
Warning

This document is made available to the wider academic

community.

However, it is subject to the author’s copyright and therefore,

proper citation protocols must be observed.

Any plagiarism or illicit reproduction of this work could result in

criminal or civil proceedings.

Contact : portail-publi@ut-capitole.fr

Liens

Code la Propriété Intellectuelle – Articles L. 122-4 et L. 335-1 à

L. 335-10

Loi n° 92-597 du 1er juillet 1992, publiée au Journal Officiel du

2 juillet 1992

http://www.cfcopies.com/V2/leg/leg-droi.php

http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

mailto:portail-publi@ut-capitole.fr
http://www.cfcopies.com/V2/leg/leg-droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

The University neither endorses not condemns opinions expressed in this thesis.

Abstract

A situation is identified as a conflict when two or more aircraft fail to maintain a certain

distance between them on their way. Earlier models to support air traffic controllers in

solving conflicts were based on mathematical and statistical models. The recent successes

of deep neuron network models in various domains have rekindled the research interest on

automatic aircraft conflict resolution. Conflicts are solved by controllers at the en-route1

level by giving orders to pilots to change the aircraft trajectory, based on the various aircraft

positions and trajectories. In this thesis we propose two different ways of exploiting these

data, considering either the trajectory data or the corresponding images of the trajectories.

The first model, CRMLnet, standing for Conflict Resolution Multi-label Neural Network,

is a neural network model which output is a multi-label classification. This model takes the

positioning trajectory parameters (time, latitude, longitude, altitude, and heading) of all the

aircraft involved in the conflict as input and provides the heading changes for the aircraft

at different angles as output. When compared to other machine learning models that use

multiple single-label classifiers such as SVM2, KNC3, and LR4, our CRMLnet achieves the

best results with an accuracy of 98.72% and ROC of 0.999. This model is not appropriate to

handle a variable number of aircraft involved.

On the contrary, our second model ACRnet, which stands for Aircraft Conflict Resolution

Convolutional Neural Network, does not depend on the number of planes involved. For

that model, we transformed the conflict scene into an image. This model is designed as a

convolutional neural network and is also targeting multi-label classification. It achieves an

accuracy of 99.16% on the training data and of 98.97% on the test data set for two aircraft.

For both two and three aircraft, the accuracy is 99.05% (resp. 98.96%) on the training (resp.

test) data set.

Keywords: Air traffic control • Convolutional neural network • Machine learning • Deep

learning • Multi-label classification • En-route control.

1An aircraft reaches a certain altitude
2Support Vector Machines
3K-Nearest Neighbor Classifier
4Logistic Regression

ii

Résumé

Une situation est considérée comme un conflit lorsque deux ou plusieurs avions ne parvi-

ennent pas à maintenir une certaine distance entre eux pendant leur trajet. Les modèles

antérieurs destinés à aider les contrôleurs aériens à résoudre les conflits étaient basés sur des

modèles mathématiques et statistiques. Les récents succès des modèles de réseaux de neu-

rones profonds dans divers domaines ont relancé l’intérêt de la recherche sur la résolution

automatique des conflits aériens. Les conflits sont résolus par les contrôleurs au niveau en-

route en donnant des ordres aux pilotes pour modifier la trajectoire de l’avion, en fonction

des différentes positions et trajectoires des avions. Dans cette thèse, nous proposons deux

façons différentes d’exploiter ces données, en considérant soit les données de trajectoire, soit

les images correspondantes des trajectoires.

Le premier modèle, CRMLnet5, est un modèle de réseau de neurones dont la sortie est

une classification multi-label. Ce modèle prend en entrée la trajectoire de positionnement

paramètres (temps, latitude, longitude, altitude, et cap) de tous les avions impliqués dans le

conflit et fournit en sortie les changements de cap des avions à différents angles. Comparé à

d’autres modèles d’apprentissage automatique qui utilisent plusieurs classificateurs à étiquette

unique, tels que SVM, KNC et LR, CRMLnet obtient les meilleurs résultats avec une précision

de 98,72% et une mesure ROC de 0,999. Ce modèle n’est pas approprié pour traiter un nombre

variable d’avions impliqués.

Le deuxième modèle, ACRnet6, au contraire, ne dépend pas du nombre d’avions concernés.

Pour ce modèle, nous avons transformé la scène de conflit aérien en une image. Ce modèle

est conçu comme un réseau de neurones convolutionel vise également une classification multi-

label. Il atteint une précision de 99,16% sur les données d’apprentissage et de 98,97% sur les

données de test pour deux avions. Pour les cas avec deux et trois avions, la précision est de

99,05% (resp. 98,96%) sur les données d’entraînement (resp. de test).

Mots clés: Contrôle du trafic aérien • Réseau de neurones convolutif • Apprentissage

automatique • Apprentissage profond • Classification multi-labels • Contrôle en-route.

5Conflict Resolution Multi-label Neural Network
6Aircraft Conflict Resolution Convolutional Neural Network

Acknowledgments

There are many people whose inspiration and contribution are absolutely undeniable and

their tireless work, empathy to me, everything is the reason for my today.

It is a great pleasure to be able to express my deepest gratitude and appreciation to my

thesis supervisor Prof. Josiane Mothe. From start to finish, you support me all the way

through my entire Ph.D. journey. I am proud and grateful to you for the unwavering support.

I would not have been able to accomplish this important chapter of my life without your

unconditional assistance. Your guidance always led me in the right direction whenever I went

wrong.

Also, I would like to thank my co-supervisor equally, Laurent Lapasset, for being a big

part of my same journey. I am really glad to have a smiling and friendly supervisor like

you who has always extended a big supporting hand to me to achieve my Ph.D. It is very

commendable that you have managed a nice office room and all kinds of IT and technical

support including a high-speed GPU for the implementation part of my research.

I want to give all the beautiful feelings to my mother from the bottom of my heart with

all the emotions, love, gratitude to her who is the biggest inspiration of my life. My mother’s

foresight and prudence have contributed the most to make this beautiful day possible. I

would like to keep the deepest thanks to my elder brother Abdur Razzak Ratan who has

always supported me mentally and financially for my education. My unconditional love for

him will last forever. I am very grateful to my two sisters Farida and Shirin and the other

brothers Manik, Hiron, and Atik who always feel proud of me. Their generous love has always

encouraged me.

I would like to thank the entire SIG team and team leader Olivier Teste, in parallel, I

would also like to thank the IRIT lab for giving me the opportunity to do my Ph.D. there. I

am really grateful to Zia, Reshma, Nathalie, and Faneva of the SIG team who have supported

me and inspired me when I faced any challenge.

I would also like to thank all my colleagues and labmates of the entire DEVI team and

head of research Patrick Senac at ENAC. I really cannot forget the support of some people

and they are Hélène, Serge, Hasan, Sana, Diana, Ying, and Samuel. I would like to thank

some of the professors, teachers and researchers who have directly or indirectly supported me

all the way of my stay at ENAC: Stephane Puechmorel, Daniel Delahaye, Assia Hachichi,

Marcel Mongeau, Xavier Pretat, and many others.

It is a genuine pleasure to express my deep gratitude to all of you.

Md Siddiqur Rhaman

iii

Contents

Table of abbreviations and acronyms xvii

1 Introduction 1

1.1 Types of controller . 2

1.2 Types of conflict . 4

1.3 Conflict resolution . 5

1.4 Machine learning models to solve conflicts . 6

2 Literature review 9

2.1 Introduction . 9

2.2 Models before machine learning applications 10

2.3 Machine learning models . 14

2.4 Conclusion . 17

3 Data related to aircraft conflicts 19

3.1 Introduction . 20

3.2 Types of data . 20

3.2.1 Flight plan . 21

3.2.2 Trajectory data . 22

3.2.3 Air traffic controller’s immediate action order 23

3.2.4 Weather . 24

3.3 Data sources . 24

3.3.1 Open source data . 24

3.3.2 Radar data from ATC7 station . 25

7Air Traffic Control

v

vi CONTENTS

3.3.3 Simulated data . 26

3.4 Simulated data sets . 27

3.4.1 Dataset-STIO8: simulated trajectory and ATCOs immediate orders . 28

3.4.2 Dataset-CTI9: convert sequence data into images 31

4 Supervised machine learning and multi-label classification of aircraft head-

ing changes 35

4.1 Introduction . 36

4.2 From traditional machine learning to neural network for conflict resolution . . 37

4.2.1 Single-label or binary classification . 38

4.2.2 Multi-class classification . 38

4.2.3 Multi-label classification . 38

4.2.4 Classification algorithm . 40

4.2.5 Problem formulation . 43

4.2.6 Preliminary Neural Network Model . 44

4.3 CRMLnet: Conflict resolution multi-label neural network model 47

4.4 Evaluation . 53

4.5 Result and discussion . 54

4.5.1 Hyper-parameters search algorithm . 55

4.5.2 Results . 55

4.6 Conclusion . 60

5 Aircraft Conflict Resolution using Convolutional Neural Network on Tra-

jectory Images 63

5.1 Introduction . 63

5.2 ACRnet: Aircraft conflict resolution CNN model 65

5.2.1 Model selection . 65

8Simulated Trajectory and Immediate Order
9Converted Trajectory to Image

CONTENTS vii

5.2.2 ACRnet model based on images . 66

5.3 Evaluation framework . 67

5.4 Results and Discussion . 70

5.5 Conclusion . 78

6 Conclusion and future work 79

A CRMLnet model implementation 81

Bibliography 87

List of figures

1.1 An aircraft is considered to be in conflict if it falls horizontally within

5 nm and/or vertically within 1000 feet. Two or more aircraft are in

conflict if they overlap this region, called the conflict volume of that aircraft. 2

1.2 Conflict between multiple aircraft can be resolved in two ways: (a)

in pairs as long as there is no conflict; and (b) at once considering the overall

scenario. 6

1.3 The position parameters of the plane change over time. For example,

latitude, longitude, altitude, etc. change with time. So does the distance

between aircraft. 7

3.1 An example of a flight plan from Toulouse to Paris in France. The identifi-

cation number for Toulouse airport is LFBO and the one for Paris airport is LFPO.

There are several waypoints on the way from Toulouse to Paris such as MAKOX,

LMG, BALAN, SOPIL FIR12 (see detail in Table 3.1). 21

3.2 In reality, the actual trajectory differs from the original flight plan. 22

3.3 An aircraft has seven phases: landings, approaches, and descent, en route, pre-

flight, take-off, and departure. En route is the top altitude level where the conflict

resolutions are usually made by changing the heading direction of the aircraft. . . . 23

3.4 Possible heading resolution for each conflict sample data. Here the ATCO10’s

order can be left/right heading actions up to 30 degrees by a multiple of five to resolve

the conflict. 29

3.5 A conflict can be resolved within the heading range between left 300 and

right 300. Here, the decisions are for the Ownship only. The Ownship refers to the

aircraft following its initial flight plan. 29

3.6 The rotation of the whole scene creates a new sample with the same

annotation. 30

10Air Traffic Control Officer

ix

x LIST OF FIGURES

3.7 Aircraft conflict trajectory with heading resolutions and conversion

into an image. (a) the black solid line just behind the plane represents the

last 5 minutes of the trajectory before the conflict is detected. All dotted lines

show possible heading changes to resolve the conflict (b) plots the positioning

coordinate of the last 5 minutes where the black line is the current distance

between aircraft and the red lines are the distance between the aircraft and

the conflict point. 32

4.1 A binary classification output can be either 0 or 1. Here 0 means cat and 1

means dog ; the output is either cat or dog. 38

4.2 A multi-class classification output can be one of more than two class labels.

This figure shows a multi-class classification model trained with the images of decimal

numbers. The model gives one of ‘0’ to ‘9’ as output which is the most probable one.

The multi-class classification model gives a unique output 39

4.3 The figure shows that a sample image can contain multiple objects. Multiple

outputs can be true. For example, this model is trained with images that contain three

objects: the sun, the moon, and clouds. The test image contains both the sun and the

moon, so the output is for the sun and the moon. 40

4.4 A supervised neural network to resolve conflicts between a pair of planes.

This figure shows the different parameters of the two aircraft given to a neural network

as input and the immediate order of ATCO as the output. There are eight nodes in

the input layer; the input nodes are given as two planes’ latitude, longitude, speed,

and direction. There is a hidden layer with n nodes. The output layer consists of

m nodes that encode the possible combinations (both aircraft can turn together to

right/left) of heading between aircraft A and aircraft B. 45

4.5 Preliminary model based on a neural network to classify aircraft heading

decisions. There are 9 features in an input trajectory, 4 (latitude, longitude, altitude,

heading direction) for the two trajectories plus timestamp. We stored the two airplanes

location every 5 seconds, for 5 minutes we thus have 60 values; that makes 540 (9*60)

input features. The output layer contains 48 nodes as the number of possible actions.

Hidden layers are in between. 46

4.6 A conflict can be resolved by any combination of heading decisions. This is

an example of a conflict scenario with 5-minutes of trajectory for the involved aircraft

with 12 heading resolution decision of each individual. Individual aircraft can turn

left or right. Also, they can turn together right or left or even can turn in opposite

directions. 47

LIST OF FIGURES xi

4.7 CRMLnet: conflict resolution multi-label neural network model. The input

layer consists of 271 nodes for 5-minute trajectory parameters of a pair of aircraft.

There is one hidden layer with the same number of nodes as the input layer. The

output layer has 12 output nodes for immediate heading actions range from left 300

to right 300. 49

4.8 A conflict can be resolved by changing heading direction of one air-

craft. Aircraft A can change its heading between left 300 and right 300 to solve

the conflict while the heading of aircraft B remains unchanged. The column

vector on the right shows the binary decision for this sample. Here “0" means

the decision is not able to resolve the conflict whereas “1” means it can. . . . 49

4.9 A multi-label classification architecture using multiple single-label classi-

fiers. The input layer consists of 5-minute trajectory parameters that is the same

number of inputs as in Figure 4.7. The output layer contains multiple but the same

classifier. For example, CF1, CF2, ..., CF12 are replaced by any single-label binary

classifier. All the classifications are independent of each other. 50

4.10 The ReLU activation function avoids making the value negative. The green

line along the x-axis in this graph shows that when a value goes below zero it is set

to zero using the function φ(x) = max(0, x). 51

4.11 A sigmoid function makes the incoming value either ‘0’ or ‘1’. 52

4.12 An overview of the CRMLnet model and the training/testing procedure

we used. Here, the model is trained with conflict scenarios and output decisions.

Once the training is over, it is tested with the unseen conflict sample. We evaluate

the same model in two different ways (cross-validation and independent test). 52

4.13 Up to 100 epochs, CRMLnet performs well and does not overfit when

considering cross-validation. All the training and validation losses are almost

similar and decreased to 0.5 (very low). Here, the horizontal axis represents the number

of epoch and the vertical axis is the loss. 56

4.14 Up to 100 epochs, CRMLnet performs well and does not overtfit when con-

sidering cross-validation. The training and validation accuracy curves are mostly

smoothly overlapped in each plot with a score of around 98% which is a very high

score although there are a few curves with some fluctuations. Here, the horizontal

axis represents the number of epochs and the vertical axis is the accuracy. 56

4.15 All the losses and accuracies of CRMLnet are plotted together up to

100 epochs. (a) shows that all the losses are almost overlapping. Although

there is some fluctuation in accuracy (b), overall CRMLnet performs well. . . 57

4.16 The accuracy and loss of CRMLnet are also well up to 100 epochs

applying independent test set. The other comments made for Figure 4.15

also hold here. 57

xii LIST OF FIGURES

4.17 After running the independent test set 100 times the distribution of accu-

racy shows CRMLnet performs well. Here, the horizontal axis of both (a) & (b)

shows the number of samples while the vertical axis of both (a) & (b) shows the accu-

racy. Although, (a) the distribution of training accuracy looks a little bit better than

(b) the distribution of validation accuracy, still, there is not much difference between

them. 58

4.18 Overall CRMLnet is much better considering ROC performance than the

other models. Here, each figure shows the ROC of individual heading decision in

Table 3.2: (a) Neural Network-based model CRMLnet performance; (b) Multiple Sup-

port Vector Machine based model MSVM11; (c) Multiple K-Nearest Neighbor Classifier

based model MKNC12, and (d) Multiple Logistic Regression based model MLR13. . 60

5.1 ACRnet: Aircraft conflict resolution CNN14 model. The size of the first

convolutional layer (Conv2D) is 300 × 300 with 28 nodes (filters) as the image

size is 300px × 300px. This model contains 3 hidden layers and each hidden

layer (Conv2D) of this model has 28 nodes (filters). The activation function

is ReLU except for the output layer which uses sigmoid. Finally, there are 12

nodes in the output layer. 66

5.2 Presents the combination of different parameters related to our model

training. A set of image resolutions is present in the first row of this figure.

Second row, there are two options, either k=5 or k=10, to chose the number

of folds while the third row shows the three different percentages of train and

test data. Finally, the fourth row presents the two choices for the number of

epochs during: 50 epochs or 100 epochs. 68

5.3 Shows the block diagram of overall training, validating, and testing

procedure for ACRnet model. The procedure starts from 1 where a

simulator produces trajectories of conflict scenario. 2 is the converted images

from the trajectories. The image data set is divided into two parts: 3 data

for training (85%) with cross-validatoin & 5 test data (15%). The training

data in 3 uses for the k-fold cross-validation in 4 . The model in 6 is trained

and validated k times using the k-1 parts of data for training and 1 part for

the validation. Based on validation results in 7 , all the hyper-parameters are

updated with the new weights. Finally, the trained model in 9 is tested with

test data in 5 and shows the results in 10 . 69

11Multi-label Support Vector Machines
12Multi-label K-Nearest Neighbor Classifier
13Multi-label Logistic Regression
14Convolutional Neural Ntwork

LIST OF FIGURES xiii

5.4 Up to 100 epochs, the loss of CRMLnet decreases appropriately. The

lower the loss of a model, the better the performance of that model. This figure,

presents the training and validation loss changes of the CRMLnet model with

respect to the epochs using 10-fold cross-validation. Here separate sub-plots

are presented for 10 results. The x-axis shows the number of epochs between

0 and 100 while the y-axis represents the loss between 0.0 and 0.5. 71

5.5 Up to 100 epochs, the accuracy of CRMLnet is increased upwards.

This figure reads like Figure 5.4 for accuracy which is represented between 75%

and 100%. 72

5.6 Up to 100 epochs, the loss of ACRnet decreases appropriately. The

lower the loss of a model, the better the performance of that model. Training

and validation loss changes of the ACRnet model (y-axis) with respect to the

epochs (x-axis) using 10-fold cross-validation. Separate sub-plots are presented

for 10 results. 72

5.7 Up to 100 epochs, the accuracy of ACRnet increases appropriately.

Same as Figure 5.6 where y-axis is accuracy. 73

5.8 Up to 100 epochs both CRMLnet and ACRnet models performed

well without any overfitting. This figure shows the average loss and accu-

racy for CRMLnet and ACRnet models. The comparison between loss (a) &

(c) and accuracy (b) & (d) shows that the performances of both models are

very close to each other while CRMLnet is a little better than ACRnet when

comparing the training and validation curves. 74

5.9 ACRnet is more confident in predicting using image data than CRMLnet

with trajectory data. Here x-axes in both (a) and (b) present the total num-

ber of heading decisions (288 (test conflict sample) × 12 (heading degree) =

2736) and the y-axis is the probability between 0% and 100%. All the dots

above the green line in the middle (threshold = 50%) are the positive class (‘1’)

and below are the negative class (‘0’). All red dots are incorrectly classified

that are bounded by the blue lines while green dots are correctly classified.

The distance between blue lines (incorrectly classified boundaries) is shorter

for ACRnet than it is for CRMLnet. The blue lines are overlapping on the 0%

and 100% scoreline for CRMLnet. It means there are some incorrectly classi-

fied samples that are closed to 0% and 100%. Thus, ACRnet is more confident

than CRMLnet because the shorter the distance between the blue lines, the

more confident the model is. 77

List of tables

1.1 Different types of controllers control an aircraft throughout its journey.

Although the control procedures are the same at departure airports and destination

airports, the order at destination airports is reversed. In between these two airports,

the aircraft passes through different sectors at a certain altitude; the designated area

controllers of those sectors guide the pilots. 4

3.1 The flight plan from Toulouse to Paris in France contains a lot of informa-

tion. 1st column shows all the identification number of waypoints and 2nd column

shows the type of the point. LFBO and LFPO are the airports (APT). Also this table

contains altitude (ft/m) and position (latitude/longitude). 21

3.2 The possible heading decision between 30 degrees left and 30 degrees right.

The 2nd row shows all the heading names (y0 to y11). The 3rd shows each heading

by changing 5 degrees up to 30 degrees on both the left and right sides. The 4th row

shows all the binary decision for each heading direction. Here ‘1’ means it resolves the

conflict while ‘0’ means it does not. 23

3.3 Description of a table from OpenSky Network named state_vectors_data4 that con-

tains trajectory information for all the aircraft. 25

3.4 A sample trajectory data where two airplanes are going to have a conflict.

The first column shows trajectory data updates every 5 seconds. The next eight

columns are aircraft A coordinates (latitude, longitude, altitude, and heading) and

aircraft B coordinates. The last column is the controller action. 28

3.5 Number of samples based on their solutions, depending on the num-

ber of possible solutions. For instance, 288 samples of conflict situations

have two solutions. 31

3.6 Number of samples with 3 aircraft (same notation as in Table 3.5). 31

4.1 An example of the binary decisions for multi-label classification. The left side of the

table shows all the conflicting samples where each sample contains the positioning

coordinate of the involved aircraft. For example, (t0,A,B) is a coordinate of aircraft

A and aircraft B at time t0. The right side of the table shows the multiple class labels

from y0 to y11 where each label corresponds to the same sample input. yi equals 1 if

the corresponding heading solves the conflict, 0 otherwise. 44

xv

xvi LIST OF TABLES

4.2 CRMLnet is much better than the other classifiers when using cross-validation

(CRMLnetcv). Here, the 1st column is the classifier. The next columns are : Ac-

curacy (Acc), area under receiver operating characteristic curve (auROC), area under

precision-recall curve (auPR), Specificity(Sp), Sensitivity (Sn), Mathew’s Correlation

Coefficient (MCC), and F1-score. 59

4.3 CRMLnet is also much better than the other classifiers when using inde-

pendent test set (CRMLnetind). The columns are the same as in Table 4.2 . . . 59

5.1 ACRnet performs much better than CRMLnet, VGG16, and ResNet.

Here, the 1st column corresponds to the model name. The 22nd column is the

accuracy on test data of the models. The subsequent columns are: accuracy

(Acc), area under receiver operating characteristic curve (auROC), area un-

der precision-recall (auPR), specificity(Sp), sensitivity (Sn), positive predictive

value (PPV), false negative rate (FNR), false positive rate (FPR), Mathew’s

correlation coefficient (MCC), and F1 score. Block 1 shows the ACRnet model

score for two aircraft (ACRnet2) and mixed (two and three) aircraft (ACRnet3).

The highlighted scores (Block 1) are the most significant where ACRnet is much

better than CRMLnet (Block 2), VGG16 (Block 3), ResNet(Block 3). 75

5.2 Individual class label (heading) prediction results of the CMRLnet

model on test data. Here, the 1st column is the individual heading di-

rection. All subsequent columns are: accuracy (Acc), area under receiver

operating characteristic curve (auROC), area under precision-recall (auPR),

specificity(Sp), sensitivity (Sn), positive predictive value (PPV), false negative

rate (FNR), false positive rate (FPR), Mathew’s correlation coefficient (MCC),

and F1 score. 76

5.3 Individual class label (heading) prediction results of the ACRnet

model on test data. The columns are the same as in Table 5.2 76

Table of abbreviations and

acronyms

Acc Accuracy

ACRnet Aircraft Conflict Resolution Convolutional Neural Network

ADS-B Automatic Dependent Surveillance-Broadcast

Adam Adaptive Moment Estimation

ATC Air Traffic Control

ATCC Air Traffic Control Center

ATCO Air Traffic Control Officer

ATM Air Traffic Management

auPR area under Precision Recall

auROC area under Receiver Operating Characteristic

CNN Convolutional Neural Ntwork

CTI Converted Trajectory to Image

CR-DNN Conflict Resolution Deep Neural Network

CRMLnet Conflict Resolution Multi-label Neural Network

CRMLnetcv Conflict Resolution Multi-label Neural Network Cross Validation

CRMLnetind Conflict Resolution Multi-label Neural Network Independent Test

FPR False positive rate

FNR False negative rate

GPU Graphics Processing Unit

ICAO International Civil Aviation Organization

KNC K-Nearest Neighbor Classifier

LR Logistic Regression

LSTM Long Short-Term Memory

MCC Mathew’s Correlation Coefficient

xvii

xviii Table of abbreviations and acronyms

MILP Mixed-Integer Linear Programming

MKNC Multi-label K-Nearest Neighbor Classifier

MKNNcv Multi-label K-Nearest Neighbor Cross Validation

MKNNind Multi-label K-Nearest Neighbor Independent Test

ML Machine Learning

MLR Multi-label Logistic Regression

MLRcv Multi-label Logistic Regression Cross Validation

MLRind Multi-label Logistic Regression Independent Test

MSVM Multi-label Support Vector Machines

MSVMcv Multi-label Support Vector Machines Cross Validation

MSVMind Multi-label Support Vector Machines Independent Test

NN Neural Network

PPV Positive predictive value

RNN Recurrent Neural Network

ReLU Rectified Linear Unit

RMSprop Root Mean Square Propagation

SGD Stochastic Gradient Descent

STIO Simulated Trajectory and Immediate Order

Sn Sensitivity

Sp Specificity

SVM Support Vector Machines

Publications

Conference

1. Md Siddiqur Rahman, Laurent Lapasset and Josiane Mothe. (2022). Aircraft Conflict

Resolution using Convolutional Neural Network on Trajectory Image. In 21st

International Conference on Intelligent Systems Design and Applications, page 806-815.

Springer, Cham, 2022

2. Md Siddiqur Rahman, Laurent Lapasset and Josiane Mothe. (2022). Multi-label

Classification of Aircraft Heading Changes using Neural Network to Resolve

Conflicts. In 14th International Conference on Agents and Artificial Intelligence -

Volume 3, ISBN 978-989-758-547-0, ISSN 2184-433X, pages 403-411

3. Md Siddiqur Rahman. (2020). Supervised machine learning model to help con-

trollers solving aircraft conflicts. In ADBIS, TPDL and EDA 2020 Common Work-

shops and Doctoral Consortium, pages 355–361. Springer, 2020.

Poster

1. Laurent Lapasset, Md Siddiqur Rahman, and Josiane Mothe (2020). Solving aircraft

conflicts: data resources. In 1st International Conference on Cognitive Aircraft

Systems (ICCAS 2020). p. 76 (2020).

xix

Chapter 1

Introduction

When two or more aircraft come close to each other and are unable to maintain a

certain distance (internationally specified) on their flight without modifying their

route, it is called a conflict since there is a possible collision. Conflicts between

aircraft are frequent and the corresponding air traffic control officer (ATCO) is

responsible for guiding pilots to resolve them. Methods are used to assist ATCO,

including some based on machine learning. Many of these methods perform rather

well but have some limitations. For example, they provide a single solution to a

conflict and do not provide an alternative one if the best one failed. In this thesis,

we proposed two supervised multi-label machine learning classification models to

solve aircraft conflicts. The first one, CRMLnet classifies the aircraft’s possible

heading decisions in a specific order and is based on trajectory data. Although,

CRMLnet model provides multiple alternate resolutions for a single conflict, still,

its major limitation is its dependence on the number of aircraft. We thus proposed a

second model, ACRnet that uses images of the conflict scenes, which are converted

from trajectory. This model is independent of the number of aircraft.

Abstract.

Contents

1.1 Types of controller . 2

1.2 Types of conflict . 4

1.3 Conflict resolution . 5

1.4 Machine learning models to solve conflicts 6

Two or more aircraft are considered in a conflict situation if they fall in a distance less

than the 5 nautical miles horizontally or 1000 feet vertically internationally defined distance

when crossing each other [Kuchar 2000, Prandini 2000].

Figure 1.1 shows the region around an aircraft in which any other aircraft would be

considered in conflict. Not only do conflicts can occur with other planes, but also with bad

weather, military zones, etc. This area around an aircraft is called the conflict volume of that

aircraft. The presence of any other aircraft in this volume is considered as a conflict.

1

1.1. Types of controller 3

sends a taxi to take the plane from the parking lot to the taxiway. The apron controller

controls all the aircraft one by one through specific sequence maintenance.

(b) Ground controller: Once an aircraft enters the taxiway, the pilots concerned are

under the control of the ground controller. The ground controller guides the aircraft from

the taxiway to the next runway. From the different taxiways, the planes come to the runway

with complete instructions from the ground controller. The main responsibility of the ground

controller is to send the aircraft to the runway while maintaining the specific sequence in

different aircraft.

(c) Local controller: Whenever an aircraft reaches the runway, the pilots call the

local controller. The local controller at the control tower is then responsible for controlling

the aircraft. This position of the aircraft is considered to be ready for take-off. The local

controller controls the area up to 5 miles around the airport. Within this area, the pilot

receives all kinds of information from the local controller including the weather updates. The

local controller gives the take-off clearance. The local controller also controls the departure

and landing of each aircraft considering the runway condition.

(d) Departure controller: The pilot starts the communication with the departure

controller after the aircraft takes off and reaches a certain altitude. Each plane arrives at

its specified altitude according to the departure controller’s instructions. The departure

controller considers the position of the other aircraft and guides the pilots until the aircraft

reaches a safe altitude. The departure controller avoids collisions with other aircraft.

(e) Area controller: When an aircraft reaches a certain altitude (airway) under the

direction of the departure controller, the pilot begins to communicate with the area controller.

The airway area is divided into several sectors or small areas. There are many waypoints1 to

define the airway. A flight plan in the airway is one of the complete series of points of a flight

where latitude, longitude, and altitude are the basic elements used to design it. Waypoints

indicate the intermediate and intersection points used to design the flight plan. A minimum

distance between the planes should be kept. Figure 1.1 shows the conflict zone around an

aircraft which is 5 nm horizontally and 1000 ft vertically. An aircraft passes through several

sectors on its way. When an aircraft enters a sector, the area controller of that sector begins

to guide that aircraft. Our thesis focuses on the resolution of conflicts in the airway area, to

help area controllers in their decisions.

(f) Approach controller: When an aircraft reaches its destination, it tunes to its own

communication radio frequency to the approach controller. Then the approach controller

provides the facility for landing, such as allocating the runway. One of the important respon-

sibilities of the approach controller is to create a sequence between the incoming aircraft based

on their priority and guide them for approaching. Finally, the approach controller transfers

control to the local controller. Then considering the runway situation, the local controller

gives permission for landing.

Table 1.1 shows the work sequence of an air traffic control in the control tower. At

1The waypoint is a fixed coordinate for specifying a single point on the Earth.

4 Chapter 1. Introduction

departure airports, for example, the controller sequence starts from the apron control. Then

ground control, local control, departure control, and area control. On the other hand, the

controlling sequence is opposite at the destination airport. The area control transfers the

control to the approach control. Then local control, ground control, finally the aircraft is

parked by the apron control. With the exception of departure and destination airports, an

aircraft operates its flights through many sectors. Various area controllers are in charge of all

sector controls. This attitude of the aircraft is called airway or en-route. Figure 3.3 describes

the different phases of an aircraft. This thesis focuses on the resolution of aircraft conflict at

the en-route level.

Table 1.1: Different types of controllers control an aircraft throughout its journey.
Although the control procedures are the same at departure airports and destination airports, the
order at destination airports is reversed. In between these two airports, the aircraft passes through
different sectors at a certain altitude; the designated area controllers of those sectors guide the pilots.

Departure airport Airway (en-route) Destination airport

Apron control Approach control
Ground control Area control Local control
Local control Ground control

Departure control Apron control

1.2 Types of conflict

According to Alonso-Ayuso et al., there are three types of conflict based on the time distance

between involved aircraft and the conflict point as follows [Alonso-Ayuso 2016b]:

(a) Short-range: the controller has 2-5 minutes to resolve the conflict; this is an emergency;

(b) Mid-range: the time distance is 5 to 20 minutes.

(c) Long-range: the time distance is 20 to 60 minutes.

In our research, we focused on area controllers also called en-route level (high altitude)

and to mid-range conflicts. The resolution decisions are different for the different control

levels and for the different ranges of conflict.

ATCOs make decisions by considering all the positional issues of all the aircraft involved

to resolve the conflict. A conflict can be solved in many ways, but, mid-range conflicts

at en-route are usually resolved by changing the heading direction of one or more aircraft.

Depending on the conflict situation, the heading change can be left or right direction in any

range.

ATC trajectory data is generally kept confidential and not publicly available. Thus, we

simulate data for the area control level and for the mid-range conflicts.

1.3. Conflict resolution 5

1.3 Conflict resolution

Once a controller is alerted, they find out if a conflict is about to occur. The controller

considers the position and movement of the planes involved in the conflict and guides the

corresponding pilots to resolve the conflict. A conflict can also happen with bad weather,

thunderstorms, military zones, etc. Since the position of the aircraft obtained by ATC radar

is approximate, no model can guarantee 100% the conflict is resolved. Also, finding the head-

ing resolution is highly combinational when the number of aircraft is high. According to Pey-

ronne [Peyronne 2012], the conflict situation is sometimes considered as a non-deterministic

polynomial-time (NP) hard problem when the number of aircraft is high. Thus, there are

so many life risks involved that human (ATCO) interaction is not yet replaced by machines.

However, assisting ATCOs in their work by suggesting the best possible conflict resolutions

could be helpful. This is the challenge we tackle in our thesis.

In terms of modeling, we considered different categories of conflicts as follows:

(a) A conflict between two aircraft;

(b) A conflict that involves more than two aircraft but a fixed number of them;

(c) A conflict that involves more than two aircraft but an undefined number of them.

If a conflict occurs between two planes only, it can be resolved by considering all the

possible resolutions by modifying the angle of the trajectory and choosing the best one. If a

conflict occurs between more than two aircraft, then two cases can be distinguished:

(a) The conflict between the two planes will continue to be resolved until all conflicts are

resolved (Figure 1.2 (a)). This is because a resolution can create a novel conflict;

(b) Another way is to find a global resolution considering the location of all the aircraft

involved in the conflict (Figure 1.2 (b)).

Many models have been proposed on both approaches which we will discuss in detail in

Chapter 2.

Figure 1.2 shows two different solutions considering the same scenario. Figure 1.2 (a)

shows that there is a conflict between aircraft A and aircraft B. To solve this in a pairwise

manner, we can first look for a solution between A and B. In this case, the right heading

is searched for (1) or the left heading (2) 15 degrees. The conflict between aircraft A and

B is resolved but later a new conflict is created with aircraft C or D. Although conflict can

be resolved using this method, it takes a long time to find an overall solution after repeated

attempts. In some cases, it is not possible to find a solution due to the high combination of

the resolution between aircraft.

8 Chapter 1. Introduction

available. We thus created simulated data for this research that we made available to the

research community. Chapter 3 provides the details related to data preparation.

In the case of conflicts that involves two aircraft, we first cast the conflict resolution

problem into a multi-level classification one. We then developed a model that we called

CRMLnet, which stands for Conflict Resolution Multi-label Neural Network. It is presented

in Chapter 4.

One of the most important challenges of conflict resolution however is when there are more

than two aircraft and when the number of aircraft can vary, which is the real world. The

training and testing performance computation of state-of-the-art models increases with the

number of involved aircraft. Moreover, most of the models, like our CRMLnet from Chapter 4

can handle only a given number of planes that are encoded by the model input of a fixed

size. To face this challenge we designed an alternative model based on a convolutional neural

network in Chapter 5 that we called ACRnet for Aircraft Conflict Resolution Convolutional

Neural Network. We convert the trajectory data into image data so that the input dimension

problem is overcome. This model will not only solve the conflict between the aircraft but

could also be applied to the resolution of bad weather area conflict for example. The solution

is predicted considering the overall scenario. We found that this method not only overcomes

the problem of input dimensionality but also improves the prediction confidence of the model.

The main purpose of Chapter 5 is not however to find the best image processing model but

to easily overcome the challenge of existing sequence-based models through image processing

with higher performance.

Since no model can guarantee a 100% resolution to the conflict and human life is involved,

the purpose of this thesis is not to completely replace the controllers but to provide supportive

tools to help them. Thus, the idea is to propose a model that will be closer to what a controller

does, and therefore the decision will be more easily accepted as a support tool for collaborative

decision making. Although many models have been proposed in the past, including neural

network models, the limitation of almost all of them is that the models were trained based on

the extraction of certain features using mathematical rules and conditions. In these models,

only one resolution was provided for a fixed number of aircraft. The fact that this decision

could fail is not considered and no alternative solution was suggested. In our thesis, we

gradually demonstrate our idea of applying models based on neural networks in Chapter 4

and in Chapter 5. It resolves conflicts with good performance using raw features. We show it

is possible to propose a generic convolutional neural network model for an arbitrary number

of planes by converting images from trajectories.

The rest of this thesis is organized as follows: Chapter 2 covers important and recent

related work. All data preparation used in this thesis is discussed in Chapter 3. Chap-

ter 4 describes our first contribution to resolve the conflict between aircraft and details the

CRMLnet model based on neural network where we used trajectory data. The model is

evaluated on our simulated data. The second contribution is based on converting trajectory

data into images. It leads to the ACRnet model based on a convolutional neural network

and is presented in Chapter 5. Finally, Chapter 6 concludes this thesis and provides future

directions.

Chapter 2

Literature review

Over the past few decades, many approaches were proposed to resolve aircraft con-

flicts. Most of the models initially proposed were based on mathematics. Advanced

computer technology, such as computers with graphics processing unit (GPU) sys-

tems, simplifies complex and time-consuming computing such as machine learning.

Machine learning models are now developed in the field of aircraft conflict resolution.

In this chapter, we discuss some of the most important models and recent models

that play an important role in aircraft conflict detection and resolution.

Abstract.

Contents

2.1 Introduction . 9

2.2 Models before machine learning applications 10

2.3 Machine learning models . 14

2.4 Conclusion . 17

2.1 Introduction

The main purpose of conflict resolution models is to find the decisions where a safe distance

is maintained between the aircraft. Different models for aircraft conflict detection and resolu-

tion have been published over the past few decades. Kuchar and Yang discussed most of the

early studies in their paper [Kuchar 2000]. Most of the early models relied on mathematics,

geometry, and probability [Havel 1989, Sridhar 1997, Ota 1998, Prandini 1999, Eby 1999].

Researchers focus now on the recent advances in machine learning. Although machine learn-

ing was invented a long time ago, it was not possible to build a high computational model

of machine learning without advanced computers. Since this gap has recently been filled

with GPU1 facilities, the application of machine learning [Alam 2009, Jiang 2018, Srini-

vasamurthy 2018, Pham 2019a] including deep learning [Nanduri 2016, Brittain 2018, Brit-

tain 2018, Wang 2019] have recently grown in the field of aircraft conflict avoidance.

1Graphics Processing Unit

9

10 Chapter 2. Literature review

This chapter introduces different methods from the last few decades. Conflict resolution

methods are closely related to conflict detection methods. We discuss both in this chapter.

This chapter is structured as follows: Section 2.2 discusses some of the early research

on aircraft conflict detection and resolution before machine learning was used. Section 2.3

discusses the different types of machine learning models for aircraft conflict detection and

resolution; some of them include aircraft trajectory anomaly detection. Section 2.4 discusses

the gaps in current research. We also explain the genesis of the models we propose.

2.2 Models before machine learning applications

Most of the earlier aircraft conflict detection and resolution models as well as some recent

models are based on mathematics, geometry, and probability [Havel 1989, Sridhar 1997,

Ota 1998, Prandini 1999, Eby 1999, Bilimoria 2000, Richards 2002, Alonso-Ayuso 2010,

Alonso-Ayuso 2012, Alonso-Ayuso 2013, Feron 2013, Alonso-Ayuso 2016a].

Havel and Husarčík in 1989 discussed many important formulas to solve conflicts involving

two aircraft. Their formulas have been used later in many studies [Havel 1989]. Their research

was based entirely on theoretical formulas and the authors did not implement any model.

According to their solution, the controller could only see the prediction of whether there was

a conflict between two planes. For conflict resolution, controllers still had to make their own

decision. The non solved issue in their approach is that if the number of aircraft exceeded

two, the conflicts had to be resolved in pairs. A conflict resolution could then create a new

conflict. The conflict in pairs had to be resolved till all the conflicts were resolved. This

was time-consuming and in some cases, conflicts could not be resolved because of the many

combinations of pairs. Systems receive multiple positioning information for each aircraft

from different radar sources and calculates the estimated position which is thus approximate.

Therefore, using Havel and Husarčík ’s formulas to build an automatic model is risky because

in their approach, the positioning coordinate values are assumed to be accurate.

Sridhar and Chatterji presented a comparison between three methods for conflict detec-

tion: (a) Euclidean distance-method, (b) Sorting-based algorithm, and (c) Accumulator-based

algorithm [Sridhar 1997]. In the first method, the authors calculated the euclidean distance

between each aircraft pair and compared it with the minimum separation distance to see if

there was any conflict. The problem is that the computation had to be conducted n(n−1)
2

times for n aircraft. When the method is repeated for every time stamp, the computation

is increasing with the number of aircraft. The authors presented two more methods to re-

duce the computation where they expressed the trajectory of each aircraft through a small

bin within a 2D grid. Bins in the 2D grid were numbered sequentially. The trajectory of

multiple aircraft was then plotted on this 2D grid through these bins. The bin numbers of

all aircraft trajectories were then sorted in non-decreasing order in a single vector. If there

is a conflict then the same number will be repeated in that vector after sorting. This means

that where the bin number is repeated there is a conflict because the same bin belongs to

multiple trajectories. In their third method, the whole grid was filled with initial zero instead

2.2. Models before machine learning applications 11

of sequential numbering. Then added one to where the aircraft trajectory is supposed to be,

where the trajectory was first mapped. For example, when the trajectory of an aircraft is

plotted, one is added to the initial zero value. If there is a conflict of that trajectory with

another trajectory, then the value of the specific bin of the conflict is incremented again to

become two. The value of that conflict bin is a minimum of two. After plotting the trajecto-

ries of the two aircraft, the value of the bin is two where the conflict has taken place and all

the other trajectory values are one. Undoubtedly this is a really nice piece of work in terms

of reducing time and computation to find the aircraft conflict, but there are some limitations.

The authors’ method only detected conflicts in between two planes when their routes cross

each other based on a planned trajectories. Since time is not mentioned on their grid, it is

possible that two aircraft trajectories crossed the same bin but not at the same time. In that

case, there will be no conflict even though their sorting algorithm will show conflict. Whether

or not two planes crossed at the same time is a very important issue that the authors missed.

In addition, the authors assumed that all aircraft are following their initial planned route

which it is not always the case. Although this work is not similar to ours, their idea of a 2D

grid has inspired us to use the image conversion model in Chapter 5.

Ota et al. [Ota 1998] proposed a geometric model where the main idea of resolving the

conflict was to find the geometric relationship of the aircraft and the expected threat. In this

case, the relationship between the subject aircraft and each threat is calculated; they call this

a “threat map”. The solution considered each moving threat as a static threat. The authors

solved conflicts using a set of rules. An example of such a rule is as follows: if two planes

are detected as in face-to-face conflict and their speed is equal then both planes will turn to

their right in the horizontal planar. However, the angle of the turn is not specified. Although

it is not too complex to add, still, the issue of this model is the huge computing to do even

if there is no conflict. This research has proposed equations for the threat map concept in

which the movement of each aircraft is static, which does not correspond to reality. Also,

vertical descent or climb is applicable in their resolution rules which is usually avoided in case

of horizontal conflict in real cases.

Zeghal and Karim [Zeghal 1998] proposed a new formula to improve the force field method.

The solution they called the force field method is based on the continuous change of velocity

and position of each aircraft using relatively simple formulas of physics. In this approach,

each plane is compared to a charged object so that each plane is continuously searching for

its individual resolutions. Although this method seems very interesting, it searches for the

resolution maneuver even though there is no conflict. Moreover, the position and velocity of

aircraft are updated through an automatic dependent surveillance-broadcast (ADS-B) which

is an approximate position. Thus it is risky to use mathematical formulas to make a sharp

heading directional decision based on an approximate position. Besides, with the increasing

number of aircraft, it will be challenging for this repeated approach to deal with real situations.

Finally, this solution needs to be further considered before being applied in real-life because

continuously searching for a resolution maneuver makes a simple heading change to a complex

one which is unrealistic.

Prandini et al. [Prandini 1999] proposed a probabilistic framework for predicting a mid-

12 Chapter 2. Literature review

range conflict between two planes. The authors assumed that the two planes are moving

horizontally at the same altitude level following their initial flight plan. Here, a flight plan is

one of the complete series of waypoints that indicate the intermediate and intersection points

that pilots use to design the initial flight plans before departure. The speed between each

of the two waypoints is also considered. Using these pieces of information, the authors used

some equations to project near future positions of both aircraft and predict whether there

will be a conflict. They used a threshold value to determine what is the minimum probability

score to be considered as a conflict. Since the position of the aircraft is approximate, this

study predicts the future position of the aircraft using probability distribution rather than

using precise geometric and mathematical equations. However, an algorithm is continuously

estimating the probability distribution of the aircraft near future position that demands heavy

computations. Since the probability distribution detects conflicts, it has to be calculated for

each resolution direction. With more than two aircraft, that computation can be too huge

for the real-time calculation.

Other related work consider free flights where a pilot can change his/her flight route in the

mid-flight if s/he wants to. In reality, this is not yet possible. Warren [Warren 1997] applied

performance analysis in three different situations to detect the conflicts for free routing: fixed

threshold conflict detection, covariance method conflict detection, and conformance bound

conflict detection. For the first method, the authors chose whether a situation is called conflict

or not based on the closest point of approach (CPA). CPA was taken as 10 nm. In the second

approach, they formulate an error ellipse based on covariance that is achieved by the error of

surveillance, wind forecasting, and aircraft path following. The third approach is a commonly

used conflict detection method for Advanced En Route ATC (AERA) [Brudnicki 1997]. The

flight plan of an aircraft is monitored at every moment. If the actual flight plan is more

inconsistent with the predicted flight plan, then the situation is considered as a conflict. This

method is applied to every aircraft. All the three approaches are similar in performance but

in some cases, fixed threshold based on out of CPA or inside CPA is doing better than the

others.

Pallottino et al. [Feron 2013] proposed a method of conflict resolution where they applied

mixed-integer linear programming (MILP2). Here, mixed-integer means that all the variables

used to take conflict resolution decisions are integers and continuous mixed values. Richards

and How in [Richards 2002] applied MILP for the first time to find the optimal trajectory

waypoint so that conflict can be avoided. The variable in the decision to choose a waypoint

is binary and since different coordinate variables are involved in the movement of an airplane

and it is continuous, they called it a mixed-integer linear programming problem. Their models

had different geometric constructions that assume that all pilots have the right to free flight.

They resolved the conflict by changing the horizontal heading of the aircraft. No vertical

resolutions are provided such as decent or climbing as they assumed that all aircraft are at

the same altitude. Based on the euclidean distance between different planes, their method

finds conflict-free trajectories by increasing or decreasing the left heading or right heading

angle for each plane. Since they considered the concept of free-flight, a geometric equation

is applied to each plane to find its own conflict-free heading degree angle. Although they

2Mixed-Integer Linear Programming

2.2. Models before machine learning applications 13

showed optimization so that increasing the number of aircraft requires less computing, the

authors stated that their method is unsuitable for operational implementation. The concept

of free-flight is very interesting because if for some reason the communication of the aircraft is

cut off from the ground system, then the pilot themselves will be able to resolve the conflict.

But since the concept of free-flight is still limited in theory, its application in practice is still

a long way off because of the lack of advanced on-board systems that are not yet available.

Another application of MILP was proposed by Vela et al. in [Vela 2010] where they took

both heading and speed changes decision to resolve the conflict for free flight. The authors

claimed that their model provides a global solution by changing the heading and/or speed of

one or more aircraft. But in reality, it is not so easy because every aircraft changes its speed

or heading depending on its involvement in the future of any new conflict. In addition, it is

not clear how their model will receive input when the number of aircraft is not fixed.

According to Alonso-Ayuso and Escudero [Alonso-Ayuso 2016a], three types of maneu-

vering are commonly applied for aircraft conflict resolution such as heading change, velocity

change, and altitude change. The same author proposed different models that combined these

three types of maneuvering to resolve the conflict between aircraft. For example, in [Alonso-

Ayuso 2010] they applied the technique of changing velocity and changing altitude. They

proposed another model in [Alonso-Ayuso 2012] that considered only the change in velocity.

In that case, they took into account the acceleration change of the aircraft. The following

year, they proposed two different models [Alonso-Ayuso 2013]: one with a change of altitude

and the other with a change of velocity. All the models discussed so far by these authors

used the mixed integer linear optimization (MILO) concept. Since the decision variables are

mixed integers and continuous, the method is called MILO. Finally, the authors in [Alonso-

Ayuso 2016a] proposed a method based on mixed-integer nonlinear optimization (MINO) that

combined three maneuverings (heading change, velocity change, and altitude change). This

is non-linear because they used continuous values for decision-making.

Carbone et al. [Carbone 2006] proposed a geometric algorithm for conflict resolution

between two aircraft. In this case, one of the two aircraft is called the intruder; it usually does

not play any role in conflict resolution. The other aircraft with which the intruder’s conflict

has been identified are used to resolve the conflict. The authors formed a sphere around the

intruder using geometrical equations, and the future position of any other plane in that sphere

detection was considered as a conflict. They applied three strategies for conflict resolution:

lateral-directional control; longitudinal control; and speed control. Lateral-directional control

means changing the direction of the heading whereas longitudinal control means climbing or

descending vertically. And the other is to resolve the conflict through speed control. When

one of these three strategies is applied, the others are considered constant. This means that

multiple strategies are not applied simultaneously. All the calculations are done in real-time

and the authors claimed the method is very fast. The limitation of the method however is

that it is applied to two aircraft only. In a real-time situations where there are more than

twp aircraft involved, the application of this method will be more challenging. Another issue

is that it is not clear which of the three strategies is to be applied in which situation.

Durand et al. in [Durand 2020] proposed a visualization tool that helps the ATCOs to see

14 Chapter 2. Literature review

the conflict zones. To handle conflicts, ATCOs can use a 2D screen to plot future positions

simply using a mouse pointer. Then, they can see different color line segments for conflict

areas and the areas without conflict including the speed and headings. Finally, they can

decide the heading to resolve the conflict. This research has provided a step forward for

the controllers since they can see different conflict areas including uncertainty (bad weather).

However, the limitation here is that the tool does not provide any specific decision like heading

changes for the conflict resolution. ATCOs have to observe the scenario and take decisions

by them-selves only. It is time-consuming in real-time to observe the conflicts by plotting

different ways.

Zhao and Liu in [Zhao 2020] proposed another popular graph theory algorithm called A*

search. This algorithm is based on the cost of the current node (g(n)) from the starting

node and based on a heuristic function (h(n)) to find the shortest path that estimates the

minimum cost from n to the goal node. The author generated a cost map based on the

distance of Ownship (Figure 3.5) with all Intruders (Figure 3.5). Then they applied the A*

search algorithm to get through this cost map at a low cost. Although graph theory plays a

unique role in figuring out the shortest path and A* search is a popular algorithm in this case,

if it is a static graph. One more thing to consider here is that when the number of planes is

high, the use of graph theory is a matter of many combinations so that time is an important

factor.

2.3 Machine learning models

Aircraft conflict resolution is of different levels (Section 1.1) and types (Section 1.2). In this

section we will only discuss machine learning methods related to the mid-range conflicts at

the en-route level. Although our thesis focuses on aircraft conflict resolution, we will also

discuss machine learning applications for conflict detection as these two topics are related to

each other.

With the availability of resources like data and high graphics computers, machine learning

applications are used almost everywhere. A major advantage of the machine learning models is

that such models acquire knowledge from real data which is much closer to human intelligence

but faster than humans in real-time. Therefore, in the case of aircraft conflict resolution, it

has been found that machine learning applications are able to make decisions very quickly,

but since no model can offer a hundred percent guarantee, this type of models are preferred

to assist rather than to replace humans to make quick decisions.

Over the past two decades, many machine learning methods were proposed to iden-

tify and/or resolve aircraft conflicts [Durand 1996, Alam 2007, Alam 2009, Nanduri 2016,

Jiang 2018, Srinivasamurthy 2018, Pham 2019a, Brittain 2018, Wang 2019].

One of the earliest machine learning applications, more specifically the application of

data mining, was proposed by Alam et al. to detect aircraft conflicts for free flight, although

they separated the concept into two different pieces of work [Alam 2007, Alam 2009]. In

2.3. Machine learning models 15

their first study, [Alam 2007], they applied data mining technique through investigation and

tried to find the patterns that would explain conflict detection algorithm failures. Later, in

[Alam 2009], the same authors used this knowledge to construct a relationship between the

failure of various conflict detection algorithms and these algorithms. They completed their

research in three steps. In the first step, they applied various conflict detection algorithms to

the simulated conflict scenarios. The second step was to find out the pattern of data with each

algorithm and to create different rules. Finally, they applied an ensemble method based on

all these rules to determine when an algorithm will be chosen for the final conflict detection.

This means that the ensemble method allowed one conflict detection algorithm from different

algorithms at a time to make a final decision based on the conflict situation and the rules

already defined for each algorithm. Although this idea is limited to conflict detection only, it

can be extended for conflict resolution. But the most important limitation here is that the

authors have limited this algorithm to conflict detection for free-flight only. Therefore, the

expansion of this idea will be applicable when the free-flight facility will be implemented in

practice.

Detecting conflicts and resolving them are very close problems. This is because if a conflict

detection model can be used to predict future conflicts, then by avoiding those routes, the

conflict will be resolved. Jiang et al. [Jiang 2018] considered aircraft conflict detection as

a binary classification problem. The authors believed that since the various parameters of

each aircraft, such as tracking, navigation, weather, etc., are approximate parameters, it

is better to consider the conflict detection problem as a probabilistic problem rather than

a rule-based problem. In their paper, they considered the conflict detection problem as a

binary classification problem and proposed a conflict detection model based on a support

vector machine (SVM) classifier. As the input for this model, they extracted a new feature

vector from the current positioning coordinate and velocity of the aircraft associated with

the conflict, which they called the relative feature vector. They prepared a relative vector by

calculating the distance between aircraft along the different axis (x, y, z), speed difference, etc.

which was later used as input of the model. Finally, based on this input, their SVM model

predicted future conflicts. Although this work has a lot of potential to extend this concept to

resolve conflicts, the limitation of this idea is that the authors proposed the solution for free

routing that is not yet available in real life.

Since it is difficult to get data related to aircraft conflict detection and resolution, very

few supervised machine learning methods have been applied so far [Srinivasamurthy 2018,

Kim 2016]. Srinivasamurthy et al. in [Srinivasamurthy 2018] proposed a semi-supervised

model in their research that predicts the air traffic controller’s voice command. Their model

is a combination of the Deep Neural Network and the Hidden Markov model that updates itself

iteratively with the speech and radar data. Although this research does not directly address

the problem of aircraft conflict, if it is possible to fully predict ATCO’s voice command, then

it is possible to create a real-time solution by applying this same concept to resolve the aircraft

conflict. This model can also help to store the radar data with voice command annotation

and it will play a big role in preparing conflict resolution future models. Their research is

still far from the expected real-time results because ATCO’s voice commands have a lot of

extra sounds (noise), there is still some work to be done to make this research applicable in

16 Chapter 2. Literature review

practice. That is why there is a lot of research which is carried on in the ATM field on speech

recognition, and maybe we can use this concept in future models.

Kim et al. [Kim 2016] presented a performance analysis of two separated models to solve

a conflict between two airplanes: a neural network-based and a SVM-based. Both models are

fully supervised models. The SVM model combines 9 SVM, one per class label. Similarly,

the neural network model is composed of 9 nodes in the output layers. This model gives an

output vector of 9 class labels that are all zero except the most probable one. In the end,

they have taken the highest probable one as the best action. Their dataset contains category-

based resolutions such as vertical, horizontal, and speed control. For example, there are two

resolutions for horizontal conflicts such as Direct-to and Path stretch. Here Direct-to means

the resolution maneuver is to skip some initial waypoints (see Section 3.2.1) and go direct to

the targeted waypoint whereas Path stretch is to add new waypoints to make the resolution

more flexible. The model only predicts these categories. The limitation here is that there is

no exact heading direction (horizontally) or climbing/descending level (vertically) to resolve

the conflict. Still, ATCO needs to think about the resolutions before taking a decision.

Some reinforcement learning models were designed to resolve aircraft conflicts where deep

neural network was used as an agent [Brittain 2018, Pham 2019a, Pham 2019b, Wang 2019]

Brittain and Wei in [Brittain 2018] applied a two-level agent-based (parent and child

agent) deep reinforcement learning following a hierarchical network manner. For the parent

agent, they applied a convolutional neural network to the images of the NASA Sector 33 game

screen and select the most suitable route by applying all possible route combinations. In this

case, the flight path is fixed. All aircraft are forced to use this limited flight paths which is

inconsistent with reality. The parent agent can decide to change the direction of the aircraft

only at any connecting waypoint (see waypoint in Section 3.2.1). The child agent adjusts the

speed based on the combination of routes obtained from the parent agent where they have a

list of six different speeds. In practice, resolving conflicts by changing the speed is avoided.

Also, in reality, ATCO can change the heading of a specific aircraft at any angle to resolve a

conflict while in [Brittain 2018] it is very limited.

Pham et al.[Pham 2019a, Pham 2019b] also applied the reinforcement learning method

with the neural network-based agent using the aircraft conflict’s trajectory data instead of

using image data. The authors applied a single deep reinforcement network for two aircraft

at the same altitude. The problem is then simplified to a two-dimension problem. The agent

changes the heading of the aircraft in different directions for conflict resolution, each of which

is called an action. Since the resolution action is not finite, the reinforcement agent resolves

the conflict by applying an infinite number of actions. For each action, it gets rewards (rank)

with either positive (successful) or negative (unsuccessful) feedback based on the quality of

their conflicting resolution. Quality comes from selecting a set of features that is a kind of

rule or condition. From this feedback, the model fits itself. The agent takes the current

position, time, and current heading angle of the aircraft associated with the conflict as input

and provides the new heading to resolve conflict. Wang et al. [Wang 2019] applied a similar

approach with slight changes in the simulation of conflict scenario. For example, they defined

an area (sector) with a radius of 60 nm. They considered a scene where there are some; then

2.4. Conclusion 17

a conflict is detected when a new aircraft enters this sector within 10 nm of entry. Then,

the reinforcement model recommends heading change advisory action to resolve the conflict

associated with this new aircraft. But this model also selects each action based on a reward

function during model training.

Zhao and Liu [Zhao 2021] also applied reinforcement learning and CNN using image data

where each image contains the current position of aircraft associated with the conflict. One

of the major challenges in resolving aircraft conflicts is handling input dimensions. This is

because most reinforcement learning models have been designed with the assumption that the

number of aircraft is fixed. But in reality, it is not. These authors plotted an arbitrary number

of aircraft within an image so that conflicts can be resolved even while the number of aircraft is

variable. Therefore, it is possible to eliminate the dimensionality problem. However, a proper

reward function is required for the best resolution of reinforcement learning and finding that

function is the most challenging task because it depends on features like certain rules and

conditions.

In general, all the models based on reinforcement learning are based on almost the same

principle (rules and conditions to define reward function). The biggest challenge of applying

the reinforcement learning method is to define a perfect reward function under different rules

and conditions that validates each decision with different rewards. Because, it chooses the

best decision based on this reward value.

Olive et al. [Olive 2018] applied an anomaly detection algorithm named auto-encoder

that is based on a neural network to identify the anomalous from historical flight data. Here,

anomaly means an irregular situation. Irregular situations usually occur when the initial

flight plan is changed by a decision of the controller. When this model detects an anomaly,

it means that the controller has taken some action for that trajectory. Although this method

is not a direct solution for conflict resolution, it can be used to identify a situation for later

data annotation.

2.4 Conclusion

Many models have been proposed to resolve aircraft conflicts. This chapter discusses some of

the most important, recent, and popular studies within the last few decades.

The positions of aircraft are approximate. Therefore, it is risky to apply a condition-based

mathematical model. Also, when the number of aircraft is high, there is a lot of run-time

computation of the models and in many cases it is not possible to find a solution due to high

combination.

Recently, the popularity of machine learning models has increased because this type of

model takes a little more time for training but it responds very quickly. Since the machine

learning model trains itself from examples, the performance in the case of resolving an unseen

conflict scenario is very close to human.

18 Chapter 2. Literature review

In this chapter we have mentioned some machine learning models, all of them were de-

signed based on the current positions of the aircraft. Model training is done through mathe-

matical calculations for feature selection or feature extraction. This is risky with the aircraft’s

approximate position. Also, the reward function of the model based on reinforcement learning

is designed with some rules and conditions.

As opposed to most of prior work, we trained our first neural network-based CRMLnet

model using the last 5 minutes trajectory without any feature extraction. So, the model can

learn the conflict scenario from the movement of the aircraft.

Secondly, to handle the arbitrary number of aircraft, we proposed another model based

on a convolutional neural network, ACRnet, where we converted the whole conflict scenario

into an image. Therefore, a conflict with an undefined number of aircraft can be resolved

without changing the architecture of the model.

In both of our models, we provide multiple heading resolutions for a single conflict. Thus,

ATCO can choose the best from multiple solutions so that future conflicts can be considered.

Chapter 3

Data related to aircraft conflicts

The first and foremost thing to consider in preparing a supervised model is a well-

organized annotated dataset. Different data can be used to solve aircraft con-

flicts such as flight plans, trajectory data, controllers’ immediate action orders and

weather. Different data sources collect such data. However, since aircraft conflict

data are sensitive and not publicly available, we had to create our own data sets. We

used an open-source simulator named Blue Sky [Hoekstra 2016] to build a sequence-

based trajectory data set. The data set consists of conflict trajectories and heading

resolutions. While this resource fit some machine learning models, when there is a

variable number of aircraft involved in the conflict, it can hardly be used in neural

network based models that need a set dimension input. For this reason we developed

a second data set which corresponds to the trajectory data transformed into images.

Both datasets are delivered to the research community. They are freely accessible

online at https://independent.academia.edu/MDSIDDIQURRAHMAN9. There is a

total of 1,516 sequence data and a total of 1,656 image samples, of which 1,516

contain two aircraft and 140 contain three aircraft.

Abstract.

Contents

3.1 Introduction . 20

3.2 Types of data . 20

3.2.1 Flight plan . 21

3.2.2 Trajectory data . 22

3.2.3 Air traffic controller’s immediate action order 23

3.2.4 Weather . 24

3.3 Data sources . 24

3.3.1 Open source data . 24

3.3.2 Radar data from ATC station . 25

3.3.3 Simulated data . 26

3.4 Simulated data sets . 27

3.4.1 Dataset-STIO: simulated trajectory and ATCOs immediate orders 28

3.4.2 Dataset-CTI: convert sequence data into images 31

19

20 Chapter 3. Data related to aircraft conflicts

3.1 Introduction

The most crucial thing that is needed to build a strong prediction model is to have a good num-

ber of sample of annotated observations or data. Trajectory data is generally kept confidential

and not publicly available. Thus, the most complex task is to synchronize the trajectories

of the aircraft involved in a conflict and the immediate order issued by the ATCO to resolve

the conflict. Another problem with real data is that there are not many variations on the

conflicts. On the contrary, if we rely on simulated data, we can think of future conflicts and

create variations of the conflicts, which may not be possible to easily collect from real data.

This chapter discussed how trajectory data can be built by simulating aircraft conflicts.

We discuss in detail how to transform these trajectories into images. We also discuss why we

converted trajectories into images and how we can benefit from this transformation.

This chapter begins with data that is primarily related to aviation collisions. Then the

different sources of these data are discussed. Gradually discussing the different types of

limitations, we started explaining more specific data that is mainly used in this research.

Additionally, different types of data variations such as trajectory conversion into images and

the benefits of using image data are discussed.

The main purpose behind creating this data was to create standard data for solving aircraft

conflicts that could be used for machine learning applications. In addition, because this type

of aviation data is not publicly available, we have made this data publicly available for future

use by the research community.

Because the type of model to solve a conflict depends on the type of available data,

the preparation of the data is actually very important. Most of the research in aircraft

conflict resolution used trajectory data [Prandini 1999, Prandini 2000, Alonso-Ayuso 2013,

Wandelt 2014]. In few studies, the controller’s immediate orders were also combined with

trajectory data to apply supervised models [Srinivasamurthy 2018, Kim 2016, Rahman 2020,

Rahman 2022] including trajectory image data [Zhao 2021].

This chapter is organized as follows. Section 3.2 focuses on the types of data that are

used to resolve an aircraft conflict. Then the different sources for these data are discussed

in Section 3.3. Section 3.4 discusses more specifically data that we created for this research:

trajectory data and trajectory conversion into images.

3.2 Types of data

There are four main types of data that are commonly used for conflict detection and resolution:

(a) flight plans, (b) trajectory data, (c) ATCO’s immediate actions, and (d) weather data.

Although we did not use all these types of data in our thesis, it is important to be aware of

all the possible data types.

24 Chapter 3. Data related to aircraft conflicts

3.2.4 Weather

There are many things that ATCOs keep in mind during conflict resolution. Weather is one of

the them. The weather report consists mainly of wind speed, wind direction, thunderstorm,

cloud, etc. An aircraft conflict may not only occur with another aircraft but also with bad

weather. Since bad weather makes passengers uncomfortable and affects safe operation, the

aircraft avoids it. Weather data is collected through various types of weather monitoring

radars.

3.3 Data sources

In the previous section, different types of data have been described. This section discusses

different sources of data. Basically three sources are available to collect such data: (a) open-

source data, (b) radar data from ATC station, and (c) data simulation. Here, we describe

them and explain why we had to develop simulated data which is one of the contributions of

this thesis.

3.3.1 Open source data

Schäfer and Strohmeier et al. started OpenSky Network in 2012; it is one of the largest

open-source aviation data source [Schäfer 2014].

The OpenSky Network mainly stores air traffic information around the world. It uses

the ADS-B as a back-end technology to store the live data which is publicly available. The

main functionality of the OpenSky Network is to provide public open access to ATC data.

OpenSky Network collaborate with universities and government entities around the world.

OpenSky Network uses around twelve tables in their database to store different ATC data

including aircraft trajectories. The OpenSky Network also stores flight information such as

flight paths that the aircraft has already followed. Among all the tables in the OpenSky

Network database, one table named state_vectors_data4 (see Table. 3.3) contains the basic

trajectory information such as flight plan, aircraft heading change, callsign, and other infor-

mation that is related to the trajectory. Table 3.3 includes trajectories only. The challenge

to use such a data set is to synchronize the heading changes with the conflicts. Another

issue is that there is no distinction in the heading changes between the ones that correspond

to conflict situation solving and the ones that correspond to normal situations to follow the

initial flight path. If the ATCO’s orders were available, it would be possible to extract the

trajectory from this table using icao24, callsign and time. Since the ATCO orders is sensitive,

time-consuming and difficult to obtain, in our thesis we did not used this data.

The state_vectors_data4 table contains about eighteen attributes for different data types.

For example, each aircraft time is represented by time attributes. Some other common and

important attributes are: icao24 which is the unique aircraft identification number from

3.3. Data sources 25

Table 3.3: Description of a table from OpenSky Network named state_vectors_data4 that contains
trajectory information for all the aircraft.

Name Type
time int
icao24 string
lat dauble
lon dauble
velocity dauble
heading dauble
vertrate dauble
callsign string
onground boolean
alert boolean
spi boolean
squawk string
baroaltitude dauble
geoaltitude dauble
lastposupdate dauble
lascontact dauble
serials array<int>
hour int

the ICAO1, lat, lon, velocity which correspond to latitude, longitude, and ground speed per

second, the heading parameter that contains all the changes in heading degrees clockwise

from geographic north and callsign which is a broadcast identification number spread by the

aircraft itself.

Although no conflict scenario data is provided by the OpenSky Network directly, we can

download the synchronize historical dataset from OpenSky Network which is associated to a

given ATCO’s immediate order that includes the time and icao24.

3.3.2 Radar data from ATC station

ATC is a ground-based service advisory provider for aircraft collision avoidance. ATC’s main

job is to assist the pilot in flying with all kinds of information and advice from the ground.

Depending on the country’s system, the ATC also provides military defense assistance based

on the capabilities of some countries. Although most modern aircraft have radar systems for

aircraft collision avoidance, this is only possible when the aircraft comes very close (short-

range conflict). Therefore, for mid-range or long-range collisions, the pilot needs the help of an

ATC ground system. Typically all ATC stations store all information obtained from radar for

future investigation. The primary thing that is kept in all that information is the trajectory

of each aircraft. Here, trajectory refers to the positioning parameters of each aircraft such as

latitude, longitude, altitude, heading direction, speed, etc. Generally, ATC stations store all

aircraft location data in their database. Additionally, they store the immediate order from

1International Civil Aviation Organization

26 Chapter 3. Data related to aircraft conflicts

ATCOs. Each control station decides the type of data it stores.

In France, control stations use the IMAGE system to calculate the aircraft position

[Hurter 2013]. The IMAGE system gathers data from all controller stations. The system

receives multiple positioning information for each aircraft from different radar sources and

calculates the estimated position. Although ATC stations store a variety of information,

including trajectory data, this data is highly sensitive and not publicly accessible.

Alternatively, researchers simulate trajectory data for their research. One of the huge

advantages of using simulated data is that one can create many variations of a conflict scenario

that may not be available in real data in order to test the built models. A model can also

then be trained with a variety of conflict data. For organizations were real data are available,

the model can be tested with these data.

3.3.3 Simulated data

Data simulation is used to build a hypothetical set of mathematical, logical, and symbolic

relationships between entities of interest in order to predict the system performance with a

real-world process or simulation of system activity over time [Banks 2005].

This is specifically useful when there is no adequate real data. Using simulated data, a

model can be trained by creating some hypothetical data to predict the real-world problem.

Many studies on aircraft conflict detection and resolution used simulated data [Hu 1999,

Eby 1999, Farley 2007, Pritchett 2017, Siqi 2018, Brittain 2018], including anomaly detection

studies [Das 2010, Olive 2018].

Hu in et al. used the Brownian Motion [Mörters 2010] method to simulate random conflict

scenarios in [Hu 1999]. This method was first applied to random movements in liquids or gas

particles. Hu et al. used that concept considering each aircraft as a single gas particle

and generate aircraft’ movement using this method. In the case of conflict resolution, they

resolved the conflict by changing the direction of the heading using mathematical formulas.

They considered the current location of each aircraft only. In almost all the studies, data

are simulated by generating position (latitude, longitude, altitude), time, speed, direction,

etc. for a specific position. Brittain and Wei generated each conflict scenario with a video

game simulator called NASA Sector 33, which shows the collision between different planes

[Brittain 2018]. They used the game screen images and applied CNN to resolve the conflict.

Although some of the data mentioned above could have been used in our work, the biggest

obstacle was that none of this data is publicly available. Moreover, as opposed to conventional

data used in the related works considering only the current location of the aircraft, the data

we generated consists in all the locations of an aircraft flying for 5 minutes; this has not been

used before. This has the extra advantage that a model can learn the conflict environment

from the aircraft movement without any other features.

3.4. Simulated data sets 27

3.4 Simulated data sets

In this research, for each conflict we prepared 5 minutes of trajectory data of all the aircraft

involved in that conflict and the immediate order from the ATCO to resolve it. Such data is

difficult to collect from ATC stations since there is the need to synchronized the trajectory

data with the immediate order of ATCO. After having tried to get real data from ATC

stations without any success, we have decided to simulate them and to create a new data set.

We decided to open it to the research community.

We needed trajectory data that would contain not only a single position but multiple

continuous positions to fit the model without feature extraction. As a result, our data set

differs from the data used in the literature in that our data is not just a single position of the

aircraft involved in the conflict. Rather, the trajectory of the last five minutes of the aircraft

is considered. We call it a 5-minute window. The model can learn the collision environment

from the movement of aircraft and can avoid the risk of a feature that is difficult or impossible

to calculate.

We have created a dataset with multi-label annotations that means different possible so-

lutions are given for each conflict sample. This is different from existing data set in which

only the best solution is recorded. Our data set has thus a multi-class annotation. Indeed,

we have considered multiple resolutions because resolving a conflict may provoke a new con-

flict. In that case, the multi-label solution will give ATCOs the opportunity for alternative

resolutions.

As opposed to some previous studies [Prandini 1999, Prandini 2000, Kim 2016, Pham 2019a,

Pham 2019b], this research mainly focuses on the raw data rather than feature extraction to

avoid the risk of an unusable feature. Since the position of all the planes is approximate, it

is risky to use the feature extraction under different conditions.

We explain the preparation of the two data sets we created : (a) simulated trajectory along

with the ATCO’s immediate orders (b) images obtained by the conversion of trajectories.

There are some limitations when using trajectory data. For example, the input dimension

of a model depends on the number of aircraft changes. Since the input dimensions of a model

cannot be changed at run-time, most trajectory-based machine learning models use a fixed

number of aircraft. If we want to use recurrent neural network-based model such as long

short-term memory (LSTM2), the computational complexity of the model increases with the

number of aircraft. Since we use 5-minute trajectory data, it is more complicated than the

other trajectories considering a single position.

The solution to a conflict where a variable number of aircraft are considered is a big

challenge in this research. To overcome this challenge, inspired by [Zhao 2021, Brittain 2018],

we convert sequence-based data into images. The advantage of converting trajectory sequences

into images is that the size of an image does not depend on the number of planes plotted in

2Long Short-Term Memory

28 Chapter 3. Data related to aircraft conflicts

that image. If we included weather, restricted zones, etc., the size of the image would not

change.

By converting simulated trajectories into images, we can also easily apply data augmen-

tation to make the data sufficient for model training. As a result, if two or more aircraft are

involved in a conflict, the model can be trained and tested without any changes in the input

dimensions.

For both datasets, the output annotations are the same, which are the immediate orders of

the ATCO for resolving the corresponding conflict. Sub-section 3.4.1 presents the simulated

trajectories and ATCO’s immediate orders while sub-section 3.4.2 presents the transformation

of the trajectory data into images.

3.4.1 Dataset-STIO: simulated trajectory and ATCOs immediate orders

We generated the trajectory and controller’s immediate order datasets using an open-source

simulator named Blue Sky developed at TU Delft by Hoekstra and Ellerbroek [Hoekstra 2016].

Using this simulator, we made examples of conflict scenarios with ATCO’s orders.

Table 3.4 reports a sample3 data with a conflict situation between two airplanes. In

this table, the first column reports time in seconds. Updating trajectory information varies

depending on the radar refresh time. We simulate trajectory data that updates every 5

seconds. The next three columns in this table are aircraft A coordinates (latitude, longitude,

and altitude). Similarly, the next three columns are aircraft B coordinates. The last column

is the controller action. To populate this table, we played different scenarios with the conflict

situations. Figure 3.4 shows an example of left-heading actions that are taken up to 30 degrees

by a multiple of five to resolve the conflict between two aircraft (aircraft A and aircraft B).

Table 3.4: A sample trajectory data where two airplanes are going to have a conflict.
The first column shows trajectory data updates every 5 seconds. The next eight columns are aircraft
A coordinates (latitude, longitude, altitude, and heading) and aircraft B coordinates. The last column
is the controller action.

Time in Sec Lat (A) Lon (A) Alt (A) H (A) Lat (B) Lon (B) Alt (B) H (B) Controller’s Action(s)
0 46.2499689 -2.8 7620 90 43.8 -6.19443506 7620 105
5 46.23975835 -2.8 7620 90 43.8 -6.18028833 7620 105
10 46.22954973 -2.8 7620 90 43.8 -6.16614426 7620 105
15 46.2193411 -2.8 7620 90 43.8 -6.1520002 7620 105
20 46.20913248 -2.8 7620 90 43.8 -6.13785613 7620 105 TURN
25 46.19892385 -2.8 7620 90 43.8 -6.12371206 7620 105 LEFT (A) 100

30 46.18871522 -2.8 7620 90 43.8 -6.10956799 7620 105
...
...
290 45.65786669 -2.8 7620 90 43.8 -5.37407647 7620 105
295 45.64765807 -2.8 7620 90 43.8 -5.3599324 7620 105

3A sample corresponds to a conflict situation.

3.4. Simulated data sets 31

minutes. Even if we split one scenario into two scenarios, it will be two separate scenarios

because it is a different time and coordinate position.

We have generated 1,516 sample scenarios and the corresponding valid commands to

resolve each scenario. A scenario can be solved with different heading angles. Table 3.5

shows the number of categorical actions (2 solutions, 3 solutions, ..., 6 solutions) occurrences

to resolve the conflict scenarios. The total conflict samples with two aircraft can be categorized

based on the number of their solutions: [288, 2], [288, 3], [300, 4], [372, 5], and [268, 6] where

the first value of each pair is the number of samples and the second value is the number

of solutions. The data set consists of almost a similar number of samples in the different

categories where the highest frequency is in the case of 5 solutions (see Table 3.5).

We also created 140 samples for the conflict between the three planes. Table 3.6 shows

the total data with three planes.

It takes 10-20 minutes to create one sample.

Table 3.5: Number of samples based on their solutions, depending on the number
of possible solutions. For instance, 288 samples of conflict situations have two solutions.

Number of conflict samples 288 288 300 372 268
Number of heading resolutions 2 3 4 5 6

Table 3.6: Number of samples with 3 aircraft (same notation as in Table 3.5).

Number of conflict samples 4 4 4 56 72
Number of heading resolutions 1 2 3 4 5

3.4.2 Dataset-CTI: convert sequence data into images

This section explains how a trajectory sequence can be transformed into an image.

To create image data, we used the trajectory data that we described in the section 3.4.1.

According to Figure 3.7 (a), each conflict sample of initial data contains the last 5-minute

of the trajectory (a series of positions) for each aircraft associated with the conflict. Also,

the resolution can be made for each conflict by changing the ownship’s (see Figure 3.7 (a)

aircraft A) heading from 30 degrees left to 30 degrees right by 5 degrees (total 12 heading

directions). Each conflict is associated with multiple heading resolutions (multi-labels) for a

single conflict.

In Figure 3.7, (b) shows the image converted from the trajectory data. It indicates the

distance from the conflict point to the aircraft (red lines). The thin black line indicates the

current distance between aircraft; it is the last point of the aircraft before the conflict is

detected. It is possible to plot trajectories of multiple planes without changing the size of the

3.4. Simulated data sets 33

1,516 images contain two aircraft and 140 contain three aircraft.

Brittain and Wei used the image of NASA sector 33 game screen [Brittain 2018] for their

model training. We could train our model with the image of the screen of the simulator.

But in reality, if we take a snap of the ATC radar display screen, there is noise (pixels with

unknown information) besides the trajectory, which may lead the model to a wrong decision to

resolve the conflict. So, we just plotted the trajectory so that no other additional information

comes into the image.

The benefits we get from converting trajectory data into images are mentioned below:

(a) The size of each of the sample data (image) remains the same although there is a variable

number of trajectories plotted;

(b) The input dimension will remain unchanged even if weather restrictions areas were

added in the future;

(c) Converting into an image means that not only we can classify conflict among aircraft,

but also we can classify conflict between an aircraft and the restricted areas such as

military zone, weather storming area, and so on;

(d) All the advantages of image classification can be applied to the data, such as using the

CNN model and in that case, the model effectiveness can be increased by using data

augmentation.

Chapter 4

Supervised machine learning and

multi-label classification of aircraft

heading changes

An aircraft conflict occurs when two or more aircraft cross at a certain distance.

Aircraft heading changes are the common resolution at the en-route level (high

altitude). One or more alternative heading changes are possible to resolve a conflict.

We consider this problem as a multi-label classification problem. We developed a

multi-label classification model which provides multiple heading suggestions for a

given conflict. This model we named CRMLnet is based on the use of a multi-layer

neural network ans uses trajectory data. It classifies all possible heading resolution

in a multi-label classification manner. When compared to other machine learning

models that use multiple single-label classifiers such as SVM, KNC, and LR, our

CRMLnet achieves the best results with an accuracy of 98.72% and ROC of 0.999.

We used the simulated data set presented in Chapter 3.

Abstract.

Contents

4.1 Introduction . 36

4.2 From traditional machine learning to neural network for conflict

resolution . 37

4.2.1 Single-label or binary classification . 38

4.2.2 Multi-class classification . 38

4.2.3 Multi-label classification . 38

4.2.4 Classification algorithm . 40

4.2.5 Problem formulation . 43

4.2.6 Preliminary Neural Network Model . 44

4.3 CRMLnet: Conflict resolution multi-label neural network model . . . 47

4.4 Evaluation . 53

4.5 Result and discussion . 54

4.5.1 Hyper-parameters search algorithm . 55

35

36
Chapter 4. Supervised machine learning and multi-label classification of

aircraft heading changes

4.5.2 Results . 55

4.6 Conclusion . 60

4.1 Introduction

In the domain of air traffic, two or more planes are considered as in a conflict situation

when their trajectories cross each other in certain circumstances of distance at the same

time [Kuchar 2000]. A controller considers various types of information to solve a conflict.

The most common and preliminary information is the coordinate position of the involved

aircraft.

The resolution of the aircraft conflict varies at different altitude levels. Figure 3.3 shows

the seven usual phases of an aircraft. The conflicts have different resolutions. Air traffic

controllers usually resolve conflict by changing the heading direction of the aircraft at this

level. For example, the heading direction of flight of an aircraft is changed to a certain degree

to the right or to the left. Multiple heading resolutions are possible to resolve a conflict. This

is why we considered the problem as a multi-label classification problem.

Decisions to solve conflicts are made manually in real-time and consist of changing aircraft

trajectories to maintain a safe distance between planes. When a conflict is identified, the

ATCO has to make a quick decision about the best possible solution using his/her knowledge

and experience. ATCOs have to take into account all the aircraft flight parameters such

as its speed, positioning coordinate, destination, flight plan, its environment, weather, wind

direction, military zone, etc. and the other flights.

Because a conflict resolution can be multi-labeled, in this chapter, we propose a multi-

level classification model of conflict resolution based on a multi-layer neural network we named

CRMLnet. It aims to help the controllers in their decision to provide the different possible

heading advisories.

In this chapter, we consider the mid-range conflict only. We consider the 5-minutes of

involved aircraft trajectory data just before the conflict is detected. In the real-life situa-

tions, an ATCO is automatically alerted whenever such a conflict situation arises; they then

decide to change flights and gives the pilot the order regarding the flight change via radio

communication.

Related work on air traffic conflicts using trajectories considers the aircraft current posi-

tion. Then different mathematical calculation like future position projection, speed, distance

between the involved aircraft, etc are used. Many parameters sometimes from different sources

such on-board data are needed. As opposed to that, we have created a dataset where each

sample contains trajectories of the last 5 minutes for each aircraft (See Section 3.4.1). There-

fore, our model can learn the conflict environment from the movement of aircraft. We do not

4.2. From traditional machine learning to neural network for conflict resolution37

need any features extraction such as calculating the distance between them, projecting the

future position, etc.

In this chapter, we propose a model based on a neural network that aims to assist the

ATCOs with multiple solutions to resolve a conflict. We designed the NN1-based multi-label

classification model, develop and evaluate it. Besides, we developed other models based on

multiple single-label classifiers (support vector machine SVM, logistic regression LR, and K-

nearest neighbor classifier KNC) where we used separate classifiers for each output class-label

solution and compared them with the neural network-based model.

4.2 From traditional machine learning to neural network for

conflict resolution

We designed and developed a ML2-based model that will predict the actions for any new

scenario using different kinds of information that an ATCO takes into account although we

focus on sequence-based trajectory data.

We can think of many ways to resolve a conflict situation. It can be cast into a ranking

problem where conflict resolution actions can be ranked; the top one being the most appro-

priate one. The advantage of this solution is that constraints can be easily added considering

variables such as delay, proximity to destination, and flight time as used by Archibald et al.

[Archibald 2008]. The problem of aircraft conflicts can also be considered as:

(a) A single-label or binary classification problem where the classifier simply classifies

whether it is solvable or not;

(b) A multi-class classification problem where the classifier selects only the best one from

multiple resolutions;

(c) A multi-label classification where the selection of resolution will be one or more for a

single conflict.

We proposed a multi-label classification model. The multi-label resolution is more appli-

cable in real life because a controller will have multiple alternative solutions in hand where it

will be much easier to avoid risk. ATCO can take one of the solutions thinking of the other

aircraft’s, which are not involved in the conflict, position to avoid additional future conflicts.

Subsequent sections discuss classification methods.

1Neural Network
2Machine Learning

4.2. From traditional machine learning to neural network for conflict resolution41

non-linear classification in addition to linear classification. It uses kernels that actually map

the input vector to a high dimensional feature space. SVM performance depends on a good

separation of the training data by an hyperplane (also called functional margin). The more

separation there is, the lower the generalization error. The basic formulation of a Linear SVM

is: suppose (~x0, y0),...., (~xn, yn) where n number of training examples, ~xi is the input vector,

and yi is the corresponding class-label. Here, each ~xi is a vector of p-dimension where SVM

tries to tune the hyperplane with a maximum margin so that the training data of the group

yi = 1 is well separated from the group of yi = 0.

Now if we think about each heading change separately those individually stand on a binary

state. For example, either a particular heading change can solve the conflict or not. In such

case, we can use one individual SVM for each heading change where all the individual SVMs

perform binary classification.

4.2.4.2 K-Nearest Neighbor Classifier

KNC is a classifying algorithm that classifies training samples based on closest examples.

KNC is one of the most basic and simple classification algorithms. In this algorithm, K

refers to the number of nearest neighbors that the KNC classifier uses to classify. After that,

it classifies the new sample based on the majority vote of its K neighbors. A neighbor is chosen

by using a distance function. The common distance functions are Euclidean, Manhattan, and

Minkowshki and the equations are as follows:

dEucliean =

√

√

√

√

n
∑

i=1

(pi − qi)2 (4.1)

dManhattan =
n
∑

i=1

|pi − qi| (4.2)

dMinkowski =

(

n
∑

i=1

(|pi − qi|)
m

)1/m

(4.3)

Here all the distance function formulas calculate the distance between two points pi and

qi. For the Euclidean distance, it is always 2-norm distance while for the Minkowshki, it is

defined by a variable m. Depending on the dataset, any of them can be used. Since KNC is a

supervised learning classifier, the output category of each data for training is already known.

Now suppose a new sample comes and it needs to be classified. KNC uses its distance function

to calculate the distance of the new sample from the already known category and find the K

number nearest neighbor. The new sample is identified for the category that has the highest

number of among K neighbors. The value of K is selected by hyper-parameter tuning.

Since each of the heading decisions resolving a conflict is a binary classification, we can

apply KNC separately for each heading decision. So for each heading decision, the total data

is divided into two categories, for example, category ‘0’ and category ‘1’. Then we can apply

42
Chapter 4. Supervised machine learning and multi-label classification of

aircraft heading changes

KNC individually for each heading decision as a binary classification. So, a KNC will be

set up to determine if a heading decision can resolve a particular conflict situation. Here ’0’

means cannot resolve the conflict and ’1’ means it can. Similarly, we can apply KNC for rest

of the heading. Finally, we will get all the heading decision separately for a single conflict.

4.2.4.3 Logistic Regression

LR is another machine learning technique that actually comes from the field of statistics. Both

linear regression and logistic regression algorithms have the same goal but the difference is

that the output prediction result of the logistic regression goes through a non-linear function

called a logistic function. Sometimes it is also called a sigmoid function. This function can

express any real value into a value between ‘0’ and ‘1’, but they are never exactly equal to

that. The following equations are used for the hypothesis of logistic regression:

hθ(x) = g(θT x) where g(z) =
1

1 + e−z
(4.4)

Here hθ(x) is the hypothesis of the logistic regression where θ is the hyper-parameter, x is

the input, and the function g(z) = 1
1+e−z

is the sigmoid function. So if any real value goes

through this sigmoid function, it becomes a number between ‘0’ and ‘1’ that is 0 < hθ(x) < 1.

We can use complex parameters to create more complex decision boundaries. There are many

types of regression algorithms such as linear, polynomial, non-polynomial, multiple, logistic,

etc. Only logistic regression is discussed here as it is widely used for binary classification.

We can apply this binary LR classifier to classify each of the heading decision individually

while the model based on multiple LR resolving a single conflict. So for each heading direction,

dedicated LR provides binary decision as an output separately using the same input trajectory.

4.2.4.4 Neural Network

A NN is a network of simple and strongly interconnected elements called nodes or neurons

or perceptrons. Each node is a single computational unit. One or more weighted inputs

are connected to each node for the computing process and it goes to the output through a

non-linearity function called the activation function. The nodes are organized in different

layers in a meaningful way. Usually, a NN is organized in several layers: input layer, hidden

layer(s), and output layer.

• Input layer: This layer takes the input. The size of this layer is equal to the number of

input variables.

• Hidden layer(s): They are the intermediate layers between the input layer and the

output layer. There can be one or more layers. The number of nodes is often chosen

empirically.

4.2. From traditional machine learning to neural network for conflict resolution43

• Output layer: This is the last layer that contains the end results. The number of nodes

equals the number of class-labels.

The basic notation of a NN is as follows:

f(x) = W T X + b where W =











w1

w2

:

wn











and X =











x1

x2

:

xn











(4.5)

Here X is the input vector that contains all the input features and W is the corresponding

weight vector. The basic formula f(x) = W T X + b calculates a product of input feature (X)

with a transpose of weight (W) matrix and then includes a bias (b). Equation 4.6 uses a

linear function in the case of n variables.

f(x) = b + w1.x1 + w2.x2 + w3.x3 + + wn.xn (4.6)

Here, we have presented different types of classifiers. In the following sub-sections we

discuss on how the problem of aircraft conflict resolution can be formulated to apply these

models.

4.2.5 Problem formulation

We discussed in Section 4.2 that we will apply multi-label classification. This section details

the mathematical formulation.

Let us consider, a single-label classification of n instances. A dataset D can be composed

as (~X0, y0), (~X1, y1), (~X2, y2),, (~Xn, yn) where ~X represents each input feature vector and

y represents the corresponding class-label. For multi-label classification, each input feature ~X

has a subset of labels ~Y ⊆ ~L where ~L is multiple labels and ~Y is a subset of ~L. Therefore, the

dataset D is composed of multi-label classification of n instances (~X0, ~Y0), (~X1, ~Y1), (~X2, ~Y2),

....., (~Xn, ~Yn). In our case, each ~Y = [y0, y1, y2,, y11]. This means, each conflict sample ~X

corresponds to a set of resolutions ~Y = [y0, y1, y2,, y11] class labels (12 heading resolutions).

Table 4.1 shows an example of the different conflict samples and the corresponding multiple

class labels. In this table, there are n conflict samples and each sample contains a pair of

coordinates (A,B) for m times. Our simulated data contains multiple heading decision for a

single conflict, therefore, Table 4.1 (b) shows the multiple class labels from y1 to y11 where

each label corresponds to a heading decision with a certain degree angle.

In the next section, we explain how NN can be used to solve aircraft conflicts.

44
Chapter 4. Supervised machine learning and multi-label classification of

aircraft heading changes

Table 4.1: An example of the binary decisions for multi-label classification. The left side of the
table shows all the conflicting samples where each sample contains the positioning coordinate of the
involved aircraft. For example, (t0,A,B) is a coordinate of aircraft A and aircraft B at time t0. The
right side of the table shows the multiple class labels from y0 to y11 where each label corresponds to
the same sample input. yi equals 1 if the corresponding heading solves the conflict, 0 otherwise.

~X ~Y
~X0 → (t0,A,B), (t1,A,B),, (tm,A,B) ~Y0 → y0 y1 y11

~X1 → (t0,A,B), (t1,A,B),, (tm,A,B) ~Y1 → y0 y1 y11

: : :, : : : :
: : :, : : : :

~Xn → (t0,A,B), (t1,A,B),, (tm,A,B) ~Yn → y0 y1 y11

(a) Input samples (b) Output headings

4.2.6 Preliminary Neural Network Model

Since supervised algorithm training and testing require a pair of input-outputs for each sample

data, we discuss here how our data is suitable for supervised learning. We explained in

Chapter 3 that when a conflict occurs, the position, direction, speed, altitude, and many

more parameters of each aircraft are stored by the ATCC3. The ATCC also stores the

immediate order given by the ATCO to resolve the conflict. Since both the aircraft and the

ATCOs immediate order data are stored in an ATCC, supervised learning algorithms can be

used.

Figure 4.4 illustrates an example of how a neural network can be used to avoid collisions

between two planes. This figure shows the current values of the four parameters of the two

planes, latitude, longitude, speed, and direction, are shown as examples. Now, the discussion

continues with the explanation of this figure. How our data can be fitted with a neural

network will be discussed in detail.

Figure 4.4 shows when two planes are in conflict, their current positioning coordinates,

speed, and direction are given to a neural network as input. On the other hand, different

heading modification decisions are given as the output of the network.

We suggested the training will not be according to the current position but according to

all the positions of the aircraft for the last 5 minutes, that we call last 5-minute window. The

advantage of using a 5-minute window trajectory is the neural network model will be able to

understand the environment of that conflict by changing the position of the involved aircraft

without extracting any features.

There are some important factors in the output on which we determine the different

classification types. As shown in Figure 4.4 there are m outputs and the types of classification

depend on which or how many of them will be selected as real output. We can select the

best possible output using a softmax activation function at the output layer to select the best

probable heading action. It would be multi-class classification. There is a risk that, if for

3Air Traffic Control Center

48
Chapter 4. Supervised machine learning and multi-label classification of

aircraft heading changes

were halved which will be discussed later.

Our CRMLnet model is not a deep neural network since it has a single hidden layer.

Kim et al. applied the same idea but for the multi-class classification [Kim 2016]. The

authors chose the best probable one as output. They also applied a neural network for

multi-class (see Section 4.2.2) classification. In our case, we applied the same concept to

the multi-label classification case using a single architecture based on a neural network. As

we have discussed in Section 4.2.4, a multi-label classification can also be solved as multiple

single-label classifications, we also implemented three other models using multiple single-label

algorithms. Figure 4.7 shows the model based on a neural network and Figure 4.9 shows the

model based on multiple single-label classifiers. We also compared CRMLnet model and the

models based on multiple single-label classifiers.

He and Xia proposed a single neural network architecture with separate logistic functions

at the output layer for multi-label classification of text emotion [He 2018]. The authors

showed that a single network can perform better for multi-label classification than multiple

individual networks. In a single network, all neurons are interconnected to each other, thus,

all output decisions are based on sharing information with each other. On the other hand,

Baker and Korhonen mentioned two disadvantages of using separate binary classifiers for

multi-label classification : first, it is assumed that class-labels are independent, although this

is not true in all cases; second, it is relatively expensive to compute because the classifiers are

computing separately while using the same input [Baker 2017] .

We developed a model for conflict resolution using multi-label classification based on

neural network that we call CRMLnet. Figure 4.7 shows our CRMLnet model. Figure 4.8

shows that in the CRMLnet model the conflict is resolved by changing the heading decision

of one aircraft only, which is what happens in the real world. Compared to our preliminary

model presented in Figure 4.5, the number of nodes in the output layer is reduced to 12.

The input parameter of our preliminary model is 540. Since there are not many conflict

samples in the initial data, so, we split it into two parts each scenario in such a way that the

time slot for the first part is at 0 second, 10 seconds, 20 seconds, up to 5 minutes. The other

part is for 5 seconds, 15 seconds, 25 seconds, up to 5 minutes. Each part produces a new

scenario (See Section 3.4.1 and Table 3.4). In the Table 3.4, we consider all the gray rows

as one sample and the other as another sample. Since we store 5-minutes (5 × 60 seconds

= 300 seconds) of trajectory following a 10-second change for each aircraft, we have the

same parameters at each 10-seconds but the values change with respect to time. This means

we store the features repeatedly for 30 (300 seconds ÷ 10 seconds = 30) times with different

values. The angle (α) between two planes remains unchanged. Thus, we have 9 input features

that are repeated 30 times every 10-seconds: time, latitude (aircraft A), longitude (aircraft

A), altitude (aircraft A), heading (aircraft A), latitude (aircraft B), longitude (aircraft B),

altitude (aircraft B), heading (aircraft B). Overall, we have 271 (1 (angle) + 9× 30 (repeated

parameters) = 271) total input features. For that reason, the input layer of our neural network

model is composed of 271 nodes.

4.4. Evaluation 53

4.4 Evaluation

Our CRMLnet model and the models based on SVM, KNC, and LR were evaluated on the

simulated dataset presented in Section 3.4.1.

Comparing different algorithms requires performance measurement and sampling meth-

ods.

We use several metrics to evaluate performance namely Acc5, auROC6 curve , auPR7

curve, F1 score, Sn
8, Sp

9, and MCC10. These measures are also used to compare the different

models. These metrics are defined in the following equations:

Accuracy (Acc) =
TN + TP

TP + FN + TN + FP
(4.8)

Here, TP is the total number of correctly classified positive examples, TN is the total number

of correctly classified negative examples, FP is the total number of incorrectly classified

positive examples, and FN is the total number of incorrectly classified negative examples.

The range of accuracy is in between 0% to 100%.

Area under the receiver operating characteristic curve auROC and area under the pre-

cision recall curve auPR are crucial measures. They express the strength of the underlying

classification regardless of the selected threshold.

F1 =
2

recall−1 + precision−1
= 2 ·

precision · recall

precision + recall
=

TP

TP + 1
2(FP + FN)

(4.9)

where precision =
TP

TP + FP
and recall =

TP

TP + FN
(4.10)

One of the most used performance measures for machine learning models is the F1 score.

F1-score is the harmonic mean of precision and recall because the right part of the Equation 4.9

shows that F1 considers FP and FN equally.

Also, Equation 4.10 shows that the only difference between precision and recall is a portion

of the denominator which is FP and FN. Here, precision is the number of true positive (TP)

over the number of true positive (TP) plus the number of false positive (FP). Recall is also

known as Sensitivity (Sn).

5Accuracy
6area under Receiver Operating Characteristic
7area under Precision Recall
8Sensitivity
9Specificity

10Mathew’s Correlation Coefficient

54
Chapter 4. Supervised machine learning and multi-label classification of

aircraft heading changes

Sensitivity (Sn) =
TP

TP + FN
(4.11)

Specificity (Sp) =
TN

TN + FP
(4.12)

Similarly, Sp is the true negative rate or number of correctly classified negative instances over

the total number of negative examples.

Matthews correlation coefficient (MCC), Equation 4.13, is one of the very important and

more complex performance measurements for binary classification. The scoring range of MCC

is between -1 and 1. MCC output is maximum if FP = FN = 0, TP 6= 0 and TN 6= 0. That

would occur when there is no incorrectly classified sample. MCC drops to -1 if TP = TN =

0, FP 6= 0, and FN 6= 0, which occurs when the model does not correctly classify a single

sample.

MCC =
(TP × TN) − (FP × FN)

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4.13)

There are several types of sampling methods to test and validate a classification algorithm:

k-fold cross-validation [Kohavi 1995], independent test sets, jackknife tests, etc.

We used k-fold cross-validation and independent test sets. With k-fold cross-validation

method the model can train itself even if the volume of the data is low, avoiding overfitting.

In training sessions, k-fold cross-validation separates the dataset in k small partitions (k-fold).

The classifier then continues training and testing for k times where k is defined after several

tests. Each time, it takes (k-1) subsets for training and the remaining subset for testing. It

proceeds likewise for each testing subset. All performance measures are taken for each fold

and the end result is their average.

Another sampling method, the independent test set, was also used where the dataset

is divided into three subsets. For example, 60% of the total data is for training, 20% for

validation, and 20% for testing purposes. This sampling method is called independent test

set because the test set is kept completely separate from the training set.

During the training, validation and test, each pair of dataset contains a trajectory vector

(Table 3.4) and the corresponding multi-label heading resolution decisions (Table 3.2) vector

(~X0, ~Y0), (~X1, ~Y1), (~X2, ~Y2),, (~Xn, ~Yn) that already discussed in Section 4.2.5.

4.5 Result and discussion

This section discusses all the experimental results and analysis. We used python programming

language, python Keras library, and python sci-kit learn library to implement our model.

4.5. Result and discussion 55

4.5.1 Hyper-parameters search algorithm

The performance of a machine learning model highly depends on the selection of its hyper-

parameters. On the other hand, selecting hyper-parameters is also quite difficult because of

calculating the permutations of the parameters. There are algorithms to find the best pos-

sible parameter values. Random Search [Bergstra 2012] is one of the popular and widely

used algorithms to find the most influential parameters. Grid Search [LaValle 2004] is an

another commonly used algorithm to find hyper-parameters but this algorithm searches all

combinations of hyper-parameter subsets. According to [Bergstra 2012], in the case of high

dimensional models such as neural networks, it is very time-consuming to apply grid search to

find hyper-parameters. Thus, we applied Random Search on our CRMLnet model to find the

learning rate, number of hidden layers, number of nodes in each hidden layer, optimizer, etc.

We set the value of different types of hyper-parameters and then run the search algorithm.

After the parameters selection and different experiments, we tuned our model with Adam11

as an optimizer. The Adam optimizer is a combined version of two widely used optimizers:

RMSprop12 and SGD13 with momentum [Ruder 2016, Bottou 2012]. We have seen our model

perform well with a learning rate of 0.001. Although our CRMLnet model has a good per-

formance with the same number of nodes at the input layer and hidden layer, it is possible

to improve the model architecture by changing the hyper-parameters in the future depending

on the data volume.

4.5.2 Results

Before running any validation procedure, we shuffled all the data and split them into a train,

validation, and test sets. We applied k-fold cross-validation where we used k=5, k=10, and

k=20. We trained our model using these three values for k but we got the highest accuracy

and the lowest loss for k = 10. We thus set k=10 for the cross-validation.

Figure 4.13 plots the train and validation loss for 10-fold cross-validation. Figure 4.15 (a)

shows all these loss curves are overlapping, thus their results are close one to the other. This

means the results are quite robust and do not depend on the data split under consideration.

We also plot the accuracy of the train and validation on Figure 4.14 while Figure 4.15 (b)

shows all these accuracy curves overlapping together. In all figures, the red curves represent

the loss and accuracy during training while the green curves represent the loss and accuracy

during the validation. We applied our CRMLnet model on different numbers of epochs. Here,

1 epoch means the complete forward and backward pass of input features during training.

After many experiments, we set our model to 100 epochs. The curves on Figure 4.13, Fig-

ure 4.15 (a), Figure 4.14, and Figure 4.15 (b) are for 10-fold cross-validation with 100 epochs.

Based on the plotted results, we see that the loss and accuracy are almost the same during

training and validation.

11Adaptive Moment Estimation
12Root Mean Square Propagation
13Stochastic Gradient Descent

4.5. Result and discussion 59

Table 4.2: CRMLnet is much better than the other classifiers when using cross-validation
(CRMLnetcv). Here, the 1st column is the classifier. The next columns are : Accuracy (Acc), area
under receiver operating characteristic curve (auROC), area under precision-recall curve (auPR),
Specificity(Sp), Sensitivity (Sn), Mathew’s Correlation Coefficient (MCC), and F1-score.

Classifiers Acc auROC auPR Sp Sn MCC F1

CRMLnetcv 98.72% 0.999 0.998 99.11% 97.94% 0.971 0.981
MSVMcv 91.66% 0.953 0.934 94.24% 86.54% 0.812 0.793
MKNCcv 95.45% 0.979 0.958 96.68% 93.01% 0.898 0.921
MLRcv 90.96% 0.863 0.818 93.29% 86.36% 0.797 0.785

Table 4.3: CRMLnet is also much better than the other classifiers when using indepen-
dent test set (CRMLnetind). The columns are the same as in Table 4.2

Classifiers Acc auROC auPR Sp Sn MCC F1

CRMLnetind 97.79% 0.997 0.995 97.93% 97.36% 0.952 0.968
MSVMind 91.47% 0.944 0.899 94.30% 85.89% 0.808 0.768
MKNCind 93.00% 0.931 0.895 95.14% 88.78% 0.843 0.884
MLRind 90.97% 0.842 0.789 93.63% 85.73% 0.797 0.785

Figure 4.8, we have twelve distinct class-labels (horizontal heading direction) and for each

class-label, we applied a single-label classifier to classify them individually. All individual clas-

sifiers perform a binary classification to predict the corresponding heading changes whether

it solves the conflict or not. So, all the individual classifiers use the same input features. For

example, Figure 4.9 shows a general architectural view of a multi-label classification model

using a single-label classifier where all the CF (CF1, CF2, ..., CF12) can be replaced by any of

one single-label classifier (SVM, KNC, or LR). Thus, we designed three different architectures

for SVM, KNC, and LR (designated as MSVM, MKNC, and MLR) and applied them on the

same dataset using both sampling methods: 10-fold cross-validation and independent test set.

Finally, all the results discussed in Section 4.4 of the different models are represented in

the Table 4.2 for cross-validation sequentially as follows: CRMLnetcv, MSVMcv, MKNCcv,

MLRcv. Table 4.3 also presents the results using independent test set validation. Table 4.2 and

Table 4.3 reveal that all the models did better for cross-validation than the independent test

set. A closer look at the results show that our CRMLnet model for both cross-validation and

independent test set are much better than the other models based on a single-label classifier.

CRMLnet model did well not only for accuracy but also for all other scoring discussed in

Section 4.4. Notable among these scores are F1 and MCC, which have recently been used to

compare almost all machine learning models. Although numerical results are often important,

many complex things are easier to understand if they are visually presented. Therefore, in

Figure 4.18, we represent the ROC curve of individual class-label (twelve heading directions

from Table 3.2) for all the methods with 10-fold cross-validation: (a) Neural Network-based

model CRMLnet, (b) Multiple Support Vector Machine based model MSVM, (c) Multiple K-

Nearest Neighbor Classifier based model MKNC, and (d) Multiple Logistic Regression based

model MLR. If we look at the ROC curve in Figure 4.18, we can see that the model based on

4.6. Conclusion 61

are prone to errors.

We cast the problem into a multi-label classification problem where several solutions may

be possible.

In this chapter, we developed a neural network model (CRMLnet) that we evaluate

against more traditional classifiers. We show that when two aircraft are in conflict, our model

performs better than the other classifiers.

Our preliminary model presented in Section 4.2.6 was published at ADBIS16, TPDL17 &

EDA18 joint conferences 2020 [Rahman 2020].

The CRMLnet model was published in 2022 at the 14th International Conference on

Agents and Artificial Intelligence [Rahman 2022].

The CRMLnet is implemented using the Python programming language and TensorFlow’s

Keras library. Complete code attached to Appendix A.

Although our CRMLnet model is valuable, this model cannot handle conflicts where a

variable number of aircraft can be involved, which is the real word case. Indeed, each aircraft

trajectory corresponds to a number of input and the input layer of our model is set for two

aircraft only.

This difficult problem is solved in the next chapter.

1624th European Conference on Advances in Databases and Information Systems
1724th International Conference on Theory and Practice of Digital Libraries
1816th EDA days on Business Intelligence & Big Data

Chapter 5

Aircraft Conflict Resolution using

Convolutional Neural Network on

Trajectory Images

Resolving aircraft conflicts using neural network models on trajectory data is not

possible for conflicts that imply a variable number of aircraft because the input size of

the model is fixed while the input data is not. To solve this challenge, we transformed

the trajectory data into images which size does not depend on the number of planes.

We developed a multi-label conflict resolution model that we named ACRnet. It is

based on a convolutional neural network to classify the obtained images. ACRnet

model achieves an accuracy of 99.16% on the training data and of 98.97% on the test

data set for two aircraft. For both two and three aircraft, the accuracy is 99.05%

(resp. 98.96%) on the training (resp. test) data set.

Abstract.

Contents

5.1 Introduction . 63

5.2 ACRnet: Aircraft conflict resolution CNN model 65

5.2.1 Model selection . 65

5.2.2 ACRnet model based on images . 66

5.3 Evaluation framework . 67

5.4 Results and Discussion . 70

5.5 Conclusion . 78

5.1 Introduction

In Chapter 4, we developed a model based on a series of 5-minute continuous positions for two

aircraft. While this approach could be adapted for another number of aircraft, this number

63

64
Chapter 5. Aircraft Conflict Resolution using Convolutional Neural Network

on Trajectory Images

has to be fixed because the model -the number of neurons on the input layer- depends on

the number of aircraft. Indeed, because our first model is based on trajectory data related

to positions, there is a number of input for each aircraft. The total number of input depends

on the number of aircraft while the neural network model has a fix number of input. This

situation is not representative of real world situations. Rather, usually, each time a conflict

occurs, there may be a different number of aircraft involved.

As the input size of a NN model remains constant and cannot be changed in real-time, it

is an input dimensionality problem. For example, if we need k parameters for an aircraft to be

considered during a conflict resolution, then there will be n × k parameters for n aircraft.The

number of inputs of the model depends on the number of aircraft.

Brittain and Wei [Brittain 2021] applied recurrent neural network (RNN1)-based LSTM

model. The computation of their model depends on the number of aircraft when using LSTM.

Since the number of input aircraft can be arbitrary and the trajectory data of each aircraft is

5 minutes, in our case, it is very complicated to fit it in any recurrent-based model. Brittain

and Wei only considered the current position of the aircraft while Zhao and Liu [Zhao 2021]

converted trajectories into image data to handle a variable number of aircraft in real-time

using reinforcement learning. Finding the perfect reward function when using reinforcement

is challenging.

If this input dependency could be eliminated by any means, we could build a model so

that the model does not depend on the number of aircraft. One of the challenges here is that

if we solve this problem by changing the model, it will become model-dependent. On the

other hand, if we represent the data in such a way that the data is applicable to the input of

all models, then the acceptability of that solution will be much better than the changing of

the model architecture. So in the case of a new representation of our data, we must keep in

mind that the input dimension of the model should be independent of the number of aircraft.

Here, inheriting ideas from Zhao and Liu [Zhao 2021], we converted trajectory data into

image data. We detail this process in Section 3.4.1.

The benefits of converting trajectory data into images are given below:

(a) The trajectory of a variable number of planes can be plotted without resizing the image.

Thus, it is possible to apply the same machine learning model without any change in

the input size of the model. It solves the input dimensionality problem for the model;

(b) The complexity of the computation will not change even if the number of planes changes,

which is not the case with non-image data;

(c) We can easily apply the image data augmentation technique to increase the training

sample and convolutional neural network (CNN) can be applied with data augmentation;

(d) Not only can conflicts be resolved between aircraft but also between aircraft and other

airspaces such as weather, military zones, etc.

1Recurrent Neural Network

5.2. ACRnet: Aircraft conflict resolution CNN model 65

Like in the previous chapter, to reflect the fact a conflict can be solved in different ways,

we annotated each image with multi-labels, each corresponds to a possible solution.

We developed and evaluate a CNN with multi-label classification that we call ACRnet:

aircraft conflict resolution convolutional neural network.

This chapter is organized as follows. Section 5.2 discusses the model architectures. Sec-

tion 5.3 presents the evaluation framework. Section 5.4 presents the results and comparisons

between different models. Finally, Section 5.5 concludes this chapter.

5.2 ACRnet: Aircraft conflict resolution CNN model

We converted trajectory into image data where the initial trajectory is the one we presented

in Section 3.4.1 in Chapter 3.

Like in the previous chapter and model, there are 12 class labels (Figure 4.6: −300, −250,−

50 and +50,+100, + 300) as output for each input conflict situation. Each conflict sample

is annotated by one or more class labels and thus a multi-label classification-based model is

the most appropriate.

5.2.1 Model selection

Since our image data are labeled with multi-label classes, we decided to use a model based on

a convolutional neural network where the outputs are multi-labeled. There are many existing

models based on convolutional neural networks for image classification. We applied two widely

used models: VGG16 [Simonyan 2014] and ResNet [He 2016]. Although these models are very

popular for image classification, our data (1,656 images) may not be sufficient for these models

due to a large number of layers and the number of nodes in these architectures. Thus, since the

performance of a neural network-based model depends on its hyper-parameters, we created a

model by applying different combinations of the hyper-parameters.

The hyper-parameters of a neural network are: the number of hidden layers, the number

of nodes in each layer, the activation function, etc. Optimizing hyper-parameters is costly.

Grid search [LaValle 2004, Bergstra 2012] and random search [Bergstra 2012] algorithms

can help to find the best hyper-parameter values. The Keras team has recently developed

KerasTuner [O’Malley 2019] for deep learning or convolutional neural network for hyper-

parameter selection which is widely used. We used KerasTuner for our CNN-based model to

find the hyper-parameters. KerasTuner comes with the combination of Bayesian optimization

[Frazier 2018] and random search [Bergstra 2012]. After applying KerasTuner, we found our

ACRnet model architecture that consists of five layers: input, output, and three hidden layers.

In addition to these layers, some other layers are used such as dropout layer, dense layer, max

pooling, etc. which are discussed later.

5.3. Evaluation framework 67

In Figure 5.1, all activation layers are represented by red blocks. Usually, the input image

with high dimension is reduced through the use of MaxPooling layers. In this model, several

MaxPooling layers of size 2 × 2 are used to reduce the dimension of each Conv2D layer by

half. MaxPooling is a 2D grid that travels on Conv2D to create a new Conv2D grid. Since the

size of the MaxPooling grid is 2 × 2, the size of the new Conv2D is half that of the previous

Conv2D. Because MaxPooling takes only the maximum value from 2 × 2 grid to build the

new grid. But, there will be no change in the size of the filter. For instance, the Conv2D size

in the first layer is 300 × 300 and the number of filters is 28. So, the total parameters are

300 × 300 × 28. The Conv2D size is reduced from 300 × 300 to 150 × 150 in the second

layer because of the MaxPooling.

After the final convolutional layer, there is a Dense layer. It is also called a fully connected

layer because it is flat and densely connected to the previous and/or next layer. It converts

the final Conv2D into a 1D vector. Generally, the function of this layer is to decide on the next

final output using the important features reduced by the convolutional layers. We also use a

ReLU activation function in this layer. Right after this dense activation layer (ReLU), there

is a Dropout layer. Typically, Dropout layer is used to exclude less important information. In

this case, it is necessary to specify how much information will be reduced. We set it to 50%.

Thus, this layer reduces information from Dense layers by 50%. In this way, the Dropout

layer is used to forward the important information in making the final decision. Finally, there

are 12 nodes in the output layer that provide binary decisions for 12 heading directions (-300,

-250,, +250, +300) described in Figure 3.2 using the sigmoid activation function. Since

all the outputs are separate binary classes (0 or 1), we use an activation layer with sigmoid

activation function just after the output layer. All the outputs are either ’0’ or ’1’. Whenever

a new test conflict image is given after model training, the model gives the binary output of

12 headings. Training and testing are discussed in detail in the next section.

5.3 Evaluation framework

To evaluate the performance of the ACRnet model, we reused the performance measure-

ments discussed in Section 4.4: (Acc, auROC curve , auPR curve, F1 score, Sensitivity Sn ,

Specificity Sp , and MCC). We add two new measures: False positive rate (FPR2) and False

negative rate (FNR3).

Since all the heading decision individual class levels are binary classes, the performances

are evaluated from the confusion matrix.

False positive rate (FPR) =
FP

FP + TN
(5.1)

2False positive rate
3False negative rate

70
Chapter 5. Aircraft Conflict Resolution using Convolutional Neural Network

on Trajectory Images

taking data from block 3 . In this step, the training data is further divided into k parts.

Each time, the model in block 6 is trained on k-1 parts of data (indicated by “T" at 4)

and 1 part to validate it (indicated by “V" at 4). Based on the validation results at 7 , the

hyper-parameters are tuned in block 8 with new weights (modify the initial or the previous

weight values). It continues the steps 6 , 7 , and 8 , taking different training and validation

data from 4 until the k folds (k=10) are complete. Block 9 shows the final trained model

that is ready to be tested on unseen data and will provide the results, output heading in our

case, in block 10 .

Since a CNN model requires a lot of data to be trained and because our data is not so

much, we used the most common image data augmentation technique. We discussed it in

Section 3.4.2. We only applied the rotation feature of the image data augmentation. We

used Python Keras for data augmentation which works as follows: first the training data is

randomly augmented and the model is trained with that data; then the mode is validated

with validation data. In this case, the validation data is not augmented. Random data

augmentation is applied for each epoch. Thus, the model is trained with the flavor of new

data at each epoch. This augmentation process has the advantage of using a small number

of images to get a large number of image data performance as it gets a new set of augmented

image data in each epoch. This is very difficult to do when using trajectory data because we

have only done manual trajectory augmentation once while Keras automatically augment the

image in each epoch.

5.4 Results and Discussion

This section discusses the results we found for the ACRnet and compares our models with

other models. There are different types of programming languages and each language has

different libraries for machine learning algorithms. Since python is simple in coding compare

to other programming language, we use python to implement all the models in this thesis.

For instance, python Keras library was used to build our CNN model and python scikit-learn

library was used to find different results discussed in Section 5.3.

The performance of a neural network model depends on many things such as accurate

annotation of data, choosing the right model, selecting the hyper-parameters using model se-

lection procedure (Section 5.2.1), model training with the appropriate data sampling method,

and many more things. We have presented the choices we made in Section 5.2. We first com-

pare our ACRnet model and the CRMLnet model presented in Chapter 4 where we used

image data for ACRnet and trajectory data forCRMLnet model. Data annotation is the

same for both models. All the results generated for both models use 10-fold cross-validation

with 100 epochs: 15% of the data is allocated for testing the model. We applied the same

number of folds, same percentage of data for training, validation and test.

Since we have used Keras library to implement both ACRnet and CRMLnet models; it

offers many features including training accuracy and validation accuracy curve plot. Also, we

can use similar features to plot training and validation loss. This is a widely used plots for

5.4. Results and Discussion 75

compare to ACRnet. This may be because of their many layers. If there were more samples,

the performance of those two models may be better. The main purpose of this chapter was

not to find the best image processing model but to easily overcome the challenge of existing

sequence-based models through image processing with higher performance.

Table 5.1: ACRnet performs much better than CRMLnet, VGG16, and ResNet.
Here, the 1st column corresponds to the model name. The 22nd column is the accuracy on
test data of the models. The subsequent columns are: accuracy (Acc), area under receiver
operating characteristic curve (auROC), area under precision-recall (auPR), specificity(Sp),
sensitivity (Sn), positive predictive value (PPV), false negative rate (FNR), false positive rate
(FPR), Mathew’s correlation coefficient (MCC), and F1 score. Block 1 shows the ACRnet
model score for two aircraft (ACRnet2) and mixed (two and three) aircraft (ACRnet3). The
highlighted scores (Block 1) are the most significant where ACRnet is much better than
CRMLnet (Block 2), VGG16 (Block 3), ResNet(Block 3).

Block 1 Test Validation

Model Acc Acc auROC auPR Sp Sn PPV FNR FPR MCC F1

ACRnet2 98.97% 99.16% 0.999 0.999 99.41% 98.66% 98.82% 1.34% 0.59% 0.981 0.987
ACRnet3 98.96% 99.05% 1.000 0.999 99.20% 98.78% 98.63% 1.22% 0.80% 0.980 0.987

Block 2

CRMLnet 96.38% 98.76% 0.999 0.999 99.20% 97.87% 98.40% 2.13% 0.80% 0.972 0.981

Block 3

VGG16 79.97% 80.93% 0.771 0.607 88.93% 65.05% 74.78% 34.95% 11.07% 0.561 0.694
ResNet 92.79% 91.34% 0.973 0.951 92.30% 89.44% 85.42% 10.56% 7.70% 0.809 0.874

One of the most challenging issues in multi-label classification is to properly evaluate its

performance. In this chapter, in addition to the overall performance, we present the model

performance of each individual class label (Table 3.2) on the test data. Since the output

of both models is multiple binary classification, we produce separate test results for each

individual class label. In this case, we can make a comparison between the results of each

individual classification from CRMLnet and ACRnet. For example, both models classify the

aircraft’s heading directions (Table 3.2) for conflict resolution, and there are twelve heading

directions for each model. Table 5.2 presents the results on the test data for the CRMLnet

model for the individual twelve heading directions. Similarly, Table 5.3 presents the results

for the ACRnet model. The comparison of the two tables show that in almost all the cases,

ACRnet performs much better than CRMLnet. Although both models have an individual

heading’s accuracy above 90%, the overall individual heading prediction score of ACRnet

model is much better than the one of CRMLnet model. The performance of a model cannot be

completely determined by only measuring accuracy and/or ROC curve. We show some other

performance measures. For example, Table 5.2 reports 100% accuracy using the CRMLnet

model for the Right 50 direction and F1 score is 0.800. On the other hand, Table 5.3 reports

90.79% accuracy using the ACRnet model for the Left 200 direction when the F1 score is 1.

Since recently, F1 score measurements were used in many machine learning fields to evaluate

a model because of its harmonic mean property (see Section 4.4 Equation 4.9), we also report

76
Chapter 5. Aircraft Conflict Resolution using Convolutional Neural Network

on Trajectory Images

F1 scores to show the difference in performance between CRMLnet and ACRnet models.

Table 5.2: Individual class label (heading) prediction results of the CMRLnet
model on test data. Here, the 1st column is the individual heading direction. All subsequent
columns are: accuracy (Acc), area under receiver operating characteristic curve (auROC),
area under precision-recall (auPR), specificity(Sp), sensitivity (Sn), positive predictive value
(PPV), false negative rate (FNR), false positive rate (FPR), Mathew’s correlation coefficient
(MCC), and F1 score.

Heading Acc auROC auPR Sp Sn PPV FNR FPR MCC F1

Left 50 98.25% 1.000 1.000 99.54% 70.00% 87.50% 30.00% 0.46% 0.774 1.000
Left 100 95.18% 0.938 0.800 97.52% 89.55% 93.75% 10.45% 2.48% 0.883 0.889
Left 150 90.35% 0.833 0.750 86.21% 94.64% 86.89% 5.36% 13.79% 0.810 0.800
Left 200 87.72% 1.000 1.000 83.78% 89.61% 92.00% 10.39% 16.22% 0.724 1.000
Left 250 97.37% 1.000 1.000 86.49% 99.48% 97.44% 0.52% 13.51% 0.901 1.000
Left 300 97.37% 1.000 1.000 86.49% 99.48% 97.44% 0.52% 13.51% 0.901 1.000
Right 50 100.00% 0.833 0.750 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 0.800
Right 100 98.68% 0.417 0.472 99.48% 94.44% 97.14% 5.56% 0.52% 0.950 0.222
Right 150 98.25% 1.000 1.000 99.48% 91.89% 97.14% 8.11% 0.52% 0.935 1.000
Right 200 97.81% 1.000 1.000 99.48% 89.19% 97.06% 10.81% 0.52% 0.918 1.000
Right 250 97.37% 1.000 1.000 99.48% 86.49% 96.97% 13.51% 0.52% 0.901 1.000
Right 300 98.25% 0.950 0.667 99.48% 91.89% 97.14% 8.11% 0.52% 0.935 0.800

Table 5.3: Individual class label (heading) prediction results of the ACRnet model
on test data. The columns are the same as in Table 5.2

Heading Acc auROC auPR Sp Sn PPV FNR FPR MCC F1

Left 50 99.12% 1.000 1.000 100.00% 80.00% 100.00% 20.00% 0.00% 0.890 1.000
Left 100 99.56% 1.000 1.000 100.00% 98.55% 100.00% 1.45% 0.00% 0.990 1.000
Left 150 98.68% 1.000 1.000 98.31% 99.09% 98.20% 0.91% 1.69% 0.974 1.000
Left 200 90.79% 1.000 1.000 89.86% 91.19% 95.39% 8.81% 10.14% 0.790 1.000
Left 250 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000
Left 300 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000
Right 50 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000
Right 100 99.56% 1.000 1.000 100.00% 97.14% 100.00% 2.86% 0.00% 0.983 1.000
Right 150 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000
Right 200 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000
Right 250 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000
Right 300 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000

We further tested ACRnet and CRMLnet to see the probability score of each heading

decision and to understand how image data helps in increasing performance. Figure 5.9

(a) and (b) plot the predicted probability scores of all the individual heading resolutions

for ACRnet and CRMLnet. Here, it is an excellent comparison between the ACRnet and

CRMLnet models because Figure 5.9 (a) and (b) show the predicted probability scores of all

the class labels separately for all the conflict scenarios. For example, each conflict sample is

annotated with multiple heading directions, and therefore all individual heading degrees are

classified by both ACRnet and CRMLnet models based on their probability scores. In this

case, both ACRnet and CRMLnet models have followed the same strategy to classify each

78
Chapter 5. Aircraft Conflict Resolution using Convolutional Neural Network

on Trajectory Images

indicates 50% of probability score line exactly. All positive classes (‘1’) are above the green

horizontal line and all negative classes (‘0’) are below that line. The green dots represent

the samples that are correctly classified while the red is for misclassified. All misclassified

samples are fallen inside the blue line boundaries. For both (a) and (b) in Figure 5.9, x-axis

presents the total number of heading degrees (288 (test conflict sample) × 12 (heading degree)

= 2736) and the y-axis presents the probability score of each heading resolution between 0%

and 100%. The blue boundary (misclassified) for CRMLnet is overlapped on the 0% scoreline

line and 100% scoreline, so, it is invisible in Figure 5.9 (b) while it is clearly visible for ACRnet

in Figure 5.9 (a). This means that CRMLnet classifies many samples incorrectly but with

a high confidence. Thus, ACRnet is more confident than CRMLnet because the shorter the

distance between the blue lines, the more confident the model is.

5.5 Conclusion

This research aims to provide a generalized model to resolve a conflict where a variable

number of aircraft are involved. Different aspects were considered: (a) create image data from

trajectory sequences; (b) apply augmentation technique to increase the number of training

image data ; and (c) find a CNN-based model to classify these images. We defined a relatively

small CNN-based model, ACRnet, and found an accuracy of 98.97% and 98.96% for the

conflict resolution classification of two and mixed (both two and three) aircraft. The work in

this chapter has been published in [Rahman 2021].

We compared our ACRnet model with the CRMLnet model (Chapter 4) using 10-fold

cross-validation where the input data of ACRnet are images and of CRMLnet are trajectory

sequences. We also compared ACRnet with two other widely used CNN-base models: VGG16

[Simonyan 2014] and ResNet [He 2016]. Overall, ACRnet performs much better than the other

models.

The main purpose of this research was not to find the best image processing model, but

rather to show that the use of image data not only overcomes the input dimension problem

but also increases the performance of the model. An interesting aspect of using image data is

that it can be used not only for conflict between planes but can also with other information

without changing the image size such as weather, thunderstorms, military zones, etc. Our

future research will include that information for better resolution of aircraft conflicts as well

as more than 3 aircraft.

Chapter 6

Conclusion and future work

Aircraft conflict resolution is a routine task of the air traffic management system and is

going to be a challenge in the future as the number of aircraft is increasing. The goal of

our research is to propose a model that would incorporate machine learning techniques to

develop an intelligence system for helping humans resolving aircraft conflicts. In this thesis,

we considered two widely used and popular methods of machine learning, especially deep

learning. Our main challenge was to adapt the conflict environment to the machine learning

approach so that our model can make appropriate output decisions.

In the models we proposed and in related work, there are many important factors that

need to be considered such as multiple alternative solutions to the same conflict, model input

dimensionality problem, easier way to include weather information, etc. The application of

machine learning in conflict resolution is at an early stage. Almost all sectors however are

more likely to be assisted by machine learning in the future because its performance is close

to humans’ but also faster than humans.

In this thesis, our main contributions are:

(a) Our first contribution in Chapter 3 was to create a dataset. Indeed, data on aircraft

conflicts is not publicly available and difficult to collect from the ATC centers. Simulated

data are not available either. We created a total of 1,516 trajectory sequence data and a

total of 1,656 image samples, of which 1,516 contain two aircraft and 140 contain three

aircraft. The data sets are freely accessible online at https://independent.academia.

edu/MDSIDDIQURRAHMAN9.

(b) We designed, trained and tested our first CRMLnet model in Chapter 4 using 5 minutes

of trajectory sequence of each aircraft involved in the conflict and provided multiple

heading resolutions.

(c) Since the input dimension of the machine learning model cannot be changed in real-time,

we have converted every conflict scenario into an image to overcome this dimensionality

problem. We then applied our second model in Chapter 5 based on a convolutional

neural network, ACRnet, to classify these image data. The model could be applied to

conflicts implying a variable number of aircraft without changing its architecture.

With regard to (b), the purpose is to classify the heading resolutions following a multi-

label classification principle. Here, multi-label means multiple solutions for a single conflict.

79

80 Chapter 6. Conclusion and future work

Most of the models that have been proposed so far for aircraft conflict resolution are based on

the current position of the aircraft involved in the conflict. As opposed to this, we designed

the model using the last 5 minutes of trajectory data, which provides more context for the

decision. For evaluation purpose, we also designed three models where a single-label classifier

was used for each heading decision. These models are based on SVM, KNC, and LR. We

found that our CRMLnet model performs better than these models based on single-label

classifier. After training and testing, CRMLnet obtained 98.72% of accuracy using 10-fold

cross-validation and 97.79% with independent test set. Although this model performed very

well, the limitation is that it resolves conflicts following a pairwise approach. This model

could be used to resolve conflicts for more than two aircraft, but it would be necessary to

change the input dimensions of the model. This is not possible at run time.

There is a limitation to using trajectory-based models to manage input dimensionality.

There are models such as recurrent neural network (RNN), long short term memory (LSTM),

etc. to handle a variable number of input. In that case, the computation of these models

depend on the number of inputs. In our case, it is also difficult to develop such a model

because we are using 5 minutes of the trajectory of each aircraft instead of using a single

point.

Thus, we proposed another model based on a convolutional neural network, ACRnet

(contribution (c)), where we converted the whole conflict scene into an image, so that the

model can take an image as its input. As a result, if we plot an arbitrary number of planes

in the image, there will be no change in the model architecture. Therefore, the model can

resolve conflicts with a variable number of aircraft without any change in input dimension.

We compared our ACRnet model with two widely used image processing models: VGG16 and

ResNet. We also compared ACRnet and CRMLnet using the same data. ACRnet performs

better than the other models on the various measures we used. ACRnet model achieves an

accuracy of 99.16% on the training data and of 98.97% on the test data set for two aircraft.

For both two and three aircraft, the accuracy is 99.05% (resp. 98.96%) on the training (resp.

test) data set. It is worth mentioning that the purpose of our research was not to find the best

image processing model but to show that the input dimensionality problem can be resolved

with the image-based model. We found that using images not only perform better but also

more robustly than using a trajectory sequence.

The further advantage of using image-based models is that we can incorporate uncertain-

ties such as bad weather or restricted military zones into the picture. The same model could

then be applied without changing the model architecture.

For other future work, there are many strategies to improve image-based models by im-

proving image quality. Also, we could include speed and heading information within the

image using different transformation techniques. Finally, we could try to improve the image

processing model by changing the NN architecture.

Appendix A

CRMLnet model implementation

Step by step implementation of CRMLnet full code using python programming.

Show the TensorFlow and Python version

import t en so r f l ow as t f

print (" TensorFlow␣ ve r s i on : ␣ " , t f . __version__)

from plat form import python_version

print (" Python␣ ve r s i on : ␣ " , python_version ())

Select the specific GPU. We select GPU No: 0

import os

os . env i ron ["CUDA_DEVICE_ORDER"]= "PCI_BUS_ID"

os . env i ron ["CUDA_VISIBLE_DEVICES"]= " 0 "

Import necessary libraries

import keras

import pandas as pd

import numpy as np

import seaborn as sns

import matp lo t l i b . pyplot as p l t

from t en so r f l ow . keras . models import Sequent ia l , Model

from t en so r f l ow . keras . l a y e r s import Input , Dense , Dropout , \

Act ivat ion

from t en so r f l ow . keras . op t im i z e r s import SGD, Adamax , RMSprop

from s k l e a rn . p r ep ro c e s s i ng import StandardScaler , MinMaxScaler

from s k l e a rn . mode l_se lect ion import St ra t i f i edKFo ld

from s k l e a rn . met r i c s import confus ion_matrix

from s k l e a rn . met r i c s import mult i labe l_confus ion_matr ix

from s k l e a rn . mode l_se lect ion import t r a i n_t e s t_sp l i t

from s k l e a rn . met r i c s import accuracy_score , log_loss , \

c l a s s i f i c a t i o n_ r e p o r t , confusion_matrix , roc_auc_score , \

roc_curve , auc , average_prec i s ion_score , f1_score

No random state, always start from 1

81

82 Appendix A. CRMLnet model implementation

np . random . seed (seed=1)

Load dataset CSV file from the local hard-disk

Dataset = ' / l o c a l −d i r e c t o r y /Dataset . csv '

plot_path = " / l o c a l−d i r e c t o r y /output/ "

D = pd . read_csv (Dataset)

print ("Number␣ o f ␣ t o t a l ␣ e n t r i e s : ␣ " , len (D))

n_columns = len (D. columns)

print ("Number␣ o f ␣ t o t a l ␣ f e a t u r e s : ␣ " , n_columns−12)

print ("Number␣ o f ␣ t o t a l ␣ c l a s s ␣ l a b e l s : ␣ " , n_columns−271)

D. head ()

Standard scaling

s c a l e = StandardSca ler ()

For splitting data into 10-Fold and shuffling them where the random state is 100

cv = St ra t i f i edKFo ld (n_sp l i t s =10, s h u f f l e=True , random_state=100)

Batch size

batch_size = 28

Number of epoch

e = 100

Neural network model building function

def build_model (X, y) :

inputs = Input (shape=(X. shape [1] ,))

outputs = Dense (271 , a c t i v a t i o n= ' r e l u ') (inputs)

p r e d i c t i o n s = Dense (y . shape [1] , a c t i v a t i o n= ' s igmoid ') (outputs)

model = Model (inputs=inputs , outputs=p r ed i c t i o n s)

return model

Adaptive Moment Estimation (Adam) optimizer

from t en so r f l ow . keras . op t im i z e r s import Adam

opt imize r = Adam(l r =0.001 , beta_1=0.9 , beta_2=0.999)

Split the dataset into feature X and class label y

83

X = D. i l o c [: , : − 1 2] . va lue s

y = D. i l o c [: , − 1 2 :] . va lue s

Shuffling X and y together

from s k l e a rn . u t i l s import s h u f f l e

X, y = s h u f f l e (X, y , random_state=200)

Split X and y into train and test dataset where the amount of test data is 15%

XX, x_test , yy , y_test = t r a i n_t e s t_sp l i t (X, y , random_state = 1 , \

t e s t_ s i z e =0.15 , s h u f f l e=True)

XX = s c a l e . f i t_t rans fo rm (XX)

Libraries and variables for output results

from s k l e a rn . met r i c s import confusion_matrix , \

roc_auc_score , average_prec i s ion_score

from s k l e a rn . met r i c s import roc_curve

from s k l e a rn . met r i c s import auc

from s c ipy import i n t e rp

CM = np . z e r o s ((2 , 2) , dtype=int)

accuracy = []

auroc = []

aupr = []

F1 = []

tp r s = []

aucs = []

acc = 0 .0

f o l d = 1

mean_fpr = np . l i n s p a c e (0 , 1 , 100)

h i s t o ry_d i c t = []

10-fold cross-validation training and validation

count = 1

p l t . f i g u r e (f i g s i z e =(8 ,6))

for train_index , val_index in cv . s p l i t (XX, yy [: , 0]) :

print (" ∗∗∗∗∗∗∗∗∗␣Fold␣{}␣∗∗∗∗∗∗∗∗∗∗ " . format (count))

count += 1

x_train = XX[tra in_index]

x_val = XX[val_index]

y_train = yy [tra in_index]

y_val = yy [val_index]

84 Appendix A. CRMLnet model implementation

Model b u i l d

model = build_model (XX, yy)

model . compile (l o s s= ' binary_crossentropy ' , \

opt imize r=opt imizer , met r i c s=[' acc '])

h i s t o r y = model . f i t (x_train , y_train , epochs=e , \

batch_size=batch_size , va l idat ion_data=(x_val , y_val))

h i s t o ry_d i c t . append (h i s t o r y . h i s t o r y)

For pred i c t i on ,

y_proba = model . p r ed i c t (x_val) . r av e l ()

y_pred = np . where (y_proba >= 0 .5 , 1 , 0)

t e s t = y_val . f l a t t e n ()

fpr_keras , tpr_keras , thre sho lds_keras = \

roc_curve (t e s t , y_proba)

auc_keras = auc (fpr_keras , tpr_keras)

#p l t . p l o t (fpr_keras , tpr_keras , \

l a b e l= 'Keras␣ (area ␣=␣ { : . 3 f }) ' . format (auc_keras))

fpr , tpr , t h r e sho ld s = roc_curve (t e s t , y_proba)

tp r s . append (i n t e rp (mean_fpr , fpr , tpr))

tp r s [−1] [0] = 0 .0

roc_auc = auc (fpr , tpr)

aucs . append (roc_auc)

auroc . append (roc_auc_score (y_true=tes t , y_score=y_proba))

aupr . append (average_prec i s ion_score (y_true=tes t , \

y_score=y_proba))

accuracy . append (accuracy_score (y_pred=y_pred , y_true=t e s t))

F1 . append (f1_score (y_pred=y_pred , y_true=t e s t))

CM += confusion_matrix (y_pred=y_pred , y_true=t e s t)

f o l d += 1

To display different result obtained from the confusion matrix

TN, FP, FN, TP = CM. rav e l ()

print (' | ␣Acc␣ |auROC|auPR␣ | ␣Sp␣␣ | ␣Sn␣␣ | ␣PPV␣ | ␣FNR␣ | ␣\

FPR␣ | ␣MCC␣ | ␣F1␣␣ | ')

85

print (' |%.2 f ' % (np .mean(accuracy)∗100)\

+ ' |%.3 f ' % (np .mean(auroc))\

+ ' |%.3 f ' % (np .mean(aupr)) \

+ ' |%.2 f '% ((TN / (TN + FP))∗100)\

+ ' |%.2 f ' % ((TP / (TP + FN))∗100) \

+ ' |%.2 f ' % ((TP / (TP + FP))∗100) \

+ ' |%.2 f ' % ((FN / (FN + TP))∗100) \

+ ' |%.2 f ' % ((FP / (FP + TN))∗100) \

+ ' |%.3 f ' % ((TP∗TN−FP∗FN)/(np . sq r t ((TP+FP)∗ (TP+FN)∗ (TN+FP)∗ \

(TN+FN)))) + ' |%.3 f | ' % (np .mean(F1)))

Bibliography

[Agarap 2018] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv

preprint arXiv:1803.08375, 2018.

[Alam 2007] Sameer Alam, Kamran Shafi, Hussein A Abbass et Michael Barlow. Evolving

air traffic scenarios for the evaluation of conflict detection models. In Proc. 6th Eu-

rocontrol Innovative Research Workshop, Eurocontrol Experiment Research Center,

2007.

[Alam 2009] Sameer Alam, Kamran Shafi, Hussein A Abbass et Michael Barlow. An ensemble

approach for conflict detection in free flight by data mining. Transportation research

part C: emerging technologies, vol. 17, no. 3, pages 298–317, 2009.

[Alonso-Ayuso 2010] Antonio Alonso-Ayuso, Laureano F Escudero et F Javier Martín-

Campo. Collision avoidance in air traffic management: A mixed-integer linear opti-

mization approach. IEEE Transactions on Intelligent Transportation Systems, vol. 12,

no. 1, pages 47–57, 2010.

[Alonso-Ayuso 2012] Antonio Alonso-Ayuso, Laureano F Escudero et F Javier Martín-

Campo. A mixed 0–1 nonlinear optimization model and algorithmic approach for

the collision avoidance in ATM: Velocity changes through a time horizon. Computers

& Operations Research, vol. 39, no. 12, pages 3136–3146, 2012.

[Alonso-Ayuso 2013] Antonio Alonso-Ayuso, Laureano F Escudero, Pablo Olaso et Celeste

Pizarro. Conflict avoidance: 0-1 linear models for conflict detection & resolution.

Top, vol. 21, no. 3, pages 485–504, 2013.

[Alonso-Ayuso 2016a] Antonio Alonso-Ayuso, Laureano F Escudero et F Javier Martín-

Campo. An exact multi-objective mixed integer nonlinear optimization approach for

aircraft conflict resolution. Top, vol. 24, no. 2, pages 381–408, 2016.

[Alonso-Ayuso 2016b] Antonio Alonso-Ayuso, Laureano F Escudero et F Javier Martín-

Campo. Multiobjective optimization for aircraft conflict resolution. A metaheuristic

approach. European Journal of Operational Research, vol. 248, no. 2, pages 691–702,

2016.

[Archibald 2008] James K Archibald, Jared C Hill, Nicholas A Jepsen, Wynn C Stirling et

Richard L Frost. A satisficing approach to aircraft conflict resolution. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 38,

no. 4, pages 510–521, 2008.

[Ari 2014] Niyazi Ari et Makhamadsulton Ustazhanov. Matplotlib in python. In 2014 11th In-

ternational Conference on Electronics, Computer and Computation (ICECCO), pages

1–6. IEEE, 2014.

87

88 Bibliography

[Baker 2017] Simon Baker et Anna-Leena Korhonen. Initializing neural networks for hierar-

chical multi-label text classification. Association for Computational Linguistics, 2017.

[Banks 2005] Jerry Banks. Discrete event system simulation. Pearson Education India, 2005.

[Bergstra 2012] James Bergstra et Yoshua Bengio. Random search for hyper-parameter opti-

mization. The Journal of Machine Learning Research, vol. 13, no. 1, pages 281–305,

2012.

[Bilimoria 2000] Karl Bilimoria. A geometric optimization approach to aircraft conflict reso-

lution. In 18th Applied aerodynamics conference, page 4265, 2000.

[Bottou 2012] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of

the trade, pages 421–436. Springer, 2012.

[Brittain 2018] Marc Brittain et Peng Wei. Autonomous aircraft sequencing and separation

with hierarchical deep reinforcement learning. In Proceedings of the International

Conference for Research in Air Transportation, 2018.

[Brittain 2021] Marc W Brittain et Peng Wei. One to any: Distributed conflict resolution

with deep multi-agent reinforcement learning and long short-term memory. In AIAA

Scitech 2021 Forum, page 1952, 2021.

[Brudnicki 1997] DJ Brudnicki et AL McFarland. User Request Evaluation Tool (URET) con-

flict probe performance and benefits assessment. In Proc. USA/Europe ATM Seminar.

Eurocontrol, 1997.

[Carbone 2006] Ciro Carbone, Umberto Ciniglio, Federico Corraro et Salvatore Luongo. A

novel 3D geometric algorithm for aircraft autonomous collision avoidance. In Proceed-

ings of the 45th IEEE Conference on Decision and Control, pages 1580–1585. IEEE,

2006.

[Cortes 1995] Corinna Cortes et Vladimir Vapnik. Support-vector networks. Machine learning,

vol. 20, no. 3, pages 273–297, 1995.

[Das 2010] Santanu Das, Bryan L Matthews, Ashok N Srivastava et Nikunj C Oza. Multiple

kernel learning for heterogeneous anomaly detection: algorithm and aviation safety

case study. In Proceedings of the 16th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 47–56. ACM, 2010.

[Das 2011] Santanu Das, Bryan L Matthews et Robert Lawrence. Fleet level anomaly de-

tection of aviation safety data. In 2011 IEEE Conference on Prognostics and Health

Management, pages 1–10. IEEE, 2011.

[Durand 1996] Nicolas Durand, Jean-Marc Alliot, Joseph Noailles et CENA ENACy EN-

SEEIHT. Collision Avoidance Using Neural Networks Learned by Genetic Algorithms.

In IEA/AIE, pages 585–592. Citeseer, 1996.

Bibliography 89

[Durand 2020] Nicolas Durand, Jean-Baptiste Gotteland, Nadine Matton, Léa Bortolotti et

Margot Sandt. Understanding and overcoming horizontal separation complexity in air

traffic control: an expert/novice comparison. Cognition, Technology & Work, pages

1–16, 2020.

[Eby 1999] Martin S Eby et Wallace E Kelly. Free flight separation assurance using distributed

algorithms. In 1999 IEEE Aerospace Conference. Proceedings (Cat. No. 99TH8403),

volume 2, pages 429–441. IEEE, 1999.

[Farley 2007] Todd Farley et Heinz Erzberger. Fast-time simulation evaluation of a conflict

resolution algorithm under high air traffic demand. In 7th USA/Europe ATM 2007

R&D Seminar, 2007.

[Feron 2013] Eric Feron, Antonio Bicchi et Lucia Pallottino. Mixed integer programming for

aircraft conflict resolution. In AIAA guidance, navigation, and control conference and

exhibit, page 4295, 2013.

[Frazier 2018] Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint

arXiv:1807.02811, 2018.

[Harris 2010] David Harris et Sarah Harris. Digital design and computer architecture. Morgan

Kaufmann, 2010.

[Havel 1989] Karel Havel et Jaroslav Husarčík. A theory of the tactical conflict prediction of

a pair of aircraft. The Journal of Navigation, vol. 42, no. 3, pages 417–429, 1989.

[He 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren et Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[He 2018] Huihui He et Rui Xia. Joint binary neural network for multi-label learning with

applications to emotion classification. In CCF International Conference on Natural

Language Processing and Chinese Computing, pages 250–259. Springer, 2018.

[Hoekstra 2016] Jacco M Hoekstra et Joost Ellerbroek. Bluesky atc simulator project: an open

data and open source approach. In Proceedings of the 7th International Conference on

Research in Air Transportation, pages 1–8. FAA/Eurocontrol USA/Europe, 2016.

[Hu 1999] Jianghai Hu, John Lygeros, Maria Prandini et Shankar Sastry. Aircraft conflict

prediction and resolution using Brownian Motion. In Proceedings of the 38th IEEE

Conference on Decision and Control (Cat. No. 99CH36304), volume 3, pages 2438–

2443. IEEE, 1999.

[Hurter 2013] C. Hurter, G. Andrienko, N. Andrienko, R.H. Güting et M. Sakr. Air traffic

analysis, pages 240–258. Cambridge University Press, 2013.

[Jiang 2018] Xu-rui Jiang, Xiang-xi Wen, Ming-gong Wu, Ze-kun Wang et Xi Qiu. A SVM

approach of aircraft conflict detection in free flight. Journal of Advanced Transporta-

tion, vol. 2018, 2018.

90 Bibliography

[Kim 2016] Kwangyeon Kim, Inseok Hwang et Bong-Jun Yang. Classification of Conflict

Resolution Methods using Data-Mining Techniques. In AIAA, page 4075, 2016.

[Kohavi 1995] Ron Kohaviet al. A study of cross-validation and bootstrap for accuracy esti-

mation and model selection. In Ijcai, volume 14, pages 1137–1145. Montreal, Canada,

1995.

[Kuchar 2000] James K Kuchar et Lee C Yang. A review of conflict detection and resolution

modeling methods. IEEE Trans. on intelligent transportation syst., vol. 1, no. 4, pages

179–189, 2000.

[LaValle 2004] Steven M LaValle, Michael S Branicky et Stephen R Lindemann. On the

relationship between classical grid search and probabilistic roadmaps. The International

Journal of Robotics Research, vol. 23, no. 7-8, pages 673–692, 2004.

[Mao 2001] Zhi-Hong Mao, Eric Feron et Karl Bilimoria. Stability and performance of in-

tersecting aircraft flows under decentralized conflict avoidance rules. IEEE Trans. on

Intelligent Transportation Syst., vol. 2, no. 2, pages 101–109, 2001.

[Matthews 2013] Bryan Matthews, Santanu Das, Kanishka Bhaduri, Kamalika Das, Rodney

Martin et Nikunj Oza. Discovering anomalous aviation safety events using scalable

data mining algorithms. Journal of Aerospace Information Systems, vol. 10, no. 10,

pages 467–475, 2013.

[Mörters 2010] Peter Mörters et Yuval Peres. Brownian motion, volume 30. Cambridge

University Press, 2010.

[Nanduri 2016] Anvardh Nanduri et Lance Sherry. Anomaly detection in aircraft data using

Recurrent Neural Networks (RNN). In 2016 Integrated Communications Navigation

and Surveillance (ICNS), pages 5C2–1. IEEE, 2016.

[Olive 2018] Xavier Olive, Jeremy Grignard, Thomas Dubot et Julie Saint-Lot. Detecting

Controllers’ Actions in Past Mode S Data by Autoencoder-Based Anomaly Detection.

In SID 2018, 8th SESAR Innovation Days, 2018.

[O’Malley 2019] Tom O’Malley, Elie Bursztein, James Long, François Chollet, Haifeng Jin,

Luca Invernizziet al. KerasTuner. https://github.com/keras-team/keras-tuner,

2019.

[Ota 1998] Tomoki Ota, M Nagati et Dong-Chan Lee. Aircraft collision avoidance trajectory

generation. In Guidance, Navigation, and Control Conference and Exhibit, page 4241,

1998.

[Panchal 2011] Gaurang Panchal, Amit Ganatra, YP Kosta et Devyani Panchal. Behaviour

analysis of multilayer perceptrons with multiple hidden neurons and hidden layers.

International Journal of Computer Theory and Engineering, vol. 3, no. 2, pages 332–

337, 2011.

Bibliography 91

[Pavlinović 2013] Mira Pavlinović, Damir Boras et Ivana Francetić. First Steps in Designing

Air Traffic Control Communication Language Technology System-Compiling Spoken

Corpus of Radiotelephony Communication. International Journal of Computers and

Communications, vol. 7, no. 3, page 73, 2013.

[Peyronne 2012] Clément Peyronne. Modélisation mathématique et résolution automatique

de conflits par algorithmes génétiques et par optimisation locale continue. PhD thesis,

Université Paul Sabatier-Toulouse III, 2012.

[Pham 2019a] Duc-Thinh Pham, Ngoc Phu Tran, Sameer Alam, Vu Duong et Daniel Dela-

haye. A Machine Learning Approach for Conflict Resolution in Dense Traffic Scenarios

with Uncertainties. 2019.

[Pham 2019b] Duc-Thinh Pham, Ngoc Phu Trant, Sim Kuan Goh, Sameer Alam et

Vu Duong. Reinforcement Learning for Two-Aircraft Conflict Resolution in the Pres-

ence of Uncertainty. In 2019 IEEE-RIVF International Conference on Computing and

Communication Technologies (RIVF), pages 1–6. IEEE, 2019.

[Prandini 1999] Maria Prandini, John Lygeros, Arnab Nilim et Shankar Sastry. A probabilis-

tic framework for aircraft conflict detection. In Guidance, Navigation, and Control

Conference and Exhibit, page 4144, 1999.

[Prandini 2000] Maria Prandini, Jianghai Hu, John Lygeros et Shankar Sastry. A probabilistic

approach to aircraft conflict detection. IEEE Transactions on intelligent transportation

systems, vol. 1, no. 4, pages 199–220, 2000.

[Prats Menéndez 2018] Xavier Prats Menéndez, Ignacio Agüi, Fedja Netjasov, Goran

Pavlovic et Andrija Vidosavljevic. APACHE-Final project results report. 2018.

[Pritchett 2017] Amy R Pritchett et Antoine Genton. Negotiated decentralized aircraft conflict

resolution. IEEE transactions on intelligent transportation systems, vol. 19, no. 1,

pages 81–91, 2017.

[Rahman 2020] Md Siddiqur Rahman. Supervised machine learning model to help controllers

solving aircraft conflicts. In ADBIS, TPDL and EDA 2020 Common Workshops and

Doctoral Consortium, pages 355–361. Springer, 2020.

[Rahman 2021] Md Siddiqur Rahman, Laurent Lapasset et Josiane Mothe. Aircraft Con-

flict Resolution using Convolutional Neural Network on Trajectory Image. In 21st

international conference intelligent systems design and applications. Springer, 2021.

[Rahman 2022] Md Siddiqur Rahman, Laurent Lapasset et Josiane Mothe. Multi-label Classi-

fication of Aircraft Heading Changes Using Neural Network to Resolve Conflicts. arXiv

preprint arXiv:2109.04767, 2022.

[Richards 2002] Arthur Richards et Jonathan P How. Aircraft trajectory planning with col-

lision avoidance using mixed integer linear programming. In Proceedings of the 2002

American Control Conference (IEEE Cat. No. CH37301), volume 3, pages 1936–1941.

IEEE, 2002.

92 Bibliography

[Ruder 2016] Sebastian Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.

[Schäfer 2014] Matthias Schäfer, Martin Strohmeier, Vincent Lenders, Ivan Martinovic et

Matthias Wilhelm. Bringing up OpenSky: A large-scale ADS-B sensor network for re-

search. In Proceedings of the 13th international symposium on Information processing

in sensor networks, pages 83–94. IEEE Press, 2014.

[Simonyan 2014] Karen Simonyan et Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[Siqi 2018] HAO Siqi, Shaowu Cheng et Yaping Zhang. A multi-aircraft conflict detection

and resolution method for 4-dimensional trajectory-based operation. Chinese Journal

of Aeronautics, vol. 31, no. 7, pages 1579–1593, 2018.

[Sridhar 1997] B Sridhar et GB Chatterji. Computationally efficient conflict detection meth-

ods for air traffic management. In Proceedings of the 1997 American Control Confer-

ence (Cat. No. 97CH36041), volume 2, pages 1126–1130. IEEE, 1997.

[Srinivasamurthy 2018] Ajay Srinivasamurthy, Petr Motlicek, Mittul Singh, Youssef Oualil,

Matthias Kleinert, Heiko Ehr et Hartmut Helmke. Iterative Learning of Speech Recog-

nition Models for Air Traffic Control. In Interspeech, pages 3519–3523, 2018.

[Tsoumakas 2007] Grigorios Tsoumakas et Ioannis Katakis. Multi-label classification: An

overview. International Journal of Data Warehousing and Mining (IJDWM), vol. 3,

no. 3, pages 1–13, 2007.

[Vela 2010] Adan E Vela, Senay Solak, John-Paul B Clarke, William E Singhose, Earl R

Barnes et Ellis L Johnson. Near real-time fuel-optimal en route conflict resolution.

IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 4, pages 826–

837, 2010.

[Wandelt 2014] Sebastian Wandelt et Xiaoqian Sun. Efficient compression of 4D-trajectory

data in air traffic management. IEEE Transactions on Intelligent Transportation

Systems, vol. 16, no. 2, pages 844–853, 2014.

[Wang 2019] Zhuang Wang, Hui Li, Junfeng Wang et Feng Shen. Deep reinforcement learning

based conflict detection and resolution in air traffic control. IET Intelligent Transport

Systems, vol. 13, no. 6, pages 1041–1047, 2019.

[Warren 1997] Anthony Warren. Medium term conflict detection for free routing: Operational

concepts and requirements analysis. In 16th DASC. AIAA/IEEE Digital Avionics

Systems Conference. Reflections to the Future. Proceedings, volume 2, pages 9–3.

IEEE, 1997.

[Yanling 2002] Zhao Yanling, Deng Bimin et Wang Zhanrong. Analysis and study of per-

ceptron to solve XOR problem. In The 2nd International Workshop on Autonomous

Decentralized System, 2002., pages 168–173. IEEE, 2002.

Bibliography 93

[Zeghal 1998] Karim Zeghal. A review of different approaches based on force fields for airborne

conflict resolution. In Guidance, Navigation, and Control Conference and Exhibit,

page 4240, 1998.

[Zhao 2020] Peng Zhao et Yongming Liu. Efficient Multiple Aircraft Conflict Resolution Using

A* Algorithm and Indexing Method. In AIAA AVIATION 2020 FORUM, page 2918,

2020.

[Zhao 2021] Peng Zhao et Yongming Liu. Physics Informed Deep Reinforcement Learning

for Aircraft Conflict Resolution. IEEE Transactions on Intelligent Transportation

Systems, 2021.

	Warning
	Mention_University
	107703_RAHMAN_2022_archivage
	Table of abbreviations and acronyms
	Introduction
	Types of controller
	Types of conflict
	Conflict resolution
	Machine learning models to solve conflicts

	Literature review
	Introduction
	Models before machine learning applications
	Machine learning models
	Conclusion

	Data related to aircraft conflicts
	Introduction
	Types of data
	Flight plan
	Trajectory data
	Air traffic controller's immediate action order
	Weather

	Data sources
	Open source data
	Radar data from ATC station
	Simulated data

	Simulated data sets
	Dataset-STIO: simulated trajectory and ATCOs immediate orders
	Dataset-CTI: convert sequence data into images

	Supervised machine learning and multi-label classification of aircraft heading changes
	Introduction
	From traditional machine learning to neural network for conflict resolution
	Single-label or binary classification
	Multi-class classification
	Multi-label classification
	Classification algorithm
	Problem formulation
	Preliminary Neural Network Model

	CRMLnet: Conflict resolution multi-label neural network model
	Evaluation
	Result and discussion
	Hyper-parameters search algorithm
	Results

	Conclusion

	Aircraft Conflict Resolution using Convolutional Neural Network on Trajectory Images
	Introduction
	ACRnet: Aircraft conflict resolution CNN model
	Model selection
	ACRnet model based on images

	Evaluation framework
	Results and Discussion
	Conclusion

	Conclusion and future work
	CRMLnet model implementation
	Bibliography

