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1 Introduction

In the wake of the 2008 financial crisis, a new regulatory regime for financial stability has emerged.

A distinctive feature of this new regime is that bank holding companies face tighter regulatory

requirements, and capital control measures are increasingly employed as part of the regulatory

toolkit.1 At the same time, many financial institutions that conduct similar activities remain

unregulated, raising questions about the efficiency and efficacy of current regulatory policies.2

As conventional banks curb regulated activities, unregulated institutions could step in, thus

diminishing the intended effect of regulation in the first place. However, currently unregulated

institutions differ from conventional banks not only in their regulatory status but also in many

other fundamental characteristics and activities. It is therefore not obvious what implications their

presence has for bank regulation. An active debate has ensued about whether and how to start

regulating the unregulated financial sector.

Our paper develops a framework to study allocative efficiency and optimal regulation in

inefficient economies with distortions arising from misallocation and pecuniary externalities. We

then leverage this framework to speak to policy questions about unregulated finance, in particular

shadow banking and capital flows.

We study an exchange economy in which heterogeneous agents interact in markets for goods.

We abstract from direct bilateral relationships between any two agents, such as customer-supplier

relationships. Nonetheless, markets in our economy are interconnected through agents’ trading

patterns: if an agent retrenches out of one market, prompting a fall in the market price, other agents’

trading responses may lead to spillovers to other markets. We allow for two sources of inefficiency.

First, agents are subject to constraints that depend on market prices, giving rise to endogenous

pecuniary externalities. Second, we allow for distortions in the transaction prices agents face. When

two agents face different transaction prices for the same good, constrained misallocation arises: even

accounting for agents’ binding constraints, a trade between two agents with different transaction

prices can be welfare improving if done at an alternate transaction price. Misallocation manifests as

differences in constrained marginal rates of substitution (CMRS), that is a marginal rate of substitution

that accounts for the implied penalties associated with binding constraints that limit trades for

agents.

Our first set of results characterizes allocative inefficiency in exchange economies with general

distortions from misallocation and pecuniary externalities. We begin our analysis in Section 3 by

defining the allocative value of market m as the marginal social value of a new producer entering the

economy with a marginal unit of good m. We show that the allocative value of markets decomposes

into three terms. The first is the average transaction price of the good, capturing the average value to

1 In the domestic U.S. context, the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010 strengthened
regulation of bank holding companies and established an orderly resolution regime. At an international level, the Basel
III accords strengthened international regulatory standards.

2 See Financial Stability Board (2013) for a policy perspective.
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agents in the economy of an extra unit of that good. The second is cross-sectional misallocation that

arises when different agents have different constrained marginal rates of substitution. Intuitively,

an extra unit of the good is most valuable when endogenous demand responses allocate it to

agents with high CMRS. The third is pecuniary externalities that arise from the adjustment in

equilibrium prices. In economies without pecuniary externalities and with symmetric distortions

across agents, both misallocation and externalities are zero, and the allocative value of a market is

its transaction price. This reflects a first welfare theorem logic: when distortions are zero and there

are no externalities, markets allocate resources efficiently according to their price.

We next turn to the question of optimal regulation in this environment. A social planner

maximizes social welfare by choosing wedges in transaction prices of agents. We begin in Section 4

with the benchmark of complete regulation: the planner is able to freely choose the wedge applied

to every agent in every market spearately. In this environment, we show that optimal policy is to

set the CMRS of every agent equal to the allocative value of a market. Doing so provides equal

regulatory treatment across agents, and eliminates cross-sectional misallocation. At the same time,

it also allows the planner to separate out transaction prices from market prices through appropriate

scale of regulation. In doing so, the planner is able to set average pecuniary externalities across

agents to zero. As a result, optimal complete regulation allows the planner to face no trade-off

between misallocation and externalities.

We then turn to our next main set of results in Section 5: characterizing optimal policy

with incomplete regulation. We begin by studying the case where the planner can only freely

choose wedges for a subset of regulated agents, while taking the (possibly nonzero) distortions

on other agents as exogenously specified. We show that as in the case of complete regulation,

optimal regulation again ensures that the CMRS of regulated agents is equal to the allocative

value of a market. However, incomplete regulation results in misallocation: there is both average

misallocation between regulated and unregulated agents, and also misallocation within unregulated

agents. Optimal policy encodes a targeting rule that trades off misallocation against pecuniary

externalities.

Our results give a key role to regulatory arbitrage by unregulated agents in determining the di-
rection of misallocation. Intuitively, misallocation in the targeting rule arises because a price change

in a market that mitigates externalities, also induces changes in demand by unregulated agents.

Changes in unregulated agent demand induce costs in proportion to misallocation. Intuitively, if a

price increase induces a negative externality, under optimal policy that must be counteracted by

a reduction in misallocation. In the targeting rule, reduction in misallocation can happen either

because unregulated agents with low CMRS reduce demand, or unregulated agents with high

CMRS increase demand in response to the price change.

Our model is rich enough to allow us to study partial regulation of unregulated agents, that is

when the planner can freely choose taxes on a subset of their activities. We show that optimal policy

can be divided into two blocks. In the first block, the planner takes as given the CMRS of regulated
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agents, and chooses partial regulation in order to minimize misallocation between partially and

fully regulated agents. Then, the planner feeds these wedges into the targeting rule from before

in order to derive optimal regulation of regulated agents, which trades off misallocation against

externalities. Interestingly, this illustrates a division of the two ideas. Partial regulation targets

misallocation relative to the completely regulated agents, whereas complete regulation targets the

trade-off between misallocation and externalities.

Our theory is rich enough to shed light on a number of important policy questions. An

important concern in practice is that the post-crisis financial regulatory framework has not been

extended to unregulated finance more broadly in part because of the complexity of the unregulated

financial sector. There are many different types of unregulated financial actors—such as mutual

funds, insurance companies, hedge funds, and international portfolio investors—with differing

business models. It is therefore not simple to determine whether and how to extend financial

regulation to the unregulated financial system. Prominent policy proposals to extend financial

regulation have advocated both regulating specific insitutions—such as targeted regulation of

mutual funds—and regulating specific activities—such as a uniform tax on leverage.3

We leverage our framework to propose classification schemes for agents (such as unregulated

finance). In our first exercise, we ask what is the social welfare impact of entry by a new unregulated

player, such as a FinTech company. We show that the welfare impact of a new player in our model

can be characterized by two components. The first component is the profits of the new company.

The second is the social value of its activities in each market, which are simply the optimal tax

applied to regulated agents in that market times its activities in the market. This provides a simple

way for a regulator to evaluate the social value of a new entrant, by using the regulation of regulated

agents as weights to evaluate the indirect social welfare benefits of its activities above and beyond

its direct profits. This characterization is useful because it only requires knowledge of an agent’s

profits and its total activities in each market, and not knowledge of deeper objects such as its cost

function, technology, and so on.

In our next exercises, we propose classification schemes for evaluating targets identity- and

activity-based regulation. We evaluate the first-order welfare gains achievable from extending

identity- and activity-based regulation to previously unregulated agents or activities. Surprisingly,

the welfare benefits of new regulation is summarized by its impact on misallocation. We show in

both cases that the welfare gains from new regulation are simply the product of the direct change in

demand induced by the new regulation, times the cost of misallocation in agents in which demand

is changed. New regulation is therefore most beneficial if it can induce increases (decreases) in

demand of agents with high (low) CMRS relative to that of regulated agents.

Intuitively, one might expect that the agents and activities contributing most to regulatory

arbitrage are also the most valuable targets for regulation. We show that this intuition is not

necessarily correct. The reason is that regulatory arbitrage in the targeting rule for optimal policy

3 See for example Gorton et al. (2010) and Feldman and Heincecke (2018).
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accounts for the full effects of a change in the market price, including the fact that the market

price affects agents’ binding constraints (pecuniary externalities). By contrast, new regulation only

targets the purchase price of agents, and not directly binding constraints. Interestingly, this means

that if an unregulated agent has strong demand responses due to binding constraints, that agent

may not be a valuable target for new regulation.

Our final exercise evaluates the gains from extending new support programs to unregulated

agents, such as LOLR, that boost their market price and so directly relax constraints. We show

that the first order gains from a support program combine the direct effect of managing pecuniary

externalities, with indirect effects that arise because changes in demand induced by the support

program increase or reduce misallocation. Interestingly, this latter effect can be negative even

when the pecuniary externality is positive, meaning the indirect effect can counter the direct effect.

The intuition is that if a positive externality relaxes constraints and increases demand, then the

targeting rule for optimal policy implies that the direction of misallocation has a higher CMRS for

regulated agents than unregulated agents. Thus the indirect consequence of the support program

is in fact to increase misallocation. This suggests a novel potential synergy between regulation

and support programs: a support program targeting a regulate agent generates no misallocation

precisely because the regulated agent’s CMRS is equal to the allocative value of a market.

In Section 7 we apply our theory to two leading applications. Our first application studies

regulatory classification of shadow banking institutions. We consider a simple model, in which

shadow banks issue debt to finance initial investment, but then face a binding rollover constraint

during the crisis that forces them to fire sell assets. We show that the regulatory classification of

shadow banking institutions depends on their ex-ante illiquid investment elasticities and on their

total illiquid investment. In the case of Cobb-Douglas productivity, we show more concretely that

shadow banks with high levels of illiquid investment and high illiquid investment factor shares are

the most valuable targets for new regulation.

Our second leading application is to capital flow regulation by a small open economy (SOE).

The small open economy faces inflows and outflows by international investors, who may be flighty

or may value capital retrenchment during crises. We show that greater investor flight dampens the

efficacy of initial investment (inflow) taxes because flighty investors arbitrage the lower investment

price and then generate costly outflows. Similarly, greater investor retrenchment can amplify or

dampen the efficacy of ex post (outflow) taxes when capital inflows are valuable but outflows

are costly. This is because the outflow tax boosts the liquidation price, which simultaneously

encourages valuable inflows by investors who value retrenchment but also encourages outflows.

Interestingly, we show that outflow taxes tend to be more valuable than inflow taxes, since outflow

taxes implicitly discriminate against flight and retrenching investors.

Finally in Section 8, we extend our framework to study models with multiple regulators

and common agency. Environments with multiple regulators often feature incomplete regulation

– for example, international regulatory environments typically feature countries having partial
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regulatory jurisdiction over foreign agents operating domestically. We show in this environment

that many of the core ideas of our framework carry over, with modifications, to this setting. The

allocative value of a market to an individual regulator is the same allocative value, but netting out

taxes applied by other regulators. Intuitively, each regulator perceives the taxes of other regulators

as a part of allocative value that does not accrue to them. We then characterize optimal incomplete

regulation. We show the CMRS of regulated agents are equal to the allocative value of a market to

their regulator, plus taxes of all other regulators. This results in a similar targeting rule and partial

regulation targeting rule as in the baseline model.

Related literature. Our theoretical results build on two literatures, namely those on (i) misallo-

cation in disaggregated economies, and (ii) corrective instruments and regulation. We apply our

theory to policy questions on unregulated finance, in particular in the context of shadow banks and

capital flows.

Misallocation. The study of misallocation has a long history in economics, tracing its origin

from Dupuit (1844) and Jenkin (1872) to Marshall (1890) and later Harberger (1964). A recent

wave of papers has renewed interest in misallocation and potential gains from allocative efficiency

with contributions, among many others, from Restuccia and Rogerson (2008), Hsieh and Klenow

(2009), Jones (2013), Midrigan and Xu (2014), Bigio and La’O (2020), Liu (2019), Baqaee and

Farhi (2020), and Dávila and Schaab (2022). Relative to these papers, we focus on the interplay

between misallocation and optimal regulation in economies with externalities. The paper closest

to ours is Liu (2019) who studies the distortionary effects of market imperfections in an input-

output production network. Liu (2019)’s result that distortions in sectoral size are a sufficient

statistic for the social value and welfare relevance of that sector are similar in spirit to our results

characterizing the allocative value of markets. Liu (2019) is part of a broader literature concerned

with aggregation in disaggregated economies.4 While much of this literature is concerned with

positive aggregation in disaggregated production networks with input-output links, our focus is

on welfare aggregation in exchange (market) economies. We deliberately abstract from bilateral

customer-supplier relationships, recognizing that important parts of the modern economic system

are governed by market-based instead of relationship-based interactions. In particular, our focus

on market networks seems particularly appropriate in the context of studying financial markets

and their regulation.

Our characterization of deviations from allocative efficiency due to pecuniary externalities

and misallocation is similar to Baqaee and Farhi (2020), who show that Hulten’s theorem breaks

down in inefficient production economies, with the impact of technology shocks now comprising

both a direct effect and an indirect effect through changes in allocative efficiency. Unlike Baqaee

4 Hulten (1978) shows that, in efficient economies, the effect of sectoral technology shocks on aggregate activity is
proportional to that sector’s sales share. Subsequent work has emphasized that aggregation in richer environments,
for example in inefficient economies, requires additional information about the microeconomic details of the economic
environment (Baqaee and Farhi, 2019, 2020; Bigio and La’O, 2020; Liu, 2019).
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and Farhi (2020), however, our environment allows for both arbitrary exogenous distortions and

pecuniary externalities that take the form of endogenous wedges. In particular, we show that in the

presence of market failures the network structure and interconnectedness of markets becomes a

key determinant of allocative value and potential gains from changes in allocative efficiency.

Corrective instruments. A growing literature studies incomplete corrective regulation, partic-

ularly in the context of unregulated finance.5 Closest to us in this literature is the independent

and contemporaneous work of Dávila and Walther (2022), who study second-best corrective policy

with imperfect instruments. They study the role of leakage elasticities—capturing whether one

agent or activity is a gross complement or substitute for another agent or activity—in determining

second-best regulation and the value of relaxing constraints on regulatory instruments. Our paper

characterizes externalities and misallocation that arise in general equilibrium with complete and

incomplete regulation.6 We use our characterizations to develop a classification scheme for new

entrants and new regulations based on simple statistics arising from our model, and relate these

classifications concretely to misallocation.

The leading applications of our framework address policy questions on unregulated finance,

and so relate in particular to the growing normative literature studying the consequences of

unregulated institutions/capital flows for different forms of regulation. These contributions include

studying impacts on capital requirements/debt taxes (Plantin, 2014; Huang, 2018; Martinez-Miera

and Repullo, 2019; Bengui and Bianchi, 2019; Begenau and Landvoigt, 2020), liquidity regulation

(Grochulski and Zhang, 2019), and reserve requirements (He et al., 2018). Ordoñez (2018) and

Farhi and Tirole (2021) study incentives for a bank to choose to become regulated, with the former

proposing explicit subsidies and the latter proposing pairing regulation with fiscal backstops.

Our classification scheme informs the social value of new entrants and new regulation, and in

conjunction with a large positive literature on determinants of shadow banking and capital flows

can provide guidance to regulators on how to think about welfare in a complex financial system.7

2 Model

Our economy is populated by a unit continuum of agents indexed by a finite set of types i ∈ I ,

each of measure µi. Agents trade with each other in markets for M goods. We denote by Iim agent

5 In addition to the incomplete regulation literature, a large outstanding literature studies regulation with pecuniary
externalities, such as Caballero and Krishnamurthy 2001, Bianchi 2011, Bianchi et al. 2018, Dávila and Korinek 2018,
Farhi et al. 2009, and Lorenzoni 2008.

6 Our focus on the interplay between regulation, externalities, and misallocation also has similarities to Hebert (2022),
who show how arbitrage opportunities arise because regulation of intermediaries to mitigate externalities distorts risk
sharing between intermediaries and households.

7 The literature on positive determinants of shadow banking include (Acharya et al., 2013; Claessens et al., 2012;
Gorton et al., 2010; Buchak et al., 2018; Moreira and Savov, 2017; Chretien and Lyonnet, 2020; Coppola, 2021), while
the positive literature on determinants of capital flows include (Avdjiev et al. 2018, Shen 2019, Milesi-Ferretti and Tille
2011, Forbes and Warnock 2012, Broner et al. 2013, Caballero and Simsek 2019,Maggiori et al. 2019, De Marco et al. 2019,
Coppola et al. 2019).
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i’s trade in market m, and refer to Iim > 0 (or Iim < 0) as a purchase (or sale) of good m. The

vector Ii = {Ii1, . . . , IiM} summarizes i’s trades in all M markets. Goods in market m have a market
price qm, and we denote q = {q1, . . . , qM} to be the vector of market prices. Taking good 1 as our

numeraire, we adopt the normalization q1 = 1. Each agent is endowed with tradeable wealth wi.

Agent i’s decision problem. Agent i’s preferences over goods trades are ordered according to

a utility function Ui(Ii). Agents face distortions (wedges) τi = {τi1, . . . , τiM} when trading with

each other, so that i’s effective transaction price in market m is pim = qm + τim, with pi denoting the

vector of transaction prices across markets. We take τi as exogenous for now and will later treat it

as a regulatory instrument of a planner. Without loss of generality, we assume the market for the

numeraire good 1 to be undistorted, with τi1 = 0 for all i.8

Denoting by wi the tradable wealth of agent i, her budget constraint takes the standard form

pi Ii ≤ wi, (1)

where pi Ii = ∑m pim Iim denotes total expenditures. Agent i additionally faces a set of restrictions

on her trades that may depend on market prices q, taking the form

Γi(Ii, q) ≤ 0. (2)

The constraint set embeds constraints such as technological constraints (production technologies)

and collateral constraints.

The decision problem of agent i is therefore to maximize her utility, subject to constraints (1)

and (2). We denote by Ii(pi, q, wi) agent i’s Marshallian demand over goods trades in M markets

when she faces transaction prices pi, market prices q, and has tradable wealth wi. Her Marshallian

demand is given by

Ii(pi, q, wi) = arg max
Ii

Ui(Ii) s.t. pi Ii ≤ wi, Γi(Ii, q) ≤ 0. (3)

Finally, we denote i’s indirect utility function by

Vi(pi, q, wi) = Ui(Ii(pi, q, wi)). (4)

Market clearing and competitive equilibrium. Traded goods are in zero net supply in the econ-

omy. Market clearing therefore requires that ∑i µi Iim = 0 for all m, or in vector form

∑
i

µi Ii = 0. (5)

8 We can re-represent distortions in the numeraire as a different vector of (relative) price distortions and wealth
levels. Formally for any pi1 6= 1, define p̂i =

pi
pi1

and ŵi =
wi
pi1

. The problem over ( p̂i, ŵi) then features an undistorted
numeraire.
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Note that market clearing sums to zero because we have defined I as trades and directly encoded

any endowments of goods into the utility or constraint set of agents.

We can now define competitive equilibrium in our economy.

Definition 1. Given {τi, wi}i∈I , a competitive equilibrium is market prices q and allocations {Ii}i∈I

such that: (i) agents optimize, i.e., equation (3) holds; and (ii) markets clear, i.e., equation (5) holds.

2.1 Constrained Marginal Rates of Substitution and Misallocation

The marginal rate of substitution (MRS) of agent i between two goods, m and n, is defined as

MRSmn
i = ∂Ui/∂Iim

∂Ui/∂Iin
, which in economies without binding collateral constraints is equal to the

relative transaction price of the two goods, pim/pin. Given that our economy features constraints at

the agent level, the MRS is no longer generally equal to the relative purchase price of goods. This

reflects that an agent with a high MRS may not be able to capitalize on that MRS due to binding

constraints.

We now define a notion of marginal rate of substitution that accounts for binding constraints.

Denoting agent i’s Lagrangian as Li = Ui(Ii) + λi[wi − pi Ii]−ΛiΓi(Ii, q), we can define agent i’s
constrained utility as Ui(Ii, q) = Ui(Ii)− ΛiΓi(Ii, q), which encodes the constraint set as a utility

penalty. We define the constrained marginal rate of substitution (CMRS) as the marginal rate of

substitution of constrained utility,

CMRSmn
i =

∂Ui/∂Iim

∂Ui/∂Iin
(6)

Intuitively, CMRS is a marginal rate of substitution that accounts for the implied penalty from

binding constraints: even if an agent has a high MRS, a constraint may prevent that agent from

capitalizing on the MRS. CMRS is equal to MRS for agents that do not face binding constraints (i.e.,

Ui = Ui). From the Lagrangian we obtain

CMRSmn
i =

pim

pin
,

that is an optimizing agent has a CMRS equal to the relative transaction price between the two

goods.

A particular CMRS of interest in our framework is the CMRS between good m and the

numeraire, which we define as

χi = CMRSm1
i . (7)

Since the numeraire is undistorted, we have χi = pi. We henceforth will use CMRS to refer to χi.
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Misallocation. Our results to come will give a central role to misallocation, that is, when one

agent has a high value for a good relative to another agent. Given binding constraints, misallocation

in our model is misallocation that can be corrected without violating a binding constraint. This

notion of misallocation in our setting is reflected in different CMRS across agents. Intuitively if

χim > χjm for two agents, then agent i places a higher value on good m (relative to the numeraire)

in constrained utility. Thus there is a welfare-improving transaction between i and j, formalized in

the following Lemma.

Lemma 2 (Misallocation and CMRS). If χim > χjm, then a marginal transaction between i and j whereby
m sells p̂m ∈ (χjm, χim) units of the numeraire to j in exchange for a unit of good m improves the welfare of
both i and j.

Lemma 2 formalizes a simple notion of misallocation in our setting, that is the existence of a

transaction that increases constrained utility. Misallocation arises when two different agents have

different CMRS for the same good. In this case, the agent with lower CMRS should sell the good to

the agent with higher CMRS, at a transaction price intermediate to the two.

2.2 Welfare Impact of Price Changes

We define aggregate welfare in terms of the social welfare function

W(q, τ, w) = ∑
i

µiωiVi(q + τi, q, wi), (8)

where ωi is an individual-specific Pareto weight and w = {w1, . . . , wI} is the vector of agents’

tradable wealth.

A key focus of this paper will be the welfare impact of changes in a market price qm. The

following (reduced-form) result characterizes this social welfare impact.

Lemma 3. The social welfare impact of a price change dqm in market m is given by

∂W
∂qm

= ∑
i

µiωi

[
− λi Iim +

∂Ui

∂qm

]
, (9)

where recall that λi > 0 is the Lagrange multiplier on the budget constraint and Ui is constrained utility.

Lemma 3 characterizes the spillovers that arise from a price change dq(m) in market m. The first

term captures a motivation for redistribution: a price increase redistributes wealth from buyers

to sellers. It will be expositionally convenient to rule out pure redistribution by selecting relative

weights ωiλi = ωjλj for all i, j, so that ∑i µiωiλi Iim = 0 = ∑i µi Iim = 0, although we can obtain
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generalized versions of our results that account for redistribution absent this. The second term

captures (non-redistributive) pecuniary externalities that arise because prices appear in constraints,

and hence in constrained utility. These externalities arise because a price increase alters the feasible

set of allocations when prices appear in constraints. Note that ∂W
∂qn

is expressed in utils, but we will

re-express it in wealth-equivalent in Section 3.

2.3 Exchange Economies as Networks

We now characterize key statistics on demand and price responses that will play important roles in

the results we present below.

We define the matrix Di =
dIi
dq to be the demand response of agent i to a market price change dq.

The jkth element of the demand response matrix is given by

Di(j, k) =
∂Iij

∂pik
+

∂Iij

∂qk
,

where the total derivative encompasses the transaction and market price partial derivatives. For

any subset J ⊂ I , we define the aggregate demand response of J by DJ = ∑i∈J µiDi. Formally,

DJ (j, k) captures the total change in demand for good j to a change in price of good k by all agents

i ∈ J .

Next, we define the matrix P = D−1
I to be the price response matrix. Formally, element (j, k) of P

measures how a change in total aggregate demand in market k induces a change in the equilibrium

price of market j in order for markets to clear. P therefore provides a mapping from changes in

demand, dI, to changes in prices, dp, given by dp = P′dI.

3 Markets, Prices, and Allocative Efficiency

In this section, we develop a characterization of allocative inefficiency with general distortions,

pecuniary externalities, and market network structures. Our results here take as given exogenously

specified wedges τi in transaction prices that distort allocations but do not destroy wealth (Baqaee

and Farhi, 2020; Liu, 2019).

3.1 The Allocative Value of Markets

Markets are efficient when the private competitive market equilibrium allocates resources to their

socially most valuable uses. Our characterization of allocative efficiency below takes the perspective

of a potential new producer entering the economy. This hypothetical producer evaluates her

production decision based on the transaction prices she observes across markets, which determine

the private marginal benefit she would obtain from market entry. Formally, suppose that a new

producer entered market m with em units of good m. Her entry has two immediate consequences.
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First, the condition for market clearing in market m becomes ∑i µi Iim = em, accounting for the

new resources brought to market. Second, total wealth in the economy upon distribution of the

producer’s surplus becomes

∑
i

µiwi ≤ qmem + ∑
i

µi ∑
m

τim Iim(pi, q, wi). (10)

According to equation (10), total tradable wealth of agents in the economy must equal the new

endowment brought into the market—which has market value qmem—plus revenues remitted from

the distortionary wedges τi in transaction prices.9

It will be helpful to define the social welfare impact of price changes in wealth equivalent

(rather than in utils). Denote Em = 1
λ

∂W
∂qm

, where λ > 0 is the social value of wealth, i.e., the Lagrange

multiplier on (10). Further denote E = {E1, . . . , EM}.
We define the allocative value of market m as the social marginal value (in wealth equivalent)

of our hypothetical producer bringing a marginal unit of good m to market. That is, the allocative

value of market m is

ϑm =
1
λ

∂W
∂em

∣∣∣∣
em=0

.

We refer to the vector ϑ = {ϑ1, . . . , ϑM} as the allocative value of markets. If all agents in the

economy (as well as hypothetical new producers) faced transaction prices equal to ϑ, then private

and social marginal values would align and markets would efficiently allocate resources. We

now state our first main result, which characterizes the allocative value of markets in inefficient

economies.

Proposition 4 (Allocative Value of Markets). The allocative value of markets in economies with general
distortions and pecuniary externalities is

ϑ = Ei
(

pi
)
+ P Covi

(
Di , χi

)
+ P E . (11)

Proposition 4 characterizes the allocative value of a market and develops a three-way decomposition

into a direct effect and two indirect effects. The direct value of a marginal increase in em is the

average price at which it is transacted, Ei(pim). The first of the two indirect terms identifies cross-

sectional misallocation across market participants, which is proportional to Covi(Di, χi). Finally,

the second indirect effect summarizes the effect on pecuniary externalities. Both indirect effects

together comprise a measure of the change in allocative efficiency.

9 A useful illustrative case is symmetric distortions, τi = τ, as an illustrative special case of our framework. The
resource constraint in this case becomes ∑i µiwi ≤ qmem + τ ∑i µi Ii = (qm + τm)em = pmem, using market clearing.
Intuitively, this constraint tells us that the total (wealth) value of endowment em is the transaction price pm at which
agents privately value the endowment. This reflects the usual Walrasian logic, except that here the transaction price
comprises the market price, qm, plus the distortion, τm, that is remitted lump-sum.
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Cross-sectional misallocation arises in our model when different agents face different con-

strained marginal rates of substitution for goods, arising from different transaction prices. It is

characterized by the covariance operator

Covi(Di, χi) ≡∑
i

µiDiχi −∑
i

µiDi ∑
i

µiχi = ∑
i

µiDi(χi −Eiχi).

Intuitively, χi −Eiχi represents the gap between i’s CMRS and the average CMRS in the market.

When agent i has a high (low) CMRS in a good relative to the market, there is social value to

reallocating consumption in that good toward (away from) i. Reallocation is captured in the

demand response Di, that is how much agent i changes demand in response to a price change.

From the perspective of cross-sectional misallocation, a price change is valuable when it increases

(decreases) demand by agents with a high (low) CMRS relative to the market. Hence, a large

covariance results in a greater impact on allocative value because it reflects greater ability for

changes in market prices to elicit demand responses in agents with larger deviations in CMRS

from the average. Finally, the pre-multipliation by P reflects the conversion from a new good in a

market to a change in prices, giving the full chain of how allocative value of a market is impacted

by cross-sectional heterogeneity in CMRS.

The second indirect effect comes from endogenous wedges that result from pecuniary exter-

nalities. First, a change in a price in market m induces pecuniary externalities Em, as characterized

in Lemma 3. Premultiplication by P characterizes the change in market prices that arise because

the new producer changes total supply in market m. Intuitively, equilibrium prices must change in

order for agents in the economy to accommodate that change in supply. These changes in market

prices in turn generate pecuniary externalities. Pecuniary externalities thus give rise to an endoge-

nous effect similar to misallocation from exogenous wedges. Exogenous wedges lead different

agents to have different CMRS, and a price increase in valuable when it reallocates demand from

agents with low CMRS to agents with high CMRS. In a similar vein, endogenous wedges lead some

agents to have particularly binding constraints. A price increase is most valuable when it relaxes

constraints of particularly constrained agents, that is it generates large pecuniary externalities.

To further unpack the economic forces that determine the allocative value of markets, we next

discuss two illustrative special cases of Proposition 4.

Corollary 5 (Efficient Markets). Absent distortions and pecuniary externalities, τi = E = 0, the allocative
value of market m is its transaction price, ϑm = pm.

Corollary 5 characterizes the benchmark case of efficient markets and represents a form of the first

welfare theorem in our environment. It establishes clearly the classical result that transaction prices

determined in a competitive market equilibrium are efficient in allocating resources to those uses

with highest social marginal value. In other words, the transaction price that our hypothetical
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producer faces when deciding whether to enter a market is reflective of the social marginal value.

There is no market failure, and the price system allocates resources efficiently. As we discuss below,

it is noteworthy that the allocative value of market m in this case depends neither on the network

structure and interconnectedness of markets nor on the identities of market participants, except

through the transaction price. In other words, the transaction price alone becomes a sufficient

statistic for the allocative value of a market.

It is worth mentioning that even without distortions or externalities, CMRS and MRS do not

generally coincide. The reason is that absence of pecuniary externalities eliminates price-based

constraints, but does not necessarily eliminate all constraints (such as technology constraints). If

some agents are constrained, price mechanisms are constrained efficient in that CMRS is equalized,

even though MRS is not equalized.

We next turn to a second illustrative special case of Proposition 4.

Corollary 6 (Symmetric Distortions). Suppose that there are no pecuniary externalities, E = 0, and
distortions are symmetric across agents, τi = τ. Then the allocative value of market m is again its transaction
price price, ϑm = pm.

More generally, with symmetric distortions, τi = τ for all i, we immediately see from Proposition

4 that cross-sectional misallocation vanishes and ϑ = p + PE . When E = 0 and there are no

externalities, then we have ϑm = pm. This can be viewed as a classical case of a differentiation

between before- and after-tax prices: given before-tax prices q and taxes τ, the prices all agents

face are simply the after-tax prices τ. In this environment where taxes are applied symmetrically

to all agents and given taxes are rebated lump sum, the environment of Corollary 6 achieves

the same efficient allocation as the efficient markets benchmark of Corollary 5 with an irrelevant

tax-and-rebate scheme that leaves the final purchase prices of agents (equivalently, sale prices of

producers) undistorted. This highlights the crucial property that absent pecuniary externalities,

exogenous market distortions in this setting affect the allocative value of markets to the extent they

generate cross-sectional misallocation. This is exactly the covariance term in Proposition 4.

Welfare aggregation. Proposition 4 can be interpreted as a welfare aggregation result. It character-

izes how perturbations in a single market m transmit to other markets and affect aggregate welfare

both directly and indirectly.

Our result is in the same spirit as the positive aggregation results that have been the subject of

the positive literature on misallocation and production networks. It is well understood, for example,

that in efficient economies and to first order the impact of a sectoral technology shock on aggregate

economic activity is proportional to the Domar weight of that sector (Hulten, 1978; Baqaee and

Farhi, 2019). So does Corollary 5 establish in our setting that—to first order around the efficient

allocation—the aggregate welfare effect of an endowment shock in market m is proportional to
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that market’s transaction price. Corollary 5 can therefore be interpreted as the analog of Hulten’s

theorem for welfare aggregation in our setting. And transaction prices serve the same role for

welfare aggregation as Domar weights do for positive aggregation of production functions: the

transaction price of market m becomes a sufficient statistic for its allocative value and welfare

relevance.

In their seminal contribution, Baqaee and Farhi (2020) show that Hulten’s theorem breaks

down in inefficient production economies with general exogenous wedges: the impact of sectoral

technology shocks on aggregate economic activity now comprises both a direct effect and an indirect

effect through changes in allocative efficiency. Proposition 3 represents the counterpart of their

result for welfare aggregation in exchange economies: the welfare consequence of a shock to market

m comprises both a direct effect—proportional to the transaction price in market m—and indirect

effects that represent gains and losses through allocative efficiency. Unlike in their paper, we allow

for both arbitrary exogenous distortions and pecuniary externalities that represent endogenous

wedges. In much of Sections 4 and 5 below, we focus on characterizing the implications of these

two determinants of allocative efficiency.

Importance of network structure. In the presence of market failures, the network structure

of markets becomes a key determinant of allocative value and potential gains from changes in

allocative efficiency. This observation again echoes similar insights from the literature on positive

production aggregation. In efficient economies and to a first order, Domar weights are sufficient

statistics for aggregation. In other words, the aggregate consequences of sectoral shocks can be

summarized using information about only that sector. So here can the aggregate welfare impact of a

shock to market m be summarized using only that market’s transaction price according to Corollary

5. Information about neither the network structure and interconnectedness of markets nor the

identities of market participants is required to determine and aggregate the welfare effects of shocks

to market m. In inefficient exchange economies, however, welfare aggregation requires information

about the network structure and interconnectedness of markets according to Proposition 3. In

particular, the allocative value of markets depends on both P and the distribution of Di.

3.2 Welfare Implications of Market Transactions

Proposition 4 characterizes the allocative value of a market in terms of a potential new producer.

We now characterize the allocative value of a potential new trader. A potential new trader shows

up to the market and sells em units of good m in exchange for qmem units of the numeraire, where

qm is the market price. Note that this trade creates no new wealth, but alters market clearing.

We denote θm = ∂W
∂tm

to be the allocative value of a trade tm of selling in market m to purchase the

numeraire. Note that these trades form a basis for all other possible trades, a point we revisit after

characterizing θ. We obtain the following result.
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Proposition 7 (Allocative Value of Trades). The allocative value of trades is given by

θ = Ei
(

pi
)
− q︸ ︷︷ ︸

Average Distortion

+P Covi
(

Di , χi
)
+ P E . (12)

Proposition 7 characterizes the allocative value of a zero-wealth-position trade of selling in market

m to buy the numeraire. Intuitively, a zero-wealth-position trade generates the same indirect effects

as a new seller in market m, as it increases supply in market m which forces a change in equilibrium

prices.

Unlike a new good, the market value of a trade generates a direct value equal to the average

distortion of transaction prices from the market price, Ei pi − q. This means that the direct value of

a trade can be positive if there are positive average distortions, Ei pi − q > 0, but negative if there

are negative average distortions, Ei pi − q < 0. Intuitively if Ei pim > qm, then the average positive

distortion means agents on average value good m more than its market price. Therefore, there is

positive value to a new trader selling that good to agents at the market price q in exchange for the

numeraire. Conversely if Ei pim < qm, then agents value the good less than the market price, and

hence there is a loss from a new seller showing up and forcing agents to purchase more of it.

Whether or not there are distortions or externalities, the trade produces responses in equilib-

rium prices. If there are no distortions or externalities, these price changes have no net welfare

consequence. However when there are distortions or externalities, the trade has indirect welfare

effects through the equilibrium price changes. These indirect welfare consequences are precisely

the indirect terms of the allocative value of a potential producer from Proposition 4.

Finally, it is helpful to show how the allocative value of trades form a basis across markets.

First, we know that the allocative value of a trade is simply the allocative value of a market plus

the market price, that is ϑ = q + θ. Second, we know that we can construct a zero-wealth trade by

selling em units of good m, buying qmem units of the numeraire, and then selling qmem units of the

numeraire to buy qm
qn

em units of good n. Thus, the allocative value of a trade selling in market m
and buying in market n, which we denote θm,n, is given by θm,n = ϑm − qm

qn
ϑn. Intuitively, trading

between two markets gives a direct effect qm
(
Ei

pim
qm
−Ei

pin
qn

)
, which simply measures the difference

in how much the purchase price deviates from the market price between the two markets.

4 Complete Regulation

We now turn to the question of optimal regulation. A planner who maximizes social welfare

chooses the wedges τ, which we treated as exogenously given in Section 3. We begin with the

benchmark of complete regulation: the planner can freely set an agent-specific wedge τim on

every agent i for every market m. Our main result in this section is that optimal regulation with

complete instruments sets wedges equal to the allocative value of trades in each market. Optimal
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policy therefore features equal treatment, i.e., τim = τm and all agents face the same taxes. No

tradeoff emerges between misallocation and pecuniary externalities when the planner has complete

instruments.

Formally, our planner chooses complete regulation τ in order to maximize social welfare, W.

The planner takes as constraints the resource constraint (10), the Marshallian demand functions of

agents Ii(pi, q, wi), and that market prices q must be consistent with market clearing. We obtain the

following characterization of optimal regulation in this environment.

Proposition 8 (Optimal Regulation with Complete Instruments). With complete regulation:

1. The CMRS χi = pi of all agents is equal to the allocative value of a market,

χi = ϑ.

2. Optimal regulation sets uniform taxes across agents that are equal to the allocative value of a trade,
that is,

τi = θ.

3. Both cross-sectional misallocation and average pecuniary externalities are zero, that is

Covi
(

Di , χi
)
= E = 0.

Proposition 8 characterizes how complete regulation implements an allocation with no cross-

sectional misallocation and no average pecuniary externalities. As a result, transaction prices are

equal to the allocative value of markets, ϑ = p∗, in accordance with the symmetric distortions

environment of Corollary 6. The efficient transaction price therefore reflects the correct notion of

allocative efficiency. Correspondingly, the CMRS of every agent is set equal to this price vector,

χi = p∗.
To achieve both no misallocation and no average externalities, the planner needs to separate

the transaction price from the market price. Intuitively, the transaction price p reflects allocative

efficiency, whereas the market price q slackens collateral constraints. Separating these two objects

involves setting a tax equal to the difference, that is τ = p − q. Moreover because there is no

misallocation and no externalities in this setting, the allocative value of a trade is also solely the

direct effect, θ = p− q. Therefore, the optimal tax τ is also equal to the allocative value of a trade.

Proposition 4 and Corollary 5 make clear that differences in CMRS across agents lead to

misallocation. From Lemma 2, we know that misallocation leads to existence of privately efficient

transactions between agents for some transaction price. As a result, under complete regulation the

planner seeks to eliminate cross-sectional misallocation. The planner does so by imposing equal
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treatment: the efficient tax τi is constant across all i.10 Equal treatment in this environment prevents

misallocation and contributes to efficiency.

In sum, Proposition 8 reflects the key insight that optimal regulation with complete instru-

ments induces no trade-off between misallocation and pecuniary externalities. This is because with

complete regulation, the planner is able to equalize CMRS across agents (equal treatment), elimi-

nating misallocation. The planner can then use the average level of distortions to separately control

transaction and market prices, eliminating pecuniary externalities while maintaining allocative

efficiency.

5 Incomplete Regulation

Section 4 studies the benchmark of complete regulation and shows that (i) optimal taxes are equal

to the allocative value of a trade, and (ii) no trade-off emerges between correcting externalities and

cross-sectional misallocation. In this section, we study incomplete regulation. We start with a case

where the planner has control over wedges for only a subset of agents, taking as given wedges on

all remaining agents, and then allow for more general partial regulation over these latter agents.11

We develop our main result on incomplete regulation in Section 5.1: Optimal taxes are still

equal to the allocative value of trades. The insight that allocative value is a sufficient statistic

for optimal regulation is therefore robust to the (in)completeness of policy instruments. With

incomplete instruments, however, a tradeoff now emerges between correcting externalities and

cross-sectional misallocation: regulation results in different transaction prices between regulated

and unregulated agents, leading to misallocation between the regulated and unregulated. We show

that this gives rise to a targeting rule for optimal regulation, which reflects the planner’s balancing

of misallocation against externalities.

We then use our results to unpack regulatory arbitrage by the unregulated, and study how it

impacts the direction of misallocation, i.e., whether regulated or unregulated agents have higher

CMRS.

Finally, we study partial regulation of agents and markets – for example, introducing a uniform

tax on a market or regulating a subsidiary. We show that optimal regulation is determined by a

two step process: first, the planner uses partial instruuments to reduce misallocation between the

regulated and a partially regulated agent; then, the planner uses the targeting rule of equation (13)

to trade off misallocation against pecuniary externalities.12

10 Equal regulatory treatment has been emphasized in policy debates on both bank regulation and capital flow
management. The ECB lists “ensuring a level playing field and equal treatment of all supervised institutions” as an
objective of the Single Supervisory Mechanism (ECB, 2018), while the IMF states that “[i]t is generally preferable that
CFMs not discriminate between residents and non-residents” (IMF, 2012). Equal treatment has also been emphasized in
the prior academic literature (see, e.g., Clayton and Schaab, 2022).

11 Although our paper focuses on pecuniary externalities, we provide a brief characterization of optimal incomplete
regulation with non-pecuniary externalities in Appendix B.

12 Note that the results on partial regulation apply even if no agent is subject to complete regulation. In this case, we
can interpret the two step process as corresponding to correcting misallocation relative to a hypothetical fully regulated
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5.1 Optimal Regulation

Suppose there is now a subset S ⊂ I of agents for whom the planner takes τi as exogenously

specified, while maintaining the ability to freely choose τi for i /∈ S. We think of agents i ∈ S as, for

example, shadow banking institutions or unregulated capital flows, and develop applications to

both these settings in Section 7. The social planning problem is otherwise identical to Section 4, up

to the reduction in available instruments. The following result characterizes the properties of the

social optimum in this setting.

Proposition 9 (Optimal Incomplete Regulation). With incomplete regulation:

1. The CMRS χi = pi of regulated agents is equal to the allocative value of a market,

χi = ϑ ∀i /∈ S .

2. Regulated agents face uniform taxes equal to the allocative value of a trade, that is

τi = θ ∀i /∈ S ,

3. The social optimum encodes a targeting rule:

0 =

Amount of Misallocation︷︸︸︷
DS ×

Cost of Misallocation︷ ︸︸ ︷
Ei∈S(χi − ϑ)︸ ︷︷ ︸

Misallocation Between Regulated/Unregulated

+ µSCovi∈S
(

Di , χi − ϑ
)︸ ︷︷ ︸

Misallocation Within Unregulated

+E . (13)

Proposition 9 shows that optimal regulation equalizes the constrained marginal rate of substitution

of regulated agents with the allocative value of a market, that is χi = ϑ. It achieves this by setting

the taxes τ equal to the allocative value of a trade, θ. This parallels the characterization of complete

regulation in Proposition 8, that is the same fundamental objects determine optimal regulation.

Equation (13) provides a “targeting rule” for optimal policy that balances the indirect effects of a

change in market prices q. This targeting rule trades off the costs of misallocation against the costs

of pecuniary externalities.

The first two elements of the targeting rule correspond to misallocation that arises due to

incomplete regulation. We showed in Section 4 that under complete regulation the constrained

marginal rates of substitution are equalized across all agents. This equal treatment property of

complete regulation ensured there was no misallocation. Equation (13) thus recovers Proposition 8

under complete regulation: if all agents are regulation, then CMRS is equalized across agents, there

is no misallocation, and hence the targeting rule specifies E = 0.

agent, and then choosing complete regulation of that hypothetical agent to trade off misallocation against externalities.
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Absent complete regulation, two terms arise due to misallocation. First, there is between
(average) misallocation between regulated and unregulated agents. Between misallocation arises

because the CMRS of regulated agents is χi = ϑ, but the CMRS of unregualted agents is not. For

example if unregulated agents are fully undistorted, τi = 0 for i ∈ S, then their CMRS is χi = q
for i ∈ S. Between misallocation is reflected by Ei∈S(χi − ϑ). Intuitively if Ei∈S(χi − ϑ) < 0,

then regulated agents have a higher CMRS for good m than regulated agents, and misallocation

costs arise if a unit of demand for good m is shifted from regulated agents to unregulated agents.

The cost of this shift in demand is precisely the gap in CMRS, that is Ei∈S(χi − ϑ). Conversely is

Ei∈S(χi − ϑ) > 0, then on average regulated agents have a lower CMRS than regulated agents,

and misallocation dictates there is value to shifting a unit of demand from unregulated agents to

regulated agents.

While Ei∈S(χi − ϑ) encodes the cost of misallocation, DS encodes the amount of misallocation

that arises from a change in market prices q. Intuitively, it captures the total change in demand of

unregulated agents i ∈ S in response to price changes. Thus, the average cost of misallocation from

a price change is simply the amount of misallocation times the cost of misallocation.

The second term that arises is cross-sectional misallocation within unregulated agents that

arises when unregulated agents have different CMRS. In many environments, this term is in

fact equal to zero. For example if agents i ∈ S are fully unregulated (τi = 0) or are subject to

the same suboptimal regulation (τi = τ 6= θ), then this second effect is zero. To the extent it is

nonzero, its intuition reflects that of the first term: misallocation effects are particularly potent

when misallocation is concentrated in unregulated agents with particularly large deviations of

CMRS from ϑ.

In sum, the targeting rule (13) reflects the trade-off the planner faces between misallocation

and pecuniary externalities. We now use this targeting rule to answer the important question: how

does regulatory arbitrage affect the nature of misallocation in the optimum.

5.2 Regulatory Arbitrage and Direction of Misallocation

We no look to shed light on the important question of the direction of misallocation. In particular,

we seek to understand whether regulated or unregulated agents have higher constrained marginal

rates of substitution under optimal policy. This question is nontrivial because the targeting rule for

misallocation depends not only on the sign of pecuniary externalities, but also the demand response

of unregulated agents to changes in prices. This demand response of unregulated agents to prices

has a natural interpretation as regulatory arbitrage in our setting: when a planner implements

changes in market prices through a change in regulation, Di for i ∈ S captures how unregulated

agents change demand in response to those market prices. Thus, the question of direction of

misallocation is analogously a question of the form regulatory arbitrage takes.

Formally, we can tackle this question by studying the targeting rule (13). Let us suppose for
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simplicitly that there is no within (unregulated) misallocation, so that the targeting rule specifies

DS(χS − ϑ) + E = 0,

where we have denoted χS = Ei∈Sχi for notational compactness. To build intuition, consider the

own-price component term of the targeting rule, DS,mm(χSm − ϑm) + Em. For expositional purposes,

we will focus discussion on the case of a negative externality Em < 0, with all discussion holding

with sign reversed in the case of a positive externality.

Suppose first that the own price demand response is negative, Ds,mm < 0. This means that

on average, unregulated agents respond to an increase in price qm by reducing their demand for

good m. If the direction of misallocation were χim − ϑm > 0, that is unregulated agents have higher

CMRS, then DS,mm(χSm − ϑm) < 0, and both direct components of the targeting rule are negative.

This pushes for a direction of misallocation χSm − ϑm < 0, that is regulated agents have high CMRS

relative to unregulated agents. Economically, negative pecuniary externalities give value to a tax

for that good, which depresses the market price by discouraging regulated agents from purcashing

it. This induces regulatory arbitrage in the sense that unregulated agents with DS,mm < 0 respond

by increasing demand in response to the positive price. Because unregulated agents have a low

CMRS relative to regulated agents, this regulatory arbitrage exacerbates misallocation. Note that

if the externality were instead positive, Em > 0, then the direction of misallocation goes in the

opposite direction: regulated agents are subsidized to inflate the market price, and unregulated

agents reduce demand and counteract the price increase.

Suppose, alternatively, that the own price demand response is positive, DS,mm > 0, and so an

increase in market price qm on average leads unregulated agents to increase demand. Following

the same logic, this is a force for the direction of misallocation to be χSm − ϑm > 0, which in the

targeting rule counteracts the negative externality. In this case, the regulatory arbitrage of increasing
demand in response to marker price increases leads regulated agents to have lower CMRS than

unregulated agents, despite the negative externality.

The above logic reflects that the sign of the regulatory arbitrage response is crucial for deter-

mining the direction of misallocation. It is intuitive to conjecture that an unregulated agent i has

a negative own-price demand response, Di,mm < 0: an increase in the price qm reduces demand

for good m owing to a classical substitution effect. This would imply that a positive pecuniary

externality leads to misallocation costs because regulated agents have a low CMRS relative to

unregulated agents. We now do a careful decomposition of the demand response of an unregulated

agent, and show that models of pecuniary externalities naturally give rise to a counterveiling

force that motivates a postive demand response Di,mm > 0 to price increase, rather than a negative

response. This changes the direction of misallocation and implies that regulated agents have a low
CMRS relative to unregulated agents. The intuition is that positive pecuniary externalities slacken

the constraint sets of agents, implying their choice set expands and letting them increase demand
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(despite the higher transaction cost). We provide a specific example of this form after presenting

the general result.

We focus on unpacking the own-price response, Di,mm, to determine its sign. To do so, we

employ tools from price theory to give a decomposition into income and substitution effects.

Our decomposition differs from the canonical one because prices appear not only in the budget

constraint (transaction price), but also in the constraint set (market price). We define Hicksian

demand hi(pi, q, Ui) and the expenditure function ei(pi, q, Ui) from the expenditure minimization

problem.13 From here, we obtain the formal decomposition of Di,mm.

Proposition 10. A price-theory decomposition of agent i’s demand in market m yields

Di,mm =
∂him

∂pim︸ ︷︷ ︸
Standard Substitution Effect

< 0

+
∂him

∂qm︸︷︷︸
Constraint Set Substitution Effect

Q 0

+
∂Iim

∂wi
Ei︸ ︷︷ ︸

Total Income Effect

Q 0

(14)

where Ei = −hi +
1
λi
∇qUi is the vector of pecuniary externalities on agent i.

Proposition 10 tells us that the sign of Di,mm generally depends on a combination of income and

substitution effects. The right-hand side of equation (14) consists of three terms. The first term, ∂him
∂pim

,

is the standard substitution effect in the transaction price. This term is negative, reflecting the usual

effect that a compensated increase in a good’s own price shifts demand away from that good. This

term leads regulatory arbitrage to cause positive (negative) pecuniary externalities to be associated

with regulated agents having lower (higher) CRMS than unregulated agents.

However, there are two additional forces. The first is the substitution effect in the collateral

price. Unlike the transaction price substitution effect, the collateral price substitution effect cannot

be signed in general. However, it can be positive in natural models of pecuniary externalities. For

example, an increase in the collateral price may encourage unregulated agents to sell less of an

asset if debt-back rollover is tied to the market value of collateral, resulting in ∂him
∂qm

> 0. In this

case, the collateral price substitution effect pushes misallocation in the opposite direction: positive

(negative) pecuniary externalities push for regulated agents to have a higher (lower) CMRS than

unregulated agents.

Finally, there is also an income effect. Absent prices in constraints, the traditional income effect

is based on demand Iim: an increase in the transaction price reduces the effective wealth of agent i
because it costs more to purchase the same amount Iim. With prices in constraints, the income effect

13 The expenditure minimization problem is min pihi subject to Ui(hi) ≥ Ui and Γ(hi, q) ≤ 0, Hicksian demand
is the solution hi(pi, q, Ui) to this expenditure minimization problem, and the expenditure function is ei(pi, q, Ui) =
pihi(pi, q, Ui). The price theory logic that follows is closely related to Farhi and Gabaix (2020), who characterize price
theory decompositions when behavioral agents have demand functions that exhaust budget constraints but do not
maximize utility.
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is instead given by Eim, which is the total wealth-equivalent value to agent i of the price change.

Eim incorporates not only the classical income effect, but also an additional income effect that arises

from changing tightness in the constraint set (pecuniary externality). This changing constraint set

tightness is equivalent to an increase in wealth, and hence incorporated into the wealth equivalent

measure Eim. If the total pecuniary externality is positive, in line with above discussion, if if m
is a normal good, that is ∂Iim

∂wi
> 0, then the total income effect increases demand, even when the

classical income effect reduces it. This again leads to positive (negative) pecuniary externalities

being associated with regulated agents having higher (lower) CMRS than unregulated agents.

Taken together, Proposition 10 tells us that although the classical substitution effect from the

transaction price can lead to misallocation whereby positive (negative) pecuniary externalities

lead regulated agents have a low (high) CMRS relative to unregulated agents, both the collateral

price substitution effect and the (pecuniary externality) income effect can push misallocation in the

opposite direction.

Example: the liquidity model. We provide a simple example to highlight how pecuniary ex-

ternalities can lead to positive responses Di,mm that shift the direction of misallocation. Suppose

there is a three-date economy, t = 1, 2, 3, with three markets (M = 3): the numeraire, invest-

ment at date 1 (capital good trade), and investment at date 2 (capital good trade), with I ordered

accordingly. A specific agent i has an endowment Ai of the date 1 investment good, a budget

constraint pi Ii = 0, and the following two constraints. Agent i has utility over consumption of the

numeraire date 2. Her final consumption is her final production plus purchases of the numeraire,

Ui(Ii) = Ii1 + R(Ai + Ii2 + Ii3), where R > 1 is the final return on investment. She faces a simple

constraint: she has a transitory liquidity surplus/shortfall ρi at date 2, which requires her to set

q3 Ii3 = ρi. We can interpret ρi < 0 as forced sellers (Holmström and Tirole, 1998) and ρi > 0 as

arbitrageurs with limited wealth (Allen and Gale, 1994). We colloquially refer to this model as the

“liquidity model.”

In this simple example, Proposition 10 yields that Di,33 = − 1
q2

3
ρi is negative if ρi > 0 and

positive if ρi < 0.14 Thus, the direction of misallocation induced by agent i depends on whether

agent i has a liquidity surplus or shortage. If agent i has a liquidity shortage, then she is a forced

seller at date 2. In this event, a higher price q3 of the date 2 good increases her demand for that

good, that is it reduces how much she has to sell. Intuitively, this is a pecuniary externality

operating through her constraints: as the price rises, she has to sell less in order to meet her same

liquidity shortage. If the economy-wide pecuniary externality is positive (by relaxing forced seller

constraints), this pushes the direction of misallocation to have a higher CMRS for regulated agents

than for unregulated agents. By contrast if the economy-wide pecuniary externality is negative, the

direction of misallocation goes in the opposite direction.

In contrast to forced sellers, a constrained buyer has fixed liquidity, meaning the amount she

14 From the constraint, agent i has Marshallian demand Ii3(pi3, q3, wi) =
1
q3

ρi from which the derivative follows.
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can purchase declines in the price. Intuitively, her ability to purchase assets at date 1 declines for

her given wealth as its price rises. Conversely to the forced seller, the constrained buyer therefore

has a negative demand response to the price increase, owing to a negative pecuniary externality.

The constrained buyer therefore pushes the direction of misallocation such that positive (negative)

pecuniary externalities lead to a lower (higher) CMRS for regulated agents than for unregulated

agents.

5.3 Measuring Misallocation in the Data

An important question is how to quantify regulatory arbitrage and misallocation and take it to the

data. We show that regulatory arbitrage in our setting is quantifiable in terms of sufficient statistics

that are in principle estimable in the data.

Our results imply that misallocation comprises two terms: the amount and cost. Start first with

the cost of misallocation. In our model, the cost of misallocation for agent i is simply χi − ϑ, which

is the differences in CMRS between unregulated agent i and regulated agents. As discussed in

Section 2, this is equivalent to the difference in the transaction prices of unregulated and regulated

agents. Thus, we can measure the cost of misallocation as the difference in transaction price of

agent i relative to the transaction price of a regulated agent.

Second, consider the amount of misallocation, that is regulatory arbitrage. Our model implies

that the amount of misallocation is simply the demand response of i to price changes, Di, that

is regulatory arbitrage by i. We now show that we can decompose regulatory arbitrage into

a combination of aggregate financial flows and micro estimable price elasticities. In particular,

element Di,mn can be represented as

Di,mn =
1

qm︸︷︷︸
Market
Price

× ξi,mn︸︷︷︸
Price

Elasticities

× Iin︸︷︷︸
Aggregate

Flows

(15)

This decomposition depends on three objects that are in principle empirically observable. The first

is the price qm in the market. The second are the micro price elasticities ξi,mn of flows by an agent of

type i. The third are the aggregate flow positions Iin of a type i agent, which could be drawn for

example from the Flow of Funds.

5.4 Partial Regulation of Agents and Activities

Our analysis has so far focused on complete regulation of all or a subset of agents, with exogenous

(possibly zero) wedges on other agents. We classify such regulation as identity-based regulation.

Regulation can also target specific markets or subsets of markets (i.e., activities). We classify such

regulation as activity-based regulation. For example, the planner might directly regulate the market
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for a specific form of debt, such as repurchase agreements (for example, a uniform tax in a market

across all unregulated agents). Alternatively, a planner might target only the domestic operations

of a foreign company (such as bank subsidiary regulation), which involves taxes of only a subset of

an agent’s activities. We might call such regulation partial identity-based regulation. The distinction

between these types of regulations is not only of interest from a theoretical point of view but also

highly relevant in practice.15

In this subsection, we characterize optimal partial regulation. Formally, suppose that the

planner can choose a subset of instruments {τim} for agents i ∈ S.16 The results to come will give

an important role to demand responses of agents to transaction price changes pi. We will denote

Dp
i = ∇pi Ii to be the matrix of demand responses of agent i to changes in her transaction price

vector pi, so that for example Di,m = ∇pim Ii is the set of demand responses across all goods to a

change in transaction price of good m.

We begin by characterizing optimal regulation for any instrument the planner has.

Proposition 11. Suppose the planner has complete instruments for i /∈ S and incomplete instruments for
i ∈ S. Then:

1. Optimal regulation of i /∈ S follows as in Proposition 9, and the targeting rule of equation (13) applies.

2. Optimal regulation of any i ∈ S for available instrument τim satisfies

0 = Dp
im

(
χi − ϑ

)
, (16)

Proposition 11 provides optimal regulation with any instrument the planner possesses. Intuitively,

Proposition 11 divides the problem into two interrelated components.

First, for a given CMRS of regulated agents, ϑ, equation (16) describes a targeting rule for

misallocation for partial instruments on agents i ∈ S. This targeting rule trades off misallocation

between agent i ∈ S and regulated agents. Note that if the planner had complete instruments over

i, equation (16) collapses to χi = ϑ, recovering that a regulated agent has no misallocation relative

to other regulated agents.

Without complete regulation over i ∈ S, equation (13) provides a targeting rule based on

weighted average of misallocation across different markets for agent i. The targeting rule sums

15 For example, Feldman and Heincecke (2018) emphasizes combining strengthened equity capital requirements
for systemically important financial institutions (identity-based regulation) with a tax on the leverage of unregulated
financial intermediaries (market-based regulation).

16 Results of this section are easily generalized to the case where for unregulated agents, the planner chooses a
subset τ1 of wedges optimally and where the remaining wedges τ2(τ1) are functions of τ1. In this case, we can simply
recharacterize Proposition 11 accounting for the additional misallcoation effects ∑j∈S µj∇τ1

im
τ2

j Dp(χj − ϑj) across all
unregulated agents. For expositional simplicity we do not focus on such characterizations except in specific examples,
such as uniform activity regulation.
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together the product of the demand response of i in market m times the misallocation of i in market

m. In the limiting case where cross-price elasticities are zero, the targeting rule collapses to χim = ϑm

for any instrument the planner possesses, and so corrects misallocation in those markets. Outside

of the limiting case, Proposition 11 illustrates that there is no longer necessarily equal treatment:

partially regulated agents may be subject to different regulation for the same activity.

Is is important to recognize that the weights Dp
im are the demand responses of agent i to

transaction prices, holding fixed market prices. Intuitively, this reflects the ability of regulation to

directly affect the transaction price alone.

It is interesting to note that the targeting rule of equation (16) only reflects misallocation,

and does not directly account for pecuniary externalities. Intuitively, this reflects the two-step

nature of this problem. Once optimal misallocation for agent i ∈ S relative to regulated agents

has been determined for given ϑ, we can use the targeting rule of equation (13) to determine the

socially optimal value of ϑ. This determination then trades off pecuniary externalities against total

misallocation in the normal fashion.

In sum, Proposition 11 provides a two-step process for thinking about partial regulation. First,

the planner uses the targeting rule of equation (16) to determine the optimal level of misallocation

between agents subject to complete regulation and an agent subject to partial regulation. Then,

the planner uses the targeting rule of equation (13) to determine the social trade-off between

misallocation and externalities.

Uniform activity regulation. A particularly important application is uniform regulation of a

specific activity (market), that is τim = τm is constant for all i ∈ S. Analogously to equation (16), we

obtain

0 = Dp
SmEi∈S

[
χi − ϑ

]
+ µSCovi∈S

(
Dp

im , χi − ϑ
)
.

If there is no within-unregulated misallocation, then this collapses to a simple average rule 0 =

Dp
Sm

[
χS − ϑ

]
= 0. Intuitively, the planner uses the market-based instrument to correct a weighted

average misallocation across agents and markets. If all cross-price elasticities are zero, then the

optimal rule simple states pim = ϑm, and hence activity regulation achieves no misallocation for the

market it targets.

Subsidiary regulation. A second case of interest is when the planner can regulate a “subsidiary”

of agent i, that is a subset M̂ ⊂ M of agent i’s activities. For example, this could be a foreign-country

subsidiary of a domestic bank. In this case, the targeting rule in matrix form is

0 = Dp
iM̂

(
χi − ϑ

)
.
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Intuitively, this gives the planner more degrees of freedom with which to reduced i’s misallocation

relative to a regulated agent. If the subsidiary fully independent, that is Dp
i =

(
Dp

iM̂
0

0 Dp
i,M\M̂

)
is

block diagonal, then we have χiM̂ = ϑM̂. In this case, it is as-if the independent subsidiary is subject

to complete regulation whereas the rest of the entity is unregulated. As a result, the subsidiary is

regulated in the same manner as regulated agents. This insight provides a possible efficiency based

rationale for ring fencing foreign bank subsidiaries and subjecting them to the same regulation as

domestic banks in the case that the foreign bank subsidiaries’ activities are sufficiently independent

from those of the banking group.

5.5 Impact of newly unregulated agents.

Two closely related regulatory concerns in practice are that an agent in a regulated industry might

reclassify to an unregulated industry to escape regulation, or that a new entrant might establish in

an unregulated industry to escape regulation. We now shed light on the important question of how

reclassification (or entry) of agents to unregulated status affects optimal regulation.

In particular, suppose we start from a case where a subset S of agents are unregulated. Now

expand the unregulated set to S1, and denote dS = S1\S the newly unregulated agents. It is easy to

see we can write the new targeting rule as

0 = (1− αS) DdS ×Ei(χi − ϑ | i ∈ dS)︸ ︷︷ ︸
Average Misallocation in dS

+αS

Old Targeting Rule︷ ︸︸ ︷
DSE(χi − ϑ | i ∈ S)︸ ︷︷ ︸
Average Misallocation in S

+E ,

where αS = µS
µS1

is the relative share of unregulated agents in S. Thus, an expansion of the

unregulated set provides a clean and separable addition to the targeting rule. The targeting rule

weights misallocation between the old and new sets based on the relative size of the two sets.

6 A Classification Scheme for Unregulated Finance

After the 2008 financial crisis, a new regulatory regime for financial stability has emerged. While

conventional bank holding companies face tighter regulatory requirements, many other financial

institutions that conduct similar activities remain unregulated. This has raised questions about

the efficiency and efficacy of current regulatory policies. An active debate has ensued about

whether and how to start regulating the unregulated financial sector. Prominent policy proposals

to extend financial regulation have advocated both regulating specific insitutions—such as targeted

regulation of mutual funds—and regulating specific activities—such as a uniform tax on leverage.17

At the same time, there is little consensus on what constitutes a “shadow bank” and which parts of

17 See for example Gorton et al. (2010) and Feldman and Heincecke (2018).
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the unregulated sector, if any, we should subject to new regulation.

In this section, we leverage the theoretical framework of Sections 2 through 5 to develop a

regulatory classification scheme for unregulated finance that can be used to evaluate targets for

new regulation. Our classification scheme directly identifies agents and activities whose regulation

would attain the largest welfare gains. Importantly, this assessment is based on estimable sufficient

statistics, allowing us to determine the attributes of agents and activities that are the most valuable

targets for new regulation. A key strength of our framework is that we do not take a stance on

the structure of unregulated finance. Our sufficient statistics approach identifies ex post which

types of institutions and markets should be classified as “shadow banks” from the perspective of a

regulator designing new regulation.

Our theory directly speaks to important policy questions. In Section 6.1, we address how a

policymaker should evaluate the welfare benefits of new unregulated entrants in a market. For

example, an increasingly prominent policy question is whether and how to regulate new FinTech

companies that enter a market either because of a technological advantage relative to existing

players or because regulation has divorced the transaction price of regulated agents from the

market price. We show that the welfare benefits of an entrant is the sum of its profits plus the social

value of its activities, evaluated according to the allocative value of a trade.

We then in Sections 6.2 and 6.3 use our classification scheme to characterize the tradeoffs

between using identity-based (Section 6.2) and activity-based (Section 6.3) regulation to extend the

current regulatory framework to unregulated finance or “shadow banks”.

6.1 Welfare Impact of a New Unregulated Player

What are the welfare consequences of a new (unregulated) market entrant such as a FinTech

company? Suppose there is a new agent I + 1 that enters the economy producing new goods.

To simplify the exposition, we assume that this agent enjoys no direct utility from consumption

and instead remits its profits to existing agents. In other words, we think of agent I + 1 as a new

producer that is directly owned by existing agents.

The new player (agent I + 1) produces a vector of endowments eu by engaging in a set of zero-

wealth trades tu (recall that trades are defined to be zero-wealth).18 Observe that: (i) if eu
m + tu

m > 0,

then the new player is a net producer of good m; (ii) if eu
m + tu

m = 0, then the new player has no net

position in m; (ii) if eu
m + tu

m < 0, the new player is a net user of good m. Define nu = eu + tu to be

the player’s net production. The following result generically characterizes the social welfare impact

of this new player with either complete or incomplete regulation.

18 Note that this formulation in principle allows for the new player to be resource-destroying: it can have (some)
negative endowments and potentially have negative profits. Although our results accommodate such cases, we focus
exposition on cases of nonnegative endowments and profits.
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Proposition 12. The first order social welfare impact of a new player is

∆I+1 = qeu︸︷︷︸
Profit

+ τnu︸︷︷︸
Social Value of Net Production

According to Proposition 12, the welfare impact of a new entrant comprises two terms. First, qeu is

the profit of the agent. Since trades sum to zero, new profits are simply the market value of the new

endowments, i.e., the direct value added to the economy relative to existing resources. As long

as the new agent’s profit is positive, the direct social welfare impact of the new player is always

positive. An immediate corollary is that it is always privately efficient for this new player to enter

the market when its profit is positive, since it provides direct positive value to its owners.

The second term reflects the indirect social value of the new player’s net production nu = eu + tu

across markets: new production in market m net of purchases in market m. For example if the

player does produce good m (eu
m = 0) but uses it in production (tu

m < 0), then net production in

good m is negative (nu
m < 0).

The welfare consequence of net production in a market is ambiguous even when the new

player makes positive profits. Net production in market m increases social welfare if τm > 0, that

is regulated agents are taxed for purchasing goods in that market. In contrast, net production in

market m reduces welfare if regulated agents are subsidized for purchasing goods in that market.

The intuition is that if regulated agents are taxed in a market m, then the allocative value of a trade

is positive in that market: the planner is encouraging these agents to sell in the market, rather than

buy in it. Thus, new entrants that sell in markets with positive regulation are particularly welfare

enhancing. New entrants that buy in these markets are welfare reducing. The opposite results hold

for subsidized purchases in a market.

Proposition 12 provides a simple way for evaluating the welfare consequences (to first order)

of a new player in a market. The new player’s profit is sufficient to determine the private value of

the new player. The (indirect) social value of the new player is evaluated by adding together its net

production in each market weighted by the optimal tax on regulated agents for that market. This

gives regulators a simple tool for evaluating the social desirability of a new player, such as a new

FinTech company, by adding together its profits and the social value of its net production.

6.2 Regulatory Classification of Agents

Section 6.1 classified the welfare benefits of a new entrant. This section develops a regulatory

classification of unregulated agents: that is, which agents are the most valuable new targets for

regulation. Crucially, we show that the agents that are key contributors to regulatory arbitrage are

not necessarily the most valuable targets for new regulation because the relevant demand responses

differ between the two exercises.

Formally, we introduce the following exercise: suppose that the planner proposes a change
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in regulation, dτ̂, for agent i. The following result characterizes the first-order welfare gains from

such new regulation.

Proposition 13. To first order, the welfare gains from new regulation τ̂ of agent i are

∆i = dτ̂Dp
i

(
χi − ϑ

)
.

Proposition 13 provides a simple regulatory classification of unregulated agents. It tells us that

the welfare benefits of the new regultaion are simply the demand responses generated by that

regulation for agent i, Dp
i , times the cost of misallocation for that agent, χi − ϑ. This means that

new regulation is particularly value when it introduces a demand response in an activity associated

with large existing misallocation.

It is important to note that the demand response that is relevant for the regulatory classification

is only the demand response to the transaction price. This happens because introduction of new

regulation only affects agent i’s transaction price, and not her market price. This leads to an

crucial observation: Dp
i constitutes the relevant notion of regulatory arbitrage by an agent from

the perspective of the regulatory classification, whereas Di constitutes the relevant notion for the

targeting rule. This means that the regulatory classification embeds a notion of regulatory arbitrage

that only considers the classical income and substitution effects, and not income and substitution

effects from changes in collateral prices. In the context of Proposition 10, this means that agents that

matter for regulatory arbitrage in the targeting rules are not necessarily the most valuable targets

for new regulation (or may matter in different ways). We make this point cleanly in an example by

revisiting the example of the liquidity model.

Example: Liquidity model revisited. The contrast between the two notions of regulatory arbi-

trage manifests starkly in the liquidity shock model of Section 5.2. While an extreme case, this

simple model helps further clarify the difference between the two policy questions addressed in

Sections 5 and 6. In the liquidity model from Section 5.2, we emphasized that regulatory arbitrage

through collateral price effects in market 3 was a driver of misallocation. And yet in this same

example, we have Dp
i3 = 0 and hence ∆i = 0 for any regulation of agent i that targets market 3. The

intuition is that the binding constraint of the liquidity model, q3 Ii3 = ρi, implies that the allocation

in market 3 is entirely determined by the collateral price, and not at all by the transaction price.

Therefore, from the perspective of regulatory classifcatino, there is no point to extending regulation

along this dimension to this agent.

This example provides a simple illustration of how agents that matter for regulatory arbitrage

may not necessarily be desirable targets for regulation. It amounts to the principle that regulatory

arbitrage in the targeting rule accounts for the set of collateral price effects on demand, whereas

regulatory arbitrage from the perspective of regulatory classifciation only accounts for the classical
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income and substitution effects operating through transaction prices. It highlights the two different

objects for a regulator to measure in the two different exercises.

6.3 Regulatory Classification of Markets

We now present a regulatory classification scheme for markets, which identifies which markets are

the most valuable targets for new activity-based regulation. This exercise parallels our exercise for

the reglatory classifciation of agents. Formally, we now instead suppose that the planner imposes

a uniform change in tax dτ̂m on market m across all agents (it will not matter for welfare to first

order if regulated agents are exempt since for them χi = ϑ). The following result characterizes the

welfare gains from such new regulation.

Proposition 14. To first order, the welfare gains from new regulation dτ̂m of market m across unregulated
agents is

∆m = dτ̂mEi

[
Dp

im

(
χi − ϑ

)]
.

The intuition of Proposition 14 is close to that of Proposition 13. The welfare gain from a new

uniform tax in market m is simply the sum of agent demand responses weighted by agent misallo-

cation. In the special case where the CMRS is equal across unregulated agents i ∈ S, we can rewrite

the welfare gains from new regulation equivalently as

∆m = dτ̂mDp
SmEi∈S

[
χi − ϑ

]
.

Thus, the classification of a market adds up the demand response of unregulated agents to the new

regulation, and multiplies that regulatory arbitrage by the average misallocation of unregulated

agents relative to regulated agents. Activity-based regulation thus focuses around inducing changes

in demand through a single purchase price across all agents, rather than inducing a change in

demand in all prices for a single agent.

Activity regulation as implicit discrimination. An interesting observation is that activity-based

regulation act as a discriminatory tax against certain agents and business models, even though

it in principle applies equally to all agents. The intuition is seen most starkly when a subset Ŝ of

unregulated agents do not participate in market m. In this case, their demand responses to market

m are zero, and we have

∆m = dτ̂mDS\ŜEi∈S\Ŝ

[
χi − ϑ

]
.

This tells us that the welfare consequences of regulation of market m are determined by the

behavioral responses induced in the set participants in that market. This means that the (in
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principle) uniform tax nevertheless implicitly discriminates against participants in market m, who

are affected by the tax, in favor of nonparticipants, who are not affected by it. We develop this idea

further in our capital control application in Section 7.2.

Identity-based regulation versus activity-based regulation. The regulatory classifications of

Propositions 13 and 14 identify the potential welfare gains from new identity- and activity-based

regulations. An important question that our classification framework helps address is what the

relative trade-offs of identity- and activity-based regulation are, and when a planner should

consider employing one over the other.

Formally, we can compare the value of extending identity-based regulation dτ̂ to agent i
against activity-based regulation dτ̂m in market m to all agents. From above, and for simplicity

focusing on the case of no underlying cross-sectional misallocation, we have

∆i − ∆m =

[
dτ̂Dp

i − dτ̂mDp
Sm

]
Ei∈S

[
χi − ϑ

]
The trade-off revolves around the ability to target many activities within a single agent versus the

ability to target a single activity across agents. The first term reflects the difference in arbitrage

responses in these two cases. In the first case, arbitrage responses are generated for all prices in

agent i. In the latter case, arbitrage responses are generated for all agents with respect to price m.

This difference in regulatory arbitrage between the two cases is then multiplied by the same cost

of misallocation. Intuitively, this tells us that market regulation is valuable when it can correct

regulatory arbitrage in markets with large misallocation. By contrast, agent regulation is valuable

when it can correct regulatory arbitrage in an agent with large misallocation.

6.4 Non-Regulatory Interventions

In practice, proposals for interventions in unregulated finance include both regulatory interventions

and fiscal “support programs,” such as access to the lender of last resort (LOLR). For example,

support programs may look to bolster rollover by allowing financial institutions to borrow at rates

consistent with “fundamental” value of assets, rather than temporarily low fire sale prices. In our

language, this could be viewed as an intervention that boosts the market price of agent i, qi, in her

constraints while holding fixed the transaction price.

We can analogously characterize the welfare gains from a support program. Formally, this

exercise supposes that the planner is able to boost the market price qm (for collateral) for agent i
in market m to qim = qm + dqim. It should be recognized that our analysis takes into account the

benefits of such an intervention, but abstracts away from costs. It should also be noted that our

analysis will implicity allow for regulatory arbitrage in response to that market price increase.

It will be helpful to define Dq
i = Di − Dp

i , which by construction is the derivative of demand

in the market price while holding fixed the transaction price. We obtain the following result.
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Proposition 15. To first order, the welfare gains from a support program dqim for any agent i is

∆q
im =

1
λ

ωi
∂Ui

∂qm︸ ︷︷ ︸
Direct Effect

+Dq
im[χi − ϑ].

Intuitively, a support program for agent i has two effects. The first effect is a direct effect: the increase

in the market price i faces for collateral alters her set of feasible allocations, represented through its

impact on constrained utility. This effect is precisely the pecuniary externality underlying Lemma

3. Thus if a support program were extended to all agents, the sum of direct effects would add to Em

(assuming no redistributive motive). The direct effect is strong when i is particularly subject to the

pecuniary externality in that market.

Second, there is an indirect effect: the support program generates a set of demand responses

Dq
im in agent i to the market price change. These demand response changes are beneficial to the

extent they increase demand in markets where i has a high CMRS relative to regulated agents.

Intuitively, if agent i has a high CMRS because she faces binding constraints, then a support

program that relaxes those constraints and allows her to purchase more has additional value in

correcting misallocation.

It is interesting, however, to connect back to Proposition 10, which suggested that a positive

pecuniary externality that generated a positive Di,mm meant that the direction of misallocation

was χim − ϑ < 0. Intuitively, under these conditions the indirect effect is actually negative, and

partially offsets the benefit of the support program. The intuition is that in the presence of positive

externalities and large market price effects on demand, the planner has optimally implemented

regulation that taxes regulated agents and so raises their CMRS relative to the unregulated. Thus

the indirect effect of the support program actually exacerbates misallocation, even while it relaxes

constraints.

More broadly, Proposition 15 suggests that if an agent has a large demand respoinse, D, it

is strong potential candidate for either new regulation (large transaction price response Dp
i ) or

for a support program (large market price response Dq
i ), or both. This tells regulators that agents

associated with large amounts of regulatory arbitrage are strong candidates for some form of

intervention. However, such agents are not unambiguously good targets for intervention, as the

indirect effects of support programs can counteract the direct effects through misallocation.

7 Applications

In this section, we apply our theory to two primary applications. In our first application in Section

7.1, we study how a planner should identify shadow banking institutions as targets for regulation.

In particular, we identify characteristics of unregulated financial institutions, such as mutual funds
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or hedge funds, that make these institutions desirable targets for financial regulation. In our second

application in Section 7.2, we study how a planner should target capital control measures to manage

capital flows. We use this to evaluate what types of capital flows are most desirable to regulate.

7.1 Shadow Bank Institution Regulation

Our first application studies extending financial regulation to unregulated “shadow banking”

institutions, such as mutual funds or hedge funds. We present a simple model in which shadow

banks issue debt at date 0, but suffer a binding debt rollover constraint and forced deleveraging

when the economy is in a recession.19 We study what properties make a shadow banking institution

a particularly desirable target for financial regulation.

There are three periods, t = 0, 1, 2. An aggregate state s ∈ {sH, sL} is realized at date 1, with

the probability of the high state being πH. There is one capital good which can be purchased and

sold at dates 0 and 1, and we term purchases and sales of capital to be “investment.” The economy

features forced deleveraging and fire sales in the low state, sL, but not in the high state, sH, where

the price is constant. The date 0 price of capital is also endogenous. We therefore refer to prices at

date 0 as q0, and we denote as q1 the price vector at date 1 in the low state.

At date 0, shadow banks (unregulated agents) can finance a project by purchasing the capital

good, Ii0, at price q0, where Ii0 > 0 denotes a purchase of the capital good. At date 0, shadow bank

i can use the capital good to create R(s)Φi(Ii0) units of the capital good at date 1, which then pay

out 1 unit of the consumption good per unit of scale if held to maturity at date 2. R(s) is a capital

quality shock, with RH > RL. We normalize E[R] = 1 for simplicity, since E[R] > 1 can be folded

into the technology Φi. Shadow banks can sell the capital good at date 1, denoted by Ii1, where

Ii1 < 0 denotes selling the capital good. The resale price in the low state is q1 ≤ 1, while the resale

price in the high state sH is constant at 1.

Shadow banks can also issue debt, Di0 and Di1, and consume Cit. Shadow banks can trade

the consumption good at date 0, ci0, to purchase the investment good. Debt is short-term and is

traded with deep-pocketed risk-neutral households, and so has a fixed price of 1. Given that debt

is short-term, the required debt level at date 0 is

Di0 = ci0 + pi0 Ii0 − wi,

where wi is the tradeable wealth level and pi0 is the transaction price. This debt must be repaid at

date 1 either by issuing new debt or liquidating assets. In the high state sH, there is no constraint

to debt rollover, and hence Di1 = Di0 and Ci2(sH) = RHΦi(Ii1)− Di0 is final shadow bank con-

sumption in the high state. However, in the low state shadow banks are not able to roll over debt,

that is Di1 ≤ 0. As a result, in the low state debt repayment must be done using asset liquidations,

19 Our simple model is in the spirit of standard macro-finance models such as Kiyotaki and Moore (1997) and
Lorenzoni (2008).
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q1 Ii1 = −Di0. Hence, consumption in the low state is Ci2(sL) = RLΦi(Ii0) + Ii1, since the entire

debt level is repaid at date 1 through asset liquidations. Substituting q1 Ii1 = −Di0 in to preferences

and the budget constraint, we obtain that the bank’s object is to maximize constrained utility,

Ui = ci0 + Φi(Ii0) +

[
πHq1 + πL

]
Ii1,

subject to the budget constraint

ci0 + pi0 Ii0 + pi1 Ii1 = wi

and the non-negativity constraint ci
0 ≥ 0.20 In the general notation, M = 3, with ci0 being the

numeraire and Ii0, Ii1 being the two other traded goods. Date 1 capital sales are beneficial in that

they relax the budget constraint, but are costly when sold at a price lower than 1. Notice that the

interesting case arises when the non-negativity constraint binds, that is ci
0 = 0, since if ci0 > 0. We

will assume this is the case throughout the remainder of this section.

From here, we obtain the following result.

Proposition 16. The regulatory classification of shadow bank i is proportional to −ξi Ii0, where ξi =
pi0
Ii0

∂Ii0
∂pi0

=
Φ′i(Ii0)

Φ′′i (Ii0)Ii0
is the elasticity of shadow bank investment at date 0 to the date 0 price.

Proposition 16 provides an unambigous (relative) regulatory classification of shadow banks, which

requires only minimal knowledge of a shadow bank’s characteristics. According to this classifica-

tion, shadow banks are institutions whose ex-ante investment has a high elasticity to the ex-ante

price of investment, or that are associated with large aggregate flows Ii0. Because shadow banks

are debt-financed and face binding collateral constraints, large positive investment flows at date 0

are also associated with large negative flows at date 1, generating large externalities. Unregulated

institutions with a large investment elasticity or large initial flows produce large demand responses

to regulation, and hence also in equilibrium produce large responses in forced sales at date 1. This

suggests that, from a regulatory perspective, shadow banking institutions can be classified based

on their investment price elasticity and aggregate flows.

The special case of Cobb-Douglas production yields a particularly sharp classification formula

for the welfare benefits of regulating shadow bank i. Let Φi(Ii0) = Ai(Ii0)
αi , where we can interpret

each bank as having a fixed factor of “bank labor” with supply 1 and factor share 1− αi. In the

Cobb-Douglas case, we have −ξi =
1

1−αi
. Therefore, our results suggest that extending regulation

to shadow banks can generate particularly large welfare gains when these previously unregulated

institutions have (i) a high level of illiquid investment, Ii0, and (ii) a large illiquid investment factor

share, αi. These are in principal estimable sufficient statistics, with for example illiquid investment

directly observable from balance sheet data.
20 Note that the appearance of pi1 is the budget constraint and q1 in (constrained) utility implies that the shadow bank

i has to cover debt at the market price, that is extra funds raised from the transaction price do not relax the constraint.
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The results of this section provide a simple way to think about classifying shadow banking

institutions as valuable targets for regulation. We have shown here in a simple environment that

the institutions that are the best targets for new regulation are those with high illiquid investment

levels and factor shares. This provides guidance to regulators on what to look for in the unregulated

financial sector when evaluating new targets for regulation.

7.2 International Capital Flow Regulation

Our second application studies regulation of international capital flows to a small open economy

(SOE), such as an emerging market. We present a simple model of capital inflows by international

investors. The SOE can experience a crisis at an intermediate date, which may result in a sudden

stop or capital flight from different investors. We study the impact of unregulated capital flows on

optimal (domestic) regulation by the SOE planner, as well as the potential welfare gains the SOE

can realize when imposing restrictions on initial inflows or on outflows during the crisis. A key

takeaway from our framework is that the relative value of inflow and outflow regulation can be

summarized by differences in misallocation at both dates, and differences in investor propensity

for flight and retrenchment. We also highlight how an outflow tax can be valuable as an implicitly

discriminatory tax against undesirable flighty investors.

There are three periods, t = 0, 1, 2. The SOE faces aggregate uncertainty that is realized at date

1, with s ∈ {sH , sL} (“high state” H and “crisis” L). The probability of the high state, sH , is πH . The

economy has N domestic capital goods which can be purchased and sold at both date 0 and date 1.

We denote market prices in period 0 as q0n. At date 1, the market price of capital good n is denoted

q1n if the economy is in the crisis state, s = sL. Market prices are constant and normalized to 1 in

the high state, s = sH. We denote q0 and q1 to be the vectors of date 0 and date 1 prices.21

At date 0, international investor i (i.e., unregulated agent i) can purchase a vector Ii0 of

domestic capital goods, with Ii0n denoting purchases of good n. If the high state is realized at

date 1, international investor i earns a high payoff FiH(Ii0) from her investment in units of the

consumption good, at which point her project ends. If instead the crisis state is realized at date

1, the project yields nothing at date 1 and a lower final value FiL(Ii0, Ii1) at date 2. This fall in

project value can be interpreted as arising due to a negative fundamental shock in the SOE or from

stochastic movements in real exchange rates.22 Ii1 is the endogenous vector of date 1 flows into or

out of domestic capital goods during the crisis state, with Ii1n denoting flows in good n.

International investors are deep-pocketed at date 0, which makes it convenient to interpret

wealth at date 0 as wealth alloated to purchases in the SOE (coming out of i’s international resoruces).

21 Note that in the general notation, the index m corresponds to pairs (t, n). Thus we can index (0, 1) by m = 2, (0, n)
by m = n + 1, (1, 1) by m = n + 2, and so on. It is expositionally clearer in this example to maintain pair dependence
(t, n) as opposed to the index m.

22 For example, we could assume that the domestic projects pay off in the domestic consumption good, and that
foreign investors sell the domestic consumption good to purchase the foreign consumption good. We can capture this by
premultiplying the project payoff by the real exchange rate εL in the low state.

35



The utility of international investors from their investments in the SOE can then be written as

Ui = πH FiH(Ii0) + (1− πH)

(
λi1ci1 + FiL(Ii0, Ii1)

)
.

We denote by λi1 the marginal value of repatriated wealth at date 1 in the crisis state. It may be

larger than 1, for example if international investors experience a binding collateral constraint in

their home country or if there is a movement in the real exchange rate. International investors may

find it desirable to sell domestic capital goods in the low state if they have a high marginal value of

wealth or if they can earn higher returns by investing abroad rather than by continuing the project

in the SOE.

The budget constraint of international investor i in the SOE is

ci1 + p̂i0 Ii0 + pi1 Ii1 ≤ ŵi

where p̂i0 = pi0
1−πH

denotes probability-normalized prices. Given deep pockets, we can interpret ŵi

as the amount of wealth that international investor i allocates for investment in the SOE.

To obtain sharp results, we assume that investment technologies are separable across goods for

an investor. Formally, this means that FiH(Ii0) = ∑n FiHn(Ii0n) and FiL(Ii0, Ii1) = ∑n FiLn(Ii0n, Ii1n).

In this case, cross-price elasticities between different goods n are zero. However, the cross-price

elasticities between inflows and outflows of the same good are not zero.

We define two useful concepts. The first is investor i’s tendency for “flight” from capital good

n, which we define as

ωin ≡ −
∂Ii1n/∂pi0n

∂Ii0n/∂pi0n
. (17)

Intuitively, ωin measures the fraction of a new inflow dIi0n at date 1 that ends up withdrawing from

the SOE as an outflow at date 1. It is natural for ωin ≥ 0 when an increase in inflows is associated

with an increase in outflows. Note that the negative sign on the right hand side of equation (17)

appears because an increase in inflows in our model is a more positive value of Ii0n, whereas an

increase in outflows is a more negative value of Ii1n.

We also define investor i’s tendency for “retrenchment” from capital good n as

ζin ≡ −
∂Ii0n/∂pi1n

∂Ii1n/∂pi1n
. (18)

Intuitively, ζin measures how much an increase dIi1n in outflows at date 1 results in an increase

in inflows dIi0n at date 0. When ζin is large, investor i increases initial invest in the SOE when an

increase in the date 1 price also leads her to withdraw more capital at date 1.23

Investor flight ωin and investor retrenchment ζin are closely related notions but capture distinct

ideas. An investor who can realize a large project payoff in the high state but is almost indifferent

23 These notions of flight and retrenchment are generalizations of similar concepts from Caballero and Simsek (2019).
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between maintaining the project and fleeing in the low state might have a large tendency for flight,

ωin. By contrast, that same investor would likely have a low tendency for retrenchment, ζin. This is

because her near indifference between maintaining and fleeing in the low state suggests a large

outflow elasticity to the price of outflows, that is ∂Ii1n
∂pi1n

is large. However, near indifference also

means that switching from maintaining investment to retrenching at date 1 likely has little impact

on the value she gets from investment, that is ∂Ii0n
∂pi1n

is low. Put together, this means that retrenchment

ζin is low.

Unregulated regulatory arbitrage. Given that we have written the model without cross-price

elasticities across goods, the demand response matrix Di of international investor i can be written

as the block diagonal matrix of demand responses Din in good n. That is, we have

Din =

(
∂Ii0n
∂pi0n

−ωin
∂Ii0n
∂pi0n

−ζin
∂Ii1n
∂pi1n

∂Ii1n
∂pi1n

)
.

This represents off-diagonal elements of Din as the product between the own-price responses of

inflows and outflows and the measures of flight and retrenchment identified. Summing over i, we

obtain the aggregate unregulated demand response of all international investors given by

DSn =

(
∂IS0n
∂p0n

−ωSn
∂IS0n
∂p0n

−ζSn
∂IS1n
∂p1n

∂IS1n
∂p1n

)

where ωSn = ∑i βi0nωin is the average flight across international investors and ζSn = ∑i βi1nζin

the average retrenchment. The weight βi0n = µiξi0nαi0n
∑j µjξ j0nαj0n

reflects the relative inflow elasticity of i

in good n weighted by i’s share of inflows, and similarly where βi1n = µiξi1nαi1n
∑j µjξ j1nαj1n

is the analogous

weighting measure for outflows. Therefore, aggregate flight ωSn is high when flighty investors with

high ωin also have high inflow elasticities and high market shares of inflows. Similarly, aggregate

retrenchment ωSn is high when retrenching investors with high ζin have high outflow elasticities

and high market shares of outflows.

Example: safe and flighty investors. Suppose that there are only two types of investors: fully

safe, i = s, and fully flighty, i = f . Fully safe investors inelastically set Is1 = 0, while fully flighty

investors inelastically set I f 1 = −I f 0. Their measures are µs and µ f , respectively. In this case,

we have ωs = ζs = 0 and ω f = ζ f = 1. Moreover, we have ∂Is1
∂ps1

= 0 and ∂Is1
∂ps1

= − ∂Is0
∂ps1

= ∂Is0
∂ p̂s0

.24

Therefore, we have ωSn = ζSn =
µ f ξ f 0nα f 0n

µ f ξ f 0nα f 0n+µsξs0nαs0n
, which is the elasticity-weighted share of capital

flows of flighty investors. In the limiting case where both types of investors have the same inflow

elasticities ξs0 = ξ f 0 = ξS0, then we have ωSn = ζSn =
µ f α f 0n

µ f α f 0n+µsαs0n
is the share of flows of flighty

24 This means that we have Dsn =

(
∂Ii0n
∂pi0n

0
0 0

)
and D f n =

(
∂Ii0n
∂pi0n

− ∂Ii0n
∂pi0n

∂Ii0n
∂pi0n

∂Ii0n
∂pi0n

)
.
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investors relative to safe investors. Finally, observe that we have ∂IS0n
∂p0n

= µs
∂I0sn
∂pi0n

+ µ f
∂I f 0n
∂p f 0n

but
∂IS1n
∂p1n

= µ f
∂I f 0n
∂p f 0n

, reflecting that only flighty investors engage in outflows.

7.2.1 Optimal Regulation with Unregulated Capital Flows

From here, we can characterize the impact of unregulated capital flows on optimal financial

regulation. Assume for now that all capital flows are unregulated, so there is no cross-sectional

misallocation. Because DS is block diagonal, the targeting rule of equation (13) is also block

diagonal, meaning we can characterize the targeting rule for each n, DSn

[
χSn − ϑn

]
= En. We thus

obtain the following result characterizing optimal domestic regulation.

Proposition 17. Optimal regulation with unregulated capital flows yields a targeting rule for misallocation

χS0n − ϑ0n =

Amplification︷ ︸︸ ︷
1

1−ωSnζSn

(
1

∂IS0n
∂p0n

E0n +

Flight︷ ︸︸ ︷
ωSn

1
∂IS1n
∂p1n

E1n

)

χS1n − ϑ1n =
1

1−ωSnζSn︸ ︷︷ ︸
Amplification

(
1

∂IS0n
∂p0n

ζSnE0n︸ ︷︷ ︸
Retrenchment

+
1

∂IS1n
∂p1n

E1n

)

Although Proposition 17 appears complicated, it is in fact intuitive. We begin by discussing optimal

misallocation at date 0. Taxing regulated agents at date 0 reduces demand and increases the price

q0n. This price leads to regulatory arbitrage in the form of inflows, which is captured by 1
∂IS0n
∂p0n

. When

this response is large and capital flows respond aggressively to price changes, changes in demand

of regulated agents only translates to a small change in equilibrium prices. Thus higher degrees of

regulatory arbitrage dampen the efficacy of regulation, as the increase in capital inflows counteracts

the decrease in demand from regulated agents, leading the planner to prefer smaller magnitudes of

misallocation.

When ωSn = ζSn = 0, that is there is no flight or retrenchment, this direct effect is the only

additional component of the targeting rule. However, when there is flight and retrenchment,

ωSnζSn > 0, this is not the entire effect. First, there is a counterveiling amplification effect, measured

by 1
1−ωSnζSn

> 1, which partially offsets the direct effect. This counterveiling effect arises because

regulatory arbitrage in the form of inflows leads to outflows due to investor flight. The increase in

outflows requires a drop in the date 1 price to equilibrate markets, which in turn fuels a decrease in

inflows due to retrenchment. This partially offsets regulatory arbitrage at date 0. Thus surprisingly,

flight and retrenchment indirectly counteract the dampening effect of regulatory arbitrage on

optimal tax rates.
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The effect of inflow regulatory arbitrage on outflows is captured by the “Flight” term in the

targeting rule for date 0. Intuitively, an increase in the date 0 tax increases outflows via flight,

captured by ωSn. Flight is costly to the extent it generates large pecuniary externalities, either

through outflow arbitrage or externalities. Thus interestingly, the cost of flight is low (for given

externalities) when outflows are highly elastic to price changes: highly elastic outflows mean the

price impact is small.

If both date 0 and date 1 externalities have the same sign, then flight amplifies the targeting

rule and promotes accepting greater misallocation. Intuitively, this is because the date 0 tax has

an amplified benefit of indirectly targeting outflows. Conversely if the externalities have opposite

signs, the two effects partially offset one another. Intuitively if date 0 investment is taxed but date

1 investment subsidized (e.g., to prevent fire sales), then the two forces offset one another and

misallocation is smaller in magnitude than the direct effect. Intuitively, this is because a higher tax

on regulated agents promotes regulatory arbitrage by flighty international investors, which then

results in flight and destructive outflows. Therefore, a date 0 tax becomes less desirable.

Conversely, there is an equivalent “Retrenchment” term in the date 1 targeting rule. A

higher date 1 subsidy for regulated agents at date 1 that promotes a higher date 1 price, leads to

retrenchment by international investors and higher inflows ex ante. This retrenchment is measured

by ζSn, and produces through regulatory arbitrage a change in price at date 0. Interestingly

again, the retrenchment effect is muted when date 0 capital flow elasticities are muted. As with

Flight, Retrenchment amplifies misallocation when externalities have the same sign, and dampens

misallocation when externalities have opposite signs.

7.2.2 Value of Imposing Capital Controls

In the following, we characterize the first order welfare gains that the SOE planner can achieve by

imposing uniform taxes on capital inflows or outflows. This parallels the classification exercise

of markets of Section 6, in particular that of Proposition 14. We then leverage these results in two

leading examples to study the benefits of taxing different forms of capital inflows, and to study the

benefits of taxes on inflows versus taxes on outflows.

Following Section 6, we define ∆0n as the first-order money-metric welfare gain to the SOE

from imposing a uniform 1% ad valorem inflow tax at date 0 on good n across international

investors, and similar ∆1n the gains from an outflow tax (inflow subsidy) at date 1. We assume

capital flows were previously unregulated. The money-metric measure is the date 0 change in

wealth that would yield the same welfare as imposing the tax. Note that ∆0n is the gain from

an inflow tax and ∆1n from an outflow tax. We characterize these welfare gains in the following

proposition.

Proposition 18. The money-metric first-order welfare gains for capital controls are:
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1. For a 1% tax on inflows into good n,

∆0n =
∂IS0n

∂p0n

(
χS0n − ϑ0n −ωSn(χS1n − ϑ1n)

)
. (19)

2. For a 1% tax on outflows from good n,

∆1n =
∂IS1n

∂p1n

(
ζSn(χS0n − ϑ0n)− (χS1n − ϑ1n)

)
(20)

Proposition 18 shows that the value of applying an inflow control depends on two terms. First,

there is the direct effect: an inflow tax discourages inflows as long as ∂IS0n
∂p0n

< 0. Thus, the capital

control tax has greater efficacy when inflow elasticities or inflow volumes are high. This total

flow change is multiplied by misallocation at both dates. First, there is misallocation at date zero,

χS0n − ϑ0n. The tax generates welfare gains if χS0n − ϑ0n < 0, that is there is misallocation in that

the CMRS of regulated domestic agents is high relative to international investors. In addition to the

direct effect, there is an indirect effect through international flightiness. Discouraging the inflow

discourages outflows in proportion to Flight, ωSn, which is in turn valuable when the CMRS of

international investors is high relative to domestic agents. Thus even if there is no misallocation

at date 0, an inflow control can be valuable to the extent it discourages flighty outflows. This

motivation rises in the average flightiness of investors, ωSn, for example when flighty investors

constitute a higher share of the market.

Proposition 18 shows that the value of outflow controls also depends on a direct and indirect

effect. The direct effect is analogous to that of inflows, but for otuflows. The indirect effect reflects

that an outflow tax affects misallocation at date 0 through investor retrenchment. Intuitively if

ζSn > 0, then taxing outflows discourages inflows because investors value the ability to repatraite

capital, for example due to low domestic productivity or high marginal value of wealth.

Inflow versus outflow taxes. Proposition 18 highlights an important difference between the

efficacies of inflow and outflow regulation. Let us assume that χS0n − ϑ0n < 0 and χS1n − ϑ1n > 0,

consistent with taxes on inflows and outflows (rather than subsidies) being optimal, and noting

that all results that follow apply if we swap sign and apply a subsidy rather than a tax. Suppose

the two taxes are equally effective in discouraging quantities, that is ∂IS0n
∂p0n

= ∂IS1n
∂p1n

< 0. In this case,

Proposition 18 tells us that an inflow tax is more valuable than an outflow tax if∣∣∣∣χS1n − ϑ1n

χS0n − ϑ0n

∣∣∣∣ < 1− ζSn

1−ωSn
. (21)

Equation (21 tells us that the relative value of the two taxes is determined by a comparison of

misallocation against the two dates against the indirect targeting of the instrument. Intuitively,
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an inflow control is more likely to be valuable than an outflow control if misallocation is larger at

date 0 than at date 1. Notably, greater misallocation at date 0 is neither necessary nor sufficient

for an inflow tax to dominate an outflow tax, as the relative desirability also depends on investor

flight and retrenchment. If there is no flight or retrenchment, ωSn = ζSn = 0, then the extent of

misallocation summarizes the benefits of the taxes.

Equation (21 shows that inflow taxes are valuable when investor flight is high relative to

investor retrenchment, ωSn > ζSn, potentially even if date 1 misallocation is larger. The intuition

can be seen from the limiting case of ωSn = 0: if investors are perfectly flighty, then an inflow

tax also functions as an outflow tax because a unit of inflows translates one-for-one to a unit of

outflows.

Unsurprisingly, misallocation at date 0, χS0n − ϑ0n < 0, pushes for inflow taxes to be desirable,

while misallocation at date 1, χS1n − ϑS1n > 0, pushes for outflow taxes to be desirable. What is

notable about this relationship is that the relative desirability of the two depends on Flight and

Retrenchment.

If there is no flight or retrenchment, ωSn = ζSn = 0, then the relative benefit of each tax is

simply the degree of misallocation in that market. Conversely at the other extreme, ωSn = ζSn = 1,

there is no difference between the two taxes. Intuitively this arises because with complete flight, a

marignal until of inflows leads one-to-one to a marignal unit of outflows. An inflow tax thus

dominates an outflow tax. By contrast, an outflow tax is particularly valuable if retrenchment is

strong relative to flight.

Although Proposition 18 provides analysis of capital control benefits based on average flight

and retrenchment across investors, it also in the background provides an interesting perspective

on differential targeting of inflow and outflow taxes among heterogeneous (e.g., safe and flighty)

investors. Inflow taxes target all investors at date 0 but have a strong effect on the outflows of

flighty investors at date 1 relative to safe investors. In contrast, outflow taxes target all investors

at date 1 but have a strong effect on inflows of retrenching investors at date 0. If an SOE knows

the composition of investors but cannot easily identify what specific investors are of what type,

choice between the two instruments implicitly describes a choice of what type(s) of investors to

discriminate against. For example, an outflow tax provides an incentive compatible method of

differentially screening out risky investors in favor of safe investors.25

A clean example of this idea comes from revisiting the example of safe and flighty investors

from above. It is easy to see here that outflow regulation only affects flighty investors, since they

are the sole drivers of date 1 outflows. By contrast, inflow regulation discourages outflows by

flighty investors in exactly the same proportion, since I f
0 = −I f

1 , but also discourages inflows

by safe investors. This is the limiting case of the differential highlighted above. It suggests a

potential advantage of outflow regulation as a method of screening out flighty investors in favor

25 This idea is related to Davila (2021), who argues that short-term financial transaction taxes discriminate against
speculative investors.
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of safe investors, in environments where inflows are socially benefical but outflows are socially

destructive.

8 Incomplete Regulation with Multiple Regulators and Common Agency

A common scenario for incomplete regulation arises when there are multiple regulators and com-

mon agency. For example, in international settings countries typically have regulatory jurisdiction

over domestic agents, as well as partial regulatory jurisdiction over foreign agents for their domestic

activities. In this section, we extend our setting to study the problem of multiple regulators with

common agency.26

8.1 Model with Multiple Regulators

We model K > 1 independently operating regulators. Regulator k ∈ K possesses complete

regulatory jurisdiction over agents i ∈ Ik ⊂ I . We denote Sk = I\Ik the unregulated set of k and

S ≡ ∩Sk the set of agents that are unregulated by any regulator. The sets Ik need not be disjoint.

Regulator k also has a (possibly empty) partial set of instruments she can choose optimally over her

unregulated set Sk. We denote pi = q + ∑k τk,i, where τk,i is taxes applied by regulator k to agent i.
We denote τ−k,i = ∑` 6=k τ`,i the vector of taxes applied by all regulators apart from k to agent i.

We denote Vk to be the set of “valued” agents that appear in regulator k’s objective function,

that is

Wk = ∑
i∈Vk

µiωk,iVi.

We assume that the set of valued agents is a superset of regulated agents, Ik ⊂ Vk.27 We assume

finally that ∪Vk = I , that is all agents are valued by some regulator, consistent with ruling out

collective redistribution motives. We rule out redistributive motives through appropriate welfare

weights within the set of agents regulator k values.

The model of an individual regulator proceeds as in the baseline model. We assume all

taxes are revenue-generating for individual regulators to streamline analysis. Assuming revenue

neutrality for the unregulated set of non-valued agents would simply introduce extra motivations

for excess regulation of unvalued agents (Clayton and Schaab 2022).

8.2 Allocative Values

We begin by characterizing the allocative value of a market from the perspective of regulator k.

Formally, this is the same new producer exercise as in Proposition 4, where the new producer is

26 In doing so, we build upon work by Korinek (2017) and Clayton and Schaab (2022). The former allows for limited
instruments but not common agency, whereas the latter allows for a specific form of common agency.

27 For example, this assumption is common in settings where multiple countries have benevolent governments that
both value and fully regulate their domestic agents (e.g., Korinek (2017), Clayton and Schaab (2022)).
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owned by the set of agents Vk that regulator k values. We obtain the following result.

Proposition 19. The allocative value of a market to regulator k is

ϑk = Ei
(

pi − τ−k,i
)
+ P Covi

(
Di , χi − τ−k,i

)
+ P Ek

Proposition 19 generalizes the definition of allocative value of a market to the environment with

multiple regulators. There are two essential distinctions from the single regulator case.

The first difference is that when calculating the allocative value, regulator k uses the transaction

price/CMRS net of other regulator’s taxes. Intuitively, regulator k treats the taxes of other regulators

as if they were higher marginal costs that push down the effective CMRS to an agent. Thus, the

regulator k has a lower allocative value on average when other regulators are applying positive

taxes.

The second key difference is that regulator k only directly internalizes externalities Ek that

apply to domestic agents. Note that the planner does in fact partially (indirectly) internalize

spillovers to agents i /∈ Vk that arises through their demand functions Di, which accounts for

market price responses.

Given the allocative value of a market, the allocative value of a trade is defined analogously:

θk = ϑk − q.

8.3 Optimal Regulation

The problem of regulator k is now necessarily a problem of incomplete regulation, as in Section

5. The problem proceeds similarly to Section 5, except that there are now three types of agents

regulator k could apply regulation to. First, regulator k can apply complete regulation to the subset

Ik of regulated, valued agents. Second, regulator k can apply partial regulation to the subset Vk ∩ Sk

of unregulated, valued agents. Third, regulator k can apply partial regulation to the subset Sk\Vk

of unregulated, unvalued agents. The following result characterizes the regulatory choices of

regulator k for each type of agent.

Proposition 20. With multiple regulators and incomplete regulation:

1. The CMRS χi = pi of regulated, valued agents is equal to the allocative value of a market for their
regulator plus taxes of other regulators,

χi = ϑk + τ−k,i, ∀i ∈ Ik.

2. Regulator k’s optimal policy encodes a targeting rule:

0 = DSk Ei∈Sk [χi − (ϑk + τ−k,i)] + µSCovi∈Sk

(
Di , χi − (ϑk + τ−k,i)

)
+ Ek.
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3. For any instrument τk,im on a valued unregulated agent,

0 = Dp
im[pi − (ϑk + τ−k,i)]

4. For any instrument τk,im on an unvalued unregulated agent,

0 = Iim + Dp
im[pi − (ϑk + τ−k,i)].

Proposition 20 extends the analysis of our baseline model to environments with multiple regulators.

It highlights both simiilarities and important differences relative to the baseline model.

As in our baseline model, regulator k sets the CMRS of a regulated valued agent equal to that

agent’s transaction price. In this environment, that is equal to the allocative value of a market to

regulator k, plus taxes applied by all other regulators. Unlike in the baseline model, the CMRS of

regulated agents is not necessarily equated. In particular if two regulated agents feature different

total regulation τ−k,i from other regulators than k, then the two agents have different CMRS in

equilibrium. The intuition is that from Proposition 19: regulator k perceives τ−k,i as additional costs.

Regulator k thus starts from her baseline allocative value of a market, ϑk, and then adds in the taxes

applied by other regulators to find the desired CMRS of a regulated agent.

Although regulator k does not necessarily equalize the CMRS across regulated agents, never-

theless her targeting rule takes an analogous form to the targeting rule of equation (13): it trades

off misallocation among unregulated agents against externalities. Misallocation, however, takes

a subtly different form from the baseline model, χi − (ϑk + τ−k,i). Intuitively, this formulation of

misallocation states that misallocation of agent i is relative to a hypothetical regulated agent who

faced the same total taxes τ−k,i from other regulators. Thus the targeting rule captures the same

intuition as in the baseline model, up to the adjustment that each agent’s misallocation is evaluated

relative to the distortions introduced by other regulators.

Interestingly, because the social optimum sets the CMRS of agent i equal to the allocative

value of the market plus that of other regulators, this unwinds the effect from the allocative value

of the market that the planner discounted taxes applied by other regulators. This means that as

before, regulated agents drop out of the targeting rule. In the language of the previous paragraph,

every regulated agent is also its own hypothetical regulated agent, meaning its misallocation is

zero.

As in Proposition 11, the optimal rule of regulator k is divided into two components. The

above describes how the optimal allocative value ϑk is determined from the targeting rule. The

second component of the decision problem involves using partial regulations of unregulated agents

to minimize misallocation for partially regulated agents.

The third part of Proposition 20 parallels the targeting rule of Proposition 11: the targeting rule

for optimal partial regulation of an unregulated valued agent is a targeting rule for her misallocation
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relative to a hypothetical regulated agent with her same external taxes from other regulators. The

intutiion follows analogously to Proposition 11 and to the logic above.

The final part of Proposition 20 is the targeting rule for partial regulation of an unregulated

unvalued agent. This final component is nearly identical to the targeting rule for an unregulated

valued agent, except it adds in the direct effect of the tax revenue Iim collected. Intuitively, because

agent i is not valued, regulator k internalizes the revenue benefit but does not net out the revenue

cost to the agent. This leads to a distortion in the targeting rule relative to that for unregulated

valued agents, that increases with the size of the position that agent takes in market m.

9 Conclusion

We study regulation with externalities and regulation in a general equilibrium economy. Regulators

with complete instruments face no trade-off between managing misallocation and managing

externalities. With incomplete instruments, we characterize the trade-off regulators face a trade-

off between managing misallocation and managing externalities. Interestingly, regulation takes

a two-part approach: partial regulation reduces misallocation between unregulated and fully

regulated agents, while complete regulation of fully regulated agents trades off misallocation

against externalities.

We leverage our framework to address important policy questions. Foremost, we provide a

classification scheme that allows regulators to evaluate the welfare consequences of new unregu-

lated entrants or of extending new regulation to existing players or activities. We show that each

of these classifications is characterized by simple and estimable statistics of agent’s activities and

arbitrage responses. Our results can help provide guidance to policymakers for thinking about

how to identify targets for regulation in a complex and heterogeneous financial system.
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A Proofs

A.1 Proof of Lemma 2

Consider such a transaction, denoted tm. The welfare benefit to agent i is

∂Li

∂tm
=

∂Ui

∂Iim
− p̂m

∂Ui

∂Ii1
= χi − p̂m > 0

for any p̂m ∈ (χjm, χim). Similarly, the welfare benefit to agent j is

∂Lj

∂tm
= p̂m

∂Uj

∂Ii1
− ∂Ui

∂Iim
= p̂m − χjm > 0.

Thus, both parties benefit from the transaction.

A.2 Proof of Lemma 3

By Envelope Theorem, we can write

∂Vi

∂qm
= −λi Iim +

∂Ui

∂qm
.

The result then comes from summing across agents. Note that we have ∂Ui
∂qm

= ∂ΛiΓi
∂qm

.

A.3 Proof of Proposition 4

The social planner of this simple problem picks the vector of prices q and wealth distribution wi

to maximize welfare, taking as given the exogenous wedges τi, the wealth constraint, and market

clearing. Formally, this Lagrangian is

L(q, τ, w, e) = W(q, τ, w, e) + λ

[
qe + ∑

i
µiτi Ii −∑

i
wi

]
+ ∑

m
νm

[
em −∑

i
µi Iim

]
,

where Ii = Ii(q + τi, q, wi). Therefore, we have

ϑm =
∂L
∂em

= λqm + νm

Next we characterize the Lagrange multiplier νm. Taking the vector of derivatives in q of the

Lagrangian and evaluating around e = 0,

0 = ∇qW + ∑
i

µi∇q Ii

[
λτi − ν

]
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Using definitions Di = ∇q Ii, E = 1
λ∇qW and P = D−1

I , then we have

ν = λP
(
E + ∑

i
µiDiτi

)
Thus substituting in and dividing through by λ obtains

ϑ = q + P ∑
i

µiDiτi + PE .

Thus rewriting the second term decomposed into an expectation and covariance gives the result.

A.4 Proof of Corollary 5

The result is an immediate corollary of Proposition 4, since τi = 0 implies χi = pi = q is constant

across agents and hence the covariance is zero, while E = 0 implies the last term is zero.

A.5 Proof of Corollary 6

The result is an immediate corollary of Proposition 4, since τi = τ implies χi = pi = q + τ is

constant across agents and hence the covariance is zero, while E = 0 implies the last term is zero.

A.6 Proof of Proposition 7

The proof follows from Proposition 4. A trade tm is equivalent to a new producer in m combined

with a new negative producer −q in the numeraire. Thus we have θ = ϑ− qϑ1 = ϑ− q, giving the

result (since the numeraire is not distorted, ϑ1 = 1).

A.7 Proof of Proposition 8

The social planner’s Lagrangian is analogous to Proposition 4, but with e = 0 and with flexible

choice over τi for all i. The social first-order condition for τi is, by Envelope Theorem,

0 = −µiωiλi Iim + λµi Iim + λµi∇pi Iiτi − µi∇pi Iiν.

Thus using weights ωiλi = λ across agents, we have τi =
1
λ ν. Next, we can apply an analogous

derivative in q to obtain, as in Proposition 4,

0 = E + ∑
i

Di[λτi − ν].
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Thus having set τi =
1
λ ν for all i, we obtain E = 0. Finally, let us return to the definition of allocative

value of a market from Proposition 4,

ϑ = Ei
(

pi
)
+ P Covi

(
Di , χi

)
+ P E .

Since χi = pi = q + τi = q + 1
λ ν is constant across i, then the covariance is zero. Since E = 0, the last

term is zero. Finally since the transaction price is constant across agents, the expected transaction

price is equal to the transaction price for any individual agent, and hence we have pi = ϑ for all i.
Lastly, the fact that the tax is equal to the allocative value of a trade follows frm Proposition

7. Since misallocation and externalities are zero, we have θ = pi − qi = τi for all i, completing the

proof.

A.8 Proof of Proposition 9

The social planner’s Lagrangian is analogous to Proposition 8, but with flexible choice over τi only

for i /∈ S. As in the proof of Proposition 8, we have τi =
1
λ ν. As in the proof of Proposition 4, we

have ν = λP
(
E + ∑i µiDiτi

)
. Therefore, addint q to both sides and substituting in, we have

pi = P ∑
j

µiDj pj + PE , i /∈ S.

Finally, note that from the proof of Proposition 4, the LHS is the allocative value of a market, and

therefore pi = ϑ. Since χi = pi, then χi = ϑ for i /∈ S. The allocative value of a trade follows as

before. Finally, we can form the targeting rule from the definition of allocative value,

ϑ = P ∑
i

µiDiχi + PE .

Substituting in χi = ϑ for i /∈ S and subtracting, we obtain

0 = P ∑
i

µiDi[χi − ϑ] + PE .

Since P drops out (full rank among non-numeraire goods), and using the decomposition

∑
i

µiDi[χi−ϑ] = µS ∑
i

µi

µS
Di

[
χi−ϑ−Ei∈S

[
χi−ϑ

]
+Ei∈S

[
χi−ϑ

]]
= DSEi∈S[χi−ϑ]+µSCovi

(
Di , χi

)
,

which gives the result.
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A.9 Proof of Proposition 10

Define the expenditure function ei(pi, q, Ui) and Hicksian demand hi(pi, q, Ui) as the solutions to

the expenditure minimization problem. As usual, Marshallian and Hicksian demand are related by

Ii(pi, q, ei(pi, q, Ui)) = hi(pi, q, Ui).

From here, we use pi = q + τi and totally differentiate the above equation for good m in qm to

obtain

From here, we set P = q = p and totally differentiate demand for m in p(m), obtaining

∂Iim

∂pim
+

∂Iim

∂qm
+

∂Iim

∂wi

(
∂ei

∂pim
+

∂ei

∂qm

)
=

∂him

∂pim
+

∂him

∂qm
.

Recall that ∂Iim
∂pim

+ ∂Iim
∂qm

= Di,mm by definition. It remains only to characterize the derivatives of the

expenditure function. The Lagrangian of the expenditure minimization problem is

LE = pihi −
1
λi
(Ui(hi)−U)− 1

λi
ΛiΓi(hi, q),

which can be rewritten as

LE = pihi −
1
λi
(Ui(hi, q)−U).

Note that this is the dual problem of utility maximization, and hence constrained utility here is

analogous to constrained utility when we use Ui = Vi(pi, q, wi). Thus, the Envelope Theorem tells

us that the total derivative of the expenditure function in qm is

dei

dqm
= him −

1
λi

∂Ui

∂qm
,

so that substituting back in obtains the result.

A.10 Proof of Proposition 11

The social planner’s Lagrangian is analogous to Proposition 9, but with additional choice of a set

of instruments for i ∈ S. The exact same steps as the proof of Proposition 9 shows that for i /∈ S,

we have pi = ϑ. Therefore for any instrument τim for i ∈ S, we obtain by Envelope Theorem the

analogous first order condition

0 = −µiωiλi Iim + λµi Iim + λµi∇pim Iiτi − µi∇pim Iiν

and once again using ωiλi = λ, defining Dp
im = ∇pim Ii, and using θ = 1

λ ν, we obtain

0 = Dp
im[τi − θ] = Dp

im[χi − ϑ],
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which gives the result.

A.11 Proof of Proposition 12

From Propositions 4 and 7, we have that the welfare gains from the new player are ϑeu + θtu. From

Proposition 9, we have ϑ = q + τ and θ = τ. Therefore, we have welfare gains (q + τ)eu + τtu =

qeu + τnu.

A.12 Proof of Proposition 13

Take the planner’s Lagrangian. The analogous arguments from the proof of Proposition 11 tell us

that, by Envelope Theorem,

∆i =
1
λ

∂L
∂dτ̂i

= − 1
λ

ωiλi Ii +
1
λ

λIi +
1
λ

λdτ̂Dp
i τi −

1
λ

dτ̂Dp
i ν = dτ̂Dp

i [τi − θ] = dτ̂Dp
i [χi − ϑ],

which completes the proof.

A.13 Proof of Proposition 14

Take the planner’s Lagrangian. The analogous arguments from the proof of Proposition 11 and

Proposition 14 tell us that, by Envelope Theorem,

∆m =
1
λ

∂L
∂dτ̂m

= ∑
i

[
− 1

λ
ωiλi Iim +

1
λ

λIim +
1
λ

λdτ̂Dp
imτi −

1
λ

dτ̂Dp
imν

]
= dτ̂m ∑

i
Dp

im[χi − ϑ],

which completes the proof.

A.14 Proof of Proposition 15

Suppose an intervention targets the collateral price (holding fixed pi). By Envelope Theorem,

∆q
im =

1
λ

∂L
∂qm

=
1
λ

ωi
∂Ui

∂qm
+

1
λ

λDq
imτi −

1
λ

Dp
imν =

1
λ

ωi
∂Ui

∂qm
+ Dq

im[χi − ϑ],

which gives the result.

A.15 Proof of Proposition 19

We have the Lagrangian

L = ∑
i∈Vk

µiωiVi + λk

[
qmem + ∑

i∈I
µiτk,i Ii − ∑

i∈Vk

µiwi

]
+ ∑

m
νk,m

[
em −∑

i∈I
µi I
]

.
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Note that the regulator k only values agents i ∈ Vk, but collects taxes from all agents and internalizes

market clearing from all agents. Thus, we have

ϑk,m = qm +
1
λk

νk,m.

Next, taking the derivative in qm, we obtain

0 = ∇qWk + ∑
i∈I

µiDi[λkτk,i − νk].

Therefore defining Ek =
1

λk
∇qWk, we obtain

ϑk = P ∑
i∈I

µiDi[q + τk,i] + PEk.

Finally, we substitute in pi = q + ∑k τk,i and apply the usual covariance decomposition to obtain

ϑk = Ei
(

pi − τ−k,i
)
+ P Covi

(
Di , χi − τ−k,i

)
+ P Ek,

where τ−k,i = ∑` 6=k τ`,i.

A.16 Proof of Proposition 20

Given regulator k’s Lagrangian,

L = ∑
i∈Vk

µiωiVi + λk

[
∑
i∈I

µiτk,i Ii − ∑
i∈Vk

µiwi

]
+ ∑

m
νk,m

[
−∑

i∈I
µi I
]

,

then for a regulated agent i ∈ Ik, we have by Envelope Theorem

0 = −µiωiλi Ii + λk

[
µi Ii + µiD

p
i τk,i

]
− µiD

p
i ν

and therefore we have with ωiλi = λk, τk,i =
1

λk
νk. Following the proof of Proposition 19, we

therefore have ϑk,m = qm + τk,m. Thus, adding in taxes of other regulators, we have

pi = ϑk,m + τ−k,i

We can now use this in the targeting rule. Rearranging the allocative value of a market,

0 = P ∑
i∈I

µiDi[q + τk,i − ϑk] + PEk.
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Now, we know that we have for i ∈ Ik

q + τk,i − ϑk = q + τk,i − pi + τ−k,i = pi − pi = 0.

Thus, the targeting rule is given by

0 = P ∑
i∈Sk

µiDi[q + τk,i − ϑk] + PEk.

Now, adding and subtracting τ−k,i inside the sum, we have

0 = P ∑
i∈Sk

µiDi[pi − ϑk − τ−k,i] + PEk.

Now taking a valued unregulated agent, we have for τk,im by the usual steps

0 = Dp
im[λkτk,i − νk].

And so substituting in ϑk = q + 1
λ νk and adding and subtracting τ−k,i,

0 = Dp
im[pi − (ϑk + τ−k,i)].

Finally for an unvalued unregulated agent, we have for τk,im

0 = λk Iim + Dp
im[λkτk,i − νk]

which reflects that the usual cost no longer appears. Through usual substitution, we thus have

0 = Iim + Dp
im[pi − (ϑk + τ−k,i)].
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B Non-Pecuniary Externalities

In the main text sections, we have considered the case where the social planner has a complete

set of regulatory instruments (wedges) for regulated agents, and moreover considers pecuniary

externalities. We now allow for non-pecuniary externalities.

Incorporating non-pecuniary externalities requires only a slight modification to the framework

above. Agents maximize Ui(Ii, P) subject to the constraint set Γi(Ii, P, wi − τi Ii) ≥ 0, which now

includes any budget constraints. In this notation, P reflects a set of equilibrium aggregates,

which may include not only prices but also any other welfare-relevant aggregates. We denote

Ui = Ui + ΛiΓi to be constrained utility.

The equilibrium aggregates are defined by an equilibrium relationship

Φ(I, P) = 0 (22)

where I = {Ij}j is the activities of all agents in the economy. This notation captures the model with

pecuniary externalities when equation (22) is a set of market clearing conditions and P is market

prices.

Aggregate Response Matrices. In the baseline model, we defined Di as price response matrices.

We now need to define an analogous notion, which is DP
i = ∇P Ii, that is derivatives in equilibrium

aggregate. Similarly, we can define an unregulated demand impact matrix

ΘS = ∑
i∈S

DP
i ∇Ii Φ.

These are the impacts of changes in P on the constraint set through the activities of unregulated

agents. In the baseline model, the impact ∇Ii Φ is simply the measure µi, and ΘS collapses to DS.

Example 21 (Aggregate Demand Externalities). We give an example of regulation with aggregate

demand externalities. Aggregate demand externalities arise in general because price rigidities force

one or more agents to absorb residual demand in a market, even though those agents may not be

on their first order conditions.28 We can impose price rigidities via a set of constraints Ψi(P) = 0,

and impose a rationing rule on good m by denoting an aggregate P(m) to be residual demand for

that good, which then agents are forced by their constraint sets to absorb.

B.1 Optimal Incomplete Regulation

We can now characterize optimal incomplete regulation

28 For example, in the conventional New Keynesian model, firms that are unable to reset their price are forced to
supply whatever quantity is demanded.
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Proposition 22. In this environment, optimal regulation of a regulated agent is

τi = −
1
λi
∇Ii Φ

(
∇PΦ + ΘS

)−1

E

where E = ∇PW.

Optimal regulation accounts for externalities resulting from changes in aggregates P. A change in

activities of i leads to an effect ∇Ii Φ on the constraint set. There are two ways this change can be

offset by a change in aggregates P. The first is the direct effect of a change in P, given by ∇PΦ. The

second is the indirect effect through unregulated agents, given by ΘS. When aggregates appear in

the constraint set only through unregulated demand, as with prices and market clearing, we have

∇PΦ = 0 and are left only with the indirect effect, as in baseline model. The total change in both

current and future prices multiplies the vector E of externalities arising from changes in aggregates.

B.2 Proof of Proposition 22

The Lagrangian of the social planner is given by

L = ∑
j∈I∪H

µjLj + Φ′λ.

We obtain by the usual steps

τi =
1
λi
∇xi Φλ.

We have

0 = ∇P ∑
j∈I∪H

µjLj +

(
∇PΦ + ∑

h∈H

∇P Ih∇Ih Φ
)

λ.

Noting that ∇PΦ + ∑h∈H ∇P Ih∇Ih Φ is a square matrix, we have

λ = −
(
∇PΦ + ∑

h∈H

∇P Ih∇Ih Φ
)−1

E

where we now have E = ∇P ∑j∈I∪H µjLj. Substituting in yields

τi = −
1
λi
∇Ii Φ

(
∇PΦ + ∑

h∈H

∇P Ih∇Ih Φ
)−1

E .
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