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Résumé

Cette thèse s’inscrit dans un programme de recherche qui étudie la concep-
tion de mécanismes optimaux dans des environnements où le processus de
production, et donc l’intensité des asymétries d’information, est endogène. Il
se compose de trois articles, chacun étudiant l’effet des choix de mécanismes
ex-ante sur l’intensité des asymétries d’information ex-post ainsi que ses
effets en terme d’optimalité du mécanisme choisi.

Le premier article se consacre à l’étude de l’approvisionnement opti-
mal dans un environnement dans lequel les agents prennent des décisions
d’investissement qui leur permettent de produire uniquement dans un état
du monde inconnu ex-ante et a des applications dans l’approvisionnement en
présence d’incertitude technologique telles que l’approvisionnement (ex-ante)
en vaccins. Le deuxième article étudie les politiques de contrôle optimales
dans un environnement dans lequel la capacité du moniteur à détecter la
fraud/crime dépend à la fois de ses investissements passés et de ceux de
l’agent et a des applications dans la cybersécurité, le trafic de drogue, le
blanchiment d’argent, l’évasion fiscale et le dopage. Enfin, le troisième article
étudie un problème de production dans lequel la productivité de l’agent
dépend d’une allocation de ressources (ou de temps) non observable et trouve
des applications en économie du travail.



Abstract

This dissertation is part of a research agenda which studies optimal mechanism
design in environments in which the production process, an thus the intensity
of the asymmetries of information, is endogenous. It consists of three papers,
each which studies the effect of ex-ante mechanism choices on the ex-post
intensity of the asymmetries of information and its implication in terms of
optimal mechanisms.

The first paper studies the optimal procurement in an environment in
which agents make investment decisions that allow them to produce only
in ex-ante unknown state of the world and has applications in procurement
under technology uncertainty such as the procurement of vaccines. The
second paper studies the optimal monitoring policies in an environment in
which the monitor’s ability to detect misbehavior depends on both her and
the agent’s past investments and has applications in cyber security, drug
smuggling, money laundering tax evasion and doping. Finally, the third paper
studies a production problem in which the agent’s productivity depends on
an unobservable resource (or time) allocation and has applications in labor
economics.



Chapter 1

Designing Contracts For
Technology Procurement
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Abstract

This paper studies the problem of optimal procurement under uncertainty
about relevant production technology. A buyer chooses a symmetric procure-
ment mechanism that depends on this technology and the relevant sellers.
Sellers observe this mechanism and choose production technologies. In this
setting, the choice of mechanisms shapes both the agent’s rents and their
technology adoption profiles. I show that the optimal mechanism induces
mixing in the technology adoption by the least efficient agents’ types whereas
the most efficient ones adopt only the technology that is most likely to
succeed. This mechanism can be implemented through first-price auctions in
which case mixing allows the principal to benefit from both more efficient
trade and a more aggressive bidding behavior.



1.1. Introduction:

In environments involving technology procurement, sellers often undertake
specialization decisions to acquire the capacity to produce a good or fulfill a
contract. This specialization can, for instance, take the form of technology
choice, the design of product characteristics, the development of project-
specific human capital, etc. A key challenge, inherent to these choices, is
that the relevant specialization is often unknown at the moment of decision
making due for instance to uncertainty about the future needs of the buyer,
about the development of complementary products/technologies, or about
the research path which might lead to a breakthrough.

From the buyer’s perspective, endogenous specialization by the sellers
adds another dimension to the mechanism design choice: Trade mechanisms
shape not only the rent of the relevant sellers but also the levels of competition
in each technology niche as well as information conditional on technology
choices. This paper investigates these aspects and studies how the principal’s
choice of mechanisms impacts specialization by the sellers as well as the
optimal symmetric mechanism in this type of environments.

In order to fix ideas, consider the recent development of Covid vaccines.
In this example, companies had to choose a technology to develop a vaccine
which could be M-RNA, whole microbe approach, or subunit approach. At
the moment of choosing a technology, the type of vaccines that could succeed
was unknown, however, this choice still affects the future levels of competition
in the market for each potential relevant technology. In this case, by being
more generous (in terms of payments) towards one technology, the buyers
can induce more firms to adopt that specific technology at the expense of
less competition in other technology markets. In this case, specialization is
a key determinant of the optimal mechanism as it affects both the levels of
competition and the risk of no supply of vaccines.

In order to study these aspects, this paper develops a model of a multi-
market principal who has the ability to commit to future mechanisms. The
principal faces N ex-ante identical potential sellers who are characterized by
their production costs, which are private information, and their endogenous
technology choices. These choices allow sellers to produce in one of two
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exogenous and unknown technology states. In this game, the principal chooses
(symmetric) technology recommendations and trade rules as a function of the
technology state, agents’ reports, and the realized technology adoption profile.
After observing this choice, agents undertake simultaneous specialization
decisions. Finally, the state is realized and publicly observed and the good is
traded according to the chosen mechanism.

The key novelty of this paper is that mechanism choice for a given
realization of the technology state has an impact on overall specialization
decisions taken by the agents. This implies that the optimal mechanism
should internalize cross-markets externalities that can take two forms:

• A competition externality resulting from some agents changing special-
ization decisions.

• An informational externality due to the technology choice being infor-
mative about the agent’s cost.

These externalities imply that the cost of implementing separating mecha-
nisms is partially determined by mechanism choice, therefore, the principal’s
problem incorporates the effect of his choice on the technology adoption
profiles. The main result of the paper shows that the optimal mechanism is
such that the most efficient subset of types adopts the technology which is
the most likely to succeed, whereas the other types strictly mix between the
two technology choices. Proposition 2 shows that any mechanism with such
a structure can be implemented through first-price auctions with maximum
and minimum bids. In this case, maximum bids play the same role as in
standard models and exclude the least efficient types from trade. On the
other hand, minimum bids in one technology market induce pooling at the
bottom and divert more efficient types from this technology, therefore, they
provide incentives for those types to adopt the technology which is the most
likely to succeed.

Now, to provide intuition behind the optimality of mixing in an auction
context, first consider a mechanism that allocates the least efficient types to
technology "x" and the most efficient ones to the technology "y". Consider
a mixing structure that keeps the probability of trade in each technology
market constant (or equivalently, the probability of facing at least one seller
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constant). Adopting this structure provides two sources of gains to the
principal: An efficiency effect and a competition effect.

These effects are driven by the fact that mixing induces first-order stochas-
tic dominance conditional on adopting technology x. That is, conditional on
adopting this technology, the probability that the agent’s cost is lower than
some given level is now higher. As an implication, the probability of trade
with the least efficient types is lower under the mixing regime. On the other
hand, the competition effect is due to the agents’ information being more
dispersed inducing any given agent’s type in the mixing region to bid more
aggressively in a first-price auction and reduces the expected price that the
principal pays. Similar reasoning applies to all mixing types in technology y.

Related literature: This paper relates to the literature on competing
mechanisms. Building on the seminal work of Mcafee(1993) (see also Auster
and Gottardi (2019), Jehiel and Lamy (2018), Martimort and Stole (2002),
and Pavan and Calzolari (2009)), this literature studies how principals,
usually interpreted as sellers, compete through mechanisms in order to
attract agents. The key insight from this literature is that the set of agents
who participate in a given mechanism is endogenous and depends on choices
made by all principals. I extend this analysis to an environment where
single principal designs mechanisms for multiple markets, corresponding
to different realizations of the technology state. In this context, cross-
mechanism externalities are fully internalized and constitute therefore an
important element for the analysis. Studying this aspect is a key part of my
contribution.

A technical challenge which arises in this literature is that each principal’s
feasible mechanisms can depend on other principals’ strategies leading to an
infinite regress problem that makes the model intractable and the message
space more complex. To deal with this issue, the literature assumes no
cross-principals externalities in the sense that a unilateral deviation by a
principal doesn’t have an impact on the payoffs of agents participating in
other principals’ mechanisms nor on their incentive compatibility constraints.
The infinite regress issue does not arise when a single principal is designing
both mechanisms, therefore, and as these externalities are a key part of the
analysis in this paper, I study properties of optimal mechanisms when there
are cross externalities.
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Further away from this paper, part of the literature focuses on the
characteristics of the relevant message space for competing mechanism games
(Epstein & Peters (1999), Peters & Szentes (2012), etc.) and the set of
implementable outcome functions (Peters (2010)). I refer the interested
reader to Peters (2014) for a complete review. In a more applied work,
Yamashita (2010) characterized a message space implementing the optimal
mechanism for the principal as well as the corresponding equilibrium in
a common agency environment. In this paper, agents report their payoff
types as well as mechanisms proposed by other principals which implies that
in the equilibrium, every principal has full information about equilibrium
mechanisms. In our environment, as the principal chooses mechanisms in
all the technology markets, the message space is trivial and boils down to
agents’ payoff types.

Finally, the implementation result in this paper relates to the literature
which studies endogenous entry in auctions (see Jehiel and Lamy (2015)
Mcaffee and Mcmillan (1987), Levin and Smith) and competing auctions (See
Ellison, Mobius and Fudenberg). As allowing for externalities in a competing
mechanism setting makes the equilibrium number of bidder endogenous,
I contribute to this literature by studying optimal auction design in an
environment in which the outside option in each market is endogenous. A
key distinction from Ellison and al. is that in my setting, the auction choice
is endogenous and chosen optimally by the buyer.

The rest of the paper is organized as follows: In section 2, I develop a
framework to tackle the problem of specialization, in section 3, I study the
optimal mechanism and its implementability through first-price auctions,
and in section 4 I conclude.

1.2. Framework:

A principal wants to acquire a good, which she values at V > 0. She
faces N sellers indexed by i = {1, 2, ..., N}. Sellers’ production costs are
determined by their type (θ, γ) where θi ∈ Θ is the seller’s efficiency and
γi ∈ {γ1, γ2} is his choice of technology. Sellers have the ability to produce
in a given state of the word k ∈ {1, 2} only if their technology matches the
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state, that is: A given seller i can produce in a state k only if γi = γk. A
seller of type (θ, γ) has therefore a production cost:

Ck(θ, γ) =

θ If γ = γk

∞ Otherwise
(1.1)

The state of nature is exogenous. Denote by ρk the probability associated
to state k and assume, without loss of generality, that ρ1 ≥ ρ2. Similarly,
seller’s efficiency type is exogenous and determined by a probability dis-
tribution function f : Θ → R+ and its associated cumulative distribution
F : Θ → [0, 1]. I assume that types are independent and identically dis-
tributed and that f(θ) and F (θ) satisfy the standard regularity conditions:
f(θ) continuous and ∀θ ∈ Θ : f(θ) > 0 and that: θ + 1−F (θ)

f(θ) is increasing in
θ. Finally, wlog I assume that V ≥ θ̄.

The game can be interpreted as a situation in which a buyer is interested
in acquiring a good and faces uncertainty about the relevant production tech-
nology at the moment of designing trade mechanisms. This uncertainty can
for instance be due to exogenous technological breakthrough in complemen-
tary technologies, or to some unknown and relevant product characteristics
for a principal facing uncertainty about her preferences etc. Similarly, sellers
have to develop the product with limited information about which technol-
ogy might lead to a success. Using information they have about the trade
mechanism, sellers self-select by adopting different technologies which makes
the set on "ex-post relevant sellers" endogenous. These choices affect future
competition and the object of interest will be to study how to study the
effect of mechanisms choice on (i) ex-post efficiency and (ii) the technology
adoption profiles and levels of competition.

A recent example of such a situation is for instance the procurement of
vaccines during the Covid pandemic: In this situation, state had to commit
to trading rules prior to the development of vaccines and under uncertainty
about the type of vaccines (M-RNA, whole-microbe approach or subunit
approach) which might succeed. On the other hand, each vaccine producer
has an a cost of manufacturing and distributing vaccines which depends on
his efficiency and distribution network for instance.

Mechanisms and payoffs: Denote by ~γ ∈ {γ1, γ2}N the realization of
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a technology adoption profile. An ex-post direct mechanism for the buyer is
a pair (X,T ) where X : θN × {γ1, γ2}N → [0, 1]N is an allocation rule which
determines the probabilities of trade with each seller given reports and the
realization of the technology adoption profile. Similarly, T : θN×{γ1, γ2}N →
R+N is the transfer rule which determines payments to each agent.

An ex-ante direct mechanism M is a tuple (Y, (X,T )~γ) where Y : θ →
[0, 1] is a technology recommendation which determines the probability that
type θ adopts technology 1 and (X,T )~γ is a choice of ex-post direct mechanism
for each realized technology adoption profile. Denote by fk(θ) the density
function conditional on adopting technology k and by Fk(θ) the associated
CDF. A mechanism is feasible only if this density is continuously measurable.

Players have quasilinear utility functions, that is, for each realized trade
decision and vector of expected transfers, seller i gets an expected utility:

Ui = E[Ti]− xiCk(θi, γi) (1.2)

Where E[Ti] is the expected transfer seller i receives and xi is the probability
he trades with the buyer. Similarly, the buyer obtains payoffs:

UP =
N∑
i=1

xiV − E[Ti] (1.3)

Information and timing: The timing of the game is as follows:

• Stage 0: Nature draws sellers’ efficiency types θi

• Stage 1: The buyer chooses a mechanism M

• Stage 2: Each seller observe the mechanism M and his efficiency type
θi and chooses a technology γi

• Stage 3: Nature draws the technology state k

• Stage 4: All players observe k and the technology adoption profile
{γ1, ..., γN} and each seller either rejects or accepts participating in the
mechanism

• Stage 5: Participating sellers report their types and the payoffs are
realized according to the mechanism M .
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We will study symmetric Perfect Bayesian Equilibria of the game.

1.2.1. Feasible mechanisms:

As standard in mechanism design, an ex-post (direct) mechanism is
feasible if and only if it satisfies incentive compatibility (truth telling is a best
response), individual rationality (all player-types are willing to participate in
the mechanism), positivity (probabilities of trade with each type are non-
negative) and unit-demand (the sum of these probabilities is weakly lower
than one) constraints. The key difference when considering ex-ante feasible
mechanisms is that as the technology adoption profile is an equilibrium object
which means that (i) these constraints have to hold for each such a profile
which is realized with a strictly positive probability and (ii) the technology
adoption probabilities have to be best responses for all types. Formally, given
γi and the adoption profile of other sellers γ−i, we denote by U(θi, θ̂i, γ, γ−i)
and by x(θi, θ̂i, γ, γ−i) the expected utility and the probability of trade type
θi obtains from reporting θ̂i. We define:

Definition 1. Feasible ex-post mechanisms: Set (γi, γ−i) a realization
of the technology adoption profile and p(~γ) its associated probability and
define as Θγ the set of types who adopt technology γ with a strictly positive
probability in equilibrium. An ex-post mechanism is feasible if and only if for
all (γi, γ−i) such that p(γi, γ−i) > 0 it satisfies:

Incentive Compatibility:∀γi, γ−i, ∀θ, θ̂ ∈ Θγ: U(θi, θi, γi, γ−i) ≥ U(θi, θ̂, γi, γ−i)

Individual Rationality: ∀γi, γ−iθ ∈ Θγ: U(θi, θi, γi, γ−i) ≥ 0

Positivity: ∀γi, γ−iθi, θ{ − i} ∈ Θγ: x(θi, θ−i, γi, γ−i) ≥ 0

Unit demand: ∀γ, θ ∈ Θγ:
∑N
i=1 x(θi, θ−i, γi, γ−i) ≤ 1

Here, incentive compatibility and individual rationality are standard and
ensure that each agent type participates in the mechanism and has a best
response which consists of truthful reports in equilibrium. The only difference
with standard models is that the set of possible deviations is restricted to
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types adopting the same technology. In this game, this set is determined
endogenously by the chosen mechanisms, therefore, feasibility requires each
agent’s technology adoption probabilities, and the resulting Θγ , to be a best
response for all agents’ types. This is captured in the set of feasible ex-ante
mechanisms:

Definition 2. Feasible ex-ante mechanisms: A mechanism is ex-ante
feasible if:
Ex-post feasibility: For each k, (γi, γ−i) such that P (γi, γ−i) > 0: The contin-
uation mechanism is ex-post feasible
Obedience constraint: ∀γ, γ′, θ ∈ Θγ: Eθ−i,γ−i [U(θi, θi, γ, γ−i)] ≥ max

θ̂∈Θγ′
Eθ−i,γ−i [U(θi, θ̂, γ′, γ−i)]

The obedience constraint determines technology choices by sellers and it
ensures that, given the chosen ex-post mechanisms, sellers cannot strictly
benefit from a double deviation by changing the technology choice and
misreporting type. In order to make notation more smooth, we find it
convenient to set Nk as the realization of the number of sellers who adopted
technology k. As we restrict attention to symmetric mechanisms, ex-post
feasibility has to depend only the realized number of relevant sellers and not
their identity, therefore, the following holds:

Lemma 1. Any feasible symmetric ex-post direct mechanism has a payoff
equivalent symmetric direct mechanism which depends only the realized state
k, the number of sellers who adopted technology γk and their reports.

The proof of this lemma is straightforward and relies on the fact that
the buyer never trades with sellers who adopted an irrelevant technology
independently from their reports. For any possible such reports, the principal
can propose stochastic mechanisms which assign the same probabilities on
outcome as mechanisms who depend on irrelevant sellers. This lemma allows
us to use a more compact notation and a mechanism we denote by ICNk,k,
IRk,Nk , posk,Nk and Dk,nk the ex-post feasibility constraints in state k given
the number of relevant sellers Nk.
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1.3. The optimal mechanism:

Unlike a standard mechanism design setting, in this problem, the set of
relevant types in each state is endogenous. As a result, the properties of the
ex-post probability distribution over types are unknown. Therefore, we begin
by identifying necessary optimality conditions regarding the distribution of
types given the technology choice.

Proposition 1. A mechanism M is optimal only if there exists θ∗ such that:

• The principal trades with a strictly positive probability with all types

• ∀θ ∈ [θ∗, θ̄] : γ(θ) = αγ1 + (1− α)γ2

• ∀θ ∈ [θ, θ∗] : γ(θ) = γ1

Where α = 1− ρ2
(ρ1+ρ2)(1−F (θ∗))

Proof: (see appendix for a detailed proof)
Sketch of the proof: The proof works as follows: First, I define a

relaxed version of the problem in which feasibility constraints are required to
hold in expectation with respect to the technology profiles. First, note that
as the original problem requires these constraints to hold for each realization
of the technology profile, any payoffs which can be reached in the original
problem can also be reached in the relaxed version of the problem. This
makes the solution to the latter, M ′, an upper bound on the principal’s
payoffs. The first step of the proof is to show that if the structure described
in proposition 1 is satisfied in the mechanism M ′, this later is implementable
within the original problem.

The second part of the proof shows that the solution to the problem M ′

is uniquely achievable using the structure described in proposition 1. This
is shown by starting from an arbitrary feasible mechanism M ′ and showing
that there exists a payoff equivalent mechanism M ′′ which (i) leads to the
same ex-ante probability of adopting a given technology by an agent and (ii)
delivers the same probabilities of trade with each agent type and (iii) satisfies
the properties in proposition 1. Finally, to complete the proof, we compute
the solution to the relaxed problem, M ′, and show that any mechanism which
does not belong to the described class of mechanisms delivers strictly lower
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payoffs. In this case, the solution to M ′ implements more efficient trade and
lower probabilities of trade with the least efficient types while keeping the
total probability of receiving the good constant.

In this class of mechanisms, introducing mixing has two effects: An
efficiency effect and a rent effect. To provide intuition behind the efficiency
effect, consider a benchmark mechanism in which the least efficient types
adopt the least likely technology and more efficient ones adopt the most
likely technology. Introducing mixing while keeping the ex-ante probabilities
of technology adoption fixed allows the principal to reduce the probability of
trade with the least efficient agents’ types to the benefit of some intermediary
types. This effect is due to mixing allowing the principal to relax some
feasibility constraints, which allows reoptimizing over the allocation. Similar
reasoning can be used as long as the constraints are not binding in both
markets which happens only if the mixing is done with the probability α
described above. This probability makes rent increase at the same speed in
both markets.

The rent effect comes from the fact that the agent’s rent increases at a
speed that is equal to the probability of trade. Reducing the probability of
trade with the lowest types implies that rent is increasing at a slower rate
for those types. Compared to the benchmark mechanism, the principal can
construct a suboptimal mechanism that belongs to the described class and
which induces pooling for some intermediary types so that the rent is strictly
lower for all types. Starting from this mechanism one can reoptimize and
strictly increase payoffs.

1.3.1. Implementation through generalized auctions

In this subsection, I will discuss the implementation of the optimal
mechanism through generalized auctions. More specifically, I will focus on
the properties of the optimal auctions and the effect on the introduction of
mixing on competition between bidders. To do so, I first show that a specific
class of auctions can implement any candidate optimal mechanism:

Proposition 2. Consider any mechanism belonging to the class described
in proposition 1 and denote by Nk the realized number of agents who adopted
technology γk. This mechanism is implementable via posted prices when
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Nk = 1 and a collection of generalized auctions with minimum and maximum
bids for each technology market when Nk > 1. Moreover, auctions induce
pooling for at least a subset of types if the cutoff type θ∗ > θ∗∗ for some θ∗∗.

Proof: (see appendix)
Discussion: First note that as standard auctions and posted prices

induce efficient trade, in this context they cannot implement the cutoff type
is too high.More interestingly, using proposition 2, one can allows study the
costs and the benefits from mixing in an auction setting. To do so, note first
that compared to the benchmark in which agents make technology choices
in pure strategies described above, mixing makes information, given the
technology choice, more dispersed. As an implication, under the mixing
regime, the density function given a technology choice is lower for all mixing
types which makes conditional information more dispersed. 1

A formal argument relies on first-order stochastic dominance: To provide
intuition, consider θ∗ and θ∗∗ the cutoff type in case of mixing and under the
benchmark respectively. First, in the For all seller types θ ∈ [θ∗∗, θ̄]: These
types adopt technology 2 in the benchmark. Introducing mixing for this
subset of types inducer a lower density function which implies that for each
given type, the probability that he is facing a more efficient type is higher.
These types will therefore bid more aggressively under the mixing regime
which creates a competition effect. Moreover, as intermediary types also
adopt this technology, the probability of trade with type θ∗∗ is no longer
equal to one (conditional on being a relevant seller) under mixing which
induces more efficient trade.

On the other hand, introducing mixing in the interval [θ∗, θ∗∗] can be
analyzed by comparing trade in state 1 under both mechanisms. Note first
that for types θ ∈ [θ, θ∗], as the distribution of types has the same local
properties under both regimes, these types adopt the same bidding behavior
and win the auction with the same probability under both regimes. This
implies that an agent of type θ∗ wins the auction with an ex-ante probability
ρ1F (θ∗) under both regimes and obtains the same transfers. Finally, mixing
increases both the rent and the probability of trade with types in the interval

1In this case, the benchmark mechanism can be implemented through minimum and
maximum bids in each technology market.
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[θ∗, θ∗∗].
This last effect is due to the density in the interval [θ∗, θ∗∗] being lower

under mixing which implies that the probability of trade decreases at a slower
rate under this regime. In order to assess the total effect of mixing, one has
to compare these gains to the total cost of implementing the benchmark
mechanism. This aspect was discussed in proposition 1.

Finally, in order to conclude this section, it is of interest to study the
properties of these auctions:

Corollary 1. Any mechanism with q1 < q∗ is implementable with a minimum
bid of 0 in state 1 and b > 0 in state 2. Moreover, b is increasing in q1.

Here, as discussed above, the minimum bid allows the principal to imple-
ment pooling in state 2. Increasing this bid induces pooling for more types
who are diverted away from the technology γ2. As an outcome, by increasing
the pooling region she increases the agents’ incentives to adopt technology γ1

and therefore increases q1. An implication of this corollary is that optimal
auctions discriminate between technologies by "forcing" efficient agents to
adopt the most likely technology. This result provides a rationale behind the
use of these auctions in practice.

1.4. Conclusion

This paper studies optimal mechanisms for a multi-market principal who
faces uncertainty about the relevant technology. I show that the optimal
mechanism belongs to a class of mechanisms in which the set of types adopt-
ing each technology is continuous. In this class, the least efficient agents
strictly mix between the two available technologies whereas the most efficient
ones adopt the most likely technology. Within this class, the virtual valuation
satisfies the same properties as in standard mechanisms, however, imple-
mentation of a given cut-off type can induce pooling around the indifferent
type.

This work highlights the benefits of mixing in this type of setting which can
come from two sources: Efficiency gains and informational ones. Efficiency
gains are due to mixing allowing to shift probabilities of trade from the least
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efficient to the intermediary types while keeping the total probability of trade
in each market constant. On the other hand, informational gains come from
the fact that the separation of types is less costly under mixing. This last
effect is also related to a lower probability of trade with the least efficient
types which makes the rent decrease at a slower rate with respect to cost
(or equivalently, increase at a slower rate with respect to efficiency). Finally,
the paper discusses implementation in an auction setting. In this setting,
the cheaper cost of separation takes the form of more aggressive bidding
behavior by the least efficient types.
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1.5. Appendix

Notation: Throughout the appendix, we will use fk(θ) and Fk(θ) to
denote the density and the cumulative distribution function conditional on
the adopted technology being γk.

1.5.1. Proposition 1:

First, let us define a relaxed version of the problem in which the incen-
tive compatibility, unite demand constraints and obedience are satisfied in
expectation only (rather than for all realizations of adoption profiles).

Definition 3. The relaxed problem Set M ′ to be the solution to maxi-
mizing UP subject to

Incentive Compatibility:∀γ, ∀θ, θ̂ ∈ Θγ: E[U(θi, θi, γ)] ≥ U(θi, θ̂, γ)

Individual Rationality: ∀γ, θ ∈ Θγ: U(θi, θi, γ) ≥ 0

Positivity: ∀γ, θi, θ{ − i} ∈ Θγ: x(θi, θ−i, γ) ≥ 0

Unit demand: ∀γ, θ ∈ Θγ:
∑N
i=1 x(θi, θ−i, ~γ) ≤ 1

Obedience constraint: ∀γ, θ ∈ Θγ: E[U(θi, θi, γ)] ≥ max
γ′ 6=γi

max
θ̂∈Θγ′

E[U(θi, θ̂, γ′)]

Note that these conditions are necessary for the mechanism to be feasible
in the initial problem. Remarque: this situation would be the same as a
game in which buyers report their types before observing the technology
adoption profile.

Step 1: If the solution to the relaxed problem is such that ∃θ∗ such that:

• ∀θ ∈ (θ, θ∗): γ(θ) = γ1

• ∀θ ∈ (θ∗, θ̄): γ(θ) = ρ1γ1 + (1− ρ1)γ2

Then the mechanism M ′ solves the original problem.
Proof:
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Consider any solution to the relaxed problem. Incentive compatibility
implies:

U(θ, θ, γ) = Tk(θ)− xk(θ)θ ≥ Tk(θ′)− xk(θ′)θ = U(θ, θ′, γ)

As standard in mechanism design, using θ′ = θ+ ∆, and computing the limit
as ∆→ 0, incentive compatibility implies:

δU(θ, θ, γ)
δθ

= −xk(θ)

As ∀θ ∈ [θ∗, θ̄] : γ(θ) = ρ1γ
1 + (1− ρ1)γ2, the obedience constraint implies

that the agent is indifferent between the two technologies. As an implication,
we have ∀θ ∈ [θ∗, θ̄] : E[U(θi, θi, γ1)] ≥ E[U(θ, θ, γ2)]. A necessary condition
for this to hold is that ∀θ ∈ [θ∗, θ̄] : x1(θ) = x2(θ).

Now, consider any mechanism M ′ which solves the relaxed problem. A
necessary condition is that, given x(θ∗), x(θ) is optimal. This implies that in
the interval [θ∗, θ̄], the mechanism maximizes the buyers payoffs subject to
IR, IC, x(θ) ≤ x(θ∗) and E[x1(θ)] = E[x2(θ)] = x(θ). This is equivalent to:

max
∫ θ̄

θ∗
(x(θ)v − T (θ)]f(θ))dθ

As standard in mechanism design problems, replacing transfers by their
value (R(θ) + x(θ)c(θ)), the problem becomes:

max
N∑
i=1

∫ θ̄

θ∗
xk(θi)(v − θi − U(θ̄)−

∫ θ̄

θ
x(s)ds)fk(θ)dθ

subject to 0 ≤ xi(θ) ≤ x(θ∗).

Using Fubini’s to solve the double integral and setting U(θ̄) = 0 (otherwise,
a profitable deviation would be to reduce all transfers by U(θ̄)), this equation
becomes:
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max
N∑
i=1

∫ θ̄

θ∗
xk(θi)(v − θi −

1− Fk(θi)
f(θ) )fk(θ)dθ

As θ + 1−Fk(θ)
fk(θ) is increasing in θ; pointwise maximization implies that

∃θ1 ≥ θ∗ such that ∀θ ∈ [θ∗, θ1] : xk(θ) = xk(θ∗) and for all θ < θ∗ the
mechanism is a separating mechanism. As an implication, the buyer trades
with the seller with the lowest virtual valuation when θ ≥ θ1 and, if more
than one buyer has a cost θ ∈ [θ∗, θ1], the probabilities of trade are equal
among those buyers. Using similar reasoning, we obtain that there exists
θ2 leqθ

∗ such that the buyer trades with the buyer with the lowest valuation
if there exists at least one seller with θi < θ2 and trades with the other sellers
with equal probabilities otherwise.

Finally, to conclude our proof, given the definition of α, separation induces
the same ex-ante probabilities of trade in both states which implies that M ′

is feasible in the initial problem by introducing pooling for all realizations of
around Nk in the relevant pooling region.

Step 2: Any feasible mechanism in the relaxed problem has a payoff
equivalent mechanism such that for some θ∗:

(i) ∀θ ∈ (θ, θ∗): γ(θ) = γ1

(ii) ∀θ ∈ (θ∗, θ̄): γ(θ) = αγ1 + (1− α)γ2

Proof: (To be completed)
Step 3: The solution to M ′ is unique

Proof: To show this, consider two mechanisms, one of which does not satisfy
the above properties. It is sufficient to show that the probabilities of trade
describe in step 1 and only implementable via a unique M ′.

Consider any type θ ∈ [θ∗, θ̄]: In this case it is sufficient to observe that
x(θ) increases at a rate proportional to the local density. Now, assume
that for some interval [θ1, θ̄], the agents mix with probabilities α′(θ) 6= α.
This will lead these local densities to differ between markets. Therefore,
either the mechanism induces inefficient trade if conditional densities or the
technology choice in pure strategies, and the probabilities of trade decrease
strictly slower under the mechanism M ′. As an implication, for all types
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θ ∈ (θ1, θ̄), the probability of trade is strictly higher under the alternative
mechanism, which is a contradiction. If the mechanism induces inefficient
trade and similar probabilities, this mechanism induces higher transfers which
contradicts efficiency.
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Abstract

I study the problem of monitoring in a dynamic setting, in which the
monitor’s ability to detect misbehavior is endogenous: In addition to choosing
the amount of fraud, a fraudster can privately develop a hiding technology
that makes misbehavior undetectable, and the inspector can invest in R&D to
recover her detection ability. In equilibrium, the inspector invests whenever
she is sufficiently confident to be lagging technologically. However, too much
deterrence of detectable fraud (e.g., high fines or more monitoring) induces
the fraudster to invest in hiding technologies, which triggers an arms race and
can increase the average quantity of misbehavior. The optimal policy trades
off less misbehavior, when detectable, with shorter technological cycles (and
higher spending in R&D). The model has applications to digital security,
drug smuggling, money laundering, doping, and tax evasion.



2.1. Introduction

Is there a limit to feasible deterrence? More monitoring and higher fines
are often seen as a solution to reducing the amount of misbehavior in society.
The success of such policies requires monitors to have the ability to detect
and punish misbehavior. However, fraud and crime are often characterized
by their adaptive nature and investments in novel hiding technologies can
make misbehavior undetectable. For instance, cybercriminals can develop
new steganographic techniques that hide data stealing. Drug smugglers can
changes their smuggling routes or use more sophisticated transportation
methods (submarines, mules, etc.). Money launderers can relocate their
capital to tax havens. In these examples, adopting hiding technologies allows
criminals to act outside of the scope of enforcement until the monitor develops
adapted detection technologies.

Designing monitoring policies in this context can be challenging as a policy
that aims at more deterrence of detectable misbehavior increases incentives to
develop hiding technologies. For instance, more monitoring makes detectable
fraud less rewarding and can reduce misbehavior by fraudsters who do not
have access to hiding technologies. However, this “deterrence effect” comes
at the expense of making investments in hiding technologies more appealing,
reducing the scope of enforcement.1 As a reaction to these higher incentives,
monitors are required to acquire new detection technologies more frequently
in order to keep pace with the evolution of hiding technologies which leads to
a technological arms race between the two parties. Designing and evaluating
policies in these environments requires understanding not only their short-
term effects on the deterrence of detectable fraud but also their long-run
effect on the development of both fraud and detection technologies.

This paper studies the technological arms race between fraudsters and
monitors in a dynamic monitoring setting. Studying the monitoring problem
and the technology problem jointly contributes to the literature in three
ways: First, it sheds light on the impact of standard monitoring policy tools,

1Riley (2005) reports evidence of such effects in border control where higher monitoring
intensities displaced drug smuggling to unguarded portions of the border and made
smugglers adopt transportation technologies that are harder to detect, such as submarines,
lightplanes, mules, etc.
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e.g monitoring rates and penalties, on the developments of new hiding and
detection processes. Second, it allows comparing seemingly diverse policies
using only their effects on short term payoffs and flow of information. Finally,
the paper contributes to the reputation literature à la Board and Meyer-ter
Vehn (2013) by studying an environment in which the technology state can
be manipulated by both players due to the arms race.

The setting is a discrete-time model where one monitor, which I interpret
as a cyber-defender (henceforth the defender), seeks at reducing the harm
she incurs from a cyber-attacker (henceforth the attacker). The attacker
undertakes two actions: A short-term action which I interpret as the attack
intensity, affects flow payoffs for both players, and a long-term action of
investing in R&D, which affects the detectability of the attacks. Similarly,
the defender undertakes R&D investments in each period, and her ability to
detect attacks (henceforth monitoring ability) takes the form of a persistent
technology state: attacks are detectable only if she invested last.

Players have asymmetric information about the monitoring ability, known
only for the attacker, and the defender learns about this ability from past
detections. As detection (or its absence) is informative about whether a hiding
technology has been adopted, the defender can use information gathered
from the past to update her beliefs about the monitoring ability and make
investment decisions optimally. I study equilibria of the game that depend
only on the history since the last public signal of either an investment by
the defender or an attack detection.

A first step to studying this arms race is the analysis of the attackers
incentives to invest. Section 3.1 studies classes of equilibria that can emerge
as a function of the gains from becoming undetectable relative to the cost of
investing in hiding technologies. I show that any Markov perfect equilibrium
of the game belongs to three classes: When the gains are low, the equilibrium
is an "entente equilibrium" in which no player invests in R&D, and attacks
are always detectable. When these gains are high, two types of equilibria
can be sustained: "arms race equilibria" and "Complete hiding equilibria".
In arms race equilibria, the two players engage in a perpetual arms race
to determine which one has a technological advantage, and the defender
is always uncertain about her ability to detect attacks. Finally, complete
hiding equilibria are equilibria in which attacks are never detectable, and the
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attacker always has a technological advantage. When both types of equilibria
can be sustained, arms race equilibria are the ones preferred by the defender
whereas the attacker prefers complete hiding equilibria.

A policy implication of this result is that policy interventions such as
raising fines or increasing the monitoring rates can lead players to engage in
a technological arms race. This effect makes evaluating policies challenging
as the global effect on deterrence depends on the cost of the arms race and
its effect on the dynamics of attacks. Empirical evidence of such effects were
reported in a tax context by Bustos et al. (2022) and in custom control by
Yang (2008). In these two contexts, an increase in government monitoring
rates made it appealing to attackers to develop technologies that are not
detectable by the defender.

Section 3.2 studies the effect of monitoring policies on the intensive margin
of investments in arms race equilibria. These equilibria can be described
by cycles (see graph above) that start (and ends) after a public signal of a
detection (time t = 1, t = 3 and t = 3.8) or an investment by the defender
(time t = 2.5). Along the cycle, as the defender fails to detect attacks, she
becomes more pessimistic about her monitoring ability and, after failing for
a given amount of time, she invests in a novel detection technology. The
attacker reacts to these investments by investing in a hiding technology with
a strictly positive probability in the continuation game which implies that
the defender is always uncertain about her ability.

Developing a new fraud technology allows the attacker to remain unde-
tectable until the defender invest in a new detection technology. This implies
that he is indifferent and invests with an interior probability only if the
defender invests frequently enough. As an implication, policy interventions
that increase gains from becoming undetectable also lead to shorter technol-
ogy cycles. Intuitively, these interventions increase the attacker’s gains from
investments and, in order to make up for these higher incentives and restore
indifference at the beginning of the cycle, the defender’s investments have to
be such that the technological advantage of the attacker lasts for a shorter
amount of time.

Section 4 is dedicated to studying applications and the effect of policy
intervention. I show that policies such as higher penalties for detected
attacks lead to less intense detectable attacks at the expense of more frequent
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investments by both players, which creates a trade-off for policy designers.
I show that this type of policy interventions can backfire: reducing the
defender’s payoffs when he is detectable below a cutoff (or equivalently
increasing the penalties above a cutoff) leads to more intense attacks on
average. As a result, this type of policies can be Pareto-dominated, and there
exists an upper bound to feasible deterrence. Due to the R&D effect, I show
that policies that induce an arms race can be dominated by entente policies:
This is the case if the defender’s investment cost in detection technologies is
high or the attacker’s investment cost is low.

In addition to the attacker’s incentives, the intensity of the arms race
also depends on the defender’s speed of learning. Policies that increase the
arrival rate of detections while keeping short-term payoffs unchanged, for
instance, through an increase in monitoring rates and a reduction in penalties,
make monitoring more informative. I show that in this case, the defender
invests more aggressively; that is, for each attacker strategy, she invests more
frequently in R&D. As an outcome, these policies lead to lower probabilities of
investments by the attacker and a softer arms race. This policy intervention
leads to a Pareto improvement as the defender strictly benefits from fewer
investments by the defender, whereas the latter is indifferent between the
“old” and the “new” policy. As an implication, monitoring and punishment
are not perfect substitutes as a policy with higher levels of monitoring (and
lower level of punishment) leads to fewer investments in R&D by fraudsters

4



and, therefore, less fraud on average. This result contrasts with models ’a
la Becker in which this policy intervention would not affect misbehavior.

2.1.1. Literature:

This paper relates to the literature on the optimal design of monitoring
policies following the seminal work by Becker (1968) (see Polinsky and Shavell
(2000) for a survey), Lazear (2006), Eeckhout et al. (2005), Gibson (2019),
Blundell et al. (2020) and Telle (2013) for more recent works) that studies
the effect of monitoring and levels of punishment on fraud. I contribute to
this literature by extending this approach to a dynamic setting where the
monitor’s ability to detect misbehavior is endogenous and depends on both
players’ available hiding and detection technologies.

This extension allows for taking into account the attackers’ outside options:
As a response to a harsher monitoring policy, higher fines, for instance, they
can either reduce misbehavior or adopt novel hiding technologies. I provide
conditions for this outside option to be relevant. Moreover, studying the
monitoring and the arms race problems jointly allows analyzing the effect of
monitoring policies on the intensity of the arms race, that is, the frequency
of investments by the two players. In contrast to this literature, I show that
this implies that harsher monitoring policies can lead to higher levels of
misbehavior under certain conditions.

Moreover, I show that higher levels of punishment are no longer a substi-
tute for monitoring intensity (proposition 4). Monitoring has an informational
benefit to the monitor as it helps to assert whether attacks are detectable. In
this case, penalties are strategic complements for the attacker’s investments in
hiding technologies, whereas monitoring intensity can either be complements
or substitutes to these investments.

More closely related to this paper, following the seminal work of Board
and Meyer-ter Vehn (2013), an emerging literature studies learning in en-
vironments in which a myopic player’s actions depend on his beliefs about
a state that is partially controlled by a long term player’s investment (See
also Board and Meyer-ter Vehn (2022) and Dilmé (2019) for related works).
Halac and Prat (2016), Dilmé and Garrett (2019), and Varas et al. (2020)
extend this approach to environments with monitoring: A monitor’s ability
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to detect fraud depends on the history of her investments only (Dilmé and
Garrett (2019)) or this history and exogenous shocks ( Halac and Prat (2016)
and Varas et al. (2020)). As I focus on the effect of monitoring policies on
the arms race between the attacker and the defender, I depart from these
papers by developing a model in which (i) both players are forward-looking
and (ii) the monitor’s ability depends on both players’ investments. This
allows studying strategic complementaries between the short-term monitoring
problem and the long-term R&D race between the two players.

On an independent work, Marinovic and Szydlowski (2022) study a
setting where two forward-looking players (one principal and one agent) face
uncertainty about the state and where the arrival rate of detection depends
on this state and both players’ actions. The authors show that in this setting,
the agent has incentives to backload fraud as the principal becomes more
pessimistic. I study an environment in which both players can invest in
order to change the monitoring ability, which allows studying the arms race,
whereas Marinovic et al. focus on the experimentation problem of an agent
who wants to commit fraud and learn about this ability.

This paper also relates to the literature about crime displacement that
studies how monitoring crime in one location/technology displaces crime to
other locations/technologies (see Johnson et al. (2014) for a survey of the
criminology literature). See also Yang (2008) for an application to tariffs
avoidance, Ladegaard (2019) for the digital drug market, and Gonzalez-
Navarro (2013) for the location of auto theft. Finally, this paper relates to
the extensive literature that studies models with learning through exponential
bandits initiated by Keller et al. (2005) (see Bergemann and Valimaki (2006)
and Hörner and Skrzypacz (2017) for surveys). Under an arms race policy,
the defender’s problem in our model has the same structure as the one
studied in this literature; however, payoffs from detection and investments
are endogenous as they depend on the attacker’s investment strategy in
equilibrium.
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2.2. The setting:

2.2.1. The model:

Consider a game where one defender (player D) and one attacker (player
A) repeatedly interact at a fixed time interval ∆. Time t ∈ {0,∆, 2∆...} is
discrete and the horizon infinite and players discount the future at the same
rate e−r.
Actions, policies and states: For each t ≥ 0, players play a stage game
where the defender’s ability to detect ongoing attacks depends on a persistent
technology state θt ∈ {0, 1} to which I refer as the monitoring ability: Attacks
are detectable only if θt = 1. Without loss of generality, set θ0 = 1; That is,
attacks are detectable at the beginning of the game.

At the beginning of time t, the state θt−∆ is inherited from the past. In
even periods (t ∈ 2k∆ with n ∈ N), players make simultaneous investment
decisions αt ∈ {0, 1} for the attacker and δt ∈ {0, 1} for the defender.
Investment αt = 1 allows the development of a new hiding technology that
makes the attacks undetectable and shift the monitoring ability to θt = 0 at
a cost FA. 2 Similarly, δt = 1 is an investment in a detection technology that
costs FD and allows the defender to “regain" her ability to detect attacks by
shifting her monitoring ability to θt = 1. Not investing αt = 0 and δt = 0 is
costless.

In odd periods (t ∈ 2k∆ + 1), the attacker chooses the intensity of his
attack at ∈ [0, ā] which generates flow payoffs that depend on the monitoring
policy π and the technology state θt. Under a policy π, an attack intensity a
generates an expected flow utility uAπ (a, θ)∆ for the attacker, an expected flow
utility uDπ (a, θ)∆ for the defender and leads to detection at a rate θλπ(a)∆.
We assume that: uAπ (a, 0) and uAπ (a, 1) are single peaked.

The timing of the game at time is the following:

• Stage 0: The state θt−∆ is inherited from the past, and the defender
updates her beliefs ρt about it,

2We refer the interested reader to Cabaj et al. (2018) for a review of the techniques
that can be used in the Cybersecurity context, and to Riley (2005) for an application to
border control
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Figure 2.1: Preferred activity for principal and agent as a function of θL
when types are not observed under σP .

• Stage 1: Both players simultaneously make investment decisions in
hiding and detection technologies,

• Stage 2: The state θt is determined and observed by the attacker,

• Stage 3: The attacker chooses an intensity of attack at,

• Stage 4: The outcome of detection is publicly observed, and stage
payoffs are realized.

Law of motion of the defender’s monitoring ability: The monitoring
ability θt is persistent and is determined by the last player who invested
in R&D (see figure 1 below): The defender can only detect attacks if she
invested last. More formally, denote by tD = max{τ ≤ t : δτ = 1} the period
of last investment by the defender and by tA = max{τ ≤ t : ατ = 1} the
period of last investment by the attacker. We have:

θt =

1 If tD > tA

0 Otherwise

.
Here, we set as a tie-breaking rule that if both players invest in the same

period, attacks are not detectable and θt = 0.3

Information structure and strategies: Set ωt ∈ {0, 1} a variable that
takes a value of ωt = 1 if the attack is detected at time t and ωt = 0

3This tie-breaking rule has no qualitative impact on the equilibrium in the discrete-time
version of the game. However, it ensures that the limit case of the equilibrium as ∆ goes
to zero is equivalent to the equilibrium of the continuous-time version of the game.

8



6

t
-

θ

1

0
1 2 3 4 5 6 7 8 9

Attacker invests Attacker invests

? ?

Defender invests Defender invests

6 6

Figure 1: The monitoring ability as a function of time and investments

otherwise. A public history at time t in this game consists of detections
{ω0, ω∆, ..., ωt−∆} and the defender’s investments {α0, α1, ...αt−∆}.

Let hit be player i’s private history at the beginning of time t. The
private history for the defender hDt consists of the public history up to (but
not including) time t. A pure strategy for her is a choice of an investment
decision δt for each t and history hDt. A (pure) Markov strategy for the
defender consists on investment decisions δt as a function of her belief ρt
about θt. More formally, a pure Markov strategy for the defender σD is:

σD :[0, 1]→ {0, 1}

ρ→ δ

The attacker’s private history at the beginning of time t, hAt, consists of
the public history, investments α, the intensity of the attack a and the state
θ up to (but not including) time t. A strategy for the attacker consists of a
choice of the investment decision αt and the intensity of attack for each t and
private history hAt. A Markov strategy for the attacker consists of investment
decisions and intensity of the attack as a function of (ρt, θt). Formally, a
pure Markov strategy for the attacker is a function:

σA :[0, 1]× {0, 1} → {0, 1} × [0, ā]

ρ× θ → α× a

The payoffs: Players are forward looking and discount future at the
same rate e−r∆ where r > 0 is a discount factor. The defender’s expected

9



payoffs at time t = 0 are:

UD
t = Ea,θ,δ

[ ∞∑
τ=0

e−r(τ−t)∆
(
uDπ (aτ , θτ )∆− δτFD

)]
(2.1)

The defender’s expected instantaneous payoffs at time t in equation (2.1)
can be decomposed into the flow utility given the attacker’s action and the
state uDπ (aτ , θτ )∆ and the cost of investing in detection technologies δtFM .
Similarly, denote by UA

t the attacker’s value function. We have:

UA
t = Eα,δ

[ ∞∑
τ=t

e−r(τ−t)(uAπ (aτ , θ)∆− ατFA

]
(2.2)

Where uAπ (aτ , θ)∆ is the expected benefit from the attack at time t and
ατF

A is the cost of investment in hiding technologies.

2.2.2. Illustrations and policy interventions:

In the model, we allowed for a general definition of utility functions
and arrival rate of detection. This allows for flexibility both in terms of
policies and economic environments that could be studied. As stated above,
a policy is a set of functions (uAπ (a, 0), uAπ (a, 1), uDπ (a, 0), uDπ (a, 1), λ(a)) which
determine the arrival rate of detection and players payoffs as a function of
the attack intensity a and the state θ. In general, policy interventions can
affect one or many of these functions. As this paper aims to disentangle their
effects on investment and deterrence, I find it convenient to introduce the
two following examples as illustrations for the setting and the effect of policy
interventions on these functions.

Application to cybersecurity: The first application of interest is
cybersecurity. In this context, a service provider (the defender) seeks to
reduce the amount of data stolen by a cyberattacker. In each period, the
defender decides whether to invest in improving the ability of her system
to detect new types of attacks, whereas the attacker decides the amount of
data to steal and the whether to develop a new attack hiding technology.
It is of interest s to understand how changes in monitoring policies such as
increasing the punishment for detected attacks or increasing the monitoring
capacity, or instance by increasing the number of inspectors (cybersecurity
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officers), for implementing a more stringent red-flags system affect the arms
race between these two players.

A first important characteristic of this environment is that it is hard
to punish cyberattackers legally as most of them use algorithms to hide
their identity to avoid punishment even in case of detection. Moreover,
some countries can be more lenient in terms of punishment, and the lack of
international cooperation in this context makes judiciary punishment very
rare. For this reason, I consider punishment which is independent of the
intensity of the attack. 4 Formally consider the following starting policy:

λπ(a) = am∆

Where m is the monitoring intensity. Players get flow payoffs:

uAπ (., θ) =
[
2
√
a− θmaP

]
∆1a>0

uDπ (., 1) = −hEθ[a(ρ, θ)]∆

1- The effect of punishment: A first policy intervention of interest is
a rise in the cost of being detected for the attacker. This policy intervention
impacts only the utility function of the attacker when attacks are detectable.
The objective is to study how higher levels of punishment increase her
incentives to invest for any given strategy by the defender and its long-run
impact on the arms race between the two players.

2- The effect of monitoring: Similarly, consider a change of policy
that increases the arrival rate of detection. From the attacker’s perspective,
monitoring and punishment are perfect substitutes: his payoffs depend only
on mP . As an implication, a new policy that reduces the punishment and
increases monitoring can lead to the same payoffs for both players. In
practice, increases in monitoring can be achieved by hiring new inspectors
(or cybersecurity officers), improving some aspects of the software, a more

4In section 4, I show the equivalent between a choice of security level and this type of
punishment

11



stringent red-flags system, etc. 5

In a one shot-game, this policy intervention has no impact on payoffs.
However, from a dynamic perspective, as detections occur more frequently
when m is high, this policy intervention makes the defender become pessimist
faster (or equivalently, learn faster) under the new policy. It is interesting to
study the effect of introducing a more informative policy on the arms race. 6

3- The effect of the cost of cyberattacks: Finally, as stated above,
the cost of being detected often takes the form of a cost of intruding again in
the system. This aspect will be studied, and the extent to which punishment
and security are equivalent will be developed further.

Example 2: Border control:
The second application which is of interest is the problem of border

control. Consider a border control agency (the defender) that seeks to detect
the smuggling of illicit products to the country (drugs, weapons, etc.). In each
period, the defender decides whether to invest in acquiring novel detection
technologies, whereas the attacker makes an attack and investment decisions.
Investment by the border control agency can be interpreted as acquiring new
detection tools such as radars, satellites, patrol vehicles, etc., or acquiring
knowledge about more recent smuggling techniques. On the other hand, drug
smugglers can acquire vehicles such as submarines or light planes that are
hard to detect or change the route that they use.

In addition to the effect of monitoring and punishment discussed above,
policy design affects other aspects of the fraud environment: First, policies
shape the defender’s gains from detection by designing rewards for detected
smuggling. Moreover, as often in organized crime, the attacker’s payoffs
depend on the size of their market/territory. This size can be reduced, for
instance, by increasing monitoring in cities or the final consumers of illicit
goods. This type of policy measure is complementary to border control as
it reduces the demand for criminal activities. However, this reduction is
independent of the smuggling technology used, which implies different effects

5Note that as opposed to investments which are a qualitative increase in the ability to
detect fraud, monitoring is a quantitative shifter where, only when attacks are detectable,
higher monitoring leads to more detection

6Due to the impact on learning, and as opposed to the literature to the best of my
knowledge, this effect makes the choice of monitoring a qualitatively different decision
compared to the choice of punishment.
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on the arms race. To study the effect of these policy measures, consider a
starting policy π such that detection arrives at a rate:

λ(a) = m1a>0

Here, for simplicity we are assuming the arrival rate of detection m > to
be independent from a whenever a > 0. Flow payoffs under policy π are:

uAπ (a, θ) =
[
2
√
αa− θmaP

]
∆1a>0

Where α > 0 captures the size of the demand (for instance, the territory
controlled by the cartel). Note that as opposed to the previous example,
punishment P depends on the intensity of attacks. This captures the fact
that in practice, the punishment depends on the quantity of seized drugs or
weapons. On the other hand, the defender is interested in detecting attacks,
in which case she receives a lump sum reward R. Her flow utility is:

uAπ (a, θ) = θmR∆

It is of interest to study the following changes of policies:
1- Downstream policies: Now consider a policy intervention which

consists of decreasing the downstream demand for illicit goods by decreasing
α.7 This policy is a demand shifter that affects the attacker’s payoffs in both
technology states; therefore, it deters attacks with a limited impact on the
attacker’s investment incentives.

2- Providing incentives to monitors: Finally, consider an increase
in the reward for detected smuggling R, and for the sake of exposition, we
will interpret investments in detection technologies as the defender’s private
effort to acquire knowledge about the latest smuggling techniques or newer
routes. In this case, the policy intervention affects the defender’s payoffs
only when attacks are detectable, leading to a change in her incentives to
invest for any given strategy by the attacker.

7Examples of such policies can be a large scale intervention to reduce the cartel’s area
of influence, an increase in monitoring in cities, awareness-raising, partial legalization, etc.
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2.3. Preliminary analysis

Studying equilibria of this game requires (i) understanding when invest-
ments can emerge as an equilibrium outcome as a function of the policy
choice and investment costs and, (ii) in equilibria with investments, the
patterns of these investments and the evolution of the defender’s beliefs on
the equilibrium path. The objective of this section is to determine these
patterns and the determinants of attack intensities in equilibrium.

As investments can be wasteful, the first type of equilibria of interest
is such that the attacker has no incentives to invest and, therefore, no
player undertakes R&D investments. I refer to these equilibria as “entente
equilibria". Formally:

Definition 4. (Entente equilibria) An equilibrium is an entente equilib-
rium if for any time t, and any histories (hAt , hDt ) reached with a strictly
positive probability; we have αt = δt = 0

The opposite of an entente equilibrium is equilibria, in which both players
engage in a perpetual arms race where investments never stop. That is, for
each point in time, both players invest in R&D in some future period for all
possible histories. This can be, for instance, the case when investment costs
are low for both players or their incentives, given the monitoring policy, are
high. I refer to these equilibria as arms race equilibria. More formally:

Definition 5. (Arms race Equilibria) An equilibrium is an arms race
if for any private history hit reached with a strictly positive probability and
for each player i ∈ {A,D}, there exists a continuation history, reached
with a strictly positive probability, such that player i invests. That is: ∀t :
∃τ1, τ2 > t : Ehτ1

[
ατ1

]
, Ehτ2

[
δτ2
]
> 0

Finally, for some policies or strategies by the attacker, the defender might
not have any incentives to engage in R&D, leading the attacker to always
have a technological advantage. These equilibria are referred to as “complete
hiding equilibria". Formally:

Definition 6. (Complete hiding equilibria) An equilibrium is a complete
hiding equilibrium if for any public history (ht) reached with a strictly positive
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probability attacks are not detectable (θt|ht = 1 ), the defender does not
invest (δt|ht = 1), and the attacker only invests at the beginning of the game:
α0 = 1.

Denote by a∗(θ) = argmaxau
A
π (a, θ) the myopic attack intensity as a

function of the defender’s monitoring ability. We have:

Proposition 3. (Types of equilibria) For any policy π, an equilibrium
exists, moreover, the equilibrium is:

• An entente equilibrium if:

uAπ (a∗(0), 0)− uAπ (a∗(1), 1) < (1− e−r∆)FA

• An arms race policy or a complete hiding policy if:

uAπ (a∗(0), 0)− uAπ (a∗(1), 1) > (1− e−r∆)FA

Proposition 3 describes investments in equilibria from an extensive margin
perspective. When the cost of investing in hiding technologies is sufficiently
high, the attacker has no incentives to invest in hiding technologies and no
player invests in R&D in equilibrium. When this cost is low relative to gains
from investments, the attacker engages in R&D, and two types of equilibria
can emerge: Arms race equilibria which are preferred by the defender, and a
complete hiding equilibrium which is the equilibrium preferred by the attacker.
While the complete hiding equilibrium has trivial dynamics, investments and
intensity of attacks under an arms race equilibrium depend on the defender’s
belief and will be analyzed intensively in the rest of the paper.

The defender’s beliefs: First, note that detection at time t is fully infor-
mative about the state being θt = 1. Therefore, in any MPE, beliefs depend
only on history since the last detection. I abuse notation and denote by
time t = 0 the first period after a detection. Finally, I anticipate that, in
equilibrium, the attacker invests in a hiding technology only at this period
(t = 0) and describe only the relevant law of motion of beliefs. Denote by ρt
the probability that attacks are detectable at the beginning of period t. We
have:
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ρt =

1 If t = 0

ρt−∆
1−λπ(ât−∆(1))∆

1−ρt−∆λπ(ât−∆(1))∆ Otherwise

Where ât(1) is the defender’s belief about the intensity of attack at time
t if attacks are detectable. When ∆ goes to zero, beliefs at time t evolve
according to:

ρ̇τ = −ρτ (1− ρτ )λπ(âτ (1)) (2.3)

This equation captures the fact that as the defender fails to detect attacks,
her belief about her monitoring ability θt decreases. As detection is more
likely when the arrival rate of detection is high, beliefs decrease faster for high
values of λπ(âτ (1)). Note that this law of motion depends on the intensity of
the attack at each time τ . Therefore, these intensities have to be determined
in the equilibrium path.

Proposition 4. (The intensity of attacks) In any Markov Perfect Equi-
librium, the intensity of the attack is chosen myopically

Proposition 4 means that when attacks are detectable, the attacker under-
takes attack decisions without incorporating their effect on the continuation
game. As uAπ (a, θ) is single-peaked, this implies that this intensity depends
only on the state in equilibrium. First, note that this result is trivial as long
as we consider entente or complete hiding equilibria: In this equilibria, the
defender never invests, and the attacker faces a stationary problem whose
solution is the same as a one shot game.

Sketch of the proof: Consider any putative arms race equilibrium and
assume that in this equilibrium, the attacker invests with a probability 1 for
some history reached with a strictly positive probability. This implies that
the defender’s continuation belief is 0 and gains from investing are the highest.
Therefore, either she invests with probability 1, in which case the attacker
could benefit from postponing his investments, or the defender invests with
probability 0 for all other beliefs, in which case one can construct a deviation
where the attacker invests earlier (see appendix). As a result, in any arms
race equilibrium, it has to be that ατ < 1 for all τ and associated histories
hAτ .
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Intuitively, this implies that never investing is also the best response for
the attacker in any arms race equilibrium, which implies that attacks are
detectable. As a result, his payoffs are the same as in a situation in which
the cost of investing is infinite, in which case, the unique best response is
to play the myopic action and never invest. Equivalently, this implies that
when detectable, the attacker can get no more than his payoffs from playing
his short time attack intensity forever.

In addition to simplifying the dynamics of beliefs in arms race equilibria,
proposition 4 implies that any two policies leading to the same short-term
payoffs and arrival rates of detection lead to the same investment profiles in
equilibrium.

2.4. Results:

An arms race equilibrium can arise when both players have incentives to
invest in R&D in equilibrium. In this section, I study the determinants of
investments in these equilibria from an intensive margin and comparative
statics and the effect of policies changes on investments and payoffs.

2.4.1. The arms race equilibrium:

Proposition 5. (Arms race equilibria) If uAπ (a∗(0), 0)− uAπ (a∗(1), 1) >
(1− e−r∆)FA and FD < FD∗, an arms race equilibrium exists.
Any such an equilibrium is characterized by an initial belief ρ0 ∈ (0, 1) and a
stopping belief ρ∗ such that:

(i) The investment by the attacker α0 ∈ (0, 1) is :

• α(ρ) =


0 ∀ρ ∈ (ρ∗, ρ0)

1− ρ0 if ρ ≤ ρ∗

1− ρ0
ρ
if ρ ≥ ρ0

(ii) The investment strategy by the defender:

• δ(ρ) =

1 if ρ ≤ ρ∗

0 otherwise
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(iii) An equilibrium length of the cycle: tA = 1
r
ln(1+ rFA

uAπ (a∗(0),0)−uAπ (a∗(1),1)−rFA )

(iv) The stopping belief ρ∗(ρ0) is reached at time tD such that:

r + X

ρ0
=
λπ(a∗(1))(1− e−rtD) + X

ρ0(1−ρ0)

eλπ(a∗(1))tD − 1

(v) The initial belief ρ0 is such that t∗ = tA = tD

Equilibrium cycles: Proposition 2 allows us to describe the beliefs and
technology cycles of this game (see figure 3). A cycle starts when both players
receive an informative signal about the state of the monitoring ability due
to detection of an attack (time t=1, t=2.9 and t=3.6 in figure 3) or to an
investment in detection technologies (time t=2.5). The attacker invests with
a strictly positive probability α(ρ0) whenever a new cycle starts. This later
probability determines the defender’s initial belief ρ0 = 1− α(ρ0).

In the continuation game, the defender learns about her monitoring
ability through detection and its absence: As attacks can only be detected
if the attacker did not invest, failure to detect attacks makes the defender
increasingly pessimistic, and her belief decreases until it reaches a threshold
ρ∗ in which case she invests with probability δ(ρ∗) = 1 and the cycle ends.

The length of the cycles: I refer to the duration of this learning phase
as the length of the cycle t∗, which represents the amount of time that the
defender needs to be pessimistic enough to invest. When the attacker invests,
he can benefit from undetectable attacks for exactly t∗ periods. The length
of the cycles has to make him indifferent between his investment decisions
(iii).

On the other hand, the defender’s incentives to invest in detection tech-
nologies depend on her beliefs. As the continuation game after investing
is independent of the past histories, her incentives are higher when she is
more pessimistic. As an implication, for each initial belief ρ0, her investment
strategy is defined by a unique cutoff ρ∗(ρ0) such that she invests at the
period in which the belief ρ∗(ρ0) is reached. In other words, given her initial
belief, (iv) she experiments for tD periods before investing. Finally, in order
to be in equilibrium, it has to be that (v) tA = tD.
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As the defender’s investment strategy is a cutoff strategy, the attacker
prefers investing “earlier” in the cycle in order to benefit from undetectable
attacks for longer. Therefore, he instantaneously reacts to the increase in the
defender’s beliefs by investing in hiding technology with (strictly) positive
probability.
The initial investment: In arms race equilibria, tD determines, for each
initial investment α0, the distance between the initial belief ρ0 and the
stopping belief ρ∗. On the other hand, tA determines the time at which the
stopping belief has to be reached in equilibrium in order for the attacker to be
indifferent. (vi) links, therefore distance ρ0− ρ∗ to time tA and can therefore
be interpreted as a condition about the speed of learning: Investments at the
beginning of the cycle have to be such that the defender learns sufficiently
fast to invest exactly at time tA.

Note that (vi) admits at most two solutions, and the attacker is indifferent
between the two equilibria. I use as an equilibrium selection that players play
the equilibrium preferred by the defender, which is also the Pareto dominant
one.

2.4.2. Comparative statics in arms race equilibria:

In an arms race equilibrium, monitoring policies determine the intensity
of attacks and the frequency of investments studied in proposition 3. In order
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to assess the effect of policy interventions, let us assume from here onward
that for all policies π ∈ Π, flow payoffs and arrival rate of detection are
continuously differentiable in the intensity of the attacks and that the arrival
rate of detection is non decreasing in the intensity of the attack (dλπ(a)

da
≥ 0).

Moreover, we assume that when there is no attack (a = 0), players get zero
payoffs and no detection can occur: uAπ (0, θ) = uDπ (0, θ) = λπ(0) = 0.

A. The effect of more informative policies: The first question of
interest in this type of environment is the effect of the arrival rate of detection
on the arms race. This arrival rate affects the defender’s investments through
two effects: First, it increases the likelihood of avoiding wasteful investments
by restarting cycles through detection rather than investments. The second
effect of the arrival rate is that it affects the defender’s speed of learning and,
therefore, her investment strategy. In order to study the global effect on the
equilibrium, consider two policies π and π′ which lead to an arms race.

Definition 7. Fix a∗(1) and a∗′(1) the equilibrium intensities of detectable
attacks under policies π and π′.The policy π is more informative than the
policy π′ if it leads to a higher arrival rate of detection:

λπ(a∗(1)) > λπ′(a∗′(1))

.

Now, consider two policies that lead to the same flow payoffs; however,
one of them is more informative. These policies can be ranked as follows:

Proposition 6. (Pareto dominance of more informative policies)
Consider any two policies π and π′ which lead to the same equilibrium flow
payoffs ∀θ, i: uiπ(a∗(θ), θ) = uiπ′(a∗′(θ), θ) and denote by π the most informa-
tive policy. We have:
(i) The policy π induces less investments in R&D by the attacker: απ0 < απ

′
0

(ii) The policy π Pareto-dominates the policy π′

Proposition 6 allows comparing policies that are similar from a short-term
perspective. Under a more informative policy, the defender learns faster
about her monitoring ability. As a result, these policies induce her to invest
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more aggressively in R&D, that is, for each initial belief ρ0, her stopping
belief ρ∗(ρ0) is reached earlier. However, from proposition 3, we know that
as the attacker’s short-term incentives to invest did not change, these two
policies entail the same length of the cycles. As a result, (i) the attacker has
to invest with a strictly lower probability under the most informative policy.
As an implication, flow payoffs given the state are similar under both policies.
However, the defender strictly benefits from having fewer investments in
hiding technologies in equilibrium, leading the policy π to Pareto dominate
the policy π′. 8

From a policy perspective, an example of policies that lead to the same
short-term payoffs but differ in their informativeness is policies that entail
the same expected punishment for misbehavior using different monitoring
intensities. Consider the policies defined in example 1, that is, for a ∈ [0, 1]
a policy π is characterized by:

λπ(a) = am∆

uAπ (., θ) =
[
2
√
a− θmaP

]
∆1a>0

uDπ (., 1) = −hEθ[a(ρ, θ)]∆

All policies π and π′ with associated monitoring rates and penalties
(m,P ) and (m′, P ′) respectively such that: mP = m′P ′ satisfy this condition.
Proposition 4 imply that if m > m′, then π Pareto dominates π′. Another
implication of this result is, as opposed to a situation without investments,
the fact that detection is informative about whether the attacker has access
to an undetectable attack technology, monitoring and punishment are not
perfect substitutes.

B. The (non) deterrence effect of raising penalties: Raising penal-
ties is a policy intervention that makes detection more costly for the attacker.
As such, these policies make his flow payoffs lower for any given attack
intensity. On the other hand, this policy intervention does not affect the

8Note that as one best response for the attacker is to never invest in any arms race
equilibrium, he is indifferent between the two policies.

21



defender’s payoffs nor the arrival rate of detection for a given attack intensity.
From an equilibrium perspective, this changes the optimal myopic attack in-
tensity, and by extension, given the result in proposition 2, it will change the
intensity of detectable attacks. More generally, define by “Purely deterrent
policy intervention," any policy intervention whose unique effect is reducing
gains from increasing the intensity of detectable attacks. Formally, fix π to
be an initial policy and consider a policy π′.

Definition 8. A policy intervention is purely deterrent if:
(i) ∀a : (uAπ′(a, 0), uDπ′(a, 0), uDπ′(a, 1), λπ′(a)) = (uAπ (a, 0), uDπ (a, 0), uDπ (a, 1), λπ(a))
and,
(ii) ∀a: uAπ′(a, 1) = uAπ (a, 1) + f(a) with f(a) ≥ 0 and strictly decreasing in a

Here (i) means that the policy intervention does not affect the defender’s
payoff functions, the arrival rate of detection, and the attacker’s flow payoffs
when attacks are not detectable. (ii) implies that gains from increasing the
intensity of the attack are strictly decreasing under the new policy. We have:

Proposition 7. (Effect of purely deterrent policy interventions)
Consider any purely deterrent policy intervention π′ 6= π and denote by a∗(θ)
and a∗′(θ) the intensities of attacks prior and after this change, we have:
(i) This change induces less intense detectable attacks: a∗(1) > a∗′(1)
(ii) Technology cycles are shorter under π′

(iii) A limit to deterrence: If a∗(0) > a∗(1), then ∃a such that is a′(1) < a

the policy intervention leads to higher average intensity of attacks

Purely deterrent policy interventions imply that the attacker gains less
from increasing his intensity of detectable attacks. As such, these policies
induce a “deterrence effect,” which is captured in (i). As a counterpart
to this deterrence effect, as these policies do not impact flow payoffs for
undetectable attacks, they lead to higher short-term gains from investing
in hiding technologies. As these gains are higher, the defender will need
to invest more frequently in order to keep the attacker indifferent (from
proposition 3) which leads to (ii) shorter technology cycles.

Finally, under certain conditions, shorter cycles entail an increase in
investments high enough to offset any possible gains from higher levels of
short-term deterrence (iii) of detectable attacks. In order to illustrate this
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effect, consider first policy interventions which lead to lower equilibrium flow
payoffs for the defender when attacks are detectable. In this case, she invests
more aggressively for any initial belief ρ0. However, for a low enough, a
more aggressive best response is not sufficient to implement short enough
technology cycles. As a result, the attacker also changes his investment
strategy and invests more frequently in R&D, making the attack less likely
to be detectable in which case, the attacks are more intense.

The opposite case in which the defender earns higher flow payoffs when
attacks are detectable is more straightforward: The defender’s best response
is less aggressive, therefore, the two effects always drive the attacker’s invest-
ments in equilibrium to be higher.

From a policy perspective, this result implies that there is a limit to
deterrence which could be achieve through these policies. In particular,
raising penalties is a special case of purely deterrent policy interventions and,
if too high, they can lead to an intensification of the arms race, inefficient
investment and higher and more sophisticated attacks.

To illustrate these effects, consider example 1 and a change of policy
to π′ which consists of setting P ′ = 2P . This change of policy has: (i) A
“deterrence effect” which decreases the intensity of detectable attacks from
a∗(1) = ( 2

mP
)2 to a∗′ = ( 1

mP
)2.

(ii) The second effect of this policy is that it reduces the length of the
technology cycle. As uAπ (a∗(1), 1) > uAπ′(a∗′(1), 1), gains from investing are
strictly higher. As an implication, the equilibrium under the new policy
requires the defender to invest more frequently in order to compensate for
this increase in incentives.

Discussion on the equivalence between punishment and secu-
rity: In a setting in which the attacker pays an intrusion cost whenever he
starts a new attack, either these intrusions are not profitable in some state θ
which is equivalent to saying uAπ (θ) = 0, or intruding is always profitable. In
this situation, each time he is detected, the attacker pays a new intrusion
cost to start an attack. In this case, the setting is similar to one in which
the attacker pays a penalty which is independent from the intensity of the
detected attack.

C. Downstream policies: In many environments, especially the ones
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related to organized crime, monitors can intervene in many layers of the
production of the crime. For instance, consider drug smuggling: A country
can monitor smuggling at the borders and at the city level. The key difference
between these two modes of monitoring is that monitoring in cities does
not induce a technological response in terms of hiding technologies. More
generally, I refer to policy interventions that affect payoffs in both states as
a downstream deterrence policy. Formally:

Definition 9. A policy intervention π′ is a “downstream deterrence policy"
if ∃f(a), g(a) ≥ and strictly increasing such that ∀a:

uDπ′(a, 0) = uDπ (a, 0)− f(a)

uDπ′(a, 0) = uDπ (a, 1)− g(a)

∀θ : uAπ′(a, θ) = uAπ (a, θ)

λπ′(a) = λπ(a)

As opposed to purely deterrent policies, these policies affect the attacker’s
payoffs in both states, therefore, they have a different impact on the arms
race and on the intensity of attacks. In particular, we have:

Proposition 8. (Effect of downstream deterrence policies) For any
initial policy π and downstream deterrent policy π′ such that uDπ (a∗(0), 0)−
uDπ (a∗(1), 1) > uDπ′(a∗(0), 0)− uDπ′(a∗(1), 1), we have:
(i) A short term deterrence effect: ∀θ, a∗(θ) > a∗′(θ)
(ii) Longer technology cycles: t∗ < t∗′ (iii) Less investments in hiding tech-
nologies: απ0 > απ

′
0

Proposition 6 studies the effect of downstream policies which reduce the
attacker’s short-term gains from investing. In addition to (i) reducing the
intensity of attacks these policies affect the arms race. In particular, (ii)
they lead to longer technology cycles. This effect is due to per-period gains
being lower, therefore, the attacker only invests if he could "enjoy" being
undetectable for longer. This implies that the attacker’s response has to be
such that he reduces the defender’s incentives to invest and a softer best
response by the later. To achieve this, it has to be that he invests less in
hiding technologies at the beginning of each cycle.
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As an implication, these policies do not face the same type of constraints
as the purely deterrent policies as they soften the arms race. Therefore,
higher levels of deterrence can be achieved, nevertheless they can be more
costly as they involve monitoring a wider area for instance.

D.Optimality of arms race policies: In order to determine the opti-
mal policy, policy makers compare the optimal arms race policy to policies
which implement entente equilibria. When the attacker’s investment cost is
high, or the defender’s investment cost is low, the former invests in hiding
technologies with lower probabilities under an arms race policy. This implies
that in this situation, the cost of investments in arms race equilibria are
lower. Formally:

Proposition 9. The optimal policy: Policies which implement arms race
are optimal if and only if:
Given the attacker’s cost of investment FA, the defender’s cost of investing
is low: FD ≤ ¯FD(FA) Given the defender’s cost of investment FD, the
attacker’s cost of investing is high: FA ≤ ¯FA(FD)

This is an implication of proposition 3 as lower investment costs imply
that, given an initial belief ρ0, the stopping belief ρ∗ is increasing in FD.
As a consequence, lower investment costs for the defender make her invest
more frequently for any initial belief. However, as the length of the cycle
is determined by the attacker’s incentives, initial investments have to be
such that this length is constant. (vi) in proposition 2 implies that learning
has to be slower in that case, which in turn is associated with higher initial
beliefs. In conclusion, lower investments costs for the defender are associated
with less investment in hiding technologies and, therefore, higher gains for
the defender to engage in the arms race.Similarly, an increase in the cost of
investment in hiding technologies leads to longer cycles which, in equilibrium,
is associated with slower learning and less investment in these technologies.

In addition to the effect of the costs, optimality of the arms race policy
is determined by both player’s payoffs given states. This aspect is important
in contexts such as smuggling where, the flow payoffs depend on the charac-
teristics of the smuggled goods whereas smuggling technologies are not. We
can show that:
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Proposition 10. Fix the costs of investments FA and FD and the optimal
entente policy π′. The arms race policy π is not Pareto dominated only if,
for X and Y > 0:
Given uDπ (a∗(θ), θ): uAπ (a∗(0), 0)− uAπ (a∗(1), 1) ≤ X.
Equivalently, uAπ (a∗(θ), θ): uDπ (a∗(1), 1)− uDπ (a∗(0), 0) ≥ X.

Here, the optimal arms race policy is not dominated whenever the defender
has low gains from investing. When this is the case, he only invests if the
attacker waits for sufficiently long before making investment decisions. This
later condition requires investment probabilities by the attacker to be low
and as a result, this leads to less wasteful investments in hiding and detection
technologies. Similarly, when the cost of having undetectable attacks is high
for the defender, she invests frequently unless the attackers invests with
sufficiently low probabilities.

This result leads to two predictions: First, arms race should be observed
in environments where fraud is costly for instance. As weapons and terrorism
are more costly for society that drug smuggling, this threat induces more
aggressive monitoring policies and leads to an arms race. This arms race is
beneficial as the gains from less attacks are higher that the cost of having
frequent investments. On the other hand, when attackers have few gains
from investing, the perspective of engaging in an arms race is not costly for
society, thus, arms race is desirable.

2.5. Conclusion

Detection of fraud can be challenging and often depends on both the
attack and the detection technologies. As these technologies are endogenously
developed, the attacker and the defender often engage in an arms race where
the latter faces uncertainty about the former’s technology. I construct a
model to study these interactions and the effect of policy interventions on
the dynamics of attacks and investments .

When engaging in the arms race, the defender learns about her monitoring
ability through detection and, as she fails to detect attacks, she becomes
more pessimistic and invests in a novel detection technology. The attacker
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reacts to this investment by investing in a hiding technology with a strictly
positive probability, leading to cyclical patterns in these environments. Both
the length of these cycles and the investment in each cycle depend on the
monitoring policy. More stringent defense policies such as higher penalties
lead to less intense attacks when they are detectable at the cost of a potentially
more intense arms race in the equilibrium, which creates a tradeoff for the
policymaker.

I show that the arms race policies are not Pareto-dominated when the
defender’s investment cost is low, the attacker’s investment cost is high.
When this is the case, the attacker invests with a lower probability in hiding
technologies in equilibrium which implies that engaging in the arms race is
less costly to the defender and for deterrence.

The model has a few implications in term of optimal design of monitoring
policies: First, any two policies that lead to the same "short term deterrence"
when technologies are fixed and that have the same cost can be ranked:
The most informative policy (such as higher monitoring rather that more
punishment) is better as it induces less investments in hiding technologies.
More importantly, it highlights some effects of this design that are important
for evaluating policies: As higher levels of monitoring lead to more technology
adoption, using detect fraud as a proxy for realized fraud can be misleading
and one has to also evaluate the impact of this policy on the adoption of
hiding technologies.

The model also leads to some verifiable empirical predictions. In environ-
ments where detection is informative about the technology state, one should
expect serial correlation in detections as one detection implies that in the
following period the monitor is more likely to be able to detect fraud. A sec-
ond prediction, is that harsher defense policies with either more monitoring
or higher penalties can lead to a more intense arms race between the two
players. These policies can therefore harm the defender by inducing more
investments in hiding technologies, in which case, the average intensity of
attacks can be higher.

Through this paper, I restricted attention to a game with only one
attacker and one defender. A natural extension is to consider multiple
attackers in order to study the effect of learning about a whole population
on the dynamics. Similarly, in an environment with multiple defenders,
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incentives to free-ride on each other’s learning can emerge and make maximal
security more desirable.

2.6. Appendix

Proof for proposition 1:
Part 1: A policy is an entente policy if and only if ūAπ

1−e−r∆ −
uAπ

1−e−r∆ > FA is
an entente policy.

Note first that an equilibrium without investment exists as, if ∀t, αt = 0,
the defender’s best response is to never invest. The attacker’s best response
to this strategy is to play according to the no investments benchmark. To
show that, note first that as the attacker’s action when attacks are not
detectable have no impact on the continuation history, his attack intensity
when it is the case is the same as the no investment benchmark. Therefore,
his flow payoffs are ūAπ leading to payoffs ūAπ

1−e−r∆ − F
A.9 We also have:

uAπ
1− e−r∆ >

ūAπ
1− e−r∆

Therefore, no investments is indeed an equilibrium under this policy. Now, I
show that this is the unique equilibrium.

Case 1: Assume there exists a such that under policy π: ūAπ ≤ uAπ (a, 1),
then the policy π is an entente policy

Proof: Set (σA, σD) any equilibrium strategies and define by p(ht) the
probability of reaching the history ht in equilibrium and by p(ht+∆|ht) the
distribution of the continuation histories.

For the sake of contradiction, assume that there exists an equilibrium in
which the attacker invests and denote by H1 the set of histories such that
attacks are detectable and by H0 its complementary set where attacks are

9Note that here I am abstracting away from the posibility of investing several times as
redundant investments are is wasteful and leads to payoffs strictly lower than ūAπ

1−e−r∆

28



not detectable. The attacker’s payoffs can be written as:10

UA
0 =

∞∑
t=0

e−rt
[∑
ht

p(ht)Ea,α[uπ(a, θ)− αFA|ht]
]

That is, at each time t, he gets an expected utility which depends on the
probability of reaching a history ht times the instantaneous payoffs associated
with his action. Note that as the defender’s actions are part of the public
history, their impact on the attacker’s payoffs is taken into account through
the history. We have:

UA
0 =

∞∑
t=0

e−rt
[∑
ht

p(ht)Ea,α[uπ(a, θ)− αFA|ht]
]

=
∞∑
t=0

e−rt
[ ∑
ht∈H1

p(ht)Ea,α[uπ(a, θ)− αFA|ht] +
∑

ht∈H0

p(ht)Ea,α[uπ(a, θ)− αFA|ht]
]

≤
∞∑
t=0

e−rt
[ ∑
ht∈H1

p(ht)Ea,α[uAπ (a, 1)− αFA|ht] +
∑

ht∈H0

p(ht)Ea,α[uπ(a, θ)− αFA|ht]
]

<
∞∑
t=0

e−rt
[ ∑
ht∈H1

p(ht)Ea,α[uAπ (a, 1)|ht] +
∑

ht∈H0

p(ht)Ea,α[uπ(a, θ)|ht]
]

≤ uAπ
1− e−r∆

Here, the first inequality is obtained by using the assumption of some
attack intensity delivering a higher utility (ūAπ ≤ uAπ (a, 1)). The second
inequality uses FA > 0 and finally, as these payoffs are reachable a strategy
σA
′ in which ∀ht : α(ht) = 0, these payoffs are lower than the maximal payoffs

that the attacker can get in the benchmark without investments. This, the
attacker has a strictly profitable deviation: A contradiction.

Case 2: Assume that ∀a: ūAπ > uAπ (a, 1), then the policy π is an entente
policy.

Proof: Similarly, assume that there exists an equilibrium in which the
10Here, the attacker’s choice of attack’s intensity when attacks are not detectable has

no impact on the continuation history, therefore, when it is the case he will choice the
same action as in the no investment benchmark
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attacker invests with a strictly positive probability at some history hτ at
time τ . Define by p(ht) to be the probability of reaching the history ht in
the continuation game. The attacker invests at time τ implies that ατ = 1 is
one best response, therefore, we have:

UA(hτ ) =
∞∑
t=0

e−r(t−τ)
[ ∑
ht∈H1

p(ht)Ea,α[uπ(a, θ)− αFA|ht] +
∑

ht∈H0

p(ht)Ea,α[uπ(a, θ)− αFA|ht]
]

= −FA + ūAπ +
∞∑
t=1

e−r(t−τ)
[∑
ht

p(ht)Ea,α[uπ(a, θ)− αFA|ht]

≤ ūAπ
1− e−r∆ − F

A −
∞∑
t=1

e−r(t−τ)
[∑
ht

p(ht)Ea,α[αFA|ht]
]

≤ ūAπ
1− e−r∆ − F

A

<
uAπ

1− e−r∆

Where the first inequality come from using ūAπ > uAπ (a, 1) and the last one is
obtained by using ūAπ

1−e−r∆ −
uAπ

1−e−r∆ > FA. The intuition here is that, as the
attacker gets strictly higher flow payoffs when attacks are not detectable, he
can do no better than keeping his technological advantage forever and get
payoffs of ūAπ

1−e−r∆ − F
A, however, these payoffs are lower than the ones he

can secure by never investing.

Part 2: An equilibrium exists.

Proof: From part 1, we know that an equilibrium exists whenever
ūAπ

1−e−r∆ −
uAπ

1−e−r∆ > FA. When it is not the case, we show that there always
exists a complete hiding equilibrium. By definition of the complete hiding
equilibrium, the attacker always invests whenever θ = 1. Therefore, the
defender’s payoffs are:

UD
0 = max

δ

uDπ
1− e−r∆ −

∞∑
t=0

e−r∆tδtF
D

This leads to δt = 0 for all t. Now, we show that the attacker is in
best response investing following each detection. As not investing at time 0
leads to a continuation game which is the same as the whole game G, we have:
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UA
0 = max

a,α
(1− α)

(
uπ(a, 1) + e−r∆UA

0 ) + α
( ūAπ

1− e−r∆ − F
A
)

This is a linear function of α and α < 0 is a best response only if α = 0 is
also a best response, meaning that:

UA
0 = uAπ (a, 1)

1− e−r∆

≤ uAπ
1− e−r∆

Where the weak inequality comes from the optimality of the attacker’s action
in the no-investment benchmark. However, as ūAπ

1−e−r∆ −
uAπ

1−e−r∆ < FA, we
have a contradiction and therefore, the unique best response for the attacker
is α0 = 1 and we conclude that he is in best response and that whenever
ūAπ

1−e−r∆ −
uAπ

1−e−r∆ < FA, a complete hiding equilibrium exists.

Part 3: If ūAπ
1−e−r∆ −

uAπ
1−e−r∆ < FA, any Markov Perfect Nash equilibrium

under the policy π is either an arms race of a complete hiding equilibrium.

Proof: First note that in part 2, we showed that a complete hiding
equilibrium always exists in this case. Now we will show that if there exists
another other equilibrium, then this equilibrium is an arms race.

Step 1: In any Markov perfect equilibrium which is not a complete
hiding equilibrium, the attacker invests with interior probability at the initial
belief ρ0.
Proof: Assume that the attacker invests with a probability 1 at the initial
belief (α(ρ0) = 1). The best response for the defender is to never invest
which means that this equilibrium is a complete hiding equilibrium: A con-
tradiction.
Similarly, assume that α(ρ0)) = 0, then ρ0 = 1 and for any time t such that
ρt = 1, ρt+∆ = 1, therefore the attacker never invests and gets payoffs of
UA
π . The defender’s best response is to never invest. A strictly profitable
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deviation for the attacker is to set α0 = 1 and get payoffs ŪA
π − FA > UA

π : A
contradiction.
Therefore, in any equilibrium which is not a complete hiding equilibrium,
the attacker invests with an interior probability at belief ρ0.

Step 2: In any equilibrium, which is not a complete hiding equilibrium,
where the attacker invests with probability 1 for some belief ρ∗ 6= ρ0, reached
with strictly positive probability, we have UA

π (ρ∗) ≥ UA
π (ρ0).

Proof: First assume that there exists a belief ρ∗, reacher with a strictly
positive probability, such that the attacker invests with probability 1. ρ∗ is
reached with a strictly positive probability implies that not investing prior to
reaching belief ρ∗ is a best response for the attacker. Therefore, his payoffs
at belief ρ ≥ ρ∗ can be rewritten as follows:

UA(ρt, 1) = uAπ (a, 1)∆ + e−r∆
[
λπ(a)UA

π (ρ0) + (1−λπ(a))UA(ρt+∆, 1)
]
(2.4)

Note first that in any such equilibrium, ūAπ
1−e−r∆ − F

A ≥ UA
π (ρ0). Indeed,

assume not and denote by t∗ the time at which belief ρ∗ is reached if there is
no detection and by Pt = Πt

τ=0λ(a(ρt)) the probability of reaching each time
t. We have:

UA
π (ρ0) = 1

1−∑t∗−∆
τ=0 Pτ

[[ t=t∗−∆∑
t=0

e−rt(Ptu(a(ρt)))
]

+ Pt∗e
−rt∗UA(ρ∗)

]

<
1

1−∑t∗−∆
τ=0 Pτ

[[ t=t∗−∆∑
t=0

e−rt(Ptu(a(ρt)))
]

+ e−rt
∗
UA

0

]

≤ max
at

1
1−∑t∗−∆

τ=0 Pτ

[[ t=t∗−∆∑
t=0

e−rt(Ptu(a(ρt)))
]

+ e−rt
∗
UA

0

]
= uAπ

1− e−r∆

The first equation is just a rewriting of the attacker’s payoff function as
being the sum over t of the utilities he gets once reaching beliefs ρt times the
probability of reaching belief ρt which is Pt. And the term frac11−∑t∗−∆

τ=0 Pτ

comes from the fact that conditional on detection or investment by the de-
fender, the game reboots and the continuation payoffs are UA

0 . The first
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inequality is due to assuming that the attacker’s payoffs are lower at belief
ρ∗. This means that the attacker can get higher payoffs if he could reboot
the game and move back to belief ρ0 whenever belief ρ∗ is reached. The
maximal payoffs he could get in that case are reached without investing and
are therefore weakly lower than uAπ

1−e−r∆ . However, as never investing allows
him for secure at least uAπ

1−e−r∆ , this implies that he has a strictly profitable
deviation: A contradiction. Therefore, UA

π (ρ∗) ≥ UA
0 .

Step 3: In any equilibrium, which is not a complete hiding equilibrium,
where the attacker invests with probability 1 for some belief ρ∗ 6= ρ0, reached
with strictly positive probability, we have UA

π (ρ∗) ≥ UA
π (ρ) for all ρ ≥ ρ∗.

Proof: The proof is similar to step 2. Assume not and that there exists
a belief ρ′, we can construct a strategy which is feasible in which for each
t ≥ t∗, the attacker plays a mixed strategy which follows the same distribu-
tion of actions as the one whhich follows time t(ρ′). This strategy allows
reaching strictly higher payoffs. This strategy is itself weakly dominated by
the strategy of never investing and playing the optimal short term action
which is a contradiction.

Step 4: In any equilibrium, which is not a complete hiding equilibrium,
where the attacker invests with probability 1 for some belief ρ∗ 6= ρ0, reached
with strictly positive probability, the defender invests with a strictly positive
and interior probability at belief ρt∗−∆.
Proof: Consider time t∗ −∆. Assume first that the attacker invests with
probability 1 at belief ρt−∆, the belief ρ∗ is never reached in equilibrium: A
contradiction. Similarly, Assume first that the attacker invests with probabil-
ity 0 at belief ρt−∆, the attacker’s payoffs are:

UA
π (ρt∗−∆) = max

a
u(a)− e−r∆

[
λ(a)UA

π (ρ0) + (1− λ(a))UA(ρt∗ , 1)
]

We have ∀a:
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uAπ (a, 1) + e−r∆
[
λπ(a)UA

π (ρ0) + (1− λπ(a))UA(ρt∗ , 1)
]

≤ uAπ + e−r∆
[
λπ(a)UA

π (ρ0) + (1− λπ(a))UA(ρt∗ , 1)
]

< ūAπ + (1− e−r∆)FA + e−r∆
[
λπ(a)UA

π (ρ0) + (1− λπ(a))UA(ρt∗ , 1)
]
≤ ūAπ + (1− e−r∆)FA + e−r∆UA(ρt∗ , 1)

Investing at time t−∆ provides payoffs of ūAπ+(1−e−r∆)FA+e−r∆UA(ρt∗ , 1)
which implies that the attacker has a strictly profitable deviation and con-
tradicts the definition of ρ∗. Here the first inequality comes from optimality
of uAπ in the stationary technology benchmark and the second one is due to
UA
π < ŪA

π − FA. This implies that in any such an equilibrium, the defender
invests with a strictly positive and interior probability at time t∗ −∆ which
concludes this proof.

Step 5: There exists no equilibrium which is not a complete hiding
equilibrium and in which the attacker invests with probability 1 at some
belief.

Proof: Note consider equation 2.4 and assume that given some contin-
uation payoffs UA

π (ρ0) and UA(ρt+∆, 1), for two attack intensities a and a′

with a > a′ an attack intensity a provides higher payoffs the ones given by
a′. We have:

uAπ (a) + e−r∆UA(ρt+∆, 1) + e−r∆λ(a)
[
UA
π (ρ0)− UA(ρt+∆, 1)

]
≥ uAπ (a′) + e−r∆UA(ρt+∆, 1) + e−r∆λ(a′)

[
UA
π (ρ0)− UA(ρt+∆, 1)

]
This inequality can be rewritten as:

uAπ (a)− uAπ (a′) +
(
λ(a)− λ(a′)

)
e−r∆λ(a)

[
UA
π (ρ0)− UA(ρt+∆, 1)

]
≥ 0

As λ(a) in increasing in a, this implies that for all belief ρ with the associated
time τ(ρ) such that

[
UA
π (ρ0)− UA(ρτ+∆, 1)

]
≥
[
UA
π (ρ0)− UA(ρt+∆, 1)

]
, we
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have:

uAπ (a)− uAπ (a′) +
(
λ(a)− λ(a′)

)
e−r∆λ(a)

[
UA
π (ρ0)− UA(ρτ+∆, 1)

]
≥ 0

This implies that attacker would again prefer the higher action. We also
have from step 3 that ∀ρ : UA

π (ρ) < UA
π (ρ∗). This implies that the lowest

attack intensity is played at time t∗ −∆.
From the defender’s perspective, as she invests at time t∗ −∆ and not after
t∗, we have: UD

π (ρt∗) ≥ UD
π (ρt∗−∆). This implies:

ρuDπ (a(ρ), 1) + (1− ρ)uDπ + e−r∆UD
π (ρ∗)

≤uDπ + e−r∆UD
π (ρ∗)

⇐⇒ uDπ (a(ρ), 1) ≤ uDπ (0)

Not, as ∀ρ : a(ρ) > a(ρt∗−∆), we have:

∀ρ : uDπ (a(ρ), 1) ≤ uDπ (0)

This implies that ∀ρ < ρ∗ : UD
π (ρ) ≤ UD

π (ρt∗−∆). This implies that
UD
π (ρ0)−FD < UD

π (ρt∗−∆) which contradicts investing being a best response
for the defender. Therefore, the unique equilibrium such that the attacker
invests with probability 1 at some belief is the complete hiding equilibrium.
Step 6: Any equilibrium in which not investing is a best response for the
attacker for all beliefs is an arms race equilibrium.
Proof: As never investing is a best response for the attacker, his pay-
offs are UA

π and, by optimality of a∗(1), the attack intensity when attacks
are detectable is the same as the no investment benchmark, therefore, for
any belief, the defender’s payoffs when she does not invest can be rewritten as:

UD(ρ) = ρūDπ + (1− ρ)uDπ + e−r∆UD
π (ρt+∆) (2.5)

This function is strictly increasing in ρ whenever ūDπ > uDπ (See Keller,
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Rady and Cripps (2005).),11, therefore, if there exists a belief such that the
defender invests with a strictly positive probability, she also invests with
probability 1 for all lower beliefs which implies that there exists no history
such that she stops investing and this equilibrium is an arms race.
On the other hand, if ūDπ < uDπ , the defender never invests and the unique
equilibrium is a complete hiding. I conclude that any equilibrium is therefore
either a complete hiding or an arms race equilibrium.

Proof for proposition 2:

Note that in both the complete hiding and the entente equilibrium, this
equivalence is trivial as the state is fixed for all the duration of the game
and (i) both players get similar short term payoffs to the non investment
benchmark and (ii) the defender never invests in equilibrium and (iii) the
attacker’s either never invests if it is an entente policy or invests with proba-
bility 1 and time 0.
Now, assume that the equilibrium is an arms race equilibrium, and denote
by π and π′ two strongly short-term-equivalent policies. Consider any equi-
librium investment probabilities under policy π: α(ρ) and δ(ρ). At reach
time t, each player’s instantaneous payoffs depend only on the state, and
are equal under both policies. Moreover, as the two policies are strongly
short-term-equivalent policies and using the fact that the attacker plays
the myopic attack intensities in any arms race, this implies that playing
any investment probability distribution generate the same probability distri-
butions over investments deliver the same payoffs under policies π and π′.
Finally, as the arrival rate of detections is the same under both policies (
λπ(a∗π) = λπ′(a∗π′)), the expected state given any history is the same under
both policies (equivalently, the law of motion of beliefs given investment
probabilities is the same under both policies), therefore, the expected gains
from investing for player i player j plays a given distribution over investments
is the same over both policies, therefore, απ and δπ are also best responses
against each other under policy π′ which concludes the proof.

11A more explicit computation is provided when proofing step 1 of proposition 3
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Proof for proposition 3:

Step 1: In any arms race equilibrium, investments strategies are in cutoff
strategies with:

α(ρ) =

∈ (0, 1) if ρ = ρ0

0 Otherwise
.

δ(ρ) =

1 if ρ ≤ ρ∗

0 Otherwise
.

Proof: First, note that by proposition 1 step 5, in any arms race equi-
librium, the attacker invests with interior probability at the initial belief ρ0

and from step 6 the attacker’s action is the myopic action.
Now, the defender’s payoffs are:

UD(ρ) = δUD + (1− δ)
[
ρūDπ + (1− ρ)uDπ + e−r∆UD

π (ρt+∆)
]

(2.6)

For any belief ρ∗ such that the defender invests,
Now, denote by σ′ the strategy which consists of playing a′(ρ) = a(ρ)

and α′(ρ) = 0 the strategy which consists of never investing and playing the
same attack intensity as under the equilibrium strategy. From step 4, σ′ is
a best response as not investing is a best response for all beliefs under the
equilibrium strategy. This strategy delivers payoffs U ′(ρ) such that:

∀ρ : U ′(ρ) ≤ u(a∗)−ma∗S
1− e−r∆

Where a∗ solves (u′)−1(a∗) = mS. This implies that UA
0 = u(a∗)−ma∗S

1−e−r∆ .
Moreover, as the upper bound on the right hand side is uniquely reached
through a stationary attack intensity a∗, we obtain ∀ρ : a(ρ, 1) = a∗.
Now, the defender’s value function at time t can be rewritten as:

UD
t = −h(ρa∗+(1−ρ))∆+max

δ
e−r∆

[
δ(UD

0 −FD)+(1− δ)E[UD
t+∆]

]
(2.7)

This problem is analogical to the one player version of Keller et. al
(2005). Investing (δt = 1) delivers payoffs that are independent from period
t’s state, therefore, it plays a similar role as pulling the safe arm, whereas not
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investing means that the defender continues experimenting and gets payoffs
that depend on period t’s: Investments play therefore the same role as pulling
the risky arm in K.R.C. The payoff function in 2.8 is monotonically decreasing
in ρ, therefore, the defender’s strategy is a cutoff strategy (as ∀ρ, ρ′ with
ρ′ < ρ : UD(ρ) < UD(ρ0)− FD =⇒ UD(ρ′) < UD(ρ0)− FD). Therefore, as

∆ goes to zero, in any arms race equilibrium: δ(ρ) =

1 if ρ ≤ ρ∗

0 Otherwise
.

Finally, the difference between the attacker’s payoffs as a function of states is

UA(ρ, 0)− UA(ρ, 1) =
t∗∑

τ=t(ρ)
e−r(τ−t(ρ)(u(1)− u(a∗))∆

This function is strictly decreasing in t(ρ), therefore, either the attacker
never invests or invests at the beginning of the cycle which concludes our
proof.

Part 2: Equilibrium characterization:

Step 1: The equilibrium attack intensities are: a(ρ, θ) =

1 if θ = 1

a∗ Otherwise

Proof: See step 4 in part 1.

Step 2: The length of the cycle is tA = 1
r
ln(1 + rFA

u(1)−u(a∗)+rmS−rFA )
Proof: From part 1, we have α(ρ0) ∈ (0, 1). Denote by tA the period at which
the defender invests. For the attacker to be in best response, it has to be that:
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t∗∑
τ=0

e−rτu(a∗)∆ = −FA +
t∗∑
τ=0

e−rτu(1)∆

⇐⇒
t∗∑
τ=0

e−rτ (u(1)− u(a∗))∆ = FA

⇐⇒ FA =
[
u(1)− u(a∗)

]
∆1− e−rt∗

1− e−r∆

⇐⇒ e−rt
∗ = 1− FA(1− e−r∆)

(u(1)− u(a∗))∆

⇐⇒ t∗ = 1
r
ln
( (u(1)− u(a∗))∆

(u(1)− u(a∗))∆− FA(1− e−r∆)
)

= 1
r
ln
(
1− FA(1− e−r∆)

(u(1)− u(a∗))∆− FA(1− e−r∆)
)

Step 2: The defender’s stopping belief satisfies:
Proof: Consider any belief ρ ∈ (ρ∗, ρ0). In this belief, the defender does not
invest and her value function evolves according to:

UD
t = −h(ρa∗ + (1− ρ))∆ +max

δ
e−r∆E[UD

t+∆]
]

(2.8)

Using 1− r∆ as a limit for e−r∆ when delta goes to 0, I follow Keller et
al., I rewrite the value function in equation 2.8 as:12

rUD(ρ) = −h(ρa∗ + (1− ρ)) + amρ
[
U0 − UD(ρ)− (1− ρ)UD ′(ρ)

]
The general solution to this differential equation is:

UD(ρ) = −h
r

+ ρ

r + a∗m
(h(1− a∗) + a∗mUD

0 ) + C(1− ρ)( ρ

1− ρ)− r
a∗m

12as step 2 boils down to an adaptation of the cooperative problem in Keller et al., some
parts of the proof will be skipped and I refer the interested reader to that paper for a
more detailed proof
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Finally, using value matching (UD
0 = UD(ρ∗) +FA), we solve for C and have:

C = 1
1− ρ∗

( ρ∗

1− ρ∗
) r
a∗m

[h
r

+ UD
0 − FD

]
−
( ρ∗

1− ρ∗
)1+ r

a∗m 1
r + am

(
h(1− a∗) + a∗mUD

0

)
= 1

1− ρ∗
( ρ∗

1− ρ∗
) r
a∗m

[(h
r

+ UD
0 − FD

)
− ρ∗

(
h(1− a∗) + a∗mUD

0

)]
We finally get, given ρ∗ and UD

0 :

UD(ρ) = −h
r

+ ρ

r + a∗m
(h(1− a∗) + a∗mUD

0 )

+ 1− ρ
1− ρ∗

( ρ∗

1−ρ∗
ρ

1−ρ

) r
a∗m

[(h
r

+ UD
0 − FD

)
− ρ∗

(
h(1− a∗) + a∗mUD

0

)]
Finally, we use UD

0 as being a fixed point for this equation and smooth
pasting, we have:

U(ρ∗) = 1
r + a∗mρ∗

[
− h(ρ∗a∗ + (1− ρ∗)) + a∗mρ∗UD

0

]
= UD

0 −
1

r + a∗mρ∗

[
h(ρ∗a∗ + (1− ρ∗)) + rUD

0

]

Finally, using simple algebra we derive ρ∗(ρ0) described in proposition 2.

Part 3: Existence
Proof: (to be completed) The proof is structured as follows: First, I assume
that there exists some FD such that an arms race equilibrium exists for some
tA.
Step 1: We show that for all tA′ > tA, an arms race equilibrium exists,
therefore, the set of lengths of the cycle that can be supported as an arms
race equibrlium is compact.
Step 2: using the fact that the defender’s payoffs are continuous and increasing
in ρ0, we show that for all ρ0, and all FD ′ = FD UD

0 − FD > 0, UD
0 − FD >
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0 =⇒ UD
0 − FD ′ > 0, therefore, the set of lengths of the cycle that are

supported under FD ′ is bigger which concludes the proof.
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Chapter 3

Ressource allocation in the
presence of moral hazard and
endogenous adverse selection
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Abstract

A principal wants to develop a new product by delegating its production
to an agent. Production is dichotomic and stochastic. The agent allocates
resources between a task that yields direct production and a task that
increases his productivity. Increasing productivity makes effort more costly.
We show that when the resource allocation is non-observable, the agent’s
final productivity in the contract proposed by the principal is lower than
the optimal one. In this setting, raising bonuses encourages both effort and
increases in productivity, as a result, compared to a benchmark in which the
allocation is observable, the principal has incentives to reduce the bonus due
to the agent being less productive and incentives to increase the bonus to
encourage him to increase his productivity. The main result of our paper
shows that, when both the initial productivity and the cost of increasing
productivity are small, this leads to higher bonuses than the full observability
benchmark.



3.1. Introduction

One of the key drivers of a firm’s productivity is the choice of how to
allocate resources between different activities. This allocation is often decided
or recommended by workers who have superior information about either
the firm’s/project needs or an ability to monitor how resources are being
used. For instance, workers decide the share of time they spend exerting
productive effort and the one they spend on on-the-job learning to increase
their productivity in an unobservable way. Similarly, in the context of product
development, teams of workers carry the R&D programs and decides how to
allocate their time and effort between market studies to improve knowledge
about consumer’s preferences and product development. In both examples,
the agent’s final productivity is both endogenous and unobservable. However,
the source of the final asymmetry of information is different: In the first
example, the resource allocation is taken under moral hazard as the top
management and the owners lack the ability to monitor the worker’s learning.
In the second example, there is adverse selection as they do not observe part
of the relevant information for decision making.

Once the resource allocation is determined, firms face the standard
moral hazard which is inherent to risky production environments. Resource
allocation shapes the intensity of this problem because it determines both the
productivity of effort and its cost. This situation can create some tensions
between the firms and their workers as both players share the benefits of
success, whereas the workers privately supports any potential increases in
the cost of effort. These tensions lead to misalignment of incentives, which,
combined with the asymmetries of information in the resource allocation
problem can lead to contractual distortions. This paper contributes to the
literature by studying the source of misalignment of incentives in terms of
resource allocation and how the nature of the asymmetries of information
shapes the contractual distortions.

In order to fix ideas, consider, for instance, a company that wants to
develop a new product: the agent carries out “exploratory tasks” such as
market analysis, studying the consumer’s needs, identifying potential targets,
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studying the competition, etc. that aim at identifying the components of
the product that should be improved. Following this exploratory phase,
the agent performs “implementation tasks” to develop the product and
introduce it to the market. Launching the new product successfully depends
on the combination of both tasks. However, the principal only observes
the success or failure without observing how time was allocated between
tasks. In this situation, exploratory tasks help at making implementation
effort better targeted, and they can be interpreted as tasks that improve
the project-specific productivity of the agent which are shared between the
two players; however, when the tasks allocation is not observable, the cost is
supported by the agent only. In other words, upon observing a failure/success
of production, the principal cannot observe if such was the aftermath of
insufficient/sufficient R&D.

In this paper, we study these questions in a principal-agent model where
one agent takes charge of a risky project and has two tasks to perform. The
first task is a costly choice of effort that increases the probability of success
of the project, whereas the second task is an exploration task that has an
impact on the agent’s productivity and increases the likelihood of success
for each given level of effort. The principal either observes the agent’s initial
productivity (subsection 3.1) or the chosen resource allocation (subsection
3.2) and designs a contract that consists of transfers given the success or
failure of the projects and the observed variable. Finally, then the agent
chooses how to allocate a perfectly divisible unit of time between the two
tasks and the amount of productive effort he exerts during the designated
time.

When the resource allocation is not observable, for any level of bonus, the
agent exerts under-allocates resources to increasing his productivity compared
to the principal’s preferred allocation (proposition 1). The intuition behind
this result is that both players benefit from the total increase in the probability
of success while potential increases in the total cost are privately supported
by the agent. More specifically, the principal’s favorite allocation is the one
which maximizes the probability of success given the level of bonus, however,
as increasing the productivity affects the cost of infra-marginal unites of
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effort, the agent’s cost increases. This later effect is not taken into account
by the principal.

Due to this misalignment of incentives, increasing the levels of bonuses
have two effects on the agent’s: A "performance effect" which makes him, given
the resource allocation, increase his effort and generate higher probabilities of
success. This effect is the standard one in the moral hazard literature. The
second effect is a "productivity effect" which leads the agent to have incentives
which are closer to the principal’s interest and allocate more resources to
increasing the productivity. This implies that empirical measure of bonuses
reflect both the agent’s incentives to exert effort and their incentives to
allocate time to increasing their productivity. Interestingly, in applications
such as on-the-job learning, while the first effect is specific to the period
in which bonuses are high, the second effect can be impacted by promised
future bonus, as workers can have incentives to smooth their learning.

In the baseline model, proposition 2 compares bonuses under unobservable
allocations to ones in a benchmark in which the principal observes both the
initial productivity and the resource allocation. Compared to the benchmark,
the principal has incentive to reduce the bonus given that the agent has a
lower productivity and an incentive to increase the bonus as higher bonuses
increase the agent’s incentives to increase his productivity. The total effect
depends on which of the two forces dominate and we show that, when the
effect of increasing the productivity on the cost of the infra-marginal units is
low, the second effect dominates and the agent receives higher bonuses. On
the other hand, when the cost effect is high, providing incentive to the agent
to learn becomes more costly and the principal prefers reducing the bonus.

This result can be reinterpreted through the lens of the worker’s ability
to learn. When this ability is high, the worker is a fast learner and small
increases in the bonus create high incentives to improve his productivity.
This situation creates high incentives to the principal to increase the bonus
and lead to higher bonuses. On the other hand, when facing slow learners,
the principal cannot benefit much from the learning effect, therefore, she has
incentives to reduce the bonus as she faces less productive types compared to
the benchmark. Extending the results to settings in which there is asymmetric
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information about the "learning type" can be interesting and will be left to
future work.

Finally, our last set of results analyse a setting in which the initial
productivity is the agent’s private information, however, the allocation is
observable to the principal. This corresponds to environments such as
allocating workers to tasks in which the manager has superior information
about the project’s needs but not about the role of each worker. In this
situation, we show that when higher allocations are sufficiently costly, the
principal can ignore the moral hazard problem and propose the same contracts
as when both the allocation and the type are observable. This result is due
to the fact that low types are too unproductive to accept a contract with
low ex-post productivity whereas high types face a sufficiently high cost of
mimicking a wasteful allocation.

Related literature. This paper contributes to the literature that studies
multitasking (see Dewatripont et al. (1999) for a survey and Holmstrom and
Milgrom (1991) for a seminal work). In that vein, the closest contribution is
found in the work of Mukherjee and Vasconcelos (2011), who study optimal
job design in a multitasking environment when the firms use implicit contracts.
Crucially, in their setting, the two tasks available to the agents are assumed
to be independent, as opposed to our canonical setting, in which one of the
tasks determines the productivity of the other one.

Our work also relates to he literature that studies simultaneous adverse
selection and moral hazard. In particular, Gottlieb and Moreira (2017) show
that in this environment, under a multiplicative separability condition, the
optimal mechanism offers a single contract. Guesnerie et al. (1989) show
that in most cases, the moral hazard aspect does not entail welfare losses
compared to the pure adverse selection case. Other notable contributions in
that direction were made by Sung (2005), Ma (1991), and Ollier and Thomas
(2013).

In terms of economic applications, the model adds to the literature that
studies human capital formation in firms. The seminal contribution is found
in Becker (1964), which has been extensively studied in the literature on
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Labour Economics (see Leuven (2005) for a review). Related to our problem:
Acemoglu and Pischke (1998) study a model in which the superior information
of the current employer regarding its employees’ abilities relative to other
firms creates ex-post monopsony power, and encourages this employer to
provide and pay for training, even if these skills are general, and Schlicht
(1996) presents a model of moral hazard in which the trainee can form
an opinion about the amount of on-the-job training only after training is
completed, this creates a possibility for the firm to offer less training and
make extra profit.

3.2. The model

The production problem. Consider a model where one principal (she)
interacts with one agent (he) and can commit to a contingent wage schedule
for each outcome. The principal wants to produce a good which gives her
a value v ∈ [0, 1]. The agent has a publicly known initial productivity
θ0 ∈ {θL, θH} with respective probabilities p and 1− p, with p ∈ [0, 1]. We
set 0 < θL < θH He has two decision variables: a choice of total effort
(henceforth, just "effort") e ∈ [0, 1] and choice of resource allocation α ∈ [0, 1].
Resources can be allocated to one of two tasks: A share α is allocated by
the agent to a task that increases his productivity (e.g learning, investments,
etc.), and a share 1 − α is allocated to production that directly generates
output.

Exploration is assumed to be costless, however, it affects the cost of
exerting. Set C(α, e) to be the cost of exerting effort e and allocating a share
of resources α to increasing productivity. We set the cost function to be
quadratic in effort e and allocation α:

C(e, α) = γα2e+ e2

2 . (3.1)

Here, γ > 0 captures the intensity of complementarity between the resource
allocation and the effort in the agent’s cost. Production is stochastic and
an effort-resource allocation scheme (α, e) leads to success with probabil-
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ity φ(α, e, θ0). we assume that in addition to its effect on costs, resource
allocation affects the probability of success in production and set:

φ(α, e, θ0) = max{1, (θ0 + α)}e. (3.2)

We interpret the problem as the one of a firm delegating product de-
velopment to the agent. The agent has an initial knowledge θ0 about the
product components which are relevant to the consumers. He decides the
proportion of time/workers α to dedicate to market analysis to increase
this knowledge. The rest of his time/workers is dedicated to developing the
product. A trade-off arises as exerting a given amount of effort in less time
or with fewer resources increases the cost for the agent. The agent’s choice of
learning trades off the encouragement effect due to the agent being more
productive with the discouragement effect due to effort being more costly.
However, as the benefits from a higher probability of success are shared
between the principal and the agent while the cost is privately supported
by the latter, disagreement regarding resource allocation can emerge. The
objective of this paper is to study when players "disagree" in terms of resource
allocation as well as the contractual implications of this disagreement.

Observability of α. Both the agent’s initial productivity θ0 and her
choice of effort e are unobservable to the principal. However, she can observes
a signal α̂ ∈ Â about the resource allocation α. We will study both the
extreme cases of perfect observability (α̂ = α) and perfect non-observability
(α̂ independent from α).

The payoffs. We assume both players to be risk-neutral and denote by
s ∈ {0, 1} a variable which takes a value s = 1 when production succeeds
and s = 0 otherwise. Finally, we denote by T ∈ R any realized transfer from
the principal to the agent. For any given outcome s and transfer T , the
principal gets payoffs:

UP = sv − T.
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Similarly, the agent obtains payoffs:

UA = T − C(e, α).

The mechanism design problem. Without loss of generality, we
restrict attention to direct mechanisms and normalize the agent’s outside
option to 0. A direct mechanism in this environment is a choice of transfers
T as a function of the agent’s report about his type θ, outcomes, and the
signal α̂ :

T : Θ× s× [0, 1]→ R

We assume that the agent has limited liability. Therefore, a feasible
allocation satisfies, in addition to this constraint, the standard incentive
compatibility and participation constraints. Denote by α(θ) the process
allocated to type θ, a mechanism is feasible if and only if for all θ, θ̂, α, we
have:

max
α,e

Es,α̂

[
T (α̂, s, θ)− C(α, e, θ)

]
≥ max

α,e
Es,α̂

[
T (α̂, s, θ̂)− c(α, e, θ)

]
(3.3)

max
α,e

Es,α̂

[
T (α̂, s, θ)− C(α, e, θ)

]
≥ 0 (3.4)

∀s : T (α̂, s, θ) ≥ 0. (3.5)

Where 3.3, 3.4 and 3.5 are the standard incentive compatibility, participation
and limited liability constraints respectively As the principal observes only
reports, α̂ and realizations of production, by standard arguments, we obtain
the following lemma that asserts the generalizability of linear contracts for
our setting.

Lemma 2. Linear contracts Any feasible mechanism has a payoff equiva-
lent mechanism which consists of a fixed fee F (θ, α̂) and a bonus b(θ, α̂) in
case of success.

From here on, we will restrict attention to linear contracts and denote by
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(F, b) the mechanism which consists of a fixed fee F and a bonus b.

The timing. The timing of the game is as follows.

Stage 1: nature draws the agent’s type from a distribution with a CDF
F . This type is privately observed by the agent.

Stage 2: the principal offers a menu of contracts (F, b)θ

Stage 3: the agent reports her type and chooses a contract.

Stage 4: the agent chooses a production process and effort level e and
the principal observes α̂.

Stage 5: the production outcome is realized and the agent is paid
according to the chosen mechanism.

3.3. The equilibrium

In this section, we identify the type of misalignment of incentives in
resource allocation that arises between the principal and the agent. For this
purpose, we find it convenient to compare the equilibrium allocation to a
benchmark in which θ0 and α are publicly observable and which implements,
in equilibrium, the principal’s preferred allocation. We redefine the problem
as one in which the agent directly chooses the probability of success φ and
the resource allocation α. Denote by C(α, φ, θ) the cost of this probability of
success. Hence:

C(α, φ, θ0) = γα2

θ0 + α
φ+ 1

(θ0 + α)2
φ2

2 .

Given the contract proposed to each type θ̂, the agent maximises:

max
α,θ̂,φ

F (θ̂ + φb(θ̂)− C(α, φ, θ). (3.6)
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Conditional on the report θ̂ and the choice of allocation α, the probability of
success φ∗(θ, θ0, α) that solves the above maximization problem is given by:

φ∗(θ, θ0, α) = max{0, (b(θ0 + α)− γα2)(θ0 + α)} (3.7)

If the principal could observe both θ0 and the allocation α, the problem
boils down to a standard moral hazard problem in which α maximizes 3.7
and in which the principal’s objective is to provide optimal incentives for
the agent to exert effort. This choice of allocation is meant to reduce the
intensity of moral hazard and make it easier to provide incentives to the agent
whose marginal cost is lower. An incentive problem arises when the agent
chooses α in an unobservable way. This can be explained in two ways: (i)
whereas the principal makes his choice to "soften" the moral hazard problem
related to effort, the agent does not have such concerns moreover, (ii) the
benefits derived from the agent being more productive (lower marginal cost)
are shared, whereas the cost of such gains is supported only by the agent
who has to produce with less available resources.

On the other hand, when α is observable but the agent who has private
information about her initial productivity has incentives to over-report his
type so that he can induce fewer resources to be allocated to the support task.
The objective of this section is to analyze these effects and the contractual
distortions which can emerge depending on whether the agent’s private
information about her final productivity (θ0 + α) results from and ex-ante
private information about θ0, a moral hazard problem due to unobservable
allocation α or both.

3.3.1. Benchmark: Observable productivity and allocation

When both the agent’s productivity and his chosen allocation are observ-
able, the principal can implement her preferred allocation and the problem
boils down to a standard moral hazard on effort. In this case, the optimal
contract can be implemented through a bonus and a choice of allocation
which solves:
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Proposition 11. When both the productivity and the allocation are observ-
able, the optimal mechanism implements an allocation αB = min{ v2γ , 1} and
payments in case of success are bB = v

2 + γ(αB)2

2(θ+αB)

First, note that this allocation proposed different bonuses to different
types. This is due to learning changing both the marginal and the total cost
for the agent which implies that the problem that the principal faces changes
with the allocation. When the agent’s initial productivity is maximal, the
problem is a standard moral hazard problem and the bonus is b = v

2 .

For types such that the principal implements an allocation which increases
the productivity, the bonus is increasing in the allocation which means that,
in equilibrium, both the benefits, in terms of a higher probability of suc-
cess, and the cost of a higher allocation are shared between the two players.
However, this relies on observability of both α and θ. In many economic
settings, this is not guaranteed, and the rest of this section will be dedicated
to studying the contractual distortions which can emerge due to asymmetric
information.

3.3.2. No ex-ante private information setting:

In economic settings like product development, or more generally, ones
involving vertical relations in firms, it is often the case that initial productivity
is common knowledge as the new "project" is commonly developed by the
principal and the agent before the later benefits from delegation of decision
making. This situation makes the ex-post asymmetries of information fully
depend on the choice of resource allocation. We first study this type of
environments and identify the type of misalignment of incentives in this
allocation that can emerge and its contractual implications.

Formally, we consider a situation in which the agent’s type in known to
the principal (equivalently, we set p ∈ {0, 1}). By standard arguments, in
this case, the optimal contract is equivalent to a choice of bonus in case of
success and for any bonus b ∈ (0, v), we have:
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Proposition 12. Misalignment of incentive

For any level of bonus b ∈ (0, v), there exists an initial productivity level θ∗

such that (i) the agent under-allocates resources to increasing productivity for
all θ < θ∗ and (ii) the agent reaches maximal ex-post productivity otherwise:
for all θ ≥ θ∗: (θ0 + α = 1).

Proof: This result can be show using the agent’s first order condition
with respect of the probability of success (equation 3.7). Plugging this
probability into his maximisation problem and solving for the equilibrium
choice of allocation α leads to:

αA = max{1− θ0,
b

2γ } (3.8)

Now, in order to compare this value with the principal’s preferred allo-
cation, note first that the principal’s problem is linear in the probability of
success φ and that for any bonus b ∈ (0, v), it is strictly increasing in this
probability. Therefore, the principal’s preferred allocation is the one which
maximizes the probability of success φ given the bonus b. Differentiating
equation 3.7 with respect to α leads to:

∂φ

∂α
= 2(b− γα)(θ0 + α)− γα2. (3.9)

This equation can be rewritten as:

∂φ

∂α
= 2(b− 2γα)(θ0 + α) + γα2 + 2γαθ0. (3.10)

Evaluated at any α ≤ αA, this derivative is strictly positive which implies
that the principal strictly prefers allocating more resources to the support
task. Finally, this implies that whenever the agent’s ex-post productivity is
not maximal, we have α ∈ [0, 1− θ] which concludes the proof.

Economic intuitions and contractual implications. The intuition
behind this result is that in this type of environment, bonuses are a way to
share benefits from success between the principal and the agent, however,
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whereas (i) both players gain from higher probabilities of success, (ii) only
the agent pays for the cost. More specifically, (i) implies that the principal’s
preferred allocation is the one for which the probability of success is the
highest. As a result, she prefers more resources to be allocated to increasing
productivity whenever this reduces the cost of the marginal unit. However,
as this higher allocation leads also to an increase in the cost of infra-marginal
units, this might not be in the interest of the agent.

This later effect is captured by the fact that the cost function is, given α,
supermodular in (α, e) for low probabilities of success and submodular for
high probabilities. This implies that the cost of the first units of φ strictly
increases in α. This later effect is not taken into account by the principal
when he observes both the type and the allocation.

In terms of contracting, as opposed to a benchmark in which both α and
θ0 are observable, changing bonuses has an impact not only on effort but also
on the resource allocation, therefore, to assess the contractual implications
of this misalignment of incentives, first not that it is straightforward from
equation 3.8 that:

Corollary 2. The resources allocated to the support task α are either maximal
or strictly increasing in b and strictly decreasing in γ.

As a result, increasing bonuses has two effects on the agent’s incentives:
First, for any resource allocation, it provides incentives to provide higher
levels of effort: This effect is the standard one in moral hazard settings.
The second effect of higher bonuses is that they affect incentives to increase
productivity: This later effect is absent in the case of pure moral hazard
benchmark, we have:

Proposition 13. Optimal contract There exists θ∗ such that, compared
to the observable type and allocation benchmark:
The bonus is strictly lower than the one in the benchmark for all θ > θ∗.
If θ < θ∗, we have:

• If γ < γ∗: The bonus is strictly higher than the one in the benchmark
whenever the latter does not implement maximal ex-post productivity
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• If γ > γ∗: The bonus is strictly lower than the one in the benchmark
whenever the latter does not implement maximal ex-post productivity

Proof: (See appendix)

The intuition behind this result is that, as opposed to the benchmark
case, the fact that the agent decides the resource allocation has two effects
on the principal’s incentive to increase the bonus: First, because the agent is,
in equilibrium, less productive, the marginal effect of higher bonuses on the
agent’s effort is smaller which reduces the principal’s incentives to provide
high bonuses. The second effect is related to the result in proposition 1
as higher bonuses not only lead to an increase in effort but also lead the
agent to increase his productivity. The total effect of increasing the bonus is
ambiguous and depends on which of the two effects dominate.

Proposition 2 links these effects to the complementarity between learning
and effort in the cost function. When learning leads to a high increase in the
cost (high γ), higher bonuses provide very small incentives to increase the
productivity which makes the principal’s optimal bonus smaller than in the
benchmark case: In this situation, the effect of lower productivity dominates.
In the opposite case, when γ is small, the agent react to high bonuses by a
big increase in his productivity, therefore, bonuses end up being higher than
in the benchmark case in order to provide incentives to increase productivity.

Finally, the initial productivity determines the cost of providing additional
incentives to the agent. When θ is sufficiently high, it becomes more costly
to provide incentives to increase productivity as it requires higher rewards
for all infra-marginal effort units (and probabilities of success), therefore, in
this case, the principal always reduces bonuses compared to the benchmark.

Discussion and empirical implications. The contractual distortion
discussed above has at least three empirical implications. First, it predicts
that for similar tasks, the moral hazard is more intense when it is accom-
panied by unobservable decision making: This is the main driver of higher
bonuses. As a result, when comparing bonuses for similar jobs, it predicts
that industries or firms in which management cannot assess the quality of
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decision making and can only evaluate results should be the ones in which
the bonuses are higher. This aspect can be relevant when comparing firms in
which managers/ supervisors have either the same or different backgrounds
from the decision-maker as in this situation, not only outcomes but also
decisions can be observed.

A second implication is related to the evolution of human capital in
industries. As on-the-job learning can be interpreted as allocating resources
(or time) between different tasks, insights from this section can be used to
analyze how its incentives evolve inside organizations. As the model predicts
that bonuses lead incentives to learn to increase, one should expect that
higher bonuses affect not only production (a performance effect) but lead
workers to dedicate more time to increase their productivity (a productivity
effect). These effects are especially relevant when studying the effect of future
increases or short term increases in bonuses.

Finally, as the resource allocation is affected by the bonus, the model
suggests that observed bonuses reflect not only the riskiness and the intensity
of the moral hazard problem given technologies and resource allocations
or other determinants of workers’ productivity but also the fact that these
bonuses can be increased to shape this productivity.

3.3.3. An adverse selection setting

In many environments, investments in increasing productivity can be
publicly observed. Firms observe whether workers participated and validated
a training program, stakeholders observe the amount of investments which
was allocated to increasing productivity etc. In these environments, the
resource allocation can be observed, however, the principal lakes information
about the initial productivity which means that assigning the right resource
allocation to each agent type can be challenging and requires understanding
the inherent adverse selection problem.

To study this interactions, we set the signal about the allocation to be
α̂ = α, meaning that the allocation is publicly observable, and set p ∈ (0, 1).
To simplify the analysis, we first provide the necessary optimality and
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feasibility conditions for any contract and we assume that θH = 1. This
assumption is not necessary for our results, however, it simplifies the analysis
and makes comparative statics easier to derive.

First, note that as α is observable, the optimal contract is similar to the
one in which a mechanism is a choice of α, a bonus b and a fixed fee F as a
function of the agent’s type. Denotes by (αθ, Fθ, bθ) any such a contract. We
have:

Proposition 14. Implementability of the benchmark allocation: The
benchmark allocation is implementable for each type if and only if θL ≥ γ−v

2γ

Proof: (see appendix)

Proposition 3 allows identifying parameters such that the adverse selec-
tion can be ignored. In order to provide intuition, we find it necessary to first
describe the benchmark allocation. If both α and θ are observable, the prin-
cipal’s optimal allocation and bonus satisfy (bL, bH , αL) = (v2 + γα2

L

2(θ+α ,
v
2 ,

v
2γ ).

First, note that when the principal proposes the benchmark allocations,
the high type’s trade-off is between higher bonuses provided to low types and
the cost of a wasteful allocation. First, the difference in bonuses is decreasing
in γ which means that higher costs of increasing productivity makes the
principal implement a lower α and therefore, provide a lower bonus to the
low type. This makes the high type less keen to mimic. Moreover, as γ
increases, it becomes more costly for the high type to mimic the low type
due to the increase in his cost of effort.

These effects are captured by the fact that the high type’s incentive
constraint is easier to satisfy when raising productivity is costly. Now, fixing
the cost of increasing the productivity γ, the bonus provided to the low type
is increasing in his initial productivity. This implies that if θL is too low,
the benchmark allocation provides a bonus which is high enough for the
high type’s incentive constraint to be violated. Similar effects drive type
θL’s incentives with the exception that, while both types share the same
cost effect of higher allocation, only the low type gains in productivity. This
aspect makes his incentive constraint easier to satisfy.
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Discussion and extension to unobservable initial productivity
and hidden action: As the misalignment of incentives in terms of resource
allocation is independent of the observability of types, the results provided
in the unobservable allocation setting extend naturally to a setting in which
types are nonobservable. When the principal does not observe types, nor
allocation, she can only increase bonuses in case of success.

Now, these bonuses can be increased in order to provide incentives to
the agent of type θL to implement a higher allocation, however, as opposed
to proposition 2, another cost appears in the principal’s objective function
which related to the fact that increasing the bonus leads to a sub-optimal
contract also for the high type. This effect pushed bonuses (and allocation)
down compared to the no-ex-ante asymmetric information setting. This effect
will be stronger if the agent is more likely to be of a high type, therefore,
one can expect changes in distributions towards a higher frequency of high
types to lead to lower bonuses and less learning both because the optimal
bonuses for these types are lower and because the effect on allocations is
more limited.

3.4. Conclusion

In this paper, we study the problem of resource allocation in organizations.
An agent makes, in addition to his unobservable choice of effort, a choice of
resource allocation which affects his productivity: A higher allocation raises
both productivity of effort and its cost. This situation creates misalignment
of incentives between the two players and we show that the agent’s ex-post
productivity is either maximal (when the initial productivity is sufficiently
high) or sub-optimal from the principal’s perspective. This result is due to
the principal preferring allocations which reduce the marginal cost of effort
evaluated at the agent’s optimum whereas the agent takes into account the
effect on infra-marginal units of efforts.

This misalignment of incentives leads to contractual distortions which
depend qualitatively on the cost of increasing the allocation. When this
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cost is high, the principal provides a bonus which is lower than the one in a
benchmark in which the allocation is public knowledge. When the cost is
low, increasing the bonus induces the agent to invest more in his productivity
as he exerts a higher effort which leads to higher equilibrium bonuses. This
later aspect has empirical implications in labor economics: First, bonuses
are not only reflecting the (marginal) intensity moral hazard problem given
the productivity of workers but also the fact that their private decisions such
as learning affect this intensity. Moreover, this implies that a short term
increase in bonuses can have a long term effect on output. This prediction
is due to the fact that, in addition to their higher effort, workers can spend
more time learning and, in a dynamic setting, have higher future output.
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3.5. Appendix:

Proof of proposition 2:

The principal’s problem is:

max
b
φ(b)(v − b).

When both the initial productivity and the resource allocation are observ-
able, the optimal contract is similar to a case in which the principal directly
chooses α, the first-order condition of his maximization problem with respect
to the bonus is:

∂φ

∂b
(v − b)− φ = 0

However, when α is non-observable, bonuses affect both the resource
allocation and the choice of effort. In this case, the optimal bonus satisfies:

(∂φ
∂b

+ ∂φ

∂α

∂α

∂b
)(v − b)− φ.

To proof the proposition, it is sufficient to show that for all bonuses which
are lower than the optimal bonus in the benchmark case, the payoffs of the
principal are strictly increasing in b or low γ and strictly decreasing otherwise.
We do that in three steps: First, we show that the first order condition is
a necessary and sufficient optimality condition, then, we show that for all
bonuses which are lower than the argmax of equation 3.5, the difference
between the first order derivatives with respect to bonuses of the principal’s
objective function and the one in the benchmark case is monotone. Finally,
we conclude the proof by showing that the sign of this derivative is positive
for low γ and negative otherwise.

Step 1: The first order condition is a necessary and sufficient
optimality condition:

Note first that the third order derivative of the principal’s objective
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function with respect to b can be written as:

d3UP

db3 = 3v − 12b− 18γθ0

4γ2

This equation is positive when b < 3v−18γθ0
12 and negative otherwise. This

implies that the second order derivative is concave and single peaked when
b = v−6γθ0

4 . This implies that the second order derivative reaches its maximum
when b ≤ v if v ≥ v−6γθ0

4 and when b ≥ v if v ≤ v−6γθ0
4 . Using the fact that

any feasible and optimal bonus is such that b ∈ [0, 1], it is straightforward to
show that the derivative when b = v is sufficient for showing the result we
want to show.

Case 1: v ≤ v−6γθ0
4

In this case, the second order derivative is increasing in the bonus b for
all b ∈ [0, v]. Therefore, in this interval, it is maximized at b = v and the
maximum is:

∂2UP

∂b2 (1) = −3v2 + 12γθv + 8γ2θ2

4γ2 < 0

This implies that ∀b < v, we have: ∂2UP

∂b2
< 0 and the principal’s objective

function is strictly concave in b for any b ∈ [0, 1] and the first order condition
is a sufficient optimality condition.

Case 2: v ≥ v−6γθ0
4

In this case, the second order derivative is decreasing in the bonus b. Therefore,
in the interval [0, v], it is maximized at b = 0. We can identify two cases:
First, for parameters such that this derivative is negative, we conclude that
the objective function is strictly concave and the first order condition is a
sufficient optimality condition.

In the second case, if ∂2UP

∂b2
(0) > 0, we know that this derivative is

continuous, therefore, using the fact that ∂2UP

∂b2
(1) < 0, we know that there

exists b∗ ∈ [0, v] such that the d2UP

db2
> 0 when b < b∗ and d2UP

db2
< 0 otherwise.

This implies that the principal’s objective function is increasing and convex
in b when b < b∗ and concave in the interval b > b∗. As a result, using the
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fact that the first order derivative is positive at b = 0, we know that ∀b < b∗,
∂UP

∂b
> 0. This implies that in this case, the optimal bonus is b ≥ b∗ which

implies that either the optimal bonus is b = v or the first order condition is
sufficient.

Necessity: Now, using the fact that the first order derivative is strictly
positive when b = 0 and strictly negative when b = v, we know that the
optimal bonus is interior and that the first order condition is a necessary
optimality condition which concludes our proof.

Now, denote by bB and αB the optimal bonus and allocation in the
benchmark case.
Step 2: ∀b ≤ bB, the difference between the first order derivatives
in the principal’s problem and the benchmark is monotone in γ

First, from the first order condition of the principal’s problem in the bench-
mark, we have: for any α:

bB = v

2 + (α)2γ

2(θ0 + α)

Plugging this value in the allocation problem, we obtain:

αB = v

2γ

Now, we will show that ∀b ∈ [0, bB] the result in step 2 holds.

The difference between the derivatives of the principal’s problem and the
benchmark problem is:

∆ = (v−b)((∂φ
∂b

(b, α(b))+∂φ

∂α

∂α

∂b
(b, α(b))(v−b)−∂φ

∂b
(b, αB))−φ(b, α(b))+φ(b, αB)

(3.11)
Differentiating with respect to γ, we obtain:
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∂∆
∂γ

=4b3 − 3b2v + 3γθ0b(3b− 2v)− 4γ3((αB)2θ0 + (αB)3)
4γ3

≤ 4b2bB − 3b2v + 3γθ0b(3bB − 2v)− 4γ3(αB)2(θ0 + (αB)
4γ3

= b2(4bB − 3v) + 3γθ0b(3bB − 2v)− 4γ3(αB)2(θ0 + αB)
4γ3

Where the inequality in the second line comes from the fact that b ∈ [0, bB].
Now, replacing bB by its value we obtain:

∂∆
∂γ
≤
b2(2γ(αB)2

θ0+α − v) + 3γθ0b(3(γ(αB)2

2(θ+αB) −
v
2)− 4γ3(αB)2(θ0 + αB)

4γ3

≤
b2(2γαB − v) + 3γθ0b(3γαB

2 − v
2)− 4γ3(αB)2(θ0 + αB)

4γ3

≤
3γθ0b

v
4 − γv

2(θ0 + v
2γ )

4γ3

<
−γθ0

v2

4 −
v3

2
4γ3

< 0

The second inequality is obtained using θ ≥ 0 and the third inequality is
obtained by replacing αB by its value. Finally, the fourth inequality uses
b < v and and rearranging the terms.

Step 3: Conclusion From step 1, we know that the first order condition
is both a necessary and sufficient optimality condition. This implies that,
for bP the solution to the principal’s problem, the derivative of her objective
function with respect to bonuses is positive for lower bonuses (∀b < bP :
∂UP

∂b
> 0) and negative otherwise (∀b > bP : ∂UP

∂b
< 0). Therefore, to proof the

proposition, it is sufficient to show that for b = bB, the sign of the derivative
of the principal’s problem is positive for low γ and negative otherwise.

Step 2 shows monotonicity of the difference between the two derivatives
with respect to γ. This allows us to conclude that either for all γ the principal
always prefers higher bonuses compared to the benchmark, always prefers
lower bonuses or there is a cutoff γ∗ such that ∀γ < γ∗ she prefers higher
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bonuses and ∀γ > γ∗ she prefers lower ones.

Now, note that learning is maximal under the the benchmark bonus if and
only if bB ≤ 2γ(1− θ0). Therefore, we will restrict attention to γ ≥ bB

2(1−θ0) .
Now, evaluating the derivative of the principal’s problem at b = bB, and
computing its limit as γ goes to infinity we obtain:

lim
γ→∞

∂UP

∂b
(bB) = θ2

0(v − 2bB) < 0

Similarly, when lim
γ→ bB

2(1−θ)
+
, this derivative becomes:1

lim
γ→ bB

2(1−θ)
+

∂UP

∂b
(bB) = 1

4γ2 ((v−bB)(bB)2(3+ 6θ
1− θ+ 2θ2

(1− θ)2 )−(bB)3(1+3 θ

1− θ+ 2θ2

(1− θ)2)

Simple rearrangement of the terms leads to:

4γ2 1− θ
(bB)2

∂UP

∂b
(bB) = (v − bH)(3 + 3θ + 2θ2

(1− θ))− (bB)(1 + 2θ + 2θ2

(1− θ))

= (v − bB)(3 + θ + 2θ(1 + θ

(1− θ)))− (bH)(1 + 2θ(1 + θ

(1− θ)))

= (v − bB)(3 + θ + 2θ
(1− θ))− (bB)(1 + 2θ

(1− θ))

= (v − bB)(2 + θ + 1 + θ

(1− θ))− bB 1 + θ

(1− θ)

= v(2 + θ) + (v − 2bB) 1 + θ

(1− θ)

= θv + 1 + θ

(1− θ)(v − 2bB + v(1− θ))

= θv(1− 1 + θ

(1− θ)) + 1 + θ

(1− θ)(2v − 2bB)

= 2
1− θ (−θ2v + (1 + θ)(v − bB))

This function is monotone in θ. For θ = 0, it is strictly positive and the
1We take the limit as the function has a kink at bB

2(1−θ) given that bellow that level,
the agent exerts maximal learning
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principal provides higher bonuses that in the benchmark (using the fact that
(v− bB) > 0 and for θ = 1, the function is negative (using (v− bB)) < v

2 <
1
2),

therefore, the bonus is strictly lower than the benchmark which concludes
the proof.

3.5.1. Proof of proposition 3:

This result is straightforward: As the more productive type has maxi-
mal productivity, he dedicates full resources to production when types are
observable and obtains payoffs: UA(θH , θH) = v2

8 .

On the other hand, the low type’s cost function as well as the bonus
change with the allocation and the bonus satisfies bB = v

2 + γα2

2(θL+α) . As this
bonus is higher than the one type θH obtains, the later trades-off higher bonus
with more costly allocation due to an allocation which increases the cost
without increasing his productivity. In this case, he exerts effort e = bL−γα2

L

and his incentive compatibility constraint is satisfied when:

v2

8 ≥
(bL − γα2

L)2

2 = (v2 + γα2
L

2(θL + αL) − γα
2
L)2

When θL + v
2γ ≤ 1, the optimal allocation for the principal is αL = v

2γ . In the
opposite case, the allocation is αL = 1− θL. It is straightforward to verify
that in both the high type’s incentive compatibility constraint is satisfied.
Note that for the only if statement, that we have:

θL + v

2γ > 1 =⇒ θL > 1− v

2γ >
γ − v

2γ

Now we derive the incentive compatibility constraint for the type θL. θL
prefers the contract (FL, bL, αL) if and only if:

(bL(θL + αL)− γ(αL)2)2

2 ≥ (θLv)2

8

Rearranging the terms, and using bL = v
2 + γα2

L

2(θL+αL) ; this constraint is
equivalent to:
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v(θL + αL)
2 − γ(αL)2

2 ≥ θLv

2
⇐⇒ v − γαL ≥ 0

Either (i) v
2γ + θL ≤ 1 and we have αL = v

2γ and the incentive constraint
is verified or (ii) αL = 1 − θL in which case the condition boils down to
θL ≥ 1− v

γ
> 1

2 −
v
γ
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