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1 Introduction

Dominant gatekeepers – the platforms controlling “core services” such as search, e-commerce,

app stores, or social networking – are often suspected of charging excessive platform fees to

business users (merchants, apps, advertisers) and/or practicing self-preferencing (favoring their

own offerings when hybrid,1 i.e., when competing in the markets they operate). This has led

to numerous recent investigations and lawsuits concerning platforms such as Amazon, Apple,

Booking, and Google;2 similar questions will probably surface as AI-based platforms in tech and

in health come to the fore.

Detecting “excessive fees” and “self-preferencing”, the two prongs of the regulators’ equity con-

cern (e.g., in the EU Digital Market Act, DMA), is notoriously difficult or costly; and so reg-

ulators must pick their fights, which requires looking for smoking gun evidence that business

users may overpay or not receive their fair contribution to digital ecosystems. Unfortunately,

current regulations contain only broadly scripted prescriptions such as the DMA’s requirement

that access conditions be fair, reasonable and nondiscriminatory (FRAND). This leaves open the

question of what “fair and reasonable” conceptually means, even putting aside the measurement

issue. Our paper attempts to fill this void.

Why are policymakers preoccupied with business users’ welfare in particular? After all, over

twenty years of research have taught us that the “see-saw effect” in two-sided markets (that a

price increase on one side increases the profitability of attracting users on the other side and

induces a concomitant price decrease there) implies that antitrust analysis should consider the

entire market and not just its business side. Similarly, the hypothesis of self-preferencing runs

counter the Chicago School argument that a rich ecosystem brings product variety and lower

prices, which can be monetized on the consumer side.

The paper builds a framework capable of accounting for existing business strategies and assessing

regulation over a rich array of digital platform environments. It explains why there is a good

reason to be preoccupied with equity for business users in the context of digital platforms: The

important role played by two zero lower bounds (ZLBs) on core and app services (whose prices

cannot be negative because of arbitrage and so are most often equal to 0)3 in the setting of

1Pure platform players (like Airbnb or Booking, which operate markets, but do not compete in them) cannot
engage in self-preferencing, although they might enter into “sweet deals” with selected business users to the same
effect.

2Examples of self-preferencing include the 2017 EU Google Shopping decision, the 2021 Google case in Italy
(Android Auto did not accept an Enel’s app that competed with Google Maps), and investigations into Amazon’s
prominent display of Amazon-branded goods and favoring its own logistics services (FBA).

Regarding excessive fees, several antitrust cases (Epic Games v. Apple; Spotify v. Apple; 2024 EU investigation
of Apple and Google’s non-compliance with the Digital Market Act) concern 3rd party apps trying to circumvent
the 30% app store fee they deem unfairly high. The clampdown on most-favored-nation clauses similarly aims
at capping access fees paid by merchants. Regulators may also directly set caps on access fees. Many local
governments in the US introduced caps on the fees that food delivery platforms charge restaurants during the
COVID-19 pandemic, and several of them then made their fees caps permanent. The major platforms (Uber
Eats, Grubhub and DoorDash) typically charge a 30% fee, and most governments capped these fees to 15%.

3As of December 2024, 97% and 95% of apps in Google Play and Apple’s App Store were freely available.
These include some of the most common 3rd party apps (e.g., PayPal, Dropbox), as well as the competing in-house
apps by Apple and Google (e.g., Apple Pay and Google Pay, iCloud and Google Drive, respectively). On the
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privately and socially optimal platform fees. Despite their importance for strategic behavior

and policy and their endogeneity, the multi-sided-platform literature has mostly ignored ZLBs,

or else posited free consumer access to the platform.

From a bird’s eye view, platforms, whether search engines, app stores, e-commerce, OTAs, or

social networks, all provide business users (merchants, apps, advertisers) with access to the

consumers. Business users may thereby sell their goods or services and, importantly, receive

ancillary benefits from attracting a consumer: Advertising revenues (content providers), data

collection (most apps), sales of premium services (e.g., Dropbox, Spotify, Zoom), fees collected

from merchants selling their products through the app, or else the future profits attached to

repeat purchases and upgrades; we capture these per-consumer ancillary benefits in a given app

market by a variable b > 0. Ancillary benefits imply that the marginal cost is negative for digital

goods, making the app ZLB particularly relevant (in contrast, b < 0 for most physical goods,

whose marginal production cost must be subtracted when computing the ancillary benefit).

For digital goods, an incentive for self-preferencing arises when the platform is vertically inte-

grated and makes more money by supplying, even for free, the good or app itself than by being

paid for giving access, i.e., when b > a, where a is the access fee paid by the app or merchant

to the platform. A second cost of low or nil access fees is that, even if there is no such fore-

closure, they invite entry by me-too apps, that add little value to the ecosystem but extract a

nonnegligible share of it, because competition in the app market is hindered by the app ZLB.

While regulation may keep access fees low or nil, laissez-faire in contrast generates extractive

access fees that squeeze business users; furthermore, the core ZLB, when relevant, blocks the see-

saw effect and prevents consumers from indirectly benefitting from the squeeze. Such extractive

fees both induce a suboptimal usage of apps and discourage their creation in the first place.

The paper derives a simple rule for the optimal regulation of access conditions and analyses

its implementation. A “Pigouvian rule” (â = b) allows the 3rd party apps to capture their

contribution to the ecosystem, promoting the right level of innovation; it does so by pricing the

unpriced positive externality (ancillary benefit) enjoyed by an app that receives access to the

consumer. It also minimizes double marginalization in the set of access fees that do not induce

self-preferencing.

We demonstrate that neither the promotion of platform competition nor that of app store

competition, two potentially useful interventions aimed at creating multiple paths from business

users to consumers, solve the equity concern. Platform competition transfers value from the

platform to the consumer but, provided platforms still control access to their consumers, does

nothing to solve the equity concern for business users. App store competition (triggered by

regulations forcing Apple and Google to host app stores that compete with theirs, so as to

promote consumer multi-homing) is not effective if the dominant platform downlists multi-

homing apps; but even if it is, the absence of access fee makes the platform too app friendly;

core side, most digital platforms, such as the major app stores, e-commerce platforms, search engines and social
networks, grant free access to consumers.
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put differently, app store competition requires levying the optimal access fee b, this time from

the alternative 3rd party app stores rather than from now-disintermediated 3rd party business

users.

The paper then discusses the costs and benefits of various approaches to implementing the

Pigouvian rule in the real-world context of heterogenous app sub-markets: regulatory measure-

ment of b (perhaps triggered by an appeal), a constraint on the distribution of access fees set

by the platform, and finally elicitation from business users (as is already the case, as we show,

for sponsored search and display ads).

Finally, the conclusion lists some take-home points and, pointing at the richness of our framework

for analyzing digital platforms by illustrating the four possibilities (according to whether app

and core ZLBs are binding or not), shows how ZLBs provide guidance to find smoking gun

evidence educating policymakers.

The paper is organized as follows. Section 2 develops the basic framework (making a number

of assumptions that we later relax), derives equilibria with and without the possibility of self-

preferencing, points at the wedge between profit- and welfare-maximizing access fees, and shows

that through appropriate relabeling the analysis accommodates physical devices to access the

platform, physical goods rather than digital apps, and asymmetric ancillary benefits. Section

3 extends the framework to endogenous innovation in the app market, and downward-sloping

demands for either the platform or for app quality. It derives a simple optimal, Pigouvian regu-

lation in which the optimal access fee is equal to the ancillary benefit (â = b). Section 4 analyzes

two interventions aimed at creating multiple paths from business users to consumers: platform

competition and app store competition. Section 5 studies implementation under asymmetric

information. Section 6 reviews the relevant literature, and Section 7 concludes. Omitted proofs

and additional material can be found in the Online Appendices, A and B, respectively.

2 Impact of the access fee

2.1 Basic framework

Consider a two-sided digital platform (e.g., an app store) that connects sellers of digital goods

(hereafter, apps) with a mass 1 of consumers.4 Digital goods entail negligible marginal costs

of production and distribution. Rather, their usage by consumers brings ancillary benefits

for the app providers, such as advertising revenues, consumers’ data that can be monetized,

fees collected from merchants selling their products through the app, premium services, repeat

purchases or upgrades. Hence, their opportunity cost is negative. App developers face a zero

lower bound constraint because negative prices are subject to arbitrage: Bots and uninterested

consumers may take advantage of the payment for usage, and yet bring no profit for merchants

4Throughout the paper, we posit that the platform exists. The viability of dominant platforms is not the
current concern of antitrust authorities in light of the large profits and substantial market power they gather.
Online Appendix B extends the model to entry in the platform market.
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and advertisers and provide valueless data.5

Multiple (a mass 1 of) app markets coexist on the platform. We will analyze a representative

app market for expositional simplicity; the multiplicity of app markets serves to better motivate

the “platform pivotality” assumption below, but is otherwise inessential. In each app market,

two apps6 compete for the platform’s customers, a superior (high quality) one and an inferior

(low quality) one. Without loss of insight for the equity question, the superior one is owned by

an independent app provider: were it owned by the platform, the self-preferencing and squeeze

issues would not arise. The platform in contrast may either own the inferior app (the platform

is then hybrid), or be a pure platform (the inferior app is also independently owned).

The platform: (i) is a gatekeeping platform and charges its consumers a fixed access price;

and (ii) adopts an agency business model (app providers pay access fees for distributing their

apps and set their prices). Figure 1 depicts the case in which the platform operates an hybrid

marketplace.

p0

 v,  p1

 v  + ,  p2 a 

Figure 1: Two-sided market (hybrid case).

Consumers have a unit demand each, and utility v ≥ 0 (resp. v + ∆, with ∆ > 0) when using

the inferior (resp. the superior) app. To avoid the standard “openess problem”, we assume that

consumers select the superior app when indifferent between the two apps (p2 − p1 = ∆); and

that they buy an app when indifferent between doing so and not buying at all. We assume

for the moment that the platform brings no per-se value to consumers (independently of app

consumption).

In a representative app market, let x2 = 1 if consumers buy the superior app and x1 = 1 if

they buy the inferior one. In the following, b ≥ 0 denotes the per-consumer ancillary benefit

accruing to the app provider, p0 the consumers’ access price to the platform, and p1 (resp. p2)

the price of the inferior (resp. the superior) app. The platform levies a unit access fee a ≥ 0 on

apps distributed by a 3rd party provider (Online Appendix B shows that, provided ∆ > b, our

insights are unchanged considering instead ad-valorem access fees)7. The profit of app provider

5Alternatively, non-negative price constraints arise because of technical difficulties in operationalizing negative
prices – as in the following quote from the Stigler Report (p. 30) “It is possible that a digital market has an
equilibrium price that is negative; in other words, because of the value of target advertising, the consumer’s data is
so valuable that the platform would pay for it. But the difficulty of making micropayments might lead a platform
to mark up this negative competitive price to zero.”

6There can be more than two apps, as when there is a fringe of previous generation (i.e., inferior) apps. The
case where there is only one app is captured in our notation by v = 0.

7Under ad-valorem fees, without foreclosure, the platform can capture ∆, which the superior app passes
through to consumers, but cannot capture b. Therefore, if b > ∆, self-preferencing is always optimal for an hybrid
platform.
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i = 1, 2 (or division if owned by the platform) is

πi ≡ xi(pi + b− a).

A pure-player platform’s profit is

π0 = p0 + a(x1 + x2),

whilst an hybrid platform’s profit can be written as the profit it would make as a pure platform,

plus the extra profit its app division makes if it captures the app market – i.e., it is given by

π0 + π1.

Left unmonitored, the platform can, if it wants, make apps less attractive (e.g., through down-

listing). It then chooses {δ1 ≤ 0, δ2 ≤ ∆} so that the value of the app i for the consumer

becomes v+ δi. Strict inequalities correspond to non-price foreclosure.8 In the case of an hybrid

platform, self-preferencing corresponds to policy {δ1 = 0, δ2 < ∆}. We will employ “non-price

foreclosure” and “self-preferencing” indifferently in the hybrid context. The concept of “non-

price foreclosure” is broader – to the extent that the hybrid platform won’t handicap its own

app – as it applies also to the pure-platform case. In contrast, regulatory monitoring of equal

access forces the platform to select {δ1 = 0, δ2 = ∆}, which eliminates stage (2) below.

Throughout the analysis in this section, we take the access fee a as given (whether set by

regulation or by the platform) and consider simultaneous pricing choices.9 The timing is given

in Figure 2.

(1) (2) (3) (4)

Access
charge a
determined

[When no 
monitoring, 
platform
selects          
and           ]2  

Firms set their
prices simultaneously
• in 

the hybrid case
• in the

pure-platform case

0 1 2{ , } and { }p p p

Consumers choose
whether to join the
platform and if so 
the app they will use

1 0 

0 1 2{ }, { }, { }p p p

Figure 2: Timing.

Equilibrium concept. The simultaneity of price choices gives rise to a multiplicity of pure-

strategy equilibria, as is familiar in Nash demand games – e.g., in the literature on tying (Choi

and Stefanadis, 2001, Carlton and Waldman, 2002). We will make the reasonable assumption

that the platform is “pivotal” for consumers’ participation:

Definition (platform pivotality). An equilibrium of the pricing subgame (stage (3)) exhibits

8When the platform finds it optimal to foreclose, it will reduce the attractiveness of a single app so that the
other app is selected by consumers. In practice this can be accomplished by downlisting the foreclosed app. And
so our large set of foreclosing options involves no loss of generality.

9That a is set first is natural if this access fee is regulated. Under laissez-faire, the platform needs to commit to
a for some time to attract sellers (in reality, access fees charged by major digital platforms are stable over time).
Put differently, the timing allows the platform to squeeze the superior 3rd party app, but not to hold it up.
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platform pivotality if an independent app i maximizes its profit taking the mass of consumers

present on the platform as given; that is, independent app providers do not perceive themselves

as pivotal for the consumers’ decision of whether to join the platform.10

The platform pivotality assumption is innocuous when the platform faces a downward-sloping

demand and there are many apps (see Section 3.2.1), as apps are then too small to have much

effect on consumers’ participation decisions. Unless otherwise stated, we will focus on the follow-

ing equilibria (insights are not much affected by this focus; we will characterize all equilibria):

Definition (equilibrium). An equilibrium of the pricing subgame is a set of pure strategies that

(i) are undominated and (ii) satisfy platform pivotality.

Let us introduce some further definitions:

Definition (competitive neutrality). The access fee a is competitively neutral in a range [a, ā] if,

in this range, (i) the platform has no incentive to use non-price instruments to foreclose (even

if it can), and (ii) the equilibrium profits and the allocation {xi}i=1,2 are independent of a over

the range.

Definition (fairness and squeeze). The superior app receives its fair share of its contribution to

the ecosystem if π∗2(a) = ∆. The superior app is squeezed if (i) the platform does not foreclose

it (δ2 = ∆), but (ii) π∗2(a) < ∆.

Definition (zero lower bounds). The app zero lower bound (ZLB) binds if p∗1 = 0. The core ZLB

binds if p∗0 = 0.11

2.2 Equilibrium in the absence of non-price foreclosure

We first assume that non-price foreclosure is prevented through regulatory monitoring. Note

that, in both cases of a pure and an hybrid platform, both apps have the same opportunity

cost of selling (a − b). Under platform pivotality, the unique Bertrand equilibrium outcome in

10Letting xi(p
k, δk) ∈ {0, 1} denote the demand for app i in market k as function of pk ≡ (pk1 , p

k
2) and

δk ≡ (δk1 , δ
k
2 ), independent app i in market k maximizes [pki − (a− b)]xi(pk, δk) over pki .

11p2 > 0 always holds in the basic model (the “superior app ZLB” is never binding). This ZLB may bind in
extensions of the basic model, for instance if (a) apps adopt a freemium business model (Online Appendix B),
or (b) the demand for the superior app is downward sloping (Section 3.2.2), or else (c) if charging a small price
imposes hassle or psychological costs and results in lower take-up rate and accordingly ancillary benefits.
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undominated strategies corresponds to12

p∗1 = max(0, a− b) and p∗2 = min(p∗1 + ∆, v + ∆).

That is, the app providers do not charge below the opportunity cost a − b in an equilibrium

in undominated strategies. The unique equilibrium outcome takes four configurations as a

increases:

Muted app competition. When the opportunity cost is negative (a− b < 0), app 1 cannot charge

an app price p1 below 0 due to the app ZLB and therefore sets p∗1 = 0, while app 2 is priced at

p∗2 = ∆. The superior app does not feel the full competitive pressure from app 1, and so makes

supranormal profit (π∗2(a) = ∆ + (b − a) > ∆). The consumers obtain surplus v > 0 and so

p∗0 = v.

Access fee neutrality. If the opportunity cost is non-negative (a− b ≥ 0), the standard Bertrand

equilibrium outcome in undominated strategies has p∗1 = a − b (the app ZLB does not bind)

and p∗2 = (a − b) + ∆, so that π∗2(a) = ∆ (fair reward): A change in the access fee increases

one-for-one both apps’ opportunity cost. Access fee pass-through is feasible in our model as

long as consumers keep purchasing the app; using the fact that consumers are in equilibrium

indifferent between the two apps, p∗0 = v− (a− b), and so it must be that a− b ≤ v. By making

charging the consumer or app 2 for access perfect substitutes, pass-through causes the access

fee to be neutral in this region. The neutrality region exhibits the familiar “see-saw property”

of two-sided-market theory, in which an increase in the merchant fee translates (in our case one-

for-one) into a decrease in the consumer fee. The validity of Chicago School’s “rich ecosystem

argument”13 for the hybrid case thus requires an access fee that exceeds the ancillary benefit of

attracting consumers on the app.

Squeeze. When a > b + v, app 2 can no longer apply mark-up ∆ over app 1: p2 = p1 + ∆ =

(a − b) + ∆ > v + ∆. So, to sell to consumers on the platform it must lower its mark-up and

12Consider a pure or hybrid platform. Prices p1 strictly below a− b are dominated by price a− b: p1 < a− b
would make app 1 regret having won the consumer if app 2 charged an unexpectedly high price. Conversely,
prices p1 above a − b ≥ 0 cannot be equilibrium prices. (a) Either the superior app is not constrained by users’
willingness to pay (p2 < v + ∆) and then p2 = p1 + ∆ by platform pivotality. The consumers are indifferent
between the two apps and so app 1 could gain a− b > 0 by lowering its price by ε. (b) Or, if the superior app is
constrained by users’ willingness to pay (p2 = v + ∆), then p1 ≥ v for app 2 to win the market and so app 1 is
out of the market. This is the case if and only if a − b ≥ v: Otherwise app 1 could charge p1 = a − b(+ε), take
the market and gain relative to the presumed equilibrium behavior. Note that in this region of parameters, the
exact value of p1 is irrelevant as app 1 will not be considered by consumers; so there is no loss of generality in
positing p1 = a− b.

13The old Chicago School critique of foreclosure theory can be stated for the platform context in the following
way: “Aside from efficiency motives, an hybrid platform (the monopoly segment) has no incentive to foreclose
a 3rd party app (an independent player in the competitive market): A rich ecosystem benefits consumers in two
ways, product variety and enhanced competition, and allows the platform to raise its consumer price to extract the
associated increase in consumer surplus.”
This argument is akin to several others recommending a focus on price levels, but non on price structures: in public
utility regulation (delegation of individual prices to utilities under the umbrella of a price cap solely aimed at
reducing the overall price level), in the antitrust of two-sided markets (the see-saw argument and the concomitant
recommendation of looking at a single market), and in authorities’ agnostic stance with regards to (second- and
third-degree) price discrimination.
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sell at p∗2 = v + ∆. Because the consumers do not benefit from apps, the core ZLB is binding

(p∗0 = 0) and the access fee is no longer neutral, as the app 2 developer must absorb its increase

to keep customers. The app 2 developer’s margin is squeezed (π∗2(a) < ∆, with π∗2(a) strictly

decreasing in a and π∗2(b+ v + ∆) = 0), and the platform appropriates, at least in part, app 2’s

contribution to the ecosystem.

Superior app’s exit. When a > b+ v+ ∆, app 2 would have to sell at a price below the fee paid

to the platform minus the ancillary benefit. It is then excluded from the app market. Such price

foreclosure benefits neither the gatekeeper nor app 2’s developer.

Proposition 1 (retail prices in the absence of self-preferencing). Suppose that the platform

cannot use non-price instruments to foreclose. Whether the platform is pure or hybrid, the

equilibrium outcome is unique. Because consumers are homogeneous, their surplus is extracted

(p∗0 + p∗2 = v + ∆), and π∗0(a) + π∗2(a) = b + v + ∆ (and π∗1(a) = 0) for all a ≤ b + v + ∆.

Furthermore,

• when a < b:{
App ZLB: p∗1 = 0 and p∗2 = ∆,

Supranormal app profit: π∗2(a) = ∆ + (b− a) > ∆,

• when b ≤ a < b+ v:{
Passthrough: p∗1 = a− b and p∗2 = p∗1 + ∆,

Fair reward: π∗2(a) = ∆,

• when b+ v ≤ a ≤ b+ v + ∆:{
Core ZLB (p∗0 = 0): p∗1 = a− b and p∗2 = v + ∆ < p∗1 + ∆,

Squeeze: π∗2(a) = b+ v + ∆− a < ∆,

• when a > b+ v + ∆:{
App 2’s exit: p∗0 + p∗1 = b+ v in hybrid platform case; π∗i (a) = 0 for all i in pure platform case,

Price foreclosure: π∗2(a) = 0.

Proof of Proposition 1. The proof of uniqueness can be found in Online Appendix A. There, we

allow for differentiated app markets rather than a representative one – an app market k is then

characterized by a triple {ak, bk,∆k} – and for an elastic demand for the platform.

Remark (other Nash equilibria). We have focused on the unique equilibrium outcome satisfying

undominated strategies and platform pivotality. Are there other Nash equilibria? When a > b,

there are other Nash equilibria satisfying platform pivotality, in which app 1 charges a price p1

below its opportunity cost a − b – i.e., p1 ∈ [0, a − b) and, as above, p∗2 = min(p1 + ∆, v + ∆)

and p∗0 = v + ∆ − p∗2, provided that app 2 makes a non-negative profit. These equilibria with

below-cost pricing involve a squeeze of the superior app (i.e. π∗2(a) < ∆ for all a > b). At prices

below a− b, app 1 would lose money if app 2 were to raise its price and surrender the market to

app 1; therefore, such equilibria are ruled out by the requirement (i) of the equilibrium definition

that dominated strategies be eliminated.
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Finally, for all values of the access fee, there are also Nash equilibria in which p2 is again low,

but for another reason: App 2 could internalize the constraint p0 +p2 ≤ v+∆, i.e. perceive itself

as pivotal (for example it would charge nothing if p0 = v+ ∆); hence the need for condition (ii)

of the equilibrium definition as well.

Remark (the link between ECPR and the ZLBs). The equilibrium characterization unveils a sim-

ple connection between the ZLBs and Baumol and Willig’s ECPR rule for a vertically integrated

firm providing access to a rival:

Definition (ECPR level). The access fee is below (equal to, above) the Baumol-Willig efficient

component pricing rule level if a is smaller than (equal to, higher than) the unit profit, p1 + b,

lost by the hybrid platform when the 3rd party app attracts a consumer.

Corollary 1 (ECPR). In equilibrium, the access fee is

� below the ECPR level (a < p∗1 − (−b)) if and only if the app ZLB binds (a < b);

� at the ECPR level (a = p∗1 − (−b)) if and only if no ZLB binds (b ≤ a ≤ b+ v);

� above the ECPR level (a > p∗1 − (−b)) if and only if the core ZLB binds (a > b+ v).

2.3 Self-preferencing and vertical integration

Let us augment the platform’s strategy space by letting it engage in non-price foreclosure (the

platform is left unmonitored).

Proposition 2 (self-preferencing and vertical integration).

(i) Left unmonitored, an hybrid platform engages in self-preferencing if and only if a < b. In

contrast, a pure platform never benefits from using non-price foreclosure.

(ii) When a ≥ b or when a regulator prevents non-price foreclosure, the ownership of the infe-

rior app is irrelevant. In contrast, if a < b and non-price foreclosure cannot be prevented,

the platform (but not society) benefits from vertical integration.

Proof of Proposition 2.

(i) First, we show that the platform has no incentive to engage in non-price foreclosure (δ2 < ∆

and/or δ1 < 0) when both apps are independent. Suppose that δ2 > δ1 (the reasoning is the

same in the opposite case); if app 2 is not constrained by consumers’ willingness to pay, a

reduction in δ2 has no impact on consumer surplus from apps as it decreases the superior app’s

markup and its value to the consumer by the same amount. In contrast, a decrease in δ1 reduces

app competition and hurts the consumers, so the platform could raise δ1 as well as the price

p0 (keeping consumer membership constant), thereby increasing its profit.14 When app 2 is

14More precisely, fix an arbitrary access fee a and let u(a) denote consumer net surplus when buying the best
quality-price proposition in the app market. Suppose, without loss of generality, that δ2 ≥ δ1; then either the
consumer buys no app at all, and so u(a) = 0 and the platform further receives no access fee or membership fee,
or the consumer buys app 2. In the latter case, the undominated-strategies assumption yields p1 = max(a− b, 0)
and p2 = p1 + δ2 − δ1 ≥ p1 + δ2, and so u(a) ≤ (v + δ2) − [max(a − b, 0) + δ2] ≤ (v + ∆) − [max(a − b, 0) + ∆]:
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constrained by consumers’ willingness to pay, p0 = 0 and so the platform’s profit equals π0 = a

for all (δ1, δ2); then, setting δ2 below ∆ would reduce app 2’s profit (π2 = δ2 + b− a), which the

platform can appropriate under laissez faire, and so is never optimal for the platform.

Second, consider an hybrid platform. Without loss of generality, we can assume that δ1 = 0

and either δ2 = ∆ (no foreclosure) or δ2 = −v (full foreclosure). Intuitively, the platform’s

choice determines which among the in-house and 3rd party apps the consumers will select. In

the former case, making the 3rd party app worthless involves no loss of generality. In the latter

case, picking δ2 < ∆ does not benefit the platform. When foreclosing, only the total price p0 +p1

matters. The platform can achieve profit v + b, i.e., the value it creates on a stand-alone basis.

When not foreclosing, the platform makes profit π∗0(a) = min(v+ a, v+ b) if there is no squeeze

(and more when there is a squeeze). So, the platform forecloses if and only if a < b.

(ii) As seen in Proposition 1, absent foreclosure, prices are the same irrespective of the inferior

app’s ownership. Thus, vertical integration into the app segment is profitable if and only if the

hybrid platform has incentives to engage in self-preferencing – i.e., for all a < b. Intuitively, for

low access fees, vertical integration enables the platform to reap the benefit b−a from foreclosing

the superior app; this benefit would go to a 3rd party app provider otherwise.

In a nutshell, for a < b (i.e., when the app ZLB binds), a vertically integrated platform does

not have enough skin in the game to want to give access to its rival. Without taking a stance

on their desirability, we note that existing (GDPR, DMA) and forthcoming regulations aim at

restricting the use of data and thereby reduce the ancillary benefit b. Such a decrease in b

reduces the incentive for self-preferencing, keeping the access fee constant.

Figure 3 depicts how the platform’s and app 2’s profits vary with the access fee, with and without

self-preferencing, and with and without vertical integration.

2.4 Platform-optimal, welfare-optimal, and fair access pricing

We define (ex-post) social welfare W as the sum of consumer net surplus S and the firms’ profit:

W = S +
∑

i=0,1,2 πi.

Proposition 3 (optimal access fees). When the apps pre-exist the platform’s policy:

(i) Welfare-optimal fees. Any access fee such that app 2 is not foreclosed maximizes ex-post

social welfare. This means any a ∈ [0, b + v + ∆] in the absence of self-preferencing, and

any a ∈ [b, b+ v + ∆] when the platform is hybrid and can engage in self-preferencing.

(ii) Profit-maximizing access fee. The platform’s profit is maximized at the extractive access

fee a∗ = b+ v + ∆, yielding π∗2(a∗) = 0.

(iii) Fair access fees. The independent developer receives a fair reward for its contribution to

the ecosystem if and only if a ∈ [b, b+ v].

the consumer’s surplus from the app is smaller than in the absence of non-price foreclosure. So foreclosure does
not raise access fee revenue and does not allow the platform to raise p0 either.
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Figure 3: Profits. The dashed lines represent the profits when self-preferencing is feasible and
the full lines the profits when it is not. They differ only when a < b.

Proof of Proposition 3. Consumer surplus is always extracted by the platform through the

access price, and W ∗ = b + v + x2∆ is maximized whenever there is no price (a > b + v + ∆)

or non-price foreclosure (a < b if self-preferencing cannot be monitored), so that x2 = 1, from

which (i) follows. For a = a∗: π∗0(a∗) = W ∗, which establishes (ii).15 Finally, the result in (iii)

follows from the equilibrium profit π∗2(a) given in Proposition 1.

Remark (fairness in other Nash equilibria). We noted that there are other, lower-app-price

equilibria when a > b. Does the equilibrium selection matter for the fair levels of the access

fee?16 For all a > b, all equilibria with p1 < a − b yield π∗2(a) < ∆. In contrast, our later

Pigouvian recommendation â = b yields a fair reward and is not subject to the multiplicity

issue provided that independent apps do not perceive themselves as pivotal (part (ii) of our

equilibrium definition).

2.5 Extensions

The basic model presumes that goods are digital. The value chain may be more complex and

embody non-negligible production costs incurred when supplying the devices needed to connect

to the platform or in the production of physical goods. In this section, we will let b† denote

the ancillary benefit and show how we can define an adjusted benefit, b, such that the analysis

15This full-squeeze result rests on the assumptions that the superior app faces no entry cost and has no
alternative ways to reach the platform’s consumers. Else, the unregulated platform would set a lower ac-
cess fee, allowing the superior 3rd party developer to recover entry costs and/or to match its option to
reach consumers through other, less efficient, distribution channels – e.g., own website rather than app (see
https://vwo.com/blog/10-reasons-mobile-apps-are-better).

16The welfare-optimal and profit-maximizing access fees are as in Proposition 3 (i)-(ii) in all Nash equilibria
satisfying platform pivotality.
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carries over to such environments with this adjusted benefit. Finally, we show that under another

simple relabellisation the model applies to asymmetric ancillary benefits.

2.5.1 Physical goods

Our analysis is applicable to platforms hosting sellers of physical goods (e.g., e-commerce plat-

forms such as Amazon and eBay) or services (e.g., OTAs or ride-hailing platforms such as

Booking.com and Uber) that entail positive marginal costs.

Intuitively, the cost of physical goods makes the “app” ZLB less likely to bind and reduces

concerns about self-preferencing. Let ca > 0 denote this unit cost. With ancillary benefit

b† > 0, the adjusted ancillary benefit b is then

b ≡ b† − ca.

If this adjusted ancillary benefit is non-negative, the self-preferencing region in the hybrid case

is still a < b; otherwise it is empty.

Proposition 4 (physical goods). Letting b ≡ b†−ca (the difference between the ancillary benefit

and the cost of the final good), the region where app 2 makes supranormal profits (if the platform

is a pure-player or self-preferencing is monitored) or is foreclosed is empty whenever the adjusted

ancillary benefit is negative (b < 0). The platform-optimal level, a∗ = v+ b+ ∆, strictly exceeds

the fair levels of the access fee a ∈ [max{b, 0}, v + b].

2.5.2 Physical devices

Suppose that consumers can access an app store (Apple App Store, Google Play, Microsoft

Store...) only upon purchase of a costly physical device (smartphone, laptop, or game console).

To what extent must Propositions 1 through 3 be amended to account for this extra layer

between the consumer and the gatekeeper? Assume that the device brings stand-alone value

vd, the same for all consumers. For example the smartphone can be used for “non-gatekeeping

purposes” such as taking pictures and making calls; likewise desktops have other usages than

supporting services intermediated by a gatekeeper. Let cd denote the device’s production cost

(the ancillary benefit is again denoted b†). As in the basic model, all prices are set simultaneously

and consumers then take their consumption decision.

If the device is “cheap” relative to its stand-alone value, that is if vd ≥ cd, consumers own

the device regardless of the app store policy and of whether there is a competitive original

equipment manufacturers (OEM) sector or a monopoly, vertically integrated platform, and so

Propositions 1 through 3 are literally unchanged. The platform squeezes the superior app by

setting a∗ = b+ v + ∆, with b ≡ b†.

Next consider a “costly” device, i.e. vd < cd.

(a) Suppose first that the platform is not vertically integrated into device manufacturing (and

cannot subsidize device manufacturers); instead, the device (say, an Android-powered smart-
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phone) is manufactured by a competitive OEM industry. The device is sold at cost, i.e. at price

cd.

The consumer’s surplus from the apps must exceed cd−vd > 0. For that reason, the equilibrium

cannot be in the squeeze region, as this would imply that app 2 is constrained by, and charges

the consumer’s willingness to pay for the app. This means that app 2 must receive ∆ and that

the gross surplus to be divided between the consumer and the platform is v + b†. Letting

b ≡ b† − (cd − vd),

the platform must set a ≤ b+ v.17 The market exists if and only if v+ vd − cd = v+ b− b† ≥ 0,

because the core ZLB prevents the ancillary benefit b† from being passed through to consumers

absent vertical integration into the device segment (as would also be the case of ∆ if app 2 were

squeezed).

(b) When the device is produced by a vertically integrated platform (as is the case for, e.g.,

videogame platforms) or the platform can subsidize device manufacturers, the core ZLB may

be circumvented by subsidizing the device. The platform can then (i) squeeze the superior app

by setting a∗ = b† + v + ∆, and (ii) charge price vd for the device (implying a loss cd − vd per

device) and p0 = 0 for the app store. Concretely, the platform can bundle device and app store

and sell the bundle at vd (in contrast, lowering a to keep apps cheap may attract consumers, but

is suboptimal for the platform, which no longer squeezes the superior app). The market exists

provided that the total surplus is positive: v + b+ ∆ ≥ 0.

Proposition 5 (devices). Suppose that the device is produced by a competitive sector. Let b†

denote the ancillary benefit and b ≡ b† −max{0, cd − vd} denote the adjusted ancillary benefit.

(i) When the device is cheap (b = b†), Propositions 1 through 3 are literally unchanged as the

consumers own it irrespective of the platform’s policy.

(ii) When the device is costly (b = b† − (cd − vd)):

� When the platform is not vertically integrated into device manufacturing, the market exists

if and only if v + b − b† ≥ 0. The platform optimally sets a∗ = b + v and p0 = 0. It does

not squeeze the superior app.

� When the platform is vertically integrated into device manufacturing, the market exists if

and only if v + b + ∆ ≥ 0. The platform optimally sets a∗ = b† + v + ∆ and p0 = 0, and

provides subsidy (cd− vd) for the purchase of the device (equivalently it bundles device and

app store at price vd). It squeezes the superior app, which provides the platform with an

incentive to vertically integrate into device manufacturing.

� Guaranteeing a fair reward requires b† ≤ a ≤ b + v; but if v + b − b† < 0 < v + b + ∆,

allowing vertical integration into device manufacturing and (at least “some”) squeeze is

necessary for the ecosystem’s viability.

17Any {a ≤ b+ v, p0 = b+ v − a} gives the same profit v + b to the platform.
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An interesting result here is that vertical integration into devices can enable ecosystem viability.

The intuition relates to the familiar Tinbergen rule requiring at least as many independent

instruments as there are targets: the access fee alone cannot achieve two contradictory goals.

To make the platform more attractive to consumers, a must make apps cheap and therefore

be low. But that may not suffice to induce the consumers to purchase the costly device. The

second instrument is a platform subsidy to such purchases. In turn, a platform integrated into

device manufacturing may not want to pay this subsidy unless the apps themselves are put to

contribution through a high access fee. This high fee can be offset on the user side through the

subsidy instrument.18

Remark (valuable core services). The analysis of Proposition 5 (i) applies beyond physical

devices. Indeed, consumers attach per se value to Google’s search engine and Facebook’s social

network, which are core products. This case is equivalent to the above analysis with a platform

manufacturing the device and vd > cd = 0, where vd is now the consumption value of the core

(rather than the device).

2.5.3 Asymmetric ancillary benefits

So far, we assumed that all apps reap the same benefit from app distribution. This need not

be the case. First, the platform may obtain a share of benefits when a 3rd party app is sold,

as when Google shares data with independent apps in its ecosystem, or when the platform will

levy future access fees attached to repeat purchases and premium versions or upgrades. Second,

the benefits from app distribution may depend on provider-specific features. We therefore allow

the ancillary benefit to take the form b†ixi for app i, where xi = 1 if the consumer chooses app

i and xi = 0 otherwise. Letting b1 ≡ b†11 − b
†
10 > 0 and b2 ≡ b†21 − b

†
20 = b†21 > 0, and assuming,

without loss of generality,19 that ∆ > b1 − b2, the analysis carries through with appropriate

modifications:

Proposition 6 (asymmetric ancillary benefits). Consider an hybrid platform.20 With asym-

metric ancillary benefits b†ixi, denoting b1 ≡ b†11 − b
†
10 and b2 ≡ b†21, with ∆ > b1 − b2:

(i) The platform has an incentive to engage in self-preferencing if and only if a < b1.

(ii) Any a ∈ [b1, b1 + v] yields a fair reward to the superior app; these levels are strictly lower

than the platform’s profit-maximizing fee a∗ = v + b2 + ∆.

18Note also that the possibility that some squeeze is needed to ensure viability applies not only to the case of
costly physical devices but also when entry costs in the core segment are very large, and so the viability of the
platform is not a foregone conclusion.

19∆ + b2 < b1 would mean that the “superior” app creates less total value than the “inferior” app, a case that
we noted is uninteresting in the hybrid platform case.

20The analysis can also be generalized to pure platforms. The novel insight is that a pure platform may engage
in non-price foreclosure, even if the access conditions are “non-discriminatory”, i.e., if the access fee a and the
share ξ ∈ (0, 1) of ancillary benefits received by the platform are app-independent; the platform then may reduce
the attractiveness of an app that is preferred by consumers but offers a low ancillary benefit. To see this, suppose
that a ≤ b†21 < b†11. If δ2 = ∆, equilibrium app prices are p1 = 0 and p2 = ∆, and so p0 = v and, as consumers
select app 2, π0 = v+a+ ξb†21. The platform would then make more money by setting δ2 slightly below 0, so that
p1 = p2 = 0, consumers select app 1 and the platform still charges p0 = v and makes higher profit π0 = v+a+ξb†11.
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Proof of Proposition 6. Equilibrium app prices are p∗1 = max(a−b1, 0) and p∗2 = min(p∗1 +∆, v+

∆). The 3rd party app’s profit is then π∗2 = ∆ + (b2− b1) in the neutrality region [b1, b1 +v], and

π∗2 = b2 +(v+∆)−a in the squeeze region. So a∗ = v+b2 +∆. The 3rd party app’s contribution

to the ecosystem is now ∆ + (b2 − b1). Therefore, picking access fees in the neutrality region

creates neither a squeeze nor an incentive for self-preferencing, and yields the fair reward.

Remark (application). The end of current arrangements under which the platform shares with

its apps their data would thus increase the incentive for self-preferencing (by reducing b†10 and

so increasing b1); put differently, such a move would have to be accompanied with increased

regulatory monitoring and/or reduced regulatory pressure on access-fee setting.

Remark (freemium model). The freemium model can be studied within our framework. The

apps come in a basic version, that the consumers can try. If satisfied by the app, they can buy a

paying premium version. The expected profit made by the app on the premium version can be

modeled as an ancillary benefit associated with the consumption of the basic version of the app,

which is split between the app and the platform (as the platform levies a fee on the sale of the

premium version). The app ZLB can then bind for both apps on their basic version, vindicating

the “freemium” terminology (see Online Appendix B for a simple example).

3 Pigouvian regulation

In the simple model of Section 2, all outcomes in which there is no (price or non-price) foreclosure

are equivalent from a total welfare standpoint, since consumer surplus is entirely captured by the

platform directly via the consumer price p0 or indirectly through the impact of the access fee a

on the price of apps, and superior 3rd party developers’ margin squeeze has only redistributional

effects. Hence, even the fully extractive unregulated outcome (a = a∗) is socially efficient, so

that one might argue that there is little scope for regulation.

In this section, we first show that this indifference is unwarranted if the introduction of a supe-

rior 3rd party app in the marketplace is endogenous and depends on the independent developer’s

incentives to invest in product innovation (Section 3.1). We then extend the model by allowing

for heterogeneous consumer valuations (Section 3.2), deriving a Pigouvian principle that under-

lies optimal access fee regulation in more general environments. Concretely, we show that the

regulated access fee should coincide with the ancillary benefit associated with app distribution:

â = b.

The reason why this can be interpreted as the Pigouvian level of the access fee is that b represents

an unpriced externality that is internalized when app suppliers are charged â = b.
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3.1 Endogenous innovation

Suppose that, absent innovation, both apps bring value v to consumers. In this case, perfect

Bertrand competition in the app market implies that app 2 makes zero profit, whereas the pure

or hybrid platform obtains b+ v. Upon observing the access conditions, app 2 decides whether

to sink a cost γ > 0 to introduce a superior version of the app, which brings an extra-value ∆ to

consumers. Suppose that the development cost γ is distributed according to a smooth cdf G(γ),

with density g(γ) and monotone hazard rate on R+, and its realization is privately observed by

the developer.

Proposition 7 (fairness and innovation). With privately observed app developer’s cost dis-

tributed according to cdf G(·) with density g(·) and monotone hazard rate, welfare is maximized

at â ∈ [b, b + v]. These levels are strictly lower than the platform’s profit-maximizing level

a∗ ∈ (b+ v, b+ v + ∆), given by

a∗ = b+ v +
G(v + ∆ + b− a∗)
g(v + ∆ + b− a∗)

.

Proof of Proposition 7. For a < b, either the anticipation of being foreclosed gives the 3rd party

developer no incentive to innovate, or the supranormal profit obtained if the platform is a pure

player or foreclosure is monitored implies that some socially inefficient innovations – namely,

those with development cost γ ∈ (∆,∆+b−a] – are undertaken. For a ∈ [b, b+v], the innovation

takes place if and only if γ ≤ ∆, i.e. whenever it is socially optimal. For any a > b+ v, the 3rd

party developer innovates if and only if γ ≤ v+ ∆ + b−a, so that the platform’s expected profit

is π∗0(a) = v+ b+ [a− (b+ v)]G(v+ ∆ + b− a), which is maximized at a∗ > b+ v characterized

above. This implies that, under laissez faire, some socially optimal innovations – namely, those

with development cost γ ∈ (v + ∆ + b− a∗,∆] – are not undertaken.

Squeezed 3rd party sellers have a suboptimal incentive to develop their apps. The impact of the

access fee on the richness of the ecosystem is accounted for by the platform, but incompletely so.

As a result, an inefficiently low amount of innovation takes place under laissez-faire. Capping,

by regulation, the access fee to any level in the competitive neutrality region (i.e., a ∈ [b, b+ v])

is needed to maximize social welfare. As noted in Section 2.4, â = b is the only access fee that

maximizes welfare for any equilibrium satisfying platform pivotality. Considering independent

developers’ innovation incentives unveils a natural link between fair access pricing and welfare

maximization.

Remark (is there a trade-off between consumer surplus and innovation?). The call for 3rd-party

developer reward ∆ was made from the point of view of efficiency/welfare maximization. A

consumer standard might seem to lead to a social demand for some “taxation” of innovation in

the form of a squeeze on app profits, provided that the increase in access fee is passed through

to consumers via a reduction in the core price. But there is here no trade-off between consumer

and innovator surplus in this intermediated environment because there is no pass through (the

squeeze region coincides with the core ZLB one); and so the consumer standard leads to no
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specific conclusion on the innovation front. This conclusion is robust to platform or app store

competition (Section 4), because the core ZLB again binds and so there is zero pass-through to

consumers.

Remark (how plausible is “excessive innovation”?). Our second remark relates to the excessive

innovation that arises when the access fee lies below the ancillary benefit (a < b) and vertical

integration is not an option or self-preferencing can be monitored. One may be suspicious of

worries about excessive innovation. Yet, this possibility is natural in the digital economy. A

me-too innovation in the app segment, bringing along a small improvement ∆ = ε in app quality,

allows the innovator to corner the app market, engendering profit (b − a). Similarly, assuming

that entry can occur at value proposition v (no innovation relative to the current generation),

me-too entry will occur as long as the investment cost is smaller than b/n, where n is the number

of active apps, when there is no access fee for example: The ancillary benefit is thus dissipated.

3.2 Consumer heterogeneity

This section allows consumers to differ in the overall demand for the platform (Section 3.2.1)

or in their demand for the superior apps relative to the in-house ones (Section 3.2.2). These

extensions, as well as the study of platform and app store competition in Section 4, allow us to

test the robustness of our insights; they also generate a positive consumer surplus and thereby

introduce a meaningful distinction between the welfare standard and the consumer standard.

3.2.1 Elastic platform demand

Assume that consumers directly derive utility from the core service, independently of apps.

Their willingness to pay for the core service, vc, is heterogeneous, has wide support (in R),

and is distributed according to a smooth cdf F (vc) with density f(vc), and monotone (inverse)

hazard rate ρ(vc) ≡ [1 − F (vc)]/f(vc). A negative value of vc corresponds to a learning or an

opportunity cost. To more easily identify the value created by apps from that created by the

core, let va ≡ v denote the gross value created by the inferior app (and va + ∆ that created by

the superior one).

In the absence of vertical integration, the two independent apps take platform consumer mem-

bership as given (part (ii) of our equilibrium definition), and play the undominated Bertrand

equilibrium (part (i) of our equilibrium definition), which is unique and equal to {p∗1 = max(0, a−
b), p∗2 = min(p∗1 + ∆, v + ∆)}.

Things are more complex in the vertical integration case, as reductions in p1 and in p0 are

alternative ways of attracting more consumers to the platform. An hybrid platform may want

to set app prices pk1 that would be “too low” (dominated) from the point of view of the narrowly-

construed app-market-k profit πk1 : a low app price attracts more consumers to the platform, and

thereby generates additional consumer fees and, unless a = 0, access fee revenue in other app

markets as well. Thus, the concept of undominated strategy must be interpreted at the multi-

product level {p0, {pk1}} for the hybrid platform.
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In contrast, even if platform pivotality is not invoked, when the number of app markets is

high enough, it is still the case that the 3rd party apps do not feel responsible for attracting

consumers to the platform and so maximize their profit, taking platform membership as given.

Put differently, the platform pivotality assumption is always satisfied with a large number of

(independent) app markets, because the presence and price of an individual (superior) 3rd party

app in one app market has a negligible impact on consumers’ overall utility from access to the

platform.

If there are no superior apps (or if the superior apps are foreclosed) and the platform is hybrid,

both the core and app ZLBs bind (p0 = p1 = 0) whenever

arg max
{p0+p1}

(p0 + p1 + b)[1− F (p0 + p1 − va)] ≤ 0 ⇐⇒ b ≥ ρ(−va),

given that the cutoff is given by v∗c + va = p0 + p1. As this is a novel feature compared with

the foregoing analysis (where at most one ZLB bound), we restrict attention to this region of

parameters:

Proposition 8 (elastic platform demand). Augment the basic model by adding a consumer

utility from core services, vc, distributed according to a smooth cdf F (vc) with density f(vc) in

R, and monotone (inverse) hazard rate ρ(vc) ≡ [1 − F (vc)]/f(vc). Suppose that b ≥ ρ(−va)
where va is the value of the inferior apps, so that the core and app ZLB both bind (p0 = p1 = 0)

when the superior apps do not exist or are foreclosed.

(i) If left unmonitored, an hybrid platform engages in self-preferencing if and only if a < b.

If a < b, and the platform is a pure player or cannot engage in self-preferencing, the two

ZLBs bind if and only if a ≥ ρ(−va).

(ii) In the class of access fees that do not trigger self-preferencing (and in the entire class of

access fees when self-preferencing cannot be prevented), welfare is maximized for â = b. In

contrast, under laissez-faire, a∗ ≥ â.

Remark (equilibrium multiplicity). When the platform is hybrid, a continuum of equilibria that

satisfy conditions (i)-(ii) of our equilibrium definition exist when a > b. In particular, there

exists a strictly increasing function p̄(a) for a ≥ b, with p̄(b) = 0 and p̄(a) < a − b for a > b,

such that for any p1 ∈ [0, p̄(a)], the triple {p0 = 0, p1, p2 = p1 + ∆} is an equilibrium. As

noted above, such below-cost pricing would not emerge in equilibrium if the inferior app were

independently owned. This implies that the platform has an incentive to be hybrid even for

a > b. In these circumstances, vertical integration, by intensifying price competition in the

marketplace, is socially beneficial.

Yet, similar to the basic model, â = b is the only access fee that ensures that consumers can

find the superior app at the lowest possible price (p2 = ∆) in any Nash equilibrium satisfying

platform pivotality; the (pure or hybrid) platform may instead optimally set a higher access fee

to profitably squeeze the superior app providers.
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Remark (lower bound and the rich ecosystem argument). When b > ρ(−va), the core ZLB

necessarily binds, with the implication that the platform no longer passes through the increase

in ecosystem quality to the consumers. The platform’s incentive to provide a rich ecosystem

rather than extract the business users’ surpluses through squeezes and self-preferencing depends

on whether, at the margin, the platform can monetize the ecosystem on the consumer side. The

core ZLB is a simple and robust reason why such monetization may be infeasible.21

3.2.2 Heterogeneous preference for the superior app

This section introduces heterogeneity with respect to the perceived extra quality of the superior

app: One might think of the superior app as adding a functionality relative to the rival one;

consumers value this extra functionality diversely. We assume that for a given consumer ∆ is

the same across app markets.

Proposition 9 (efficient choice of app). Suppose that consumers have heterogeneous valuations

∆ for the extra value brought about by the superior apps (distributed according to a smooth cdf

H(∆) with support R+ and a monotone hazard rate). Left unmonitored, an hybrid platform

engages in self-preferencing if and only if a < b. Consumer surplus and social welfare are then

uniquely maximized at â = b < a∗.

By encouraging an excessive consumption of the in-house apps, platform’s below-opportunity-

cost pricing in the competitive segment, which emerges in the unique Nash equilibrium for all

a > b,22 harms both consumers and the superior 3rd party app providers. Thus, in the absence

of monitoring of self-preferencing, even neglecting fairness considerations, optimal access fee

regulation must follow the Pigouvian principle.

While an in-house inferior app is priced below the opportunity cost for all a > b, a 3rd party

seller would price its inferior app above the opportunity cost. This implies that the platform

always has an incentive to vertically integrate to exert competitive pressure on the superior app

providers – i.e., Proposition 9 applies if platform business model is an endogenous choice.

If, on the contrary, vertical integration is not an option, or the platform is hybrid but non-price

foreclosure can be monitored, then consumer surplus and social welfare would be maximized by

21But it is not the only reason; suppose, e.g., that, in contrast with our specification, the inframarginal con-
sumers value the app store more that the marginal ones. Online Appendix B develops a simple such environment.
Consumers get utility from two services: a non-platform one (say, pictures and calls for an iPhone) and, for a
subset of them only, the app store. Then, a marginal improvement in app store quality does not induce the
platform to lower its price on the device, as this improvement is valued only by inframarginal users. There is de
facto a lower bound, with similar implications as a core ZLB, but it is not 0. This second reason for the absence
of pass-through is reminiscent of Spence’s (1975) observation that a monopolist’s incentive to (over or under)
supply quality depends on the relationship between the marginal and the average consumer’s willingnesses to pay
for quality, where “quality” in our context can be understood as “low app prices”.

22The mechanism is similar to the one at play in Chen and Rey (2012), who provide a rationale for loss leading in
the retailing industry. By pricing the competitive good below cost, and raising the price for the monopolized good
(that is, consumers’ access price) accordingly, the platform: (i) maintains the total price charged to consumers
with low (extra-) willingness to pay for the 3rd party app (corresponding to one-stop shoppers in Chen-Rey), who
buy the in-house app; (ii) increases the margin earned on those with higher willingness to pay, who buy the 3rd

party app (Chen-Rey’s multi-stop shoppers) in the monopolized segment; and (iii) induces the 3rd party app to
reduce its price (hence, squeezes its margin).
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granting free access to the marketplace (i.e., for a = 0), though this could raise concerns about

platform viability and excessive innovation on the app side.

3.3 Summing up the normative analysis

Welfare in the digital ecosystem depends on the availability and consumption of creative apps.

This in turn focuses attention on

� The absence of self-preferencing, which, when self-preferencing is hard to monitor, amounts

to the access fee exceeding the ancillary benefit: a ≥ b.

� A fair compensation for the 3rd party app developers. In the basic model, this is ensured

by a = b.

� The minimization of double marginalization. Double marginalization in the value chain is

linked with a high access fee, which jeopardizes the consumption of superior apps, directly

and indirectly. By raising the price of the superior app, a higher access fee triggers an

excessive substitution toward the inferior app. A high access fee also reduces the usage

of the platform (and therefore that of the superior app) if it cannot be compensated by

a reduction in the core price, i.e., if the core ZLB binds. Both distortions (insufficient

consumption of the superior app and of the platform) call for as low an access fee as

possible.

Combining the three desiderata, we see that

(i) If it is hard to monitor self-preferencing, the optimal access fee obeys the Pigouvian rule:

â = b.

(ii) A regulator opting for the monitoring of self-preferencing can reduce double marginaliza-

tion relative to the Pigouvian rule, but then occurs two costs: that of monitoring and the

incentivization of me-too app development.

4 Contested bottlenecks

Does either platform or app store competition eliminate the scope for access fee regulation? To

answer this question, a prior query is “do platform and app store competition promote multi-

homing?”; for, it is well known that consumer single-homing on an intermediary (platform or

app store) provides this intermediary with the monopoly of access to the consumer, regardless

of whether it had to compete with other intermediaries to enlist the consumer. Accordingly,

the intermediary is a “gatekeeper” or a “bottleneck” pursuant to acquiring the consumer, and

can sell access to this consumer at a monopoly price (a∗ in the basic model), with the negative

consequences that we described earlier. On the other hand, whether a platform captures single-

homing consumers could depend on the fee a, high fees inducing high app prices; so we need to

look into the mechanics of competition to become the bottleneck.
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Even in the presence of competition among several intermediaries, consumer multi-homing may

not emerge for at least two reasons: (a) the intermediary is associated with a costly device (few

people have both an iPhone and a Samsung), and (b) habit formation and familiarity imply

that consumers may multi-home in membership and single-home in usage (most consumers use

Google search even though also Bing is available on any browser, or systematically consult

Booking even though they have as easy an access to Expedia).

In this section, which returns to the framework of Section 2, independent apps multi-home

(indeed most popular 3rd party apps are available on both Apple’s and Google’s app stores:

Bresnahan et al., 2015). By convention and to illustrate the two polar cases, we talk about

“competing platforms” when consumers single-home (maybe, but not necessarily because of

a costly device) and “competing app stores” when consumers multi-home on rival intermedi-

aries. Needless to say, this is a highly stylized representation; applying the theory to a specific

environment requires making assumptions about how much multi-homing the introduction of

competition induces.

4.1 Platform competition

Consider N ≥ 2 (symmetric) competing platforms, indexed by i (Figure 4). Each platform is

hybrid (the case of pure-player platforms is discussed below) and owns an inferior app (valued

v by consumers) in the representative app market; the independent superior app (valued v+ ∆)

multi-homes on all platforms. Let U i ≡ ui − pi0 denote consumers’ net value from access to

platform i’s ecosystem, where ui ≡ max{v− pi1, v+ ∆− pi2, 0}, and {pi0, pi1, pi2} are consumers’

access price, in-house and 3rd party app prices on platform i, respectively. To analyse platform

competition in the starkest way, we consider perfect competition. That is, we suppose that

all consumers patronize only the platform offering the highest net value U i. As a tie-breaking

condition, we assume that platforms offering the same utility split equally the demand, though

this does not affect our results. The timing is the same as with a single platform. (1) The access

fees {ai} are selected either by the platform or through regulation. (2) The platforms select the

3rd party app’s realized quality advantage {δi2}.23 (3) The platforms and the representative apps

select their prices {pi0, pi1} and pi2. (4) Consumers choose their platform, and their app on that

platform. We can skip the self-preferencing decision (the choice of δi2) because under perfect

platform competition, a platform has no incentive to degrade its ecosystem even if ai < b.

In equilibrium, all platforms offer the same net utility U∗ = v to consumers and the core ZLB

binds. The presence of platform competition forces hybrid platforms to price their in-house app

at zero even if ai > b. Indeed, because in equilibrium consumers are indifferent between the

in-house and the 3rd party app, any pi1 > 0 would give room for platform i to undercut its rivals.

By the same reasoning, the core price pi0 must be equal to 0. The analysis is similar to that

with a monopoly platform in which the core ZLB binds; indeed, it is optimal for each platform

to fully squeeze the 3rd party app: a∗ = b+ ∆. The only difference with the monopoly platform

23It is straightforward to check that, in this simple model, whether decisions in stages (1)-(2) are observed by
rival platforms is immaterial to the results.
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Figure 4: Competing (hybrid) platforms (i = A,B) under consumer single-homing.

case is a transfer of value v from the platform to the consumers.

Proposition 10 (platform competition). Consider N ≥ 2 identical competing hybrid platforms,

indexed by i.

(i) Laissez-faire. In the laissez-faire equilibrium, both ZLBs are binding (pi0 = pi1 = 0) and

pi2 = ∆. All platforms select access fee a∗ = b + ∆ and make profit (b + ∆)/N each. The core

ZLB prevents total platform profit b + ∆ from being competed away. Consumers receive net

surplus v each, and the 3rd party app is fully squeezed.

(ii) Access fee regulation. A regulator concerned with fairness optimally sets â = b < a∗, yielding

per-platform profit b/N and 3rd party app profit ∆. Consumers still receive net surplus v each.

The laissez-faire result aligns with the conventional wisdom in platform economics24 that the

multi-homing side does not benefit from platform competition, while the single-homing one (the

competitive bottleneck) does, because the platform is the gatekeeper for users on the single-

homing side: Platform competition allows consumers to get positive net surplus v. The novel

feature of our framework is that perfectly competing platforms collectively earn a high profit

(b+ ∆) under laissez faire. The first component of this unit profit is the ancillary benefit from

app distribution; the second component is the value brought about by superior app developers,

which is extracted through the access fee squeeze. Both revenues are not competed away by

price competition because of the core ZLB.

Thus, enforcing the Pigouvian rule through a cap on the access fees is still needed to guarantee

independent app developers’ proper incentives to invest, even in the presence of fierce platform

competition.

Remark (vertical integration into device manufacturing). Let us add a physical device (as in

Section 2.5.2). When platforms are vertically integrated into device manufacturing, competing

platforms can pass through to consumers, via a below-cost price of their devices, the profits

earned by squeezing 3rd party apps through an access fee a∗ = b+ ∆: As long as the core ZLB

does not bind, access fees above the Pigouvian level in this case benefit consumers. However,

24See Caillaud and Jullien (2003), Armstrong (2006), Armstrong and Wright (2007) and, more recently, Teh
et al. (2023). Armstrong and Wright (2007) explore the implications of a ZLB constraint on the access price
charged to the single-homing side, which competing platforms would like to subsidize.
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under the welfare-oriented criterion with endogenous app entry, the optimal access fee is â = b.25

Platforms that do not manufacture their own device may similarly circumvent the core ZLB

constraint on the app store by subsidizing external device manufacturers provided that the

latter’s devices is incompatible with rival platforms.

Remark (pure-player platforms). The results of Proposition 10 hinge on the assumption that

platforms are vertically integrated into the app segment: If the low-value apps were offered

by (single- or multi-homing) 3rd party providers, then a∗ = b would prevail in the laissez-faire

equilibrium, which would eliminate the scope for regulation. The reason is that, as non-pivotal

3rd party apps set their prices as in the basic model, the superior app is priced at pi2 = ∆ for all

ai ≤ b, whilst any larger access fee implies pi2 > ∆ and so U i < v and no customer for platform

i. These results imply that, in the presence of platform competition, under laissez-faire each

platform has incentives to vertically integrate into the app segment to be able to squeeze superior

apps – i.e., if platforms’ business model is a strategic choice, the results are as in Proposition

10.

4.2 App store competition on a platform

The DMA and the proposed Open App Markets Act require Apple and Google to guarantee 3rd

party app stores’ access to their respective devices. These alternative paths from business users

to consumers are meant to discipline the currently monopolistic app stores and bring higher

quality to consumers and lower fees to business users.26 As the regulatory texts are silent as

to the access conditions, we look at a benchmark in which 3rd party app stores must be given

free access to the platform. Does the availability of competing app stores on a single device

eliminate the scope for access fee regulation?

We now have a sequence of “platforms”, so we must clarify the terminology. In the following,

“platform” will keep designating the gatekeeper to the consumer, “app stores” will be the entities

interacting with business users: see Figure 5. Consider a monopoly platform, hereafter denoted

by A, vertically integrated into device manufacturing. As in Section 2.5.2, its device brings

value vd to consumers and is produced at marginal cost cd > 0. Let p0 denote its price. On its

app store, whose access is priced at pA0 ,27 consumers can find, in a representative app market,

25That is, as each app store earns a per consumer (provided the 3rd party app is viable: a ≤ b + ∆), devices
including access to the app stores would be sold at cd − a in equilibrium, as long as the core ZLB does not bind
(or, more generally, the device price is not so low as to attract users that are not interested in the apps). In
these cases, consumers would reap the benefits from the margin squeeze of the superior apps. Note that we have
assumed that these apps already exists. If not, the prospect of being fully squeezed will discourage them from
entering, even for a small entry cost. To remedy this, platforms may voluntarily cap their business users’ access
fees. Assuming that such a commitment is feasible, it still would not bring about a fair access fee. As long as
app developers have negligible multi-homing costs, 3rd party app entry is a public good from the point of view
of platforms, and free riding would be expected (this would necessarily be the case if ∆ were random): see Jeon
and Rey (2024).

26Scott Morton et al. (2024) argue that the Apple’s App Store offers poor-quality discovery and curation, and
that rival app stores could innovate in the two dimensions and further offer lower fees to app developers.

27When multiple app stores compete for consumers on the same device, its vertically integrated manufacturer
is forced to unbundle its two core products (the device and the app store), charging two different prices. In what
follows, we refer to the app stores as the core products.
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an inferior, in-house or 3rd party, app valued va and a superior 3rd party app valued va + ∆, at

prices pA1 and pA2 respectively. A’s in-house app store faces competition from a 3rd party app

store B priced at pB0 , where consumers can find the respective inferior (in-house or 3rd party)

app, bringing value va, at price pB1 , and the same, multi-homing 3rd party app available on A’s

store at price pB2 .

Platform

(In-house)
app store A

(3rd party)
app store B

Consumers

App store A's inferior app

3rd party superior app

App store B's inferior app

Figure 5: Competing (hybrid) app stores under consumer multi-homing.

Suppose consumers multi-home across app stores, which they can access for free (this is always

the case in equilibrium).28 Then the superior 3rd party app would serve all consumers on the

least expensive platform: App stores de facto engage in Bertrand competition for the superior

app, which dissipates their profits – i.e., a∗ = 0 in equilibrium.

Proposition 11 (app store competition). Suppose that the regulator mandates app store com-

petition on devices, with app stores enjoying free access to the device, and that consumers multi-

home on app stores on their device. Because the superior app steers the consumer to the lowest

access fee app store, Bertrand competition among pure-player or hybrid app stores induces them

to charge nothing for consumer access and to levy no fee on 3rd party apps. The superior app

then makes supranormal profit ∆ + b. The Pigouvian access fee (â = b, where now b is a floor

rather than a cap) is needed to ensure fairness and avoid over-entry in the app market.

In this simple model, the fair outcome can be alternatively achieved by allowing the platform

to levy on 3rd party app stores a unit access fee α for each app sold through their stores. As

Bertrand competition among app stores with opportunity cost α implies that they will in turn

charge ai = α to the 3rd party apps, setting by regulation α̂ = b ensures fairness. Thus, whether

for apps or for app stores, the proper concept of FRAND access pricing boils down to the

Pigouvian principle.

This conclusion would be supported also by a consumer surplus standard in a model where

consumers have heterogeneous valuations vd for the device, because A could react to the reduced

profitability of the app store (due to competition) by increasing the device price p0.

28If instead consumers always single-home (because of, e.g., habit formation, or else each downloads at most
one app store), then, as all app stores are equally constrained by the core ZLB (pA0 ≥ 0 and pB0 ≥ 0) the analysis
is as in Section 4.1 (with the only difference that the monopoly manufacturer appropriates consumer surplus
charging p0 = va + vd for the device; this value would instead be appropriated by consumers in the presence also
of platform competition). Pigouvian regulation is thus still needed to fairly reward the superior 3rd party app
provider.
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Remark (disintermediation). Closely related to interventions mandating app store competition

are those forcing the platform to accept that apps publicize on their websites opportunities for

bypassing the platform (“disintermediation”)29. A separate issue with disintermediation as well

as with app store competition is its enforceability. An analogy is the ban on most-favored-nation

clauses (MFNs), which has had so far little effect because the threat of downlisting is powerful

and substitutes for a formal MFN (Ma et al., 2024). Platforms may similarly downlist apps that

take advantage of the disintermediation possibility; if so, the promotion of disintermediation by

the regulator is ineffective. A case in point is the refusal by the Google Play Store to participate

in the promotion of the One Store app store in Korea, a behavior for which Google was fined.30

5 Implementation

Our analysis, which calls for Pigouvian regulation (â = b), posits a representative app market.

The theory trivially generalizes to heterogeneous app markets, indexed by k ∈ [0, 1]. Letting

the ancillary benefit, the inferior app value and the competitive advantage of the superior app

in app market k be denoted bk, vk, and ∆k, respectively, the platform’s and socially optimal

access fees are

ak∗ = vk + bk + ∆k > âk = bk.

Even under laissez-faire, the platform may not finely tailor the access fee to the specific app

market (as we will see, an exception to this rule is search advertising). This is for at least

two reasons. The first is the complexity cost: The platform would have to define individual

app markets and estimate the profit-maximizing fee in each of them. The second is related

to commitment: a very-fine-grained policy may discourage innovation in the app market (or

equivalently the porting of apps to the particular platform). In such circumstances, the platform

may prefer a uniform policy (such as the app stores’ familiar 30% cut) to a fine-grained one.

But, in the class of uniform fees, it is still the case that the platform’s optimal fee exceeds the

socially optimal one.

As is the case for optimal taxes in public finance, the theoretical benchmark – here the ancillary

benefit obtained when the app acquires a customer – must be supplemented with an empirical

methodology to measure the relevant data. A weak spot of the DMA is its limited guidance

regarding both the theoretical benchmark and its implementation. It contains broadly scripted

conditions31 and alludes to FRAND (Fair, Reasonable and Non-Discriminatory) access fees. To

go beyond such general statements, the regulator may (1) engage in information collection, or

(2) elicit this information from the parties.

29“The gatekeeper shall allow business users, free of charge, to communicate and promote offers, including under
different conditions, to end users acquired via its core platform service or through other channels, and to conclude
contracts with those end users, regardless of whether, for that purpose, they use the core platform services of the
gatekeeper.” (DMA Articles 5(4) and 5(5)). Note that, while the DMA does not specify a fee at which competing
app stores should be given access, it here clearly specifies that the fee should be 0.

30We are grateful to Jay-Pil Choi for this example.
31E.g., “The gatekeeper shall not engage in any behaviour that undermines effective compliance with the obliga-

tions of Articles 5, 6 and 7” (Article 13(4)).
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In the first approach, the regulator estimates the ancillary benefit (b) or the existence of an

“unfair downlisting” (which requires measuring ∆). Measuring the ancillary benefit is the path

taken in the EU for capping the merchant fees for card payments. The investigation of un-

fair downlisting (self-preferencing) has been undertaken in a few recent academic papers on

Amazon’s vertical integration.32 Note that the detection of unfair downlisting speaks to the

self-preferencing question, but does not address the excessive-fees one.

The heterogeneity of app markets however hinders either endeavor. For instance, app categories

differ substantially in terms of the ancillary benefit their distribution generates. There are

data-poor and data-rich markets - e.g., social media and food delivery apps sell much more

personal data to 3rd party advertisers than videoconferencing apps.33 The industry has private

information about these values that is hardly available to the regulator. The alternative is to

elicit the value of the benefit b from the industry, or possibly combine both approaches. The

remainder of this section explores these approaches.

5.1 Eliciting the information from the platform: An impossibility result

We first consider an elicitation of ancillary benefits from the platform. To examine how the

regulator’s limited knowledge of market-specific ancillary benefits affects access fee regulation

in the simplest possible model, we consider the best-case scenario in which the regulator knows

their cumulative distribution K(b) in the population of app markets k ∈ [0, 1]. A necessary

condition for the Pigouvian access fee to be implemented in all markets is that the distribution

of (observed) access fees be equal to the distribution of benefits.

Proposition 12 (impossibility of elicitation from the platform). Suppose the regulator knows

the distribution K(b) of ancillary benefits and lets the platform choose (ak)k∈[0,1] subject to the

constraint that the distribution of access fees mimics that of benefits (i.e., follows K(a)). Then, if

self-preferencing cannot be monitored, setting ak = bk for all k ∈ [0, 1] is not incentive-compatible

for an hybrid platform.

If self-preferencing cannot be monitored, the Pigouvian rule is not implementable in all markets

even if the regulator knows the distribution of b, and so can require that a and b have the

same distribution K(·).34 The reason is that, rather than charging ak = bk in all markets,

the hybrid platform can profitably charge higher fees in markets where b is lower, so as to

squeeze 3rd party developers’ margins in these markets, and foreclose developers in markets

where b is higher, where it is constrained to set lower fees, which allows it not to lose profit in

32See Farronato et al. (2023), Lee-Musolff (2024), and Waldfogel (2024) for recent studies, and Etro (2024) for
a survey of some earlier studies.

33See https://www.pcloud.com/it/invasive-apps.
34Whether the regulator observes (vk,∆k) or not is immaterial for Proposition 12. Note also that the impossi-

bility result holds a fortiori if the regulator sets a global access fee cap, which would be a less stringent regulation.
If vertical integration is not an option, or under monitoring of foreclosure, and provided the regulator knows the
distribution K(b) of benefits, the Pigouvian rule can instead be implemented by delegating fee setting to the
platform under the constraint that the distributions of a and b be the same (see the Proof of Proposition 12
in Online Appendix A). But the assumption that the regulator knows the distribution of ancillary benefits is a
strong one.
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these markets. Thus, under no monitoring of self-preferencing, market-specific fees cannot be

enforced under asymmetric information, and the regulator faces a trade-off between preventing

foreclosure of developers in high-b markets and allowing margin squeeze (hence, dampening

innovation incentives) in low-b ones.

5.2 Eliciting the information from business users

Section 5.1’s impossibility result hinged on the assumption that fee setting is delegated to the

platform. We now reverse the roles in access fee setting.

5.2.1 An illustration: Ad-supported platforms

When analyzing ad-supported media and services, one should think of ads as giving merchants

access to the consumer. In this respect, Facebook or Google Search are not that different from

Amazon or Booking. Our goal here is not to contribute to the theory of digital advertising

markets,35 but rather to demonstrate the analogy between an access fee and a bid in an ad-

auction. Our “app providers” can be 3rd party sellers advertising their products on the platform

– e.g., display advertising on social media platforms (Facebook, TikTok) or search advertising

on search engines (Google, Microsoft Bing). An interesting feature is that the access fee, a, is

here elicited from business users rather than set by a platform or a regulator.

Consider search advertising and one advertising slot auctioned off by the platform following a

consumer’s search for an item (market k). Assume that the platform cannot see the actual

sales triggered by the ad.36 Because there is no uncertainty about which brand the consumer

will prefer, we can here focus on the auction of a single slot. Then, consumers observe only

the ad of the winner of the auction, who can therefore charge the monopoly price (vk for the

inferior seller, vk + ∆k for the superior one). To the extent that merchants, while benefitting

from obtaining the access to the consumer, incur a cost of selling their final products or services

to the consumer, the merchants most often satisfy bk < 0. Rather than setting an access fee,

however, these platforms award any ad-space by running an auction: a thus corresponds to the

bid paid by the winner of the auction.37

Proposition 13 (ad-auctions). The superior app receives the fair share for its contribution to

35For an interesting recent contribution to this, see Bergemann et al. (2024) on managed ad-campaigns. They
assume that the platform is privately informed about its consumers’ valuation for all products and makes a
take-it-or-leave-it offer to each seller, specifying (1) a steering policy, assigning consumers to firms, (2) a pricing
policy, i.e., the price of the seller’s product for each consumer to which it is shown, and (3) a fixed fee. In our
setting, under these assumptions, the platform can fully squeeze the superior sellers. See also Ichihashi and Smolin
(2024) for a rationing of ad-slots that is contingent on prices offered by sellers, and Janssen et al. (2024) for the
assignment of products to sponsored positions and the obfuscation of the organic positions’ informational content.

36In practice, it can avail itself of a proxy, namely the number of clicks. However, this proxy is a noisy measure
of the advertiser’s willingness to pay for the slot; to recover the latter, the platform would need to estimate (a) the
net conversion rate (how many sales are triggered by a click that would not happen otherwise) and (b) the per-sale
markup of the seller over the opportunity cost (which include b). For expositional simplicity we ignore the proxy,
even though it is relevant in practice.

37Note that, in the case of organic search, where de facto ak = 0, the search engine has incentive to engage in
self-preferencing in markets where it is present as a competitor to 3rd parties, as, e.g., in the Google Shopping
and Google Flight cases.
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the ecosystem (πk∗2 = ∆k) if a slot is auctioned off without reserve price. This result does not

hinge on the platform observing the existence of a sale (through an app store, say).

Proof of Proposition 13. In app market k, the inferior app, whether in-house or 3rd party, bids

vk + bk, its profit if it wins the auction. And so, assuming a second-price auction, the superior

app pays ak = vk + bk, yielding πk∗2 = ∆k; and p0 = 0 for consumers to access the platform. The

access fee thus reflects the ancillary benefit, and the 3rd party app receives its fair reward. In

contrast, if allowed to set a reserve price, the platform can squeeze the superior app by setting

a high reserve price (requiring bids ak ≥ vk + bk + ∆k). �

Note that while the Pigouvian outcome is achieved, the resulting access fee is now ak = vk + bk

rather than bk. This is because app competition is now for the market rather than in the

market.

Remark (more general auctions). In this simple example, and in the absence of a reserve price

(which we argued would allow the platform to set the access fee), it is optimal for the platform to

restrict the number of advertising slots so as to squeeze the apps, as argued by Prat and Valletti

(2022). Needless to say, when horizontal or vertical differentiation affects the consumer’s optimal

choice, more slots are needed to match buyer and seller; but the general idea that limited space

benefits the platform remains.38

Remark (display ads). Display advertising can be formalized in the following stylized way:

Suppose that the consumer has attention span σ ≶ 1, where the attention span refers to the

mass of ads that they effectively assimilate. A display ad is sold at price a, determined by the

supply of ads s ≤ σ (chosen by the platform) and the demand for ads. Regardless of σ, it is

always in the platform’s interest to choose a supply of ads s ≤ 1, as the willingness to pay of

inferior apps, which will lose in the marketplace against superior ones, is equal to 0 (so a = 0 if

s > 1). Without loss of generality, relabel app markets such that the superior app’s willingness

to pay, W k = vk + bk + ∆k, is weakly increasing in k and let K(W ) denote the cumulative

distribution. Then, as a superior advertiser buys a slot if and only if W k ≥ a, the platform

solves maxs≤min{σ,1} sK
−1(1 − s). Again, like all monopolies the platform may want to create

an artificial scarcity of display-ad slots. Like search ads, access fees for display ads are elicitated

from business users.

5.2.2 Alternative elicitation schemes

We now consider the elicitation of information from app developers without restricting the

number of slots. The challenge for such elicitation is that app developers want the lowest possible

access fee; we saw that for digital goods the absence of access fee encourages the development

of me-too apps, whose main purpose is to steal value from existing apps and which create little

38In the presence of multiple slots, inferior brands provide a weak competitive pressure in the auction, as they
are guaranteed some space. Furthermore, we do not want to let the platform set reserve prices for slots, as this
would allow the platform to squeeze the superior apps. The platform’s ability to meter app sales (an ability
that is facilitated by the presence of an app store) may then enable the platform to extract access revenue while
allowing for a variety of choices following a search query.
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value for the consumer. To prevent the access fee from providing such incentives, the regulator

may refrain from monitoring foreclosure.

In the case of vertical integration (the platform owns the inferior app), we elicit information

only from the 3rd party app. For a pure platform (the inferior app is also a 3rd party app), the

timing goes as follows. (1) The inferior and superior 3rd party apps in market k propose access

fees ak1 and ak2. (2) The platform selects {δki }i∈{1,2}, k∈[0,1] – i.e., it decides to give access to no,

one or the two app providers. (3) The platform and the (non foreclosed) app providers set their

prices {p0, p
k
1, p

k
2}. (4) Consumers make their consumption choice.

Proposition 14 (alternative information-light implementation of Pigouvian rule). The fair

reward (πk∗2 = ∆k) can be guaranteed in all markets by letting 3rd party app developers pick

their access fee subject to the threat of foreclosure. When the platform is hybrid, this can be

accomplished by just eliciting the access fee from the 3rd party app in each app market k. When

it is a pure platform, this requires that the inferior app pays its proposed access fee only in case

of a sale (as is feasible in an app store).

Proof of Proposition 14.

(i) Hybrid platform: If foreclosure is not monitored, then choosing ak ∈
[
bk, bk + vk

]
is optimal

for the 3rd party app in app market k, as it is foreclosed for ak < bk and squeezed for ak > b+vk.

(ii) Pure platform: Let the inferior and superior 3rd party apps in market k propose access fees

ak1 and ak2. We claim that ak1 = ak2 = vk+bk: The inferior app knows that it can win consumers if

and only if it is the more rewarding app from the platform’s standpoint; it cannot afford paying

more than vk + bk, though. The superior app must bid vk + bk as well, as otherwise it would

be foreclosed by the platform, which would bring it a higher access fee. The platform lets both

apps operate, and app prices are pk1 = vk and pk2 = vk + ∆k. Hence, consumers patronize solely

the superior app, the platform sets p0 = 0 and receives vk + bk in market k, and the superior

3rd party app obtains its fair contribution to the ecosystem (πk∗2 = ∆k). �

By contrast, under monitoring of foreclosure independent app developers would choose ak = 0;

this would overincentivize me-too 3rd party apps to enter.

Remark (a caveat). Although this subsection’s result is encouraging, it relies on the platform

maximizing its profit in each app submarket. Yet, the fact that platforms are engaged in a

variety of B2B relationships across apps and across time, gives them the possibility to build

a reputation for toughness, or, put differently, to extract higher access fees through predation

(by adopting behaviors that do not maximize their short-term profit). This may be the case

if the superior app determines the access fee. The platform may downlist this app when the

latter offers a socially optimal access fee but refuses to “self-squeeze” (offer above vk + bk in our

model). Such downlisting would “teach a lesson” to the app developer or, more to the point, its

colleagues.

How can such predation be prevented? A preliminary idea that comes to mind is to make sure

that the access fee is not determined by the superior app, so the latter cannot be pressured to

29



self-squeeze. Take the case in which a superior app competes with suppliers of an inferior app,

the platform can observe the existence of a sale on its app store (see Proposition 14), and the

access fee is determined by the second bid aki . The equilibrium access fee is then vk + bk, and

the platform cannot extort a higher fee from the superior app, which then receives ∆k. Another

idea is to introduce appeals, in a way similar to the study in the next sub-section (there, appeals

will relate to high access fees set by the platform rather than to the platform downlisting apps

otherwise paying proper access fees; but the logic is the same).

5.3 Off-path measurement and appeals

Measuring b systematically would imply considerable costs and delays. At best can one, when

the access fee is determined by the platform, allow appeals that hopefully will not be frequent if

the incentive scheme is designed properly. Let us focus on the more interesting case of an hybrid

platform (as an inferior 3rd party app is never foreclosed anyway). Suppose the regulator is

equipped with a noisy measure of the ancillary benefit if called upon by a party. More precisely,

the platform chooses the access conditions {ak, δk2} (of which the regulator observes only a), then

prices are set, and finally the superior 3rd party app chooses whether to appeal “against a high

access fee”. In this appeal procedure, the authority observes a noisy, but unbiased, version b̃k

of the ancillary benefit, with cdf R(b̃k) such that
∫
R b̃

kdR(b̃k) = bk. If ak > b̃k, then the access

fee is assessed to be unfair, and the defendant (the platform) must pay a fine τ(ak − b̃k) (with

τ > 0) to the plaintiff (the 3rd party app); and vice versa if ak ≤ b̃k.

The outcome of the appeal procedure interferes neither with the platform’s choice of whether to

foreclose the 3rd party app, nor with access and app prices chosen by the firms before the appeal.

This implies that the 3rd party app will appeal whenever
∫
R τ(ak − b̃k)dR(b̃k) > 0 ⇔ ak > bk.

So if τ ≥ 1, the platform does not gain from inflating the access fee beyond bk.

This analysis however understates the platform’s ability to extort high access fees. In the spirit

of the caveat above, let us therefore “empower” the platform by allowing it to foreclose the 3rd

party app after the latter has appealed (silence means assent, so the absence of appeal means

that the proposed a applies). Suppose that the platform faces a sequential entry of superior

3rd party apps in distinct but identical app submarkets and discounts future profits at a rate

β. The platform can therefore build a reputation for preying on apps that dare to appeal. The

following proposition is proved in Online Appendix A:

Proposition 15. Give the 3rd party app a right to appeal against a high access fee chosen by the

platform. If the regulator can produce a noisy measure b̃k of the ancillary benefit, and impose

sufficiently large fines to the platform if it loses the appeal (namely, τ(ak − b̃k) if ak > b̃k, with

τ ≥ max{1, β/(1 − β)}), then the Pigouvian rule can be implemented even when the platform

can build a reputation for engaging in foreclosure after being challenged by an app.
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6 Relevant literature

(a) Older regulation literature. There is a large literature on foreclosure practices and the

essential facility doctrine (e.g., Hart and Tirole, 1990; Rey and Tirole, 2007), and on access

pricing for one-sided markets (e.g., Laffont and Tirole, 1994) and for telecom and payment

card markets (e.g., Armstrong, 1998; Laffont et al., 1998; Rochet and Tirole, 2002, 2011). The

literature on access to regulated bottlenecks showed that the monitoring of access is needed,

as a vertically integrated incumbent has little incentive to provide access at a capped price to

competitors. In this literature, what constrains the core price upwards is regulation rather that

a demand for subsidization at the core ZLB. A celebrated rule, the ECPR (or Baumol-Willig)

rule states that the access fee should be no greater than the vertically integrated monopolist’s

lost margin in the competitive retail segment. Its properties are analysed in Laffont and Tirole

(1994); obviously it just connects two prices and says little about their absolute level. Another

classic implication of the theoretical analysis is that an access markup does not necessarily

mean that competitors are disadvantaged, as the markup increases the opportunity cost of the

vertically integrated firm and its rivals alike.39

(b) App ZLB and incentive for self-preferencing: are they equivalent? Given that many recent

antitrust investigations against Google and the other large platforms focus on self-preferencing

and exclusion, it is worth noting that our framework sheds light on when the incentive and

the feasibility of self-preferencing concur. The basic model made the same prediction as the

literature on the regulation of a bottleneck (power grid, railroad tracks, local loop. . . ): A low a

deprives the bottleneck owner from the possibility of making money on the potentially compet-

itive segment; this gives it an incentive to engage in non-price foreclosure (for a public utility)

or self-preferencing (platforms, provided that a < b).

But if a low a creates an incentive for self-preferencing, will the bottleneck owner actually engage

in the practice? The answer is “not necessarily” for two reasons. The first, also developed in

Section 2.3, likewise shares with the public-utility literature the idea that the bottleneck must

be vertically integrated into the competitive segment in order to take advantage of the rival’s

degraded access. The other reason why a low a may not trigger self-preferencing is novel to a

platform environment.40 App store competition (Section 4.2) discourages non-price foreclosure;

to be certain, an app store ceteris paribus benefits from self-preferencing if a < b; but the

degraded service makes consumers move to the substitute app store: the 3rd party app can

slightly lower its price, at ∆−ε, on the rival app store and make sales there, so that the in-house

app of the deviating platform is not sold anyway.

(c) Platform is not a gatekeeper. The literature has studied the regulation of platform fees

when the consumer and the merchant can transact through multiple channels: the platform

39This is important because marginal-cost pricing of access need not be the right welfare benchmark. It jeop-
ardizes the recovery of fixed costs for the essential infrastructure owner and it further incentivizes foreclosure
(“self-preferencing” in modern parlance), requiring heavy investment in regulatory capacity: The vertically inte-
grated firm cannot make money by selling access and therefore must make its money on the competitive segment.

40The public-utility literature has mostly assumed that the bottleneck segment is unassailable.
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and another channel (direct purchases, other platforms, other payment methods in the case of a

payment platform). Because the consumer chooses the channel, the welfare analysis is naturally

grounded in the externalities associated with this choice.

Some contributions suppose that the merchant offers the same price regardless of the chan-

nel (there is a most-favored-nation, MFN, clause); the merchant’s revenue from a sale is then

channel-independent, which does not mean that its markup is. The merchant may enjoy a con-

venience benefit from the platform channel, as in Rochet and Tirole (2011): A card payment

may dominate cash and cheque in terms of expediency, fraud prevention, accounting, or absence

of hold up. The socially optimal access fee corrects for externalities of consumer channel choice

upon merchants, and the socially optimal access fee (which in payment networks is at least

partially passed through by issuers to consumers) is equal to the merchant benefit from a card

usage; this internalization principle is the so-called tourist test. In Gomes and Mantovani (2024),

the platform creates an informational and a convenience benefits for consumers; in particular,

the platform offers products that they were unaware of. This improved-opportunities benefit

of the platform is internalized by consumers. But, consumers’ access to the platform being

assumed free, they do not directly reward the platform for it, which is a problem if the platform

is created only if sufficiently profitable. The platform however can charge consumers indirectly

through the competing merchants’ access fee, then passed through to consumers. Gomes and

Mantovani show that, provided the presence of the platform does not increase aggregate sales,

the welfare-maximizing access fee equals the sum of these two benefits. In both papers, a∗ > â.

Alternatively, there may be no MFN. Prices are lower on the platform if it displays tougher

merchant competition than the direct sale channel. The consumers may then choose to transact

through the platform not because they prefer this channel, but because the latter lowers mer-

chants’ markups, at least in part a redistributive effect (Wang and Wright, 2024). The privately

optimal fee may now fall short of the socially efficient one, which equals the platform’s marginal

cost of implementing the transaction plus the amount by which the platform, by intensifying

seller competition, decreases the merchants’ margins. Again, the merchants’ pass-through of the

access fee is key to restoring proper consumer incentives.

In contrast with these papers, which hinge on consumers’ choice of channel to interact with

merchants, we assume that consumers single-home, whether there is platform competition or

not: the platform is a “gatekeeper”. The set of potential externalities under consideration is then

rather different: (a) a vertically integrated gatekeeping platform may use non-price instruments

to prevent consumers from accessing the best product; (b) the platform may jeopardize the

existence of superior 3rd party apps by squeezing them through a high access fee; (c) the 3rd

party app enjoys supranormal profit when the app ZLB binds. The welfare-maximizing access fee

is then equal to the opportunity cost for the platform of letting 3rd party sellers serve consumers,

rather than to the benefits it brings to one or both sides of the market.

(d) Platform presence in app markets. A number of recent papers examine platforms’ incentive

to vertically integrate, and the welfare effect of this vertical integration, in the presence of
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foreclosure and/or imitation concerns: see Anderson and Bedre-Defolie (2024a,b), Etro (2021,

2023), Gutiérrez (2021), Hagiu et al. (2022) and Zennyo (2022). Yet, these works, as the ones

on platform fees’ regulation, assume non-negative opportunity costs (i.e., rule out an app ZLB)

and do not consider access pricing on the consumer side.41 To be certain, one may argue that

the widespread assumption that platforms grant free access to consumers in these papers reflects

a core ZLB.42 However, they do not connect the validity of the underlying assumption with the

level of seller access fees.

Another closely related contribution to our paper is Choi and Jeon (2021). They show that

tying may help a firm circumvent a non-negative price constraint in the tied (complementary)

product market that prevents it from squeezing superior sellers in that market. Zero lower

bounds do not usually emerge in standard models (e.g., Choi and Stefanadis, 2001, Carlton and

Waldman, 2002), which assume that the tied market involves a positive marginal cost.43 Unlike

in this literature on tying, which does not consider access pricing, in our paper margin squeeze

of superior 3rd party sellers by the platform does not necessarily occur via below-cost pricing

in the tied (competitive) good market, but primarily via fees: In this case, it is the core ZLB,

rather than the ZLB in the tied market (the app ZLB in our terminology), that binds.

7 Conclusion

Brief summary. Gatekeeping platforms control businesses’ access to us. Policymakers dealing

with platform access have met with the difficulty that welfare analyses in two-sided markets

are generally ambiguous. The see-saw effect, and its distant parent, the Chicago school rich

ecosystem argument, hold that self-preferencing and high access fees, by degrading the ecosystem

and making it unattractive to the consumer side, do not benefit the platform. Relatedly, capping

access fees for business users leads to higher prices on the consumer side.44 This paper argues

that this logic does not apply to the zero-lower-bounds environment of digital markets.

The core ZLB (the impossibility for digital platforms to charge negative access prices to con-

sumers) creates incentives for harmful behaviors:

1. The see-saw effect no longer operates. Benefits from a better ecosystem are not passed

through to consumers as the platform is reluctant to raise prices. This gives the platform

incentives to maximally extract the surplus of business users through high access fees.

Extractive access fees create a double marginalization and induce a suboptimal usage of

apps. They furthermore discourage the creation of apps.

41By considering access pricing both on consumer and seller side, our work relates to the literature on optimal
pricing by two-sided platforms pioneered by Armstrong (2006), Caillaud and Jullien (2003) and Rochet and Tirole
(2003, 2006). This literature however is not concerned with hybrid platforms and mostly ignores ZLB constraints.

42In other papers on hybrid platforms, including Etro (2023) and Padilla et al. (2022), app stores are bundled
with physical devices, so that consumers are always charged a positive price.

43For earlier work on the effects of tying in two-sided markets where ZLB constraints may bind, see Amelio
and Jullien (2012). They show that, in situations where a platform would like to set negative prices on one side
of the market, tying serves as a mechanism to introduce implicit subsidies on that side. As a result, it can raise
participation on both sides and benefit consumers.

44See Anderson and Bedre-Defolie (2024b).
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2. The core ZLB is more likely to bind if there is platform competition, or, in its absence,

a high elasticity of consumer demand for the platform. It is less likely to bind if a costly

device is part of the bottleneck.

The app ZLB (the infeasibility of negative app prices) limits competition in the app markets

and generates two inefficiencies:

3. The greater profit made in-house relative to providing access (which arises when a < b) cre-

ates incentives for self-preferencing, all the more so, the larger the ancillary benefit b (e.g.,

goods are digital rather than physical) relative to the access fee a. Unfortunately, antitrust

watchdogs find it notoriously difficult to discern and demonstrate self-preferencing.

4. Low or zero access fees dissipate value by inviting business stealing by me-too apps, that

add little value to the ecosystem but extract a non-negligible share of it.

Overall, the argument for capping access fees and more generally enforcing equitable access to

gatekeeping platforms is definitely stronger in the presence of ZLBs. In this respect, the paper

provides guidance for policy-making:

5. The Pigouvian rule (â = b) allows the 3rd party apps to capture their contribution to the

ecosystem. Furthermore, this access fee minimizes double marginalization in the set of

access fees that do not induce self-preferencing.

The diversity of digital environments. A benefit from our framework is that, despite its simplicity,

it accounts for the rich diversity of digital environments. Figure 6 provides illustrations of the

various situations. Because detecting “self-preferencing” and “excessive fees”, the two prongs

of the regulators’ equity concern, is notoriously difficult or costly, regulators must pick their

fights, which requires looking for “smoking guns”. Figure 6 shows that ZLBs provide guidance

for finding smoking gun evidence.

(a) Regarding the first concern, which obviously arises only when the platform is hybrid (or can

enter sweat deals with favored 3rd party apps), our analysis points out that self-preferencing

benefits the platform more (or is less costly for a platform engaging in predatory behavior) if

the access fee is small in relation to the ancillary benefit (app ZLB). Conversely, it is less of a

concern if the consumers can easily find the app outside the platform.

(b) App store competition (although not platform competition) may help bring down excessive

fees paid by business users. We however pointed out that the threat of downlisting may be an

effective deterrent to attempts to bypass the in-house app store, and thereby enforce an implicit

exclusivity. Why are we concerned about high access fees? Recall the two-sided-market-theory

finding, echoed in the neutrality region of Proposition 1 (i), that there may be no presumption

that a platform price structure be excessively tilted in the direction of consumers or business

users. However high access fees do not translate into better terms for consumers through a

see-saw effect if the core ZLB is binding. A binding core ZLB might therefore be a smoking gun

that high access fees are detrimental.
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Figure 6: (taxonomy of digital platforms)
Concerns about self-preferencing (SP) or excessive fee (EF)

(1) Effective competition in the app store market (efficient competitors installing without charge their app

store on Apple or Android devices) implies that p0 = a = 0: Section 4.2. The caveat “effective” refers

to the fact that a dominant app store may deprive an entrant app store of apps by downlisting apps that

multi-home.

(2) Highly visible apps that consumers can access through the browser for free (connecting to one’s bank,

Deliveroo, Amazon, Uber), known as hybrid apps. Because they are free web apps that are also available

for download on the App Store, a = 0. The app store then has a limited gatekeeping ability. To be certain,

native apps may use the app store’s functionalities to offer better service than on the web. Thus, the case

considered here may approximate reality.

Apps such as Google Maps, Gmail, and Google Flights are both free apps and hybrid apps. They bring

ancillary benefits for Google (b > 0): data for Google Maps and Gmail, merchant fees for Google Flights for

instance. They can be obtained through Google’s Play-Store, another app store, or as they are identifiable

through the browser.

(3) Apps may be free because the app designer wants to create a service for the benefit of the community

(alternatively, they may want to maximize downloads for signaling or ego purposes). These range from

giant Wikipedia to the many small apps that are created by individuals and groups without commercial

purpose. Still, the platform may occasionally want to promote its own version of the app that it may now

or later monetize/use for obtaining ancillary benefits such as data.

(4) A regulatory intervention or threat thereof (cap on merchant or interchange fees in payment card systems,

or DMA’s requirement of giving access to alternative payment methods or alternative app stores at zero

or FRAND access fee) imposes de facto a cap on a.

(5) Devices may be bundled with a “in-house platform”. Together they constitute the “core”. The core ZLB is

then unlikely to bind, as the physical device has a positive manufacturing cost: Section 2.5.2. An example

of the lower-left corner may be a smartphone and associated app store. An example of the lower-right

corner is videogames, which are captured by our framework even when they face no substitutes (although

they always do to some extent, if only because games compete for gamers’ time). a > b1 in that case (in

the notation of Section 2.5.3). To be certain, b > 0 as games may benefit from repeat purchases (upgrades)

and data collection facilitating the promotion of look-alike games. But the surplus is large (v + ∆ if there

is no substitute), and there is scope for the videogame platform to charge access fees per game that exceed

the ancillary benefit.

(6) When the platform is a gatekeeper and is not regulated: Section 2.

(7) The app-ZLB rarely binds for physical products (for which usually b < 0): e-commerce of physical products

(Amazon) and services (Uber), products and services advertised through search engines (sponsored search)

or social media/publishers (display advertising): Section 2.5.1.

(8) EF is still a concern (squeeze of apps), but less so because of the see-saw effect.
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The regulatory challenge. The paper stressed that laissez-faire – in the sense of a lack of inter-

ference with the platforms’ preferred access policies – breeds unfair access conditions for these

business users. Furthermore, we should not expect competition to solve the gatekeeping problem

in the digital world of ZLBs. Indeed, the core ZLB constraint prevents platform competition

from disciplining access policies. We also showed that platform competition and app store com-

petition work very differently. While platform competition is too business-user unfriendly, app

store competition (if effective) is too business-user friendly.

The overall picture is therefore a need for overseeing the terms and conditions offered by plat-

forms to business users. In this we concur with the spirit of recent regulatory developments.

The latter however remain nebulous when it comes to specific recommendations, and the occa-

sional invocation of the need for “fair, reasonable and non-discriminatory” terms is not helpful.

The paper’s main insight concerning regulation relates to the social benefits of setting the ac-

cess fee at the ancillary benefit associated with acquiring a customer. This level discourages

self-preferencing and thereby spares intrusive assessment of whether access conditions are actu-

ally fair; it also provides app developers with a fair return and therefore a proper incentive to

innovate; finally, it minimizes double marginalization conditional on intrusive regulation being

infeasible or too costly.

Despite these clear theoretical messages, meeting the empirical challenge of regulating platforms’

access policies remains as difficult as it is essential. The task of answering whether a 10% or

30% merchant fee is appropriate is marred with asymmetric information. We made real progress

on the question of how to implement the theoretical benchmark; but we feel that more work is

necessary to properly tame the gatekeeping platforms while not preventing them from offering

innovative services to consumers and businesses alike. As new AI-based platforms are entering

the e-commerce, search, and health markets, this question should remain a priority.
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Online Appendix

Appendix A: Proofs

Proof of equilibrium uniqueness in Proposition 1

Encompassing both the hybrid- and pure-platform cases, and decomposing the representative

app market into individual app markets k ∈ [0, 1], pure strategies are

(a) in the hybrid case, choices {p0, {pk1}} by the platform, and a choice {pk2} by each indepen-

dent app k ∈ [0, 1];

(b) in the pure-platform case, a choice p0 by the platform, and choices {pk1} and {pk2} by

independent app providers in each app market k.

We allow for more generality the access fee to be app-market contingent (ak). Because the

uniqueness proofs are very similar, we include the case of an elastic demand for the platform:

as in Section 3.2.1, we assume that the consumers also derive utility from the platform vc

independently of its apps, where vc ≷ 0 (a negative value is a learning or opportunity cost)

follows a smooth cdf F (vc) with density f(vc) on R.

Assume, without loss of generality, that δk2 ≥ δk1 . Let us first show that we can assume, also

without loss of generality, that pk1 ≤ max(ak − bk, 0). Either v + δk1 < pk1 and app 1 is out of

app market k; then charging max(ak − bk, 0) cannot do worse for the platform than charging

pk1, regardless of whether app 1 is owned by the platform or an independent app developer

(and in the case of vertical integration, may increase consumers’ surplus, which benefits the

platform, which can raise p0). Or v+ δk1 ≥ pk1; because app 2 wins the market, if app 2 is owned

by an independent app developer, using platform pivotality (condition (ii) of our equilibrium

definition): pk2 = pk1 + δk2 − δk1 . If pk1 > ak− bk > 0, app 1 can charge pk2 − (δk2 − δk1 )− ε < pk1, win

the market and make a strictly higher profit; furthermore, if app 1 is owned by the platform,

the consumers’ utility from app market k slightly increases.

Next suppose that pk1 < ak − bk (which requires ak > bk). Let us show that price pk1 is strictly

dominated for an independent owner of app 1 by price ak − bk. If p̃k2 ≡ pk2 − (δk2 − δk1 ) lies below

pk1, whether app 1 is priced at pk1 or ak − bk makes no difference; but if it lies above pk1, charging

pk1 rather than ak − bk implies a loss of ak − bk − pk1 > 0 if app 1 is owned by an independent

developer; in this case, the only undominated behavior involves pk1 = ak − bk.

Now suppose that the platform owns app 1. Suppose that demand is elastic (the distribution

F (vc) is smooth). If p0 > 0 (the case where the core ZLB binds is covered in Proposition 8),

then letting A denote the per-consumer access revenue collected by the platform, the FOC is:

(p0 +A)f(v∗c ) = 1−F (v∗c ). This implies that purely redistributional shifts between platform and

consumers (say, an increase in app price cashed by the platform, as happens when p̃k2 > ak − bk

and the app price is raised from pk1 to ak − bk) do not affect platform profit. In contrast, if p̃k2
lies between pk1 and ak − bk, the consumers lose pk2 − (δk2 − δk1 ) − pk1 > 0 when app 1 increases
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its price from pk1 to ak − bk while the platform gains in that market ak − (pk1 + bk) > p̃k2 − pk1 =

pk2 − (δk2 − δk1 ) − pk1. The FOC then implies that the platform gains. So again pk1 < ak − bk is

dominated when app 1 is owned by the platform.

Proof of Proposition 8

a < b. When a < b (and more generally a ≤ b), whether the platform is vertically integrated

or not does not matter; intuitively, the inferior app is available at price 0 and the platform

cannot boost consumer membership by reducing its in-house app’s price. We can therefore

focus on the vertically integrated case. As we saw in the text, b ≥ ρ(−va) implies that under

self-preferencing p0 = p1 = 0 and the platform’s profit is b[1 − F (−va)]. Can the platform do

better by granting access to the 3rd party app? Note that p2 ≥ ∆ (any price below or at ∆

allows it to corner the app market). Because p1 ≥ 0, the utility of the consumers from apps is

at most va. And hence the platform’s profit if the 3rd party app serves the app market is at

most (p0 + a)[1− F (p0 − va)] < (p0 + b)[1− F (p0 − va)] ≤ b[1− F (p0 − va)]. Finally, as long as

p1 ≤ va (so the inferior app is at least considered by consumers), p1 + ∆ ≤ va + ∆, the superior

app corners the market at p1 + ∆, profitably so: p1 + ∆ + b > a.

Next, suppose that self-preferencing is monitored. The unique price equilibrium when a ≤ b is

p1 = 0 and p2 = ∆. For, if p2 > ∆, the platform could charge p1 = (p2 − ∆) − ε and obtain

p1 + b > a. The core price is given by maxp0
{

(p0 + a)[1 − F (p0 − va)]
}

, and so p0 = 0 if and

only if a ≥ ρ(−va).

a ≥ b. We consider the two cases:

(i) Pure platform. When the platform is not vertically integrated, the undominated equilibrium

when apps are unconcerned with platform consumer membership is {p∗1 = a− b, p∗2 = min(p∗1 +

∆, v + ∆)}. The consumers’ utility from the apps is then u(a) = va − (a− b) if a ≤ va + b and

u(a) = 0 otherwise. The platform’s profit from the apps is a[1 − F (a − b − va)] in the range

a ∈ [b, va+b] in which increases in a are passed through one-for-one; our assumption on ρ implies

that a = b is optimal in this range, yielding overall profit maxp0 [p0 + b][1 − F (−va + p0)} =

b[1 − F (−va)]. In the range a ∈ [va + b, va + b + ∆], increases in the access fee are no longer

passed through, and so the profit-maximizing access fee in that range is va + b + ∆, yielding

profit maxp0 [po + va + b+ ∆][1−F (p0)] = [va + b+ ∆][1−F (0)]. Thus the optimal access fee is

either a = b or a = va + b+ ∆ depending on b[1− F (−va)] ≷ [va + b+ ∆][1− F (0)].

(ii) Hybrid platform. Suppose that the ZLBs bind under foreclosure – i.e., b > ρ(−va). Consider

a ≥ b and the following candidate equilibrium:

{p0 = 0, p1, p2 = p1 + ∆},

with p1 ∈ [0, va]. This constitutes an equilibrium for all p1 such that

[1− F (p1 − va)]a ≥ [1− F (−va)]b,
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which defines an interval [0, p(a)], where p(a) ∈ (0, a− b) is increasing in a.

To see this, note that given p1 ∈ [0, va], the non-pivotal 3rd party app optimally charges p2 =

p1 + ∆. Then,

arg max
p0

[1− F (p0 + p1 + va)](p0 + a) = 0 ⇐⇒ a ≥ ρ(p1 − va),

which is implied by a > b and (the inverse hazard rate being decreasing) p1 ≥ 0; so, p0 = 0.

Since increasing p1 has no effect on the equilibrium profits (consumers still buy the 3rd party

app), the only possible deviations to consider are to p̃1 < p1. Any such deviation implies that

the in-house app is sold. Then, the optimal deviation is to p̃1 = 0, yielding the foreclosure

profit [1− F (−va)]b. It follows that p1 is an equilibrium price for the inferior app if and only if

[1− F (p1 − va)]a ≥ [1− F (−va)]b. Hence, p1 = 0 is always an equilibrium, but it is not unique:

The larger a, the larger the upper bound on p1, denoted by p̄(a), that can be sustained as an

equilibrium. Still, b > ρ(−va) implies that p̄(a) < a− b.

Note that here the concept of equilibrium in undominated strategies does not help selecting an

equilibrium. Compare an equilibrium price p1 and consider an alternative price p̂1. A price

p̂1 < p1 (if any) increases platform profit if price p2 (not necessarily the equilibrium price) is

such that app 1 has the market regardless of p̂1 or p1; it decreases platform profit if price p2 is

such that app 1 is selected under p̂1, but not under p1, as p̂1 + b < a. Similarly, a price p̂1 > p1

decreases platform profit if price p2 (not necessarily the equilibrium price) is such that app 1

has the market regardless of p̂1 or p1; it increases platform profit if price p2 is such that app 1

is selected under p1, but not under p̂1, as p1 + b < a.

Therefore, the hybrid platform gains at least the foreclosure profit for all a ≥ b, and it can gain

strictly more for some a∗ > b, depending on which equilibrium is played – e.g., in the equilibrium

with p0 = p1 = 0 and p2 = ∆, the platform’s profit is maximized at a∗ = b + ∆, at which the

superior app is fully squeezed.

Welfare-optimal access fee. Finally, we show that â = b is a welfare optimal access fee.

Given that u ≤ (va + ∆)− p2 ≤ va,

W =

∫ +∞

−u
(vc + va + ∆)dF (vc)

is maximized at u = va, which requires p2 = ∆⇐⇒ p1 = 0. But when a = b, p1 = 0 and p2 = ∆

is the unique equilibrium as noted earlier.

Proof of Proposition 9

Consider an hybrid platform. For p0 + p1 ≤ v, all consumers buy one app. Since a consumer

with type ∆ prefers the 3rd party app if and only if ∆ ≥ p2 − p1, letting H(·) denote the cdf of
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consumers’ type ∆, firms’ profits in the representative market are

π∗0 + π∗1 = p0 + a+H(p2 − p1)(p1 + b− a),

and

π∗2 = [1−H(p2 − p1)](p2 + b− a).

Since its profit is increasing in p0, the platform optimally sets p0 = v − p1 ∈ [0, v], so that

all consumers buy one app, and those buying the in-house app are left with no surplus. By

doing so, it achieves a higher profit compared with the one attainable setting prices so that

p0 + p1 > v.45 For any given a, denoting by h(·) the pdf of consumers’ type on R+ and by

ρ∆(∆̃) ≡ [1−H(∆̃)]/h(∆̃) the inverse hazard rate, which we assumed is decreasing, we have:

Lemma. There are two thresholds (a, a), with b < a < b+ v < a, such that:

� For a ≤ a, the inferior app ZLB binds (p∗1 = 0) and p∗0 = v; also the superior app ZLB

binds (p∗2 = 0) for a ∈ [0, b− ρ∆(0)], p∗2 is instead strictly positive and increasing in a for

a ∈ (b− ρ∆(0), a].

� For a ∈ (a, a): 0 < p∗1 < a− b < p∗2, and p∗0 = v − p∗1 > 0, with (p∗2 − p∗1) and firms’ profits

being constant when a varies.

� For a ≥ a, the core ZLB binds (p∗0 = 0) and p∗1 = v < p∗2, with p∗2 being strictly increasing

in a.

If left unmonitored, the platform engages in self-preferencing if and only if a < b. The platform’s

profit is maximized at a∗ > a.

Proof of Lemma. The first-order conditions with respect to app prices are as follows

∂[π∗0 + π∗1]

∂p1
= −h(p2 − p1)(p1 + b− a)− 1 +H(p2 − p1) = 0 ⇐⇒ a− b− p1 = ρ∆(p2 − p1), (1)

and

∂π∗2
∂p2

= −h(p2 − p1)(p2 + b− a) + 1−H(p2 − p1) = 0 ⇐⇒ p2 − (a− b) = ρ∆(p2 − p1). (2)

As ∆ is distributed on R+, p∗2 ≥ p∗1 in any equilibrium, with strict inequality whenever the app

ZLB does not bind. First, consider an equilibrium where p∗1 = 0 ≤ p∗2. By (1), this is the case if

45For p0 + p1 > v, only the 3rd party app is bought in equilibrium, and firms’ profits are

π0 + π1 = π1 = [1−H(p0 + p2 − v)](p0 + a),

and
π2 = [1−H(p0 + p2 − v)](p2 + b− a).

For the deviation p0 = v − p1 (so p2 remains the same): p0 + p2 − v = p2 − p1, and so

π∗0 + π∗1 = [1−H(p0 + p2 − v)](p0 + a) +H(p0 + p2 − v)(b+ v) > π1.

Therefore, p∗0 = v − p1 is set so that all consumers access the platform in equilibrium.
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and only if

∂[π∗0 + π∗1]

∂p1

∣∣∣∣
p1=0

≤ 0 ⇐⇒ a− b ≤ ρ∆(p2) ≤ p2 − (a− b) ⇐⇒ p2 ≥ 2(a− b), (3)

where the second inequality uses (2), which holds with equality as long as p2 > 0. Hence,

in equilibrium p∗1(a) = p∗2(a) = 0 if
∂[π∗0+π∗1 ]
∂p1

|p1=p2=0 ≤ 0 and
∂π∗2
∂p2
|p1=p2=0 ≤ 0, which gives

a < b− ρ∆(0). In turn, from (2),

p2 ≥ 2(a− b) ⇐⇒ a− b ≤ ρ∆(2(a− b)), (4)

which, as the LHS (resp. RHS) is increasing (resp. decreasing) in a, is satisfied if and only if

a ≤ a, with a > b. The platform’s profit is

π∗0(a) + π∗1(a) = v + a+H(p∗2)(b− a).

For a ∈ [0, b− ρ∆(0)], as p∗2 = p∗2 = 0 and H(0) = 1 (i.e., all consumers buy the 3rd party app),

π∗0(a) + π∗1(a) = v + a < v + b ≡ πF , with πF denoting the platform’s profit under foreclosure.

For a ∈ (b− ρ∆(0), a], p∗2 > 0, and, by the implicit function theorem,

∂[π∗0 + π∗1]

∂a
= h(p∗2)

∂p∗2
∂a

(b− a)−H(p∗2) + 1 > 0 ⇐⇒ ∂p∗2
∂a

(a− b) < ρ∆(p∗2) = p∗2 − (a− b),

which is satisfied for all a < b, as
∂p∗2
∂a > 0 (since p∗2 > 0 > a − b), and for a ∈ [b, a] as well, by

(3), as
∂p∗2
∂a < 1 (the monotone hazard rate assumption implies

∂p∗2
∂a ∈ (0, 1)). Therefore, we can

conclude that
∂[π∗0+π∗1 ]

∂a > 0 for all a ∈ [0, a]. Given that π∗0(b) + π∗1(b) = πF , it then follows that

non-price foreclosure is optimal for the platform if and only if a < b.

Next, consider an equilibrium where p∗2 > p∗1 ∈ (0, v). In this equilibrium, (1)-(2) imply

a− b− p1 = ρ∆(p2 − p1) = p2 − (a− b) ⇐⇒ p1 + p2 = 2(a− b). (5)

As p∗2 > p∗1, it must be p∗1 < a− b < p∗2. Using (5), (1) rewrites as

a− p1 − b = ρ∆(2(a− p1 − b)). (6)

As the LHS (resp. RHS) is decreasing (resp. increasing) in p1, this equilibrium exists if and

only if

p∗1 > 0 ⇐⇒ a− b > ρ∆(2(a− b)) ⇐⇒ a > a,

and, using (2),

p∗1 < v ⇐⇒ a− b− v < ρ∆(2(a− b− v)) ⇐⇒ a < a,

where, comparing the two above inequalities, it follows that a > a. From (6) it follows that

p∗1 − a is constant varying a. Since p1 + p2 = 2(a − b) is equivalent to p1 − a = a − p2 − 2b,

this implies that a− p∗2 is constant in a as well, and so also p∗2 − p∗1 does not vary with a. This
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shows a neutrality result: π∗0(a) + π∗1(a) = [1 −H(p∗2 − p∗1)](v − p∗1 − a) + H(p∗2 − p∗1)(b + v) is

independent of a in this range. However, π∗0(a) + π∗1(a) > πF since p∗1 < a− b.

Finally, we consider an equilibrium where p∗1 = v < p∗2 (and so p∗0 = 0). By (1) and (2), this is

the case if and only if

∂[π0 + π1]

∂p1

∣∣∣∣
p1=v

≥ 0 ⇐⇒ a−b−v ≥ ρ∆(p2−v) = p2−(a−b) ⇐⇒ a−b−v ≥ ρ∆(2(a−b−v)),

which holds if and only if a ≥ a, with a > b+ v implying p∗1 = v < a− b. The platform’s profit

is

π∗0(a) + π∗1(a) = H(p∗2 − v)(b+ v − a) + a.

We then have:
∂[π∗0 + π∗1]

∂a
= h(p∗2 − v)

∂p∗2
∂a

(b+ v − a)−H(p∗2 − v) + 1,

where, by the monotone hazard rate assumption,
∂p∗2
∂a ∈ (0, 1) is characterized using the implicit

function theorem. We then obtain:

∂[π∗0 + π∗1]

∂a
> 0 ⇐⇒ a− b− v < 2(p∗2 + b− a) +

h′(p∗2 − v)

h(p∗2 − v)
(p∗2 + b− a)2. (7)

At a = a, p∗2 = 2(a− b)− v. Substituting into (7) and simplifying gives

h′(2(a− b− v))

h(2(a− b− v))
(a− b− v) =

h′(2(a− b− v))

h(2(a− b− v))
ρ∆(2(a− b− v)) > −1,

where the equality follows from the definition of a. This inequality is always satisfied as it

is equivalent to the assumption of decreasing inverse hazard rate. Therefore, the platform’s

equilibrium profit is still increasing at a = a, and so a∗ > a.

As p∗0 + p∗1 = v, consumers purchasing the platform’s in-house app have zero surplus, and

consumer surplus writes as

S∗ =

∫
∆≥p∗2−p∗1

[∆− (p∗2 − p∗1)]dH(∆) > 0,

if there is no foreclosure, and SF = 0 with foreclosure. Social welfare is given by

W ∗ = b+ v +

∫
∆≥p∗2−p∗1

∆dH(∆),

if there is no foreclosure, and WF = b+ v < W ∗ with foreclosure.

Hence, both consumer surplus and social welfare are lower under foreclosure: If non-price fore-

closure cannot be monitored, it must be that a ≥ b. Moreover, both welfare objectives are

decreasing in the relative price p∗2 − p∗1. The access fee thus affects S∗ and W ∗ only through its

impact on the equilibrium prices. Then:
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� for a ∈ [0, a], as p∗2 is increasing in a (strictly so for a > b− ρ∆(0)) and p∗1 = 0, S∗ and W ∗

are decreasing in a (strictly so for a > b− ρ∆(0));

� for a ∈ (a, a), p∗2 − p∗1, and hence S∗ and W ∗, are constant when a varies;

� for a ≥ a, as p∗2 is strictly increasing in a and p∗1 = v, S∗ and W ∗ are strictly decreasing in

a.

Hence, if monitoring non-price foreclosure is not feasible, the optimal access fee, both from a

consumer-surplus and a total-welfare standpoint, is â = b. If, on the contrary, non-price fore-

closure could be monitored, then any a ∈ [0, b− ρ∆(0)] would maximize both welfare objectives.

Proof of Proposition 10

As ui ≡ max{v − pi1, v + ∆ − pi2, 0}, and the superior app always charges pi∗2 ≥ ∆, we

have ui ∈ [0, v] for all i. As p0 ≥ 0 and consumers’ outside option is zero, also U i ∈ [0, v].

Next, take two platforms i′ and i′′ and suppose they offer different utility levels to consumers

v ≥ U i′ > U i
′′ ≥ 0, with U i

′
= maxj{U j} so that platform i′ has strictly positive market share.

Then, platform i′′ would face no demand and make zero profit. By foreclosing the 3rd party app

and setting prices pi0 + pi1 ≤ v − U i
′
, it would offer utility U i

′′ ≥ U i′ and make a positive profit.

As a result, all platforms must offer the same utility U∗ in equilibrium. Hence, their profit is
1
N (pi0 + pi1 + b) with foreclosure, with pi0 + pi1 = v−U∗ and 1

N (pi0 + ai) without foreclosure, with

pi0 = v + ∆− p∗2 − U∗. If pi0 > 0 for some i, then, no matter whether it forecloses or not the 3rd

party app, platform i would find it optimally to deviate, charging a slightly lower access price

to consumers to serve all demand. Therefore, p1∗
0 = . . . = pN∗0 = 0 in equilibrium.

Whenever its rivals are expected to provide U∗ = v in equilibrium, any platform i has no

profitable deviation to U i 6= U∗: offering U i < v drives its profit to zero, and, as shown above,

it is never possible to provide U i > v. As U∗ = v can always be provided by foreclosing

the 3rd party app and setting pi0 = pi1 = 0, it follows that an equilibrium where U∗ = v

always exists. We next characterize the corresponding subgame perfect equilibrium prices for

any given (ai, δi = ∆)i=1,...,N (no foreclosure). Suppose that in equilibrium pi1 > 0. Then, as

pi∗2 = min{pi1 +∆, v+∆}, ui = max{v−pi1, 0} < v. Given that rival platforms offer higher value

U∗ = v, the considered platform makes no profit. It has therefore a strictly profitable deviation:

It can set pi1 = 0 and thus, by selling its in-house app, offer value U i = v to consumers, so as

to attract some of them and make positive profits (given that the marginal cost is negative).

Hence, the app ZLB binds: pi∗1 = 0 for all i and (ai, δi = ∆)i=1,...,N . Anticipating this, the

(non-foreclosed) 3rd party seller must set pi∗2 = ∆ to sell its app. It optimally does so whenever

selling its app yields positive profit (i.e., as long as ∆ + b− ai ≥ 0).

As each platform’s profit ai

N is increasing in the access fee, unregulated platforms set the highest

a subject to the 3rd party app’s participation constraint: a∗ = b+ ∆. Hence, π∗0 = b+∆
N exceeds

the foreclosure profit b
N (given that a platform foreclosing the superior app can provide utility
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U∗ = v to consumers and serve a share 1/N of them only by setting p0 = p1 = 0). By contrast,

as it makes ∆ + b− ai per-consumer on any platform i, for the 3rd party app to receive its fair

reward, the access fee must be capped by regulation at the Pigouvian level (â = b), at which

π0 = b/N coincides with the foreclosure payoff.

Proof of Proposition 11

As in Proposition 10, app store competition implies pj∗0 = pj∗1 = 0, for all aj and app stores j,

including the in-house app store. As all app stores can be accessed for free, consumers multi-

home. An equilibrium where the 3rd party app is foreclosed by all app stores cannot exist: Given

that consumers would prefer to buy the superior app at any price pj2 ≤ ∆, any app store would

deviate by granting access to the superior app at the extractive access fee aj = b+ ∆.

Therefore, the 3rd party provider can sell its app to all consumers on any app store j at any

price pj2 ≤ ∆. Therefore, it will optimally sell at a price (slightly below) ∆ on the app store

charging the lowest access fee. Whenever aj ≥ aj′ > 0 and app store j′ attracts some 3rd party

app sales, app store j can profitably undercut its rival (i.e., set aj = aj
′ − ε) so as to induce the

3rd party provider to rather serve all consumers through its app store. It then follows that in

equilibrium a∗ = 0 for all app stores, and so π∗2 = ∆ + b, while app stores make zero profits.

As the equilibrium apps’ and app stores’ prices are the same for all values of the access fee

(provided the 3rd party app is viable), π∗2 = ∆ if and only if a = b (so that app stores collectively

make profit b).

Finally, both under laissez faire and with regulated access fees, consumers get net value va from

the app stores and vd from the device, and so the monopoly platform optimally sets p0 = va+vd.

Proof of Proposition 12

With multiple heterogeneous app markets, consumers’ utility from accessing the app store is

U ≡
∫
k∈[0,1]

uk dk − p0,

with p0 again denoting consumers’ access price, and uk being the utility obtained from app

market k ∈ [0, 1]:

uk ≡ max{vk − pk1, vk + ∆k − pk2, 0},

where pk1 and pk2 denote the prices for in-house app and 3rd party app, respectively, in the

considered market k.

As seen in the basic model, irrespective of the ownership of the inferior app in each market k,

equilibrium prices are

pk∗1 = max{ak − bk, 0}, pk∗2 = min{pk∗1 + ∆k, vk + ∆k},
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whenever ak ≤ bk + vk + ∆k (any larger access fee implies access-price foreclosure of the 3rd

party app).

Then, p0 is set so as to satisfy consumers’ participation constraint with equality (U = 0):

p∗0 =

∫
k∈[0,1]

uk∗ dk.

Hence, denoting xk = 0 (resp. xk = 1) if the inferior app (resp. superior app) is sold in market

k, platform’s profit writes

p∗0+

∫
{k:xk=0}

(pk∗1 +bk) dk+

∫
{k:xk=1}

ak dk =

∫
{k:xk=0}

πk(xk = 0) dk+

∫
{k:xk=1}

πk(xk = 1) dk,

where

πk(xk = 0) ≡ vk + bk, πk(xk = 1) ≡ vk + ∆k − pk∗2 + ak,

are the per-market profits with and without foreclosure, respectively (inclusive of the revenues

from optimally setting consumers’ access price).

Note that (i) there is no scope for acquiring the high-value app given that the sum of platform’s

and high-value app provider’s profit is always (excluding the uninteresting Pareto-dominated

price-foreclosure region) bk + vk + ∆k, which coincides with the vertically integrated platform’s

profit; (ii) as the inferior app always makes zero profit in equilibrium, the platform can vertically

integrate by acquiring it at a negligible cost, and can gain from vertical integration only by

foreclosing the superior app.

If not foreclosed, the superior 3rd party seller in market k makes

πk∗2 = pk∗2 + bk − ak.

In any market k where ak < bk, absent foreclosure, consumers purchase the superior app at

pk∗2 = ∆k and obtain utility uk∗ = vk. As this is the same utility that they would obtain under

foreclosure and pk∗1 = 0, it follows that by foreclosing superior rivals in any such market the

platform can charge the same access price p∗0 to consumers, but obtains higher unit revenues

bk > ak. Therefore, vertical integration with the inferior app and non-price foreclosure occur for

all bk > ak. In any market k where ak ∈ [bk, bk + vk], absent foreclosure, consumers purchase

the superior app at pk∗2 = ak − bk + ∆k and obtain utility uk∗ = vk − (ak − bk) > 0. From

any such market, the platform obtains profit πk(xk = 1) = vk + bk = πk(xk = 0), and so is

indifferent between foreclosing or not. The 3rd party seller gains πk∗2 = ∆k. Finally, in any

market k where ak ∈ (bk+vk, bk+vk+∆k], absent foreclosure, consumers purchase the superior

app at pk∗2 = vk + ∆k < ak − bk + ∆k and obtain utility uk∗ = 0. From any such market, the

platform obtains profit πk(xk = 1) = ak > vk + bk = πk(xk = 0), and so is strictly better off

than under foreclosure. The superior app is squeezed: πk∗2 = vk + ∆k + bk − ak < ∆k. Clearly,

the profit-maximizing fee in market k is a∗ = vk + ∆k + bk.
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To show that setting ak = bk is not incentive-compatible for the platform, take two markets k′

and k′′ such that vk
′ ≤ bk′′ − bk′ ≤ vk′ + ∆k′ . By the above analysis, if the platform sets ak = bk

for k ∈ {k′, k′′}, it obtains profit πk = vk + bk from each of these markets. By setting instead

ak
′

= bk
′′

and ak
′′

= bk
′
, and foreclosing the 3rd party app in market k′′, it still obtains profit

πk
′′

= vk
′′

+ bk
′′

in the higher-b market, but now makes a larger profit πk
′

= ak
′

= bk
′′
> bk

′
+vk

′

from the lower-b market.

Finally, let us observe that this impossibility result does not hold for a pure platform (or if the

platform is hybrid and self-preferencing can be monitored). A sketch of the proof goes as follows.

LetW ∗ ≡ E[W k∗] = E[vk+bk+∆k] and ∆ ≡ E[∆k]. Truth-telling yields platform payoffW ∗−∆.

A deviation yields platform payoff E[W k∗
1{ak≤vk+bk+∆k} − πk2 (ak)]. If ak > vk + bk + ∆k, the

app-k market disappears, which hurts the platform; if ak < bk, the platform leaves a supranormal

rent to the app (πk2 (ak) > ∆k), which reduces the platform payoff unless this allows the platform

to squeeze the superior app in some market l. But even in the latter case, the platform loses:

if bk > bl and bl + vl ≤ bk ≤ bl + vl + ∆l, a permutation (ak = bl and conversely) leads to

πl2(bk) + πk2 (bl) = [vl + bl + ∆l − bk] + [∆k + bk − bl] = [πk2 (bk) + πl2(bl)] + vl. The equilibrium

outcome (although not the equilibrium strategies) is unique.

Proof of Proposition 15

The arguments outlined in the text imply that the 3rd party app in market k will appeal whenever∫
R τ(ak − b̃k)dR(b̃k) > 0⇔ ak > bk.

Moving backwards to the pricing stage, pk1 = 0 and pk2 = ∆k is the worst-case scenario for the

3rd party app in any platform-pivotality equilibrium. Then, for all ak ≤ bk+∆k (no access-price

foreclosure), the 3rd party app’s profit, absent non-price foreclosure, is at least πk2 = ∆k+bk−ak.
Because total profit is at most vk+bk+∆k, the platform’s maximal expected profit from setting

any ak > bk and therefore being challenged is

vk + ak −
∫
R
τ(ak − b̃k)dR(b̃k),

which is decreasing in ak provided τ > 1. In contrast, the platform makes profit vk + bk either

by setting ak < bk and foreclosing the superior app, or by choosing ak = bk, while any other

(ak, δk2 )-choice yields strictly lower profit. Therefore, the Pigouvian principle can always be

implemented by giving the platform a tiny advantage in the appeal procedure – e.g., the appeal

benefits the 3rd party app if and only if ak > b̃k + ε for a small positive ε, so that a small squeeze

is tolerated and the platform strictly prefers not to foreclose.

The observation that the 3rd party app appeals for any ak > bk(+ε) crucially hinges on the fact

that appealing has no impact on its market profit. This would not be the case if the platform had

the possibility (and the incentive) to foreclose it post appeal (as discussed in the text). When

such a post-appeal foreclosure threat is credible, the 3rd party app does not appeal whenever

∆k + bk − ak ≥
∫
R τ(ak − b̃k)dR(b̃k), or equivalently ak ≤ a† ≡ bk + ∆k

τ+1 . If τ is large enough
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relative to the platform’s discount factor β, however, such reputation building strategy can be

prevented. To see this, suppose for simplicity that, by foreclosing after a = a† is appealed in the

first market, the platform is able to secure profit vk+a† forever after, which implies a discounted

extra profit β∆k

(1−β)(1+τ) from future markets relative to the profit vk + bk it obtains by proposing

ak = bk,46 at an expected loss
∫
R τ(a† − b̃k)dR(b̃k) = τ ∆k

1+τ from the appeal. Therefore, setting

τ ≥ β
1−β prevents such reputation building strategy.

Appendix B: Simple extensions

Lower bound and the rich ecosystem argument

Suppose a device with production cost cd brings non-platform benefits vd > cd. This device is

manufactured by the platform, and we will let p0 denote the price of the bundle device cum app

store. There are two categories of consumers: A fraction κ do not use the app store and thus

receive net surplus vd − p0 from buying the device. A fraction 1 − κ further use the app store

and obtain utility vd − p0 + u(a) where u(a) is their net surplus obtained from the apps. Let

π(a) denote the platform’s profit associated with apps.

Finally, suppose a continuum of app markets. In each app market, there is a single app and

this app is a 3rd party app. A fraction α of consumers using the app store value this app at ∆

while the complementary fraction value it at ζ ∈ (0,∆). The draws are independent across app

markets and so the payoffs of consumers are deterministic. Assuming ζ > α∆, let ā denote the

access fee such that an app owner is indifferent between screening high WTP consumers and

selling to all types:

ζ − ā = α(∆− ā)

So for a ≤ ā, u(a) = α(∆ − ζ) and π(a) = a, while for a > ā, u(a) = 0 and π(a) = αa. The

platform w.l.o.g. either chooses to be extractive (a = a∗ = ∆) or goes for a lower access fee

(a = ā). If the platform attracts all consumers, including those who do not use the app store,

then a = a∗and u(a) = 0 if and only if α∆ > ā. If the platform attracts only consumers who use

the app store, it maximizes u(a) + π(a) and so chooses a = a∗ if and only if α∆ > ā+α(∆− ζ)

(or αζ > ā). We conclude that:

Proposition. The access fee is weakly higher when the inframarginal consumer does not benefit

from app store quality (where quality is defined as the surplus obtained by the consumer on the

app store).

This analysis carries a clear intuition, but may be criticized for not allowing unbundling. Given

the positive correlation between overall WTP and WTP for the apps among consumers, the

platform could do better by selling the device and access to the app store separately. We leave

this puzzle for future research.

46For τ > 1, this profit in turn exceeds the profit from proposing a† in the first market and not foreclosing after
being challenged, thereby failing to build a reputation for foreclosing future apps.
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Platform viability and entry

Assume that the social welfare function is U +ωΠ, where Π is total profit (platforms and apps)

and ω ∈ (0, 1) is the weight on industry profits relative to consumer surplus.47 Suppose that

there is (sequential) free entry into the platform segment, with entry cost J . Suppose further

that self-preferencing cannot be monitored, and so the access fee must be no lower than b.

The socially optimal number of platforms is at most two, because extra platforms beyond N = 2

do not alter the consumer surplus and variable profit, but add entry costs and so are necessarily

suboptimal if N > 2. Given that, with N = 3, each entrant makes b
3 under the Pigouvian rule,

and higher profits under laissez-faire, for all J ≤ b
3 there is always too much entry into the

platform segment, which, without monitoring of non-price foreclosure (or a ban on the hybrid

platform model), cannot be prevented by access fee regulation.

Under a monopoly platform, the consumers obtain no surplus (U = 0). A second entrant

increases consumer surplus by v, at the expense of platform total profit, but also entails a

socially wasteful entry cost J . Formally, U + ωΠ = v + ω(b + ∆ − 2J) under duopoly and

U + ωΠ = ω(b+ v+ ∆− J) under monopoly. Hence, a duopoly is preferred to monopoly if and

only if (1− ω)v ≥ ωJ , or J ≤ 1−ω
ω v.

Thus, assuming that the access fee is set, by regulation, at the Pigouvian level, for J ∈
[max{1−ω

ω v, b3},
b
2 ] there is again too much entry, as two platforms enter but it would be op-

timal to have one. The region of parameters where excessive entry prevails of course expands

when platforms are free to set access fees, as the absence of regulation increases their profits. If,

on the contrary, J ∈ ( b2 ,min{1−ω
ω v, b + v}], then spurring the welfare-maximizing second entry

requires setting the access fee above the Pigouvian level. Similarly, if J ∈ (b + v, b + v + ∆],

there is a potential trade-off between the first platform’s viability, which requires a squeeze in

the app’s profit, and app viability, which calls for staying away from the squeeze region to obtain

the proper level of innovation.

In sum, we have:

Proposition. Because the core ZLB prevents platform profits from being competed away, socially

excessive entry prevails when the entry cost is low and foreclosure cannot be monitored. By

contrast, for high entry costs, setting access fees above the Pigouvian level is desirable to spur

platform entry, if no other instrument is available (as we saw, a > b introduces distortions).

These results suggest that, while access fee regulation is an effective instrument to achieve

fairness, thereby promoting efficient entry and investment decisions in the app segment, it may

not be a jack of all trades, able to take on extra tasks such as ensuring contestability of the core

segment.

47Under a social welfare standard (ω = 1), platform competition just entails socially wasteful duplicative entry
costs: welfare maximization dictates N = 1. On the contrary, under a consumer surplus standard (ω = 0), as a
monopolist brings zero net value to consumers, entry by any number N ≥ 2 of platforms would be optimal (i.e.,
there is never excessive entry in equilibrium from consumers’ standpoint).
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Ad-valorem access fees

Throughout the paper we considered for simplicity linear (per-unit) access fees. Here we show

that our results are robust when considering instead ad-valorem fees (which are more often

employed in reality): For each app sold by the 3rd party seller at price p2, the platform gets tp2

and the seller (1− t)p2, with t ∈ [0, 1]. Let us first consider the hybrid platform case.

Lemma. For any ad-valorem access fee t ∈ [0, 1], the equilibrium has the following features:

1. If b ≥ ∆, the platform is better off foreclosing the 3rd party app for all t; if foreclosure can

be monitored, π∗2(t) = (1− t)∆ + b ≥ b.

2. If b < ∆:

� For t ∈ [0, b∆): p∗1 = 0, p∗2 = ∆, and p∗0 = v; hence, π∗0(t)+π∗1(t) = v+t∆ < v+b ≡ πF :

the platform is better off foreclosing the 3rd party app; if foreclosure can be monitored,

π∗2(t) = (1− t)∆ + b > ∆.

� For t ∈
[
b
∆ ,

b+v
v+∆

]
, p∗1 = t∆−b

1−t , p∗2 = ∆−b
1−t , and p∗0 = v − t∆−b

1−t ; for any such t,

π∗0(t) + π∗1(t) = πF and π∗2(t) = ∆ (neutrality).

� For t ∈ ( b+vv+∆ , 1]: p∗1 = t(v + ∆)− b, p∗2 = v + ∆, and p∗0 = 0; hence, π∗0(t) + π∗1(t) =

t(v + ∆) > πF and π∗2(t) = (1− t)(v + ∆) + b < ∆ (squeeze).

Proof of Lemma. In this setting, the platform prefers selling its own app as long as tp2 < b+ p1.

Hence, given the ZLB constraints, equilibrium app prices are

p∗1 = max{0, tp∗2 − b} and p∗2 = min{p∗1 + ∆, v + ∆}.

As long as app providers are unconstrained by consumers’ willingness to pay, the equilibrium

app prices are p∗1 = t∆−b
1−t , p

∗
2 = ∆−b

1−t if t ≥ b
∆

p∗1 = 0, p∗2 = ∆ if t < b
∆

Hence, for t < b
∆ ∈ (0, 1), p∗0 = v, and foreclosure is optimal (this result holds for all t ∈ [0, 1]

when b > ∆): π∗0(t)+π∗1(t) = v+t∆ < v+b ⇐⇒ t < b
∆ . For t ≥ b

∆ , p∗0 = v+∆−p∗2 = v+ b−t∆
1−t ,

and so π∗0(t) + π∗1(t) = v + b = πF and π∗2(t) = v. This is the equilibrium outcome as long as

p∗2 < v+∆, which requires t < b+v
v+∆ . For t ≥ b+v

v+∆ , p∗2 = v+∆, and so p∗1 = t(v+∆)−b ∈ (v, p∗2−∆)

and p∗0 = 0. In this case, π∗0(t) + π∗1(t) = t(v + ∆) > πF and π∗2(t) = (1− t)(v + ∆) + b < ∆.

Under ad-valorem fees, the platform can capture ∆, which is charged by the superior app, but

cannot capture b. As a result, if t is not regulated foreclosure is always optimal if b > ∆.

If instead b < ∆, the equilibrium characterization mirrors the one under unit fees: In these cases,

for low (resp. high) values of the access fee, the app (resp. core) ZLB binds, and the platform is

strictly better off foreclosing (resp. not foreclosing) the 3rd party app. For intermediate values

of t, no ZLB binds, and the neutrality result holds. Accordingly, it is easy to derive the following

results:
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Proposition (optimal access fees). Suppose b < ∆. Then:

(i) Welfare-optimal access fees. Any access fee such that the 3rd party app is not foreclosed

maximizes ex-post social welfare: t ∈ [ b∆ , 1] if non-price foreclosure cannot be monitored,

t ∈ [0, 1] under monitoring of self-preferencing;

(ii) Profit-maximizing access fee. Platform’s profit is maximized at t∗ = 1;

(iii) Fair access fees. The independent developer receives a fair reward for its contribution to

the ecosystem if and only if t ∈
[
b
∆ ,

b+v
v+∆

]
.

Proof of Proposition. As consumer surplus is always extracted by the platform through the

access price, social welfare is simply W ∗ = b + v + ∆x, and so is maximized whenever there

is no price or non-price foreclosure, so that x = 1, from which (i) follows. Platform’s profit is

continuous, non-decreasing in t for t ≤ b+v
v+∆ , and strictly increasing for larger values of t, hence

it is maximized at t∗ = 1, which establishes (ii). Finally, the result in (iii) follows from the

equilibrium profit π∗2(t) given in Lemma 7.

Note that the lowest assess charge such that the platform has no incentives to practice self-

preferencing, t̂ = b
∆ , is such that p∗2(t̂) = ∆, so that the platform obtains t̂p∗2(t̂) = b from

distributing the 3rd party app. Hence, optimal access fee regulation still follows a Pigouvian

principle: The superior seller must internalize that, for each app it sells, it “steals” b from the

platform.

Remark (Pure-player platform). If the inferior app is also provided by a 3rd seller, it finds

it optimal to sell if and only if (1 − t)p1 + b ≥ 0, and so p1 = max{0,− b
1−t} = 0. As then

p2 = min{p1 + ∆, v+ ∆}, we obtain that, for all t, p∗1 = 0 and p∗2 = ∆: Unlike under linear fees,

here an inferior 3rd party developer is a tougher competitor to the superior seller relative to the

platform.

The superior app makes profit π∗2(t) = (1 − t)∆ + b, whereas the pure-player platform obtains

π∗0(t) = v + t∆. Therefore:

� For all t < b
∆ (again, always if b > ∆), the superior app makes a supranormal profit. The

platform has incentives to vertically integrate, by acquiring the inferior app at a negligible

price, and foreclose the superior app;

� For t = b
∆ , the superior app obtains its fair reward, and the platform has no strict incentives

to vertically integrate;

� For all t > b
∆ , the superior app is squeezed, and the platform is strictly better off by

operating as a pure-player platform.

Hence, fair compensation obtains if and only if b < ∆ and the access fee is set at the “Pigouvian

level”: Any lower level of t either gives the platform incentives to vertically integrate and foreclose

the superior seller or generates inefficient me-too entry in the app segment, whereas any larger

access fee results in margin squeeze.
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Freemium apps

While richer versions are available, let us give a simple example, in the context of an ad-valorem

access fee equal to t ∈ [0, 1). The basic version of either app brings utility v to the consumer,

who has time to try only one of the apps. The premium app brings extra utility Vi − v for

i ∈ {1, 2}. Assume the absence of commitment to the premium price. So, using the notation

introduced in Section 2.5.3, b†i1 ≡ (1 − t)(Vi − v) and b†i0 ≡ 0 in the case of a pure platform.

Assume that b†21 ≥ b†11 and that consumers select app 2 when indifferent (this assumption can

be relaxed in a more general version with heterogeneous valuations for the premium app). Then

the prices for the basic versions of the apps are p1 = p2 = 0. This result would also hold for an

hybrid platform owning app 1 provided that t is not too large – e.g., it is set by regulation at

the fair level.

The assumption of non commitment to the premium-version price can also be relaxed. For

example, the apps may charge pi = 0 even if they can commit to the premium-version price, as

making the basic version free may serve as an introductory price, i.e., be interpreted as a signal

of a high probability that the consumer will like the app.
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