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Abstract

This paper provides a broad replication of Calderón et al. (2015). We address some complex

and relevant issues, namely functional form, non-stationary variables and cross-sectional depen-

dence. In particular, by adopting the CCE framework, we consider both parametric - static

and dynamic - and non-parametric speci�cations, thus allowing for di�erent degrees of �exibility.

Contrary to Calderón et al. (2015), we �nd a lack of signi�cance of the infrastructure index, with

an estimated elasticity very close to zero for all estimates. Moreover, by employing the data-driven

model selection procedure proposed by Gioldasis et al. (2021), it is found that non-parametric

speci�cations provide the best predictive performance and that CCE models always overperform

with respect to traditional panel data methods that employ cross-sectional demeaning to account

for cross-sectional dependence.
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1. Introduction

Since the seminal paper by Aschauer (1989), there has been increasing interest in assessing the e�ect

of public infrastructure capital on productivity. Speci�cally, Aschauer (1989) identi�ed the decline

in infrastructure investment as an important factor underlying the productivity slowdown in the US

during the 1970s and 1980s. This view is often referred to as the �public capital hypothesis�.

Although the empirical framework adopted by Aschauer (1989) is consistent with the endogenous

growth models that were developed by Barro (1990) and others, from an empirical point of view,

doubts have been cast with respect to the e�ectiveness of infrastructure to stimulate productivity.

Indeed, the subsequent literature shows very mixed results (Holtz-Eakin, 1994; Henderson and Kumb-

hakar, 2006; Musolesi, 2011; Kortelainen and Leppänen, 2013; Ma et al., 2020; Moussa, 2020). As

for econometric estimation and testing, relevant issues raised by this literature are those of functional

form, non-stationary variables, spurious regression and cointegration. In particular, the problem of

non-stationarity and spurious regression has often been addressed, both with time series (Aaron, 1990;

Munnell et al., 1990; Schultze, 1990; Tatom, 1991; Pereira and Flores, 1999; Pereira, 2000; Everaert,

2003) and panel data (Canning and Pedroni, 2004; Kawaguchi et al., 2009 ).

Within this strand of the literature and in the framework of large panel data, Calderón et al.

(2015) adopt a panel cointegration approach. They �rst specify the relationship linking production

to infrastructure capital using a Cobb -Douglas production function with constant returns to scale.

They then embed this speci�cation into an auto-regressive distributed lag (ARDL) speci�cation. After

cross-sectional demeaning to account for unobserved factors, they implement the pooled mean group

(PMG) estimator of Pesaran et al. (1999), �nally �nding a signi�cant e�ect of infrastructure capital

on productivity over the long -run, thus reinforcing Aschauer's �ndings.

This paper aims to provide a broad replication of Calderón et al. (2015) by exploiting recent advances

in panel data econometrics, speci�cally, with respect to i) handling cross-sectional dependence (CSD),

ii) allowing �exible functional forms, and iii) performing model selection.

In order to handle CSD as a result of unobservable common factors (Ertur and Musolesi, 2017), we

follow Pesaran (2006), who developed a class of estimators known as common correlated e�ects (CCE)

estimators. This approach is now widely used because it is easy to implement, it remains consistent in a

variety of situations that are likely to occur, such as the presence of both weak and strong cross-sectional
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dependence (Chudik et al., 2011) or the existence of nonstationary factors (Kapetanios et al., 2011),

and contrary to Bai (2009), it doesn't require the a priori knowledge of the number of unobserved

common factors. These features make it a �exible instrument to use in di�erent settings.

Within the CCE framework, we consider alternative models - allowing for di�erent degrees of

�exibility - that have recently been proposed in the literature. We �rst consider the static model by

Pesaran (2006). Then we move to a dynamic speci�cation, the so -called cross-sectionally augmented

distributed lag (CS-DL) approach of Chudik et al. (2016), and �nally, we consider more �exible semi-

parametric (additive) and non-parametric CCE estimators, which were proposed by Su and Jin (2012)

and were recently adopted by Gioldasis et al. (2021).

Allowing for di�erent degrees of �exibility, and in particular considering semi- and non-parametric

speci�cations, is of great empirical relevance. As argued by Henderson and Kumbhakar (2006), the

estimation of restrictive parametric speci�cations, such as the the Cobb -Douglas function, may lead to

inconsistent results because of a possible functional misspeci�cation bias, thus a non-parametric kernel

estimator is implemented (see also Kortelainen and Leppänen, 2013). Similarly, Ma et al. (2020) use

spline functions to handle possible complex functional forms.

However, because of the high degree of uncertainty surrounding the data generating process (DGP)

(see, among others, Hansen, 2005), it can be crucial to perform model selection. Indeed, while �exible

models are appealing because of their ability to handle complex functional forms, sometimes parsimo-

nious models can be preferable because of their e�ciency gains (see, Baltagi et al., 2002, 2003). To do

so, we adopt the procedure recently proposed by Gioldasis et al. (2021), who extend the data-driven

model-selection procedure proposed by Racine and Parmeter (2014) to a large panel data framework

by using moving block bootstrap resampling techniques in order to preserve cross-sectional dependence

in the bootstrapped samples.

2. Model speci�cation and estimation procedure

Calderón et al. (2015) specify the following aggregate production function:

Yit = AitK
ζ
itZ

η
it(e

ξSitLit)
ψ (1)
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where Y is the real gross domestic product (GDP), A is total factor productivity, K and Z denote

physical and infrastructure capital, respectively, while the interacted variable eξSitLit is �human capital

augmented labor�, where L represents the labor force and S is human capital. To estimate the model,

Calderón et al. (2015) exploit balanced panel data from 88 countries observed over 1960 - 2000 period

and assume constant returns to scale (CRS), i.e., ψ = 1−ζ−η. They also assume that log(Ait) = αi+ωt.

They then take logs and add an error term to get an econometric speci�cation.

We depart from Calderón et al. (2015) by estimating the model without assuming CRS and by

testing whether this assumption is veri�ed by the data, i.e., by focusing on the following type of

econometric speci�cation:

yit = αi + ωt + ζkit + ηzit + ϑSit + ψlit + eit, (2)

where lower-case letters indicate variables expressed in log form , e.g., yit = log(Yit), and ϑ = ξ ∗ ψ.

2.1 Modeling cross-sectional dependence

Cross-sectional dependence can be due to unobserved common factors such as economy-wide shocks

that a�ect all countries (Sara�dis and Wansbeek, 2012). The errors eit are then assumed to have the

following common factor structure:

eit = γ
′

ift + εit, (3)

in which ft is an m × 1 vector of unobserved common factors with associated country-speci�c factor

loadings γi. The number of factors, m, is assumed to be �xed relative to the number of countries N

and, more speci�cally, m << N . These factors ft are supposed to have a widespread e�ect, as they

heterogeneously a�ect every country in the sample. εit is an idiosyncratic error term. Eq. (2) can be

thus rewritten as

yit = α′idt + β
′
xit + γ

′

ift + εit (4)

where αi are individual �xed e�ects as dt = dt = 1, xit = [kit, zit, Sit, lit]
′ and β = [ζ, η, ϑ, ψ]′.

In such a framework, Pesaran (2006) suggests the CCE estimation procedure (for a detailed discus-

sion, see, e.g., Ertur and Musolesi, 2017).
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2.2 Alternative speci�cations

In addition to the implementation of the standard static pooled CCE estimator (CCEP) proposed by

Pesaran (2006), we consider three di�erent speci�cations, all based on the CCE framework, allowing

for di�erent degrees of �exibility.

First, like Calderón et al. (2015) we embed the production function into a dynamic framework

and consider the dynamic extension of Chudik et al. (2016), who suggest the adoption of a CS-DL

approach for panels with a moderately large T (30 ≤ T ≤ 50). The main advantage of this approach,

which does not include lags of the dependent variable, is that it is robust along a number of relevant

speci�cations, allowing the possibility of unit roots in regressors and/or factors and the presence of

weak cross-sectional dependence in the idiosyncratic errors. As discussed by Raissi et al. (2018), CS-DL

exhibits a better small sample performance relative to the panel ARDL approach (CS-ARDL) when T

is moderate, as in our case. Even when it su�ers from biases induced by possible feedback e�ects, as

argued by Chudik et al. (2013), its performance in terms of RMSE is better than that of the CS-ARDL

estimator. Formally, we consider the following speci�cation:

yit = α′idt + β
′
xit+

p−1∑
l=0

δ′l∆xit−l+γ
′

ift + εit (5)

where, given a selected truncation lag order p, di�erenced explanatory variables are added as further

covariates, and the unobserved factors ft , included into the auxiliary regression function, are proxied

with contemporary and lagged cross-sectional averages of the explanatory variables xit. 1

Second, we address the issue of specifying the production function by adopting a more general

approach built on Su and Jin (2012). We generalize Eq. (2) allowing for a non-parametric relationship

between the dependent variable and the regressors, while the common factors enter the model in a

parametric way, or

yit = α
′

idt + g (xit) + γ
′

ift + εit,

where g(.) is an unknown smooth continuous function. For identi�cation purposes, the following

1See Chudik et al. (2016) for further details about CS-ARDL and CS-DL models. According to Chudik et al. (2016),
the truncation lag p in the auxiliary regression is the same for both the di�erenced explanatory variables and the lagged
cross-sectional averages and can be set equal to the integer part of T 1/3.
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condition is necessary:

E(g (xit)) = 0.

Thus, in the framework of CCE based models, we consider two alternative non-parametric speci�-

cations. The �rst one (ADD) assumes an additive structure of g(.), as follows:

yit = αi + gk(kit) + gz(zit) + gS(Sit) + gl(lit) + γ
′

ift + εit, (6)

where gk(.), gz(.), and gS(.) are unknown univariate smooth continuous functions of interest. The

second one (NONADD), instead, assumes a non-additive structure of g(.), i.e.,

yit = αi + g(kit, zit, Sit, lit) + γ
′

ift + εit. (7)

Relaxing additivity may involve the curse of dimensionality issue, but at the same time, it may allow

detecting relevant interaction e�ects, which are not allowed in the additive speci�cation.

To estimate the non-parametric component of the model, we follow Gioldasis et al. (2021) and

employ penalized regression splines (PRS). In particular, we use thin plate regression splines (TPRS),

which were introduced by Wood (2003) and have some optimality properties. Since our explanatory

variables have di�erent units, in the case of the non-additive speci�cation we avoid isotropy by consider-

ing a tensor product basis (Wood, 2006). The smoothing parameter is selected by restricted maximum

likelihood estimation (for a discussion, see, for example, Reiss and Todd Ogden, 2009). Finally, note

that because of the relatively short time dimension, we restrict our analysis to homogeneous models

where β and g(.) are assumed to be constant across cross-sectional units.

3. Results

As a preliminary step, we check for the presence of CSD and unit roots. As detailed in Appendices

A and B, the results indicate the presence of strong CSD and nonstationarity for all variables and

suggest that such nonstationarity is the result of the coexistence of nonstationary factors and stationary

idiosyncratic components, thus validating the adoption of the CCE estimation strategy which remains

valid in this setting (Chudik et al., 2011; Kapetanios et al., 2011; Pesaran and Tosetti, 2011).
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3.1 Preliminary estimates without assuming CRS

We �rst estimate variants of Eq. (2) and test the restriction of CRS, that ζ + η + ψ = 1, by using the

same approach by Calderón et al. (2015), i.e. the PMG estimator with demeaned variables to account

for CSD at least partially.2 We also adopt the two-way �xed e�ects (FE) model.

Estimation results suggest the existence of decreasing returns to scale, with estimated scale elasticity

equals to 0.73. The estimated elasticity of scale is implausibly low, and this result is clearly not

consistent with the existence of CRS (see Table 1).

As for the output elasticities with respect to the inputs, the estimated elasticity with respect to

capital is 0.465, which is higher than the corresponding estimated value found in Calderón et al. (2015)

among many others. However, as argued by Romer (1987), this �nding could be consistent with the

presence of positive externalities due to investments in physical capital.

The output elasticity with respect to labor is instead implausibly low (0.124) if compared to the

empirical �ndings in the existing literature (see Henderson and Kumbhakar, 2006; Holtz-Eakin, 1994;

Pinilla et al., 2003, for further details) .

As for the parameter ξ = ϑ/ψ, which represents the contribution of the adopted proxy of human

capital to �human capital augmented labor�, we �nd a counter-intuitive and negative estimated param-

eter (ξ̂ = −0.049/0.124 = −0.395), contrasting Calderón et al. (2015) who �nd an estimated coe�cient

of 0.17 (see Bils and Klenow, 2000, for further discussion). This �nding may suggest misspeci�cation

problems and/or that the average years of secondary schooling, S, represent a poor proxy of human

capital, as suggested by Hanushek and Kimko (2000) and Ertur and Musolesi (2017).

Finally, as far as the e�ect of infrastructure capital is concerned, the estimated elasticity of infras-

tructure capital equals 0.138 and is statistically signi�cant at standard signi�cance levels. This value

is consistent with the estimated output elasticities of Aschauer (1989) and Calderón et al. (2015).

In summary, the results, which are obtained using both the PMG and the FE model, indicate that

estimating (2) without imposing CRS greatly a�ects the estimated technological parameters, which are

somehow rather implausible from an economic point of view. These results will be reassessed in the

next section after i) accounting for CSD using a more suitable multifactor error model and ii) allowing

for �exible functional forms.
2We impose an underlying ARDL (1,1,1,1,1) order since it is one of the di�erent order speci�cations considered by

Calderón et al. (2015) and, moreover, the Stata routine xtpmg does not allow order selection using information criteria.
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===== Insert Table 1 =====

3.2 Alternative CCE estimates

We now present the estimation results of the di�erent speci�cations presented in Section 2, �rst focusing

on the parametric speci�cations, i.e, the CCEP of Pesaran (2006) and the CS-DL of Chudik et al. (2016),

and then moving to the two non-parametric speci�cations. The results are as follows.

===== Insert Table 2 =====

All estimates based on the parametric models (Table 2) indicate a lack of signi�cance of the infras-

tructure index and a magnitude of the estimated coe�cient that is very close to zero, ranging from

0.005 to 0.059. This result is at odds with respect to Calderón et al. (2015), but it is not new in the

empirical literature. Indeed, Tatom (1991) rejected the public capital hypothesis after controlling for

the spurious regression problem, and Holtz-Eakin (1994) found no e�ect of public capital on produc-

tivity after controlling for country speci�c characteristics. Furthermore, Baltagi and Pinnoi (1995) and

Canning and Pedroni (2004) pointed out the important issue of aggregated data in two perspectives.

They �rst suggest looking at the contribution of each single component of public capital. In Appendix

E, we estimate the e�ects of telephone lines, paved roads, and electricity on productivity, taken sep-

arately, rather than considering the synthetic index. Moreover, another possible explanation for the

lack of signi�cance of the infrastructure index may be the data aggregation problem as also recently

detected by Feng and Wu (2018), who suggest considering disaggregated �rm-level data.

Overall, contrary to the estimates of Calderón et al. (2015), the magnitude of the technological

parameters associated with labor, physical capital, and human capital is reasonable and consistent

with the main literature (see, for example, Holtz-Eakin, 1994 and Henderson and Kumbhakar, 2006).

Capital and labor inputs show respective magnitudes of about 0.28 and 0.73 in the CCE static model.

These estimated elasticities are economically plausible and in line with previous empirical �ndings (see,

among others, Eberhardt et al., 2013). The resulting contribution of human capital ξ is positive and

equal to 0.259, which is more reasonable if compared to the previous PMG estimate.

As for the CS-DL estimator, we note that the estimates are quite sensitive with respect to the lag

order, which ranges from 0 to 2 as in Raissi et al. (2018). This instability could be due to the presence

of feedback e�ects from lagged values of the dependent variable into the regressors, as suggested by
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Chudik et al. (2013) based on both theoretical results and Monte Carlo simulations, according to which

the bias of the CS-DL estimator that arises because of feedback e�ects may worsen as the number of

lags increases. The possibility of feedback e�ects is supported by previous literature, according to

which public infrastructure investments and more generally the level of production inputs could also

be induced by economic growth rather than just driving it (see Feng and Wu, 2018). In particular,

while the estimates obtained by �xing the number of lags to zero are close to the CCEP ones and are

consistent from an economic point of view, when increasing the number of lags the results indicate

an implausibly low coe�cient of labor. Moreover, these results may be consistent with the belief that

addressing the endogeneity of labor is more important than addressing that of capital because labor is

a more �exible input than capital (Antonioli et al., 2021).

As far as statistical inference is concerned, it is worth noting that, while Table 2 reports the

standard errors obtained by using the non-parametric variance estimator of Pesaran (2006), which is

consistent in long heterogeneous panels and performs well in simulations and is often employed, in the

homogeneous case with T/N → 0, a sandwich estimator such as the Newey-West procedure may be

preferable. Similar to Millo (2019), we thus compare di�erent methods to calculate the standard errors

of the CCEP and the CS-DL and the main result is that the infrastructure index remains insigni�cant

in most cases (see Appendix C).

When moving to the non-parametric speci�cations, we again �nd a lack of signi�cance of the

infrastructure index. Speci�cally, on the one hand, for the additive model (ADD) we look at the Wald-

type test suggested by Wood (2013) for the signi�cance of the univariate smooth function, which clearly

appears to be non-signi�cant at the usual signi�cance levels (p-value=0.32). On the other hand, even

though the non-additive speci�cation (NONADD) provides an overall signi�cant smooth multivariate

function, we speci�cally focus our attention on the estimated output elasticity of infrastructure capital

as a function of its potential values, the other inputs being �xed to some quantile values.3

===== Insert Figure 1 =====

Overall, the estimated elasticity of infrastructure swings around zero and is always not signi�cant,

which is fully consistent with the results obtained from the parametric models. More speci�cally, beyond

3The computation of standard errors and con�dence bands takes advantage of the underlying parametric representa-
tion of spline approximations (Gioldasis et al., 2021).
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this overall non-signi�cance, for low levels of all other inputs (until the 50th percentile) we observe an

increasing smooth function, with an estimated elasticity that becomes positive and is relatively high

in magnitude after a certain threshold. We also observe that the estimated function varies greatly

with the value of the other inputs. Overall, these results could be consistent with some previous work

suggesting that threshold e�ects may be at work, as a critical mass of infrastructure may be necessary

to become e�ective (Musolesi, 2011), and that interaction e�ects among inputs are relevant in the sense

that it is necessary to �nd an appropriate mix of them (Kortelainen and Leppänen, 2013).

3.3 Model selection

We compare the above speci�cations using the data-driven model-selection procedure proposed by

Gioldasis et al. (2021). It is a pseudo-Monte Carlo experiment that consists of a combination of

the panel moving block bootstrap (MBB) scheme proposed by Gonçalves (2011) and the time-series

selection procedure introduced by Racine and Parmeter (2014). Using an MBB scheme is useful in order

to preserve cross-sectional dependence in the bootstrapped samples. According to block resampling

and supposing the time series has length T = b × l, b nonoverlapping blocks, each of length l, are

generated, with l su�ciently large in order to preserve in each block the dependence present in the

original dataset. With MBB, we allow the blocks to overlap, thus obtaining a total of T − l + 1

overlapping blocks. Speci�cally here, given a time horizon of 41 years and in order to provide equal

block lengths and to preserve the dependence structure of the dataset, we drop o� one year and �x the

length of the blocks to ten years. Thus, we have 40− 10 + 1 = 31 blocks.

Once the blocks are de�ned, following Racine and Parmeter (2014), the data are split into a training

sample and an evaluation sample. The di�erent models are then �tted according to the training sample

and a measure of model forecasting performance is computed using the evaluation sample. In particular,

we focus on the so-called average out-of-sample squared prediction error (ASPE) following Racine and

Parmeter (2014).4 This procedure is replicated a number of times S = 1000 in order to obtain an S×1

4Given a bootstrapped sample (y∗it, x
∗
it), i = 1, . . . , N , t = 1, . . . , T , the ASPE of model L is de�ned as:

ASPEL =
1

n× TE

n∑
i=1

T∑
t=TT+1

(y∗it − ĝLTT
(x∗it))

2

where TT (resp. TE) is the number of observations in the training (resp. evaluation) sample. The vector of ĝLTT
(x∗it),

i = 1, . . . , N , t = TT + 1, . . . , T , denotes the predictions on the evaluation sample, using the estimate of gL(.) on the
training sample, i.e., ĝLTT

(.).
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vector of ASPEs for each model.

For the purpose of comparing the predictive performances of the di�erent models, we consider the

empirical distribution of the ASPEs on a one-year horizon and represent them using boxplots.

===== Insert Figure 2 =====

In the upper panel of Figure 2, we focus on standard panel data models that employ cross-sectional

demeaning, namely the PMG and the FE. In the lower panel, we instead consider all of the the di�erent

CCE speci�cations. A �rst clear result is that all CCE speci�cations provide a huge improvement in

terms of out-of-sample predictive performance with respect to the traditional models. A second relevant

result is that among the CCE speci�cations, the non-parametric ones exhibit the best performance. This

result is strongly consistent with Gioldasis et al. (2021) and provides additional evidence supporting

the use of �exible models when estimating a production function. Interestingly, the dynamic (CS-DL)

speci�cations show the worst performance among the CCE- based models and, in particular, we observe

an increasing loss in terms of predictive ability by increasing the number of lags.

4. Conclusions

This paper provides a broad replication of Calderón et al. (2015) by exploiting recent advances in

panel data econometrics. Speci�cally, we handle cross-sectional dependence and the presence of non-

stationary factors by considering CCE-based models. We consider both parametric and non-parametric

models. The latter may avoid a functional misspeci�cation bias but could su�er from the curse of

dimensionality problem. Given the classic e�ciency-bias trade-o� and the huge uncertainty surrounding

the true DGP, we also perform model selection by employing a data-driven model-selection approach

that was recently proposed by Racine and Parmeter (2014) and generalized to panel data by Gioldasis

et al. (2021). Contrary to Calderón et al. (2015), we �nd a lack of signi�cance of the infrastructure

index, with an estimated elasticity very close to zero for all speci�cations. The results also indicate

that non-parametric speci�cations exhibit the best predictive performance and that CCE models always

overperform with respect to traditional panel data methods that employ cross-sectional demeaning to

account for cross-sectional dependence.
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PMG FE

log(capital) 0.465*** 0.270***

(0.012) (0.010)

secondary education -0.049*** 0.056***

(0.007) (0.010)

log(infrastructure) 0.138*** 0.234***

(0.007) (0.012)

log(labor) 0.124*** 0.160***

(0.016) (0.027)

elasticity of scale 0.727 0.664

CRS test
test-statistics 242.00 182.80

p-value 0.000 0.000

Table 1: Estimation results on demeaned variables and CRS test

Note: The PMG model has been estimated using the xtpmg Stata command.
The elasticity of scale represents the sum of the parameters referred to as log(capital), log(infrastructure), and log(labor), i.e., ζ + η + ψ.
The CRS test is an F -test for the FE model and a Wald test, which consists of a χ2 statistic, for the PMG model.
Signi�cance levels: ***1%; **5%; *10%.

�

CCEP CS-DL CS-DL CS-DL ADD NONADD

0 lags 1 lag 2 lags edf (p-value)

log(capital) 0.287*** 0.274*** 0.223** 0.290 8.026***

(0.075) (0.063) (0.095) (0.210) (< 2e-16)

secondary education 0.189 0.183** 0.190 0.308 5.780***

(0.118) (0.079) (0.186) (1.141) (0.000) 115.1***

log(infrastructure) 0.020 0.059 0.048 -0.005 1.002 (< 2e-16)

(0.041) (0.037) (0.043) (0.135) (0.320)

log(labor) 0.730* 0.627 0.265 -0.024 7.836***

(0.409) (0.405) (0.311) (1.292) (< 2e-16)

elasticity of scale 1.037 0.960 0.536 0.261 - -

obs 3608 3520 3432 3344 3608 3608

Table 2: Estimation of the production function: alternative CCE parametric and non-parametric speci�cations

Note: The displayed standard errors (SEs) for the CCEP model and the CS-DL models correspond to the non-parametric variance estimator
from Pesaran (2006).
The acronym �edf� stands for e�ective degrees of freedom estimated from generalized additive models. They are used as proxies for the degree
of non-linearity in the considered relationship. Speci�cally, values of edf equal to 1 indicate a linear relationship and values above 1 indicate
progressively higher degrees of non-linearity. The reported p-values refer to the Wald-type test suggested by Wood (2013). Signi�cance levels:
***1%; **5%; *10%.
The elasticity of scale represents the sum of the parameters referred to as log(capital), log(infrastructure), and log(labor), i.e. ζ + η + ψ.

�
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Figure 1: Estimated infrastructure elasticities

�

Figure 2: Out-of-sample average square prediction error (ASPE) box plots for di�erent models on a 1-year

horizon: the pooled mean group model (PMG), the two-way �xed e�ects model (FE), the common correlated

estimator in its pooled version (CCEP), the cross-sectional augmented distributed lags (CS-DL0, CS-DL1, and

CS-DL2), and the additive (ADD) and non-additive penalized (NONADD) models.
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A. Assessing cross-sectional dependence

To assess the presence and degree of cross-sectional dependence (CSD) in the data, we adopt

the so-called CD test (Pesaran, 2021). Pesaran (2015) demonstrates that, in the most com-

mon cases, the implicit null of the test is weak cross-sectional dependence rather than in-

dependence. This is an important result from an empirical perspective because only strong

cross-sectional dependence leads to inconsistent estimates, while under weak cross-sectional

dependence standard panel estimators will su�er from ine�ciency but still remain consistent.

In particular, we de�ne α in the range [0, 1], as the exponent of CSD proposed by Bailey

et al. (2016a). The value of α in the range [0, 1/2] indicates di�erent degrees of weak CSD ,

whereas α in the range [1/2, 1] relates di�erent degrees of strong CSD.

According to Pesaran (2015), in a typical macro-panel data setting and roughly in our case,

the implicit null hypothesis of the CD test when T and N →∞ at the same rate is 0 ≤ α <

1/4. As reported in Table 1, the CD statistics for log(GDP), log(capital), log(infrastructure),

log(labor), and secondary education are equal to 369.824, 341.259, 384.904, 380.814 and

369.920, respectively. They are all highly statistically signi�cant and lead to a strong re-

jection of the null hypothesis of weak CSD, suggesting that the exponent of cross-sectional

dependence, α, is in the range [1/4, 1].

===== Insert Table 1 =====

More speci�cally, the exponent of CSD has been computed according to the bias-adjusted

estimator derived by Bailey et al. (2016a). All variables have an estimated exponent equal

to 1. This result not only con�rms the presence of strong CSD, but is also consistent with

the factor literature, which typically assumes that all factors have the same cross-sectional

exponent of α=1 (Bai and Ng, 2002; Stock and Watson, 2002). Moreover, as also suggested

by Bailey et al. (2016b), this result does not exclude the possibility that both weak and

strong CSD coexist in the data.
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B. Panel unit root tests

In order to investigate the stationarity of the series, it may be useful to consider the so-

called second-generation tests which allow for CSD. As demonstrated by Pesaran (2007),

tests that ignore this issue tend to over-reject the null hypothesis when CSD is present. In

their seminal work, Bai and Ng (2004) propose decomposing the panel into deterministic,

common and idiosyncratic components as follows:

yit = Dit + ζ
′

itft + vit

where Dit is the deterministic component with individual e�ects and, eventually, individ-

ual trends. ζ
′
itft are the unobserved common factors, and vit is the idiosyncratic term. Such

a decomposition allows us to consider factors as objects of interest and to determine not

only whether the data are stationary but also whether the eventual non-stationarity derives

from a non-stationary common component, a non-stationary idiosyncratic component, or

the non-stationarity of both components. However, a preliminary issue that arises involves

determining how many common factors are necessary to capture the existing cross-sectional

dependence. Usually, this choice is made by adopting information criteria (Bai and Ng, 2002).

Nevertheless, the practical implementation of such criteria is di�cult as they may tend to

overestimate the number of factors and the results are known to be sensitive to the maximum

number of factors which should be arbitrarily �xed (Ertur and Musolesi, 2017).

We adopt the PANICCA test proposed by Reese and Westerlund (2016) which is a PANIC

approach implemented on cross-sectional averages rather than on principal components. This

test preserves the asymptotic theory of PANIC but leads to much improved small-sample

properties and does not require the preliminary indication of the number of factors.

The results of the PANICCA test are illustrated in Table 2. The statistics Pa, Pb, and

PMSB proposed by Bai and Ng (2010) clearly lead to a rejection of the null hypothesis of

non-stationarity of the idiosyncratic components for all variables. The rejection of the non-
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stationarity of the idiosyncratic component does not imply that the series are stationary,

as some of the common factors may be non-stationary. To determine how many of these

factors are non-stationary, we follow Reese and Westerlund (2016) and consider theMQf and

MQc statistics. The limiting distributions of these statistics are non-standard, and critical

values are reported in Bai and Ng (2002) for up to six factors. The results provide a very

clear picture. For all variables and regardless of the test used, the number of non-stationary

common factors is always equal to the total number of common factors, which given the cross-

sectional averages augmentation is equal to �ve. The application of the PANICCA approach

thus suggests that the variables are non-stationary and that this property is the result of

multiple non-stationary common factors combined with stationary idiosyncratic components.

This result is fully consistent with Ertur and Musolesi (2017) and Gioldasis et al. (2021) and,

moreover, as proven by Kapetanios et al. (2011), the CCE approach remains valid in this

scenario.

===== Insert Table 2 =====

C. Alternative standard errors for parametric CCE models

For inference purposes, following Millo (2019), we compare three di�erent methods to es-

timate the standard errors (SEs) of CCEP and CS-DL models. We �rst consider the non-

parametric variance estimator of Pesaran (2006), which is consistent in long heterogeneous

panels, performs well in simulations and is often employed (Ertur and Musolesi, 2017). Sec-

ond, we adopt a Newey-West-type approach (Ditzen, 2018), which may be preferable in the

homogeneous case when T/N → 0 (Millo, 2019), and �nally add a third alternative known as

the �xed-T variance estimator (Westerlund et al., 2019) which consists of a heteroskedasticity-

robust covariance matrix estimator.

===== Insert Table 3 =====
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The main result (see Table 3) is that the synthetic infrastructure index remains insignif-

icant in most cases. The only relevant exception is provided by the CS-DL models with 0

and 1 lag, for which, when using the Newey-West-type variance estimator, the infrastructure

index is statistically signi�cant at the usual signi�cance levels. Moreover, consistent with the

replication study by Millo (2019), the non-parametric variance estimator always produces

higher standard errors with respect to the alternative aforementioned procedures.

D. Further checks on residuals

To provide additional insights on the estimated models, we also perform diagnostic checks

on the residuals, speci�cally focusing on the issue of cross-sectional dependence. In principle,

the residuals of all speci�cations should exhibit only weak cross-sectional dependence as, in

a more or less �exible way, common factors are explicitly accounted for. In doing so, we

estimate the exponent of cross-sectional dependence previously discussed and apply Frees'

(1995; 2004) test on the residuals of the di�erent models. As discussed in De Hoyos and

Sara�dis (2006), Millo (2019), and Juodis and Reese (2021), the standard Pesaran CD test

is subject to a bias term of order
√
T when common time e�ects or interactive �xed e�ects

are included, thus leading to a potential over-rejection of the null hypothesis of weak cross-

sectional dependence. We speci�cally consider Frees' test because it does not present such a

problem, returning unbiased diagnostics. The results of the test are illustrated in Table 5.

In particular, while Frees' test leads to a rejection of the null of cross-sectional independence

for all speci�cations, the estimation of the exponent of cross-sectional dependence provides

additional interesting insights.1 The results indicate that i) the residuals of the PMG model

clearly exhibit strong cross-sectional dependence, with an estimated exponent at 0.85, and

ii) the consideration of CCE models produces a reduction of the estimated exponent, with

the NONADD model performing best also in terms of reducing residual cross-sectional de-

pendence, with an estimated exponent equal to 0.45. Finally, note that these results should

1Following Bailey et al. (2016a), we consider four principal components for the estimation of the exponents.
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be interpreted with care because as pointed out by Bailey et al. (2016a) the exponent α is

identi�able only if α > 1/2, while for values of 1/2 < α < 2/3, the identi�cation of α is

di�cult, albeit theoretically possible.

===== Insert Table 5 =====

E. Disaggregating the infrastructure index

Following Baltagi and Pinnoi (1995) and Canning and Pedroni (2004), the lack of signi�cance

of the synthetic index could be due to the aggregation of di�erent kinds of infrastructure

and consequently it can be crucial looking at the contribution of each single component of

infrastructure capital on productivity. More speci�cally, the purpose of this Appendix is

to examine the e�ects of telephone lines, paved roads, and electricity, taken separately, on

productivity.

===== Insert Table 4 =====

For a sake of simplicity, we compare the results by adopting the CCEP and the ADD

model. The NONADD model, despite its appeal, with the inclusion of additional regressors

may su�er of the curse of dimensionality problem, its interpretation can be extremely com-

plex, and, more generally, it may require a speci�c investigation, which is outside the scope

of this paper. The CS-DL is not not considered here because according to our results it

underperformed with respect to all the others models.

The results in Table 4 provide additional interesting insights. A �rst result that appears

from the CCEP is that disaggregating the infrastructure index is crucial to �nd a signi�cant

e�ect of one component of such an index, as it is found a positive and signi�cant e�ect

of telephone lines, with an estimated elasticity equals to 0.07, while both paved roads and

electricity are still not-signi�cant and characterized by an estimated elasticity very close
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to zero. Moreover, relaxing the linearity assumption with the ADD model gives further

information and suggests the presence of a functional misspeci�cation bias (see also Figure

1, where the estimated elasticities are depicted while the estimated smooth functions are

available upon request). First, as for telephone, it is shown that the estimated elasticity

ranges approximately from 0.2 to 0.6 and increases with the level of such a variable. Second,

paved roads becomes signi�cant but with a clear nonlinear pattern. In particular, threshold

e�ects now appear as roads seem to have a positive e�ect to stimulate productivity only for

a very low level of such an input, with and estimated elasticity of about 0.8. These results

have also interesting economic implications.

===== Insert Figure 1 =====
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α̂ α̂∗
0.05 α̂∗

0.95 CD test p-value

log(GDP) 1.003 -0.219 2.224 369.824 0.000

log(capital) 1.003 0.896 1.110 341.259 0.000

secondary education 1.003 0.964 1.042 369.920 0.000

log(infrastructure) 1.003 0.855 1.151 384.904 0.000

log(labor) 1.000 0.804 1.196 380.814 0.000

Table 1: Pesaran's (2015) CD test

Note: The α exponent has been computed considering a number of 4 principal components (PCs).

Idyosincratic component Nonstationary factors

Pa Pb PMSB MQf MQc

p-value

log(GDP) 0 0 0 5 5

log(capital) 0 0 0.0001 5 5

secondary education 0 0 0.0037 5 5

log(infrastructure) 0 0 0.0003 5 5

log(labor) 0 0 0.0009 5 5

Table 2: PANICCA Test

Note: The PANICCA test has been performed using the xtpanicca Stata command. For the lag structure of the unit root test,

we referred to the Akaike information criterion.

α̂ α̂∗
0.05 α̂∗

0.95 Frees' test p-value

PMG 0.856 0.588 1.124 19.301 0.000

CCEP 0.488 0.403 0.572 4.523 0.000

CS-DL0 0.712 0.647 0.778 4.082 0.000

ADD 0.657 0.595 0.719 4.201 0.000

NONADD 0.447 0.373 0.521 3.311 0.000

Table 5: Exponent of CSD and Frees' test on residuals

Note: The α exponent has been computed considering a number of 4 principal components PCs.
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log(capital) secondary education log(infrastructure) log(labor)

CCEP

NP 0.075 0.000*** 0.118 0.110 0.041 0.623 0.409 0.074*

NW 0.039 0.000*** 0.059 0.001*** 0.021 0.346 0.239 0.002***

WPN 0.050 0.000*** 0.062 0.002*** 0.031 0.518 0.327 0.026**

CS-DL (0 lags)

NP 0.063 0.000*** 0.079 0.020** 0.037 0.106 0.405 0.122

NW 0.046 0.000*** 0.074 0.014** 0.025 0.019** 0.222 0.005***

WPN 0.061 0.000*** 0.082 0.026** 0.037 0.105 0.357 0.079*

CS-DL (1 lag)

NP 0.095 0.019** 0.186 0.306 0.043 0.263 0.311 0.394

NW 0.053 0.000*** 0.065 0.004*** 0.029 0.096* 0.161 0.10*

WPN 0.080 0.005*** 0.078 0.014** 0.042 0.253 0.269 0.324

CS-DL (2 lags)

NP 0.211 0.168 1.141 0.787 0.135 0.970 1.292 0.985

NW 0.054 0.000*** 0.079 0.000*** 0.040 0.897 0.190 0.899

WPN 0.085 0.001*** 0.119 0.010*** 0.061 0.933 0.353 0.945

Table 3: Alternative standard errors (SEs) for the CCEP and CS-DL models

Note: NP= non-parametric variance estimator from Pesaran (2006); NW= Newey West sandwich estimator from Pesaran

(2006); WPN=�xed-T variance estimator from Westerlund et al. (2019). For each variable: standard error and p-value for the

t-test. Signi�cance levels: ***1%; **5%; *10%.
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CCEP ADD

edf (p-value)

log(capital) 0.299 *** 7.336 ***

(0.073) (< 2e-16)

secondary education 0.280 ** 7.389 ***

(0.129) (7.58e-07)

log(roads) -0.022 5.282 *

(0.033) (0.064)

log(electricity) -0.021 5.956

(0.023) (0.161)

log(telephone) 0.069 ** 4.598 **

(0.029) (0.002)

log(labor) 0.775 7.439 ***

(0.494) (< 2e-16)

elasticity of scale 1.1 -

obs 3608 3608

Table 4: Alternative estimates with disaggregated data for infrastructure

Note: The displayed standard errors (SEs) for the CCEP model correspond to the non-parametric variance estimator from
Pesaran (2006).
The acronym �edf� stands for e�ective degrees of freedom estimated from generalized additive models. They are used as proxies
for the degree of non-linearity in the considered relationship. Speci�cally, values of edf equal to 1 indicate a linear relationship
and values above 1 indicate progressively higher degrees of non-linearity. The reported p-values refer to the Wald-type test
suggested by Wood (2013). Signi�cance levels: ***1%; **5%; *10%.
The elasticity of scale represents the sum of the parameters referred to as log(capital), log(labor), log(roads), log(electricity)
and log(telephone).
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Figure 1: Estimated elasticities of the signi�cant components of infrastructure in the ADD model
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