area of shop j if its attraction is maximal i.e. Aij = max(Ai1, . . . , AiD).

The next important developments are due to Huff (1962, 1963, 1964), who is motivated by
the problem of defining trade areas for different stores within a city. He criticizes the trade
areas obtained from the balance point method for being deterministic because the customers
are supposed to choose the same retail locations as a destination for all their shopping trips.
Huff models the attraction that a shop (j) exerts on individuals living in a city district (i) as
a function of the distance between them and the store’s area: Aij = areaj · distancebij . Unlike
his predecessors, he minimized a quadratic loss function over a grid search to estimate b instead
of fixing it at -2. Huff further converts the attraction, measured in volumes of customers or
revenues, into shares

Sij =
Aij∑D
l=1 Ail

. (2)

Since these shares indicate for every location i how likely a it is that a customer chooses one of
the potential retail destinations, they can be used to define probabilistic trade areas.
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Haines et al. (1972) recognized that Huffs model is a direct application of Luce (1959) choice
axiom, implying that it is subject to “independence of irrelevant alternatives” (IIA) assumption,
whose limitations are famously discussed by McFadden (1974). For Huff’s model IIA implies,
for example, that the opening of a new store leaves the share ratios between the existing ones
unchanged, irrespective of the new store’s location. This is unrealistic because we expect that
stores that are located closer to the new competitor would lose a higher proportion of their
customers to it. An argument in favor of share models with a multiplicative attraction is given
by Naert and Bultez (1973), who point out that they are “logically consistent” in the sense that
they predict positive shares that sum to one.

Nakanishi and Cooper (1974) introduce the term MCI for an extension of Huff’s model to
K explanatory variables. However, their main contribution is the first consistent ordinary least
squares (OLS) estimation procedure, which they further explain and simplify in Nakanishi and
Cooper (1982). Their estimator is defined for a generalized attraction formula that includes a
multiplicative log-normal error term

Aij =
∏K

k=1
x̌hk

kij ε̌ij , (3)

where we use the check notation x̌kij , ε̌ij > 0 to indicate non-negative variables or volumes. The
errors are assumed to follow a log-normal distribution with independence across city districts
(i), which are the statistical individuals in our geomarketing context. However, the errors are
potentially correlated across the D stores that consumers can choose as a destination for their
shopping trips. More formally, with ε̌i• = (ε̌i1, ..., ε̌iD) being the vector of errors for one district
and all stores, we have log(ε̌i•) ∼ N (0,Σ) where Σ (D × D) is the correlation matrix across
stores.

The key step to derive OLS estimates of the model parameters is the “log-centering” op-
eration, which is identical to the clr (centered log-ratio, see Section 3) in the CoDa literature.
To properly define this transformation, we first introduce the geometric mean of the compo-
nents of a positive vector v = (v1, ..., vD)′ as g(v) = (

∏D
j=1 vj)

1/D. The clr is then given by
clr(v) = log(v/g(v)), and from now on we use the star notation v∗j = log(vj/g(v)) to access one
element of a clr-transformed vector. Applying the clr to (2) yields S∗

ij = A∗
ij , and the transformed

equation becomes linear in the parameters

S∗
ij =

∑K

k=1
x∗
kijhk + ε∗ij . (4)

The errors of the clr-transformed model in (4) and those of the attraction (3) are linked by the
equation ε∗i• = GD log(ε̌i•), with GD = ID − 1

D ιDιD
′ and ιD being a D-vector of ones. This

implies a multivariate normal ε∗i• ∼ N (0,GDΣGD) for the clr-errors. With normal errors cen-
tered at zero, the OLS estimator of the parameters in equation (4) is unbiased and consistent
but not efficient since the errors are not homoskedastic. Additionally, even if Σ has full rank,
the covariance matrix GDΣGD of ε∗i• is degenerate, which complicates the use of more efficient
estimators. Although Nakanishi and Cooper (1974) have proposed some solutions to these prob-
lems, we will defer their discussion to Section 4.5 after introducing some CoDa tools that allow
us to address these issues more efficiently.

After their breakthrough in the estimation methodology, Cooper and Nakanishi (1989) devote
a whole textbook to market share models, exploring several generalizations of the MCI model.
The first of these is the general MCI (GMCI) framework that relaxes the functional form of the
explanatory variables. When fk(x) = x, the original MCI model is recovered, while choosing
fk(x) = exp(xk) yields a model whose mean expression coincides with that of the multinomial

4



logit (MNL) model:

GMCI: Aij =
∏K

k=1
fk(x̌kij)

hk ε̌ij

MCI: Aij =
∏K

k=1
x̌hk

kij ε̌ij =⇒ ∀k = 1, ...,K : fk(x) = x

MNL type: Aij =
∏K

k=1
exp(x̌kij)

hk ε̌ij =⇒ ∀k = 1, ...,K : fk(x) = exp(x).

(5)

However, the original MNL model does not include an explicit error term, since it belongs to
the family of generalized linear models. To ease the notation for the remainder of the article,
we continue with non-transformed variables, but all results would remain valid for the GMCI
version as long as the transformations are strictly positive fk(x̌kij) > 0.

Following another direction of generalizations, Cooper and Nakanishi (1989) introduce two
model variants with increasingly complex specifications. The original MCI model (3) is classified
as simple effects MCI model because it supposes the effect of a variable on the attractions to be
constant across the D stores. Hence, in this simple version, the model parameters hk are only
indexed by the variable number k. In the differential effects MCI model, the effects of a variable
on the attraction can vary across the D stores, leading to one parameter hkj for each variable k
and brand j. The fully extended MCI model further adds cross-effects that capture the influence
of the kth characteristic x̌kij of brand j on the attraction Ail of the other brands l 6= j. Including
these cross-effects leads to parameters hkjl with a triple index, where hkjj reflect the direct effects
and hkjl for l 6= j the cross-effects. By introducing these cross-effects, the fully extended MCI
model also overcomes the restrictions of the IIA assumption. The attraction forms of the three
model variants are given by

simple effects MCI: Aij =
∏K

k=1
x̌hk

kij ε̌ij

differential effects MCI: Aij = α̌j

∏K

k=1
x̌
hkj

kij ε̌ij

fully extended MCI: Aij = α̌j

∏K

k=1

∏D

l=1
x̌
hkjl

kij ε̌ij ,

(6)

where the brand-specific constants must be positive α̌j > 0. Cooper and Nakanishi (1989)
estimate the two largest MCI models with the explanatory variables transformed by logs instead
of clr, which is in contrast to what they do in (4) for the simple MCI. They further caution
against “model induced collinearity” in the extended versions unless certain constraints on the
parameters are imposed. However, instead of restating their estimation approach at this point
we will show in Section 4 that all the MCI models in (6) are special cases of a more general CoDa
model, which enables us to use a unified estimation methodology.

Table 1: Elasticities and Cross-Elasticities in the MCI model

Elasticity Cross-Elasticity
Model ∂Sij/Sij

∂x̌kij/x̌kij

∂Sij/Sij

∂x̌kil/x̌kil
, l 6= j

Simple effects hk(1− Sij) −hkSil

Differential effects hkj(1− Sij) −hklSil

Fully extended hkjj −
∑D

j=1 Sijhkjl hkjl −
∑D

j=1 Sijhkjl

To interpret the MCI models (6) Cooper and Nakanishi (1989) suggest to use point elasticities
∂Sij/Sij

∂x̌kil/x̌kil
that measure the relative change of the market share Sij resulting from a relative change
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in the kth variable x̌kil. When the component index of the share j is different from the component
index of the variable l they refer to cross-elasticities. Table 1 presents the expression of these
elasticities for the three versions of the MCI model.

Another noteworthy distinction between the three models in (6) concerns the data they
require for estimations and predictions. To clarify these data requirements let us consider a
hypothetical scenario involving two brands competing in market A, two other brands competing
in market B, and an undocumented market C. In addition, there exists a fifth brand as a potential
new participant in all markets. Table 2 outlines what information sets are available to the
modeller of this scenario.

Table 2: Available information for marketing models

existing brands new brands
1 2 3 4 5

existing markets A X X
B X X

new markets C

Checked cells (X) indicate that information about the market share of a brand in
a market is available and blank cells indicate the absence of information.

Depending on the modeling objectives some of the extensions of the MCI model become imprac-
tical. The fully extended model has the highest data requirements, as it only allows predictions
for situations in which the same brand constellation has already been observed. In Table 2, for
instance, the fully extended model could be used to predict a scenario where brands 1 and 2 si-
multaneously enter market C, but not when brand 2 and 3 would do so. It could also not predict
what would happen when brand 3 enters market A, because the available information does not
suffice to estimate the required cross-effect parameters. In such situations, the differential effects
model is much more permissive, as it does not use these cross-effects. Thus, with the differential
MCI model, we could predict the impact of the entry of any existing firm in any existing or new
market. However, when the objective is to predict the entry of a new firm, we have no choice
but resort to the constant parameter hypothesis of the simple MCI model.

3 Review of CoDa models
Compositional data are vectors, also called CoDa vectors, of non-negative components which are
often imposed a constant sum constraint of one. The objective of this requirement is to select a
unique representer in the class of vectors proportional to a given CoDa vector. Imposing a unit
sum is, however, more of a convention than a binding requirement since the objective of CoDa
analysis is to concentrate on the role of the relative values of its components, which are the same
for any element of this class. The log-ratio approach to the statistical analysis of CoDa vectors
was initiated by Aitchison (1982). It is based on using log-ratio transformations before applying
classical statistical techniques to the transformed values. Due to the constraints of CoDa vectors,
it is natural to work in the simplex of RD which is defined, for an integer D, by

SD =

x = (x1, . . . , xD)′ : xj > 0, j = 1, ..., D;

D∑
j=1

xj = 1

 . (7)
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The vector of shares (or parts, or components) are often obtained by the closure of a vector
x̌ ∈ RD

+ , whose elements can be called volumes or abundances, where the closure C is defined by

C(x̌) =

(
x̌1∑D
j=1 x̌j

, · · · , x̌D∑D
j=1 x̌j

)
. (8)

Let us note that market share vectors are constructed in this way. For ease of notation we
sometimes denote x = C(x̌) the representer of a volume vector x̌ in the unit simplex.

Aitchison (1986) equipped the simplex with a Hilbert space structure compatible with the
objective of the CoDa analysis. He introduced two operations that play for the simplex the role
of addition and scalar multiplication in RD:

1. the perturbation operation, denoted by ⊕, plays the role of the addition:

for x,y ∈ SD,x⊕ y = C(x1y1, . . . , xDyD),

2. the power operation, denoted by �, plays the role of the scalar multiplication:

for λ ∈ R,x ∈ SD λ� x = C(xλ
1 , . . . , x

λ
D).

Aitchison (1986) also defined the centered log-ratio (clr) and its inverse of a vector x ∈ SD:

clr(x) = GD logx and clr−1(x∗) = C(expx∗), (9)

where the logarithm of x and the exponential of x∗ are understood componentwise, and where
x∗ = clr(x). The clr is therefore a centered version of the vector of log-transformed components.

The inner product of the simplex, nowadays called Aitchison inner product, corresponds to

< x,y >A=< clr(x), clr(y) >E , (10)

where the right hand side uses the standard inner product in RD. From the above definition,
the clr transformation is therefore an isometry between the simplex equipped with the Aitchison
inner product and the classical Euclidean space RD. More complex transformations, called ilr (for
isometric log-ratio), are often used instead of clr, because of the singularity of the clr transform.
Indeed, the sum of the components of a clr transformed CoDa vector is zero, so that the image of
the simplex by clr is a hyperplane of RD. In contrast, the ilr transformations send the simplex into
RD−1 and they are bijective. An ilr transformation is indexed by a so-called contrast matrix V of
dimension D×(D−1) (Pawlowsky-Glahn et al. 2015, see). The contrast matrix associated to any
given orthonormal basis (e1, · · · , eD−1) of SD, orthonormality being understood with respect to
the Aitchison inner product here, is given by V = [clr(e1), · · · , clr(eD−1)]. The corresponding
isometric log-ratio transformation is defined by:

ilrV (x) = V′log(x).

The product of a D×D matrix B by a vector x ∈ SD can be defined by B�x = clr−1(B clr(x))
for any matrix B belonging to the set AD of D × D matrices with zero column sums and row
sums. The clr and ilr transformation of a matrix B are defined in Ruiz-Gazen et al. (2023) by

ilrV (B) = VTBV clr(B) = GDBGD. (11)

It is then easy to see that
B ∈ AD ⇔ B = clr(B) (12)
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For a simplex valued random variable X, we use the following definitions for expectation and
variance:

E⊕X := clr−1(E clr(X)) (13)
Var⊕ X := Var(clr(X)). (14)

The normal distribution on the simplex which can be traced back to Aitchison and Shen (1980)
is described in a more modern way in Pawlowsky-Glahn et al. (2015). NSD (µ,M) denotes
the normal distribution of a simplex valued random variable X with µ = E(clr(X)) and M =
Var(clr(X)).

The statistical analysis of CoDa vectors has first developed in the direction of descriptive
and multivariate methods. Regression with CoDa vectors appeared in Daunis-i-Estadella et al.
(2002). The case of compositional explanatory variables is discussed for example in Hron et al.
(2012) and the case of compositional response for example in Egozcue et al. (2012). The case
with CoDa vectors on both sides of the equation appears for example in Chen et al. (2017).
Let us write the general equation for a CoDa regression model with a compositional dependent
variable Si• = (Si1, . . . , SiD) and a mixture of classical and compositional explanatory variables
using the simplex operations. Assuming that the compositional explanatory variables have the
same dimension as the dependent, the simplex equation writes as follows

Si• = α• ⊕ (

KX⊕
k=1

Bk � xki•)⊕ (

KZ⊕
k=1

zki � γk•)⊕ εi• with εi• ∼ NSD (C(ιD),M), (15)

where:

• the parameter α• ∈ SD corresponds to the vector of component specific constants,

• the matrices of parameters Bk ∈ AD, k = 1, . . . ,KX are associated with compositional
variables xki• ∈ SD observed on unit i,

• the variables zki ∈ R for k = 1, . . . ,KZ are real-valued explanatory variables observed on
unit i, associated with the parameters γk• ∈ SD,

• the covariance matrix of clr coordinates M ∈ AD is valid for the normal in the simplex,
which means that it is symmetric and that for any contrast V the quadratic form V′MV
is positive definite.

A more recent concept of compositional data analysis removes the constant sum constraint.
This approach was studied by Pawlowsky-Glahn et al. (2014), who named it CoDa with a total,
and its application to CoDa regression can be found in Ferrer-Rosell et al. (2016), Coenders et al.
(2017) and Morais and Thomas-Agnan (2021). The absolute information involved in a so-called
total variable T (X) > 0 associated to any positive explanatory vector variable X can be included
as well on the right hand side of the regression equation among the classical variables. A valid
total is any function that preserves the absolute information in a vector of volumes x̌ ∈ RD

+ ,
but the most intuitive choices are the arithmetic total

∑D
j=1 x̌j and the geometric total

∏D
j=1 x̌j ,

which we denote by G(x̌).

4 The link between CoDa and MCI models
This section aims to establish the relationship between MCI and CoDa regression models with
a total. Using this approach, it is possible to account for totals in compositional explanatory
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and response variables, and in principle, all these variables could have a different number of
components. However, we only consider totals for the explanatory variables since MCI models
are used for explaining market shares whose total is uninformative. We further restrict our
attention to the case where the dimension of all compositional variables is equal to the number
of components of the dependent variable. This requirement arises naturally when dealing with
interaction data whose structure we discuss in the following.

Like all interaction models, MCI models are based on information at three different levels.
In a geomarketing context, there are the characteristics of the different stores, which we refer
to more generally as type C data (C for components). Additionally, there is type I data that
relates to the statistical individual, which is typically a city district in geomarketing. Finally,
type IC data refers to information on the pairs of individuals and components. Huff’s model, for
example, uses the area of a shop as type C information and the distance between a region and
the shop as type IC information but does not include type I information. The omission of type I
information is indeed a shortcoming of all MCI models in (6), and a benefit of the CoDa methods
is the seamless integration of this information into a regression model. On the other hand, type
C information is not used in general CoDa models due to collinearity problems. This issue does
not occur in the simple effects MCI model. When translating interaction models with this data
structure into the CoDa framework (15) we will treat type I information as real-valued variables
and data of type IC and C as compositions. More precisely, they are D-compositions, indicating
that, like the market shares, they have D components. In principle, the CoDa approach would
allow us to handle compositions of dimensions J 6= D on all information levels (type I, C, IC),
but given the scope of this article, we do not require this level of generality.

From the previous discussion, it should be clear that the most general model we consider for
this article is a CoDa model with a total of the explanatory compositional variables and with a
restriction on their dimension. In the following subsections, we demonstrate that this model nests
all versions of the MCI model as special cases. The precise nesting structure of all models we
consider is illustrated in Figure 1, where the symbol ⇔ indicates that two models are equivalent
up to a reparametrization, and the symbol ≡ when the parametrization is also identical. The
four models on the left use a total and those on the right are classical CoDa models that do not
include absolute information. Below the model names, we show the model complexity in terms
of the number of parameters. The expression of this complexity indicator is obviously simplified
by the fact that we only consider D-compositions. The constants KI , KIC , and KC indicate
the number of variables of each type, where KC ≥ D would lead to collinearity problems in the
simple effects MCI model.

The most general model uses a general total T (X), but with a geometric total G(X) the CoDa
model becomes equivalent to a fully extended MCI, though with a non-standard parametrization.
The differential and simple effects MCI models are special cases with additional restrictions on
the parameters. In the differential effects MCI model, the parameter matrix is constrained to
be diagonal. Using this constraint we derive two additional models, all called Diagonal CoDa
models, but with different influences of the total. The simple effects MCI model, adds the
additional constraint that the parameters for each variable are constant across components. All
models that have a diagonal parameter matrix are subject to the IIA assumption.

The different models presented in Figure 1 can be taken as a guideline for the following
subsections. We will first focus on adjusting the classical CoDa model, i.e. the CoDa model
without a total, to interaction data. In the next subsections, we discuss the three MCI models
For each of these models, we explore vectorized data representations, as it makes the relationship
between them more explicit and allows us to treat their estimation in a unified framework. The
problem of parameter estimation is discussed in a separate subsection, where we also touch upon
alternative error structures that are relevant to all MCI models and CoDa models in general. In
the last subsection, we discuss the model interpretation in terms of elasticities.
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Diagonal
parameter

matrix

Full 
parameter

matrix

Parameter 
matrix

proportional 
to identity

Models with total Models without total

CoDa with a general total T(X)

Diagonal CoDa 
with a geometric total G(X)

Differential effects MCI ⇔
Diagonal CoDa 

with a constrained influence
of the geometric total G(X)

Simple effects MCI ≡ 
Diagonal CoDa where 
parameters are constant

across components

KIC (D2-D) + (KI+1)(D-1)

Classical CoDa 
KIC (D-1)2 + (KI+1)(D-1)

Fully extended MCI ⇔
CoDa with a geometric total G(X)

KIC D + (KI+1)(D-1)

KIC + KC

KIC (D2-D) + (KI+1)(D-1)

KIC (2D-1) + (KI+1)(D-1)

Diagonal CoDa
KIC D + (KI+1)(D-1)

Figure 1: Nesting of MCI models under CoDa models with a general total T (X)

4.1 Classical CoDa regression for interaction data
To facilitate the comparison of the CoDa and MCI approaches, we begin by examining the rela-
tionship between the simplex representation used for the CoDa model in (15) and the attraction
representation employed for the MCI models (6). Comparing these representations reveals that
most of the differences in the MCI and the classical CoDa approaches originate in alternative
ways of addressing the non-uniqueness of the attraction formulation of the model. We start by
adapting the CoDa model to the previously introduced interaction data types:

Si• = α• ⊕
KIC⊕
k=1

(Bk � xki•)⊕
KI⊕
k=1

(zki � γk•)⊕ εi• with εi• ∼ NSD (C(ιD),GDΣGD), (16)

where Si•, α•, xki•, γk•, εi• ∈ SD, zki ∈ R, and B ∈ AD. The attraction form of the same model
is based on the model expression obtained by replacing in (16) the simplex operations by their
definitions in terms of the market share components before closure. Therefore we can express
Aij in terms of the volumes α̌•, x̌ki•, γ̌j•, ε̌i• > 0 instead of their simplex-valued counterparts:

Aij = α̌j

KIC∏
k=1

D∏
l=1

x̌
bkjl

kij

KI∏
k=1

γ̌zki

kj ε̌ij with log(ε̌i•) ∼ N (0,Σ). (17)
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The above model resembles the fully extended MCI model in (6), with additional type I variables.
Let us already note that the distributional assumption on the errors in the MCI models is coherent
with CoDa models. The log-normal errors in the attraction model (17) and the simplex-normal
errors in (16) are related by εij = ε̌ij/

∑D
j=1 ε̌ij , and after clr-transformation, both versions are

equal clr(ε̌i•) = clr(εi•). This identity is sufficient to conclude that log(ε̌i•) ∼ N (0,Σ) =⇒
εi• ∼ NSD (C(1D),GDΣGD) because the normal distribution in the simplex is defined by the
inverse image of a normal in log-ratio space. It is, however, worth noting that this distribution
is invariant to adding row-wise or column-wise constant terms to the correlation matrix yielding
Σ + rι′D + ιDc′, where r, c ∈ RD. In the usual CoDa approach, this ambiguity is overcome by
defining the errors in an ilr space or by directly assuming Var⊕(εi•) ∈ AD.

The lack of uniqueness also shows up in the deterministic part of the attraction model in (17)
and is, in fact, a direct consequence of the closure operation. This becomes obvious when noting
that the shares Sij are invariant to scaling the attractions by any factor ci that varies with the
individual i but is constant over components j

Sij =
Aij × ci∑D

l=1 Ail × ci
. (18)

In this light, we should understand the parameter restrictions in model (16) not as actual con-
straints on the parameter space, but as a convention to identify the parameters uniquely. This
makes the CoDa literature somewhat more rigorous than most presentations of MCI models,
whose attraction specification is usually ambiguous. However, the MCI tradition solves this am-
biguity at the estimation step by imposing constraints on the parameters in the clr transformed
model. Considering these constraints when specifying the attraction model would only reflect
an alternative convention for identifying the parameters.

For the component-specific parameters αj , the CoDa approach imposes a unit sum 1 =
∑

j αj ,
while the MCI approach leads to a unit product 1 =

∏
j αj . This could be represented by different

choices of ci in (18), where the CoDa approach uses c−1
i ∝

∑
j αj , while c−1

i ∝ g(α•) in the MCI
approach. Thus, we can link the constrained parameter vectors under both conventions by a
reparametrization with the scaling factor g(α̌•)/

∑
j α̌j , which is always identified since it does

not depend on the scale of α̌•.
The identification condition for the parameters γk• associated with the kth type I variable

is similar. In the CoDa approach, there is an arithmetic constraint: 1 =
∑

j γkj , which implies
c−1
i ∝ (

∑
j γkj)

zki . Although the original MCI models do not use type I variables, the geometric
constraint 1 =

∏
j γkj would be equally valid.

When it comes to the IC-type variables, the identification condition on the parameter matrix
Bk can be more difficult to understand because it is interdependent with the normalization of
the compositional variables x̌ki•. To simplify the discussion, let us consider a model with a single
type IC variable and omit the index k. We note that the condition B ∈ AD is equivalent to B
having zero as row-means 0 = b̄j• and as column-means 0 = b̄•l, for l, j = 1, ..., D. Using these
notations, we may develop

Sij ∝
ΠD

l=1x̌
bjl
il∑D

p=1 Π
D
l=1x̌

bpl
il

=
ΠD

l=1x̌
bjl
il∑D

p=1 Π
D
l=1x̌

bpl
il

×
ΠD

l=1x̌
−b̄•l
il

ΠD
l=1x̌

−b̄•l
il

=
ΠD

l=1x̌
bjl−b̄•l
il∑D

p=1 Π
D
l=1x̌

bpl−b̄•l
il

. (19)

Equation (19) show that the zero column sums constraint on B appears as an identification
constraint. In contrast, assuming zero row-sums for B is a restriction that cannot be derived
from the ambiguity of the attraction form. The implication of this restriction becomes clear
when we scale the variables x̌ij in the attraction by a term ri that is constant across the D

11



brands

Aij ∝
∏D

l=1
x̌
bjl
il =

∏D

l=1

(
x̌il

ti

)bjl

· r
∑D

l=1 bjl
i . (20)

When B has zero row-sums, the scaling factor ri becomes irrelevant as r
∑D

l=1 bjl
i = 1. In partic-

ular, if we use the arithmetic total ri =
∑

j x̌ij , equation (20) implies the equivalence between a
model based on type IC variables represented as volumes or as shares. Thus, assuming zero row-
sums for the matrix B reflects the fundamental concept of classical CoDa models, namely that
only relative information in compositional variables are relevant. It is precisely this assumption
that makes the classical CoDa regression inconsistent with the fully extended MCI model, where
absolute information has an impact on the market shares.

4.2 The fully extended MCI model from a CoDa perspective
To accommodate the fully extended MCI model within the CoDa framework we have to con-
sider CoDa models with a total. The main distinction between the CoDA and MCI models is
the representation of compositional explanatory variables. The MCI approach works directly on
non-negative volumes x̌i• ∈ RD

+ , while the CoDa approach separates the influence of the rela-
tive information form that of a total using the so-called T -space, introduced and analyzed by
Pawlowsky-Glahn et al. (2014). In essence, the T -space is a product space for a simplex valued
vector and a positive total: (C(x̌i•), T (x̌i•)) ∈ T = SD ×R+. In principle, the functional form of
this total is quite flexible, but to obtain an equivalence between the MCI and CoDa approaches,
the geometric total G(x̌i•) =

∏D
j=1 x̌ij turns out as a natural choice. This observation is coher-

ent with Pawlowsky-Glahn et al. (2014), who showed that using geometric total in T preserved
geometric properties of RD

+ , while this link is broken for more general totals. Our approach only
differs from Coenders et al. (2017) in that the total emerges with an alternative parametrization
if we derive the CoDa model from the MCI representation.

To illustrate the relation between the fully extended MCI model and CoDa regressions we
focus on a model with a single explanatory variable of type IC. In attraction form of this MCI
model is given by Aij =

∏D
l=1 x̌

hjl

il ε̌ij , and its simplex form is Si• = H � x̌i• ⊕ ε̌i•. This model
does obviously not satisfy the usual CoDa assumptions, as it associates the volumes in x̌i• to
the unconstrained parameter matrix H, and because the errors are not in the simplex. The first
step in the right direction is to remove the column means of H, using (19). This leads to the
new parameter matrix GDH, which is the one actually used by Cooper and Nakanishi (1989)
for the fully extended MCI model if we consider the constraints they impose on the parameters.
We may additionally normalize the errors εij = ε̌ij/

∑
j ε̌ij , leading to the following equivalence

Aij =
∏D

l=1
x̌
hjl

il ε̌ij ⇐⇒ Aij =
∏D

l=1
x̌
hjl−h̄•l
il εij . (21)

The remaining gap from the right hand side equation in (21) to a CoDa regression model is that
the variables should be simplex valued and that the parameter matrix should satisfy the zero sum
property. To bridge this gap, we use the clr of the matrix H which allows relating the elements
of the clr transformed matrix H∗ = clr(H) to those of H by h∗

jl = hjl − h̄•l − h̄j• + h̄••, where
h̄•l represents the column-means, h̄j• the row-means, and h̄•• the overall mean of H. With this
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in mind, we may further develop the right hand side of (21):

Aij =
∏D

l=1
x̌
hjl−h̄•l
il εij =

∏D

l=1
x̌
hjl−h̄•l−h̄j•+h̄••
il x̌

h̄j•−h̄••
il εij

=

(∏D

l=1
x̌
h∗
jl

il

)(∏D

l=1
x̌il

)h̄j•−h̄••

εij

=

(∏D

l=1
x
h∗
jl

il

)
exp(h̄j• − h̄••)

logG(x̌i•)εij .

(22)

In the second line of (22) the geometric total appears naturally because the associated parameters
are not indexed by l. Going from the second to the third line we replace the elements of the
volume vector x̌i• by those of the composition xi•, which is made possible by

∑
j h

∗
jl = 0 in

conjunction with (20). Additionally, we use a representation where the total appears as the
exponent of a parameter that we denote τj = exp(h̄j•− h̄••). This allows rewriting (22) in terms
of simplex operators as

Si• = H∗ � xi• ⊕ τ• � logG(x̌i•)⊕ εi•, (23)

where almost all the usual requirements: xi• ∈ SD, H∗ ∈ A, and εi• being normal in the
simplex, are satisfied. The only conventional restriction of CoDa models that is violated is
τ• ∈ SD. However, all parameters are still uniquely identified since

∏
j τj = 1. Changing this

geometric normalization into the conventional unit sum constraint would only lead to a different
parametrization for the same model. However, for our purpose, we believe that the geometric
constraint makes the link between the MCI and the CoDa parameters clearer. At this stage, we
already want to point out that the parametrization is only relevant if we want to interpret the
model directly in the simplex. These differences disappear when the model is interpreted in the
clr or any ilr space.

After clr-transformation of (22), the correspondence between the MCI and the CoDa repre-
sentations is given by

S∗
ij =

∑D

l=1
(hjl − h̄•l) log x̌ij + ε∗ij

=
∑D

l=1
h∗
jlx

∗
ij + (h̄j• − h̄••) logG(x̌i•) + ε∗ij .

(24)

The first line in (24) mirrors the representation of the fully extended MCI model from which
Cooper and Nakanishi (1989) estimate the parameters, and the second line represents the the
corresponding CoDa model in clr-space. Using x∗

ij = log x̌ij − logG(x̌i•)/D and
∑

j x
∗
ij = 0, we

can easily go from the first to the second line. One convenient aspect of keeping a geometric
normalization for τ• is that we have log(τj) = τj∗ = h̄j• − h̄••.

Table 3 shows a vectorized representation of the data for the clr-transformed model in the
second line of (24). Vectorizing the data involves stacking the share vectors S∗

i• for all individuals
into a single column. The individual and component indexes of these shares are shown in the
first two columns of the table.

The explanatory variable of type IC is spread over D2 columns that we grouped into D sets,
according to the component index l of x∗

il. In the fully extended MCI model, each component of
x∗
i• influences each component of S∗

i• with a distinct parameter. In the last three rows, we recall
these parameters h∗

jl and the associated indexes. The transformed total is used to explain all
components of S∗

i• with a dedicated parameter, which is why the same value is repeated D times
for each individual. The constraints 0 =

∑
j τ

∗
j =

∑
j h

∗
jl =

∑
l h

∗
jl on the parameters also seem

natural when we consider that, for each individual, the transformed share vector S∗
i• and the

transformed type IC variables x∗
i• are centered at zero. If we included additional information of
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Table 3: Vectorized data for the fully extended MCI model in clr space

Indiv. S-Comp. Shares Type IC variable Total
(i) (j) (S∗

ij) (x∗
il is spread over D groups of D columns) T (x̌i•)

1 1 S∗
11 x∗

11 x∗
12 ... x∗

1D t1
1 2 S∗

12 x∗
11 x∗

12 ... x∗
1D t1

... ... ... ... ... ... ... ...
1 D S∗

1D x∗
11 x∗

12 ... x∗
1D t1

2 1 S∗
21 x∗

21 x∗
22 ... x∗

2D t2
2 2 S∗

22 x∗
21 x∗

22 ... x∗
2D t2

... ... ... ... ... ... ... ...
2 D S∗

2D x∗
21 x∗

22 ... x∗
2D t2

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
N 1 S∗

N1 x∗
N1 x∗

N2 ... x∗
ND tD

N 2 S∗
N2 x∗

N1 x∗
N2 ... x∗

ND tD
... ... ... ... ... ... ... ...
N D S∗

ND x∗
N1 x∗

N2 ... x∗
ND tD

Parameters h∗
11 h∗

21 ... h∗
D1 h∗

12 h∗
22 ... h∗

D2 ... h∗
1D h∗

2D ... h∗
DD τ∗1 τ∗2 ... τ∗D

S-Comp. (j) 1 2 ... D 1 2 ... D ... 1 2 ... D 1 2 ... D
X-Comp. (l) 1 1 ... 1 2 2 ... 2 ... D D ... D

Blank cells correspond to zeros. When the values in the total column are computed as
ti =

∑
j log x̌ij , we obtain a CoDa consistent parametrization of the fully extended MCI model.

type I in the model, this data should have the same format as the totals and requires replacing ti
with zki and τ∗j with γ∗

j . The constant terms α∗
j would be associated to data in the same format

with the difference that ti = 1.
Although it would be computationally inefficient to estimate the fully extended MCI model

from this representation it helps to clarify how this model uses the available information, par-
ticularly when compared to the simple and differential effects MCI models. In the differential
effects model, all data except for type IC data, could be presented in the same format. When it
comes to type IC data, this model only requires the information in the columns that are shaded
in gray, where the component index of S∗

ij and x∗
il coincide. In the simple effects MCI model we

could only use Type IC variables, and each of these should be represented like the shares as a
single ND vector. In the context of Table 3 this vector would correspond to the sum of the gray
columns and should be associated with a single parameter.

4.3 The simple effects MCI model from a CoDa perspective
The simple effects MCI model can be regarded as a special case of the fully extended version, in
which we assume the influence of all explanatory variables to be constant across the D brands.
Therefore it is also a special case of CoDa regression models with a total. However, since the
constraints on the parameters imply zero influence of this total on the shares, the simple MCI
model is also consistent with classical CoDa regression, as already acknowledged by Morais
(2017). Considering the earlier discussion on data types, we may restate the simple effects MCI
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model as
Aij =

∏KIC

k=1
x̌hk

kij

∏KIC+KC

k=1+KIC

x̌hk

kj ε̌ij , (25)

where the number of type C variables KC ≤ D− 1 is limited to avoid collineraty issues. Type C
variables cannot be used in the two largest MCI models in (6) because the associated parameters
cannot be identified when the model includes component-specific constants αj .

To demonstrate that model (25) is consistent with the standard CoDa assumptions, we may
simply repeat the steps in (22). Since these developments are identical for all type C and type
IC variables, we may again consider a model with a single type IC variable x̌i• associated with
the parameter matrix H. The sole difference is that H is a full matrix in the fully extended MCI
model, while it is proportional to the identity H = h∗ID in the simple MCI model. Consequently,
the overall mean H and the row-wise means are identical h̄•• = h̄j• = h/D and therefore the
total G(x̌i•) disappears in (22) when considering the simple MCI model.

Another interesting fact is that the simple MCI model is directly equivalent to its CoDa
version, while reparametrizations must be considered to achieve an equivalence between a CoDa
model and the two larger MCI versions. Let us note that H = hID implies H∗ = hGD. Using
this CoDa consistent parameter matrix the attraction becomes Aij = xh

ij(
∏D

l=1 x
−h/D
il )εij , where

the constant −h/D disappears after the clr transformation:

S∗
ij = hx∗

kij −
h

D
(x∗

i1 + x∗
i2 + ...x∗

iD)︸ ︷︷ ︸
= 0

+ε∗ij .

Thus, under any log-ratio transformation the CoDa version and the original MCI model based
on Aij = x̌h

ij ε̌ij become identical.

Table 4: Vectorized data for the simple MCI model, and clr transformation

Indiv. S-Comp. Shares Type C Type IC Type I
(i) (j) Sij x̌j x̌ij zi

1 1 S11 → log(S11/g(S1•)) x̌1 → log(x̌1/g(x̌•)) x̌11 → log(x̌11/g(x̌1•)) z1 → 0
1 2 S12 → log(S12/g(S1•)) x̌2 → log(x̌2/g(x̌•)) x̌12 → log(x̌12/g(x̌1•)) z1 → 0
... ... ... ... ... ...
1 D S1D → log(S1D/g(S1•)) x̌D → log(x̌D/g(x̌•)) x̌1D → log(x̌1D/g(x̌1•)) z1 → 0

2 1 S21 → log(S21/g(S2•)) x̌1 → log(x̌1/g(x̌•)) x̌21 → log(x̌21/g(x̌2•)) z2 → 0
2 2 S22 → log(S22/g(S2•)) x̌2 → log(x̌2/g(x̌•)) x̌22 → log(x̌22/g(x̌2•)) z2 → 0
... ... ... ... ... ...
2 D S2D → log(S2D/g(S2•)) x̌D → log(x̌D/g(x̌•)) x̌2D → log(x̌2D/g(x̌2•)) z2 → 0

... ... ... ... ... ...

N 1 SN1 → log(SN1/g(SN•)) x̌1 → log(x̌1/g(x̌•)) x̌N1 → log(x̌N1/g(x̌N•)) zN → 0
N 2 SN2 → log(SN2/g(SN•)) x̌2 → log(x̌2/g(x̌•)) x̌N2 → log(x̌N2/g(x̌N•)) zN → 0
... ... ... ... ... ...
N D SND → log(SND/g(SN•)) x̌D → log(x̌D/g(x̌•)) x̌ND → log(x̌ND/g(x̌N•)) zN → 0

Table 4 provides a vectorized representation of the data for the simple effects MCI model, and
demonstrates the impact of the clr-transformation on the different data types. For this model,
vectorizing actually serves a practical purpose, as it enables us to estimate the parameters using
unrestricted OLS. For type C variables, the same D values are repeated for all N individuals. In
the last column, we illustrate that type I variables would be mapped to a column of zeros by the
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clr transformation, which could potentially lead to collinearity issues if they were inadvertently
included in a simple MCI model.

4.4 The differential effects MCI model from a CoDa perspective
Adopting a CoDa perspective for the differential effects MCI model is arguably more complex
than for the other two MCI models because the influence of absolute information and relative
information are interdependent. We will show that this interdependence is reflected by rather
intricate constraints on the parameters, making estimation and interpretation of this model diffi-
cult. For this reason, we will consider three variants of the differential effects MCI model, which
we name diagonal CoDa models because they use a diagonal parameter matrix to capture the
influence of type IC variables. The three model variants only differ in how they include absolute
information. The most general diagonal CoDa model includes a total without constraints. When
this total is removed, we obtain a diagonal version of the classical CoDa model, and under certain
constraints on the influence of the total we recover the differential effects MCI model.

We begin by deriving the CoDa consistent parametrization of a differential effects MCI model,
where we focus on the attraction with a single Type IC variable: Aij = x̌

hj

ij ε̌ij . This attraction
also corresponds to a fully extended MCI model under the additional constraint that all of-
diagonal elements of the parameter matrix H are zero. Consequently, we can simply repeat
the steps in (22) to derive the CoDa consistent parametrization of the differential MCI model.
For this model the structure of H = diag(h1, ..., hD) allows us to simplify the expression of the
centered row-means as h̄j• − h̄•• = 1

D (hj − h̄•), and the elements of H∗ = clr(H) become

h∗
jl =

{
D−2
D hj +

1
D h̄• if j = l

−1
D (hj + hl) +

1
D h̄• if j 6= l

. (26)

Using these simplifications, the equivalence between the original and the CoDa version of the
differential effects MCI model is

Aij = x̌
hj

ij ε̌ij ⇐⇒ Aij =

(∏D

l=1
x
h∗
jl

il

)
exp(hj − h̄•)

log g(x̌i•)εij . (27)

In the above equation, the absolute information in the vector x̌i• is represented by its geometric
mean, while the fully extended version uses the geometric total. Since these two measures are
linked by log g(x̌i•) = logG(x̌i•)/D, the difference is only a matter of absorbing the constant
1/D in the data, instead of the parameters. The interpretation of model (27) is complex because
the parameters associated with the geometric mean are linked to the elements of H∗ in (26).

To better understand how model (27) uses relative information, let us first consider the
diagonal CoDa model as an alternative. In Figure 1, this model is presented as a special case of
classical CoDa regression because it does not use absolute information. The attraction form of
the diagonal CoDa model is given by

Aij =

(∏D

l=1
x
h∗
jl

il

)
εij , (28)

with h∗
jl as in (26). Like the differential MCI model, it has D parameters associated with each

variable of type IC and also requires the same information sets to estimate these parameters from
observed data (see Table 2). The main difference is that the diagonal CoDa model breaks with
the assumption of zero cross-effects that Cooper and Nakanishi (1989) use in the differential
MCI model. While differentiated direct effects are maintained, zero cross-effects are replaced
with the assumption that the cross-effect of a characteristic xij of brand j on the market share
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Sil of brand l is negatively proportional to the sum of the two direct effects. This assumption
follows from the form of H∗ in (26), where we can ignore the term 1

D h̄• as it would cancel
out when computing the shares. Such an assumption regarding how a variable impacts the
market shares may initially seem purely technical. However, in a marketing context, it has some
logic, in particular from the perspective of brand differentiation. For instance, if we think about
advertisements for soft drinks, it is plausible that a consumer who sees the advertisement of a
particular brand might have an increased desire for soft drinks in general and not only those of
the brand whose advertisement he saw. In this context, the assumption of the diagonal CoDa
model without total is consistent with the idea that the more a brand differentiates itself from
its competitors, the less the other brands benefit from its advertisement, while at the same time,
the brand itself also benefits less from the advertisement of its competitors.

In the differential effects MCI model, we can use the concept of brand differentiation to
interpret the influence of relative information in the type IC variables. However, we also need
to account for absolute information that enters (27) through the geometric mean. Here the link
between the parameters τj = exp(hj − h̄•) and H∗ postulates that the differences in how the
market share of each brand reacts to changes in absolute information must perfectly offset the
cross-effects due to relative information, which is a rather unnatural assumption.

A straightforward generalization of the previous two models is to consider the influence of
the total as independent from the influence of the shares. Starting from (27) this simply requires
considering the parameter associated with g(x̌i•) as independent from H∗, leading to the model

Aij =
∏D

l=1
x
h∗
jl

il τ
log g(x̌i•)
j εij , (29)

where
∏

j τj = 1. The above model recovers the diagonal CoDa without total when τj = 1, for
j = 1, . . . , D and in the case of τj = exp(hj − h̄•) it is equivalent to the differential MCI model.

One issue with all diagonal CoDa models is that the definition of H∗ as the clr of a diagonal
matrix leads to relatively complex constraints on the parameters. Enforcing these constraints
within the multivariate estimation approach typically used for CoDa regression is difficult be-
cause they are not included in standard software packages. However, if we adopt a vectorized
data representation, these constraints become much simpler, and by further rearranging the vec-
torized data, it is even possible to estimate the model parameters by unconstrained OLS. This
arrangement of the data is already used by Cooper and Nakanishi (1989), who presented the
clr-transformed differential MCI model as

S∗
ij =

D − 1

D
log x̌ijhj −

∑D

l 6=j

1

D
log x̌ilhl + ε∗ij . (30)

Rewriting this equation for the whole share vector yields S∗
i• = GD diag(log x̌i1, . . . , log x̌iD)+ε∗i•,

which is easily converted into any ilr representation by pre-multiplication with V′ the transpose
of the corresponding contrast matrix. We can use a similar representation for the diagonal CoDa
model, which only requires replacing log x̌i1 by x∗

i1 in (30). Adding log g(x̌i•) with the associated
parameters leads to the equation for the diagonal CoDa model with a geometric total that nests
the other two diagonal CoDa models as special cases.

Table 5 illustrates the vectorized data representation for the diagonal CoDa model with a
total for the clr and the ilr-based formulations, where rows with component index D would not
exist in the ilr case. When the data of type IC is represented in this form, both transformations
directly estimate the parameters hj that also appear on the main diagonal of H in the original
attraction form of the differential effects MCI model. When including type I variables in the
model, they should have the same structure as the variables in the total columns, and the
associated parameters are estimated in log-ratio coordinates, as is normal for CoDa models. As
explained previously, we could adjust this data representation to all three diagonal CoDa model
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Table 5: Vectorized data for the diagonal CoDa model with a total in clr and ilr spaces

clr ilr
Indiv. S-Comp. Shares Type IC Total Shares Type IC Total

(i) (j) S∗
ij x∗

ij T (x̌i•) S∗V
ij x∗

ij T (x̌i•)

1 1 S∗
11

GD diag(x∗
1•)︸ ︷︷ ︸

D×D

ID · t1

S∗V
11

V ′ diag(x∗
1•)︸ ︷︷ ︸

(D−1)×D
ID−1 · t1

1 2 S∗
12 S∗V

12

... ... ... ...
1 D − 1 S∗

1(D−1) S∗V
1(D−1)

1 D S∗
1D ——— —————– ————–

2 1 S∗
21

GD diag(x∗
2•) ID · t2

S∗V
21

V ′ diag(x∗
2•) ID−1 · t2

2 2 S∗
22 S∗V

22

... ... ... ...
2 D − 1 S∗

2(D−1) S∗V
2(D−1)

2 D S∗
2D ——— —————– ————–

... ... ... ... ... ... ... ...
N 1 S∗

N1

GD diag(x∗
N•) ID · tN

S∗V
V 1

V ′ diag(x∗
N•) ID−1 · tN

N 2 S∗
N2 S∗V

N2

... ... ... ...
N D − 1 S∗

(D−1) S∗V
N(D−1)

N D S∗
ND ——— —————– ————–

When the values in the total columns are computed as ti =
1
D

∑
j log x̌ij , the model

nests the differential effects MCI model as a special case. The notation S∗V
ij is a short

form for the jth element of the vector ilrV (Si•).

variants. It is thus fairly easy to estimate the two models nested below the diagonal CoDa
model with a total, which means that the problem of model selection could be approached using
standard testing procedures for nested multivariate linear models.

4.5 Alternative error structures and estimators
In this subsection, we revisit the discussion on estimation strategies, variance structures, and
potential heteroskedasticity in MCI models, tracing back to Nakanishi and Cooper (1974). First,
we address the inefficiency of the OLS estimator in simple and differential effects MCI models
without considering heteroskedasticity. For this issue, the CoDa methods enable us to improve
the existing estimation approaches of MCI models. Next, we integrate various heteroskedasticity
forms into the MCI and CoDa models. On this point, the CoDa regression approach benefits
from the insights in the MCI literature, although we finally argue for a simpler error structure
than the one considered by Nakanishi and Cooper (1974). Our discussion of efficient estimation
methods is closely related to the literature on seemingly unrelated regression equations (SURE)
initiated by Zellner (1962), and the heteroskedastic error structures we consider resemble the
generalizations of SURE proposed by Fiebig et al. (1991). We also want to point to Chen et al.
(2018), who compare several estimators of the error covariance in CoDa regression models that
are robust to unknown forms of heteroskedasticity. Our case is simpler because we derive the
heteroskedasticity structure from the microeconomic foundation of the MCI model, which means
that we can treat it as known and correct it directly.
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The connection between SURE and classical CoDa models becomes evident when representing
the latter in ilr space. This stems from the fact that an ilr-transformed CoDa model can be
represented as a multivariate linear model:

Y
N×(D−1)

= XΘ+ E
N×(D−1)

(31)

where the rows of Y represent the ilr-transformed share vectors, denoted by ilrV (Si•)
′. The

matrix E employs the same representation for the error vectors, each being an independent
realization of a multivariate normal distribution ilrV (εi•) ∼ ND−1(0,V

′ΣV). The matrix X
contains a constant and all explanatory variables, where the compositional variables are trans-
formed by the same ilrV as the dependent shares. The parameter matrix Θ associated with X
consists of the ilr-transformed parameters, where the transformation is different for the vector
and matrix-valued parameters. For the vector of constants and the parameter vectors associated
with classical variables, we use the usual ilr, but matrix-valued parameters should be transformed
by (11). In this format, a CoDa model expressed by (31) corresponds to a set of unrelated lin-
ear equations except for potential correlations in the Gaussian error terms, which is the core
assumption of SURE.

When Zellner (1962) first studied SURE, he identified two alternative conditions under which
the OLS estimator Θ̂OLS = (X′X)−1X′Y is the best linear unbiased estimator (BLUE). The
first condition requires the errors to be uncorrelated across equations, which means that V′ΣV
must be diagonal. This condition is unrealistic for MCI models and probably CoDa models in
general because it only holds independently of V when the correlation matrix of the log-normal
attraction errors is proportional to an identity Σ = σ2ID.

The second condition under which OLS is BLUE for SURE is that all equations have identical
sets of explanatory variables. This is obviously the case for all models that can be written in
the form of an unrestricted multivariate linear model as in (31), which is possible for the fully
extended MCI model, and classical CoDa models, with and without a total. In contrast, the
simple and differential MCI and diagonal CoDa models do not admit such a representation.
Therefore, we will consider the following vectorized formulation of the ilr transformed models

Vec(Y′) = Zθ +Vec(E′), (32)

where the Vec-operator stacks the columns of a matrix, and Z contains the vectorized represen-
tation of explanatory variables. All models shown in Figure 1 can be represented by (32), where
each model would use its distinct set of explanatory variables in the columns of Z with their
associated parameters θ. For y = Vec(Y′) the OLS of the parameter θ in model (32) is

θ̂OLS = (Z′Z)−1Z′y, (33)

and it is generally inefficient for the models considered here unless the overall covariance matrix
Ω = Var(y) is diagonal. To obtain an efficient estimator Zellner (1962) proposed to use the
generalized least squares (GLS) formula when Ω is assumed to be known:

θ̂GLS = (Z′Ω−1Z)−1Z′Ω−1y. (34)

OLS remains efficient for models that admit a multivariate form because, for these models,
OLS and GLS coincide. To better understand this relation, let us first note that model (31) is
equivalent to model (32), when θ = Vec(Θ̂′) and Z = X⊗ ID−1, where ⊗ denotes the Kronecker
product. Using this operation, the structure of Z would mirror one of the explanatory variables
in Table 3, with the difference that Table 3 uses clr instead of ilr transformations. When Z
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admits such a Kronecker product structure, the OLS and GLS formulas are equivalent:

Vec(Θ̂′
GLS) =

[
Z′Ω−1Z

]−1
Z′Ω−1y

=
[
(X⊗ ID−1)

′(IN ⊗V′ΣV)−1(X⊗ ID−1)
]−1

(X⊗ ID−1)
′(IN ⊗V′ΣV)−1y

=
[
(X′X)⊗ (V′ΣV)−1

]−1
(X′ ⊗ (V′ΣV)−1)Vec(Y′)

= ((X′X)−1X′ ⊗ ID−1)Vec(Y
′)

= Vec((X′X)−1X′Y′)

= Vec(Θ̂′
OLS).

(35)

Thus, while OLS yields the minimum variance estimators in the three models in the first
block of Figure 1 (Full parameter matrix), we need to turn to GLS to obtain efficient estimators
for the other models. This problem was already recognized by Nakanishi and Cooper (1974),
but they could not directly apply the GLS formula in (34) because they estimate the model
in clr-space where the covariance matrix Ω would be singular. This issue is easily solved by
estimating the model in an ilr-space.

In their article, Nakanishi and Cooper (1974) further argue that MCI models are likely to have
heteroskedastic errors because the true market shares of the brands are usually unavailable and
must be derived from the sales to a sample of customers. Therefore, market shares computed from
fewer customers are likely associated with higher volatility than those based on a larger sample.
In their original approach, Nakanishi and Cooper (1974) model this heteroskedasticity using a
composite error term that is a sum of a specification error and a sampling error, which they
assume to be independent. Their specification error coincides with the errors we used so far, and
their sampling error is derived from independent log-normal distributions. Heteroskedasticity is
only present in this sampling error since their variances are inversely proportional to the customer
volumes v̌ij : log ε̌ij ∼ N (0, σ2v−1

ij ). However, we do not adopt this composite variance structure
here, mainly because it is not frequently used in statistical models, and to our knowledge, no
closed-form solution for an efficient estimator exists in this case.

In the following, we consider an alternative form of heteroskedasticity, where the differences
in volatility act as a scaling factor on the usual errors. This approach leads to a similar error
structure as the one of Fiebig et al. (1991) but still allows us to model the customer-volume effects
like the one considered by Nakanishi and Cooper (1974). To formalize this heteroskedasticity
assumption, we can start from the most general error structure that maintains independence
across individuals 1. This case corresponds to log ε̌i• ∼ N (0,Σi) with different correlation
matrices for each statistical individual. The associated error covariances in the simplex and in
clr space are GDΣiGD, and V′ΣiV for the ilr space with contrast matrix V. However, without
imposing further structure on Σi we could not identify all covariance terms since their number is
larger than the ND observations. To solve this issue, we use the same correlation matrix Σ for
all individuals. This shared correlation matrix is then adjusted through a scaling factor defined
at the individual-component pair level, leading to Σi = ΛiΣΛi, with Λi = diag(

√
λi1, ...,

√
λiD).

With this structure, we can link the volatility of the errors to the customer volumes using, for
example, λij = 1/v̌ij . Since the scaling factors λij can be considered Type IC information, we
refer to Type IC heteroskedasticity. Imposing further constraints on Λi allows us to define Type
I and Type C heteroskedasticity and recover the usual homoskedastic case, as summarized by
Table 6. According to this classification, the estimators of Chen et al. (2018) correct for unknown
Type I heteroskedasticity.

1One way to extend MCI models to include potential correlation across individuals is offered by spatial econo-
metric methods. While such an extension is out of the scope of this article, we refer to Lee and Pace (2005) for a
spatial model of retail sales and to Nguyen et al. (2021) for a spatial CoDa model
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Table 6: Heteroskedasticity structures for MCI and CoDa models

Type Correlation: Σi Scaling factors: Λi

Type IC Heteroskedasticity Σi = ΛiΣΛi Λi = diag(
√
λi1, ...,

√
λiD)

Type I Heteroskedasticity Σi = λ2
iΣ Λi = λiID

Type C Heteroskedasticity Σi = ΛΣΛ Λi = Λ = diag(
√
λ1, ...,

√
λD)

Homoscedasticity Σi = Σ Λi = ID

A practical advantage of type I heteroskedasticity is that the scaling factors λi are not af-
fected by any ilr transformation, as for example in ilrV (λ

2
iΣ) = λ2

iV
′ΣV. For this reason, we

could simply use weighted versions of the OLS or GLS estimators in (33) and (34) to correct for
this form of heteroskedasticity. Unfortunately, this simplification does not arise with type IC and
type C heteroskedasticity since the scaling matrix Λi would also be transformed by the operation
ilrV (ΛiΣΛi). However, even when there is type C heteroskedasticity, the variance structures are
identical for all individuals, which means that an unweighted GLS estimation remains efficient.
Correcting for type IC heteroskedasticity is more complicated because it requires weighted esti-
mators, where the weights must be considered in the log-ratio transformations. Although Hron
et al. (2022) explain how to work with weighted log-ratios, we leave their application to CoDa
regression models for future research.

It is worth noting that the previously outlined arguments for heteroskedasticity are not ex-
clusive to a marketing context and may be useful in many other applications of CoDa regression,
in particular when the dependent shares are computed by aggregating choices of individuals. For
example, when modeling election results at a regional level, where the vote shares of parties or
candidates are expected to be more stable for regions with a larger population.

4.6 Fitted shares and estimated elasticities
In this section, we develop the equivalence between the elasticity expressions of Cooper and
Nakanishi (1989) and the elasticities for CoDa models with a total developed in Morais and
Thomas-Agnan (2021). In line with our previous results, we find that adopting a CoDa perspec-
tive for MCI models leads to a decomposition of these elasticities into contributions from relative
and absolute information. For completeness, we also treat the semi-elasticities that Morais and
Thomas-Agnan (2021) proposed to interpret the influence of classical variables in CoDa models.
In contrast to some of the previous work on this topic, we define the elasticities in terms of the
fitted values, as opposed to the observed shares used by Cooper and Nakanishi (1989), or their
expectations in the simplex-sense used by Morais and Thomas-Agnan (2021).

Before entering into the details of the elasticities, we need to define the fitted values. As in
any regression model, they are computed by evaluating a prediction formula for the observations
used to fit the model. Since the CoDa model with a total subsumes all other models as special
cases, we can focus on its prediction formula:

Ŝi• = α̂• ⊕
⊕KIC

k=1

(
Ĥ∗

k � xki• ⊕ fk(T (x̌ki•))� τ̂k•)
)
⊕
⊕KI

k=1
(zki � γ̂k•) , (36)

where choosing a log-transformed geometric total fk(T (x̌ki•)) = logG(x̌ki•) recovers the predic-
tion formula of a fully extended MCI model with additional variables of type I.

One issue for all MCI and CoDa models is that the prediction in (36) is biased when consid-
ering the classical sense of expectation: E(Sij) 6= E(Ŝij). However, the usual definition of the
expectation E(x) =

∫
xf(x)dx is tailored to unbounded real-valued variables. For simplex-valued

variables, the CoDa approach uses an alternative expectation E⊕(x) =
∫
xf(x)dAx that is based
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on the Aitchison measure dA, instead of the more familiar Lebesgue measure d. In terms of the
simplex expectation, the predictor (36) is indeed unbiased E⊕(Sij) = E⊕(Ŝij), and this property
also implies ”logical consistency” in the sense of Naert and Bultez (1973).

Let Di denote the values of all explanatory variables for individual i. The elasticities of the
fitted shares with respect to the kth compositional variable for individual i are then naturally
given by the logarithmic derivative (evaluated at the observed data Di) of the fitted shares, i.e.
∂ log Ŝij

∂ log x̌kil
(Di) =

x̌kil

Ŝij

∂Ŝij

∂x̌kil
(Di). Similarly the semi-elasticities for individual i with respect to the

kth scalar variable are given by the semi-logarithmic derivative (evaluated at the observed data
Di) of the fitted shares, i.e. ∂ log Ŝij

∂zki
(Di) = 1

Ŝij

∂Ŝij

∂zki
(Di). Since the point of evaluation Di is

implicit in definition (36) of the fitted values we omit it for the remainder of the article. Note
that the elasticities include the scaling factor x̌kij/Ŝij that justifies the usual interpretation of an
elasticity as a relative change in Ŝij induced by a relative change in x̌kil. For the semi-elasticity
the scaling factor is 1/Ŝij and the according interpretation of a semi-elasticity is a relative change
in Ŝij induced by a unit change in zkj .

Semi-elasticities play no role in classical MCI models because these do not use type I variables.
However, we could easily include type I variables using CoDa techniques. Simple differentiation
rules then allow to derive

∂ log Ŝij

∂zki
= log(γ̂kj)−

∑D

j=1
log(γ̂kj)Ŝij , (37)

which is observation dependent through Ŝij .
As seen in Section 4.2, the CoDa perspective of the MCI model employs an equivalent T -space

representation (xki•, G(x̌ki•)) ∈ T for compositional explanatory variables. Not surprisingly,
this change of perspective leads to a decomposition of the elasticity into the corresponding
contributions from relative and absolute information. This result is also coherent with the
elasticity expressions of Morais and Thomas-Agnan (2021), where they correspond to the case of
a YX-compositional model in which the total and the particular component of X vary together
(type III variation). Here, we adjust these expressions to the prediction formula in (36), which
allows transformed totals. It is convenient to work directly with the elasticity matrix that is
defined in terms of WŜi•

= (ID − ιDŜ′
i•):

∂ log Ŝi•

∂ log x̌ki•
= WŜi•

Ĥ∗
k +WŜi•

τ̂∗k•
∂fk(T (x̌ki•))

∂ log x̌ki•
. (38)

The derivative on the right hand side of (38) equals one for fk(T (x̌ki•)) = logG(x̌ki•). This
allows to derive the MCI elasticities and their corresponding CoDa versions as

∂ log Ŝi•

∂ log x̌ki•
= WŜi•

Ĥk

= WŜi•
Ĥ∗

k +WŜi•
τ̂∗k•ι

′
D,

(39)

which apply to all three versions of the MCI model with their corresponding parameter matrices
Ĥk. The only difference to the expressions in Table 1 is a replacement of the parameters by
their estimators and the original shares by the fitted shares. In both cases these elasticities are
observation dependent.

Dargel and Thomas-Agnan (2023) show that differences of elasticities (and similarly of semi-
elasticities) between two shares are observation independent and how the parameters Ĥ∗

k and
τ̂∗k• of (39) can be directly interpreted.

22



5 Application and simulations
This section illustrates the methods outlined in the article using a fictitious but realistic ge-
omarketing example. In the first subsection, we present this example in detail and use it to
demonstrate an application of the MCI model. The second subsection presents a Monte Carlo
simulation to evaluate the merits of the OLS and GLS estimators of the simple MCI model,
under varying scenarios of heteroskedasticity.

5.1 Illustrative application
In our application, we model the market shares of nine commercial centers around the city of
Toulouse in southern France. This model is based on the actual location of these commercial
centers and local population statistics for the wider metropolitan area with 1.16 million inhabi-
tants. Our study area is constituted by 428 so-called IRIS districts, which are geographic entities
defined by the French national statistics institute (INSEE). Figure 2 shows a heat map for the
population density in these districts alongside the location and the name of the commercial
centers we are interested in.

12
3 4
5

6

7 8

9

Inhabitants per km²
10 to 100
100 to 1,000
1,000 to 10,000
10,000 to 100,000

Commercial center (CC)

1: Rue d'Alsace Lorraine
2: CC Compans
3: CC Blagnac
4: CC Gramont (Balma)
5: CC Toulouse Purpan
6: CC Fenouillet 
7: CC Labège
8: CC Saint−Orens
9: CC Roques−sur−Garonne

Figure 2: Heat map of the population density for 428 IRIS districts around Toulouse

The market shares of the D = 9 commercial centers are simulated from the attraction model:

Aij = αj · (
∏D

l=1
DISTijhjl) · γPOPi

j · δINCi
j · ε̌ij , (40)

where DISTij denotes the distance between commercial center j and the center of IRIS i. The
population count (POPi) and median income (INCi) is taken from the French census provided
by the INSEE website 2. The values for the parameters α•, γ•, δ• ∈SD, and the error distribution
log ε̌i• ∼ N (0,Σ) are chosen to resemble the estimation results from a model based on actual
and confidential data for commercial centers in a comparable city in France. Figure 3 represents
the market shares derived from our simulation.

2https://www.insee.fr
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Figure 3: Market shares of the nine commercial centers in all regions (The shift from
red to blue colors occurs at one ninth, where the market shares could be balanced.
Since the data is heavily skewed towards zero, with a median share at around 4%,
most of the color variation is placed in the lower percentages.)

We then derive a simple MCI model only based on distance and a differential effects version
with H = diag(h1, ..., hD), from the fully extended model in (40). The parameters of all three
versions of the MCI model are then estimated by OLS in ilr space. Table 7 provides some global
statistics for these estimations: In the second column, we recall the number of free parameters K
that is 1 for the simple MCI, 33 for the differential effects model, and 88 for the fully extended
MCI models (not counting the free elements in the covariance matrix Σ, which are identical in
the three MCI models). The third column reports the compositional determination coefficient
described in Van den Boogaart and Tolosana-Delgado (2013), which we named R2

A because it
can be derived from the Aitchison norm of the residuals. From the R2

A, we may conclude that the
simple effects MCI model explains about 64.9% of the compositional variation in the data. This
figure raises to 70.1% and 78.2% in the differential and fully extended versions. However, since
the number of parameters is different in the three models, we cannot rely on direct goodness
of fit measures like the R2

A for model selection. For this purpose, we additionally report the
Akaike information criterion (AIC), which is maximized by the fully extended MCI model. This
is expected since the data generating process (DGP) in (40) also corresponds to a fully extended
MCI model.

Table 7: Model comparison

MCI Model K R2
A AIC

Simple effects 1 0.649 -7303
Differential effects 33 0.701 -4788
Fully extended 88 0.782 -4076
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5.2 Simulation: alternative estimators under heteroskedasticity
Finally, we conduct a Monte Carlo study to understand how heteroskedasticity affects the per-
formance of the OLS and GLS estimators described in Section 4.5. Our simulations are based
on a simple effects MCI model with distance as the only explanatory variable, where we include
error terms using the different structures of Table 6. As was already suggested by Nakanishi and
Cooper (1974) we link the error structure to the number of customers trips v̌ij originating in the
region i and having shop j as the destination (numerator of the empirical market shares).

For our fictive example, we derive v̌ij from the population of the IRIS and simple assumptions
on the shopping behavior of an average individual.

Following the discussion in 4.5 we define different forms of heteroskedasticity from the general
assumption Var(log(ε̌i•)) = ΛiΣΛi, with diag(

√
λi1, ...,

√
λiD). By linking λij in different ways

to the volumes v̌ij we derive four different error structures:

(1) Homoskedasticity : λij = 1

(2) Type C heteroskedasticity : λij = λj = 1/(
∑N

i=1 vij)

(3) Type I heteroskedasticity : λij = λi = 1/(
∑D

j=1 vij)

(4) Type IC heteroskedasticity : λij = 1/vij .

(41)

Using all variance structures, we simulate 1000 models according to the attraction Aij = DISTh
ij ε̌ij .

In each simulation, we scale the four errors to impose the same total variance
∑

ij(ε̌i•ij)
2. This

allows attributing potential differences in estimation accuracy solely to the heteroskedasticity
structure and not to changing signal-to-noise ratios. The parameter h is estimated from the ilr
transformed model using the OLS and GLS estimators in (33) and (34), both implemented in
a weighted and a non-weighted version. The four estimators can written using the GLS for-
mula ĥ = (Z ′Ω−1Z)−1(Z ′Ω−1y), with the different specifications of the covariance matrix Ω. In
all cases Ω = diag(Ωi, ...,ΩN ) is a block diagonal matrix with diagonal blocks Ωi of dimension
(D − 1)× (D − 1). The individual covariances Ωi leading to the four estimators are given by

(1) OLS :Ωi = ID−1

(2) WOLS :Ωi = λiID−1

(3) GLS :Ωi = V′ΣV

(4) WGLS :Ωi = λiV
′ΣV.

(42)

In practice, the GLS estimator is derived using a two-step procedure that is sometimes called
feasible GLS (FGLS). For our application, we first estimate the covariance matrix V̂′ΣV from
the residuals of the OLS regression and then use this matrix in the GLS formula in the second
step. Likewise, the WGLS uses the residuals of WOLS in the first step. Since our implementation
of WOLS and WGLS is based on weights at the individual level, only Type I heteroskedasticity
is adequately addressed. For the other heteroskedasticity types, this also allows assessing the
effect of incorrectly specified weights on the estimators’ performances.

Crossing the four estimators with the four error structures, we get 16 estimates ĥ of the
parameters, whose bias is given by ĥ−h. The distributions of these biases over all simulations are
shown in Figure 4, where the four panels correspond to the error structures in (41), and the four
estimators are shown on the x-axis of each panel. Since all distributions are centered around zero
we may conclude that all estimators are indeed unbiased. However, the concentration of the bias
distributions around zero differs substantially, indicating large differences in relative efficiency
among the estimators. The dispersion of the bias distribution over the B = 1000 simulation can
be summarized in the root mean square error, computed as RMSE = (

∑B
b=1(ĥ− h)2)0.5/B. To
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RRMSE: 1
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Figure 4: Accuracy of OLS and GLS estimation under four different error structures

facilitate the comparison among estimators, the graphic reports relative RMSE (RRMSE) figures,
where the unweighted OLS in the case of homoskedastic errors serves as a reference. Comparing
these RRMSE values reveals using (W)GLS instead of (W)OLS always at least doubles the
estimation accuracy. In the case of type IC heteroskedasticity, the (W)GLS is more than four
times more precise than (W)OLS. Another important comparison is between the weighted and
non-weighted versions of the two estimators (OLS vs. WOLS and GLS vs. WGLS). Here we see
that using weights only improves the estimation accuracy in the case of type I heteroskedasticity
and leads to accuracy loss for the other error structures. In general, the efficiency gains (losses)
of using correct (misspecified) weights appear small compared to the efficiency gains associated
with using GLS instead of OLS.

6 Conclusion
This article demonstrates that all MCI models introduced by Cooper and Nakanishi (1989) are
instances of CoDa regression. More specifically, we show that the fully extended MCI model,
which nests the simple and differential effects MCI models as special cases, corresponds to a CoDa
model with a log-transformed geometric total under an alternative parametrization. Recognizing
this connection offers mutual benefits for both methodologies.

MCI models benefit from mathematical tools and theoretical guarantees developed in the
CoDa literature. Using CoDa techniques, it is straightforward to introduce characteristics of
the statistical individual as explanatory variables in the two largest MCI models. Additionally,
we can solve the problem of singular covariance matrix encountered in the estimation of some
MCI models by using an ilr instead of the clr transformation. This allows us to directly apply
the GLS estimation to recover efficient estimates in the simple and differential effects MCI
models. We confirm the potential efficiency gains of this estimation approach in Monte Carlo
simulations. Studying the differential MCI model with CoDa tools also reveals that it is based on
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an unrealistic assumption of how the dependent shares are influenced by relative and absolute
information contained in the compositional explanatory variables. To relax this assumption,
we introduce diagonal CoDa models as a bridge between the simple MCI and general CoDa
models. Moreover, the reparametrization that converts an MCI into a CoDa model separates the
influence of relative and absolute information in the explanatory variables. This enables testing
hypotheses regarding the influence of each information type. The separation of the influence of
relative absolute information is mirrored in the elasticity expressions of in the MCI models to
their CoDa counterparts.

CoDa regression also benefits in multiple ways from the MCI approach, which derives three
model specifications as straightforward extensions of the intuitive gravity formula. These three
models have varying degrees of complexity in terms of the number of parameters, where only
fully extended MCI models match the complexity of CoDa regression models. The differen-
tial and simple effects MCI models use fewer parameters and also require less information for
model estimation, which can be an advantage when data is scant. The simple effects MCI
model is the most parsimonious with only one parameter per variable. It can also incorporate
component-level information and make predictions for unobserved components, which is impossi-
ble with general CoDa models. Another interesting point of MCI models is their microeconomic
foundation in random utility models, which means that the model specification is grounded in
behavioral assumption of individual economic agents. This microeconomic foundation, in turn,
provides justifications for heteroskedastic error structures, that carry over to the CoDa frame-
work whenever the dependent shares are computed by aggregating individual choices. To account
for heteroskedasticity we adjust the error structures of the traditional MCI model, making them
more practical because they can be corrected by using a weighted least squares approach.

In summary, our findings show that the CoDa and marketing literates can realize mutual
benefits by taking note of the other and we hope that this study contributes to the growing
awareness that CoDa methods may be fruitfully applied across all quantitative social sciences.
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