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Abstract

We extend the impact decomposition proposed by LeSage and Thomas-Agnan (2015) in the spatial

interaction model to a more general framework, where the sets of origins and destinations can be

different, and where the relevant attributes characterizing the origins do not coincide with those of the

destinations. These extensions result in three flow data configurations which we study extensively: the

square, the rectangular, and the non-cartesian cases. We propose numerical simplifications to compute

the impacts, avoiding the inversion of a large filter matrix. These simplifications considerably reduce

computation time; they can also be useful for prediction. Furthermore, we define local measures

for the intra, origin, destination and network effects. Interestingly, these local measures can be

aggregated at different levels of analysis. Finally, we illustrate our methodology in a case study using

remittance flows all over the world.

Keywords— Impact decomposition, local effects, spatial interaction autoregressive models, non-cartesian

flow data

1 Introduction

Spatial interaction models (SIMs) are a class of models that are used to characterize origin-destination (OD)

flow data. OD flow data represent movements of tangible entities (such as persons, goods) and intangible ones

(such as capital, investment, knowledge) from origins to destinations (which can be cities, regions, countries or

positions). Spatial interaction models explain the interaction between origin and destination locations using:

(i) origin-specific attributes characterizing the ability of the origins to generate flows; (ii) destination-specific

characteristics representing the attractiveness of destinations; (iii) variables that characterize the way spatial

separation of origins from destinations constrain the interaction.1 Previous literature has shown that using

∗Toulouse School of Economics, CNRS
†University Adolfo Ibañez, Chile
‡Toulouse School of Economics, Université Toulouse Capitole
1In the initial SIMs, the spatial flows between an origin and a destination were conceived to be proportional to their

gravitational forces and inversely related to their spatial separation. Characteristics of origins and destinations, hereafter
Ui and Vj , respectively, hence represent the gravitational forces pushing and/or pulling the tangible or intangible entities
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spatial separation variables, such as distance between origin and destination locations, is generally not enough to

eradicate the spatial dependence and/or the spatial autocorrelation among the sample of OD flows (Curry et al.,

1975; Curry, 1972).

Over the last 50 years, SIMs have been applied in a wide variety of contexts, such as retail, transport, hous-

ing, public policy, land use, urban and population modelling and planning. SIMs have been used for two main

purposes: prediction (of the size and direction of the spatial flows) and inference (about the factors shaping the

spatial interactions in a network of flows; Rowe and Dennett, 2022). Furthermore, the literature has proposed

five methodological approaches to account for the spatial structure: the competing destination model (which

includes an accessibility measure by using a Box–Cox functional form of distance, see, e.g., Fotheringham, 1983);

the Box–Cox transformation (by using a Box–Cox functional form of distance, see, e.g., Tiefelsdorf, 2003); spa-

tial choice modelling by accounting for destination alternative substitution patterns (Hunt et al., 2004); spatial

econometric modelling (LeSage and Pace, 2008) and eigenvector spatial filtering (Chun and Griffith, 2011).

Starting with Griffith and Jones (1980), the SIM literature distinguishes among: (i) spatial autocorrelation

in the residuals, which arises from missing origin and destination spatially autocorrelated explanatory variables

and/or a model term that captures location accessibility (Tiefelsdorf and Griffith, 2007; Fischer and Griffith,

2008; Fotheringham, 1981);2 (ii) spatial dependence arising from the direct interaction between the dependent

flows themselves. Moreover, in relation to (ii), the literature identifies two different types of spatial dependence

in flow magnitudes: endogenous and exogenous interaction effects.

Endogenous interaction effects reflect situations where flows from regions (or sites) neighboring the origin i or

destination j, as well as flows between regions neighboring the origin and neighboring the destination may exert an

impact (a feedback effect) on the magnitude of flows between regions i and j (LeSage and Fischer, 2016). We can

model this type of interaction relying on spatial autoregressive specifications as in LeSage and Pace (2009), who

include spatial lags of the dependent variable to quantify the magnitude and extent of these feedback effects, hence

the term endogenous interaction. These specifications imply a simultaneous or endogenous response relationship

between the variation in the dependent variable of a given dyad and flows between other regions in the observed

network of flows. One example would be international trade flows, where tariff or non-tariff barriers limit trade,

which in turn leads to a long-run response that changes the structure of trade flows across the network of trading

countries. We call these global spillovers, as they imply diffusion over space (thus impacting neighbors, neighbors

of neighbors, and so on).

In contrast, exogenous interaction represents a situation where the spillovers are local and arise from changes

in the characteristics of nearby sites. Exogenous effects do not generate reaction to feedback impacts or global

diffusion. We account for exogenous effects including spatial lags of the explanatory variables (which represent

characteristics of connected sites). One example would be congestion in neighboring regions in an application

where we are interested in modelling commuting flows.

The distinction between endogenous and exogenous interaction effects is important for model interpretation.

from and to specific locations, whereas different measures of distance and costs, which we denote as f(di:j), represent the
deterring effects of geographical separation of spatial flows (Rowe and Dennett, 2022). A SIM specification can be written
as,

E(Yi:j) = Ki:jUiVjf(di:j) (1)

where E(Yi:j) is the expectation of a flow from origin i to destination i and Ki:j is an origin–destination-specific constant
of proportionality or scaling factor.

2Fotheringham (1983) shows that the inclusion of a variable that measures each destination’s accessibility to all other
destinations can greatly reduce the spatial variation in local distance-decay parameter estimates and remove unintuitive
patterns.
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In spatial autoregressive interaction models, a change in a characteristic at a given location gives rise to possibly

numerous impacts on the OD flow matrix (in contrast with the classical non-spatial linear model). Indeed, due to

the presence of the filter matrix, the parameters of the explanatory variables no longer coincide with the changes

of the dependent variable resulting from increments of the independent variables.3 This has two consequences:

1) changes are no longer the same for all locations, and 2) an increment of a given explanatory variable at a

location may result in non-null variations at all other locations. LeSage and Thomas-Agnan (2015) have analyzed

the impact measures in the spatial autoregressive interaction model with endogenous spatial interaction; in turn,

LeSage and Fischer (2016) have studied the impact decomposition allowing for exogenous spatial interactions.

These two papers decompose the total effects into intraregional, origin, destination, and network effects.

However, both papers impose two restrictions: that the list of origins coincides with the list of destinations

and that the characteristics of origins are the same as the characteristics of destinations.

Dargel and Thomas-Agnan (2023) introduce a more general version of the spatial interaction model allowing

for different lists of origins and destinations and for possibly different origin and destination characteristics.4 The

goal of the present paper is to examine the impact decomposition in this new framework. Being able to lift

these two restrictions when computing impact measures is particularly appealing in numerous applications. For

instance, in an application with bilateral remittance flows between country pairs, a country that receives money

from abroad may not necessarily send money abroad (for example, if it is a low-income country). As another

example, consider an application with OD transfer passengers between home and work. In this case, the number

of inhabitants at the origins may be a relevant characteristic for the residential locations, whereas one would like

to include the number of employees to characterize the destinations. A third possible illustration is a geomarketing

application where the OD flows occur between consumers and retail stores. Also in this case, it is reasonable to

expect that the factors characterizing the retail stores (such as the surface of the stores) will not coincide with

the destination attributes (e.g. population of the areas where consumers live). The above illustrations motivate

the present research.

The contribution of our paper is three-fold. First, we extend the impact decomposition of LeSage and Thomas-

Agnan (2015) and LeSage and Fischer (2016) in the framework of a spatial autoregressive Durbin model (with

endogenous and exogenous interactions), where the list of origins does not necessarily coincide with the list of

destinations and where the sets of origin and destination characteristics are different. This impact generalization

results in three distinct cases which we study extensively in the paper: the standard square case, that is, when the

lists of origins and of destinations are the same; the rectangular case, i.e. when the list of origins does not coincide

(or coincides partially) with the list of destinations, but all possible flows are observed; and the non-cartesian

case, that is, when some of the possible flows between the origins and the destinations are not observed or have

no meaning. To the best of our knowledge, we are the first to decompose the impacts in this general setting.

Our second contribution is that, by exploiting some properties of the filter matrix, we propose a procedure to

compute the impacts that considerably reduces the computation time in the cartesian case, under few hypotheses.

This is achieved by avoiding to compute the inverse filter matrix of size N × N , where N is the total number

of flows. Instead, we need the inversion of a
√
N ×

√
N matrix. The computation time reduction is particularly

interesting in applications where the total number of flows is large. For instance, with a data set of N = 3600

3The model specification with exogenous effects only can be interpreted without considering changes in the long-run
equilibrium state of the system of flows (LeSage and Fischer, 2016).

4In a typical spatial interaction model, the sample involves n locations being origins and destinations at the same time
and k variables characterizing the origins as well as the destinations.
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flows, computational time (using a Intel Xeon(R) CPU E5, 2.20GHz) is around 1s using our algorithm, 5s using

a classical algorithm taking into account the sparsity and 12s using a classical algorithm with no adjustment.

Finally, we propose alternative representations of the local effects which can be aggregated at different levels of

analysis depending on the research interest. As an application of our work, we present a case study consisting of

(a rectangular dataset of) bilateral remittance flows among macro-economic zones all over the world, where the

list of origins is different from the list of destinations.

To compute the impacts, in this paper, we first determine the local impacts associated to a location s when

changing a characteristic at that particular location s. We define the cumulative local impact of changing Z

at a single location s as the sum of the local intraregional effect, the local origin effect, the local destination

effect, and the local network effect, when these terms have a meaning (they are zero otherwise). Precisely, the

local intraregional effect measures the local impact of changing a given characteristic Z at location s on the flow

originating and arriving at that location s. This of course has a meaning provided location s is both an origin

and a destination site. In turn, the local origin (resp: destination) effect corresponds to the sum of local effects

due to a change in Z at a single location s on the flows starting from (resp: arriving at) s. This effect only has

a meaning for origin (resp: destination) characteristics. Finally, the local network effect is the sum of effects of

changing a given characteristic Z at a location s on the flows that do not start from neither arrive at s. The local

impact decomposition that we propose in this paper should be of interest to researchers seeking to isolate the local

or regional impact of shocks, interventions or policies on a specific subset of positions (including areas, regions,

countries). For example, one may be interested to know what has been the impact of a negative economic shock

on the migration, knowledge or remittance flows involving certain groups of countries, such as emerging economies

or low-to-middle-income countries. These would then be summary measures of impacts with an intermediate level

of aggregation.

Going from the local to the global effects, we then define the total impact of changing Z at all locations

on all flows as the sum over all locations of the local total impacts (or as the sum over all locations of the

local intraregional, origin, destination and network effects, when these terms have a meaning). Note that our

procedure of obtaining the total impacts as sums of local impacts contrasts with the existing literature (LeSage

and Pace, 2006, as an example), which defines the total impact directly. As in LeSage and Thomas-Agnan (2015),

we also present scalar summary measures for the total intraregional, origin, destination, and network effects by

normalizing these total effects by the total number of flows. These scalar summary measures represent an average

effect over all possible flows, or the effect on a typical flow. The present definitions reduce to the standard ones

in the square framework with characteristics common to origin and destination.

The structure of this paper is as follows. Section 2 presents the spatial autoregressive interaction model with

possibly different origin and destination sets. Section 3, in turn, examines the model interpretation in the square,

the rectangular, and the non-cartesian cases. The analysis starts by presenting the decomposition of local impacts;

next, we propose two graphical representations of the local impact measures; lastly, we present the total effects by

aggregating the local impacts over all possible locations. Section 4 shows how to simplify the impact computations

in the cartesian case, whereas Section 5 proposes simplified prediction formulas, also in the cartesian case. Section

6 illustrates our results with a case study of bilateral remittance flows among regions all over the world. Section

six concludes with a discussion of the possible applications of our results.
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2 A spatial autoregressive interaction model with possibly dif-

ferent origin and destination sets

Interaction or gravity models attempt to explain the interaction between origin and destination locations using:

(i) origin-specific attributes characterizing the ability of the origins to generate flows; (ii) destination-specific

characteristics representing the attractiveness of destinations; (iii) variables that characterize the way spatial

separation of origins from destinations constrains the interaction. Acknowledging that using spatial separation

variables, such as distance between origin and destination locations, is generally not enough to eradicate the

spatial effects in the sample of origin-destination (OD) flows, spatial autoregressive interaction models augment

the gravity equation with spatially lagged dependent and independent variables.

In a typical spatial autoregressive interaction model, the sample involves n locations being origins and desti-

nations at the same time and k variables characterizing the origins as well as the destinations. In this paper, we

will consider a more general case. We first relax the assumption that the same variables characterize both the

origins and the destinations (let ko and kd be the numbers of origin and destination characteristics, respectively).

We then allow for no origins and nd destinations resulting in N = no × nd pairs (o, d) of origin-destination (OD)

flows respectively. For example, this would be the case in a typical geomarketing application where the origins

would be the locations of the customers, the destinations the locations of the stores; the characteristics of origins

would be some socio-economic variables describing the places of residence of customers and the characteristics of

destination would describe the stores (area, number of employees, ets.). An even more general and realistic case,

which we study in this paper, would be to allow some pairs (o, d) to be missing.

Let Y be the flow matrix, where the nd columns represent the destination locations indexed by 1 to nd and

the no rows correspond to the origin locations indexed by 1 to no, organized as follows


o1 → d1 o1 → d2 ... o1 → dnd

o2 → d1 o2 → d2 ... ...

ono−1 → dnd

ono → dnd

 (2)

We denote by O the set of origins locations, D the set of destinations locations, and Yo:d an OD flow from

origin o to destination d. Note that the OD flow matrix we consider in this paper, equation (2) above, is an

oriented flow matrix, in the sense that Yo:d 6= Yd:o. Let us denote by S the union of O and D and by nS its

cardinality. Two possible vectorizations of the flow matrix Y are possible, depending on whether we stack its

columns (destination centric) or its rows (origin centric). Without loss of generality, we adopt in the following

a destination centric ordering and denote by y the flow vector, of length N × 1. Hence, the first nd elements of

y represent flows from origin 1 to all nd destinations. All formulas below can be adapted to the origin-centric

scheme.

Let OW be a no × no proximity matrix characterizing the proximity in the set of origin locations, with the

proximity being defined, for instance, based on m-nearest neighbours or contiguity, among others. OW represents

a non-negative, row-normalized, sparse matrix, with element owi,j > 0 if site j is one of the neighbours to site i

and
∑

j owi,j = 1. Similarly, let DW of dimension nd × nd, be a proximity matrix characterizing the proximity

in the set of destination locations. We also assume that DW is row-normalized i.e.
∑

j dwi,j = 1.5 We consider

5Note that we allow for different proximity matrices for the sets of origin and destination locations.
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the following three types of neighborhood structures

• Wo = OW
⊗

Ind is the origin based spatial neighborhood matrix,

• Wd = Ino

⊗
DW is the destination based spatial neighborhood matrix,

• Ww = OW
⊗

DW is the origin-to-destination based spatial neighborhood matrix,

with
⊗

standing for the Kronecker product of two matrices. Note that the three weight matrices Wo, Wd and

Ww are of dimension N ×N.
Regarding the origin and destination characteristics, let OX be the matrix of the ko characteristics of the

origin locations, which is of dimension no×ko, and DX that of the kd destination characteristics, with dimension

nd × kd. On top of that, the characteristics of the origins (respectively, destinations) may appear in their lagged

form in the model (depending on the application, we could eventually spatially lag a subset of the origin and

destination characteristics). We hence construct the following four matrices

• Xo = OX
⊗
ιnd , of dimension (N × ko), the characteristics of the origin locations,

• Xd = ιno

⊗
DX, of dimension (N × kd), the characteristics of the destination locations.

• LXo = LOX
⊗
ιnd , with LOX = OW ×OX being the lagged characteristics of the spatial units acting

as origins.

• LXd = ιno

⊗
LDX, with LDX = DW ×DX being the lagged characteristics of the spatial units acting

as destinations.

Let G be a matrix of variables characterizing the pairs of origins and destinations (for example, distance). The

spatial autoregressive Durbin model, hereafter SDM, in its reduced form can be written as follows

(IN×N − ρoWo − ρdWd − ρwWw)y = ιNα+ Xoβo + Xdβd + LXoδo + LXdδd + Gω + ε, (3)

where the parameters ρo, ρd and ρw capture the strength of the origin, destination, and origin-to-destination

spatial dependence, respectively; βo, βd, δo, δd and ω are the vectors of parameters whose dimensions correspond

to the number of variables in Xo, Xd, LXo, LXd and G, respectively.

One difficulty that often arises when modelling OD flows is the presence of large flows within regions (that

is, those located on the diagonal of the OD flow matrix Y), relative to smaller flows between regions (those that

are on the off-diagonal elements of Y). One approach used in empirical studies is to model the diagonal elements

of the flow matrix separately (Tiefelsdorf, 2003; Fischer et al., 2006) reflecting the view that intraregional flow

elements represent a nuisance. While this approach is fine in the case of the ordinary lineal model, it can have an

adverse impact in the case of our spatial interaction model.

LeSage and Pace (2008) suggest an alternative approach to dealing with the large intraregional flow mag-

nitudes which involves adding a specific set of explanatory variables for these observations (a possibly distinct

set of covariates). As detailed in LeSage and Thomas-Agnan (2015), this separate model is embedded into the

specification by adjusting the matrices Xo, Xd to have zero values for the observations associated with the in-

traregional flows in the flow matrix Y. They then propose to introduce an additional matrix of explanatory

variables containing non-zero observations for those associated with the intraregional flows (which were set to

zero in the matrices Xo, Xd.) We label this matrix of intra-regional factors Xi.

The previously described procedure aims at allowing the parameters associated with the matrices Xo, Xd to

more accurately model the variation in interregional flows, and those associated with the matrix Xi to capture
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variation in intraregional flows. To account for intraregional flows, model (3) in its reduced form needs to be

modified as follows,

(IN×N − ρoWo − ρdWd + ρwWw)y = ιNα+ 1o=dαi + Xoβo + Xdβd + Xiβi + LXoδo + LXdδd + Gω + ε, (4)

where Xo and Xd have been adjusted to account for the intra-regional flows and βi is the vector of parameters,

of length ki, with ki being the number of intraregional explanatory variables and αi being the intra constant.

Let us denote by A(W) = (IN×N − ρoWo − ρdWd − ρwWw)−1 the N ×N inverse filter matrix. It could be

any of the other filters for the nine flow submodels described in LeSage and Pace (2009). Note that when there

is no lagged explanatory variable, the Durbin model is called a LAG model.

3 Model interpretation

Interpretation of explanatory variable’s effects in simultaneous spatial autoregressive models requires the com-

putation of the so-called direct and indirect impacts introduced in LeSage and Pace (2006). Indeed, due to the

presence of the filter matrix, the parameters of explanatory variables no longer coincide with the increment of

the dependent variable resulting from an additive increment of the explanatory as is the case in the classical

(non-spatial) linear models. The two consequences are that this increment is no longer the same for all locations

and that an increment of a given explanatory variable at a location may result in non null increments at all other

locations. Note that, due to the linearity of the expected value E(y | X), these increments can be indifferently

thought of as infinitesimal or finite increments in the case of continuous covariates. These impact measures have

been extended to the spatial interaction models by LeSage and Thomas-Agnan (2015) for models with endogenous

spatial interaction and later by LeSage and Fischer (2016) to the case of exogenous spatial interactions. The last

two papers further decompose the total effects into origin, destination and network effects, but with the following

restrictions: the list of origins coincides with the list of destinations and the characteristics of origins are the same

as the characteristics of destination.

In this paper, we examine the impact decomposition and computation in a more general spatial autoregressive

interaction model, where the list of origins does not necessarily coincide with the list of destinations and where

the sets of origin and destination characteristics are different. To build intuition and for ease of exposition, we

split the analysis into three parts. To begin with, Section 3.1 focuses on the square case, that is, when the list of

origins coincides with the list of destinations (therefore, no = nd and our flow matrix is square). In turn, Section

3.2 concentrates on the rectangular case, which occurs when the list of origins does not coincide with the list of

destinations, but all possible flows between the origin and destination locations are indeed observed (the set of

origin-destination couples is a cartesian product). Lastly, Section 3.3 examines the non-cartesian case, that is,

when some of the possible flows between the origins and the destinations are not observed or have no meaning.

The fact that a location may be an origin without being a destination (or reversely) makes it difficult to define

properly in a unified manner the marginal impact ∂EYo:d|X
∂Xs

of changing characteristic X at location s on the flow

Yo:d from origin o to destination d. Indeed, we need to distinguish three types of characteristics. A characteristic

of type oc is a characteristic of origins without being a characteristic of destinations (i.e. corresponds to a column

of OX but not to a column of DX); then changing X at location s has a meaning only when s is an origin.

Respectively, a characteristic of type dc is a characteristic of destinations without being a characteristic of origins

(i.e. corresponds to a column of DX but not to a column of OX); then changing X at location s has a meaning
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only when s is a destination. Finally, a characteristic of type odc qualifies both origins and destinations, then it

corresponds to a column of OX and to a column of DX. In this situation, changing X at location s has a different

meaning depending on whether s belongs to O \ D, to D \ O or to O ∩ D. In the last case, when changing a

characteristic that describes both origins and destinations at a location which is both an origin and a destination,

the change corresponds to changing a column of OX and a column of DX simultaneously. For this reason, and in

order to maintain some unity in the formulas, we denote by Z a generic characteristic which may be of type oc,

dc or odc. We denote by ZOX a generic column of OX, and by ZDX a generic column of DX. A characteristic

X of type oc corresponds to a given ZOX, a characteristic of type dc, to a given ZDX and a characteristic of type

odc will be associated to both a given ZOX and a given ZDX. Therefore, for a generic variable Z, the impact on

the expected flow EYo:d of changing Z at the location s will be given by ∂EYo:d|X
∂Zs

.

Before entering into the analysis of the impact decomposition in the three cases defined above (the square,

the rectangular, and the non-cartesian cases), we exhibit some graphical representations to illustrate these three

cases. Figure 1 is a flow map representation, as described in Laurent et al. (2022a), of two toy datasets. Figure

1 a) illustrates the square case: each of the eight sites s1, . . . , s8 is both an origin and a destination; each site

has seven outflows, seven inflows and one intra-flow. There are hence N = n2 = 64 observed flows. The spatial

weight matrices are OW = DW = W, with W being the square contiguity matrix of size n = no = nd

(meaning s1 is a neighbour of s2, s2 is a neighbour of s1 and s3, etc.). The explanatory variable Z of type odc

observed on {s1, . . . , s8} is (40, 30, 20, 10, 7, 10, 15, 25)′. In turn, Figure 1 b) illustrates the rectangular case, with:

O = {o1, o2, o3, o4, od1}, D = {d1, d2, od1}. Hence, o1, o2, o3, o4 are origin sites only, d1, d2 are destination sites

only and od1 is both an origin and a destination site. There are N = no × nd = 15 observed flows. OW is

the contiguity matrix for the origin sites, which is of size no × no, and DW is the contiguity matrix for the

destination sites of size nd × nd. The explanatory variable Z of type odc observed on {o1, o2, o3, o4, od1, d1, d2} is

(40, 20, 10, 7, 10, 15, 25)′.

Finally, Figure 1 c) illustrates the non cartesian-case. In this example, the list of origins O = {o1, o2, o3, o4, od1}
differs from the list of destinations D = {d1, d2, d3, d4, od1}, with only od1 being both an origin and a destination

site. However, it corresponds to the non-cartesian case because, as Figure 1 c) indicates, origin sites o1, o2, o3, o4

can reach only 3 destination sites, whereas od1 can reach all of the destination sites, including itself. There are

hence N = 3+3+3+3+5 = 17 observed flows. OW is based on the 3-nearest neighbors, as DW. Site od1 differs

from the other sites as it is a neighbour of all the other sites. The explanatory variable Z of type odc observed

on {o1, o2, o3, o4, od1, d1, d2, d3, d4} is (40, 20, 10, 7, 10, 15, 25, 25, 15)′. To simulate the flow data in Figure 1 a), b),

and c), we consider model (4) assuming the following parameters: ρo = 0.4, ρd = 0.4, ρw = −ρo × ρd, α = 0,

βo = 0.5, βd = 1, βi = 2, δo = 0.1, δd = 0.3, ω = −0.5.

Please insert Figure 1 here

We now decompose the impacts. To do this, we start by defining the local impacts indexed by s ∈ S as the

result of changing a characteristic at that particular location s. Section 3.1 focuses on the square case, Section 3.2

on the rectangular case, and finally, Section 3.3 presents the local impacts in the non-cartesian case. In the three

sections, we then obtain the total impact as sums of local impacts. Our approach contrasts with the previous

literature that defines a total impact directly as in LeSage and Pace (2006). In addition, note that a separate

analysis of the distribution of the local impacts may be of interest.
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3.1 The square case

In the square cartesian case, we have S = O = D. A consequence of the fact that the set of origin-destination

couples is a cartesian product is that the number of outflows (respectively, inflows) per site s ∈ S is constant and

equal to the number of sites n. The total number of flows is hence N = n2. Let us define the local total impact

of changing Z at a location s ∈ S as

TE(s) =
∑

o∈S,d∈S

∂E(Yo:d | X)

∂Zs
. (5)

TE(s) measures the cumulative effect due to changing Z at a single location s, which makes it a local effect.

Following LeSage and Thomas-Agnan (2015) but locally, we can decompose TE(s) into four terms:

TE(s) =
∂E(Ys:s | X)

∂Zs
+

∑
d∈S,d 6=s

∂E(Ys:d | X)

∂Zs
+

∑
o∈S,o 6=s

∂E(Yo:s | X)

∂Zs
+

∑
o∈S,d∈S,o 6=s,d 6=s

∂E(Yo:d | X)

∂Zs
(6)

The first term is the local intra-regional effect denoted by IE(s); the second term corresponds to the local origin

effect or OE(s), that is, the sum of effects on the outflows of s (the flows starting from s), so-called ; the third

one is the local destination effect or DE(s), namely the sum of effects on the inflows (the flows arriving to s);

finally, the last term corresponds to the local network effect or NE(s) (the flows that do not start from neither

arrive to s).

Going from the local to the global effect, let us now define the total impact of changing Z at all locations on

all flows as TTE =
∑

s∈S TE(s). It corresponds to the sum of the local total impacts and can be decomposed as

follows:

TTE =
∑
s

TE(s) =
∑
s

IE(s) +
∑
s

OE(s) +
∑
s

DE(s) +
∑
s

NE(s) := TIE + TOE + TDE + TNE (7)

The total origin (respectively, destination) effect TOE (resp. TDE) is the sum of all changes due to a change in

a given characteristic on all the flows that originate (arrive) at the locations of change. The total intra-regional

effect can be interpreted as the cumulated impact of changing a given characteristic at all locations on the flows

originating and arriving at that location. In turn, the total network effect measures the sum of all changes due

to a variation in a given characteristic on all the flows that do not originate nor arrive at the locations of change.

To summarize the local effects by averaging, one needs to count the number of terms in each sum TIE, TOE,

TDE and TNE: we have n terms for the intra-regional effect, n(n− 1) for the origin and destination effects and

n(n−1)2 terms for the network effect. LeSage and Thomas-Agnan (2015) introduce scalar summary measures for

the intra-regional, origin, destination, and network effects by normalizing these total effects by the total number

of flows N . They hence represent an average effect over all possible flows, or the effect on a typical flow (see Table

1).

Please insert Table 1 here

These scalar measures summarize: i) the average impact of changing a characteristic at a representative origin

on all the flows departing from and arriving to that given location (intra-regional effect); ii) the average impact of

changing a characteristic at a representative origin on the flows departing from that given location (origin effect);

iii) the average impact of changing a characteristic at a representative destination on the flows arriving at that

9



given location (destination effect); iv) the average impact of changing a characteristic at a representative location

on the flows neither departing from nor arriving to that given location (network effect).

3.1.1 Alternative local summaries

In order to summarize the effects differently, we propose two graphical representations which provide more detailed

information. The first representation considers the decomposition based on the local impacts presented in equation

(6). Indeed, after computing, for each location s, the local effects IE(s), OE(s), DE(s), NE(s) and their sum

TE(s), results can be presented in a table where the rows correspond to the sites and the columns to the local

effects. This table can in turn be used to produce a barplot or a shares’ graphic (see for instance Figure 2). These

representations have at least two advantages: on the one hand, one can observe the contributions to the total

impact of each site s ∈ S; on the other hand, they allow the comparison of the local impacts among the sites.

The differences observed between the sites are due to the network structure and will be explained in detail in the

next section.

Please insert Figure 2 here

The second additional representation consists in drawing the distributions of each of these local effects across

the sites. Using, for example, a non-parametric kernel estimator, one can plot the probability density functions

of the local effects in each of the intra-regional, origin, destination and network terms, thus resulting in five

density curves for each site s ∈ S. In case of a large number of sites, we can summarize one step further with the

distributions of effects over all sites as represented by the last line in Figure 3. It is worth adding that when the

number of geographical sites in the dataset is large, it may not be very informative to represent the local effects

for each location. However, in some applications, it may be revealing to only focus on the sites of interest. For

example, suppose policymakers in a municipality, a region, or a country wish to evaluate the impact of a public

policy leading to the increase of a given explanatory variable. In that case, it may be appealing to only exhibit the

local effects associated with the location under consideration. One could also imagine grouping several sites (for

example, all the municipalities belonging to the same region) that have decided to implement the policy at the

same time and then aggregating all the individual local effects to measure the total impacts of this joint decision.

In other words, with this type of representation, the user has the possibility to focus on sites linked to a particular

economic issue.

Please insert Figure 3 here

One can also compute other scalar summaries which are

• the local average intra-regional AIE(s) effect is equal to IE(s) (because there is only one intra-regional

flow)

• the local average origin effect AOE(s) = OE(s)
n−1

(because there are n− 1 flows starting from s)

• the local average destination effect ADE(s) = DE(s)
n−1

(because there are n− 1 flows arriving to s)

• the local average network effect ANE(s) = NE(s)

(n−1)2
(because there are (n− 1)2 flows that do not start from,

neither arrive to s)

10



• the local average total effect ATE(s) = TE(s)

n2 (because there are n2 flows that are impacted by a change

of X at s)

The means of these local averages are identified by a red dot below the density curves on Figure 3.

3.2 The rectangular case

When the list of origins does not coincide with the list of destinations, the definition of the local total impact

TE(s) itself is unchanged but its decomposition has to be adapted, depending on the nature of site s (whether it

belongs to O \D, to D \ O or to O ∩D). In the example of Figure 1 b), O \D = {o1, o2, o3, o4} are origin sites

only, D \O = {d1, d2} are destination sites only and O ∩D = {od1} is an origin and a destination site.

Depending on the nature of s, the decomposition of TE(s) can be expressed as follows:

• If s ∈ O ∩D (s is both an origin and a destination site), the decomposition of TE(s) into the four terms

IE(s), OE(s), DE(s) and NE(s) can be written as before:

TE(s) = IE(s) +OE(s) +DE(s) +NE(s)

=
∂E(Ys:s | X)

∂Zs
+

∑
d∈D,d 6=s

∂E(Ys:d | X)

∂Zs
+

∑
o∈O,o 6=s

∂E(Yo:s | X)

∂Zs
+

∑
o∈O,d∈D,o 6=s,d 6=s

∂E(Yo:d | X)

∂Zs
(8)

In the example of Figure 1 (b), this is only the case for site od1. Precisely, the change of the flow od1 : od1

is included in IE(od1), the changes of the flows od1 : d2 and od1 : d3 are included in OE(od1), the changes

of the flows o1 : od1, o2 : od1, o3 : od1, and o4 : od1 are included in DE(od1) and the changes of all other

flows are included in NE(od1).

• If s ∈ O \D (s is an origin site only), there is no local intra effect (as the intra flow does not exist), neither

local destination effect (as inflows do not exist). TE(s) can then be written as follows

TE(s) = OE(s) +NE(s) =
∑
d∈D

∂E(Ys:d | X)

∂Zs
+

∑
o∈O,d∈D,o 6=s

∂E(Yo:d | X)

∂Zs
(9)

In our example of Figure 1 (b), this is the case for sites o1, o2, o3, o4. For example, for site o1, the changes

of the flows o1 : d1, o1 : d2, o1 : od1 are included in OE(o1) and the changes of all other flows are included

in NE(o1).

• If s ∈ D \ O (s is a destination site only), there is no local intra effect (as the intra flow does not exist)

neither local origin effect (as the outflows do not exist). TE(s) can be written as follows

TE(s) = DE(s) +NE(s) =
∑
o∈O

∂E(Yo:s | X)

∂Zs
+

∑
o∈O,d∈D,d 6=s

∂E(Yo:d | X)

∂Zs
(10)

In the example of Figure 1 (b), this is the case for sites d1, d2. For example, for site d1, the changes of the

flows o1 : d1, o2 : d1, o3 : d1, o4 : d1, od1 : d1 are included in DE(d1) and the changes of all other flows are

included in NE(d1).

We denote the total impact of changing Z at all locations on all flows by TTE =
∑

s∈S TE(s), which is the
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sum of the local total impacts. We can decompose TTE as follows:

TTE =
∑
s∈S

TE(s)

=
∑

s∈S\D

TE(s) +
∑

s∈S\O

TE(s) +
∑

s∈O∩D

TE(s)

=
∑

s∈S\D

(OE(s) +NE(s)) +
∑

s∈S\O

(DE(s) +NE(s)) +
∑

s∈O∩D

(IE(s) +OE(s) +DE(s) +NE(s))

=
∑

s∈O∩D

IE(s) +
∑
s∈O

OE(s) +
∑
s∈D

DE(s) +
∑
s∈S

NE(s) (11)

=TIE + TOE + TDE + TNE

The last two equalities in (11) coincide with the equation (7) for the TTE in the square case O = D = S.

To summarize these effects by averaging, we need to provide some additional definitions. Let nd(s) be the

number of outflows i.e. the number of destinations that one can reach from site s ∈ O. Similarly, let no(s) be the

number of inflows i.e. the number of origins that can lead to destination s ∈ D. Let

nS =


no, if X is of type oc (an origin characteristic only)

nd, if X is of type dc (a destination characteristic only)

nO∪D, if X is of type odc (an origin and destination characteristic)

where nO∩D is the number of elements of O ∩D. Finally, we continue to denote N by the total number of flows,

with this being N =
∑

s∈O nd(s) =
∑

s∈D no(s).

The number of terms in TE(s) is equal to N . The number of terms in IE(s) is equal to:1, if s ∈ O ∩D (and intra flow s− s exists)

0, otherwise.

The number of terms in OE(s) is equal to
nd(s), if s ∈ O \D

nd(s)− 1, if s ∈ O ∩D

0, s /∈ O.

The number of terms in DE(s) is equal to
no(s), if s ∈ D \O

no(s)− 1, if s ∈ O ∩D

0, s /∈ D.
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The number of terms in NE(s) 
N − nd(s), if s ∈ O \D

N − no(s), if s ∈ D \O

N − no(s)− nd(s) + 1, if s ∈ O ∩D .

Let us now turn our attention to the number of terms in each component of the total effects. The number of

terms in TE is nSN when none of them is void. The number of terms in TIE is nO∩D when none of the intra

flows is void. The number of terms in TOE =
∑

s∈O OE(s) is:
∑

s∈O nd(s)− nO∩D = N − nO∩D, if Z is of type oc or odc∑
s∈O∩D nd(s)− nO∩D, if Z is of type dc

The number of terms in TDE =
∑

s∈DDE(s) is,
∑

s∈D no(s)− nO∩D = N − nO∩D, if Z is of type dc or odc∑
s∈O∩D no(s)− nO∩D, if Z is of type oc.

Finally, the number of terms in TNE is
∑

s∈O∩D(N−no(s)−nd(s)+1)+
∑

s∈O\D(N−nd(s))+
∑

s∈D\O(N−no(s)).
Note that the 2nd term in the previous expression for the TNE disappears if Z is of type dc (as S = D) and the

3rd term disappears if Z is of type oc (as S = O). Hence, the number of terms in TNE is:
(no − 1)N + nO∩D −

∑
s∈O∩D no(s), if Z is of type oc

(nd − 1)N + nO∩D −
∑

s∈O∩D nd(s), if Z is of type dc

(nO∪D − 2)N + nO∩D, if Z is of type odc.

Table 2 summarizes the number of local terms and total terms for our example, using the above formulas. In

the cartesian case, we can group the sites with respect to their nature. Indeed, in that case, the number of terms

is identical for each site belonging to one of the three situations: O \D,D \O,O ∩D.

Please insert Table 2 here

3.2.1 Alternative local summaries

We propose the same representations to summarize the local origin, destination and network effects as in the

square case: the contributions of each location to the corresponding total effects and the visualization of the

distributions of these local effects. Regarding the first representation, Figure 4 exhibits, for each location s ∈ S,

the decomposition of the local total effect into the different effects IE(s), OE(s), DE(s) and NE(s). It is

interesting to group the sites according to their nature: s ∈ O \D, s ∈ D \O and s ∈ O ∩D.

Please insert Figure 4 here
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Figure 5 exhibits the non-parametric kernel estimators for the densities of the local effects. The Figure

distinguishes among the intra, origin, destination, network and total effects resulting in five density curves per

site and for all sites. Finally, Table 3 presents the local average effects, with respect to the nature of s.

Please insert Figure 5 here

Please insert Table 3 here

3.3 The non cartesian case

In the non-cartesian case, some of the possible flows between the origins and the destinations are not observed or

have no meaning. In this situation, we define for each site s two subsets of O and D: if s is a destination, O(s)

contains the list of origins of flows arriving to destination s and if s is an origin, D(s) is the list of destinations of

flows starting from origin s. As in the previous section, we denote by no(s) (respectively, nd(s)) the size of O(s)

(respectively, D(s)). In the example of Figure 1 c), o1 is an origin site only that can reach only the sites d1, d3, od1.

Hence, O(o1) = ∅, D(o1) = {d1, d3, od1}, no(o1) = 0 and nd(o1) = 3. d1 is a destination site only that is reached

only by the sites o1, o2, od1. Hence, O(o1) = {o1, o2, od1}, D(o1) = ∅, no(o1) = 3 and nd(o1) = 0. od1 is both an

origin and destination site that can reach and can be reached by all the sites. Hence, O(od1) = {o1, o2, o3, o4, od1},
D(od1) = {d1, d2, d3, d4, od1}, no(od1) = 5 and nd(od1) = 5.

The definition of the different impacts presented in the rectangular case remains unchanged, but its decom-

position needs to be adapted. The decomposition of TE(s) can be expressed as follows depending on the nature

of s:

• If s ∈ O ∩D (s is both an origin and a destination site) and under the hypothesis that the intra-flow s− s
exists, the decomposition of TE(s) into the four terms IE(s), OE(s), DE(s) and NE(s) can be written as

before:

TE(s) = IE(s) +OE(s) +DE(s) +NE(s)

=
∂E(Ys:s | X)

∂Zs
+

∑
d∈D(s),d 6=s

∂E(Ys:d | X)

∂Zs
+

∑
o∈O(s),o 6=s

∂E(Yo:s | X)

∂Zs
+

∑
t∈S,t 6=s

∑
o∈O(t),d∈D(t),o 6=s,d6=s

∂E(Yo:d | X)

∂Zs

(12)

• If s ∈ O \D (s is an origin site only), there is no local intra effect (as there is no intra flow) neither local

destination effect (as there are no inflows). TE(s) can be written as follows

TE(s) = OE(s) +NE(s) =
∑

d∈D(s)

∂E(Ys:d | X)

∂Zs
+

∑
t∈S,t 6=s

∑
o∈O(t),d∈D(t),o6=s,d 6=s

∂E(Yo:d | X)

∂Zs
(13)

• If s ∈ D \ O (s is a destination site only), there is no local intra effect (as there is no intra flow) neither

local origin effect (as there are no outflows). TE(s) can be written as follows

TE(s) = DE(s) +NE(s) =
∑

o∈O(s)

∂E(Yo:s | X)

∂Zs
+

∑
t∈S,t 6=s

∑
o∈O(t),d∈D(t),o 6=s,d6=s

∂E(Yo:d | X)

∂Zs
(14)
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We can compute the total impact TTE in the non cartesian case using formula (11) but replacing the terms

TE(s), using formulas (12), (13) and (14). Finally, one can use the same formula proposed in the rectangular case

to compute the number of terms in OE(s), DE(s), NE(s) and TE(s). In the non-cartesian case, the summaries

IE(s), OE(s), DE(s) and NE(s) may have different number of terms according to the nature of the corresponding

site, which requires counting the number of terms site by site. To conclude, the formulas of the local average

effects presented in Table 3 remain unchanged in the non cartesian-case.

4 Impact computations

Cartesian case

We now provide details about the impact computations in the SDM model (3). Using the reduced equation

of this model, it is easy to see that the impacts on the flow Yo:d due to a change of Z at location s equals:

∂E(Yo:d | X)

∂Zs
=βZ

o

∑
l∈D

A(W )o:d;s:l + βZ
d

∑
l∈O

A(W )o:d;l:s

+δZo
∑
t∈O

∑
l∈D

OWtsA(W )o:d;t:l + δZd
∑
t∈D

∑
l∈O

DWtsA(W )o:d;l:t (15)

where βZ
o , β

Z
d , δ

Z
o , δ

Z
d are the parameters associated to covariate Z. Calculating (15) a priori requires the full

computation of A(W), that is, the inversion of the N × N matrix (IN×N − ρoWo − ρdWd − ρwWw). The

computation may be demanding in time and in memory especially when N is large (which is often the case with

spatial flows). To avoid computing A(W), we rely on some properties of this matrix that hold in the cartesian

case (square or rectangular). In what follows, we first present two theorems regarding the computation of the

terms
∑

l∈D A(W )o:d;s:l and
∑

l∈O A(W )o:d;l:s in equation (15) and then explain how we apply them to simplify

the computations of ∂E(Yo:d|X)
∂Zs

. Lastly, we discuss how to adapt computations in the case of a SDM including an

intraregional term.

For the next three theorems, we use the following set of assumptions (A)

• the model is given by (3)

• OW and DW are row-normalized

• the data is cartesian

Theorem 1. Under assumptions (A), for any d in D, and for o, s ∈ O, we have
∑

l∈D A(W )o:d;s:l = λos, where

λos is the element os of the no×no matrix Λ = (Ino−ΣM)−1 with M = IN×N−A(W) = ρoWo+ρdWd+ρwWw.

For i, j ∈ O, the element σM
ij of the matrix ΣM is the row-sum (for any row) of the nd × nd matrix Mij
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corresponding to a block of as follows

M =



Mo1o1 . . . Mo1ono

Mo2o1 . . . Mo2ono

...
...

Monoo1 . . . Monoono


= ρo



ow11Ind . . . ow1noInd

ow21Ind . . . ow2noInd

...
...

owno1Ind . . . ownonoInd


+ ρd



DW 0 . . . 0

0 DW . . . 0

...
...

0 0 . . . DW



+ ρw



ow11DW . . . ow1noDW

ow21DW . . . ow2noDW

...
...

owno1DW . . . ownonoDW


(16)

Proof. We have (IN −M)−1 = IN +
∑

k Mk. Let us define σ
(k)
ij to be the sum of any row of the matrix Mk

ij.

When k = 1, it is obvious from equation (16) that the sum of any row of the matrix Mij is constant and equal

to σ
(1)
ij = ρoowij + ρd1i=j + ρwowij . Now, consider two block matrices A and B with the same dimensions

N × N and with no row/column partitions, each block being of size nd × nd. Let us assume moreover that the

sum of any row of the block Aij (resp: Bij ) is constant and equal to σA
ij (resp: σB

ij). Let C = AB be the

block matrix that has the same dimension and partition as A and B. One can show that the sum of any row

of the block Cij is constant and equal to
∑

k σ
A
ikσ

B
kj . Indeed, since Cij =

∑
k AikBkj, the sum of the rows of

Cij are obtained by Cij1nd =
∑

k Aik(Bkj1nd) =
∑

k Aik(σB
kj1nd) =

∑
k(Aik1nd)σB

kj = (
∑

k σ
A
ikσ

B
kj)1nd . Using

this property recursively for k = 2, ...,∞, we can see Mk as the product of Mk−1 times M that are two block

matrices with the same dimensions N ×N and with no row/column partitions, each block being of size nd × nd.

Furthermore, the sum of any row of the block Mk−1
ij is constant and equal to σ

(k−1)
ij and the sum of any row of

the block Mij is constant and equal to σ
(1)
ij . Hence, the sum of any row of the block Mk

ij is constant and equal

to
∑

k σ
(k−1)
ik σ

(1)
kj . The consequence is that the sum of any row of the block (IN −M)−1

ij is constant and equal to

λij = 1i=j +
∑

k σ
(k)
ij .

Theorem 2. Under assumptions (A), for any o ∈ O, and for d, s ∈ D, we have
∑

l∈O A(W )o:d;l:s = γds, where

γds is the element ds of the nd×nd matrix Γ = (Ind −ΣN)−1 and for i, j ∈ D, the element σN
ij of the matrix ΣN
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is the row-sum (for any row) of the matrix Nij corresponding to a block of N as follows

N =



Nd1d1 . . . Nd1dnd

Nd2d1 . . . Nd2ddo

...
...

Ndndd1 . . . Ndnddnd


= ρo



OW 0 . . . 0

0 OW . . . 0

...
...

0 0 . . . OW


+ ρd



dw11Ino . . . dw1ndIno

dw21Ino . . . dw2ndIno

...
...

dwnd1Ino . . . dwndndIno



+ ρw



dw11OW . . . dw1noOW

dw21OW . . . dw2noOW

...
...

dwno1OW . . . dwnonoOW


(17)

As for matrix M, note that the matrix N corresponds to the matrix (ρoWo + ρdWd + ρwWw) that has been

ordered with respect to the destination sites. The proof is similar to the previous proof.

The following theorem combines the results of Theorem 1 and 2 to simplify the computation of ∂E(Yo:d|X)
∂Zs

.

Theorem 3. Under assumptions (A), for any o ∈ O and d ∈ D and for any s ∈ O ∪D, the impact on flow o : d

due to a change of Z at location s can be written as follows:

∂E(Yo:d | X)

∂Zs
=βZ

o λos + βZ
d γds + δZo

∑
t∈O

OWtsλot + δZd
∑
t∈D

DWtsγdt (18)

Importantly, Theorem 3 shows that computing ∂E(Yo:d)
∂Zs

only requires the evaluation of the two matrices Λ

and Γ, of sizes no × no and nd × nd, respectively, instead of computing the N × N matrix A(W). Another

interesting consequence of Theorem 3 is that, since βZ
o λos + δZo

∑
t∈O OWtsλot does not depend on d, all flows

starting from a given origin o are affected in the same way by the origin covariates Xo and LXo. Similarly, since

βZ
d γds + δZd

∑
t∈DDWtsγdt does not depend on o, all flows arriving to d are impacted in the same way by the

destination covariates Xd and LXd.

Adding the intraregional characteristics Xi in the SDM specification (equation (4)) requires the computation

of βZ
i A(w)o:d,s:s. In other words, to evaluate the impacts on all flows Yo:d, due to a change of Z at location s, we

need to compute the ss column of matrix A(w). To avoid the full computation of A(w) for extracting column

ss, one can alternatively solve the equation:

(IN×N − ρoWo − ρdWd + ρwWw)x =1ss (19)

where the N -vector 1ss equals to 1 for flow ss and to 0 otherwise.

Let the N vector ψs be the solution of the previous equation. In the model specification with intraregional

characteristics, under the condition that the intraregional flow ss exists, equation (18) then becomes:

∂E(Yo:d | X)

∂Zs
=βZ

o λos + βZ
d γds + βZ

i ψso:d + δZo
∑
t∈O

OWtsλot + δZd
∑
t∈D

DWtsγdt. (20)
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Finally, to get the different local impacts in formulas (8), (9), or (10), one has to solve equation (19) for each

s ∈ O ∩D (under the condition that the intraregional flow ss exists) and use equation (20).

Adjustment needed when the dependent variable is in log

One issue is that the effects we are computing are derivatives of expected values. Assume log(Y ) is modelled

instead of Y (as is often the case) but Y still is the variable of interest. We know that the expected value and the

log do not commute, hence, information about the derivative of the expected log of Y is not informative about

the derivative of the expected value of Y. One way out is to use another interpretation: expected values coincide

with predicted values in the ordinary linear model in the sense of the best unbiased prediction. If we define the

impact as an impact on the predicted value, then we can argue that the exponential of the predicted value of

log(Y ) can be used as an admissible prediction for Y , i.e. ̂log(Yo:d) = log(Ŷo:d) and hence Ŷo:d = exp( ̂log(Yo:d)).

Then if we take TE(s), for example in equation (5), and adapt it to predictions, we can write

TE(s) =
∑

o∈O,d∈D

∂Ŷo:d

∂ log Ŷo:d

∂( ̂log Yo:d)

∂Zs
=

∑
o∈O,d∈D

Ŷo:d
∂( ̂log Yo:d)

∂Zs
(21)

Note that formula (21) is a version of (5) weighted by the flows.

Non-cartesian case

In the non-cartesian case, the spatial weight matrices Wo, Wd, and Ww are not anymore the cartesian

products of the initial weight matrices DW and OW. Still, they can be obtained by removing the rows and

columns of the flows which are missing or which do not exist, without forgetting to renormalize by row the

new matrices. For that reason, Theorems 1 and 2 do not extend easily to the non-cartesian framework. The

non-cartesian framework requires a priori the full computation of A(W) in equation (15).

5 Prediction computations

Following Goulard et al. (2017), the trend-corrected (TC) formula adapted to model (3) yields the following

prediction :

ŶTC = A(W)(ιNα̂+ Xoβ̂o + Xdβ̂d + LXoδ̂o + LXdδ̂d + Gω̂), (22)

The following Theorem is an extension of Theorems 1 and 2, applied to the prediction problem for Model (3).

Theorem 4.

Ŷ TC
o:d =α̂

∑
s

λos + (Λ×OX× β̂o)o + (Γ×DX× β̂d)d + (OW ×Λ×OX× δ̂o)o + (DW × Γ×DX× δ̂d)d

+ A(W)×God × ω̂. (23)

The advantage of relying on equation (23) is the reduction in the computation time compared to formula (22)

provided the term ω̂ is null; in other words, if there are no variables characterizing the pairs of origin-destination.

Indeed, in that case it is not necessary to compute the last term containing A(W). Instead, if ω̂ 6= 0, equation

(23) remains appealing from a practitioner point of view as it avoids storing the matrices Xo,Xd,LXo,LXd. In

18



the model specification with intraregional characteristics, equation (23) becomes:

Ŷ TC
o:d =α̂

∑
s

λos + (Λ×OX× β̂o)o + (Γ×DX× β̂d)d + (OW ×Λ×OX× δ̂o)o + (DW × Γ×DX× δ̂d)d

+A(W)× (God × ω̂ + Xi × β̂i). (24)

In this case, there is no gain in computation time; still, we do not need to store the full matrices Xo,Xd,LXo,LXd.

6 Case study

Our supplementary material (see XX) contains the R code that allows to reproduce the results we present in this

paper. In addition, we have implemented R functions available on Github, which allow to compute the impacts

for the different model specifications presented above: the model without intra-regional terms (equation (18))

and the model specification including intra-regional terms (equation (20)). Also, we have developed functions

that implement prediction formulas for the model specification without and with intra-regional terms (equations

(23) and (24), respectively). These functions are useful to compute the impact decomposition even when the

dependent variable is transformed by the logarithm. To illustrate the impact computations in this general spatial

autoregressive interaction model, we consider two case studies: the first one relies on a sample of bilateral

remittance flows used in Laurent et al. (2022b). The second one consists of home-to-work commuting flows within

the 71 municipalities around Paris. This second dataset is part of the spflow R package for modeling spatial

interactions. In what follows, we detail the first case study. The analysis of the second case study can be found

in Section 5 of the supplementary material.

The aim of the first case study is to provide an illustration of the estimation of a SIM specification and of

the impact computations in a rectangular dataset. Precisely, our sample comprises 14 macro economic regions,

which act as origins, and 15 macro economic regions, which are destinations,6 for which workers’ remittances are

reported in 2017.7 In this rectangular dataset, 14 macro economic zones act both as origin and destination regions

(South Asia is a recipient zone only). The bilateral remittance dataset hence involves 14× 15 = 210 flows, and 14

intra-regional remittance flows. The map flow in Figure 6 exhibits our data. The way we read it is the following.

On the one hand, the left (respectively, right) barplot located at a given zone gives information on the total

outflows (total inflows) for the given zone. On the other hand, the region-pair remittance flows are represented

6In their initial study, Laurent et al. (2022b) work with OD remittance flows by country pairs. In contrast, in this work,
we focus on aggregated remittance flows by macro-economic regions. The higher order of aggregation we propose in this
paper is to facilitate the interpretation and visualisation of the the impact decomposition.

7The macro economic zones are: North America (Canada, United States), Central America (Costa Rica, Guatemala,
Honduras, Mexico, Nicaragua, Panama, El Salvador, Belize), South America (Argentina, Bolivia, Brazil, Chile, Colombia,
Ecuador, Peru, Paraguay, Uruguay, Venezuela, Guyana, Suriname), Carribean (Antigua and Barbuda, Aruba, Bahamas,
The, Dominican Republic, St. Kitts and Nevis, St. Lucia, Barbados, Dominica, Grenada, Haiti, Jamaica, Trinidad and
Tobago), European Union pre 2004 expansion (Austria, Belgium, Germany, Denmark, Spain, Finland, France, United
Kingdom, Greece, Ireland, Italy, Netherlands, Portugal, Sweden, Luxembourg), European Union post 2004 expansion
(Bulgaria, Cyprus, Czech Republic, Estonia, Hungary, Malta, Poland, Romania, Slovenia, Slovakia, Croatia, Lithuania,
Latvia), Europe other (Bosnia and Herzegovina, Switzerland, Iceland, Norway, Albania, Macedonia, Serbia), Ex-soviet
union (Russia, Ukraine, Armenia, Georgia, Moldova), Middle East (Israel, Jordan, Turkey, Iran, Lebanon, Oman, Saudi
Arabia, Syria, Yemen), North Africa (Egypt, Libya, Mauritania, Algeria, Morocco, Tunisia), Sub-Saharan (Kenya,
South Africa, Angola, Burkina Faso, Burundi, Benin, Ivory Coast, Cameroon, Cape Verde, Ethiopia, Ghana, Gambia, The,
Guinea, Guinea-Bissau, Liberia, Mali, Mauritius, Malawi, Mozambique, Niger, Nigeria, Namibia, Rwanda, Sudan, Sierra
Leone, Senegal, Togo, Uganda, Zambia), South Asia (Bangladesh, India, Sri Lanka, Nepal, Pakistan), East Asia (Japan,
China, South Korea, Mongolia), South East Asia (Malaysia, Philippines, Thailand, Indonesia, Cambodia, Laos ), Pacific
(Australia, New Zealand, Fiji)
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by arrows, whose color depends on the origin region and whose width is proportional to the flow value.

There are several elements to highlight from the map flow. First, the closer the zones are to each other, the

larger the remittance flows are. Second, the three biggest flows correspond to two inter-regional flows (North

America-Central America and North America-East Asia, with respectively 48 and 25 billion dollars) and one

intra-regional flow (European union before 2004 expansion, with 47 billion dollars). Third, North America and

the European Union (before 2004 expansion) have sent a large fraction of total remittances worldwide (precisely,

75% of of world remittances, which amounts to 391 billions dollars). Fourth, Central America, East Asia, South

East Asia and South Asia have received a lot of remittances, but they have not sent so much money. Finally,

North America, is the largest sender of remittances; however, it has not received an equally considerable amount

of money.

Please insert Figure 6 here

To model the bilateral remittance flows, we consider two different model specifications: a SDM which does not

include intra-regional terms (equation 3) and a SDM specification that includes intra-regional characteristics and

an intra-regional constant (equation 4). In both cases, the dependent variable is the logarithm of the remittance

flows between macro-economic regions for normalizing reasons.

Following Laurent et al. (2022b), we consider the following explanatory variables. As type odc determinants

(characterizing both the origin and the destination countries in the remittance flows), we consider electricity

use per capita (in logarithm), which is a proxy for economic activity (source Central Intelligence Agency, USA),

and the total logged population, which proxies for the size of the macro-economic zones. As type oc variables

(characterizing only the origin countries), we include the average transfer fee associated with sending remittances

from each origin macro-economic zone (source: Western Union website). These transaction costs are computed

assuming a remittance of 200 Euros, they are quoted in nominal terms. As type dc control (characterizing only

the destination countries), we include the political stability index (source World Bank). Lastly, we include one

variable typically used in the gravity models to characterize the pair of OD zones, namely, the average distance

among the pairs of origin and destination countries involved in each pair of macro-economic zones.

To define neighborhood between macro-economic zones, we consider proximity in the set of origin or destination

regions, with the proximity being defined based on the 3−nearest neighbors. As spatially lagged control variables,

we include the spatial lag of electricity use per capita, both at the origin and the destination (spatial neighborhood

matrices Wo and Wd, respectively). Please refer to Laurent et al. (2022b) for details on the variables, data

sources, and the descriptive statistics of the control variables.

In order to illustrate the impact computation in this general spatial interaction model, Table 4 first presents

the model estimates of the spatial Durbin model considering the model specifications in equations (3) (left panel)

and (4) (right panel). For comparison, the table also exhibits the model estimates of the gravity model and

of the SLX model (which is the gravity model with spatially lagged explanatory variables). For estimation of

the spatial models, we follow a Bayesian approach coupled with Markov chain Monte Carlo (MCMC) with two

neighborhood matrices, at the origin and at the destination (matrices Wo and Wd, respectively). The Bayesian

MCMC estimates are based on 5,500 draws with 2,500 omitted draws for start-up. Inference is made from the

distribution of the parameters obtained with the 3,000 retained replications. More precisely, Table 4 reports the

average parameter estimates; in parentheses, it reports the t-statistics, which are the ratio between the mean and

the standard deviation computed over the 3,000 replications.
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Results in Table 4 show, first, that the estimated spatial dependence parameters at the origin in the two

model estimates are statistically significant, which suggests the presence of origin-based spatial dependence in the

remittance flows between macro-economic zones. Second, the coefficients related to the intra-regional constant

and the intra-regional variables are all statistically significant, thus indicating that the intra-regional flows behave

differently from the inter-regional flows. In addition, the mean squared error (MSE) is smaller in the model

with intra-regional terms, thus suggesting that this model should be preferred when considering remittance flows

between region-pairs. Third, the coefficient estimates for distance are negative and statistically significant. This

is consistent with the evidence presented in Figure 6: the smaller the distance between the zones, the larger the

remittance flows. Finally, when comparing the SDM estimates with those of the gravity specification and the

SLX specification, we find that the signs of the coefficients are identical and their values are similar to those of

the SDM estimates.8

Please insert Table 4 here

Interpreting the parameter estimates requires implementing our impact decomposition. As the dependent

variable in our model specifications is expressed in logarithm, we need to consider equation (21) which requires

the computation of the predicted values given in expressions (23) and (24). In addition, we rely on the Bayesian

estimates presented in Table 4 to implement formulas (18) and (20). Figure 7 exhibits the local impacts IE(s),

OE(s), DE(s) and NE(s) for each macro-economic zone and for the variables we consider in this case study:

electric use per capita, population, transfer cost and political stability. Importantly, the computation time using

our simplifications is 7 times smaller than the standard way which requires inverting the complete inverse filter

matrix A(W).

Please insert Figure 7 here

The first element to highlight from Figure 7 is that the model without intra-regional terms over-estimates the

intra-regional effects of the biggest remittance flows (East-Asia, North America, and European Union before 2004

expansion). It thus confirms that we should prefer the model specification including intra-regional terms. For

the reasons above, in what follows, we discuss the impact decomposition of the model specification including the

intra-regional terms (right column in Figure 7).

Focusing on the impacts of electricity use per capita (top panel in Figure 7), which is a variable of type odc

(characterizing both the origin and the destination countries in the remittance flows) that is expressed in logarithm,

we find that, consistent with economic intuition, the macro-economic zones that send more remittances than

what they receive (North America, European Union before expansion, other countries in Europe, Pacific) exhibit

larger local origin effects OE(s), relative to the intra, destination and network effets (IE(s), DE(s), or NE(s),

respectively). On the contrary, the macro-economic zones that receive more funds than what they send (East

Asia, South Asia, North Africa or Africa) have higher destination effects DE(s) compared to their corresponding

origin, intra or network effects, (respectively, OE(s), IE(s) or NE(s)). In particular, North America is the

macro-economic zone that is impacted the most by a change of the electricity use per capita. To build intuition

8In the same line, we carry out Moran’s tests on the residuals of these two models and we could not reject the hypothesis
of the absence of spatial autocorrelation. This in turn provides another motivation for the use of the SDM model. Moreover,
the calculation of the mean squared errors also suggests that spatial models fit the data better.
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on the decomposition of local impacts, we now focus on this macro economic region. Our results indicate that

a 1% expansion in the electricity use per capita in North America increases the remittance flows starting from

North America by 881 million dollars (OE(N.America) = 881). In turn, the intra-regional flows increase by 19.2

millions dollars (IE(N.America) = 19.2), while the remittance flows arriving to North America expand by 55.7

million dollars (DE(N.America) = 55.7). Finally, our results show that the impacts on all the other remittance

flows in the network (not arriving to nor starting from) expand by 19.9 million dollars (NE(N.America) = 19.9)

when electricity use per capita augments by 1%. Averaging the local impacts as proposed in Table 3 leads to

an increase in the outflows starting from North America of 62.9 million dollars on average (AOE(N.America) =
OE(N.America)

nd(N.America)−1
= 881

15−1
= 62.9) if North America augments by 1% the electricity use per capita. In turn, the

average destination effect amounts to 4.3 million dollars (ADE(N.America) = DE(N.America)
no(N.America)−1

= 55.7
14−1

= 4.3)

and the average network effect, to 0.1 million dollars (ANE(N.America) = NE(N.America)
(no(N.America)−1)(nd(N.America)−1)

=
19.9

14×13
= 0.1).

It is possible to aggregate the local impacts across regions to obtain the total effects TTE, TDE, TOE,

TNE. Table 5 presents the estimated scalar summaries TTE, TDE, TOE, TNE, which we obtain by them by

the total number of flows N . The table shows that an increase of 1% in the electricity use per capita in each

of the macro-economic regions in the world has an impact of TTE
N

= 18.1 million dollars on average. In turn,

the intra-effect amounts to TIE
N

= 0.6 million dollars increase, the origin-effect to TOE
N

= 11.1 million dollars

expansion, the destination-effect to TDE
N

= 3.5 million dollars hike, and the network-effect, to TDE
N

= 2.9 million

dollars. Hence, even if this variable is of type odc, we find that the origin impact is stronger on average than its

destination effect.

Please insert Table 5 here

Regarding the estimated impacts for transfer cost, which is a variable of type oc characterizing the origin

countries, our results indicate that it has a negative impact for all the macro-economic zones and regardless of the

type of impact. Furthermore, the local origin effect OE(s) for a given region s is higher in absolute value than

the corresponding DE(s), IE(s) or NE(s) for the same given region. The reason for this is that in our model

specification, there is only a βo term referring to this variable. Importantly, as the variable transfer cost is in USD

(not in logarithm), the interpretation is slightly different. For instance, in North America, an additive increase in

the transfer cost of 0.12 (which corresponds to 1/100 of the difference between the maximum and the minimum)

has an estimated negative impact of 877 million dollars on the remittance flows starting from North America, of

93.7 million dollars on the intra-regional flow, of 8.78 on the flows arriving to North America, and of 39 million

dollars on the network not including North America. Furthermore, the total estimated impact exhibited in Table

5 is negative and mainly due to the origin effect.

Finally, concerning the political stability variable, which is of type dc characterizing the destination countries,

the local destination effect DE(s) for a given region s is higher than the corresponding OE(s), IE(s) or NE(s).

This is because our model specification only includes a βd term for this variable. Results show that East Asia and

European Union are the most impacted regions. In East Asia, for instance, an additive increase of the political

stability index of 0.023 (which corresponds to 1/100 of the difference between the maximum and the minimum),

has a positive impact of 705 million dollars on the remittance flows arriving to East Asia, of 150 million dollars

on the intra-regional flow, of 2 million dollars on the flows leaving from East Asia, and of 17 million dollars in

the remaining network. The scalar summary measures reported in Table 5 reveal that the estimated total effect
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is mainly explained by the destination effect.

7 Conclusions

In this paper, we present local measures for the impact decomposition in a general spatial autoregressive interaction

model including endogenous and exogenous interaction effects, and allowing for a different list of origins and

destinations, as well as for different origin and destination characteristics. Importantly, we show how to compute

the impact measures for all the possible types of flow data (square, rectangular and non-cartesian) and for any

characteristic type (type oc if origin only, type dc if destination only or type odc if both). Our approach allows us

to considerably reduce the computation time of the vector of impacts of size N (given a change of a characteristic

in a particular site) in the square and rectangular cases. This is thanks to some simplifications in the computation

formulas. However, our simplifications only work when there are no intra-regional coefficients. From an applied

point of view, most geomarketing applications do not include intra-flows. In the case study we propose, we show

the advantage of considering local rather than global effects. This is because aggregations (when computing total

effects) hinder the identification of heterogeneous behaviors of certain geographical areas (or entities), with respect

to the remaining sites (or entities). Although we do not report the significance associated to our local impact

measures, inference can be done using the MCMC estimates (see LeSage and Thomas-Agnan, 2015; Laurent et al.,

2022b, for instance). We aim at including all these new tools in an upcoming version of the R package spflow

(Dargel and Laurent, 2021). Finally, one venue of future research is to extend the impact computations to panel

and longitudinal datasets, where the entities are allowed to evolve through time. Moreover, Oshan (2021) questions

the veracity of network effects in real applications. From a single cross-section, one cannot observe the impact

of a change in one characteristic and, therefore, it may be difficult to prove or disprove their existence outside

of a spatio-temporal framework. Nevertheless, this investigation should be an additional interesting direction of

future research.
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8 Appendix

8.1 Tables

Table 1: Scalar measures summary as cumulative effect and average effect as presented by LeSage and

Thomas-Agnan (2015).

Intra Origin Destination Network Total

Average AIE = TIE
N AOE = TOE

N ADE = TDE
N ANE = TNE

N ATE = TTE
N

Table 2: Number of terms in IE(s), OE(s), DE(s) and NE(s) with respect to s, for our previous example

in Figure 1 (b).

Z is of type oc, i.e. S = O

Number of elements

Nature Sites nd(s) no(s) Intra Origin Destination Network Total

s ∈ O \D o1, o2, o3, o4 3 0 0 3 0 12 15

s ∈ O ∩D od1 3 5 1 2 4 8 15

Total O 15 5 1 14 4 56 75

Z is of type dc, i.e. S = D

Number of elements

Nature Sites nd(s) no(s) Intra Origin Destination Network Total

s ∈ D \O d1, d2 0 5 0 0 5 10 15

s ∈ O ∩D od1 3 5 1 2 4 8 15

Total D 3 15 1 2 14 28 45

Z is of type odc, i.e. S = O ∪D

Number of elements

Nature Sites nd(s) no(s) Intra Origin Destination Network Total

s ∈ O \D o1, o2, o3, o4 3 0 0 3 0 12 15

s ∈ D \O d1, d2 0 5 0 0 5 10 15

s ∈ O ∩D od1 3 5 1 2 4 8 15

Total O ∪D 15 15 1 14 14 76 105
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Table 3: Local average effects AIE(s), AOE(s), ADE(s), ANE(s), ATE(s).

Configuration Intra Origin Destination Network Total

s ∈ O \D . OE(s)
nd(s) . NE(s)

nd(s)(no(s)−1)
TE(s)

N

s ∈ D \O . . DE(s)
no(s)

NE(s)
no(s)(nd(s)−1)

TE(s)
N

s ∈ O ∩D IE(s) OE(s)
nd(s)−1

DE(s)
no(s)−1

NE(s)
(no(s)−1)(nd(s)−1)

TE(s)
N
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Table 5: Scalar measures summary as cumulative effect and average effect as presented

SDM with intra
TIE
N

TOE
N

TDE
N

TNE
N

TTE
N

Log(Electric Use PC) 0.6 11.1 3.5 2.9 18.1

Log(Population) 2 3.5 8.2 3.4 17.1

Transfer Cost -3.2 -11.2 -0.7 -5.7 -20.8

Political Stability 2.8 0.2 10 2.1 15.2

8.2 Figures

Figure 1: Toy examples used to illustrate: a) the square case where O = D = S, b) the rectangular case

where O and D are different with a possible non-null intersection, and c) the non-cartesian case, where

some of the possible flows between the origins and the destinations are not observed or have no meaning
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b)
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d1 d2

d3 d4

c)
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Figure 2: Representing the local effects in the square case, by stacking the IE(s), OE(s), DE(s) and

NE(s). The left barplot presents the absolute values of the local impacts; the shares’ graphic, on the

right, exhibits the relative values.
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Figure 3: IE(s) and kernel densities for the OE(s), DE(s), NE(s) and TE(s) in the square case
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Figure 4: Example of representation of the local effects. In the fictitious example of Figure 1 b), o1, o2,

o3, o4 are origin sites only, d1, d2 are destination sites only and od1 is an origin/destination site. The

sites are ordered with respect to their nature.
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Figure 5: IE(s) and kernel densities for the OE(s), DE(s), NE(s) and TE(s)
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Figure 6: Map flow for the remittances between macro-economic regions
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Figure 7: Representation of the local impacts, region by region, and variable by variable (in million

dollars)
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