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Abstract

The interpretation of regression models with compositional vectors as dependent and/or indepen-
dent variables has been approached from different perspectives. The first approaches that appeared
in the literature in the literature are done in coordinate space after some log-ratio transformation
of the share vectors. Considering the fact that these models are non-linear with respect to classical
operations of the real space, another approach has been proposed based on infinitesimal increments
or derivatives understood in a simplex sense, leading to elasticities or semi-elasticities interpretations
in the original space that have the advantage of being independent of any log-ratio transformations.
After briefly reviewing these two points of view, we show that some functions of elasticities or semi-
elasticities are constant throughout the sample observations, which makes them natural parameters
for interpreting CoDa models. We derive approximations of share ratio variations and link them to
these parameters leading to transformatio-free interpretations in the original shares space. We use a
real data set on the French presidential election to illustrate each type of interpretation in detail.

1 Introduction

The interpretation of parameters in a regression model is an essential step to understand the impact
of changes in an explanatory variable on the dependent variable. Let us first recall that, in a classical
linear regression model explaining the dependent Y by a set of explanatory variables X, the conditional
expected value EY | X is a linear function of X. Therefore, for any specific explanatory variable Xk, we
can understand the parameter βXk

of Xk as the additive increment of EY | X when Xk increases by 1
unit (finite increment), all other explanatory variables remaining fixed (ceteris paribus), or alternatively
the derivative of EY | X with respect to Xk (infinitesimal increment). In econometrics, the derivative
interpretation is known as the marginal effect and the two points of view (finite and infinitesimal incre-
ments) coincide for linear models. However, CoDa regression models involve share vectors variables, also
called compositional variables. For this reason, they are not linear for the classical vector space structures
of the shares spaces, on the right hand side of the regression equation (when applicable) as well as on
the left hand side (when applicable) and that is why the first interpretations in the literature are done in
coordinate space after some log-ratio transformation of the share vectors. The absence of linearity on the
left hand side (when the dependent is compositional) can be resolved by adapting the definition of ex-
pectation to compositional variables (see e.g. [Pawlowsky-Glahn et al., 2015]) as was already mentioned
in [Morais and Thomas-Agnan, 2021]. As we will show, the absence of linearity on the right hand side
(when the explanatory is compositional) can be resolved by considering linear increments of explanatory
variables when linearity is understood with respect to the simplex geometry introduced by Aitchison and
defined by the perturbation and powering operations.

In this work, our first aim is to discuss the different interpretations proposed so far for compositional
models and show the advantage of the share space approach in contrast to the coordinate space approach.
A second objective is to present a complete illustration of the elasticities/semi-elasticities interpretations
of [Morais et al., 2018] on a real dataset about vote shares in an election. Using compositional data tech-
niques for analyzing electoral data is natural and several references can be found as [Katz and King, 1999]
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and [Nguyen et al., 2022]. Finally, for the dependent composition case, our last purpose is to propose a
new interpretation based on share ratios variations in the original share spaces.

Section 2 presents an electoral dataset that we use to illustrate our interpretations by modelling the
election results and turnout rate of the 2022 French presidential election. After recalling the basics of
CoDa regression, Section 3 reviews the classical interpretations of CoDa regression models in coordinate
space and in the original space. Section 4 discusses approximations of changes of shares (additionally
of share ratios) due to small linear variations of a share vector along a linear path in the simplex.
This tool will be useful for manipulating linear variations of compositional explanatory variables as
well as for interpreting the variations of dependent share vectors. Section 5 adapts conditional plots to
CoDa regression. Section 6 argues that, for the scalar dependent case, all approaches agree but ours
allows to consider more general increments of the explanatory compositional variables. Section 7 reviews
and illustrates the infinitesimal approach of [Morais et al., 2018] and [Morais and Thomas-Agnan, 2021].
Finally Section 8 develops the interpretation approach based on pairwise share ratios in a model with a
scalar dependent and some compositional covariates as well as in a model with a CoDa dependent.

2 Electoral dataset description

For our application, we will use a dataset on the French presidential election in 2022 and combine
it with socio-economic data from the census. With an electoral sociology perspective, we can study
the link between the shares of votes for each candidate/party in a given division of the territory and
some corresponding socio-economic variables describing the territory subdivisions such as the shares of
the different socio-professional categories, or the shares of different age groups in the population. The
database of electoral results comes from the Ministry of Interior which is responsible for organizing
the elections in France, and we concentrate on the first round. This database is openly available1 and
contains the following information for the 35245 French municipalities: the name and identifier of a given
municipality, the number of registered voters, the number of actually recorded votes, the numbers of
blank and invalid votes and the share of votes for each candidate. Table 1 presents for each of the nine
candidates the total number of votes and the shares relative to the total of expressed votes. Besides the
main candidates Macron, Mélenchon and Le Pen, we have decided to group the small candidates into two
blocks: the “Left block” with candidates Jadot, Roussel, Hidalgo, Poutou and Arthaud and the “Right
block” with candidates Zemmour, Pécresse, Lassalle and Dupont-Aignan.

Table 1: Results of the first round of the French 2022 presidential election

Candidate Votes Vote share
M. Emmanuel MACRON 9 783 058 27.85%
Ms. Marine LE PEN 8 133 828 23.15%

M. Jean-Luc MÉLENCHON 7 712 520 21.95%

M. Éric ZEMMOUR 2 485 226 7.07%

Ms. Valérie PÉCRESSE 1 679 001 4.78%
M. Yannick JADOT 1 627 853 4.63%
M. Jean LASSALLE 1 101 387 3.13%
M. Fabien ROUSSEL 802 422 2.28%
M. Nicolas DUPONT-AIGNAN 725 176 2.06%
Ms. Anne HIDALGO 616 478 1.75%
M. Philippe POUTOU 268 904 0.77%
Ms. Nathalie ARTHAUD 197 094 0.56%

1https://www.data.gouv.fr/fr/datasets/election-presidentielle-des-10-et-24-avril-2022-resultats-definitifs-du-1er-tour/
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The socio-economic data we use comes from the national census that can be freely downloaded on
the INSEE (French National Institute of Statistics and Economic Studies) website 2. Since our models
have an illustrative purpose, we focus on a single scalar explanatory variable: the population density and
a single compositional explanatory variable: the share of employment in different professional categories
(PC), which we will detail later.

Merging the two databases is not straightforward because the census tracts differ from the munici-
palities, which means that we first need to aggregate the census data. Additionally, due to the absence
of data for certain overseas territories and for French citizens living abroad, we only run our analysis on
the municipalities in metropolitan France (those in geographic Europe), leading to an overall 3.9% loss
of expressed votes.

3 State of the art

The following three subsections provide a reminder of the current state of CoDa regression, a short review
of the covariate impacts in classical regression models and in CoDa regression.

3.1 Reminder on CoDa regression

Compositional data are vectors, often called CoDa vectors, of non-negative components. When the
objective of the research question is to concentrate on the role of the relative values of their components,
they are often imposed a constant sum contraint of one in order to select a unique representer in the
class of collinear vectors. The representers, therefore, belong to a simplex of RD which is defined, for an
integer D, by

SD =

{
u = (u1, . . . , uD)′ : um > 0,m = 1, ..., D;

D∑
m=1

um = 1

}
. (1)

The log-ratio approach to the statistical analysis of CoDa vectors, initiated by [Aitchison, 1986], uses
log-ratio transformations before applying classical statistical techniques to the transformed values. Let
us recall the definition of the clr transformation, defined for a vector u ∈ SD, by

clr(u) = GD logu, (2)

where the logarithm of u, understood componentwise, is a centered version of the vector of log-transformed
components and where GD = ID − 1

D1D1D
′ with 1D being a D-vector of ones. The vector of shares (or

parts, or components) are classically obtained by the closure of a vector w ∈ RD+ where the closure C is
defined by

C(w) =

(
w1∑D

m=1 wm

, · · · , wD∑D
m=1 wm

)
. (3)

[Aitchison, 1986] equipped the simplex with a Hilbert space structure compatible with the objective of
the CoDa analysis using the following operations:

1. the perturbation operation, denoted by ⊕, plays for SD the role of the addition in RD :

for u,v ∈ SD,u⊕ v = C(u1v1, . . . , uDvD),

2. the power operation, denoted by ⊙, plays for SD the role of the scalar multiplication in RD:

for λ ∈ R,u ∈ SD λ⊙ u = C(uλ
1 , . . . , u

λ
D).

2https://www.insee.fr/fr/statistiques/6543200
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The Aitchison inner product is given by

< u,v >A=< clr(u), clr(v) >E , (4)

where the right hand side inner product is the standard inner product in RD. From the above definition,
the clr transform is therefore an isometry between the simplex equipped with the Aitchison inner product
and the classical Euclidean space RD. More complex transformations, (for example isometric log-ratio,
denoted ilr) are often used but will not be needed in this work.

The product of a D × L matrix B by a vector u ∈ SL can be defined by B⊡ u = clr−1(B clr(u)) for
any matrix B belonging to the set ADL of D × L matrices with zero column sums and row sums (see
generalized zero-sum property in [Ruiz-Gazen et al., 2023]). The definition of the clr transformation can
also be extended to square matrices by clr(B) = GDBGD (see [Ruiz-Gazen et al., 2023]). For a simplex
valued random variable X, we use the following definitions for expectation and variance:

E⊕X := clr−1(E clr(X)) (5)

Var⊕ X := clr−1(Var clr(X)). (6)

The normal distribution on the simplex, which can be traced back to [Aitchison and Shen, 1980],
is described in a more modern way in [Pawlowsky-Glahn et al., 2015]: NSD (µ,Ω) denotes the normal
distribution of a simplex valued random variable X with µ = E clr(X) and Ω = Var clr(X). The statistical
analysis of CoDa vectors has first developped in the direction of descriptive and multivariate methods.
Regression with CoDa vectors appeared in [Daunis-i Estadella et al., 2002]. The case of compositional
explanatory variables is discussed for example in [Hron et al., 2012] and the case of compositional response
for example in [Egozcue et al., 2012]. The case with CoDa vectors on both sides of the equation appears
for example in [Chen et al., 2017]. Let us write the general equation for a CoDa regression model with
compositional dependent variable Y and a mixture of classical and compositional explanatory variables
using the simplex operations. The simplex equation of the model writes as follows

Yi = α⊕ (

KX⊕
k=1

Bk ⊡Xki)⊕ (

KZ⊕
k=1

Zki ⊙ γk)⊕ ϵi with ϵi ∼ NSDY (C(1DY
),GDY

ΣGDY
), (7)

where the parameter α is a vector of SDY , the matrices of parameters Bk ∈ ADY DXk
, k = 1, . . . ,KX , the

Xki, k = 1, . . . ,KX , are compositional explanatory variables in the simplex SDXk , the Zki, k = 1, . . . ,KZ ,
are classical real-valued explanatory variables, and Σ is a positive definite symmetric DY ×DY matrix.

For a real valued dependent variable, a regression model involving a combination of classical and
compositional explanatory variables writes as follows:

Yi = α+

KX∑
k=1

< βββk,Xki >A +

KZ∑
k=1

γkZki + ϵi with ϵi ∼ N (0, σ2), (8)

with the same notations as above for the explanatory variables.
A more recent concept of compositional data analysis removing the constant sum constraint appears

in see, e.g. [Ferrer-Rosell et al., 2016] and [Coenders et al., 2017] with the so-called T -space introduced
by [Pawlowsky-Glahn et al., 2015]. The absolute information involved in a so-called total variable T (X)
associated with any multivariate and positive explanatory variable X can be included as well on the right
hand side of the regression equation among the classical variables.

The estimation of models (7) and (8) is obtained using multiple multivariate regression in a chosen ilr
coordinate space and the result is independent of this choice. Formulas for the expression of the simplex
parameters as a function of parameters in coordinate space are summarized in the paragraph “Transition
formulas for log-ratio spaces” of the Annex.

Let us illustrate these regression models on the election data. A first model with a scalar dependent
variable explains the turnout as a function of the logarithm of the population density (classical variable)
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and an ilr of the professional categories (CoDa variable). We want to point out that in this model the
dependent variable is actually a rate, and could be treated as a 2 dimensional CoDa vector with a logit
transformation. However, since our focus is just to illustrate the interpretations of all possible CoDa
models we chose to continue with this imperfection instead of introducing a second data set. Moreover,
in the range of most of the data, the relationship between the turnout rate and its logit is rather linear.
A second model with compositional dependent variable explains the vote shares by the same explanatory
variables.

The analysis of variance tables of the two models are respectively shown in Table 2 for the first one
and Table 3 for the second. Note that while the constant term is not relevant in the anova for a univariate
regression, it appears here because the dependent variable is multivariate and the “(Intercept)” refers to
the vector α in model (7). The two models display significant covariates.

Table 2: Analysis of variance table for scalar dependent model

Df Sum Sq Mean Sq F value Pr(> F)

log(POP DENSITY) 1 14328.87 14328.87 7799.13 0
ilr(PROFCAT) 3 43446.42 14482.14 7882.55 0
Residuals 34815 63963.50 1.84

Table 3: Analysis of variance table for the compositional dependent model

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.847 38609 5 34811 0
log(POP DENSITY) 1 0.195 1688 5 34811 0
ilr(PROFCAT) 3 0.184 455 15 104439 0
Residuals 34815

3.2 Impact of a given covariate in a classical regression model

In this section, we focus on evaluating the impact of a given explanatory variable X on the dependent
variable Y in a regression model explaining Y by X and by the rest of the explanatory variables denoted
by U. Loosely speaking, we want to measure the change of the expected value of Y due to an increment
of X, while the other covariates remain unchanged (ceteris paribus). Depending on the nature of the
model, different quantities will measure this impact. Two approaches are possible: considering a finite
change or an infinitesimal change of X. In linear models, finite changes are adapted and the impact is
then measured by the change of Y induced by a unit change of X. In nonlinear models, it is more adapted
to replace finite changes by infinitesimal ones and to use the derivative of Y with respect to Xk, also
called marginal effect.

When evaluating the impact of a particular X on Y , we will denote by

Ỹi(x) := E(Yi | X = x,U) (9)

the value of the conditional expectation of Y at a given observation unit i given the value of all other
explanatory variables, evaluated at the value X = x of the considered variable X.

Let us first examine what happens for classical real variables Y and X in some simple models. In
the classical linear regression model, we recall that the absolute change of Y induced by an increment of
one unit of X ceteris paribus is simply equal to the parameter βX of the variable X and also coincides
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with the derivative of Ỹi(x) with respect to x for any observation unit i. Let us now turn attention to
models obtained by combining log transformations and a linear model. We first consider a model where
EY | X,U is a linear function of the logarithm of X: EY | X,U = α + βX logX + R, where the term
R contains the effect of other explanatory variables in U. In this model it is clear that the parameter

βX can be viewed as the derivative ∂EY|X,U
∂ logX of EY | X,U with respect to logX. In this case, for a

small increment h of X, approximating exp(h) − 1 by h, the increment of Y due to a relative increase
of X of h units results in an additive increase of Y of βXh. In econometrics, this parameter is called a
semi-elasticity and it corresponds to a semi-logarithmic derivative. In this case, a marginal effect can

be calculated by ∂EY |X,U
∂X = ∂EY|X,U

∂ logX
∂ logX
∂X and is the ratio of the semi-elasticity to the value of X. In

general, the marginal effects will be individual dependent, whereas the semi-elasticity is constant equal
to βX and therefore constitutes a natural parameter for this model.

Symmetrically, in a model where logEY | X,U is a linear function of X: logEY | X = α+βXX +R,
where the term R contains the effect of other explanatory variables in U, the semi-logarithmic derivative
∂ log EY |X,U

∂X , also called semi-elasticity, is constant and equal to βX . It allows approximating, for small
increments of X, the relative increase of Y and the corresponding marginal effects, which are individual
dependent. Once again, this semi-elasticity constitutes a natural parameter for this model.

In a log-log model such as logEY | X,U = α + βX logX + R, where the term R contains the effect

of other explanatory variables in U, the logarithmic derivative ∂ log EY|X,U
∂ logX is constant and equal to βX .

It allows approximating for small relative increments of X the relative increase of Y .
Finally, let us recall what happens in a logistic model. The logit transformation (logit(z) = z

1−z )
of EY | X,U being a linear function of the explanatory variables results in the fact that the natural
parameter to interpret the logit model is given by the odds ratio which is constant and equal to the
parameter whereas once again the corresponding marginal effect is observation dependent.

3.3 Impacts in CoDa regression models

Keeping these facts in mind, we now consider the case of CoDa regression models. The non linearity
(in the classical sense) of these models and the compositional nature of some of their variables lead to
additional difficulties. When the dependent is compositional, we need to adapt the notation in (9) because
it then makes sense to use the compositional expectation of Y:

Ỹi(x) := E⊕(Yi | X = x,U) (10)

Now, when the explanatory variable of interest X is compositional, the usual “all things equal” does
not apply anymore since one cannot change a single component of X. It is then natural for interpreting
the impact of a compositional variable X ∈ SDX to replace the classical increment by a linear increment
in the simplex as will be defined in Section 4. [Morais and Thomas-Agnan, 2021] use the appropriate
simplicial derivatives to compute an approximation of the corresponding impact due to a small simplex
linear increment. After recalling some simple facts about linear increments in a simplex, we recall the first
order Taylor approximations of functions whose arguments and/or outcome values belong to a simplex.
In the framework of CoDa regression, we then recall how the simplicial derivatives expressions in the
Taylor formulas are linked to the model parameters.

Impacts in CoDa regression models have been studied with different techniques and for all types of
regression models. For the model with a scalar dependent variable and explanatory variables including
compositional and classical ones, this issue is well presented in [Coenders and Pawlowsky-Glahn, 2020].
For the model with compositional dependent variables, the impact of a scalar explanatory is discussed
in [Müller et al., 2016], [Trinh et al., 2018], [Nguyen et al., 2020]. For a model involving a composi-
tional dependent and at least one compositional explanatory variable, an approach can be found in
[Müller et al., 2016] and for a very basic CoDa regression model in [Wang et al., 2013]. Other discus-
sions are in [Morais et al., 2018], [Morais and Thomas-Agnan, 2021] and [Thomas-Agnan et al., 2023].
The models with a scalar dependent variable are the easiest to treat and all discussions (even though
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more or less general) agree on the interpretations. However, for models involving compositional depen-
dent variables, the question is more intricate and there are two different points of view. For example,
[Müller et al., 2016] consider an interpretation based on finite increments of fixed size for the covariate
and describe the results of the covariate change using pivot coordinates ending up in measuring the
change in the dominance of one particular share of Y with respect to the geometric mean of the other
ones. The change of X they consider is described in terms of ilr coordinates but does indeed correspond
to one segment in a particular linear path as in Section 11 although it is not described in these terms.
More recently [Morais et al., 2018] and later [Morais and Thomas-Agnan, 2021] introduce interpretations
based on small increments of variable size. These result in interpretations allowing to measure the change
in each share of Y due to a change of X along a linear path in the X simplex space.

4 Linear increments in the simplex

In order to describe the impact of changing a particular compositional explanatory variable, we first
need to define the considered variation. Indeed for a compositional variable, it is not possible to envision
changing one of its components while keeping the others fixed because their sum is constrained. Hence,
we need to describe the path of X in its simplex and it seems natural to consider a linear path. It
turns out that studying linear paths in the simplex will also be helpful to understand the changes in the
dependent variable.

Given an initial point in a simplex x(0) ∈ SD, a vector u ∈ SD describing a direction, and a real h
not necessarily positive (a signed intensity), we define x(h) ∈ SD by

x(h) = x(0)⊕ h⊙ u. (11)

When h ranges from −∞ to +∞, x(h) describes a simplex line. In practice, it can be interesting to
normalize the direction vector: when u has unit length, the Aitchison distance between x(h) and x(0) is
equal to the absolute value of h.

Let us first derive an approximation for small h of the relative share variations along the path (11).
For the jth share, the relative variation is given by αj :

αj :=
xj(h)− xj(0)

xj(0)
≃ h[log(uj)−

D∑
l=1

xl(0) log(ul)] = h

D∑
l=1

xl(0) log(
uj

ul
) (12)

A first direction vector of particular interest is the vector em = C(1, . . . , e, . . . 1) where e = exp(1) is
in the mth position. This particular direction plays for the simplex SD the same role as the mth vector
of the canonical basis of RD. A simplex line as (11) with direction u = em connects the mth vertex of
the simplex with a point on the opposite side. The mth vertex is approached when h tends to ∞ and
the corresponding components approach zero everywhere except for component m which approaches one.
The point on the opposite side of the simplex is obtained by replacing in x(0) the mth component by 0
and it is approached when h tends to −∞.

For the direction u = em, (12) yields the following approximations:

if l ̸= m, αl :=
xl(h)− xl(0)

xl(0)
≃ −hxm(0), (13)

if l = m, αm :=
xm(h)− xm(0)

xm(0)
≃ h(1− xm(0)). (14)

Turning now attention to the share ratio variations, it is easy to show that for all couples of components
i and j (∈ [1, D]) we have the following finite increment formula for a general direction u :

xj(h)

xl(h)
=

xj(0)

xl(0)
exp(h log

uj

ul
). (15)
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Equation (15) proves that the share ratio variations are totally driven by the corresponding share ratios
uj

ul
of the direction vector. Moreover, we see that if two components j and l of the direction u are equal,

then the ratio
xj(h)
xl(h)

is not affected by the change. At the other extreme the share ratios of x will be more

affected for couples of components uj and ul which are the most dissimilar.
If we now consider a very small value of h, we can make an approximation in (15) to obtain the infinitesimal
share ratio increments

xj(h)

xl(h)
≃ xj(0)

xl(0)
(1 + h log

uj

ul
), (16)

which can also be written in terms of relative share ratio variations as follows

xj(h)
xl(h)

− xj(0)
xl(0)

xj(0)
xl(0)

≃ h log
uj

ul
. (17)

For the particular direction em we obtain the finite increments expression of the share ratios

if l ̸= m,
xm(h)

xl(h)
=

xm(0)

xl(0)
exp(h) (18)

if l, j ̸= m,
xj(h)

xl(h)
=

xj(0)

xl(0)
. (19)

The corresponding infinitesimal share ratio increments are obtained by replacing exp(h) by 1+h in (19).
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Figure 1: Change in the direction of the vertex “Upper”

Figure 1 illustrates in three different ways the change in the direction of the vertex “Upper” in the
simplex of the four socio-professional categories. Moving in this direction means increasing the share of
“Upper” while uniformly decreasing the other shares. The stacked barplot on the left represents, for h
varying on a grid on the x-axis, the four corresponding shares along the linear path (see pages 28-29 of
[Boogaart and Tolosana-Delgado, 2013]). The second plot is a simple scatterplot of the four categories
shares as a function of the share of “Upper”. The vertical line corresponds to the initial point z(0) which
is the municipality of Paris. The boxplot on top of this graph depicts the univariate distribution of the
share of “Upper”, showing that Paris has among the highest proportions of individuals in this professional
category. Note that there are situations in which, on this second graph, some shares are multi-valued
functions of the x-axis share. Both ternary diagrams are based on subcompositions with three out of four
professional categories, and a cross indicates the initial point z(0) in each of them. On the right ternary
diagram, we can check that the subcomposition of the three vertices other than “Upper” is constant along
the path, which corresponds to equation (19).

Similarly, Figure 2 illustrates a linear path in a general direction defined by u = (0.1, 0.5, 0.25, 0.15).
Moving in this direction can be summarized by what happens for an increment of h = 1 : multiplying
the ratio of the second to the first component by 5 = u2

u1
, the ratio of the fourth to the third component

by 0.6 = u4

u3
, etc. Since the highest ratio between the u components is the ratio of the first to the second
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component equal to 1/5, it is the share ratio of “Upper” to “Workers” which varies the most, which is
reflected in the first three graphs of 2. Similarly, the ratio which fluctuates the least is the one of “Other”
to “Retired” corresponding to a ratio of 5/3 of the corresponding components of u.
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Figure 2: Change in a general direction

In particular, another direction of interest is the direction given by u = em ⊖ em′ for two indices m
and m′ between 1 and DX : it is the closure of the vector with ones except for position m where it is e
and position m′ where it is e−1. Moving in this direction therefore means multiplying the mth share by a
factor and dividing the m′th share by the same factor and closing the obtained vector. This move looks
alike the isotemporal substitution scheme of [Dumuid et al., 2019]. However their absolute compensation
scheme cannot be extended into a linear map with respect to the simplex operations. Our approach can
viewed as the discrete version of [Jašková et al., 2023] who present a relative compensation scheme in a
continuous CoDa framework. We will use this type of direction later on in Section 8.

5 Conditional plots for CoDa regression

A first approach to assess the effect of a given explanatory variable is to construct conditional plots.
Using a predefined scenario of change of one explanatory variable, for a given observation that serves as
an initial point, we can create a scatterplot of the predicted dependent variable versus the explanatory
variable of interest conditional on the values of the other explanatory variables at the initial point. In a
linear model, it is natural to define the change scenario along a linear path, and in the CoDa framework,
we can use the simplex linear paths of the previous section. The following two subsections illustrate these
conditional plots for our examples of a scalar dependent model explaining the turnout and a compositional
dependent model explaining the vote shares of the candidates/blocks. The reference observation in all
the conditional plots is always the municipality of Paris.

5.1 Variation of a scalar dependent with a compositional explanatory

As mentioned in Section 4, for a compositional explanatory variable, it is impossible to change a single
component without changing the others due to the sum constraint. However, we may consider linear
paths in the simplex as in Section 4 and plot the fitted shares evolution when the compositional variable
evolves along this path. We distinguish two cases depending on whether the direction vector points to a
vertex or not.

Figure 3 displays the conditional plots of the fitted turnout for the direction to the vertex “Upper”
on the left and the direction as in Figure 2 on the right. The two bottom plots show the variations of
the explanatory shares along the two paths as a function of h. On the y-axis of the two plots at the top
show the corresponding prediction of the turnout. The two vertical lines on both graphs correspond to
the predicted turnout of Paris (top) and the PC shares of Paris (bottom).
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Figure 3: Variation of a scalar dependent as a function of a compositional explanatory

5.2 Variation of a compositional dependent

When the dependent variable is compositional, we need specific approaches for creating conditional plots
of scalar and compositional dependent variables.

Let us first look at the conditional plot of a compositional dependent as a function of a scalar explana-
tory variable. Figure 4 displays the variations of the vote shares for each of the six candidates/blocks as
a function of the population density. The vertical line indicates the actual population density in Paris,
which is about 20000 inhabitants per km2. Here we consider an extreme scenario where the population
variation ranges from a tenfold increase to thousands of its original size to illustrate the behavior of the
model.
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Figure 4: Variation of a compositional dependent as a function of a scalar explanatory variable

Turning now attention to the variations of a compositional dependent as a function of a compositional
explanatory, Figure 5 displays two paths for Paris: the left graph corresponds to a change towards
the “Upper” vertex and the right one to a general direction. The two bottom graphs are alternative
representations of the same line path as the one illustrated by Figures 1 and 2. On the top left graph, we
can see that moving in the direction of “Upper” almost does not affect the “Right” share, increases the
shares of “Macron”, “Mélenchon” and “Left” and decreases the shares of “Le Pen” and “No vote”. The
changes in the vote composition in the top right graph appear more complex, which is partially due to the
non-monotonous evolution of the “Macron” and “No vote” shares. Jointly assessing the two right hand
graphs further reveals that “Le Pen” is predicted to attract most of the votes when “Workers” dominate
all the other professional categories.
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Figure 5: Variation of a compositional dependent as a function of a compositional explanatory

Another way of illustrating the conditional variations could be to plot as in Figures 6 and 7 two
adjacent ternary diagrams showing the variations of a subcomposition of X along the path on the left
and corresponding variations of a subcomposition of Y on the right. Additionally, color and shading can
be linked to the value of h, indicating the correspondence between both ternary diagrams. In Figure 6,
the path is towards the “Upper” vertex and in Figure 7 based on the general direction. However, while
this type of illustration can be useful for low dimensional CoDa variables, it becomes cumbersome when
the dimensions of the CoDa variables increase.

Upper Workers
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Macron Le Pen

Mélenchon

Figure 6: Variation of a compositional dependent as a function of a compositional explanatory with
ternary diagrams for changes of X in the direction of a vertex

Upper Workers

Retired

Macron Le Pen
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Figure 7: Variation of a compositional dependent as a function of a compositional explanatory with
ternary diagrams for changes of X in a general direction
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6 Impact of a CoDa explanatory on a scalar dependent

The following interpretations are similar to the classical ones like [Boogaart and Tolosana-Delgado, 2013],
[van den Boogaart et al., 2021] or [Coenders and Pawlowsky-Glahn, 2020]. However, the present study of
linear increments of Section 4 allows a generic treatment for all directions of changes in the explanatory
space as opposed to the list of cases considered in [Coenders and Pawlowsky-Glahn, 2020] with which
they are coherent.

As can be found in [Boogaart and Tolosana-Delgado, 2013], in model (8), the linear increment of Y
(in real space) resulting from changing X with parameter β according to the path in (11) is

Ỹ (h)− Ỹ (0) =< β, h⊙ u >A= h < β,u >A= h < clrβ, clru >A . (20)

The impacts are therefore completely described by the clr coordinates of the parameter β and are
constant throughout observations. For directions of type u = em, the impact in (20) is driven by the
observation independent semi-elasticity vector SE presented in [Morais and Thomas-Agnan, 2021]. This
correspondence stems from the fact that in model (8) finite increments of size 1 coincide with infinitesimal
increments (semi-log derivatives here) due to the linearity of Y with respect to clrX in the classical sense.

Table 4: Impacts of change in PC on the turnout

Direction to vertex General direction

Initial value 0.747 0.747
New value 0.752 0.741
Semi elasticity 0.063 -0.075
Variation in % points 0.47 % -0.56 %

Table 4 presents an example for the regression of the turnout on the explanatory variables of Table
2 based on linear increments in the professional categories shares in two directions: direction to the
vertex “Upper” on the left as in Figure 1 and general direction as in Figure 2 on the right. The starting
observation is Paris and the change is of size h = 0.1 corresponding to a relative increase of 5.58% of
the share of the category “Upper” for the first direction. The first line of the table displays the initial
turnout in Paris, the second line shows the value after the change of the professional categories. Also
printed in the table are the values of the semi-elasticities and the absolute variation of Y measured in %
points because it is a rate.

7 Infinitesimal impacts on a CoDa dependent

[Morais et al., 2018] and [Morais and Thomas-Agnan, 2021] introduce the use of semi-elasticities and
elasticities to measure the changes on a CoDa dependent variable due to small variations of a scalar or
a compositional variable, but restricting in the second case to the directions towards a vertex. After
recalling the Taylor formulas which support these interpretations, we extend the second one to the case
of a general direction. We then illustrate for our model of the election results how these approximations
lead to interpretations in terms of relative variations of vote shares.

7.1 Taylor formulas

Thanks to Chapter 12 (written by Egozcue et al.) and Chapter 13 (written by Barcelo-Vidal et al.) of the
book [Pawlowsky-Glahn et al., 2015] and to [Morais and Thomas-Agnan, 2021], we can write Taylor for-
mulas to approximate functions to and/or from a simplex for small increments. Let us briefly summarize
these results and complete them for the case of changes in a general direction.

12



Scalar argument and simplex value For a function f : R 7→ SD, we find in Chapter 12 (written
by Egozcue et al.) of the book [Pawlowsky-Glahn et al., 2015] the following approximation for a small
change x −→ x+ h of x :

f(x+ h) ≃ C
(
f1(x) exp(h

∂ log f1(x)

∂x
), . . . , fD(x) exp(h

∂ log fD(x)

∂x
)

)
≃
(
f1(x)(1 + h

∂ log f1(x)

∂x
), . . . , fD(x)(1 + h

∂ log fD(x)

∂x
)

)
. (21)

The constraint
∑D

m=1 fm(x) = 1 implies that
∑D

m=1 fm(x)∂ log fm(x)
∂x = 0 and hence the right hand

side of (21) is indeed a CoDa vector. The product of the semi-elasticity by h is then the value of the

corresponding relative change fm(x+h)−fm(x)
fm(x) of component m of the CoDa vector f(x) induced by a small

additive change h of x.

Simplex argument and simplex value For a function f : SDX 7→ SDY , arising from an homogeneous
function of degree zero by f(x̌) = f(x) where x = C(x̌), [Morais and Thomas-Agnan, 2021] find the
following Taylor approximation of f(x) resulting from a small change x −→ x⊕ δ ⊙ em of x

f(x⊕ h⊙ em) = C
(
f1(x) exp(h

∂ log f1(x̌)

∂ log x̌m
), . . . , fD(x̌)) exp(h

∂ log fD(x̌)

∂ log x̌m
)

)
≃

(
f1(x̌)(1 + h

∂ log f1(x̌)

∂ log x̌m
, . . . , fD(x̌)(1 + h

∂ log fD(x̌)

∂ log x̌m

)
. (22)

The constraint
∑DY

j=1 fj(x̌) = 1 implies that for all m, we get
∑DY

j=1 fj(x̌)
∂ log fj(x̌)
∂ log x̌m

= 0 showing that the

right hand side of (22) is indeed a CoDa vector. The product of the elasticities by h is equal to the

relative change
f
j
(x⊕h⊙em)−f

j
(x)

f
j
(x) of the vector f(x) induced by the linear increment of x in the direction

of em with signed intensity h.
Let us now generalize this Taylor formula to an increment in the direction of a generic unit vector

u ∈ SD.

Theorem 7.1. For a function f from the simplex SDX to the simplex SDY , we have the following first
order Taylor expansion of the components of f(x⊕ h⊙ u) in the neighborhood of h = 0 :

f
j
(x⊕ h⊙ u) ≃ f

j
(x)(1 + h

DX∑
m=1

∂ log fj(x̌)

∂ log x̌m
log(um)), (23)

where um is the mth component of u, m = 1, . . . , DX .

As in the vertex direction case, one can check that the right hand side of (23) is a composition: indeed

taking the derivative of the constraint
∑DY

j=1 fj(x̌) = 1 with respect to log x̌m yields for any m

DY∑
j=1

fj(x̌)
∂ log fj(x̌)

∂ log x̌m
|h=0= 0. (24)

7.2 Absolute and relative variations of shares for a given observation

In this section, we apply formulas (21) and (23) to approximate, in the compositional dependent model
(7), the changes of the conditional expectation Ỹi(x) when a given explanatory variable X changes along
a linear path. Let us recall that there are easy expressions to compute the semi-elasticities and elasticities
from model parameters estimates in [Morais and Thomas-Agnan, 2021].
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Evaluating the semi-elasticities in (21) at the observation pointsXi, we get a semi-elasticityDY −vector

SEi with elements
∂ log fj
∂ log x̌m

evaluated at the observation point i. Similarly, evaluating the elasticities in

(23) at the observation points Xi, we get an elasticity DY ×DX matrix Ei with elements
∂ log fj
∂ log x̌m

evaluated
at the observation point i. It is easy to show that the row sums of this observation dependent elasticity
matrix, corresponding to the sum of elasticities of one component of Y with respect to all components
of X, is zero.

For interpreting the impact of a scalar explanatory variable X on a compositional dependent variable
Y, formula (21) allows to evaluate the percent variation of each dependent share Yi due to an additive
change of X, using the semi-elasticities of Y with respect to X. Table 5 illustrates this for the model of

Table 5: Increase of the population density by 10%

Macron Le Pen Mélenchon Left Right No vote

Initial shares 0.2500 0.1582 0.1729 0.0828 0.0880 0.2481
New shares 0.2505 0.1575 0.1734 0.0828 0.0871 0.2487
Semi elasticity 0.0198 -0.0411 0.0313 -0.0011 -0.1077 0.0230
Variation in % 0.2 % -0.41 % 0.31 % -0.01 % -1.08 % 0.23 %
Variation in % points 0.05 % -0.06 % 0.05 % 0 % -0.09 % 0.06 %
Variation in units 678 -889 739 -13 -1297 781

Table 3. In our example, we increase log(POP DENSITY ) by h = 0.1, which is approximately a 10%
increase in the population. The first line reflects the initial shares of the VOTE composition in Paris and
the second line shows the new composition after the change. In the third line, we have the semi-elasticity
which corresponds to the logarithmic derivative in (21). The variation in % is computed from (21) and
can be approximated by h times the semi-elasticities of VOTE with respect to log(POP DENSITY ).
To obtain the variation in percentage points, it suffices to subtract the old shares from the new ones.
Finally, we get the variation in units by multiplying the percentage point variation with the total of the
response variable, in our case the number of registered voters in Paris.

For interpreting the impact of a compositional explanatory on a compositional dependent, formula
(22) (resp: formula (23)) allows to evaluate the percent variation of each dependent share Yi due to a
given linear change of the compositional variable in the direction of a vertex (resp: in a general direction).

Table 6 illustrates these changes for the case when the professional category composition is moved by
h = 0.1 in the direction of the vertex “Upper”. For this particular direction, we can use (14) to calculate
the relative changes in the dependent composition, which correspond to an αm = 5.58% increase for the
share of “Upper” and a 4.42% decrease for the three remaining PC shares in our example.

Table 6: Change of PC in the direction of the vertex “Upper”

Macron Le Pen Mélenchon Left Right No vote

Initial shares 0.250 0.158 0.173 0.083 0.088 0.248
New shares 0.251 0.157 0.174 0.084 0.088 0.246
Elasticity 0.060 -0.074 0.059 0.087 0.013 -0.087
Variation in % 0.6 % -0.74 % 0.59 % 0.87 % 0.12 % -0.87 %
Variation in % points 0.15 % -0.12 % 0.1 % 0.07 % 0.01 % -0.22 %
Variation in units 2038 -1601 1395 981 151 -2964

Table 7 illustrates the corresponding variations, for a change in a more general direction. Here we
take the same direction as the one used to illustrate the linear increments in Figure 2. Since the relative
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changes in the PC composition are different for each component of X in this case, we do not report the
α values.

Table 7: Change of PC in a general direction

Macron Le Pen Mélenchon Left Right No vote

Initial parts 0.250 0.158 0.173 0.083 0.088 0.248
New parts 0.248 0.162 0.171 0.082 0.087 0.250
Elasticity -0.072 0.246 -0.136 -0.136 -0.088 0.087
Variation in % -0.72 % 2.46 % -1.36 % -1.36 % -0.88 % 0.87 %
Variation in % points -0.18 % 0.39 % -0.23 % -0.11 % -0.08 % 0.22 %
Variation in units -2459 5325 -3215 -1537 -1056 2941

7.3 Elasticity distribution and theoretical bounds

[Morais and Thomas-Agnan, 2021] show that the elasticities and semi-elasticities are observation depen-
dent through the expected vector of shares E⊕Y | X (conditional on all explanatory variables). However,
we obtain observation-independent quantities for

GDY
SEi = clr(γ)

GDY
Ei = B.

The above equations imply that the parameter matrix B corresponds to the difference between the
elasticities and their corresponding row average. Similarly, clr(γ) is a difference between a semi-elasticity
and the average over components of Y of the semi-elasticities. This also shows that the (semi-) elasticities
are only observation dependent through this average since we have:

SEi = clr(γ) + 1DY
SEi. (25)

Using the result SEi = clr(γ)−1DY
Ỹi clr(γ)

′ of [Morais and Thomas-Agnan, 2021], where 1DY
is a DY

vector of ones, we may further deduce that SEi = −Ỹ′
i clr(γ). Since the fitted value Ỹi is an element of

SDY , we can derive bounds on the average semi-elasticity for each observation

min(clr(γ)) ≤ −SEi ≤ max(clr(γ)). (26)

These bounds are easily converted into bounds on the SEi by (25). Additionally, because clr(γ) is
centered we know that for a balanced composition Ỹi = C1DY

the SEi = 0 and SEi = clr(γ). In other
words, the more balanced the fitted shares for a given observation the more its semi-elasticities resembles
the clr-transformed parameters.

Figure 8 illustrates these insights for the parameters associated with the logarithm of the population
density in the model of Table 3. The first six entries on the Y-axis correspond to the choices available
to the voters and the X-axis displays the value of the corresponding clr parameter coordinate, as well
as their confidence intervals (see Annex). At the bottom, we display the distribution of −SEi over all
municipalities. We clearly see that these values are contained in the bounds (26). Furthermore, equation
(25) implies that we may obtain the distribution of the semi-elasticity for any component of the dependent
variable by shifting the distribution of −SEi by the corresponding component of the clr parameter vector.

Similar considerations apply to the elasticities with the difference that, with the dependent X being
multivariate, we need to focus on one column Ei,•m of the elasticity matrix Ei at a time, corresponding to

component m of X and all components of Y. For the elasticities of Ỹi with respect to the mth component
of X we have

Ei,•m = B•m + 1DY
Ei,•m. (27)
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Figure 8: Semi elasticities distribution and confidence intervals for the clr parameters

Using the equationEi = B−1DY
ỸiB from [Morais and Thomas-Agnan, 2021] we can derive that Ei,•m =

−1DY
ỸiB•m, which leads to the interval:

min(B•m) ≤ Ei,•m ≤ max(B•m). (28)

In Figure 9, we illustrate these results for the model of Table 3 where the parameter matrix B is
associated with the compositions of the professional categories. Each facet in the graphic corresponds to
one professional category and illustrates one column of the matrix B. As before, the last value on the
Y-axis shows the distribution of the negative mean elasticity, which is contained in the interval defined
by the maximal and minimal parameter values in the given column of B.
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Figure 9: Elasticities distribution and confidence interval for the clr parameters

8 Relative variation of share ratios

We have seen that one limitation of the semi-elasticities/elasticities approach is that in the compositional
dependent case these quantities are observation dependent. Moreover, they depend on the predicted
value of the share vector Y, making them non-linear functions of the parameters which means that we
cannot easily evaluate their variability. We are going to overcome this limitation by taking advantage
of the linearity of the model with respect to the simplex operations. Indeed since model (7) is linear
for the perturbation and powering operations, a linear change of any of the explanatory variables will
result in a linear change in the expected dependent variable, linearity being understood with respect to
the geometry of each considered variable. By using (15) and (16) of Section 4, we have learned that a
linear change of any simplex variable can be written as a finite multiplicative change of its share ratios,
which can be approximated for small h by a percent variation of its share ratios. It is therefore natural
to see share ratios appearing in the ensuing interpretation as we detail below. The results of this section
are coherent with the share ratio interpretation found in [Wang et al., 2013] in a restricted model (see
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[Dargel and Thomas-Agnan, 2023] for understanding the peculiarity of this model). We will use the
notation Ỹ(x) of Sections 3.2 and 3.3 to express the impacts of the explanatory variables on the expected
value of the dependent variable.

For a compositional variable X, taking the logarithmic derivative of (15) yields, for any couple of
indices j and l between 1 and DX ,

d

dh
log

Xj(h)

Xl(h)
= log

uj

ul
. (29)

This result will be used on the right hand side and/or left hand side of the regression equation depending
on how compositional variables are used in the model.

8.1 Model with a scalar dependent

In model (8), from (20) and (29), it is easy to prove that, when X moves along (11), we have the following
absolute variation of Ỹ (h) with respect to the relative variations of the share ratios of X (for j ̸= l and
whenever uj ̸= ul)

dỸ (h)
dh

d
dh log

Xj

Xl

=
< clrβ, clru >A

log
uj

ul

=
SEj log(uj) + SEl log(ul)

log(uj)− log(ul)
(30)

Remembering that clrβ corresponds to the vector of semi-elasticities of Y with respect to all shares of
X, we see that the absolute variations of Y generated by relative changes in the share ratios of X. are
driven by a simple linear combination of two semi-elasticities. An interesting consequence of (30) can be
derived:

SEj − SEl = clr(βj)− clr(βl) = log(βj/βl). (31)

Note that (31) can alternatively be obtained using the expressions of the semi-elasticities as a function of
the parameters. Equation (31) shows that the ratios of X which have the highest impact on Y are those
ratios with the highest values of the corresponding ratio of the β components, making the semi-elasticity
differences a privileged tool for summarizing the data. Since the estimates of β are usually obtained in
ilr or alr coordinates, we refer to the transition formulas in the Annex to derive their clr counterparts
and the associated variances. The confidence intervals for the differences of clrβ components can be
computed easily, and therefore we can determine which ratios of X significantly impact Y .
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Figure 10: Three representations for the impact of professional categories

Figure 10 depicts, in three ways, the impact of the professional categories in our model explaining the
election turnout rate. The left graphic illustrates the clr parameters and their confidence intervals, which
are extremely narrow due to the large number of observations in our example. As mentioned previously,
these clr values coincide with the semi-elasticities. The middle graph shows confidence intervals and
point estimates of the semi-elasticity differences, where the share of “Upper” is used in the denominator
(indexed by l in (31)). Finally, the right graph depicts the parameter values in the simplex, which can
be useful as an impression of their magnitude. In our model, β is very close to the balanced composition
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that plays the role of the zero-vector in the simplex. Thus, we may conclude that only strong imbalances
in the professional category composition can lead to large changes in the turnout rate.

8.2 Model with a compositional dependent

When Y is compositional, the conditional expectation Ỹ(x) is also a function of h: along the path (11)
for compositional exploratory variables and along the path Z(h) = Z(0) + h for scalar ones. In both
cases, we will denote it by Ỹ(h).

8.2.1 Scalar explanatory

In model (7), let us first consider the impact of a scalar explanatory variable Z with parameter γ for
which we have Ỹ(h) = Ỹ(0)⊕ h⊙ γ.

Using the same technique as in Section 4 to go from equation (11) to the share ratio finite increment
(15), we can derive the following share ratio finite increment result, for observation unit i and for any
two components j and l between 1 and DY :

Ỹij(h)

Ỹil(h)
=

Ỹij(0)

Ỹil(0)
exp(h log

γj
γl

) (32)

Taking the log and then the derivative of (32) yields the share ratio infinitesimal relative change

d
dh log

Ỹij(h)

Ỹil(h)

d
dhZ

= log
γj
γl

= SEij − SEil, (33)

where the difference SEij − SEil is observation independent, although each term by itself is not.
Figure 11 displays these differences for the model of Table 3, where the vote share of Macron is in the

denominator (l in the formula). The vote share whose elasticity is most different from that of Macron is
that of the “Right” block. In contrast, the share of “No votes” reacts not significantly differently than
the share of Macron to a change in the population density.
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Figure 11: Confidence interval for the differences in semi-elasticities parameters

8.2.2 Compositional explanatory

Similarly, in model (7), for evaluating the impact of a compositional covariateX with matrix of parameters
B on the compositional dependent Y, let us express the simplex variations of the explanatory variable
and the dependent variable as a function of h when X changes along the linear path in (11).

As in (29), since Ỹ(h) = Ỹ(0)⊕B⊡u, if we let uB = B⊡u, we get easily for any observation i and
any couple of indices j and l between 1 and DY

d

dh
log

Ỹij(h)

Ỹil(h)
= log

uBj

uBl

=

DX∑
k=1

(Bjk −Blk) log uk. (34)
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We can conclude that when X moves along the path (11), the relative change of the dependent share

ratio
Ỹj(h)

Ỹl(h)
with respect to the explanatory share ratio

X̃j′ (h)

X̃l′ (h)
, which we will call a share ratio elasticity,

is observation independent and is given by

d
dh log

Ỹij(h)

Ỹil(h)

d
dh log

X̃ij′ (h)

X̃il′ (h)

=

∑DX

k=1(Bjk −Blk) log uk

log
uj′

ul′

. (35)

It is obvious that this share ratio elasticity is generally only meaningful when both share ratios involve
distinct components (j′ ̸= l′ and j ̸= l), when uj′ ̸= ul′ and uj′ , ul′ ̸= 0. This latter condition is generally
satisfied for valid directions, i.e. that contain no zero components.

Let us now look at the form of (35) for the particular directions given by ej′ and by ej′ ⊖ el′ . For the
direction u = ej′ , the whole expression in (35) becomes

DX∑
k=1

(Bjk −Blk) log uk = Bjj′ −Blj′ = Ei,jj′ − Ei,lj′ , (36)

simplifying to an observation independent elasticity difference, although one should note that the indi-
vidual elasticity terms depend on the observation i. Figure 12 shows these elasticity differences, where
each facet corresponds to one of the four professional category components (j′). The six elements of the
Y-axis correspond to the numerator of the dependent share ratios (j), where Macron is again used in the
denominator (l).
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Figure 12: Confidence interval for the differences in elasticities parameters

For the direction ej′ ⊖ el′ the denominator of (35) equals two and the numerator becomes

DX∑
k=1

(Bjk −Blk) log uk = Bjj′ −Blj′ −Bjl′ +Bll′

= Ei,jj′ − Ei,lj′ − Ei,jl′ + Ei,ll′ , (37)

which is a double difference in elasticities. While this may appear more complex than (36), it has
the advantage that all changes in the dependent shares are exclusively driven by changes in the two
components in the X share ratio, as can be verified by looking at the difference vector clrX(0)−clrX(h),
for the direction ej′ ⊖ el′ . As is explained in the following, this double difference also enables a more
nuanced view of how pairwise trade-offs between components of X affect the share-ratios of Y.

To exploit the share ratio elasticities in our model explaining the vote shares, let us first be clear
about its dimensions. In this model, the vote share composition of dimension DY = 6 is explained by
the professional categories composition with DX = 4, which implies that (35) leads to D2

XD2
Y = 576

19



potential combinations of l, j = 1, ..., DY and l′, j′ = 1, ..., DX . However, since share ratios based on the
same components (l = j or l′ = j′) are meaningless, the number of informative values drops to 360. We
could thus represent these share ratio elasticities in a 12 × 30 matrix, with columns referring to share
ratios of Y and rows referring to share ratios of X. Additionally, this matrix may be grouped into blocks
based on the shares Xl′ and Yl in the denominators, leading to DY DX = 24 blocks, each containing 15
elasticity values.

Figure 13 shows this share ratio elasticity matrix for the relative compensation directions of the form
u = ej′ ⊖ el′ , where j′ refers to the numerator and l′ to the denominator in each row of the figure. The
block second from the top and second from the right is the most striking, in that it only contains positive
values with relatively large magnitudes. Based on the share ratios on the X and Y axis, we may interpret
the values in this block as follows: if any of the professional categories grows at the expense of “Workers,”
all candidates gain votes at the expense of Le Pen. This effect is, however, weaker for “No vote” than
for the other candidates. In contrast, if we now concentrate on the next block to the right, we see
that, when any professional category grows at the expense of “Workers”, all other candidates either lose
votes in favor of Mélenchon or are almost unaffected. The candidate that would lose the most is Le Pen
followed by “No vote”. These findings indicate that individuals in the professional category “Workers”
predominantly prefer to vote for Le Pen or not to cast a (valid) vote over voting for Mélenchon.
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Figure 13: Share ratio elasticities for relative compensation directions

Another way to make sense of Figure 13 is to consider the depicted values in each block as a decompo-
sition of the parameter matrix. In our example, the dimension of B′ (4× 6) matches the block structure
of the share ratio elasticity matrix in Figure 13. We can further use (37) and the fact that B’s rows and
columns sum to zero to derive the sum of all elements in each block indexed by (l, l′) as

1

2

DY∑
j ̸=l

DX∑
j′ ̸=l′

Bjj′ −Blj′ −Bjl′ +Bll′ =
1

2
DXDY Bll′ . (38)

The above equation proves that the share ratio elasticities are indeed, up to a proportionality constant, a
decomposition of the elements of B. Put differently, the totals in each block of the share elasticity matrix
are summarized by 1

2DXDY B
′. The image of the matrix B′ in Figure 14 confirms this link visually. The
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inspection of the B matrix of this model already reveals that the strongest impacts on Y in this example
occur for share ratios involving “Le Pen” and “Workers” in their denominators.
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9 Conclusion

After briefly reviewing the existing approaches for interpreting the impact of a covariate in a CoDa
regression model, we propose new approaches based on share ratios. These interpretations, as well as
those based on semi-elasticities or elasticities, allow a direct interpretation in the space of shares (the
simplex) rather than in a coordinate space (which depend on some transformation). In order to derive
them, we establish some simple properties of linear increments in the simplex and a new Taylor formula
for approximating a simplex valued function of a simplex variable moving in a general direction. We then
show that, in these models, infinitesimal share-ratio variations are independent from the observation
unit, making them natural tools for interpretations. We also adapt conditional plots to the framework
of CoDa regression models. A real data example about the French presidential elections in 2022 is used
to illustrate conditional plots, elasticities, semi-elasticities and share ratio elasticities. All the presented
tools are available in the R package CoDaImpact, which is intended to be used in coordination with
the R package compositions, and illustrated with a vignette 3.

10 Annex

Transition formulas between log-ratio spaces

This section presents transition formulas between the three families of log-ratio spaces, usually indexed
by their corresponding transformations by alr, clr, and ilr. One interesting use of these formulas is
the conversion of estimated parameters from one space to another without having to re-estimate the
model. For example, it is often more practical to estimate a CoDa model in an ilr space, while the model
interpretations in terms of elasticities are directly linked to the clr parameters.

3https://github.com/LukeCe/CoDaImpact
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The log-ratio transformations for x ∈ SD and their corresponding inverses can be expressed as:

alrj(x) = Fj log(x) alr−1(x) = C(exp(Kjx
∗))

clr(x) = GD log(x) clr−1(x) = C (exp(x∗))

ilrV (x) = V′ log(x) ilr−1(x) = C (exp(Vx∗)) ,

where the matrix Fj (D− 1×D) can be derived from ID−1 by inserting the vector −1D−1 as jth column
and Kj (D×D− 1) is obtained from GD by removing its jth column. These matrices are further linked
by the following identities:

KjFj = GD FjKj = ID−1

VV′ = GD V′V = ID−1.

It is then easy to derive the following transition formulas that convert vectors between the different
log-ratio spaces:

clr(x) = Kj alrj(x) alrj(x) = Fj clr(x)

clr(x) = V ilrV (x) ilrV (x) = V′ clr(x)

Similar formulas can be found in the case matrix versions of the log-ratio spaces. This is particularly
interesting for the Y X compositional model where the influence of a compositional variable x ∈ SDX on
a compositional dependent variable y ∈ SDY is mediated by the matrix B ∈ ADY DX

. We will use the
star notation B∗ for the matrix in the transformed space. Let us first note that B∗ = GDY

BGDY
= B

for the case when both variables are clr transformed (x∗ = clr(x) and y∗ = clr(y)). The full list of cases
is summarized in the table below.

Transformations Link between B and B∗

x y

clr B = B∗

clr alrl B = KY
l B

∗ ⇐⇒ B∗ = FY
l B

ilrVY
B = V′

Y B
∗ ⇐⇒ B∗ = VY B

clr B = B∗FX
j ⇐⇒ B∗ = BKX

j

alrj alrl B = KY
l B

∗FX
j ⇐⇒ B∗ = FY

l BKX
j

ilrVY
B = V′

Y B
∗FX

j ⇐⇒ B∗ = VY BKX
j

clr B = B∗VX ⇐⇒ B∗ = BV′
X

ilrVX
alrj B = KY

l B
∗VX ⇐⇒ B∗ = FY

l BV′
X

ilrVY
B = V′

Y B
∗VX ⇐⇒ B∗ = VY BV′

X

Variances of clr parameters and of elasticities differences

The transition formulas of the previous paragraph also allow to derive the variances of the parameters in
any log ratio space. We exemplify this transition for the case of a model that is estimated in an ilr space,
to obtain the variances of the clr parameters. In a second step, the clr variances are used to derive the
variances of the differences in elasticities and semi-elasticities presented in Section 8.

Let us first consider a CoDa model as in (7) with a single compositional explanatory associated with
the parameter matrix B. The parameters can be estimated in an ilr space using the OLS estimator
B̂∗ = (X∗′X∗)−1(X∗Y∗), where X∗ = ilrVX

(X), Y∗ = ilrVY
(Y) and B̂∗ = VY

′B̂VX . A classical result
of multivariate regression models then expresses the variance of the vectorized estimator as

Var(Vec B̂∗) = (X∗′X∗)−1 ⊗ Σ̂∗, (39)
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where the Vec operator stacks the columns of a matrix and ⊗ denotes the Kronecker product, and where
the ilr covariance matrix Σ̂∗ = VY

′Σ̂VY can be estimated directly from the ilr residuals. Exploiting
the properties of the contrast matrices VY and VX , we can link the vectorized ilr estimator to its clr
counterpart which is denoted B̂, without star in the following:

Vec(B̂) = Vec(VY B̂∗VX
′) = (VX ⊗VY )Vec(B̂∗) (40)

Inserting the above result in (39) and the expression of Σ̂∗ then allows to derive the variance of B̂ as

Var(Vec B̂) = (VX ⊗VY )Var(Vec B̂∗)(VX ⊗VY )
′

= VX(X∗′X∗)−1VX
′ ⊗GDY

Σ̂GDY
.

(41)

The steps to derive the conditional variances of parameter a vector γ associated with a scalar ex-
planatory in model (7) are analogous but simpler since clr(γ) is a vector. In particular, we do not require
Kronecker products or the Vec operator to derive

Var(ilrVY
γ̂) = (Z ′Z)−1Σ̂∗ and Var(clr γ̂) = (Z ′Z)−1GDY

Σ̂GDY
.

In Section 8 we point out that the differences in elasticities and semi-elasticities coincide with the
differences in clr parameters. Thus, to compute the variances of the (semi-) elasticities differences we
can simply apply the classical formula for the variance of a sum of two random variables. In the case of
semi-elasticity difference, for example, we have for any j, l ∈ {1, ..., DY }:

Var(SEj − SEl) = Var((clr γ̂)j) + Var((clr γ̂)l)− 2Cov((clr γ̂)j , (clr γ̂)l).

Additional Proofs

Proof of (12) To demonstrate the result of (12) we focus on one component the equation x(h) =
x(0)⊕ h⊙ u and replace the simplex operators by their definition, allowing to derive

xj(h) =
xj(0)u

h
j∑D

k=1 xk(0)uh
k

⇐⇒ xj(h)

xj(0)
=

uh
j∑D

k=1 xk(0)uh
k

⇐⇒ xj(h)− xj(0)

xj(0)
=

uh
j −

∑D
k=1 xk(0)u

h
k∑D

k=1 xk(0)uh
k

.

(42)

Then, for small h, we can approximate uh
j ≃ 1 + h log(uj), leading to

xj(h)− xj(0)

xj(0)
≃

1 + h log(uj)−
∑D

k=1 xk(0)− h
∑D

k=1 xk(0) log(uk)∑D
k=1 xk(0)− h

∑D
k=1 xk(0) log(uk)

≃
h log(uj)− h

∑D
k=1 xk(0) log(uk)

1− h
∑D

k=1 xk(0) log(uk)

≃
h
∑D

k=1 xk(0) log(
uj

uk
)

1− h
∑D

k=1 xk(0) log(
uj

uk
)
,

(43)

where we exploit that x1(0)+ . . .+xD(0) = 1. The final expression in 43 lends itself to a series expression
of the form x/(1− x) = x+ x2 + x3 + . . .. For small x the higher-order terms vanish, leading to

xj(h)− xj(0)

xj(0)
≃ h

D∑
k=1

xk(0) log(
uj

uk
). (44)
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Proof of (13) and (14) These results correspond to a special case of (44) for the direction direction
u = em = C(1, . . . , e, . . . , 1), where e is at the mth component. In this case, the relative share increments
are defined in terms of the log-ratio log(em,i/em,j). This ratio is not impacted by the closure operation
used in the definition of em, which means that we can apply equation (44) with u = (1, . . . , e, . . . , 1),
leading to

if l ̸= m,
zl(h)− xl(0)

xl(0)
≃h

∑
k ̸=m

zm(0) log
1

1
+ zm(0) log

1

e


=− hxm(0)

if l = m,
zl(h)− xl(0)

xl(0)
≃h

∑
k ̸=m

zm(0) log
e

1
+ zm(0) log

e

e


=h

D∑
k=1

zk(0)− hxm(0)

=h(1− xm(0)).

Proof of (15), (18) and (19) To derive equation (15) we only have to replace the simplex operators in
the equation x(h) = x(0)⊕ h⊙ u by their definition. Since we use ratios of the components of the same
CoDa vector on each side of the equation we can omit the closure, allowing us to derive

xi(h)

xj(h)
=

xi(0)

xj(0)
(
ui

uj
)h =

xi(0)

xj(0)
exp(h log

ui

uj
). (45)

The results of (18) and (19) correspond to (45) for the direction u = em. Since (45) only involves rations
of the elements of u we may equivalently the non-closed direction u = (1, . . . , e, . . . , 1), leading to

if l ̸= m,
xm(h)

xl(h)
=

xm(0)

xl(0)
exp(h log

e

1
) =

xm(0)

xl(0)
exp(h)

if j, l ̸= m,
xj(h)

xl(h)
=

xm(0)

xl(0)
exp(h log

1

1
) =

xj(0)

xl(0)
exp(h).

Proof of (23) Let us first note that we can rewrite (11) as

Xm(h) =
Xm(0)∑DX

k=0 Xk(0) exph log(uk).

Taking the log and then the derivative, we get

∂ logXm(h)

∂h
= log um − C(h), (46)

where C(h) =
∑DX

k=0 Xk(0) log uk exp(h log(uk))∑DX
k=0 Xk(0) exp(h log(uk)

is independent from m.
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A Taylor expansion of fj(h) := f
j
(x(0)⊕ h⊙ u) at h = 0 for all j = 1, . . . DY yields

fj(h) ≃ fj(0) + h

DX∑
m=0

∂fj
∂ log fj

∂ log fj
∂ log x̌m

|h=0
∂ log x̌m(h)

∂h
|h=0

≃ fj(0) + h

DX∑
m=0

fj(0)
∂ log Ỹj

∂ log x̌m
|h=0 [log um − C(0)]

Using (46) we see that the term involving C(0) cancels out when taking the closure leading to (23).

Proof of (29) From (46) in the proof of (23), we easily derive that

logXj′(h)− logXl′(h) = h log
uj′

ul′
.

Proof of (30) From (20), it clear that dY
dh =< clrβ, clru >A . It is then enough to combine with (29).

Proof of (31) Another expression can be obtained for the left hand side of (30). Indeed

dY
dh

d log
Xj
Xl

dh

=
dY
dh

d logXj

dh

d logXj

d log
Xj

Xl

+
dY
dh

d logXl

dh

d logXl

d log
Xj

Xl

=
SEj log(uj) + SEl log(ul)

log(uj)− log(ul)

It is then enough to apply this result to the vector ej ⊖ el and we thus obtain the difference SEj − SEl.

Proof of (33) The first expression is obtained by taking the log and then the derivative of (32) and
the second expression is a consequence of writing the log of the ratio as a difference of logs.
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J., and Hron, K. (2023). Compositional functional regression and isotemporal substitution analysis:
Methods and application in time-use epidemiology. Statistical Methods in Medical Research, page
09622802231192949.

[Katz and King, 1999] Katz, J. N. and King, G. (1999). A statistical model for multiparty electoral data.
American Political Science Review, 93(1):15–32.

[Morais and Thomas-Agnan, 2021] Morais, J. and Thomas-Agnan, C. (2021). Impact of covariates in
compositional models and simplicial derivatives. Austrian Journal of Statistics, 50(2):1–15.

[Morais et al., 2018] Morais, J., Thomas-Agnan, C., and Simioni, M. (2018). Interpretation of explana-
tory variables impacts in compositional regression models. Austrian Journal of Statistics, 47(5):1–25.
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