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Abstract

Should central banks’ inflation targets remain set in stone? We study a dynamic mechanism
design problem between a government (principal) and a central bank (agent). The central
bank has persistent private information about structural shocks. Firms learn the state from the
central bank’s reports and form inflation expectations accordingly. A dynamic inflation target
implements the full-information commitment allocation: the central bank is delegated the
authority to adjust its own target as long as it does so one period in advance. Both the level and
flexibility of the dynamic inflation target respond to persistent shocks. Target flexibility is set to
correct the time consistency problem, while the target level provides the correct incentives for
target adjustments. An informational divine coincidence arises: the central bank’s incentives to
misreport its persistent private information to manipulate firm and government beliefs exactly
offset each other under the mechanism. We apply our theory to study lower bound spells, a
declining natural interest rate, and a flattening Phillips curve. We leverage our framework
to study longer-horizon time consistency problems and speak to practical policy questions of
inflation target design.
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1 Introduction

Since their inception in the early 1990s, many central banks’ inflation targets have evolved sub-

stantially. For example, the Bank of New Zealand has announced at least four major updates to its

target definition since 1990.1 The Bank of Canada undergoes regular reviews of its inflation target

at 5-year intervals. In 2020 and 2021, the U.S. Federal Reserve and the European Central Bank

both updated their inflation target frameworks.2 Overall, central banks have exercised substantial

discretion over target adjustments during this period.

In academic discourse, an important motivation for inflation targets is the interaction between

a time consistency problem and central bank private information: commitment to a rule corrects

inflationary bias while flexibility to set inflation allows the central bank to respond to private

information about economic shocks.3 Prior work has shown that a static inflation target solves this

commitment-versus-flexibility trade-off in static environments or when shocks are uncorrelated

(Walsh, 1995; Athey et al., 2005). These results motivate inflation targets as desirable mechanisms

but do not speak to the empirical regularity that central banks regularly update their targets. When

deliberating target adjustments, central banks in practice often invoke persistent economic change,

which presupposes that shocks are correlated over time.4 Recent debate on persistent changes

in r∗ and the slope of the Phillips curve—both difficult to measure in practice—highlights the

importance of central bank persistent private information.

In this paper, we study a dynamic monetary policy game in the presence of persistent shocks

and private information. As in previous work, the central bank faces a time consistency problem;

unlike in previous work, persistent shocks make the central bank’s private information persistent.

This gives rise to additional information frictions because firms learn about the persistent state

from the central bank, which they use to form inflation expectations. Our main result is that a time-

varying, dynamic inflation target mechanism implements the efficient, full-information commitment

allocation. The dynamic inflation target is a two-parameter mechanism, featuring both a target level
and a target flexibility. Together, they serve the dual role of correcting the time consistency problem

and the information frictions that emerge with persistent private information. A key property

of our mechanism is an informational divine coincidence: under the dynamic inflation target, the

central bank’s incentive to misreport its information in order to bias firm inflation expectations

1 The Bank of New Zealand’s initial target postulated an inflation band of 0-2%. The band was revised in 1996 to
0-3% and again in 2002 to 1-3%. Another revision in 2012 added an explicit focus on the 2% target midpoint (McDermott
and Williams, 2018).

2 In August 2020, the Fed concluded a long-term strategic review by adopting a target that aims to “achieve inflation
that averages 2% over time” (Powell, 2020). The ECB concluded a similar strategic review in July 2021, moving from
a one-sided “below but close to 2%” inflation target to a symmetric one. At the same time, commentators have also
suggested an upward revision in the inflation target level to 3 or 4% (Blanchard et al., 2010; Ball, 2014; Krugman, 2014).

3 There is much empirical support for the existence of central bank private information. For example, see Romer and
Romer (2000), Kuttner (2001), Gürkaynak et al. (2005), Campbell et al. (2012), Krishnamurthy and Vissing-Jorgensen
(2012), and Lucca and Moench (2015) among many others.

4 The strategic review that preceded the Fed’s target adjustment in 2020 was partly motivated by the persistent
decline in r∗ and the accompanying concern about future lower bound spells (Clarida, 2019).
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downards to stimulate output is exactly offset by its incentive to bias the government’s expectations

upwards to reduce future penalties. Our paper generalizes the canonical work on inflation targets

to environments with persistent private information.

Our infinite-horizon model features persistent economic shocks and general social preferences

over inflation and output. Firms determine the current inflation-output relationship based on

their expectations about next-period inflation, giving rise to a forward-looking Phillips curve. The

standard time consistency problem emerges (Kydland and Prescott, 1977; Barro and Gordon, 1983).

Neither firms nor the government observe the underlying economic state, which is persistent

private information of a central bank that sets monetary policy under discretion. A Ramsey

government (principal) designs a transfer/punishment mechanism to incentivize the central bank’s

(agent) policy decisions. Transfer/punishment mechanisms are important components of the

inflation targeting framework—practical analogs include Congressional scrutiny, reputational

risk, or firing (not reappointing) the central banker (Walsh, 1995; Halac and Yared, 2022).5 The

central bank’s behavior under the mechanism reveals its persistent private information to both the

government and firms. Firms in turn use this information to form inflation expectations, updating

their beliefs about the distribution of future shocks and the conduct of future policy. An incentive

compatible mechanism must account for both the time consistency problem of the central bank and

its strategic incentive to use information revelation to influence firms’ inflation expectations.

We develop our main result in Section 3: a dynamic inflation target mechanism implements

the full-information Ramsey commitment allocation. This mechanism is incentive compatible—

it overcomes both the central bank’s time consistency problem and the strategic misreporting

problem that arises under persistent private information. Formally, the dynamic inflation target is

a two-parameter slope-intercept transfer rule,

Tt = −bt−1(πt − τt−1).

The central bank faces a linear penalty for inflation, πt, in excess of a target level, τt−1, with the slope

of the penalty representing the target flexibility, bt−1. The linear penalty for inflation is set so that

the central bank internalizes the marginal cost of inflation in the prior period, which resolves the

time consistency problem. Crucially, our mechanism implicitly delegates to the central bank the

authority to update its own target—both level and flexibility—as long as it does so one period in
advance. That is, the target parameters for date t are set at date t− 1. The central bank takes as

given its target (bt−1, τt−1) at date t and can only make adjustments for the next period. Intuitively,

the central bank internalizes its future time consistency problem when updating the target one

5 In the U.S., for example, this process is multifaceted. The central bank Chair is directly held accountable by
Congress in the form of bi-annual, as well as extraordinary, Congressional testimonies. Public hearings and independent
scrutiny are also used more widely (Svensson, 2010). New Zealand allows for firing the central banker (Felix Hüfner,
2004; Halac and Yared, 2022). Delegation frameworks that call for bounds on inflation (Athey et al., 2005; Waki et al., 2018)
can be thought of as a transfer/punishment mechanism where sufficiently large penalties are imposed for exceeding the
bounds, and no penalties are imposed within the bounds.
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period in advance.

At the heart of our paper is an informational divine coincidence: the dynamic inflation target

overcomes the central bank’s incentives to strategically misreport its private information. Intu-

itively, the central bank would benefit from biasing firm beliefs downwards in order to improve

the contemporaneous inflation-output tradeoff. Our mechanism sets the target level equal to

government inflation expectations, which provides a counteracting force: misreporting downwards

becomes costly because it lowers the target level and raises expected future penalties from the

mechanism. The central bank’s incentive to bias firm expectations downwards is therefore exactly

offset by its incentive to bias government expectations upwards.

We develop three applications of our theory in Section 4. Each is motivated by recent empirical

evidence and monetary policy debates on structural change in the U.S., emphasizing in each case

the relevance of persistent private information.

When confronting the effective lower bound, central banks have recently resorted to uncon-

ventional policy instruments, focusing largely on forward guidance and asset purchases. Some

commentators have raised the question whether target adjustments can serve as an additional

unconventional policy instrument. Our theory provides a natural framework to ask this question.

It is well known that optimal monetary policy under commitment features history dependence at

the lower bound, keeping interest rates low even after the economy exits the liquidity trap. This

policy is implemented with an infinite sequence of promises, or forward guidance. We show that a

dynamic inflation target can implement the commitment solution even in the presence of persistent

private information. The optimal target adjustment raises both level and flexibility. Importantly, im-

plementing the commitment solution relies only on one-period iterated commitments to a dynamic

inflation target, which replace the long-horizon forward guidance commitment.6

In our second application, we study how the dynamic inflation target responds to a decline

in the natural rate of interest r∗ in the presence of an occasionally-binding effective lower bound

on interest rates. With mounting empirical evidence for a historically low natural rate after the

Great Recession (Laubach and Williams, 2016), this question has received ample attention. Many

observers in the U.S. have explicitly advocated for an increase in the Federal Reserve’s inflation

target level (Blanchard et al., 2010). We show that a decline in r∗ leads to an increase in the dynamic

inflation target’s level as well as, more surprisingly, to an increase in its flexibility. While academic

and policy discourse has largely focused on implications for the optimal target level, our theory

suggests an equally important role for adjustments of target flexibility. A second key insight of our

analysis is that the presence of an occasionally-binding lower bound constraint may even lead to a

sign switch in optimal target flexibility in steady state: When the probability of lower bound spells

is sufficiently large, the benefits from higher inflation expectations can dominate the standard time

6 Dynamic inflation target adjustments thus present an alternative implementation of forward guidance in the
context of discretionary monetary policy. They serve much the same “commitment” role as asset purchases in Bhattarai
et al. (2019). To the extent that long-horizon central bank promises lack perfect credibility in practice, dynamic target
adjustments could therefore support forward guidance.
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consistency problem, leading to too little inflation under discretion.

Our third application studies the implications of a flattening Phillips curve. The changing

slope of the U.S. Phillips curve has garnered much attention since the Great Recession (Blanchard,

2016; Galí and Gambetti, 2019; Rubbo, 2020; Del Negro et al., 2020), and the ensuing debate has

engulfed monetary policy discourse in recent years (Brainard, 2015). We show that a persistent

flattening of the Phillips curve leads to a decrease in both the level and flexibility of the dynamic

inflation target. Intuitively, a flattening Phillips curve increases the sensitivity of output to expected

inflation and thus exacerbates the time consistency problem. In the context of the decline in r∗

and the flattening of the Phillips curve, much recent policy discourse seems to have stressed the

benefits of raising the target level and allowing for more flexibility.7 While these target adjustments

are indeed optimal in response to a decline in r∗, a flattening of the Phillips curve pushes in the

opposite direction in both dimensions. These results have important policy implications if the

flattening of the Phillips curve proves persistent.

A dynamic inflation target allows the central bank to adjust its own target one period in advance.

To consider the implications of our result for policy design in practice, a natural question emerges:

How long is a period and what is the appropriate horizon for target adjustments? We generalize

our theory in Section 5 in the necessary dimensions to tackle this question. We consider forward-

looking models where output depends on forecasts of inflation for the following K periods. A

longer-horizon time consistency problem emerges. We show that a K-horizon dynamic inflation target
implements the Ramsey allocation. It takes the form of a two-parameter transfer rule and parallels

our baseline dynamic inflation target: its target flexibility equals the total time consistency problem

over the last K periods, and its target level equals a weighted average of inflation forecasts for date

t made over the last K periods. The informational divine coincidence continues to hold.

We introduce the commitment curve, which characterizes the duration and persistence of the

promises the central bank makes to improve the contemporaneous inflation-output tradeoff. The

commitment curve formally represents the size of the commitment the central bank makes at date t
for all future periods t + k. The flatter the commitment curve, the more important long-horizon

commitments are relative to short-horizon commitments.

Our main application in this environment characterizes the determinants of the appropriate

horizon for target adjustments in practice. We consider a generalized New Keynesian Phillips

Curve that emerges when linearizing the standard Calvo model around a steady state with positive

trend inflation (Ascari, 2004; Ascari and Sbordone, 2014). We show that the commitment curve’s

shape is that of quasi-hyperbolic discounting (Laibson, 1997): The central bank makes a dispropor-

tionately large commitment for the next period, as well as an exponentially decaying sequence of

commitments over longer horizons. We show that almost all long-horizon promises occur over a

five-year horizon, suggesting that a five-year adjustment window like that of the Bank of Canada

7 In fact, the Federal Reserve has adopted an average inflation target in August 2020, which arguably reflects an
increase in target flexibility.
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can capture all desirable long-horizon promises.

Finally, we study extensions of our model to incorporate different information structures

(Section 6.1), costly mechanism enforcement (Section 6.2), and preference differences between the

government and central bank (Appendix C.2). We show that a penalized adjustment process for

the dynamic inflation target implements the Ramsey allocation when some firms are informed

about the economic state. We also show that costly enforcement and preference disagreement imply

optimal policies that parallel the insights obtained in our baseline model.

While monetary policy is the primary focus of this paper, our results could be applied more

broadly to principal-agent settings where “moving goal posts” are desirable due to a combination

of persistent private information and time consistency problems arising through expectations.8

Related literature. The paper most closely related to ours is Halac and Yared (2014). They study

optimal delegation mechanisms in a fiscal policy framework with persistent private information and

time inconsistency due to quasi-hyperbolic discounting. By contrast, we study persistent private

information in the monetary policy context with transfers/punishments, where time inconsistency

results from a forward-looking Phillips curve. Our environment features novel informational fric-

tions because firms learn the state from the central bank’s report, which has important implications

for the design of the mechanism and gives rise to the informational divine coincidence. We build

on the dynamic mechanism design literature with persistent private information. In particular,

Pavan et al. (2014) provide conditions for implementability in a general principal-agent framework

with transfers and persistent shocks.9 We deploy these techniques to study central bank inflation

targets.

We also build on the literature that studies transfer/punishment mechanisms in the monetary

policy context.10 Walsh (1995) shows that an inflation target is an optimal mechanism in a static

context with transferable utility. The linear form of this static target follows the same intuition as

the within-period linear form of our dynamic target. In the dynamic context, it is well understood

that the full-information Ramsey allocation can be implemented with a linear inflation penalty

whose slope is the recursive multiplier on the Phillips curve implementability condition (Marcet

and Marimon, 2019; Svensson, 1997b; Svensson and Woodford, 2004). Dávila and Schaab (2022)

extend the recursive multiplier approach to and study central bank targets in a heterogeneous-agent

New Keynesian model. Our contribution is to study the impact of persistent private information in

a principal-agent environment. Our framework provides a novel role for the target level in over-

8 For example, the sovereign debt literature commonly features a time consistency problem that arises because
long-term debt prices depend on the government’s future fiscal policy decisions.

9 A similar first-order approach is found, for example, in Farhi and Werning (2013).
10 A large literature considers time inconsistency. For example, see Kydland and Prescott (1977), Barro and Gordon

(1983), Canzoneri (1985), Rogoff (1985), Cukierman and Meltzer (1986), and Persson and Tabellini (1993) among many
others. More broadly, there has been a long tradition considering the implications of private information for the design
of policy. For example, see Backus and Driffill (1985), Sleet (2001), and Angeletos et al. (2006) among many others.
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coming the incentives of the central bank to strategically reveal its persistent private information.11

Halac and Yared (2022) study the trade-off between instrument-based and target-based rules in a

framework with socially costly penalties. Finally, a related literature studies transfer mechanisms in

the context of quasi-hyperbolic agents (DellaVigna and Malmendier, 2004; Galperti, 2015; Beshears

et al., 2020).

A closely related literature studies the delegation approach rather than the transfer approach.

Athey et al. (2005) studies a dynamic monetary policy framework with independent shocks and

shows the optimal mechanism features static bounds on inflation. Waki et al. (2018) extends this

framework to incorporate a New Keynesian Phillips curve and independent shocks, showing that

the optimal mechanism consists of history dependent bounds on inflation. Amador et al. (2006),

Halac and Yared (2018), and Sublet (2022) study delegation mechanisms to control quasi-hyperbolic

agents. Our contribution to this literature is to characterize the optimal transfer/penalty mechanism

in a setting with persistent shocks and private information, which gives rise to novel information

frictions because firms learn the state from the central bank.

Our policy applications connect to several literatures. We build on prior work studying

optimal monetary policy during lower bound spells (Eggertsson and Woodford, 2003; Werning,

2011). A long literature studies the optimal rate of inflation (Schmitt-Grohé and Uribe, 2010). Recent

work has investigated whether a decline in r∗ could quantitatively justify a higher inflation target

level (Coibion et al., 2012; Kiley and Roberts, 2017; Andrade et al., 2018; Eggertsson et al., 2019).

In our paper, we take as given that persistent structural shocks can alter the welfare implications

of inflation and, consequently, the socially desired rate of inflation. We ask if and how a central

bank should respond to such shocks—in the presence of persistent private information and time

consistency problems—by adjusting its inflation target.

2 Model

Our economy is populated by a government, a monetary authority or central bank, and a continuum

of small firms. The central bank learns about persistent changes in the state of the economy. It

uses this private information, which we also refer to as the central bank’s type, to set monetary

policy under discretion. The central bank is subject to a time consistency problem in the tradition

of Kydland and Prescott (1977) and Barro and Gordon (1983): Firms determine the relationship

between inflation and output in a forward looking manner, which gives rise to a Phillips curve. The

government (principal) designs a mechanism to control the inflation policies of the central bank

(agent), taking as given the price-setting behavior of firms.

Time is infinite and discrete, indexed by t = 0, 1, . . . We summarize allocations by inflation

11 More broadly, several papers have extended the Marcet and Marimon (2019) approach for providing a recursive
representation of a planner’s problem to environments with moral hazard and incomplete information (Messner et al.,
2012; Mele, 2014; Pavoni et al., 2018). Our contribution is to study the problem of a principal designing a mechanism for
an agent, rather than giving a recursive representation to the principal’s problem.
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πt ∈ [π, π] and output yt ∈ [y, y]. There is a state of the economy, θt ∈ Θ = [θ, θ], that follows

a Markov process described by the conditional transition density f (θt|θt−1). The central bank

observes the state θt at the beginning of t (i.e., θt is central bank private information) and is tasked

with setting inflation for that period. Firms do not observe the state but form posterior beliefs µt on

its distribution based on behavior of the central bank in that period.12 We denote by Et[πt+1 | µt]

firms’ expectation of next-period inflation, given their posterior beliefs µt about the current state

θt. Firms’ price setting determines output based on future inflation expectations, giving rise to a

“Phillips curve”13

yt = Ft(πt, Et[πt+1 | µt]). (1)

Because shocks are persistent, inflation expectations Et[πt+1 | µt] depend on firms’ beliefs about

the future conduct of monetary policy and the distribution of future shocks θt+1.14

The per-period social welfare function for the central bank and government over inflation

and output is Ut(πt, yt, θt). To simplify exposition, we internalize the Phillips curve relationship

(1) and write reduced-form preferences as Ut(πt, Et[πt+1|µt], θt) = Ut(πt, Ft(πt, Et[πt+1|µt]), θt).

The lifetime social welfare function of the central bank and government over inflation can then be

written as

E
∞

∑
t=0

βt Ut(πt, Et[πt+1 | µt], θt), (2)

where β is the discount factor.

In Section 4, we develop applications of our theory that make use of the canonical New

Keynesian Phillips curve and loss function at a distorted steady state. We choose particular shocks

θt that are motivated by empirical evidence and recent policy debates on important structural

changes.

12 There is a long tradition in macroeconomics to motivate and study monetary policy games when the central bank
has private information (Sargent and Wallace, 1975; Barro and Gordon, 1983; Canzoneri, 1985; Rogoff, 1985; Walsh, 1995;
Athey et al., 2005). There is much empirical support for central bank private information. Romer and Romer (2000)
show that the difference between the Federal Reserve’s private inflation forecasts and commercial inflation forecasts
is a significant predictor of commercial forecast errors. Lucca and Moench (2015) document sizable excess returns on
U.S. equities leading up to scheduled Federal Open Market Committee (FOMC) meetings, implying substantial private
information content in FOMC announcements. Krishnamurthy and Vissing-Jorgensen (2012) find strong empirical
support for a signaling channel of unconventional monetary policy, whereby asset purchases between 2009 and 2012
worked to a large extent by conveying private information to financial market participants. Kuttner (2001) and Gürkaynak
et al. (2005) show that FOMC announcements are associated with price effects that are not due to changes in the policy
rate itself. Campbell et al. (2012) show that asset prices and commercial macroeconomic forecasts respond strongly to the
information content in FOMC announcements.

13 Although we use linear expectations Etπt+1, it is straightforward to adapt our framework to nonlinear expectations.
For example, suppose that we had yt = Ft(πt, Etgt+1(πt+1)) for a nonlinear function gt. Then define π∗t = gt(πt+1),
define the Phillips curve as yt = F∗t (π

∗
t , Etπ

∗
t+1) = Ft(g−1

t (π∗t ), Etπ
∗
t+1), and similarly for the preference function. More

generally if we have Etgt+1(πt+1, yt+1), then we can define a new variable π∗t = gt(πt, yt), and define the problem over
(π∗t , yt) where yt = Yt(π

∗
t , Etπ

∗
t+1), where Yt solves Yt(π

∗
t , Etπ

∗
t+1) = Ft(g−1

t (π∗t |Yt(π
∗
t , Etπ

∗
t+1)), Etπ

∗
t+1).

14 A key concern of this Phillips curve relationship is a Lucas critique—firms’ price-setting behavior may change in
response to changes in the monetary policy regime, such as target changes (L’Huillier and Schoenle, 2019). Our Phillips
curve relationship is robust to a Lucas critique provided that expected future (next period) inflation is sufficient for
determining how changes in future policies affect firm behavior. For example, higher expected inflation may lead firms
to increase the frequency with which they update prices, altering the slope of the Phillips curve.
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2.1 Benchmark: Full-Information Ramsey Allocation

We begin by providing a benchmark allocation for efficiency. In particular, we characterize the

efficient allocation that arises when: (i) the central bank has full commitment (Ramsey problem);

and (ii) firms have full information, i.e., they observe the shock at date t. Given full information,

firms’ posterior beliefs are the degenerate distribution which places all mass on θt, which we denote

by µt = θt, abusing notation slightly. We refer to this allocation as the full-information Ramsey
allocation. It provides an efficiency benchmark that respects the Phillips curve relationship between

inflation and output determined by firms.

Proposition 1 (Full-Information Ramsey Allocation). The full-information Ramsey allocation is charac-
terized by

∂Ut

∂πt
= νt−1 , where νt−1 =

− 1
β

∂Ut−1
∂Et−1(πt|θt−1)

for t ≥ 1

0 for t = 0
(3)

The optimality condition for inflation at date t equates the marginal utility from inflation, ∂Ut/∂πt,

with the marginal (dis)utility from the effect of inflation on previous period’s output, summarized

by νt−1. The left-hand side (LHS) of equation (3) is date t adapted, whereas the right-hand side

(RHS) is date t− 1 adapted. Therefore, the RHS is constant from the perspective of time t, implying

that the marginal (flow) utility from inflation is constant at date t in histories θt proceeding from

the same history θt−1.

The wedge νt−1 is a sufficient statistic for the shock history θt−1 in determining the Ramsey

allocation rule πt, πt+1, . . . for inflation.15 In other words, the Ramsey allocation from dates t and

onward can be calculated with the knowledge of the wedge νt−1, without knowing the exact shock

history θt−1 that gave rise to it. Note that since the economy starts at t = 0, then ν−1 = 0.

It is helpful to contrast the full-information commitment (Ramsey) allocation of Proposition

1 with the full-information discretion (Markov) policy. Under discretion, the central bank finds

it optimal to set ∂Ut/∂πt = 0 state by state. In particular at date t, the central bank neglects the

impact of inflation on the previous period’s Phillips curve, which no longer serves as a constraint of

the problem. This results in inflationary bias and reflects a standard Barro and Gordon (1983) time

consistency problem. νt−1 is precisely the wedge between the full-information Ramsey and Markov

allocations. It reflects the severity of the central bank’s time consistency problem. We therefore

refer to νt−1 as the inflationary bias of the central bank at time t. In the presence of persistent shocks,

this inflationary bias is potentially time-varying.

This inflationary bias under discretion motivates studying how the government can design

a mechanism to control the behavior of the central bank. Such a mechanism must respect the

asymmetric information problem that stems from the central bank’s persistent private information.

15 Equivalently, we can give a recursive representation to the Ramsey problem (Marcet and Marimon 2019).
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2.2 Mechanism Structure

Our framework is a principal-agent problem in which the central bank privately observes the state

of the economy θt and then sets inflation under discretion. Because θt is private information and

the central bank has a time consistency problem, the government (principal) designs a mechanism

to control the decision making process of the central bank (agent). The mechanism the government

establishes can specify transfers (or punishments) Tt based on inflation policy.

Although explicit monetary transfers are one interpretation, the practical analogs of the control

mechanism Tt may be closer to policies such as Congressional scrutiny, reputational risk, or firing

(not reappointing) the central banker (Walsh 1995, Svensson 2010, Halac and Yared 2022). For

example, a central bank that is awarded high Tt may face a low degree of Congressional scrutiny in

its policy determination.

The lifetime preferences of the central bank over social welfare and transfers are given by

E
∞

∑
t=0

βt
[

Ut(πt, Et[πt+1|µt], θt) + Tt

]
. (4)

Our main focus will be on characterizing a mechanism that implements the full-information

Ramsey allocation. Such a mechanism is optimal when there is no social cost of implementing the

mechanism, as we assume here. In Section 6, we study the case where transfers are not neutral

from the perspective of the government.

The mechanism requires the central bank to make a report of the observed shock at date t.
We denote the reported type θ̃t and say that reporting is truthful when θ̃t = θt. We study direct

and full-transparency mechanisms, under which the central bank truthfully reports its type each

period.16 Full transparency implies that there is no pooling of central bank types in reporting in

a manner that shrouds the private information. Along the equilibrium path, agents’ posterior

will therefore be the degenerate distribution at the reported type, or µt = θ̃t. Note that we abuse

notation here because µt is a full distribution in general.17

We denote by Θt the space of shock histories up to date t. A mechanism in our model is

a mapping from the history of reported types into a transfer and allocation, given by (πt, Tt) :

Θt → R2. Although the date t allocations depend on the entire history of reported types, we will

show state space reduction results that allow us to characterize sufficient statistics for information

histories.

16 Once we restrict to full transparency, the Revelation Principle as usual allows us to focus on mechanisms where the
central bank truthfully reports its type.

17 Restricting attention to full transparency mechanisms is not without loss of generality. In principle, the government
could want to pool central bank types to manipulate firms’ posterior beliefs. By considering mechanisms under which
the central bank truthfully reveals its type, we assume away such motivations. Given that central bank transparency has
become an increasingly prominent focal point over the last two decades, we view the full transparency benchmark as
important and realistic (Powell, 2019).
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2.3 Incentives, Time Consistency, and Information

At every date t, the central bank makes a report θ̃t of its true type θt. We define the value function

of the central bank under the mechanism (π, T) by

Wt(θ
t) = max

θ̃t

{
Tt + Ut

(
πt, Et

[
πt+1|θ̃t

]
, θt
)
+ βEt

[
Wt+1(θ

t−1, θ̃t, θt+1)

∣∣∣∣θt

]}
,

where θt−1 is the history of reported types whereas θt is always the current true type. Note that πt

and Tt are functions of the current reported type and the history of reported types. The incentive

constraint of the central bank at date t with history θt−1 is

Ut(πt, Et[πt+1|θt], θt) + Tt + βEt

[
Wt+1(θ

t+1)

∣∣∣∣θt

]

≥ Ut(π̃t, Et[π̃t+1|θ̃], θt) + T̃t + βEt

[
Wt+1(θ

t−1, θ̃, θt+1)

∣∣∣∣θt

]
(5)

for all t, θt, and θ̃, and where we denote π̃t = πt(θt−1, θ̃) and so on. Equation (5) is the truthful

reporting incentive constraint: at date t, a central bank should find it preferable to truthfully report

its type θt as opposed to reporting any alternate type θ̃ ∈ Θ. As usual, incentive compatibility

is characterized using a one-shot deviation along a path of truthful reporting, which is why the

continuation value includes the true continuation type. The global incentive constraint (5) is high-

dimensional, as there is an incentive constraint for each θ̃ ∈ Θ and every history θt ∈ Θt. As usual,

we will employ a first order approach to incentive compatibility in deriving results (e.g., Pavan et al.

2014, Farhi and Werning 2013). The required envelope condition associated with global incentive

compatibility—derived in the proof of our main result in Appendix A—is given by

∂Wt(θt)

∂θt
=

∂Ut (πt, Et [πt+1|θt] , θt)

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
(6)

where, for clarity, ∂Ut(πt,Et[πt+1|θt],θt)
∂θt

is the derivative of Ut in the direct type θt, but not including the

Phillips curve expectation (which is based on the reported type). The familiar integral incentive

constraint is obtained by integrating and iterating forward (see the proof of Proposition 13 for this

representation).

The global incentive constraint (5) and its envelope formulation (6) reveal three principal

driving forces of the model. The first two are conventional forces. First, there is a standard Barro

and Gordon (1983) time consistency problem, marked by the absence of any terms that capture the

impact of inflation at date t on the Phillips curve at date t− 1.18

Second, there are information rents the central bank earns from its persistent private information

18 This follows the standard Barro and Gordon (1983) logic: When the central bank considers which type θ̃t to report
in period t under discretion, it does not consider the implications of its actions on past price-setting decisions of firms.
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(Pavan et al., 2014). There are two components to this information rent (equation 6). The first is the

static information rent, ∂Ut/∂θt. It captures the gain in welfare that the central bank achieves from

an increase in its type θt, while holding fixed its report. An incentive compatible allocation must

maintain this information rent to ensure that a central bank with a higher type does not report a

lower type. The second is the dynamic information rent from shock persistence: revealing θt gives

up private information about the distribution of future shocks, captured by the term ∂ f (θt+1|θt)
∂θt

. If

high θt on average leads to high θt+1 and high continuation valuesWt+1, then the information rent

earned by θt is higher because the central bank knows it will receive high continuation values even

without changing its report. This means that incentive compatibility requires awarding the central

bank more for reporting higher values θ̃t today. If shocks are not persistent, then the dynamic

information rent is zero.

The third and novel force in our model is that the central bank has an incentive to manipulate

firm beliefs. Firms form inflation expectations, which appear in the Phillips curve, based on their

beliefs about next period’s shock distribution. The central bank’s report today affects these beliefs,

i.e., Et[πt+1 | θ̃t]. Global incentive compatibility (5) reflects that a change in reported type alters

the central bank’s current flow utility indirectly by changing firms’ inflation expectations. In the

conventional New Keynesian framework, an increase in expected inflation generally lowers current

flow utility. The central bank therefore has an incentive to bias firm expectations downward in order

to improve the contemporaneous inflation-output trade-off. The fact that expectations are formed

based on the reported type also means that the central bank does not earn an information rent from

this channel. Formally this is seen in the fact that the first information rent term on the RHS of

equation (6) is only the direct derivative in the type, and does not include a term for inflation

expectations.

3 Dynamic Inflation Target

In this section, we show the main result of our paper: A “dynamic inflation target” mechanism can

implement the full-information Ramsey allocation when the target is set by the central bank one
period in advance. This mechanism overcomes the time consistency and informational problems we

identified in Section 2.3.

Equation (3), along with its sufficient statistic implications, suggests a mechanism that uses

the transfer rule Tt to penalize inflation deviations from a target. An inflation target of this form

seeks to correct the time consistency problem by incentivizing the central bank to set inflation close

to the target. In the presence of persistent structural shocks, however, the target itself might need to

be adjusted over time to accommodate a changing efficient level of inflation. That is, the optimal

inflation rate may drift far from the central bank’s target in a persistent manner, implying large

potential gains from letting the target adjust. The commitment-flexibility trade-off that motivated

the inflation target in the first place may itself be subject to structural change. Indeed, this is

11



precisely reflected in the time variation of the full-information Ramsey allocation in the presence of

persistent θt shocks.

3.1 Inflation Targets as Dynamic Mechanisms

We look over a class of mechanisms defined by the affine transfer rule

Tt = −bt−1(πt − τt−1). (7)

We say that τt−1 is the level of the transfer, and bt−1 is the slope of the punishment for increasing

inflation.19 This class of mechanisms specifies affine transfers at date t based on inflation at date t,
where the affine function parameters (bt−1, τt−1) are determined at date t− 1.

We define in particular a class of mechanisms with affine transfer rules under which the level

is expected next-period inflation.

Definition 2 (Dynamic Inflation Target). A dynamic inflation target is an affine transfer rule mecha-

nism whose target level equals expected inflation, τt−1 = Et−1[πt | θ̃t−1], and whose target flexiblity
is the slope bt−1.

Under our proposed dynamic inflation target, two things happen when the central bank reports

its type θt at date t. First, its type report maps into a contemporaneous inflation policy πt, which

in turn generates a transfer Tt based on the target parameters (bt−1, τt−1) specified in the previous

period. The mechanism establishes a target in the sense that τt−1 = Et−1[πt|θ̃t−1]; that is, the

level of the mechanism is always equal to expected inflation. Second, the report also maps into

target parameters (bt, τt) for the transfer rule in the next period, i.e., the new target. In sum, the

mechanism is a mapping (πt, bt, τt) : Θt → R3 from the history of reported types into inflation for

the current period and the target for the next period. In this sense, we can also think of the central

bank as directly choosing inflation and its own future target, represented by (πt, bt, τt), from among

the set of triples that follow from the same history θt−1 of reported types prior to date t.
The target level τt−1 and target flexibility bt−1 capture two distinct facets of the inflation target

mechanism. The target level is the level of inflation the central bank is expected to hit on average.

The target flexibility characterizes how severe the punishment is when the central bank exceeds

its inflation target. An increase in target level means that the central bank incurs lower penalties

for higher average inflation. An increase in target flexibility means the central bank incurs lower

penalties for higher marginal inflation.

Our main result is that this dynamic inflation target implements the full-information Ramsey

allocation in a locally incentive compatible mechanism. Moreover, it admits a key state space

reduction property.

19 The structure of our target mechanism and, in particular, its linearity are similar to Walsh (1995) in a static setting.
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Proposition 3 (Dynamic Inflation Target Implements Efficient Allocation). A dynamic inflation target
implements the full-information Ramsey allocation in a locally incentive compatible mechanism, with target
flexibility bt−1 = νt−1. The target (τt−1, bt−1) is a sufficient statistic at date t for the history θt−1 of past
types.

Proposition 3 shows that the full-information Ramsey allocation can be implemented by a simple

dynamic inflation target. Inflation always meets the target level in expectation, that is τt−1 = Et−1πt,

while the target flexibility is set to the inflationary bias, bt−1 = νt−1. The inflation target prescribed

by our mechanism is dynamic in the sense that both its level and flexibility are time-varying.

Intuitively, the mechanism serves two roles: It uses the inherited target from the prior period

to correct the time consistency problem in the central bank’s contemporaneous inflation choice, and

it provides incentives for correctly updating the target for the next period. The form of the inflation

target follows the well-known logic from the static setting (Walsh, 1995). Since νt−1 is the central

bank’s inflationary bias, the mechanism provides the correct incentives for the inflation choice by

assigning a penalty bt−1 = νt−1 for raising inflation. This means the target’s flexibility is used as

the means of correcting inflationary bias that arises from the fact that firm inflation expectations

affect contemporaneous output.

In the presence of persistent shocks, the inflation target must be updated to accommodate

persistent changes in the full-information Ramsey allocation. Proposition 3 yields two key insights.

First, the central bank optimally resets its target one period in advance. That is, when the central

bank observes a persistent shift in the efficient inflation level, it adjusts its inflation target for the

next period in response to this shift. The current target, on the other hand, remains in effect for the

current period and governs contemporaneous inflation policy. Second, both the target level τt−1

and the target flexibility bt−1 are subject to change when the target is updated.

Dynamic target adjustments under our mechanism are best understood in relation to the

underlying frictions discussed in Section 2.3. Consider first a change in the target flexibility. When

the central bank updates bt in period t—to go into effect and govern inflation policy in period

t + 1—it internalizes that expectations about future inflation affect output today via the Phillips

curve. In other words, even though the central bank takes the behavior of its future self as given

under discretion, it understands that the target it sets in period t will constrain the inflation policy of

its future self in period t + 1. The central bank consequently internalizes its future time consistency

problem and corrects it by setting the appropriate penalty, bt = νt, for its future self—one period in

advance.20

Our mechanism uses changes in the target level, τt, on the other hand, to overcome the core

informational frictions of our model, in particular the central bank’s incentives to manipulate firm

and government beliefs in the presence of persistent private information. While it is surprising that
20 This is also similar to the static setting, where the central bank is willing “ex ante” to set up a targeting mechanism

for itself. It is also closely related to the literature on optimal mechanisms to control present bias (e.g. Amador et al.
2006), where agents are willing to set up mechanisms to control their own time consistency problems.
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a simple dynamic inflation target is able to account for these complex effects, the affine transfer

rule of our mechanism is designed so that the two information forces exactly offset each other. We

call this important property of our mechanism informational divine coincidence.

To illustrate, consider the effect of a perturbation in inflation expectations on the central bank’s

lifetime value. The two relevant terms in the central bank’s Bellman equation are Ut(πt, Et[πt+1 | θ̃t], θt)+

βνtEt[πt+1 | θ̃t], where the latter comes from next-period’s inflation target Tt+1. The indirect effect

of a marginal perturbation in the central bank’s report, dθ̃t, through inflation expectations is given

by

∂

∂Et[πt+1|θ̃t]

[
Ut(πt, Et[πt+1|θ̃t], θt) + βνtEt[πt+1|θ̃t]]

]
∂Et[πt+1|θ̃t]

∂θ̃t

=

(
∂Ut(πt, Et[πt+1|θ̃t], θt)

∂Et[πt+1|θ̃t]
+ βνt

)
∂Et[πt+1|θ̃t]

∂θ̃t

=

(
− βνt + βνt

)
∂Et[πt+1|θ̃t]

∂θ̃t

=0

where the third line follows from Proposition 1. In economic terms, the central bank wishes to bias

downward the inflation expectations of firms in order to economize on the Phillips curve relationship

and improve the contemporaneous inflation-output trade-off. By setting next period’s target level

to also equal inflation expectations, i.e., τt = Etπt+1, the government provides the central bank

with a distinct incentive to bias upward inflation expectations: increasing expected inflation raises

the target level and so reduces average future penalties for high inflation. The marginal benefit

of this upward bias is equal to the target flexibility, νt. But under the full-information Ramsey

allocation, the target flexibility is precisely equal to the inflationary bias. Thus these two forces

exactly offset each other.

This informational divine coincidence is central to our mechanism. It arises because firms and

the government have the same information sets, i.e., firms learn from the mechanism in exactly

the same way as the government does. This information structure is critical for a simple dynamic

inflation target to be able to implement the full-information Ramsey allocation. In Section 6.1, we

study the implications of alternative information structures for the design of dynamic inflation

targets.

Finally, a key source of tractability for our mechanism is that the current target (νt−1, τt−1) is a

sufficient statistic for the entire history θt−1 of shock realizations. This means that our mechanism

admits a recursive formulation where the date t state variables are the inherited target, (νt−1, τt−1),

and the current state, θt. This sufficient statistic property follows precisely because the target

flexibility νt−1 summarizes the inflationary bias from the previous period, while the target level

τt−1 summarizes a form of promised utility to the central bank for truthfully revealing its persistent
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type. This property greatly reduces the knowledge required for the central bank to adjust its target:

the central bank only needs to know its current target and not the history under which that target

arose.

We characterize the first-order welfare gains of switching from a static to a dynamic inflation

target in Appendix C.1.

3.2 Evolution of the Target

A key feature of our dynamic inflation target is that it can be updated over time by the central

bank. This subsection characterizes the evolution of the target’s flexibility and level in response to

structural shocks.

Target flexibility. Combining the Ramsey first-order condition (3) with the definition of νt, we

obtain the law of motion for target flexibility

νt = δt

(
νt−1 −

∂Ut

∂πt

)
, (8)

where the derivative ∂U
∂πt

holds output fixed, and where δt = −∂yt/∂Etπt+1
β∂yt/∂πt

measures the relative

effects of inflation expectations and current inflation on current output. For the standard New

Keynesian Phillips Curve, we have δt = 1. δt < 1 implies contemporaneous inflation has a larger

effect on output than inflation expectations, while δt > 1 implies contemporaneous inflation has a

smaller effect.21

When δt = 1, the evolution of target flexibility is νt = νt−1 − ∂Ut
∂πt

. The mechanism starts from

the flexibility afforded in the current period, νt−1, and then adjusts νt upward as the central bank

incurs greater disutility from inflation today, ∂Ut
∂πt

. Intuitively, if the central bank is willing to incur

greater disutility from inflation, then the value from stimulating output must be higher. But when

δt = 1 and the effects of contemporaneous and future inflation on output are the same, then the cost

of future inflation must also be high. The high cost of future inflation means the time consistency

problem is large, leading the central bank to adopt a less flexible target for the next period.

When δt 6= 1, target adjustment is scaled by the relative pass-through of current and future

inflation to output. If δt < 1, current inflation has a larger impact on output than future inflation.

The time consistency problem is then less severe than under the standard Phillips curve, and the

mechanism imposes an increasingly more flexible target over time. By contrast if δt > 1, future

inflation has a larger impact on output, the time consistency problem is more severe, and the target

becomes less flexible over time.

21 See Werning (2022) for a recent treatment of the pass-through of inflation expectations.
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Target level. The response of the target level to a marginal increase in the structural shock is

dτt

dθt
= Et

[
πt+1

∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

]
︸ ︷︷ ︸

Expectations

+
∂νt

∂θt
Et

[
∂πt+1

∂νt

∣∣∣∣θt

]
︸ ︷︷ ︸

Target Flexibility Adjustment

. (9)

The first effect, “expectations,” reflects that the probability measure over future states changes in

response to the shock. If a higher θt raises the probability of high-inflation states, then the target

level τt−1 increases as well. The expectations effect therefore implies that, in response to persistent

shocks, the target intercept can change even when the target slope remains constant. If shocks

were fully transitory, on the other hand, the probability measure would not be affected and no

adjustment in the target level would be required.

The second effect, “target slope adjustment,” reflects the extent to which a change in target

flexibility passes through to optimal future inflation. In the natural case where ∂πt
∂νt−1

< 0, an increase

in target flexibility ( ∂νt−1
∂θt−1

< 0) is accompanied by an increase in target level, and vice versa. In

economic terms, if a structural shock leads to an increase in flexibility (reduction in νt−1), then the

central bank will find it optimal to generate higher average levels of inflation in the next period,

since the penalty for exceeding the target has been reduced. Firms anticipate this, so that inflation

expectations increase for a given state θt−1 and associated conditional density f . As a result, the

target level τt−1, which is set equal to firm inflation expectations, also increases.

In sum, when the economy experiences a structural shock θt, both components of the target

may be affected. The flexibility of the target responds to the shock if it leads to a fundamental

change in either the central bank’s motivation to generate excess inflation or the nature of the time

consistency problem. The level of the target is affected directly by changes in expectations but also

indirectly if target flexibility is adjusted.

4 Applications

This section presents three applications of our theory. Each stresses in a different way the relevance

of persistent private information for the design and conduct of monetary policy.22

In our applications, we study special cases of a linearized New Keynesian model. The model

consists of a standard New Keynesian Phillips Curve (NKPC), given by

πt = βEtπt+1 + κtyt, (10)

and a dynamic IS equation, given by

yt = Etyt+1 −
1
σ

(
it −Etπt+1 − r∗t + εt

)
, (11)

22 Appendix B provides additional applications and also revisits these applications with costly enforcement (Section
6.2).
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where πt and yt denote inflation and the output gap, respectively. This formulation of the model

potentially allows for time variation in several parameters. We think of {κt, r∗t , εt} as exogenously

specified stochastic processes, given some initial conditions {κ0, r∗0 , ε0}. In particular, κt is the slope

of the Phillips curve, r∗t denotes the natural rate of interest, and ρt captures a demand shock.23

4.1 Lower Bound Spells: Target Adjustments as Unconventional Policy

When the economy is at the effective (zero) lower bound, which we refer to as a “lower bound spell”,

the central bank loses its conventional policy instrument (short-term interest rates). Historically,

central banks have then resorted to unconventional policy, focusing largely on forward guidance

and asset purchases. Some commentators have explicitly raised the question whether changes

in the targeting framework could and should be seen as a potential additional unconventional

monetary policy instrument. Our theory provides a natural framework to ask this question.24

Zero lower bound spells are commonly represented by a constraint it ≥ 0 (Eggertsson and

Woodford, 2003; Werning, 2011). Consider a canonical loss function at a distorted steady state,

U (πt, yt) = − 1
2 π2

t − 1
2 αy2

t + λyt. When explicitly accounting for the zero lower bound constraint,

it ≥ 0, social welfare can be associated with the Lagrangian E ∑∞
t=0 βt[U (πt, yt) + θtit

]
. The

Lagrange multiplier θt can be interpreted as the shadow value of being able to set negative nominal

rates. In other words, when the economy falls into a liquidity trap, the shadow value on policies that

push the economy away from the constraint rises—for example by raising inflation expectations,

lowering current output, or raising future expected output.

In this application, we represent the mechanism design problem directly over the reduced-

form loss function Ut(πt, yt) + θtit, which encodes the shadow value of being able to set negative

rates directly into utility. A positive innovation to θt qualitatively captures the same economics

as an explicit lower bound spell: the shadow value of higher nominal interest rates or, as we

show below, higher inflation expectations rises. We associate a persistent lower bound spell with a

persistently high shadow value θt.

We assume that Etθt+1 = ρθt for 0 ≤ ρ ≤ 1. We associate ρ = 0 with a transitory liquidity

trap, where the lower bound constraint is expected not to bind in the following period. In this

application, we abstract from shocks to the slope of the Phillips curve, κt = κ, innovations in the

natural rate, r∗t = r∗, and demand shocks, εt = 0. Substituting the NKPC (10) into the dynamic IS

equation (11) then implies

it = Etπt+1 + r∗ +
σ

κ

[
− πt + (1 + β)Etπt+1 − βEtπt+2

]
. (12)

23 Equations (10) and (11) also take as given a process for the nominal interest rate {it}. In our applications, the
nominal interest rate—the conventional instrument of monetary policy—will be determined as part of the dynamic
inflation target mechanism.

24 Crucially, we implicitly abstract from asset purchases: That is, we do not allow the central bank to use any other
unconventional tool that would allow it to make the lower bound constraint slack again. We assume that instruments
are incomplete to such an extent that the economy experiences a lower bound spell.
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This means that, after substituting out for it and yt in preferences Ut(πt, yt) + θtit, we can represent

reduced-form preferences by Ut(πt, Etπt+1, Etπt+2, θt). Since Etπt+2 appears in this implementabil-

ity condition, the resulting time consistency problem has a horizon of more than one period. We

study longer-horizon time consistency problems in Section 5, where we revisit this application for

general σ 6= 0. In this application, we set σ = 0 so that the time consistency problem reverts to a

single period. We can then rewrite the reduced-form utility function as

Ut(πt, Etπt+1, θt) = −
1
2

π2
t −

1
2

α̂

(
πt − βEtπt+1

)2

+ λ̂

(
πt − βEtπt+1

)
+ θt

(
Etπt+1 + r∗

)

where α̂ = α
κ2 and λ̂ = λ

κ .25 We now characterize the dynamic inflation target of Proposition 3 when

the economy experiences a lower bound spell.

Proposition 4. The dynamic inflation target that implements the full-information Ramsey allocation is

νt = γ0 + γ1θt + γ2νt−1

Etπt+1 = γ0 + (γ2 − 1)νt +

(
γ1 +

1
β

)
ρθt

where γ0 =
λ̂
α̂ γ2

1−βγ2
> 0, where γ1 = γ2

1−γ2βρ

[
ρ− 1+α̂

α̂
1
β

]
< 0, and where γ2 =

1+α̂(1+β)−
√

(1+α̂(1+β))2−4α̂2β

2α̂β

with 0 < γ2 < 1. Optimal inflation sets πt = νt − νt−1 +
1
β θt.

To illustrate the economic forces that govern the dynamic inflation target mechanism, consider the

following exercise: We initialize the economy at its risky steady state.26 Formally, we consider a

particular realization of the stochastic process where θt = 0 for sufficiently many periods such that

the economy and the mechanism asymptotically converge. It is straightforward to see that the target

flexibility converges to νt → ν = γ0
1−γ2

= 1
1−γ2

γ2
1−βγ2

κλ > 0 in this limit. In the language of Svensson

(1997b), the distorted steady state λ > 0 implies that there is an average inflationary bias, which ν > 0

corrects. Similarly, the target level converges to τt = Etπt+1 → τ = γ0 + (γ2 − 1)ν = 0 in the risky

steady state limit. This reflects a common Ramsey intuition: with a distorted steady state, the central

bank achieves a better inflation-output trade-off today by promising lower inflation tomorrow,

and subsequently achieves a better inflation-output trade-off tomorrow by promising future lower

25 In both this application and the ones that follow, the proof shows that there are two linear solutions that satisfy the
first order conditions of the optimum, and we take the non-explosive solution to remain consistent with the transversality
condition.

26 We define the risky steady state of the economy under a dynamic inflation target as comprising the allocation,
prices, and target parameters (τ, ν) that the model converges to if a shock sequence of θt = 0 for all t is realized. This is
distinct from the standard deterministic steady state because agents understand that the environment is stochastic. It is
also distinct from the stochastic steady state, which describes the random variables that allocation, prices, and target
parameters converge to in distribution as the model is simulated for a sufficiently long period of time under the ergodic
stochastic process {θt}.
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Figure 1. Impulse Responses: Lower Bound Spell

Note. Figure 1 plots the impulse responses of inflation and the dynamic inflation target after a lower bound shock θ0 > 0.
Panels (A) through (D) show target flexibility, target level, inflation, and the shock, respectively. We target a quarterly
calibration, staying as close as possible to Galí (2015), setting β = 0.99, α = 0.75, and κ =

(1−α)(1−αβ)
α . The blue solid

line corresponds to a persistent shock (ρ = 0.6) and the red dashed line to a transitory shock (ρ = 0). In each case, we
initialize the economy at the risky steady state and consider a shock at time 0.

inflation, and so on. This pushes optimal inflation under commitment towards zero in the long run,

absent shock innovations. Formally, the allocation rule implies πt = νt − νt−1 +
1
β θt → ν− ν = 0.

Our dynamic inflation target implements the long-run Ramsey allocation in the risky steady state

of this economy with a target level of τ = 0 and a positive target flexibility ν > 0 that exactly offsets

the central bank’s time inconsistent incentive to respond to the steady state distortion.27

We now initialize the economy at this risky steady state and consider a positive realization of

the shock, θ0 > 0. Intuitively, we consider the economy as having entered a lower bound spell of

uncertain duration at date 0. We plot the resulting impulse response functions (IRFs) under the

dynamic inflation target mechanism in Figure 1.

Suppose first that the ZLB spell is purely transitory, and hence E0θ1 = 0. We consider a

realization of the shock path such that θt = 0 for all t ≥ 1. The red-dashed line in Panel (a) of Figure

1 plots the dynamics of the target flexibility under this path.

The dynamic inflation target becomes more flexible at the lower bound, i.e., ν0 falls since

γ1 < 0. Intuitively, the transitory lower bound spell increases the shadow value of future inflation

and calls for a lower future inflation penalty. Even though the economy escapes from the lower

bound at date 1, the added target flexibility is persistent and decays only at the rate γ2 < 1.

This endogenous persistence in the target response captures the standard intuition that optimal

27 Similarly, we have it → r∗ and yt → 0. The allocation in the risky steady state is therefore the same as in the
deterministic steady state of this model. This follows from certainty equivalence under a first-order linearization.
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monetary policy in a liquidity trap makes long-lived promises to keep interest rates low even

after the economy moves away from the lower bound (Werning, 2011). Intuitively, promising high

inflation at date 1 means that unless the central bank also promises high inflation at date 2, the

economy experiences a significant output contraction at date 1. The central bank therefore smooths

the output contraction by promising to maintain higher inflation for longer.

The associated increase in inflation expectations is also reflected in an upwards adjustment of

the target level—see panel (b) of Figure 1. This reflects the success of the central bank in using the

increased target flexibility to raise inflation expectations. It manifests in a higher inflation level in

the next period. Coinciding with the gradual decay in target flexibility, the target level and realized

inflation also both remain above zero even after the shock has phased out.

A persistent shock, ρ > 0, leads to qualitatively similar but more persistent dynamics. Target

flexibility is hump-shaped under persistence, at first becoming more flexible as the shock phases

out. The intuition comes from the evolution of νt in Proposition 4: A persistent lower bound spell

makes it valuable to increase target flexibility beyond the initial date, which is reinforced by earlier

promises of greater flexibility. These promises therefore compound in the initial phase of the lower

bound spell.

Inflation target adjustments as forward guidance. The full-information Ramsey solution in a

liquidity trap is well understood. In the language of Eggertsson and Woodford (2003), optimal

monetary policy features history dependence and keeps interest rates low beyond the duration of

the lower bound spell. This policy is implemented through an infinite sequence of promises, or

“forward guidance.”

Proposition 4 demonstrates how a dynamic inflation target can implement the commitment

solution even in the presence of persistent private information. More importantly, however,

implementing the optimal policy relies only on one-period iterated commitments to a dynamic

inflation target. The central bank can implement forward guidance by adjusting its dynamic

inflation target, replacing the long-horizon forward guidance commitment by a sequence of iterated

one-period commitments.

Our theory provides a role for target adjustments as an unconventional monetary policy

instrument: the dynamic inflation target implements forward guidance, thus serving much the

same “commitment” role as asset purchases in Bhattarai et al. (2019). To the extent that long-

horizon central bank promises lack perfect credibility in practice, dynamic target adjustments

could therefore support forward guidance. This is not unlike the view under flexible inflation

targeting—already a mainstay idea in central banking—that there may be benefits to allowing

short-run flexibility around the central bank’s inflation goal.

Another important insight of our theory provides a cautionary tale for such arguments, how-

ever: target adjustments must be made one period in advance. Indeed, determining the appropriate

horizon for target adjustments becomes crucial to evaluate the implications of our theory for policy
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design practice; we take up this question in Section 5.

4.2 r∗

A vibrant debate has emerged on how monetary policy should respond to the decline in the natural

rate of interest, or r∗ (Laubach and Williams, 2016). In the presence of an effective lower bound

(ELB) on interest rates, a decline in the natural rate implies that nominal rates are closer to the ELB

on average and there is less room for central banks to use conventional policy during recessions.

Many observers in the U.S. have advocated for an increase in the Federal Reserve’s inflation target

(Blanchard et al., 2010; Ball, 2014; Krugman, 2014).

This application studies a persistent fall in the natural rate of interest in the stochastic steady

state of an economy that may encounter the ELB with some probability in the future. We denote

movements in the natural rate by θt = r∗t − r∗, i.e., as deviations from a long-run value. We assume

that Etθt+1 = ρθt for 0 ≤ ρ ≤ 1, where high ρ corresponds to persistence in natural rate movements.

Finally, we set κt = κ, shutting off shocks to the slope of the Phillips curve.

We model an effective lower bound as follows. At the beginning of each date t, the central

bank observes θt and adopts a rule for monetary policy. After the policy rule has been set for the

period, an observable transitory demand shock ε ∈ [ε+ r∗, ε+ r∗] is realized, with Eε = 0. Defining

εt = εt − r∗, so that εt ∈ [ε, ε] and Eεt = −r∗, we have

it = Etπt+1 + θt − εt,

where as in Section 4.1 we set σ = 0 in the dynamic IS equation. We represent the effective lower

bound as a separable utility penalty λ0 − λ1it for negative realized nominal interest rates it < 0,

with λ0, λ1 ≥ 0. The expected (dis)utility from the ELB is therefore

v(i∗t ) = −
∫ ε

i∗t

(
λ0 − λ1(i∗t − ε)

)
f (ε)dε

where i∗t ≡ Etπt+1 + θt. We assume ε is uniformly distributed, f (ε) = 1
ε−ε , so that we have

v(i∗t ) = −v + βv0i∗t −
1
2

βv1i∗2t ,

for v0 = 1
2β

λ0+λ1ε
ε+r∗ and v1 = 1

2β
λ1

ε+r∗ .
28 This means we have v′(i∗t ) = β(v0 − v1i∗t ). Intuitively, the

effective lower bound generates welfare gains from setting i∗t > 0 as this creates distance from the

ELB and makes it less likely that a demand shock will push nominal rates below zero. This has

implications for the design of the dynamic inflation target, as we show below.

Social preferences take the form Ut(πt, yt, i∗t ) = − 1
2 π2

t − 1
2 αy2

t + v(i∗t ), reflecting both the

loss from inflation and output gaps, and the loss from ELB penalties. We can then represent the

28 We further have v = λ0
ε

ε−ε + 1
2 λ1

ε2

ε−ε .
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reduced-form utility function as

Ut(πt, Etπt+1, θt) = −
1
2

π2
t −

1
2

α̂

(
πt − βEtπt+1

)2

+ v(Etπt+1 + θt)

for α̂ = α
κ2 . We now characterize the dynamic inflation target in the presence of time-varying

natural interest rate movements θt.

Proposition 5. The dynamic inflation target that implements the full-information Ramsey allocation is

νt = δ0 + δ1νt−1 + δ2θt

1
ζ

τt = v0 + δ0 +

(
δ1 −

α̂β + v1

α̂β

)
νt + (δ2 − v1)ρθt

where δ0 = −δ1
1+α̂(1−β)
α̂(1−βδ1)

v0 < 0, where δ1 =
1+α̂(1+β)+v1−

√
(1+α̂(1+β)+v1)2−4α̂2β

2α̂β with 0 ≤ δ1 ≤ 1,

where δ2 = 1
α̂

1+α̂(1−βρ)
(1−βδ1ρ)

δ1v1 < v1, and where ζ = α̂β
(α̂β+v1)(1+α̂)−α̂2β

> 0. Inflation is given by 1
ζ πt =

νt − α̂β+v1
α̂β νt−1 + v0 − v1θt.

To illustrate the economic forces at play, we again start by analyzing the risky steady state of the

economy under the dynamic inflation target, which corresponds formally to the limit under a

sufficiently long shock realization with θt = $t = 0. In this limit, the target level converges to

τt → τ = ζ

(
v0 + δ0

)
+ ζ

(
δ1 −

α̂β + v1

α̂β

)
ν > 0,

which is positive. Unlike in Section 4.1, the risk of a lower bound spell in this economy leads to

a positive long-run target level. It is well understood that proximity to an occasionally-binding

effective lower bound provides an economic motive for a higher inflation target level. Proposition

5 formalizes this logic, showing that the dynamic inflation target features a positive target level in

the risky steady state, even in the presence of persistent private information. If we shut off the risk

of hitting the occasionally-binding effective lower bound, i.e., take the limit as λ0, λ1 → 0, we have

τ → 0 as in Section 4.1.29

While the implications of the effective lower bound for the optimal inflation target level may

be well appreciated, our qualitatively novel result is that optimal long-run target flexibility is also

29 Even in this limit, we study an economy at a non-distorted steady state in this subsection, whereas we considered a
distorted steady state in Section 4.1. While the time consistency problem that stems from this distorted affects target
flexibility in the risky steady state, this discussion highlights that the target level is unaffected. The commitment Ramsey
allocation features 0 long-run inflation for the same economic rationale as we discussed in Section 4.1.
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Figure 2. Impulse Responses: r∗

Note. Figure 2 plots the impulse responses of inflation and the dynamic inflation target after a decline in the natural rate
of interest. Panels (A) through (D) show target flexibility, target level, inflation, and the shock, respectively. We target a
quarterly calibration, staying as close as possible to Galí (2015), setting β = 0.99, α = 0.75, and κ =

(1−α)(1−αβ)
α . The blue

solid line corresponds to a persistent shock (ρ = 0.6) and the red dashed line to a transitory shock (ρ = 0). In each case,
we initialize the economy at the risky steady state and consider a shock at time 0.

affected by the risk of lower bound spells. In particular, in the risky steady state we have

νt → ν =
1

1− δ1
δ0 = − δ1

1− δ1

1 + α(1− β)

α(1− βδ1)
v0 < 0.

A surprising result is that target flexibility is negative in the risky steady state: the central bank is

rewarded for higher inflation. Intuitively, this application abstracts from steady state distortions, so

the central bank lacks the usual inflationary bias for raising output that results from a distorted

steady state. Without the effective lower bound we would therefore have νt = 0, giving from to the

divine coincidence.30 With an effective lower bound, the central bank could still implement the

allocation πt = yt = 0, but doing so requires negative nominal interest rates in response to large

demand shocks. This generates first-order welfare losses from negative interest rates, while welfare

losses from allowing inflation and output gaps around this allocation would be of second order.

Hence, optimal policy pushes away from the divine coincidence allocation by raising inflation

expectations, which is implemented by increased target flexibility in the risky steady state, ν < 0.

Intuitively in this case, the time consistency problem is a tendency towards too little inflation as a

result of the effective lower bound.

To characterize the inflation target dynamics in response to a fall in r∗, we initialize the

30 That is to say, demand shocks would simply alter the welfare-irrelevant nominal interest rate.
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economy at its risky steady state and consider a shock θ0 < 0. Figure 2 plots the associated impulse

responses. A decline in r∗ prompts an increase in target flexibility (i.e., a fall in νt). Intuitively, a

lower natural rate pushes the economy towards the ELB, raising the risk of lower bound spells, and

thus making it valuable to raise inflation expectations. Under a dynamic inflation target mechanism,

the central bank achieves this by raising its target’s flexibility. And the resulting rise in inflation

expectations is again reflected in an increase in the inflation target level, τt. A decline in r∗ therefore

requires an adjustment in both target parameters. When the fall in the natural rate is persistent,

ρ > 0, the dynamic response of target flexibility, νt, is again hump-shaped, following the same

economic logic as we discussed in Section 4.1.

Target flexibility with ELB and declining r∗. Two surprising insights emerge from this applica-

tion. First, in the presence of an occasionally-binding lower bound constraint, the standard time

consistency problem is offset by the benefit of higher inflation expectations. In this application,

the optimal long-run inflation target features ν < 0, thus rewarding the central bank for higher

inflation. This result is stark because we abstract from the steady state distortion that motivated

the penalty ν > 0 in Section 4.1. More generally, two opposing forces shape the optimal level of

target flexibility: The standard time consistency problem leads to inflationary bias if unaddressed

and requires an inflation penalty. The risk of lower bound spells, however, makes higher inflation

socially valuable, pushing optimal target flexibility in the opposite direction. In fact, the closer the

economy is to the ELB, the stronger this force becomes, as highlighted by the impulse response in

Panel (a) of Figure 2. The long-run level of the natural rate is therefore a critical determinant of

optimal inflation target flexibility.

Second, both target parameters optimally respond to a decline in r∗. Academic and policy

discourse has largely focused on implications for the optimal inflation target level. Our theory

suggests that appropriate adjustments in target flexibility are just as important in order for the

inflation target mechanism to implement the efficient Ramsey allocation. While our results echo

previous arguments for an increase in the target level, they emphasize that a persistently lower

natural rate of interest also calls for increased target flexibility.

4.3 Flattening Phillips Curve

The flattening of the U.S. Phillips curve has garnered much attention since the Great Recession

(Blanchard, 2016; Galí and Gambetti, 2019; Rubbo, 2020; Del Negro et al., 2020). This debate has also

engulfed monetary policy discourse in recent years (Brainard, 2015). In this application, we analyze

the implications of a persistent flattening of the Phillips curve for the central bank’s dynamic

inflation target. We associate θt with a persistent shock to the social benefit of stimulating output,

which corresponds to time variation in the slope of the NKPC.

Social welfare is characterized by a New Keynesian loss function around a distorted steady

state, Ut(πt, yt, θt) = − 1
2 π2

t − 1
2 αy2

t + θtyt. For tractability, we set α = 0. In this case, internalizing
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the NKPC yields reduced-form utility

U(πt, Etπt+1, θt) = −
1
2

π2
t +

1
κ/θt

(
πt − βEtπt+1

)
. (13)

Note that an increase in θt corresponds to an effective reduction in the slope κt = κ/θt of the

Phillips curve. We assume that Etθt+1 = 1− ρ + ρθt with 0 ≤ ρ ≤ 1, reflecting reversion of the

slope of the Phillips curve towards κ over time. We now characterize the optimal inflation target

response to a persistent change in the slope of the Phillips curve.

Proposition 6. The dynamic inflation target that implements the full-information Ramsey allocation is

νt =
1

κ/θt

τt = (1− ρ)

(
1
κ
− 1

κ/θt

)
Optimal inflation is πt =

1
κ/θt
− 1

κ/θt−1
.

We again start our discussion of the economic forces by studying the risky steady state that obtains

after a sufficiently long realization of θt = 1. In this limit, the slope of the Phillips curve is constant

and given by κ. It is therefore easy to verify that νt → ν = 1
κ and τt → τ = 0. Intuitively, there is a

constant inflationary bias that arises from the assumed steady state distortion. The target flexibility

ν = 1
κ offsets the central bank’s incentive to use inflation to stimulate output precisely because

the slope is constant: the marginal value of stimulating output today is equal to the marginal cost

of reducing output yesterday, resulting in zero expected inflation being optimal. This justifies a

long-run target level of τt = 0 and steady state inflation of πt = 0.

We now initialize the economy in the risky steady state and consider a shock θ0 > 0 that flattens

the Phillips curve. The target adjustment dynamics are displayed in Panels (a) and (b) of Figure 3.

A flattening of the Philips curve reduces optimal target flexibility, implying larger punishments for

high inflation. Intuitively, a flatter Phillips curve implies a larger marginal benefit from stimulating

output and a larger marginal cost of expected future inflation. This exacerbates the central bank’s

time consistency problem. The optimal target adjustment is therefore to reduce flexibility. As

the central bank faces larger penalties for positive inflation, firms’ inflation expectations fall. The

optimal inflation target adjustment therefore features both a fall in the level and a reduction of

flexibility in response to a flattening of the Phillips curve. As in previous applications, persistent

shocks lead to more persistent dynamics.

One interesting observation from Proposition 6 is that the on-impact response of the target

level is larger when the shock is transitory. A transitory flattening of the Phillips curve implies

that stimulating output is valuable today relative to the future. The Ramsey allocation exchanges
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Figure 3. Impulse Responses: Flattening Phillips Curve

Note. Figure 3 plots the impulse responses of inflation and the dynamic inflation target after a flattening of the Phillips
curve. Panels (A) through (D) show target flexibility, target level, inflation, and the shock, respectively. We target a
quarterly calibration, staying as close as possible to Galí (2015), setting β = 0.99, α = 0.75, and κ = (1− α)(1− αβ)/α.
The blue solid line corresponds to a persistent shock (ρ = 0.6) and the red dashed line to a transitory shock (ρ = 0). In
each case, we initialize the economy at the risky steady state and consider a shock at time 0.

an output boost today for a future output contraction. Inflation expectations and thus the target

level fall sharply on impact. By contrast, a persistent flattening implies that stimulating output is

valuable over a longer horizon. This tempers incentives to stimulate current output and dampens

the impact on inflation expectations. The on-impact response of target flexibility, on the other

hand, is unaffected by shock persistence because the time consistency problem is governed by the

contemporaneous Phillips curve slope. In the limit ρ→ 1, the central bank adopts a permanently

less flexible target while keeping the target level at τt = 0.

Flattening Phillips curve vs. declining r∗. The U.S. has recently experienced two empirically

prominent structural changes—the decline in r∗ and the flattening Phillips curve. Much policy

discourse seems to have stressed the benefits of raising the target level and allowing for more

flexibility. In fact, the Federal Reserve has adopted an average inflation target in August 2020,

which arguably reflects an increase in target flexibility. We have shown in Section 4.2 that these

target adjustments are indeed optimal in response to a decline in r∗. Surprisingly, however, a

flattening of the Phillips curve pushes in the opposite direction in both dimensions: The optimal

policy response is to lower the target level and to remove the central bank’s flexibility around the

target because of an exacerbated time consistency problem. These results have important policy

implications if the flattening of the Phillips curve proves persistent.
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5 Duration and Persistence of Time Inconsistency

A dynamic inflation target implements the Ramsey allocation in an economy with persistent shocks

and persistent private information. Our mechanism delegates to the central bank the authority

to adjust its own target, as long as it does so one period in advance. To consider the implications

of our result for policy design in practice, a natural question emerges: How long is a period? We

now generalize our theory in the necessary dimensions to tackle this question and characterize the

determinants of the optimal target adjustment horizon.

We introduce a longer-horizon time consistency problem in Section 5.1 and define its duration
and persistence. Our main result in Section 5.2 shows that a generalized dynamic inflation target

still implements the efficient Ramsey allocation in the presence of persistent private information.

A commitment curve now summarizes the size of commitments the central bank makes at various

horizons. We develop our main policy application in Section 5.3, where we discuss how a fixed-

horizon review process as practiced by the Bank of Canada can yield a good approximation of a

dynamic inflation target in practice.

5.1 Long-Horizon Time Consistency Problems

The Phillips curve of Section 2 features one-period-ahead inflation expectations. It gives rise to a

time consistency problem that has a duration of one period: Under discretion, the central bank fails

to internalize that policy decisions at time t affect inflation expectations formed at time t− 1. To

study longer-horizon time consistency problems, we introduce a generalized Phillips curve, under

which output depends on K ≥ 1 periods of inflation expectations,

yt = Ft

(
πt, Et[πt+1 | θ̃t], . . . , Et[πt+K | θ̃t]

)
, (14)

where Et[πt+k | θ̃t] denotes firms’ k-period-ahead inflation expectation. Implementability conditions

like (14) emerge naturally in many settings.31 We leave the model of Section 2 otherwise unchanged.

Substituting into social preferences Ut(πt, yt, θt) yields the lifetime social welfare of the government

E
∞

∑
t=0

βtUt

(
πt, Et[πt+1 | θ̃t], . . . , Et[πt+K | θ̃t], θt

)
. (15)

The case K = 1 corresponds to the baseline model.

31 For example, the non-linear pricing equation that emerges in time-dependent rational expectations models of
nominal rigidites features an infinite sequence of expectation terms (Calvo, 1983; Galí, 2015). It is only when linearizing
around a 0-inflation steady state that the standard NKPC (10) with a single expectation term emerges. In Section 5.3,
we study a generalized NKPC by linearizing the standard Calvo model around a steady state with positive inflation,
which is an important and policy-relevant benchmark. Many other prominent models of nominal rigidities yield pricing
equations of the form (14). Starting with Fischer (1977) and Taylor (1980), multi-period staggered wage and price
contracts have become a popular model of nominal rigidities. An influential paper in this tradition is Chari et al. (2000).
More recently, Werning (2022) studies the pass-through of inflation expectations and considers Phillips curves with
generalized beliefs that also take a form similar to (14).
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We again consider the full-information Ramsey allocation as an efficiency benchmark, which

we then seek to implement through an incentive compatible mechanism.

Proposition 7. The full-information Ramsey allocation is characterized by

∂Ut

∂πt
=

K−1

∑
k=0

νt−1,k , where νt−1,k =

−
1

β1+k
∂Ut−1−k

∂Et−1−k [πt | θt−1−k ]
if t− 1− k ≥ 0

0 if t− 1− k < 0
(16)

Proposition 7 generalizes Proposition 1. Inflation at date t affects flow utility not only in period

t− 1 but also in t− 2 through t− K. Facing the implementability condition (14), a Ramsey planner

under commitment therefore finds it valuable to make promises about inflation K periods into the

future. Such promises affect output yt contemporaneously through firms’ inflation expectations.

Such commitments are valuable because they improve the contemporaneous inflation-output

tradeoff: When there is a tradeoff between output and inflation stabilization in period t (i.e.,

Divine Coincidence does not hold), then being able to backload inflation adjustments—for a given

desired output gap—into periods t + 1 through t + K smooths the cost of inflation across these

periods.32 This intuition is directly reflected in the optimality condition (16) that characterizes the

full-information Ramsey allocation.

These promises that the Ramsey planner finds it valuable to make are time inconsistent, in

the sense that a planner reoptimizing in period t + s would have an incentive to reneg on them.

It is in this sense that implementability condition (14) leads to a long-horizon time consistency

problem. The duration of time inconsistency is then naturally defined as the largest integer S such

that expectations about period t + S appear in forward-looking implementability conditions. The

duration of time inconsistency implied by (14) is K. And as the duration K increases, the first-order

condition (16) becomes increasingly backward looking. Intuitively, the duration tells us for how

many periods into the future the planner finds it valuable to make promises in order to improve

the contemporaneous inflation-output tradeoff.

Proposition 7 defines νt−1,k analogously to νt−1 in the baseline model as a date t − 1 − k
adapted constant. In this environment, we can think of

ν̄t−1 ≡
K−1

∑
k=0

νt−1,k

32 This intuition is true even in the standard model, where the NKPC features a single expectation term. Optimal
policy under commitment in this benchmark is history-dependent: The planner makes promises for all dates into the
future. But this is not because promises arbitrarily far into the future improve the contemporaneous inflation-output
tradeoff the planner faces in period t. Instead, the planner smooths the cost of inflation adjustments between periods t
and t + 1 initially, which is possible due to firm expectations, but then finds it valuable to again smooth the promised
inflation adjustment between periods t + 1 and t + 2, and so forth. Under the generalized Phillips curve (14), promises K
periods into the future directly improve the contemporaneous inflation-output tradeoff.
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as the total time consistency problem—or total inflationary bias—that needs to be corrected at date t
in order to implement the full-information Ramsey allocation. Total inflationary bias represents the

sum of K time inconsistent promises νt−1,k. Not all of these promises are created equal, however.

The planner will find it valuable to make stronger promises about future inflation in some periods

and weaker promises for other periods. We introduce the notion of persistence of time inconsistency
to capture this: Formally, the persistence of time inconsistency in period t is the K× 1 vector whose

kth element νt−1,k−1 captures the strength of promises made k periods ago for date t.

5.2 Dynamic Inflation Targets with Long-Horizon Time Inconsistency

We now develop the main result of this section: a K-horizon dynamic inflation target implements the

full-information Ramsey allocation.

Definition 8 (K-horizon Dynamic Inflation Target). A K-horizon dynamic inflation target is an affine

transfer rule mechanism, Tt = −bt−1(πt − τt−1), whose target level equals a weighted average of

the past K inflation forecasts,

τt−1 =
K−1

∑
k=0

ωt−1,k Et−1−k[πt | θ̃t−1−k],

for some weights ωt−1,k, and whose target flexiblity is the slope bt−1.

The K-horizon dynamic inflation target reverts to the dynamic inflation target of Section 3 when

K = 1. When K > 1, however, the target level τt−1 is based on the last K forecasts for date t
inflation, which is reminiscent of results on inflation forecast targeting (Svensson, 1997a; Svensson

and Woodford, 2004). We are now ready to prove the following generalization of our main result.

Proposition 9. A K-horizon dynamic inflation target implements the full-information Ramsey allocation in
a locally incentive compatible mechanism. The weights for the target level are ωt−1,k =

νt−1,k
ν̄t−1

, and the target
flexibility is bt−1 = ν̄t−1.

Proposition 9 generalizes our main result to longer-horizon time consistency problems. Intuitively,

the mechanism still serves the same two roles emphasized in Section 3: correcting the time consis-

tency problem in the central bank’s contemporaneous inflation choice, and providing incentives for

correctly updating the target. The target flexibility, bt−1, is again set to address the former. When

K = 1, inflationary bias is simply captured by ν̄t−1 = νt−1,0 as in Section 3, i.e., the impact of current

inflation on last period’s output. When K > 1, the total time consistency problem ν̄t−1 summarizes

the cumulative impact of current inflation on output over the last K periods.
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The target’s level, τt−1, is again used to overcome the model’s core informational frictions:

the central bank’s incentives to manipulate firm and government beliefs. The mechanism sets the

target level equal to a weighted average of inflation forecasts for date t made over the last K periods.

Intuitively, the weight ωt−1,k+1 =
νt−1,k+1

ν̄t−1
assigned to the inflation forecast k periods ago is the

fraction of the total time consistency problem, ν̄t−1, that originates from the impact of inflation on

output k periods ago, νt−1,k+1. Large weights are assigned to past dates with large time consistency

problems. The K-horizon dynamic inflation target again achieves informational divine coincidence:

The central bank’s incentive to bias firm inflation expectations downward is exactly offset by its

incentive to bias government transfers upward at the equivalent horizon. It holds precisely because

the slope νt+k,k for future transfers is equal to the marginal utility cost of future inflation through

changes in current output.

Evolution of commitments and commitment curve. As in the baseline model, the central bank

only needs to know the target parameters (ν̄t−1, τt−1), and not the history that gave rise to those

parameters, to set optimal inflation policy for date t. To update the target for the next period,

however, the central bank must respect cumulative past commitments made for period t + 1. We

now show how to summarize this information in two K × 1 vectors, Vt = {Vt,1, . . . , Vt,K} and

Tt = {Tt,1, . . . , Tt,K}, that serve as sufficient statistics for the target adjustment process.

We define Vt,k as cumulative promises made for target flexbility k− 1 periods ahead, i.e., in

period t− 1 + k. Under this convention, Vt,1 = ν̄t−1 corresponds to target flexibility at date t and

summarizes all commitments made over the past K periods. By contrast, Vt,k for k > 1 reflects

the cumulative partial commitments the central bank has made so far. We refer to these as partial

commitments precisely because they can still be updated at date t. We can track the evolution of

partial commitments using the recursion

Vt+1,k = Vt,k+1 + νt+k−1,k

where Vt,K+1 ≡ 0 and νt+k−1,k reflects the new promise made at date t for target flexibility k periods

ahead. To illustrate, note that Vt+1,1 = Vt,2 + νt,1 = ν̄t: target flexibility for period t + 1 results from

adding a new partial commitment made in period t, νt,1, to our measure of cumulative promises

made in the past, Vt,2. Vector Vt thus summarizes all relevant information for updating target

flexiblity.

To update the target level τt, the central bank must compute a weighted average of historical

30



inflation forecasts. The evolution of this weighted average of forecasts satisfies the recursion

τt =
νt,0

ν̄t
Et[πt+1|θ̃t] +

K

∑
k=1

νt,k

ν̄t
Et−k[πt+1|θ̃t−k]

=
νt,0

νt,0 + Vt,2
Et[πt+1|θ̃t] +

Vt,2

νt,0 + Vt,2

K

∑
k=1

νt,k

Vt,2
Et−k[πt+1|θ̃t−k]︸ ︷︷ ︸
≡Tt,2

,

where the first line expresses τt as an average of current and historical inflation forecasts with

weights directly taken from Proposition 9. We introduce Tt to track the evolution of average

forecasts and summarize the information needed by the central bank to update its target level. Its

first element reflects the current target level, Tt,1 = τt−1, which is taken as given at date t. For k > 1,

Tt,k summarizes the cumulative weighted average of historical forecasts for inflation in period

t− 1 + k. Its evolution satisfies the recursion

Tt+1,k =
Vt,k+1

Vt,k+1 + νt+k−1,k
Tt,k+1 +

νt+k−1,k

Vt,k+1 + νt+k−1,k
Et[πt+k|θ̃t].

To implement the K-horizon dynamic inflation target, the central bank must therefore keep

track of (Vt, Tt). Intuitively, these two vectors encode a notion of forward guidance in the form

of partial commitments for what the central bank will do for the next K periods. At date t, the

central bank takes as given its target for the current date, τt−1 = Tt,1 and bt−1 = Vt,1, and lacks any

ability to update this target. The central bank has partial ability to update its target for periods

t + k, for 1 ≤ k < K, taking as given its prior commitments that are encoded in Vt,k−1 and Tt,k−1.

Finally, the central bank has no prior commitment over inflation at date t + K, and so makes its

first partial commitment for this period at date t. This provides a generalized notion of the iterated

one-period commitments of the baseline model: The central bank here makes iterated K-period

partial commitments.

A useful representation of this partial commitment process is the commitment curve. It encodes

the size of the partial commitment made by the central bank at date t for date t + k, which is

precisely νt+k,k.

Definition 10 (Commitment Curve). The commitment curve at date t is the curve (k, νt+k,k) of

commitments made at date t for all k ≥ 1.

The commitment curve provides a natural representation of the persistence of time inconsistency

and commitments under the K-horizon dynamic inflation target. Intuitively, its shape conveys how

long the horizon of commitments made by the central bank truly is: A sharply downward-sloping

curve means the central bank is only making large commitments for the near term, while a flat
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curve means the central bank is making large commitments over a long horizon. The commitment

curve provides an instructive conceptual framework for characterizing the optimal horizon of

target adjustments and answering the policy-relevant question of how long is a period.

5.3 Practical Policy Implications

This section develops our main policy application, leveraging the commitment curve introduced

above to characterize the determinants of the optimal target adjustment horizon. We do so in the

context of a generalized New Keynesian Phillips curve (GNKPC) that emerges when linearizing the

standard Calvo model around positive steady state or trend inflation, denoted γ = 1 + π̄ (Ascari,

2004; Ascari and Sbordone, 2014).33

Following closely Ascari and Ropele (2007), we study a linearized New Keynesian model that

comprises a standard dynamic IS equation of the form (11), with EIS σ = 1, and a GNKPC, together

given by

yt = Etyt+1 − (it −Etπt+1) (17)

πt = κyt + (βγ + β̃)Etπt+1 + β̃Et

[ ∞

∑
s=1

δ̃sπt+1+s

]
. (18)

where β̃ = (γ − 1)β(1 − αγε−1)(ε − 1) and δ̃ = αβγε−1. The slope of the GNKPC is κ =
(1−αγε−1)(1−αβγε)

αγε−1 . We denote by (1 − α) the probability that a firm can reset its price each pe-

riod and by ε the elasticity of substitution between intermediate inputs. Note that in the case

with no trend inflation, γ = 1 and β̃ = 0, we recover the standard New Keynesian Phillips curve

(10).34 Unlike in previous sections, we now denote by πt and yt the percent deviations from a

deterministic steady state with trend inflation γ.

Given a preference function U (πt, yt, θt), we can sharply characterize the shape of the commit-

ment curve associated with the GNKPC (18).

33 The linearized model with trend inflation is an important and policy-relevant benchmark. Ascari and Sbordone
(2014) argue that “the conduct of monetary policy should be analyzed by appropriately accounting for the positive trend inflation
targeted by policymakers.” However, many other models also yield generalized Phillips curves of the form (14)—see also
Footnote 31.

34 Ascari and Ropele (2007) represent the GNKPC in terms of an auxiliary variable

πt = κyt + βγEtπt+1 + (γ− 1)β(1− αγε−1)Et

[
(ε− 1)πt+1 + φt+1

]
φt = αβγε−1Et

[
(ε− 1)πt+1 + φt+1

]
where we have already set the EIS to σ = 1. Defining β̃ and δ̃ as above, then dividing through the second equation by
ε− 1, defining ϕt =

1
ε−1 , and solving forward we have ϕt = ∑∞

s=1 δ̃sEtπt+s. Substituting into the first equation and
reallocating terms, we get πt = κyt + (βγ + β̃)Etπt+1 + β̃Et ∑∞

s=1 δ̃sπt+1+s.
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Proposition 11. The commitment curve has a quasi-hyperbolic shape, that is

νt+k,k = β∗δ∗(k−1)νt+1,1

where β∗ = β̃

β̃+βγ
and δ∗ = δ̃

β .

Proposition 11 reveals that the commitment curve in the GNKPC model has a shape associated

with quasi-hyperbolic discounting (Laibson, 1997). This implies a large and discrete drop, β∗δ∗, in

the commitment curve between k = 1 and k = 2. For k ≥ 2, the curve is governed by exponential

discounting, with νt+k+1,k+1 = δ∗νt+k,k.

The quasi-hyperbolic shape emerges because long-horizon inflation expectations have a lower

pass-through to current inflation. According to the GNKPC (18), the relative effect of inflation

expectations on current output at different horizons is given by

∂yt/∂Etπt+k

∂yt/∂Etπt+1
=
− 1

κ β̃δ̃k−1

− 1
κ (βγ + β̃)

= β∗δ̃k−1 < 1.

The pass-through of long-horizon relative to one-period-ahead inflation expectations is muted. The

smaller β∗ and δ̃, the more quickly the effects of long-horizon inflation expectations decay.

The long-horizon time consistency problem that emerges from the Phillips curve (18) is

governed precisely by the sensitivity of current output to long-horizon inflation expectations.

Likewise, the commitment curve of Proposition 11 is therefore shaped by the parameters β∗ and

δ̃ that also govern the relative pass-through of k-horizon inflation expectations. Intuitively, the

quasi-hyperbolic shape implies that promises made for date t in the previous period t− 1 tend

to be larger by a factor β∗ than partial commitments made in earlier periods. Here, β∗ reflects

the disproportionate impact that one-period-ahead inflation expectations have on output, and it

therefore governs the relative importance of short- and long-horizon commitments. δ∗, on the other

hand, determines how quickly the importance of partial commitments decays at longer horizons.

Notice that the standard NKPC (10) features β̃ = 1 and β∗ = 0. The standard New Keynesian

model therefore corresponds to an extreme case of quasi-hyperbolic discounting, where only the

first point on the commitment curve is nonzero.

Bank of Canada mechanism. The duration of the time consistency problem implied by the

Phillips curve (18) is K = +∞. Only an infinite-horizon dynamic inflation target could therefore

implement the Ramsey allocation, requiring an infinite sequence of forward-looking partial com-

mitments that are updated every period. The central bank would have to continuously update

infinite-horizon target commitments, which is impractical.

Proposition 11 underscores, however, that not all commitments are created equal. The quasi-

hyperbolic shape of the commitment curve has two implications. First, long-horizon commitments
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Figure 4. Commitment Curve

Note. Figure 4 plots the commitment curve (k, νt+k,k) for k > 1 relative to k = 1 in Panel (a) and the measure Vt−1,k∗ in
Panel (b). We target a quarterly calibration and stay close to Ascari and Ropele (2007), setting β = 0.99, α = 0.75, ε = 11
and γ = 1.01.

become increasingly less relevant because the severity of the time consistency problem at longer

horizons decays exponentially. Second, commitments for the very near term are disproportionately

important because of the quasi-hyperbolic discount β∗. Together, these observations suggest that

approximating the optimal infinite-horizon mechanism with an appropriate finite-horizon one may

not generate large welfare losses.

The Bank of Canada follows a regular 5-year review process of its inflation target. In our

framework, this implies that the target level and flexibility (τ, ν) are optimally updated every

5 years, but held constant between reviews. Our theory provides a natural framework to ask

what the optimal horizon of such a review process is. Under the Bank of Canada mechanism, the

choice of adjustment horizon K involves a tradeoff between short- and long-horizon commitments.

Intuitively, increasing K is valuable to address the long-horizon time consistency problem implied

by (18). Since the target is held fixed between reviews, however, a larger K is costly because it

implies less flexibility to respond to persistent shocks in the short run. Proposition 11 allows us to

compare the relative importance of short- and long-horizon commitments. In the limiting case as

β∗ → 0, no long-horizon commitments are made and we revert to the standard New Keynesian

Phillips curve. In this limit, the Bank of Canada mechanism with a review horizon of K = 1 period

in fact implements the Ramsey allocation.

By contrast, as β∗ and δ∗ become larger, the commitment curve flattens. To characterize the

relative importance of long-horizon commitments, we can ask what share of the current total

commitment, ν̄t−1, is accounted for by partial commitments made more than k∗ periods ago. This

share is precisely captured by Vt−1,k∗ , which we can compute in closed form around the economy’s
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risky steady state, where νt+1,1 = ν. We have

Vt−1,k∗ =
β∗ ∑∞

k=k∗(δ
∗)k−1

1 + β∗ ∑∞
k=2(δ

∗)k−1 =
β∗ δ∗

1−δ∗

1 + β∗ δ∗
1−δ∗

δ∗(k
∗−2).

Figure 4 plots both the commitment curve and Vt−1,k∗ for a standard quarterly calibration in

Panels (a) and (b), respectively. Panel (b) suggests that 90% of the total is accounted for by one-

quarter-ahead commitments, with 10% of the total coming from long-horizon commitments. The

vast majority of commitments are made over a 10-quarter horizon, and virtually no commitment

comes from more than 30 quarters—roughly 7 years—into the future. This reveals two important

takeaways. First, finite-horizon dynamic inflation targets approximate the optimal mechanism in

this environment. They likely incur only small welfare losses even though the duration of time

inconsistency is K = +∞. Second, commitments over the short term are particularly important and

account for a large share of the total. The Bank of Canada’s 5-year review horizon is therefore long

enough to capture nearly all long-horizon commitments. Conversely, Figure 4 suggests that at a

5-year horizon, the marginal impact of long-horizon commitments is likely small. However, the

short-run commitments that would be made if the central bank could adjust its target continuously

might be large. Our results therefore suggest that a shorter adjustment horizon may strike a better

balance between flexibility to respond to persistent shocks in the short run and commitment to

address long-horizon time inconsistency.

6 Extensions

In Section 3, we showed that a dynamic inflation target can implement the full-information Ramsey

allocation. This constitutes an optimal mechanism under three conditions: (i) the informational

divine coincidence holds, that is firms and the government have the same information sets; (ii)

enforcement is costless to the government; (iii) the government and central bank have the same

preferences. We study (i) and (ii) in this Section, and (iii) in Appendix C.2.

6.1 The Importance of Information

Our first extension relaxes the assumption that firms and the government have the same information

sets. We assume that a fraction of firms are informed and directly observe the state θt. We show that

the optimal mechanism is a dynamic inflation target with a penalized adjustment process. Intuitively,

penalized adjustments are required to compensate the central bank for information rents earned

from informed firms. This extension demonstrates the robustness of the dynamic inflation target

framework to different information structures.

Let a fraction γ ∈ [0, 1] of firms directly observe the state θt. The remaining firms are

uninformed and learn the state from central bank reports. Average inflation expectations are thus
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given by E
avg
t πt+1 = γEt[πt+1 | θt] + (1− γ)Et[πt+1 | θ̃t]. We now write reduced-form preferences

over average inflation expectations as Ut(πt, E
avg
t πt+1, θt). The full-information Ramsey allocation,

including πt and νt−1, is as in Proposition 1.

Following the same steps as in the proof of Proposition 3, we obtain the new envelope

condition for incentive compatibility,

∂Wt(θt)

∂θt
=

Previous Terms︷ ︸︸ ︷
∂Ut (πt, Et [πt+1|θt] , θt)

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
(19)

+ γ
∂Ut (πt, Et [πt+1|θt] , θt)

∂Et [πt+1|θt]
Et

[
πt+1

∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
︸ ︷︷ ︸

Information Rent from Informed Firms

.

Notice that inflation expectations of informed and uninformed firms coincide under the truth-

telling mechanism. The first line of (19) captures the same information rents as before in equation

(6). The second line, however, now reflects a new source of central bank information rents, earned

from informed firms. This new force represents the key departure from the baseline model. It

reflects how information about the state affects informed firms’ inflation expectations.

Equation (19) reveals that a simple dynamic inflation target is no longer incentive compatible

because it neglects this new information rent. We need to augment the mechanism accordingly.

Denote the negative of the new information rent (omitting γ) at the Ramsey allocation by ωt =

βνtEt
[
πt+1

∂ f (θt+1 | θt)/∂θt
f (θt+1 | θt)

| θt
]
. We now define a penalized dynamic inflation target as an affine transfer

rule with an additional penalty Pt for target adjustments at date t, which we will associate with the

new information rent ωt,

Tt = −bt−1(πt −Etπt−1)− γPt.

Finally, we define the lifetime expected penalty as Pt = Pt + Et[∑∞
k=1 βkPt+k|θt], which admits a

recursive representation Pt = Pt + βEtPt+1.

Proposition 12. A penalized dynamic inflation target implements the full-information Ramsey allocation in
a locally incentive compatible mechanism, with target flexibility bt−1 = νt−1. The lifetime penalty function
P is given in recursive form by35

Pt(θ
t) =

∫ θt

θ
ωt(θ

t−1, xt)dxt +
∫ θt

θ
βEt

[
Pt+1

∂ f (θt+1|xt)/∂xt

f (θt+1|xt)

∣∣∣ xt

]
dxt.

Proposition 12 generalizes our main result to environments with informed firms. It demonstrates

that dynamic inflation targets are robust to alternative information structures—in this case requiring

an additional penalty Pt.
35 Note that the static penalty, Pt, can be obtained by combining this equation with the recursive representation above.
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The lifetime penalty has a “static” and a “dynamic” component. The marginal static penalty

is ωt, which is the information rent from the central bank’s private information about informed

firm expectations. The information rent depends on how firms’ inflation expectations covary with

the shock structure. If high types θt signal high future types θt+1 (monotone likelihood) and high

future types signal high inflation πt+1, then ωt > 0, that is there is a penalty for upwards target

adjustments.36 Intuitively, the unpenalized dynamic inflation target gives too much surplus to high

θ types, and the penalization process deters lower types from deviating upwards. The marginal

dynamic penalty, Et[Pt+1Λt+1|θt], reflects that once a penalized adjustment process is in place, the

central bank also possesses persistent private information about the distribution of future penalties.

Proposition 12 yields important insights on the design of central bank inflation targets. The

immediate consequence is that information heterogeneity necessitates a penalized target adjustment

process. Penalties play the intuitive role of ensuring that a central bank that should implement low

inflation is not incentivized towards excessive upward adjustments. A more nuanced perspective is

that this suggests a complexity-based argument for central banks to be responsible for collecting and

disseminating information about the structural state of the economy to firms. When all firms are

uninformed and learn from the central bank, an unpenalized dynamic inflation target implements

the Ramsey allocation. By contrast when some or all firms are informed, a dynamic inflation target

requires a penalization process to control target adjustments.

6.2 Costly Enforcement

Our second extension allows for costly mechanism enforcement. While the optimal mechanism no

longer implements the Ramsey allocation, we show the optimal allocation rule is similar to that

under a dynamic inflation target. Moreover, the optimal mechanism reverts to a dynamic inflation

target at the extremes of the shock distribution. In Appendix B.1, we revisit the applications of

Section 4 under costly enforcement.

To capture the social cost of implementing and enforcing a monetary policy mechanism, we

assume social preferences are now

E

[ ∞

∑
t=0

βt (Ut(πt, Et[πt+1|θ̃t], θt)− κTt
) ]

, (20)

where transfers are socially costly in proportion to κ ≥ 0.37 In conjunction, we introduce the central

bank participation constraint, given byW0 ≥ 0, normalizing the outside option to 0 without loss

of generality.38 Recall that a mechanism is a mapping (πt, Tt) : Θt → R2 that must be incentive

compatible, as defined in Section 2.3. We again solve for the optimal relaxed mechanism that

36 This means the information rent is negative.
37 This corresponds to a standard (quasilinear) transferable utility model. As usual, Tt may also correspond to

non-quasilinear utilities, provided they are transferable in this form.
38 At the end of the proof of Proposition 13, we show that a dynamic inflation target is an optimal mechanism when

there is instead an average participation constraint, EW0 ≥ 0.
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enforces the envelope characterization of local incentive compatibility (6).

Proposition 13. The solution to an optimal allocation rule of the relaxed problem is given by the first-order
conditions

∂Ut

∂πt
− KΓt

∂2Ut

∂θt∂πt
= λt−1 (21)

where K = κ
1+κ , where

λt−1 =

− 1
β

∂Ut−1
∂Et−1πt

+ KΓt−1
1
β

∂2Ut−1
∂θt−1∂Et−1πt

for t ≥ 1

0 for t = 0

and where Γt(θt) is given recursively by

Γt(θ
t) = Γt−1(θ

t−1)h−1(θt|θt−1)Et−1

[
Λ(st|θt−1)

∣∣∣∣st ≥ θt

]
(22)

where Γ0(θ0) = h−1(θ0), where h−1(θt|θt−1) = 1−F(θt|θt−1)
f (θt|θt−1)

is the inverse hazard rate, and where

Λ(st|θt−1) =
∂ f (st|θt−1)/∂θt−1

f (st|θt−1)
is the derivative of the likelihood ratio.

Proposition 13 characterizes the allocation rule under the optimal mechanism with costly enforce-

ment.39 If transfers are not costly, κ = K = 0, the optimal mechanism reverts to a dynamic inflation

target that implements the Ramsey allocation. Two new economic forces emerge when transfers

are socially costly.

First is the classical information rent earned by the central bank (agent), manifesting in the

term KΓt
∂Ut

∂θtπt
on the LHS of (21). Intuitively, this reflects the surplus that the central bank receives

from revealing its persistent private information to the government. This surplus, manifesting as

larger transfers for a given allocation, is costly to the government in proportion to the enforcement

costs K > 0. Thus when transfers are not costly, information rents earned by the central bank

have no cost to the government, and this term drops out. This information rent parallels the usual

information rent in models with persistent private information (Pavan et al., 2014): it is higher

when an increase in inflation yields a larger increase in marginal utility for higher types, that is

∂2Ut/∂θt∂πt > 0, and when the information signaled about the current type from past types, Γt, is

higher.

Second is an information rent due to time inconsistency, i.e., the forward-looking Phillips

curve, reflected by the term KΓt−1
1
β

∂2Ut−1
∂θt−1∂Et−1πt

. Much as an increase in contemporaneous inflation

can disproportionately affect higher current types, the historical information rent matters to the

extent that increases in past inflation expectations may disproportionately affect higher past types

39 It should be noted that the government can still use a dynamic inflation target to implement the Ramsey allocation,
but this mechanism is no longer optimal due to enforcement costs.
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θt−1. This intuition is encoded in ∂2Ut−1
∂θt−1∂Et−1πt

. Suppose that higher expected inflation lowers the

information rent by worsening the previous period’s inflation-output trade-off. Then this effect in

fact calls for a higher inflation rate at date t than under allocative efficiency. Intuitively, the higher

inflation rate improves planner welfare by lowering the central bank’s information rents in the

prior period, even though it worsens social surplus.

Proposition 13 highlights the importance of shock persistence to the optimal mechanism with

costly enforcement. If shocks were not persistent, then Γ0 = 1−F(θ0)
f (θ0)

but Γt = 0 for all t ≥ 1, since

Λ = 0 (past shocks convey no information about the current shock). This implies that the optimal

allocation satisfies ∂Ut
∂πt

= − 1
β

∂Ut−1
∂Et−1πt

for all t ≥ 2: the optimal mechanism reverts to a dynamic

inflation target along any history for all dates t ≥ 2. This reflects a variant of the standard intuition

that absent persistent shock, the principal extracts all surplus ex ante by promising the agent her

optimal allocation after the initial date. Our result differs in two ways due to the time consistency

problem from the Phillips curve. First, the (undistorted) optimal allocation is the Ramsey allocation,

rather than the discretion allocation, which would be optimal absent time inconsistency. Second,

when extracting surplus at date 0 the government internalizes the impact of date 1 inflation on date

0 information rents through the Phillips curve. The reversion to the Ramsey allocation only occurs

at date 2 as a result.

Despite costly enforcement, the optimal allocation rule bears important similarities to that

under a dynamic inflation target. The marginal impact of inflation on flow utility net of informa-

tion rents today, ∂Ut
∂πt
− KΓt

∂Ut
∂θt∂πt

, is equated with the marginal impact of inflation today on flow

utility net of information rents the prior period, λt−1. This historical impact is represented by the

single statistic λt−1. Thus, the history dependence of the mechanism can be encoded in the triple

(λt−1, Γt−1, θt−1). λt−1 encodes the total time consistency problem, while (Γt−1, θt−1) encodes the

persistence of information rents (used to determine Γt). This triple is a sufficient statistic at date

t for characterizing the allocation and transfer rule to implement the optimum of Proposition 13.

In this respect, a key qualitative insight of the dynamic inflation target that carries over is that

there is a simple sufficiently statistic, λt−1, that summarizes the consequences of time inconsistency

for the evolution of the optimal mechanism. Unlike in the baseline model, however, this variable

encapsulates not only the impact on allocative efficiency, but also the impact on past information

rents.

Multiplicative taste shocks. A canonical case in principal-agent frameworks is multiplicative

taste shocks, Ut(πt, Etπt+1, θt) = θtut(πt, Etπt+1). In this case, the optimal allocation rule reduces

to

ϑt
∂ut

∂πt
= ϑt−1

−1
β

∂ut−1

∂Et−1πt
, (23)

where ϑt = θt − KΓt is the principal’s virtual value, and where ϑ0 = θ0 − 1−F(θ0)
f (θ0)

is the canonical

virtual value from static frameworks. Absent a time consistency problem, equation (23) reduces to
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the usual problem of maximizing flow utility ut when the virtual value is positive, and minimizing

promised utility ut when the virtual value is negative.40 With the time consistency problem, the

planner trades off marginal utility at date t, weighted by virtual value ϑt, against marginal utility at

date t− 1, weighted by virtual value ϑt−1. Thus, the allocation rule is the Ramsey allocation of a

planner whose type is the virtual value ϑ. This tells us that the direction of distortion relative to the

Ramsey allocation depends on the relative distortion of the virtual value relative to the true type.

In particular, the central bank promotes more inflation on the margin when ϑt
θt
> ϑt−1

θt−1
, i.e., when the

virtual value of the central bank at date t is higher relative to the true type than at date t− 1.

Reversion to dynamic inflation target. Proposition 13 implies that the optimal mechanism reverts

to a dynamic inflation target at both extremes of the shock distribution. The following corollary

formalizes these no-top- and no-bottom-distortion results.

Corollary 14. If θt ∈ {θ, θ}, then the optimal allocation at dates t+ 1+ s (s ≥ 0) can be implemented

by a dynamic inflation target.

Corollary 14 parallels no-top- and no-bottom-distortion results that arise absent time consistency

problems (Pavan et al., 2014). Since there are no central bank types above θ, no types above θ earn

information rents from the allocation of type θ. There is consequently no reason to distort that

allocation. Persistent private information furthermore implies a no-distortion at the bottom result

because the lowest type earns no rents from revealing information about the distribution of future

types. In our model, the time consistency problem implies that the optimal allocation rule we revert

to is the full-information Ramsey allocation. As a result, the optimal mechanism reverts to the

dynamic inflation target at the limits of the distribution.

7 Conclusion

We develop a theory of how a central bank should update its inflation target in the presence

of persistent economic shocks that are private information of the central bank. We show that

a dynamic inflation targeting mechanism can implement the Ramsey allocation. The dynamic

inflation target corrects not only the central bank’s time consistency problem but also its strategic

incentives to reveal information to firms about the persistent underlying state. The target’s level

and flexibility are both adjusted over time, and adjustments must be made one period in advance.

We ntroduce the commitment curve, which summarizes the size of commitments the central bank

makes for the future and helps inform the persistence of commitment to the current target. Our

results suggest that a mechanism of adjustment at restricted points in time—for example every five

years as practiced by the Bank of Canada—could be a desirable adjustment method.

40 In canonical buyer-seller frameworks, this corresponds to selling the good only if the virtual value is positive.
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Online Appendix

A Proofs

A.1 Proof of Proposition 1

Under full information, the objective function of the government is

sup
πt

E0

∞

∑
t=0

βtUt (πt, Et [πt+1|θt] , θt) .

Taking the FOC in πt, we have

0 = βt−1 ∂Ut−1

∂Et−1πt

∂Et−1πt

∂πt(θt)
f (θt−1) + βt ∂Ut

∂πt
f (θt)

From here, we have ∂Et−1πt
∂πt(θt)

= f (θt|θt−1), so that we have

0 =
∂Ut−1

∂Et−1πt
+ β

∂Ut

∂πt

from which the result follows.

A.2 Proof of Proposition 3

The proof strategy is as follows. First, we derive the relevant envelope condition associated with

local incentive compatibility, which defines necessary conditions on the value function associated

with an incentive compatible mechanism.41 We then show that the value function generated by our

proposed mechanism satisfies this envelope condition.

Envelope condition. Suppose that the central bank has a history θ̃t−1 of reports and a history θt

of true types at date t. Given a mechanism with transfer rule Tt(θ̃t) and allocation rule πt(θ̃t), the

value function of a central bank that has truthfully reported in the past, assuming truthful reporting

in the future, is given by

Wt(θ
t) = max

θ̃t

Tt + Ut
(
πt, Et

[
πt+1|θ̃t

]
, θt
)
+ βEt

[
Wt+1(θ

t, θ̃t, θt+1)

∣∣∣∣θt

]

Notice that the Phillips curve expectation Et
[
πt+1|θ̃t

]
is based on the date t reported type, not the

date t true type. Furthermore, notice thatWt+1 depends on the reported type θ̃t, but not on the

true type θt. This is because flow utility at dates t + s (s ≥ 0) do not depend on past true types and

41 This portion of the argument follows from the arguments in Farhi and Werning (2013), or more generally from
Pavan et al. (2014), but we state it out for completeness and for clarity.
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because the shock structure is Markov. This implies that we can in fact writeWt+1(θ
t−1, θ̃t, θt+1).

As a result, the Envelope Condition in the true type θt, evaluated at truthful reporting θ̃t = θt, is

∂Wt(θt)

∂θt
=

∂Ut
(
πt, Et

[
πt+1|θ̃t

]
, θt
)

∂θt
+ β

∂Et

[
Wt+1(θ

t−1, θ̃t, θt+1)

∣∣∣∣θt

]
∂θt

where we have

∂Et

[
Wt+1(θ

t−1, θ̃t, θt+1)

∣∣∣∣θt

]
∂θt

=
∂

∂θt

∫ θ

θ
Wt+1(θ

t−1, θ̃t, θt+1) f (θt+1|θt)dθt+1

= Et

[
Wt+1(θ

t−1, θ̃t, θt+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
Substituting in and evaluating at truthful reporting, we obtain

∂Wt(θt)

∂θt
=

∂Ut (πt, Et [πt+1|θt] , θt)

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
which provides a conventional envelope condition for incentive compatibility. For clarity, note that
∂Ut(πt,Et[πt+1|θt],θt)

∂θt
is the derivative of Ut in the direct type θt, but not including the Phillips curve

expectation, which is the derivative in the reported type.

Verifying the envelope condition. We now verify the value function under our mechanism

satisfies the envelope condition. Our mechanism has a transfer rule Tt(θt) = −νt−1(θ
t−1)

(
πt(θt)−

Et−1[πt|θt−1]

)
and an allocation rule given by the constrained efficient allocation of Proposition 1.

The value function associated with this mechanism is

Wt(θ
t) = −νt−1

(
πt −Et−1[πt|θt−1]

)
+ Ut (πt, Et [πt+1|θt] , θt) + βEt

[
Wt+1(θ

t+1)

∣∣∣∣θt

]
where νt−1, πt, Et−1[πt|θt−1]) are the constrained efficient values associated with Proposition 1,

given the realized shock history. From here, recall that νt−1 and Et−1[πt|θt−1] are only functions of

θt−1. Therefore, ∂νt−1
∂θt

= ∂Et−1[πt|θt−1]
∂θt

= 0. Thus differentiating the value function in θt, we have

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

− νt−1
∂πt

∂θt
+

∂Ut

∂πt

∂πt

∂θt
+

∂Ut

∂Et [πt+1|θt]

dEt [πt+1|θt]

dθt
+ βEt

[
∂Wt+1(θ

t+1)

∂θt

∣∣∣∣θt

]
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The first line on the RHS are the terms associated with the envelope condition. The second line are

derivatives that arise because in equilibrium, the reported type equals the true type, and we have

evaluated the value function given truthful reporting. It therefore remains to show that the second

line sums to zero and hence our mechanism satisfies the required envelope condition.

It is helpful to write out the continuation value functionWt+1 in sequence notation. Iterating

forward, we obtain

Wt+1(θ
t+1) =− νt

(
πt+1 −Et[πt+1|θt]

)

−Et+1

[ ∞

∑
s=1

βsνt+s

(
πt+1+s −Et+s[πt+1+s|θt+s]

)∣∣∣∣θt+1

]

+ Et+1

[ ∞

∑
s=0

βsUt+1+s (πt+1+s, Et+1+s [πt+2+s|θt+1+s] , θt+1+s)

∣∣∣∣θt+1

]
The first two lines on the RHS are total expected discounted value arising from transfers. The third

line on the RHS is total expected discounted value arising from flow utility.

Notice from here that the second line is equal to zero. To see this, applying Law of Iterated

Expectations, when s ≥ 1 we have

Et+1

[
νt+sπt+1+s|θt+1

]
= Et+1

[
Et+s

[
νt+sπt+1+s

∣∣∣∣θt+s

]
|θt+1

]
= Et+1

[
νt+sEt+s

[
πt+1+s

∣∣∣∣θt+s

]
|θt+1

]
since νt+s is a function only of θt+s, and so is known at date t + s. As a result, the second line is

zero, and we can write

Wt+1(θ
t+1) =− νt

(
πt+1 −Et[πt+1|θt]

)

+ Et+1

[ ∞

∑
s=0

βsUt+1+s (πt+1+s, Et+1+s [πt+2+s|θt+1+s] , θt+1+s)

∣∣∣∣θt+1

]

From here, we differentiate the continuation valueWt+1(θ
t+1) in the date t type θt, yielding

∂Wt+1(θ
t+1)

∂θt
=− ∂νt

∂θt

(
πt+1 −Et[πt+1|θt]

)
− νt

(
∂πt+1

∂θt
− dEt[πt+1|θt]

dθt

)

+ Et+1

[ ∞

∑
s=0

βs
(

∂Ut+1+s

∂πt+1+s

∂πt+1+s

∂θt
+

∂Ut+1+s

∂Et+1+s [πt+2+s|θt+1+s]
Et+1+s

[
∂πt+2+s

∂θt
|θt+1+s

] )∣∣∣∣θt+1

]
Notice in the above derivation that only the first line includes a total derivative of firm expectations,
dEt[πt+1|θt]

dθt
, which accounts for the changes in probability density. All later lines only include the

direct change in inflation policy. This is because conditional expectations at date t + 1 are taken

with respect to θt+1, not θt.
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We now rearrange the first term on the second line as follows. In particular, we write

∞

∑
s=0

βs ∂Ut+1+s

∂πt+1+s

∂πt+1+s

∂θt
=

∂Ut+1

∂πt+1

∂πt+1

∂θt
+

∞

∑
s=0

βs+1 ∂Ut+2+s

∂πt+2+s

∂πt+2+s

∂θt

which extracts the first element of the sum, and relabels the remainder of the sum to continue to

start from s = 0. Substituting back in, we obtain

∂Wt+1(θ
t+1)

∂θt
=− ∂νt

∂θt

(
πt+1 −Et[πt+1|θt]

)
− νt

(
∂πt+1

∂θt
− dEt[πt+1|θt]

dθt

)
+

∂Ut+1

∂πt+1

∂πt+1

∂θt

+ Et+1

[ ∞

∑
s=0

βs+1
(

∂Ut+2+s

∂πt+2+s

∂πt+2+s

∂θt

+
1
β

∂Ut+1+s

∂Et+1+s [πt+2+s|θt+1+s]
Et+1+s

[
∂πt+2+s

∂θt
|θt+1+s

] )∣∣∣∣θt+1

]
.

By definition, we have νt+s+1 = − 1
β

∂Ut+1+s
∂Et+1+s[πt+2+s|θt+1+s]

, given the allocation rule we are using in

constructing the value function is the constrained efficient allocation rule. By Proposition 1, we

also have ∂Ut+2+s
∂πt+2+s

= νt+s+1 for the same reason. Therefore, we can write

Et+1

[ ∞

∑
s=0

βs+1
(

∂Ut+2+s

∂πt+2+s

∂πt+2+s

∂θt
+

1
β

∂Ut+1+s

∂Et+1+s [πt+2+s|θt+1+s]
Et+1+s

[
∂πt+2+s

∂θt
|θt+1+s

] )∣∣∣∣θt+1

]

= Et+1

[ ∞

∑
s=0

βs+1
(

νt+1+s
∂πt+2+s

∂θt
− νt+1+sEt+1+s

[
∂πt+2+s

∂θt
|θt+1+s

] )∣∣∣∣θt+1

]
= 0

where the last line follows by Law of Iterated expectations,

Et+1

[
νt+1+sEt+1+s

[
∂πt+2+s

∂θt
|θt+1+s

] ∣∣∣∣θt+1

]
= Et+1

[
Et+1+s

[
νt+1+s

∂πt+2+s

∂θt
|θt+1+s

] ∣∣∣∣θt+1

]

= Et+1

[
νt+1+s

∂πt+2+s

∂θt

∣∣∣∣θt+1

]
.

Therefore, we obtain

∂Wt+1(θ
t+1)

∂θt
=− ∂νt

∂θt

(
πt+1 −Et[πt+1|θt]

)
− νt

(
∂πt+1

∂θt
− dEt[πt+1|θt]

dθt

)
+

∂Ut+1

∂πt+1

∂πt+1

∂θt
.

Finally, notice that as before, by Proposition 1 we have νt =
∂Ut+1
∂πt+1

, and therefore we can write

∂Wt+1(θ
t+1)

∂θt
= −∂νt

∂θt

(
πt+1 −Et[πt+1|θt]

)
+ νt

dEt[πt+1|θt]

dθt
.
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We are now ready to substitute back in to the expression for ∂Wt
∂θt

. Substituting back in, we

have

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

− νt−1
∂πt

∂θt
+

∂Ut

∂πt

∂πt

∂θt
+

∂Ut

∂Et [πt+1|θt]

dEt [πt+1|θt]

dθt

+ βEt

[
− ∂νt

∂θt

(
πt+1 −Et[πt+1|θt]

)
+ νt

dEt[πt+1|θt]

dθt

∣∣∣∣θt

]
The arguments now are familiar. The first term on the third line is zero, since

Et

[
− ∂νt

∂θt

(
πt+1 −Et[πt+1|θt]

)∣∣∣∣θt

]
= −∂νt

∂θt
Et

[
πt+1 −Et[πt+1|θt]

∣∣∣∣θt

]
= 0.

From here, we can rearrange terms to get

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

+

[
− νt−1 +

∂Ut

∂πt

]
∂πt

∂θt
+

∂Ut

∂Et [πt+1|θt]

dEt [πt+1|θt]

dθt
+ βEt

[
νt

dEt[πt+1|θt]

dθt

∣∣∣∣θt

]

By Proposition 1, we have −νt−1 +
∂Ut
∂πt

= 0.42 Likewise from the definition of νt, we have
∂Ut

∂Et[πt+1|θt]
= −βνt. Therefore, we also have

∂Ut

∂Et [πt+1|θt]

dEt [πt+1|θt]

dθt
+ βEt

[
νt

dEt[πt+1|θt]

dθt

∣∣∣∣θt

]
= −βνt

dEt [πt+1|θt]

dθt
+ βνt

dEt[πt+1|θt]

dθt
= 0.

Thus, the entire second line is zero, and we are left with

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
which is the required envelope condition. This concludes the proof.

A.3 Proof of Proposition 4

Using reduced form preferences, our two key equations are

νt−1 = −πt − α̂

(
πt − βEtπt+1

)
+ λ̂

42 For completeness, note that when considering the date 0 value function, we have ν−1 = 0 and have ∂Ut
∂πt

= 0 by
Proposition 1.
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νt = −α̂

(
πt − βEtπt+1

)
+ λ̂− 1

β
θt

Summing the two equations, we get

νt = νt−1 + πt −
1
β

θt

Now, we guess and verify a linear solution of the form,

νt = γ0 + γ1θt + γ2νt−1

Using our key equation, we get

πt = νt − νt−1 +
1
β

θt

Leading one period and taking expectations,

Etπt+1 = γ0 + (γ2 − 1)νt +

(
γ1 +

1
β

)
ρθt

Now, substituting back in to the equation for νt and rearranging,(
1 + α̂− α̂β(γ2 − 1)

)
νt = α̂βγ0 + λ̂ +

[
α̂β

(
γ1 +

1
β

)
ρ− 1 + α̂

β

]
θt + α̂νt−1

Now, we solve by coefficient matching. Coefficient matching on γ2, we have(
1 + α̂− α̂β(γ2 − 1)

)
γ2 = α̂

0 = α̂βγ2
2 −

(
1 + α̂ + α̂β

)
γ2 + α̂

and so the non-explosive root is

γ2 =

1 + α̂ + α̂β−

√(
1 + α̂ + α̂β

)2

− 4α̂2β

2α̂β

Now, we can coefficient match on the constant,

γ0 =
α̂

1 + α̂− α̂β(γ2 − 1)
α̂βγ0 + λ̂

α̂

γ0 =
γ2

1− βγ2

λ̂

α̂
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Finally, coefficient mathcing on γ1,

γ1 =
α̂

1 + α̂− α̂β(γ2 − 1)

[
α̂β

(
γ1 +

1
β

)
ρ− 1+α̂

β

]
α̂

γ1 =
γ2

1− γ2βρ

[
ρ− 1 + α̂

α̂

1
β

]

A.4 Proof of Proposition 5

Consider reduced-form preferences,

Ut(πt, Etπt+1, θt) = −
1
2

π2
t −

1
2

α

(
πt − βEtπt+1

)2

+ v(Etπt+1 + θt)

where for notational convenience we use α in place of α̂ in the derivations (and then simply replace

α with α̂ at the end). Thus, we have derivatives

∂Ut

∂πt
= −πt − α

(
πt − βEtπt+1

)
∂Ut

∂Etπt+1
= αβ

(
πt − βEtπt

)
+ v′(i∗t )

Under the usual definitions of νt, we then have

νt−1 = −πt − α

(
πt − βEtπt+1

)
(24)

νt = −α

(
πt − βEtπt+1

)
− v0 + v1Etπt+1 + v1θt (25)

where we have used v′(it) = βv0 − βv1it and i∗t = Etπt+1 + θt.

We now guess and verify a linear solution of the form

νt = γ0 + γ1νt−1 + γ2θt.

Rearranging equation (24), we get

βEtπt+1 =
1
α

νt−1 +
1 + α

α
πt, (26)

and substituting into equation (25) we get

νt = −v0 +
(αβ + v1)(1 + α)− α2β

αβ
πt +

αβ + v1

αβ
νt−1 + v1θt.
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From here, we denote 1
ζ ≡

(αβ+v1)(1+α)−α2β
αβ > 0. Thus rearranging the above equation, we have

1
ζ

πt = νt + v0 −
αβ + v1

αβ
νt−1 − v1θt (27)

We now lead this equation forward one period and take expectations,

1
ζ

Etπt+1 = Etνt+1 + v0 −
αβ + v1

αβ
νt − v1Etθt+1

and now, we can use the guess for νt along with the property Etθt+1 = ρθt to obtain

1
ζ

Etπt+1 = γ0 + v0 +

(
γ1 −

αβ + v1

αβ

)
νt + (γ2 − v1)ρθt.

Now, equations (26) and (27) jointly imply

1
ζ

Etπt+1 =
1
ζ

1
αβ

νt−1 +
1 + α

αβ

(
νt + v0 −

αβ + v1

αβ
vt−1 − v1θt

)
and so substituting in, we obtain

γ0 + v0 +

(
γ1 −

αβ + v1

αβ

)
νt + (γ2 − v1)ρθt =

1
ζ

1
αβ

νt−1 +
1 + α

αβ

(
νt + v0 −

αβ + v1

αβ
vt−1 − v1θt

)
which rearranges and simplifies to(

γ1 −
1 + α + αβ + v1

αβ

)
νt =

(
1 + α− αβ

αβ
v0 − γ0

)
− 1

β
vt−1 −

(
1 + α− αβρ

αβ
v1 + γ2ρ

)
θt.

The LHS is linear, so using our guess νt = γ0 + γ1νt−1 + γ2θt and coefficient matching, we have

the system

γ0 =

1+α(1−β)
αβ v0 − γ0

γ1 − 1+α+αβ+v1
αβ

γ1 = − 1
β

1

γ1 − 1+α+αβ+v1
αβ

γ2 =

−
(

1+α(1−βρ)
αβ v1 + γ2ρ

)
γ1 − 1+α+αβ+v1

αβ

The second equation rearranges to a quadratic βγ2
1 −

1+α+αβ+v1
α γ1 + 1 = 0 in γ1. We choose the
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non-explosive lower root to maintain consistency with the transversality condition, which yields

γ1 =

1 + α(1 + β) + v1 −

√(
1 + α(1 + β) + v1

)2

− 4α2β

2αβ

From here, the equation for γ0 can be rewritten as γ0 = −βγ1

(
1+α(1−β)

αβ v0 − γ0

)
, and rearranging

yields

γ0 = −γ1
1 + α(1− β)

α(1− βγ1)
v0

Similarly, the eequation for γ2 is rewritten as γ2 = βγ1

(
1+α(1−βρ)

αβ v1 + γ2ρ

)
, which rearranges to

γ2 =
1
α

1 + α(1− βρ)

1− βγ1ρ
γ1v1

Thus, we have our solution.

Inflation is given by
1
ζ

πt = νt −
αβ + v1

αβ
νt−1 + v0 − v1θt

A.5 Proof of Proposition 6

Given reduced form preferences Ut = − 1
2 π2

t + θt
πt−βEtπt+1

κ , then we have

∂Ut

∂πt
= −πt +

1
κ

θt

∂Ut−1

∂Et−1πt
= −β

κ
θt−1

Thus substituting in the definitions,

νt−1 = −πt +
1

κ/θt

νt−1 =
1

κ/θt−1

Thus putting them together, we get πt =
1

κ/θt
− 1

κ/θt−1
. Finally, using Etπt+1 = 1− ρ + ρθt we get

Etπt+1 =
Etθt+1 − θt

κ
= (1− ρ)

1
κ
− (1− ρ)

θt

κ

which gives the result.
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A.6 Proof of Proposition 7

Consider the Ramsey problem,

max
π

∞

∑
t=0

βtUt(πt, Et[πt+1|θ̃t], ..., Et[πt+K|θ̃t], θt)

It is expositionally helpful to extend the sum to include U−1, ..., U−K = 0. Under this extended sum,

differentiating in πt(θt) for t ≥ 0, we have

0 =
t−1

∑
s=t−K

βs ∂Us

∂Es[πt|θs]

∂Es[πt|θs]

∂πt(θt)
f (θs) + βt ∂Ut

∂πt
f (θt).

From here, note that we have

∂Es[πt|θs]

∂πt(θt)
f (θs) = f (θt|θs) f (θs) = f (θt)

Thus rearranging and dividing through, we have

∂Ut

∂πt
= −

t−1

∑
s=t−K

βs−t ∂Us

∂Es[πt|θs]
.

Substituting in the definition of νt,k gives the result.

A.7 Proof of Proposition 9

The proof strategy is as follows. First, we derive the relevant envelope condition associated with

local incentive compatibility, which defines necessary conditions on the value function associated

with an incentive compatible mechanism. We then show that the value function generated by our

proposed mechanism satisfies this envelope condition.

Envelope Condition. Suppose that the central bank has a history θ̃t−1 of reports and a history θt

of true types at date t. Given a mechanism with transfer rule Tt(θ̃t) and allocation rule πt(θ̃t), the

value function of a central bank that has truthfully reported in the past, assuming truthful reporting

in the future, is given by

Wt(θ
t) = max

θ̃t

Tt + Ut(πt, Et[πt+1|θ̃t], ..., Et[πt+K|θ̃t], θt) + βEt

[
Wt+1(θ

t, θ̃t, θt+1)

∣∣∣∣θt

]
Notice that the expectations at date t are based on the date t reported type, not the date t true type.

Furthermore, notice thatWt+1 depends on the reported type θ̃t, but not on the true type θt. This is

because flow utility at dates t + s (s ≥ 0) do not depend on past true types and because the shock

structure is Markov. This implies that we can in fact write Wt+1(θ
t−1, θ̃t, θt+1). As a result, the
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Envelope Condition in the true type θt, evaluated at truthful reporting θ̃t = θt, is

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ β

∂Et

[
Wt+1(θ

t−1, θ̃t, θt+1)

∣∣∣∣θt

]
∂θt

where we have

∂Et

[
Wt+1(θ

t−1, θ̃t, θt+1)

∣∣∣∣θt

]
∂θt

=
∂

∂θt

∫ θ

θ
Wt+1(θ

t−1, θ̃t, θt+1) f (θt+1|θt)dθt+1

= Et

[
Wt+1(θ

t−1, θ̃t, θt+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
Substituting in and evaluating at truthful reporting, we obtain

∂Wt(θt)

∂θt
=

∂Ut (πt, Et [πt+1|θt] , ..., Et[πt+K|θt], θt)

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
which provides a conventional envelope condition for incentive compatibility. For clarity, note that
∂Ut
∂θt

is the derivative of Ut in the direct type θt, but not including the Phillips curve expectation,

which is the derivative in the reported type.

Verifying the Envelope Condition. We now verify the value function under our mechanism

satisfies the envelope condition. Our mechanism has a transfer rule

Tt = −
K

∑
k=1

νt,k(πt −Et−kπt)

and an allocation rule given by the constrained efficient allocation of Proposition 7. It will at times

be helpful to define

vt−1 =
K

∑
k=1

νt,k.

The value function associated with this mechanism is

Wt(θ
t) =−

K

∑
k=1

νt,k(πt −Et−kπt)

+ Ut (πt, Etπt+1, ..., Etπt+K, θt) + βEt

[
Wt+1(θ

t+1)

∣∣∣∣θt

]
where all objects are evaluated at their constrained efficient values associated with Proposition 7,
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given the realized shock history. Differentiating the value function in θt, we have

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

− vt−1
∂πt

∂θt
+

∂Ut

∂πt

∂πt

∂θt
+

K

∑
k=1

∂Ut

∂Etπt+k

dEtπt+k

dθt
+ βEt

[
∂Wt+1(θ

t+1)

∂θt

∣∣∣∣θt

]

The first line on the RHS are the terms associated with the envelope condition. The second line are

derivatives that arise because in equilibrium, the reported type equals the true type, and we have

evaluated the value function given truthful reporting. It therefore remains to show that the second

line sums to zero and hence our mechanism satisfies the required envelope condition.

We begin by noting that the first two terms on the second line sum to zero, that is

−vt−1
∂πt

∂θt
+

∂Ut

∂πt

∂πt

∂θt
= 0.

This follows immediately from Proposition 7 given the definition of vt−1. We are therefore left to

study the final two terms, and so we write

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

+
K

∑
k=1

∂Ut

∂Etπt+k

dEtπt+k

dθt
+ βEt

[
∂Wt+1(θ

t+1)

∂θt

∣∣∣∣θt

]

It is helpful to write out the continuation value functionWt+1 in sequence notation. Iterating

forward, we obtain

Wt+1(θ
t+1) = Et+1

∞

∑
s=0

βs
[
−

K

∑
k=1

νt+1+s,k(πt+1+s −Et+1+s−kπt+1+s) + Ut+1+s

]

Now, we differentiate in θt. Here, we obtain

∂Wt+1(θ
t+1)

∂θt
=Et+1

∞

∑
s=0

βs
[
−

K

∑
k=1

∂νt+1+s,k

∂θt
(πt+1+s −Et+1+s−kπt+1+s)

]

+ Et+1

∞

∑
s=0

βs
[ K

∑
k=1

νt+1+s,k
dEt+1+s−kπt+1+s

dθt

]

+ Et+1

∞

∑
s=0

βs
[
−

K

∑
k=1

νt+1+s,k
∂πt+1+s

∂θt
+

∂Ut+1+s

∂πt+1+s

∂πt+1+s

∂θt

]

+ Et+1

∞

∑
s=0

βs
[ K

∑
k=1

∂Ut+1+s

∂Et+1+sπt+1+s+k
Et+1+s

∂πt+1+s+k

∂θt

]
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To begin with, note that the third line is zero, from Proposition 7. Thus we can write,

∂Wt+1(θ
t+1)

∂θt
=Et+1

∞

∑
s=0

βs
[
−

K

∑
k=1

∂νt+1+s,k

∂θt
(πt+1+s −Et+1+s−kπt+1+s)

]

+ Et+1

∞

∑
s=0

βs
[ K

∑
k=1

νt+1+s,k
dEt+1+s−kπt+1+s

dθt

]

+ Et+1

∞

∑
s=0

βs
[ K

∑
k=1

∂Ut+1+s

∂Et+1+sπt+1+s+k
Et+1+s

∂πt+1+s+k

∂θt

]

Next, recall that we can write

νt,k = −
1
βk

∂Ut−k

∂Et−kπt

Therefore, we can equivalently write

∂Ut+1+s

∂Et+1+sπt+1+s+k
= −βkνt+1+s+k,k

Thus substituting into the third line,

∂Wt+1(θ
t+1)

∂θt
=Et+1

∞

∑
s=0

βs
[
−

K

∑
k=1

∂νt+1+s,k

∂θt
(πt+1+s −Et+1+s−kπt+1+s)

]

+ Et+1

∞

∑
s=0

βs
[ K

∑
k=1

νt+1+s,k
dEt+1+s−kπt+1+s

dθt

]

+ Et+1

∞

∑
s=0

βs
[ K

∑
k=1
−βkνt+1+s+k,kEt+1+s

∂πt+1+s+k

∂θt

]

From here, let us compare the second and third lines. When s ≥ k, we know that t+ 1+ s− k ≥ t+ 1

and so we have
dEt+1+s−kπt+1+s

dθt
= Et+1+s−k

∂πt+1+s

∂θt
.

We also know that all terms with t + 1 + s− k < t, that is k > 1 + s, drop out of the second line

(since they are date t− 1 or lower adapted constants). What this leaves us with is that the second

line cancels out with the third line except for the points where t + 1 + s− k = t, that is precisely the

points where there is also a probability measure derivative. Put together and taking the expectation

at date t, this gives us

Et
∂Wt+1(θ

t+1)

∂θt
=Et

∞

∑
s=0

βs
[
−

K

∑
k=1

∂νt+1+s,k

∂θt
(πt+1+s −Et+1+s−kπt+1+s)

]

+
K−1

∑
s=0

βsνt+1+s,1+s
dEtπt+1+s

dθt
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where we note that all terms on the second line are t-adapated, so the expectation operator drops

out. Now consider the first line. Here, we know that νt+1+s,k is date t+ 1+ s− k adapted. Therefore,

it drops out for all s < k. When s ≥ k, we know that Et+1+s−kπt+1+s is a date t + 1 + s− k ≥ t + 1

adapted constant, which is the same as νt+1+s,k. Therefore by law of iterated expectations for s ≥ k,

Et
∂νt+1+s,k

∂θt
(πt+1+s −Et+1+s−kπt+1+s) = Et

∂νt+1+s,k

∂θt
Et+1+s−k(πt+1+s −Et+1+s−kπt+1+s) = 0

Therefore, the entire first line is zero, and we are left with

Et
∂Wt+1(θ

t+1)

∂θt
=

K−1

∑
s=0

βsνt+1+s,1+s
dEtπt+1+s

dθt
.

Finally, we can now go back and substitute in for our equation for the derivative ofWt. Substituting

in,

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

+
K

∑
k=1

∂Ut

∂Etπt+k

dEtπt+k

dθt
+ β

K−1

∑
s=0

βsνt+1+s,1+s
dEtπt+1+s

dθt

Substituting in νt+1+s,1+s = − 1
β1+s

∂Ut
∂Etπt+1+s

, we get

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

+
K

∑
k=1

∂Ut

∂Etπt+k

dEtπt+k

dθt
−

K−1

∑
s=0

∂Ut

∂Etπt+1+s

dEtπt+1+s

dθt

and the second line drops to zero (the two sums are equivalent replacing k = 1 + s). Thus, we

obtain
∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
which is the required envelope condition. This completes the proof.

A.8 Proof of Proposition 11

Recall that we have

πt = κyt + (βγ + β̃)Etπt+1 + β̃Et

[ ∞

∑
s=1

δ̃sπt+1+s

]
.

From Proposition 7 for k ≥ 1,

νt+k,k = −
1
βk

∂Ut

∂yt

∂yt

∂Etπt+k
.
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Thus, we can write for k > 1,

νt+k,k =
1

βk−1

∂yt
∂Etπt+k

∂yt
∂Etπt+1

νt+1,1

=
1

βk−1
β̃δ̃k−1

βγ + β̃
νt+1,1

= β∗δ∗(k−1)νt+1,1

where δ∗ = δ̃
β and β∗ = β̃

βγ+β̃
, completing the proof.

A.9 Proof of Proposition 12

Replicating the proof of Proposition 3 and including a penalty function Ωt, we have additional

terms in our value function at date t,

−γ
∂Pt

∂θt
− γEt

[ ∞

∑
k=1

βk ∂Pt+k

∂θt

∣∣∣∣θt

]
.

For the envelope condition to be satisfied, these terms must equal the unaccounted for information

rent, −γωt from equation (19). Thus we must construct penalties satisfying

∂Pt

∂θt
+ Et

[ ∞

∑
k=1

βk ∂Pt+k

∂θt

∣∣∣∣θt

]
= ωt.

Now from here, we can totally differentiate the recursive formulation of Pt to write

∂Pt

∂θt
=

∂Pt

∂θt
+ βEt[

∂Pt+1

∂θt
|θt] + βEt[Pt+1

∂ f (θt+1|θt)/∂θt

f (θt+1|θt)
|θt].

Thus combining with the required condition above, we have

∂Pt

∂θt
= ωt + βEt[Pt+1

∂ f (θt+1|θt)/∂θt

f (θt+1|θt)
|θt].

The final expression comes from integrating. Thus we have constructed the required penalty

function to satisfy the envelope condition.

A.10 Proof of Proposition 13

Integrating the Envelope Condition (equation 6), we obtain integral incentive compatibility

Wt(θ
t) =

∫ θt

θ

∂Ut(θt−1, st)

∂st
dst + β

∫ θt

θ
Et

[
Wt+1

∂ ft(θt+1|st)/∂st

ft(θt+1|st)
|st

]
dst (28)
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Integral incentive compatibility relates the total date-t utility to the central bank to two information

rents. Note that due to shock persistence, the central bank earns information rents not only due to

the effect on current flow utility, but also on the conditional probability distribution.43

Integral incentive compatibility (28) gives a Bellman representation to the value function, in

terms of only the allocation rule. We can re-express this Bellman equation in sequence form by

iterating the Bellman equation forward. Doing so, we obtain the following result characterizing

this sequence representation.

Lemma 15. The value functionWt can be represented as

Wt(θ
t) = Et

[
∞

∑
s=0

βsBs
t (θ

t+s)

∣∣∣∣∣ θt

]
∀t,

where Bs
t is given by

Bs
t (θ

t+s) =
s−1

∏
k=0

1
ft+k(θt+k+1|θt+k)

×

∫
st≤θt,...,st+s≤θt+s

∂Ut+s(θt−1, st, ..., st+s)

∂st+s

s−1

∏
k=0

∂ ft+k(θt+k+1|st+k)

∂st+k
dst+s...dst.

Proof. Suppose that we take the Bellman equation:

Wt(θ
t) =

∫ θt

θ

∂Ut(θt−1, st)

∂st
dst + β

∫ θt

θ
Et

[
Wt+1

∂ ft(θt+1|st)/∂st

ft(θt+1|st)
|st

]
And iterate it forward once. Iterating forward once, we obtain:

Wt(θ
t) =

∫ θt

θ
Et

[
∂Ut(θt−1, st)

∂st
dst +

∂ ft (θt+1|st) /∂st

ft (θt+1|st)
β

[∫ θt+1

θ

∂Ut(θt−1, st, st+1)

∂st+1
+ Et+1Wt+2

ft+1(θt+2|st+1)/∂st+1

ft+1(θt+2|st+1)
|st+1

]]
Iterating forward, suppose that we define the following recursive operator. In particular, we

define:

B0
t (g, θ) =

∫ θ

θ
gdst

Note that for the function g0
t = ∂Ut(θt−1

∂st
, we have that B0

t is the first term in the infinite series

definingWt.

And suppose we define next:

B1
t (g, θ) =

∫ θ

θ
Et

[
∂ ft(θt+1|st)/∂st

ft(θt+1|st)
g
∣∣∣∣ st

]
dst

43 Recall that we have normalized the date 0 outside option to zero.
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Consider the function g1
t =

∫ θt+1
θ

∂Ut+1(θ
t−1,st,st+1)

∂st+1
dst+1. Taking the function B1

t
(

g1
t , θt

)
and

multiplying by β, we obtain the second term in the infinite series forWt.

From here, we define a recursive operator. Consider a function gs
t that is a date t + s adapted

function. We define the operator:

B2
t
(

g2
t , θt

)
= B1

t

(
B1

t+1
(

g2
t , θt+1

)
, θt

)
So that we have:

B2
t
(

g2
t , θt

)
=
∫ θt

θ
Et

[
∂ ft(θt+1|st)/∂st

ft(θt+1|st)

∫ θt+1

θ
Et+1

[
∂ ft+1(θt+2|st+1)/∂st+1

ft+1(θt+2|st+1)
g2

t (st+1, θt+2)

∣∣∣∣ st+1

]
dst+1

∣∣∣∣ st

]
dst

Which, when g2
t (st, st+1, θt+2) =

∫ θt+2
θ

∂Ut+2(θt−1,st,st+1,st+2)
∂st+2

dst+2 and multiplied by β2, gives us

the next term in the infinite series definingWt.

Continuosly defining these recursive operators as such, and defining functions gs
t (st, ..., st+s−1, θt+s) =∫ θt+s

θ

∂Ut+s(θt−1,st,...,st+s)
∂st+s

, we obtain the infinite series that characterizesWt.

In other words, we can construct such recursive operators. From here, we look to simplify

these operators. Let us start from the operator B1
t (g, θt). In particular, we have:

B1
t (g, θt) =

∫ θt

θ
Et

[
∂ ft(θt+1|st)/∂st

ft(θt+1|st)
g (st, θt+1)

∣∣∣∣ st

]
dst

=
∫ θt

θ

∫
θt+1

∂ ft(θt+1|st)

∂st
g(st, θt+1)dθt+1dst

=
∫

θt+1

[∫ θt

θ

∂ ft(θt+1|st)

∂st
g(st, θt+1)dst

]
dθt+1

=
∫

θt+1

[∫ θt
θ

∂ ft(θt+1|st)
∂st

g(st, θt+1)dst

]
ft(θt+1|θt)

ft(θt+1|θt)dθt+1

= Et

[
1

ft(θt+1|θt)

[∫ θt

θ

∂ ft(θt+1|st)

∂st
g(st, θt+1)dst

]∣∣∣∣ θt

]
In particular, as applied to the function g1

t =
∫ θt+1

θ
∂Ut+1(θ

t−1,st,st+1)
∂st+1

dst+1, we obtain:

B1
t (g, θt) = Et

[
1

ft(θt+1|θt)

[∫ θt

θ

∫ θt+1

θ

∂Ut+1(θ
t−1, st, st+1)

∂st+1

∂ ft(θt+1|st)

∂st
dst+1dst

]∣∣∣∣ θt

]
Which is of the form in the Lemma.

Now, let us consider the second operator. We have:

B2
t (g, θt) = B1

t

(
B1

t+1 (g, θt+1) , θt

)
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Recall that the simplified operator above expresses:

B1
t (g, θt) = Et

[
1

ft(θt+1|θt)

[∫ θt

θ

∂ ft(θt+1|st)

∂st
g(st, θt+1)dst

]∣∣∣∣ θt

]
In other words, we have along history (θt−1, st):

B1
t+1 (g, θt+1) = Et+1

[
1

ft+1(θt+2|θt+1)

[∫ θt+1

θ

∂ ft+1(θt+2|st+1)

∂st+1
g(st, st+1, θt+2)dst+1

]∣∣∣∣ θt+1

]
And applying this into the operator defining B2

t , we obtain:

B2
t (g, θt) = Et

[
1

ft(θt+1|θt)

[∫ θt

θ

∂ ft(θt+1|st)

∂st
B1

t+1 (g, θt+1) dst

]∣∣∣∣ θt

]

= Et

[
1

ft(θt+1|θt)

[∫ θt

θ

∂ ft(θt+1|st)

∂st
Et+1

[
1

ft+1(θt+2|θt+1)

[∫ θt+1

θ

∂ ft+1(θt+2|st+1)

∂st+1
g(st, st+1, θt+2)dst+1

]∣∣∣∣ θt+1

]
dst

]∣∣∣∣ θt

]

= EtEt+1

[
1

ft(θt+1|θt)

[∫ θt

θ

∂ ft(θt+1|st)

∂st

[
1

ft+1(θt+2|θt+1)

[∫ θt+1

θ

∂ ft+1(θt+2|st+1)

∂st+1
g(st, st+1, θt+2)dst+1

]∣∣∣∣ θt+1

]
dst

]∣∣∣∣ θt

]
LIE︷︸︸︷
= Et

[
1

ft(θt+1|θt)

1
ft+1(θt+2|θt+1)

[∫ θt

θ

∫ θt+1

θ

∂ ft(θt+1|st)

∂st

∂ ft+1(θt+2|st+1)

∂st+1
g(st, st+1, θt+2)dst+1dst

]∣∣∣∣ θt

]

And substituting in g2
t =

∫ θt+2
θ

∂Ut+2(θt−1,st,st+1,st+2)
∂st+2

dst+2, we get the next expression from the

Lemma. From here, the result follows from repeated iteration. �

Lemma 15 allows us to represent the principal’s optimization problem in a tractable way. Given an

allocation rule for inflation, we use the characterization of the value function in Lemma 15 as well

as the Bellman equation to characterize the transfer rule which implements the allocation,

Tt =Wt −Ut − βEt[Wt+1|θt].

We can then substitute the implementing taxes into the government’s utility function, and obtain

the following result characterizing the relaxed social planning problem.

Lemma 16. The relaxed social planning problem can be written as

max
{πt}

E−1

[
∞

∑
t=0

βt
[
− κ

1 + κ
Bt

0 + Ut

]]
,
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where Bt
0 is given as in Lemma 15. The implementing transfer rule is given by

Tt =Wt −Ut − βEt[Wt+1|θt],

whereWt is given as a function of the allocation rule as in Lemma 15.

Proof. For any allocation rule, Tt provides the implementation. Recall that the government’s welfare

is given by:

max E−1

[ ∞

∑
t=0

βtUt − κTt

]
,

Recall that bank welfare is given by:

W0 = E0

∞

∑
t=0

[
βtUt + Tt

]
In other words, we always have:

−E0

∞

∑
t=0

Tt = E0

∞

∑
t=0

βtUt −W0

Substituting in above, by Law of Iterated Expectations we obtain the planning problem:

max E−1

[
− κW0 +

∞

∑
t=0

βt(1 + κ)Ut

]
,

and where lastly, we use Lemma 4 substitute in forW0 to obtain the result. �

Lemma 16 provides a characterization of the relaxed social planning problem, subject to integral

incentive compatibility. We are now ready to characterize the optimal allocation in Proposition

13.44

Recall that our objective function for the second-best optimization problem was given by:

max
∫

θ0

[
∞

∑
t=0

βt
[
− κ

1 + κ
Bs

0
(

gt
0, θ0

)
+ Ut (πt, πt+1, θt, θt)

]]
dF0(θ0)

Note that given the optimal mechanism implements truthful reporting, we may substitute in

θ̃t = θt.

Recall further the simplified form of the operators:

Bs
t = Et

[
s−1

∏
k=0

1
ft+k(θt+k+1|θt+k)

∫
st≤θt,...,st+s≤θt+s

∂Ut+s(θt−1, st, ..., st+s)

∂st+s

s−1

∏
k=0

∂ ft+k(θt+k+1|st+k)

∂st+k
dst+s...dst

∣∣∣∣∣ θt

]

44 We characterize the optimal allocation assuming that πt is interior.
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Now, denote the realized value of the operator Bt
0 by:

Bt
0(θ

t) =
t−1

∏
k=0

1
fk(θk+1|θk)

∫
s0≤θ0,...,st≤θt

∂Ut(s0, ..., st)

∂st

t−1

∏
k=0

∂ fk(θk+1|sk)

∂sk
dst...ds0

So that Bt
0(θ

t) is a random variable derived from the history θt of shocks. Given the definition

of this random variable, denote E−1 to be the beginning-of-period-0 expectation, not conditional on

the information θ0. From here, we can rewrite the objective function of the government as:

max E−1

[
∞

∑
t=0

βt
[
− κ

1 + κ
Bt

0(πt, πt+1, θt|θt−1) + (1 + κ)Ut(πt, πt+1, θt|)
]]

From here, consider the optimal choice of inflation πt(zt), for a realized history θt = zt of

shocks. Note that the solution can be written in the form (for t ≥ 1):

∂Ut−1

∂πt(zt)
f (zt−1) + β

∂Ut

∂πt(zt)
f (zt) =

κ

1 + κ
E−1

t

∑
s=t−1

βs−(t−1) d
dπt(zt)

Bs
0(πs, πs+1, θs|θs)

So that all that remains is to characterize the derivatives of Bs
0 with respect to πt(zt). When

s = t, we have:

d
dzt Bt

0(θ
t) =

d
πt(zt)

[
t−1

∏
k=0

1
fk(θk+1|θk)

∫
s0≤θ0,...,st≤θt

∂Ut(s0, ..., st)

∂st

t−1

∏
k=0

∂ fk(θk+1|sk)

∂sk
dst...ds0

]

Note that πt(zt) appears in ∂Ut(s0,...,st)
∂st

only along the path given by s0 = z0, s1 = z1, ... , st = zt.

Essentially then, this derivative at a single point πt(zt) comes down to extracting the derivative

along that path under the integral. The derivative along that path is then given by:

d
dzt Bt

0(θ
t) = 1z0≤θ0,...,zt≤θt

t−1

∏
k=0

1
fk(θk+1|θk)

∂2Ut

∂zt∂πt(zt)

t−1

∏
k=0

∂ fk(θk+1|zk)

∂zk

Note the subtlety that the θ’s are preserved, as the realization of the random history, whereas the

s’s are replaced by z’s, as the path under the integrals that leads to the history zt under the integrals.

It is worth remembering then, when we substitute into the expectation, that θt is a random variable,

and zt is (fixed) the history being differentiated along, and so is not a random variable.

Note that by exactly the same logic, we obtain ∀t ≥ 2

d
dzt Bt−1

0 (θt−1) = 1z0≤θ0,...,zt−1≤θt−1

t−2

∏
k=0

1
fk(θk+1|θk)

∂2Ut−1

∂zt−1∂πt(zt)

t−2

∏
k=0

∂ fk(θk+1|zk)

∂zk
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As a result, the right-hand side of the first-order condition becomes ∀t ≥ 2

1 + κ

κ
RHS = E−1

t

∑
s=t−1

d
dπt(zt)

Bs
0(πs, πs+1, θs|θs)

= E−1

[
1z0≤θ0,...,zt−1≤θt−1

t−2

∏
k=0

1
fk(θk+1|θk)

∂2Ut−1

∂zt−1∂πt(zt)

t−2

∏
k=0

∂ fk(θk+1|zk)

∂zk

]

+ βE−1

[
1z0≤θ0,...,zt≤θt

t−1

∏
k=0

1
fk(θk+1|θk)

∂2Ut

∂zt∂πt(zt)

t−1

∏
k=0

∂ fk(θk+1|zk)

∂zk

]

=
∂2Ut−1

∂zt−1∂πt(zt)
E−1

[
1z0≤θ0,...,zt−1≤θt−1

t−2

∏
k=0

1
fk(θk+1|θk)

∂ fk(θk+1|zk)

∂zk

]

+
∂2Ut

∂zt∂πt(zt)
βE−1

[
1z0≤θ0,...,zt≤θt

t−1

∏
k=0

1
fk(θk+1|θk)

t−1

∏
k=0

∂ fk(θk+1|zk)

∂zk

]

Where here, we applied the fact that we have chosen a specific history zt, so that the cross-

partials above are not random variables, but rather are specific realizations of those random

variables. By contrast, the part inside the expectation corresponds to histories which contain these

specific histories, and so are random variables.

Now, consider these two expectations. Now, we define Ωt(zt) by:

Ωt(zt) ≡ E−1

[
1z0≤θ0,...,zt≤θt

t−1

∏
k=0

1
fk(θk+1|θk)

t−1

∏
k=0

∂ fk(θk+1|zk)

∂zk

]

=
∫ θ

zt

∫ θ

zt−1

...
∫ θ

z0

t−1

∏
k=0

∂ fk(θk+1|zk)

∂zk
f (θ0)dθt...dθ0

=
∫ θ

zt

∂ fk(θt|zt−1)

∂zk

[∫ θ

zt−1

...
∫ θ

z0

t−1

∏
k=0

∂ fk(θk+1|zk)

∂zk
f (θ0)dθt−1...dθ0

]
dθt

=
∫ θ

zt

∂ fk(θt|zt−1)

∂zt−1
Ωt−1(zt−1)dθt

= Ωt−1

(
zt−1

) ∫ θ

zt

∂ fk(θt|zt−1)

∂zt−1
dθt

Which is well-defined for all t ≥ 1. However, it requires an initial condition Ω0(z0). It is helpful to

define this initial condition in the date 1 FOC. Note that at date 1, we have:

Bt−1
0 (θt−1) = B0

0(θ
0) =

∫ θ0

θ

∂U0

∂s0
ds0
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So that we have d
dπt(zt)

Bt−1
0 (θt−1) = 1z0≤θ0

∂U0
∂π1(z1)

. In particular then, the expectation is simply:

E−1 [1z0≤θ0 ] =
∫ θ

z0

f (θ0)dθ0 = 1− F(z0)

So that we have initial condition Ω0(z0) = 1− F(z0).

This gives us a state space reduction property, where we can fully determine Ωt from Ωt−1

and zt−1 by a recursive sequence, where the initial value is Ω0(z0) = 1− F(z0).

From here, we can substitute back into the FOCs:

(1 + κ)

[
∂Ut−1

∂πt(zt)
f (zt−1) + β

∂Ut

∂πt(zt)
f (zt)

]
= κ

[
Ωt−1(zt−1)

∂2Ut−1

∂zt−1∂πt(zt)
+ βΩt(zt)

∂2Ut

∂zt∂πt(zt)

]
From here, it is helpful to divide through by f (zt−1):

(1+ κ)

[
∂Ut−1

∂πt(zt)
+ β

∂Ut

∂πt(zt)
f (zt|zt−1)

]
= κ

[
Ωt−1(zt−1)

f (zt−1)

∂2Ut−1

∂zt−1∂πt(zt)
+ β

Ωt(zt)

f (zt)

∂2Ut

∂zt∂πt(zt)
f (zt|zt−1)

]

And from here, we define Γt(zt) = Ωt(zt)
f (zt)

. Note that we have:

Γt(zt) =
Ωt(zt)

f (zt)
=

Ωt−1(zt−1)

f (zt)

∫ θ
zt

∂ fk(θt|zt−1)
∂zk

dθt

f (zt|zt−1)
= Γt−1(zt−1)

∫ θ
zt

∂ fk(θt|zt−1)
∂zk

dθt

f (zt|zt−1)

Giving us our key result for t ≥ 1.

Note that the relevant initial condition is Γ0 = 1−F(z0)
f (z0)

. This is the standard term in evaluating

the virtual value in static mechanism design problems, and it is not surprising that it appears here.

What it notable is that this term appears in the date 1 optimality condition, in addition (as we will

see) to the date-0 one. This is because of the time consistency problem.

Lastly, we can evaluate the FOC for π0. In π0, there is no time consistency element, and we

are left with the simple tradeoff between current π and transfers. Repeating the steps from above,

we obtain the simple condition

∂U0

∂π0
=

κ

1 + κ
Γ0(z0)

∂2U0

∂z0∂π0

which is a standard virtual value condition. This gives the full result.

This concludes the proof.
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A.10.1 Second best with Average Transfers

In the baseline model, we impose the assumption that the outside option takes the formW0(θ0) ≥ 0.

We might alternatively have expressed this in the form∫
θ0

W0(θ
0) f (θ0|θ−1)dθ0 ≥ 0

The core difference between these two assumptions from a modeling perspective is on the timing

of information arrival versus the participation decision. Under the baseline assumption, either θ0 is

already known to the central bank, or the central bank has the opportunity to revert to the outside

option after learning θ0. Under the second assumption, θ0 is not known to the central bank, and the

central bank does not have the option to revert to the outside option after learning it.

Under this alternative structure, the optimality of the dynamic inflation target returns. In

particular, implementable allocations are still defined as in Lemma 15, while the transfer rule is

Tt(θt) =Wt −Ut − βEt [Wt+1|θt]. The average participation constraint implies that we have

0 = E−1W0 = E−1

∞

∑
t=0

βt(Ut + Tt),

which is markedly different from the baseline model. In particular, substituting this expression into

social welfare, we obtain the social optimization problem

max
{πt}

E−1

∞

∑
t=0

βt(1 + κ)Ut

implying that the optimal allocation rule is constrained efficient. From here, we obtain the optimal-

ity of the dynamic inflation target.

Proposition 17. Suppose that the participation constraint takes the form∫
θ0

W0(θ
0) f (θ0|θ−1)dθ0 ≥ 0

Then, the optimal mechanism is a dynamic inflation target, and yields the constrained efficient allocation.

Proof. The proof follows immediately. The objective function is to maximize social welfare and

hence the optimal allocation is the full-information Ramsey allocation. The mechanism that

implements this is the dynamic inflation target, with a lump sum transfer at date 0 to achieve a

binding participation constraint. �

The intuition behind Proposition 17 is straight-forward: under the average constraint, the gov-

ernment can capture the full social surplus and simply reduce the average transfer to the central
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bank at date 0 to satisfy the participation constraint. This implies that the government chooses the

mechanism and allocation that maximize social surplus, which is the dynamic inflation target.

A.11 Proof of Corollary 14

The proof follows immediately from the definition of Γt, which is equal to zero if θt ∈ {θ, θ}. When

Γt = 0, the allocation rule is constrained efficient for all Γt+k, k ≥ 1, so the optimal mechanism

reverts to constrained efficiency, which is implemented by the dynamic inflation target.

B Further Applications

In this Appendix, we develop several additional applications. Appendix B.1 revisits our main

applications of Section 4 under costly enforcement. Appendix B.2 revisits the classical conservative

central banker Rogoff (1985). We study persistent cost-push shocks in Appendix B.3 revisits

the canonical New Keynesian consensus on inflation targets with persistent cost-push shocks.

Appendix B.4 revisits persistent changes in the natural interest rate r∗t (Section 4.2) and allows for

arbitrary EIS, σ > 0.

B.1 Costly Enforcement: Main Applications Revisited

It is instructive to revisit how costly enforcement (Section 6.2) affects the optimal allocation rule in

our main applications to lower bound spells (Section 4.1), changing natural interest rates r∗t (Section

4.2), and changing slope of the Phillips curve (Section 4.3). We show that costly enforcement calls

for less aggressive unconventional policies (e.g., forward guidance) when the economy experiences

a lower bound spell, while it calls for more aggressive policies (e.g., raising the inflation target) in

response to a decline in r∗. We document competing effects in the case of flattening Phillips curve

that can call more more or less aggressive policies.

Lower bound spells. In the case of lower bound spells (Section 4.1), reduced-form preferences

satisfy ∂Ut
∂πt∂θt

= 0 and ∂Ut
∂Etπt+1∂θt

= c0 for a constant c0 > 0. This reflects that high θt > 0 corresponds

to a binding lower bound and thus makes it valuable to promise more future inflation. However,

because θt reflects a benefit of increasing the nominal rate and increasing inflation πt does not

directly increase the nominal rate, changes in the allocation rule πt does not generate an information

rent for the central bank at date t. This leads to an allocation rule given by

∂Ut

∂πt
= νt−1 + KΓt−1c0,

where the RHS is λt−1.

Suppose that lower bound spells are persistent and higher current types signal higher future

types (monotone likelihood). Then, Γt−1 > 0, so that the optimal mechanism prescribes a marginal
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value of contemporaneous inflation that is higher under costly enforcement, all else equal. Intuitively,

higher inflation expectations increase past information rents through by pushing the economy away

from the lower bound. This leads the planner to prefer a less aggressive policy for promoting future

inflation.

Declining r∗. In the case of changes in the natural rate θt = r∗t (Section 4.2), reduced-form

preferences satisfy ∂Ut
∂πt∂θt

= 0 and ∂Ut
∂Etπt+1∂θt

= −c1 for a constant c1 > 0. Intuitively, high θt

corresponds to being further from the effective lower bound, which reduces the value of raising

inflation expectations to get away from the ELB. The allocation rule under the optimal mechanism

is given by
∂Ut

∂πt
= νt−1 − KΓt−1c1,

where again the RHS is λt−1. The rule thus parallels the rule under lower bound spells, but in the

opposite direction. This is because higher inflation expectations now reduce past information rents

to the central bank, rather than raising them, by pushing the economy away from the ELB. This

leads the planner to prefer a more aggressive policy for promoting future inflation.

These results highlight a surprising contrast between the two lower bound applications: costly

enforcement calls for less aggressive unconventional policies in a lower bound spell, but for more

aggressive policies in response to changing a natural rate. Intuitively once the economy is already

in a lower bound spell, boosting inflation expectations raises central bank information rents by

disproportionately benefiting central banks in worse conditions. By contrast if the economy has

not yet hit the lower bound, boosting inflation expectations reduces central bank information rents

by pushing all central banks away from the lower bound, reducing the value to the central bank of

private information about r∗.

Flattening Phillips curve. In the case of a flattening Phillips curve (Section 4.3), reduced-form

preferences satisfy ∂Ut
∂πt∂θt

= 1
κ and ∂Ut

∂Etπt+1∂θt
= − β

κ . This reflects that a flattening Phillips curve

(higher θt) increases the value of stimulating current output through current inflation, but also

increases the cost of higher inflation expectations that depress output. The optimal allocation rule

is given by
∂Ut

∂πt
= νt−1 +

K
κ

∆Γt,

where again the RHS is λt−1 and where ∆Γt ≡ Γt − Γt−1. There are two competing effects from

costly enforcement On the one hand, high θt means that the central bank’s value of stimulating

output rises, promoting higher current inflation. This increases information rents to the central

bank and calls for lower inflation. On the other hand, high inflation also increases past inflation

expectations, which reduces information rents to past central banks and calls for higher inflation

(similarly to the r∗ application). The relative magnitude of the two effects is determined by ∆Γt, that

is the change in the persistent portion of the information rent earned by the central bank between
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the two dates. From Proposition 13, we can write

∆Γt = Γt−1

(
h(θt|θt−1)Et

[
Λ(st|θt−1)

∣∣∣∣st ≥ θt

]
− 1
)

.

where recall that h−1(θt|θt−1) =
1−F(θt|θt−1)

f (θt|θt−1)
is the inverse hazard rate and Λ(st|θt−1) =

∂ f (st|θt−1)/∂θt−1
f (θt|θt−1)

is the derivative of the likelihood ratio. We know that the expected likelihood ratio derivative is

zero at θt = θ while we know that the inverse hazard rate is zero at θt = θ. Thus local to the two

extremes of the shock distribution, we have ∆Γt < 0 and hence the optimal mechanism promotes

higher inflation. Interestingly, this suggests a tendency in this environment for the backward

looking information rent to dominate the contemporaneous information rent, and hence generate

a tendency to promote higher inflation to generate lower past information rents (at the expense

of promoting higher current information rents). In the interior, two common assumptions are a

nonincreasing inverse hazard rate and a monotone (increasing) likelihood ratio (higher past types

signal high future types). These have competing effects on the response to a flattening Phillips

curve. Intuitively, a lower inverse hazard rate reduces current virtual surplus whereas a higher

likelihood ratio increases virtual surplus.

B.2 Revisiting Rogoff’s Inflation-Conservative Central Banker

We ask whether dynamic inflation targets can be implemented by inflation-conservative central

bankers in the spirit of Rogoff (1985). In particular, our inflation-conservative central banker places

a greater penalty on inflation than the government. After appropriate intertemporal rearrangement

of terms, we represent this by assuming central bank preferences equal to

Vt = Ut − c(πt −Et−1[πt|θ̃t−1]),

where as before Ut denotes the preferences of society and the government, and where c is the

constant linear cost to the conservative central banker of inflation exceeding firm inflation expecta-

tions.45 We obtain the following result.

Proposition 18. With an inflation-conservative central banker, the full-information Ramsey allocation can
then be implemented by a dynamic inflation target with bt−1 = νt−1 − c.

Proposition 18 demonstrates that the appointment of an inflation-conservative central banker

does not obviate the fundamental need for a dynamic inflation target. Intuitively, the inflation-

conservative central banker applies a constant penalty to inflation, given by c. In the presence

of persistent shocks, the target flexibility νt of the dynamic inflation target changes over time.

45 This is a special case of preference disagreement in Appendix C.2.
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While an inflation-conservative central bank raises target flexibility on average, in the sense that

bt−1 = νt−1− c < νt−1, the total implied inflation penalty bt−1 + c is νt−1 just as before. The inflation

target mechanism that implements the full-information Ramsey allocation is still time-varying and

responds to persistent shocks.

In the language of Svensson (1997b), however, appointing an inflation-conservative central

banker can resolve average inflationary bias when c is set equal to the average value of νt in the

stochastic steady state. When this average penalty is large (e.g., in the presence of a distorted

steady state) but time variation in νt is small, approximating the dynamic inflation target with an

inflation-conservative central bank may result in relatively small welfare losses.

Proposition 18 suggests that an alternative implementation of the dynamic inflation target

might be to appoint new central bank chairs with appropriate inflation preferences in response to

changes in νt. The inflation conservativeness of the central bank would then be time-varying and

correspond to ct = νt−1. If in response to a shock at date t− 1 the dynamic inflation target requires

νt−1 > νt−2, then a more dovish central banker at date t− 1 should be replaced by a more hawkish

central banker at t. Just as the dynamic inflation target must be updated one period in advance, the

appointment of a new central banker would also be announced one period in advance.46

B.2.1 Proof of Proposition 18

The proof follows the same steps as in Proposition 3. The envelope condition is the same, given

that the additional term −c(πt −Et−1[πt|θ̃t]) in Vt depends on reported types and not true types.

From here, the value function at date t under our proposed mechanism given by

Wt(θ
t) = −c(πt −Et−1πt) + Vt + βEt

[
Wt(θ

t+1)|θt

]

= −(c + bt−1)(πt −Et−1πt) + Ut + βEt

[
Wt(θ

t+1)|θt

]

= −νt−1(πt −Et−1πt) + Ut + βEt

[
Wt(θ

t+1)|θt

]
which is the same value function as in the proof of Proposition 3 when evaluated at the constrained

efficient allocation. Thus the result follows using the same proof as for Proposition 3.

46 Importantly, just as a fixed central bank under the optimal mechanism was tasked with updating its own target,
in an implementation with time varying conservativeness a central banker would be tasked with appointing her own
replacement one period in advance (or at the least, would be responsible for naming her successor). However, this
institutional arrangement is not typical (if used at all) in practice. For example, in the U.S. the president is tasked with
appointing members of the Board of Governors, who must then be confirmed by the Senate.
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B.3 Cost-Push Shocks, Flexible Inflation Targeting, and Price-Level Targeting

In this application, we study a persistent cost-push shock both with and without costly enforcement.

This revisits the related full-information environment of Svensson and Woodford (2004) and

studies the properties of the dynamic inflation target. Social welfare is characterized by a New

Keynesian loss function around a non-distorted steady state, Ut(πt, yt, θt) = − 1
2 π2

t − 1
2 α(yt − θt)2.

For simplicity, we set the slope of the Phillips curve to be κ = 1. Internalizing the NKPC (10) into

the loss function yields reduced-form preferences

U(πt, Etπt+1, θt) = −
1
2

π2
t −

1
2

α(πt − βEtπt+1 − θt)
2. (29)

Note that θt is a cost-push shock in the usual sense: higher θt means higher current inflation

is needed in order to maintain the same output loss. We assume the cost-push shock satisfies

Etθt+1 = ρθt, where 0 ≤ ρ ≤ 1 is its persistence. The following result characterizes the dynamic

inflation target.

Proposition 19. The dynamic inflation target that implements the full-information Ramsey allocation is

νt = γ1νt−1 + γ2θt

τt = −(1− γ1)γ1νt−1 + γ2(γ1 − 1 + ρ)θt,

where 0 ≤ γ1 ≤ 1 does not depend on ρ, and γ2 ≥ 0 increases in ρ. Optimal inflation sets πt = νt − νt−1.

Proposition 19 specializes the dynamic inflation target of Proposition 3 to the cost-push shock

application. In response to a positive and persistent innovation in the shock, i.e., a high θt realization,

the central bank updates both parameters of the target for the next period. First, the target flexibility

decreases in the sense that νt rises. This happens because the cost-push shock leads to a larger output

gap today, increasing the inflationary bias of the central bank.

Second, the response of the target level is ambiguous and depends on the shock persistence.

When shocks are not persistent, a cost-push shock is followed by a lower target level. As shocks

become more persistent, there is a critical level ρ∗ = 1− γ1 after which the central bank raises

the target level instead. This result reflects the common intuition of the cost-push shock model:

The central bank would like to promise low future inflation to improve the contemporaneous

inflation-output trade-off; as shocks become more persistent, however, it also wants to promise

higher future inflation to mitigate future expected cost-push shocks.

The target also decreases as the previous period’s target flexibility parameter νt−1 rises. This

reflects the history dependency: a high past inflationary bias leads to a desire for low inflation today,

which in turn leads to a desire for low inflation tomorrow. This means that the increase in νt serves

as a force for future deflationary pressures. Finally, contemporaneous inflation unambiguously
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rises in response to a positive cost-push shock. It is interesting to note that the target flexibility is

always more responsive to a contemporaneous cost-push shock than its flexibility, since we have

−1 < γ1 − 1 + ρ < 1.

Costly enforcement. With costly enforcement, note that we have ∂Ut
∂πt∂θt

= 1
2 α and ∂Ut

∂Etπt+1∂θt
=

− 1
2 αβ. The impacts are analogous to a flattening Phillips curve, and means we can write

∂Ut

∂πt
= νt−1 +

1
2

K
α

∆Γt

Thus relative to the Ramsey solution, the optimal mechanism adjusts the allocation trading off

two effects on information rents. On the one hand, higher expected inflation reduces past infor-

mation rents by increasing costs of inflation for central banks that experience large past cost push

shocks. On the other hand, higher contemporaneous inflation increases current information rents

by reducing costs of large contemporanous cost push shocks. The optimal allocation rule trades

off these two effects. As once again ∆Γt < 0 local to the boundaries of the shock distribution,

particularly large or particularly small cost push shocks at date t lead past information rents to

dominate, and calls for a more aggressive inflation response today in order to reduce historical

information rents. Interestingly, this amplifies the response of inflation to a large cost push shock,

pushing the allocation rule closer to the policy under discretion.

B.3.1 Proof of Proposition 19

Given reduced from preferences are

U(πt, Etπt+1, θt) = −
1
2

π2
t −

1
2

α(πt − βEtπt+1 − θt)
2

then we have
∂Ut

∂πt
= −πt − α(πt − βEtπt+1 − θt)

∂Ut−1

∂Et−1πt
= βα(πt−1 − βEt−1πt − θt−1).

By definition, we have

νt−1 = − 1
β

∂Ut−1

∂Et−1πt
= −α(πt−1 − βEt−1πt − θt−1).

Therefore, we can write the FOC for the full-information Ramsey allocation, ∂Ut
πt

= νt−1, equivalently

as

−πt − νt = νt−1
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or in other words, πt = νt − νt−1. Combined with the definition of νt−1 and the initial condition

ν−1 = 0, this gives us a complete system.

Suppose that Etθt+1 = ρθt, where ρ = 1 corresponds to full persistence. We thus think of cost

push shocks as reverting towards zero. We guess and verify a linear solution

νt = γ1νt−1 + γ2θt.

Given this conjecture, we know from the FOC that

πt = (γ1 − 1)νt−1 + γ2θt.

Using the definition of νt,

νt = −απt + αβEtπt+1 + αθt,

we substitute in the expression for πt and our conjecture for νt+1 to obtain

νt = −α

(
νt − νt−1

)
+ αβ

(
(γ1 − 1)νt + γ2Etθt+1

)
+ αθt.

Now using that Etθt+1 = ρθt and rearranging, we get

νt =
α

1 + α + (1− γ1)αβ
νt−1 +

α

(
βγ2ρ + 1

)
1 + α + (1− γ1)αβ

θt

Thus coefficient matching, we have the system of equations

α

1 + α + (1− γ1)αβ
= γ1

α

(
βγ2ρ + 1

)
1 + α + (1− γ1)αβ

= γ2

The first equation is defined solely in terms of γ1. Thus taking it and rearranging, we obtain the

quadratic

αβγ2
1 − γ1(1 + α + αβ) + α = 0.

This quadratic has two roots, with the upper root being explosive since β < 1 implies γ+
1 > 1. Thus

selecting the non-explosive root gives 0 ≤ γ1 ≤ 1, where

γ1 =
1 + α + αβ−

√
(1 + α + αβ)2 − 4α2β

2αβ
.

Note that to see why this root lies between 0 and 1, the quadratic above equals α > 0 for γ1 = 0
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and equals −1 < 0 when γ1 = 1.

Given that 0 ≤ γ1 ≤ 1, we can solve for γ2 using the second equation, which gives

γ2 =
γ1

1− βργ1
,

which is positive since βργ1 ≤ 1. Thus we have our solution. Given this solution, the parameters

of the target are

νt = γ1νt−1 + γ2θt

and

τt = Etπt+1

= (γ1 − 1)νt + γ2ρθt

= −(1− γ1)γ1νt−1 + γ2(γ1 − 1 + ρ)θt

B.4 Application: r∗ Revisited and the Commitment Curve

We revisit the application to persistent changes in the natural interest rate r∗t (Section 4.2) but allow

for σ > 0. The realized nominal interest rate is

it = Etπt+1 + θt + σ

[
Etyt+1 − yt

]
− εt.

Intuitively, an expected rise in the output gap means household consumption is expected to rise,

raising the nominal interest rate and pushing the central bank away from the ELB. Similar to Section

4.2, we can write it = i∗t − εt and write the welfare losses v(i∗t ) from the ELB. In this case with

σ > 0, we have a change in the definition of i∗t to

i∗t = −σπt +

(
1 + σ(1 + β)

)
Etπt+1 − σβEtπt+2 + θt,

which reflects internalizing the NKPC to substitute out the output gap. Intuitively, higher inflation

today, πt, increases output today and so reduces the required nominal rate. Higher inflation πt+1

both directly increases the nominal rate and indirectly increases it by stimulating output yt+1.

Conversely, higher inflation πt+1 depresses output yt+1 and so reduces the nominal rate.

Consider the shape of the commitment curve. Recall that we have Ut = − 1
2 π2

t − 1
2 α̂

(
πt −

βEtπt+1

)2

+ v(i∗t ). We can write

νt+1,1 = ν
y
t+1,1 + νi

t+1,1

where ν
y
t+1,1 = − 1

2 α̂

(
πt − βEtπt+1

)
is the usual output gap component, and where νi

t+1,1 =
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−
(

v0 − βv1i∗t

)(
1 + σ(1 + β)

)
< 0 is the component coming from the effective lower bound.

From here, we can show that

νt+2,2 = −β∗νi
t+1,1

where β∗ = σ
1+σ(1+β)

< 1 is increasing in σ.

Intuitively, in this case the commitment curve can be decomposed into two components. The

first component is the output gap commitment curve, where we have ν
y
t+1,1 > 0 and ν

y
t+k,k = 0

for all k > 1. This corresponds to the standard one period commitment to stabilize the output

gap. The second component is the effective lower bound commitment curve, where νi
t+1,1 < 0 and

νi
t+2,2 = −β∗νi

t+1,1 > 0. The effective lower bound commitment curve switches signs precisely

because of the different effects of inflation at different horizons.

C Further Extensions

C.1 Welfare Gains from a Dynamic Inflation Target

We characterize the potential welfare gains under a dynamic inflation target. Suppose that the

central bank adopts a permanent, static target (ν∗, τ∗) instead of the dynamic inflation target of

Proposition 3.47 The following proposition describes the first-order welfare gains from moving

from the static target to a dynamic inflation target.

Proposition 20. To first order, the welfare gains in allocative efficiency from moving from a static target
(ν∗, τ∗) to the dynamic inflation target (νt−1, τt−1) of Proposition 3 are

E
∞

∑
t=1

βt
[

ν∗t−1 − ν∗︸ ︷︷ ︸
Cost of Excess Inflation

][
Et−1π∗t − τt−1︸ ︷︷ ︸

Amount of Excess Inflation

]
.

The first order welfare gains available from moving to a dynamic inflation target depend on two

forces. The first, ν∗t−1 − ν∗, is the intertemporal variation in the time consistency problem under

the static target (where ν∗t−1 is the time consistency wedge evaluated at the allocation obtained

under the static target). When ν∗t−1 > ν∗, the time consistency problem is more severe than the

slope imposed ν∗, and hence inflation is too high relative to the efficient tradeoff. In other words,

the first term reflects the cost of excess inflation. The second term, Et−1π∗t − τt−1, is the difference

between inflation expectations under the static target and inflation expectations under the dynamic

target. High welfare gains are therefore available when a large excess time consistency problem,

ν∗t−1 − ν∗, coincides with substantial excess inflation, Et−1π∗t − τt−1, relative to the constrained

47 To simplify analysis, we will characterize welfare under a static target with full information, even though the
dynamic inflation target implements the Ramsey allocation under incomplete information. This streamlines analysis
because under a static target absent full information, the central bank’s reporting constraints would be nontrivial due to
information effects.
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efficient inflation level. The dynamic inflation target thus allows welfare gains not only by allowing

for greater inflation when the static target would be too severe, but also by allowing for lower

inflation when the static target would be too flexible.

C.1.1 Proof of Proposition 20

To first order, the welfare gains of an inflation perturbation from the static target is

E0

∞

∑
t=0

βt
[

∂Ut

∂πt
dπt +

∂Ut

∂Etπt+1
dπt+1

]
.

From here, the first order condition of the central bank is ν∗ = ∂Ut
∂πt

, while by definition ∂Ut
∂Etπt+1

=

−βν∗t . We have ∂U0
∂π0

= 0, so that we have

E0

∞

∑
t=1

βt
[

ν∗ − ν∗t−1

]
dπt.

Finally, we have Et−1dπt = τt−1 −Et−1π∗t , giving the result.

C.2 Preference Differences

We extend the costly enforcement model (Section 6.2) to allow for preference disagreement. For-

mally, the central bank has utility Ut but the government has utility Vt(πt, Et[πt+1|θ̃t], θt). Social

preferences of the government are now

max E

[ ∞

∑
t=0

βt (Vt(πt, Et[πt+1|θ̃t], θt)− κTt
) ]

. (30)

As before there is a central bank participation constraint. Define K = κ
1+κ as before, and define

weighted reduced form preferences to be

Zt = (1− K)Vt + KUt.

Weighted reduced form preferences average the preferences of the government and central bank. A

higher weight is assigned to central bank preferences the more costly enforcement is, that is K rises

in κ. The optimal mechanism can be described as follows.

Proposition 21. The solution to an optimal allocation rule of the relaxed problem is given by the first-order
conditions

∂Zt

∂πt
− KΓt

∂Ut

∂θt∂πt
= λ∗t−1

where λ∗t−1 = − 1
β

∂Zt−1
∂Et−1πt

+ KΓt−1
1
β

∂2Ut−1
∂θt−1∂Et−1πt

and Γt is defined as in Proposition 13.
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The optimal allocation rule of Proposition 21 is similar to that of Proposition 13, but with one

important difference: the weighted preference Zt replaces the planner’s utility. Intuitively, the

government places value on the lifetime utility to the central bank because promising higher lifetime

value allows the government to extract more surplus in the form of transfers. Counterveiling

this force is information rents, which are analogous to before and only depend on central bank

preferences Ut. Intuitively, these terms only depend on central bank preferences as information

rents accrue based on central bank preferences. Otherwise, the intuitions of Section 6.2 carry over.

It is helpful to illustrate two dichotomous cases. If K = 0 and enforcement is costless, we

have Zt = Vt and hence the optimal allocation is the government’s Ramsey allocation. This follows

intuitively: the government has no cost to designing a scheme that incentives the central bank to

choose the government’s preferred allocation. At the other extreme, if K = 1 then Zt = Ut, that is

to first order the planner only values transfers. Interestingly, the optimal allocation collapses to

that of Proposition 13. Intuitively when the principal only cares about transfers, the principal on

the one hand wants to make utility as high as possible to the agent in order to relax the central

bank’s participation constraint and extract larger transfers ex ante. On the other hand, the principal

also internalizes that higher agent utility increasess agent information rents. This leads to the same

allocation rule as in the case where principal and agent preferences are aligned except for transfers.

At intermediate values of K, the optimal allocation rule trades off the two extremes. On the

one hand, the planner wishes to push the allocation closer to her Ramsey allocation, which increases

her direct utility from allocations. At the same time, the planner wishes to push the allocation

closer to the central bank’s Ramsey allocation in order to relax the participation constraint and

extract greater transfers. This leads to a balancing act determined by K, which encodes a relative

weight the principal assigns to the different motivations.

As in Corollary 14, following θt ∈ {θ, θ} the optimal allocation reverts to the Ramsey allocation

associated with weighted reduced-form preferences Zt. If K = 1, then this allocation coincides with

that of the dynamic inflation target.

C.2.1 Proof of Proposition 21

Observe that the integral envelope condition (28) still holds and implies Lemma 15 characterizes the

central bank’s value function, given central bank preferences have not changed. Thus the transfer

rule is still given by Tt =Wt −Ut − βEt[Wt+1|θt]. Thus we still have

−E
∞

∑
t=0

Tt = E
∞

∑
t=0

βtUt −W0

whereW0 = E0

[
∑∞

s=0 βsBs
0(θ

s)

∣∣∣∣θ0

]
Given the change in preferences, the government’s objective

function is now

E

[ ∞

∑
t=0

βtVt − κTt

]
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thus substituting in the transfer rule and definition ofW0, the government’s objective function is

E

[ ∞

∑
t=0

βt
[

Vt + κUt − Bt
0

]]

Finally dividing through by 1 + κ and defining K = κ
1+κ (1− K = 1

1+κ ), we obtain

E

[ ∞

∑
t=0

βt
[
(1− K)Vt + KUt − KBt

0

]]

Thus we simply define Zt = (1− K)Vt + KUt and the derivation proceeds exactly the same as

before with Zt replacing Ut as the government’s effective utility function. This recovers the first

order condition given and completes the proof.
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