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EDMITT - Ecole Doctorale Mathématiques, Informatique et
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Unité de Recherche :

IRIT: Institut de Recherche en Informatique de Toulouse (UMR 5505)

Directeur de Thèse :
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Résumé

À lŠère du Big Data, les données sont caractérisées par le volume, la vitesse, la variété, la
véracité et la valeur (5V). LŠenjeu majeur du Big Data, au-delà du stockage, est dŠextraire
de la valeur de qualité à travers des analyses avancées sur des données volumineuses,
véloces et variées. Depuis une décennie, le Lac de données (LD) est apparu comme une
nouvelle solution répondant à cet enjeu de Big Data Analytics.

En tant que concept relativement nouveau, le lac de données nŠa pas de déĄnition
standard ni dŠarchitecture reconnue. Les propositions de la littérature sont insuffisantes au
regard de lŠampleur du contexte. Notre première contribution se résume en une déĄnition
complète ainsi quŠune architecture générique du lac de données qui contient une zone
dŠingestion, une zone de préparation, une zone dŠanalyse et une zone de gouvernance de
données.

De plus, aĄn que les lacs de données ne soient ni invisibles ni inaccessibles par ses
différents dŠutilisateurs, une gouvernance est vitale. LŠélément central dŠune bonne gouver-
nance est un système de management de métadonnées. Dans la littérature, les approches
de management des métadonnées sont parcellaires et pas nécessairement génériques pour
les LD.

La contribution majeure de cette thèse est une solution complète de management
de métadonnées permettant aux utilisateurs de trouver, dŠaccéder, dŠinteropérer et de
réutiliser facilement aussi bien des données que des processus ou des analyses effectuées
par le LD.

Dans un premier temps, nous avons proposé un modèle de métadonnées permettant
de gérer tout le cycle de vie des données dans un LD comme suit : (i) métadonnées
représentant différents types de données ingérées (structurées, semi structurées et non
structurées) et différents modes dŠingestion (batch et en temps réel), (ii) métadonnées
représentant différents processus de transformation des données (ETL, exploration statis-
tiques et phase de préparation en science des données) au travers de la spéciĄcation
dŠopérations de haut niveau, (iii) métadonnées orientées analyse et notamment lŠapprenti-
ssage automatique pour caractériser les analyses effectuées dans le LD et de pouvoir
réutiliser et paramétrer rapidement les futures analyses.

Dans un second temps, nous avons déĄni un système de gestion de métadonnées,
nommé DAMMS. DAMMS permet (i) dŠingérer de manière semi automatique des méta-
données et (ii) dŠexplorer le contenu du LD (données, processus de transformation ou
analyses) de manière ergonomique aĄn de pouvoir les réutiliser ou les adapter. DAMMS
présente ainsi lŠavantage de répondre au besoin dŠindustrialisation de la science des données.
EnĄn, pour évaluer la faisabilité et lŠutilisabilité de notre proposition, nous avons mené
conjointement une étude de performance de lŠingestion des métadonnées et une étude
analysant lŠexpérience utilisateur de DAMMS.
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Summary

In the era of Big Data, data is characterized by volume, velocity, variety, veracity and value
(5V). The major challenge of Big Data, beyond storage, is to extract quality value through
advanced analytics on voluminous, fast and varied data. Over the past decade, Data Lake
(DL) has emerged as a new solution to address this Big Data Analytics challenge.

As a relatively new concept, data lake has no standard deĄnition or recognized archi-
tecture. The proposals in the literature are insufficient for the scope of the context. Our
Ąrst contribution is a comprehensive deĄnition and a generic architecture of data lake that
contains an ingestion zone, a preparation zone, an analysis zone and a data governance
zone.

Furthermore, in order to ensure that a data lake is neither invisible nor inaccessible to
its various users, the data lake governance is vital. The central element of good governance
is a metadata management system. In the literature, approaches to metadata management
are fragmented and not necessarily generic for DL.

The major contribution of this thesis is a comprehensive metadata management solu-
tion that allows users to easily Ąnd, access, interoperate and reuse data as well as processes
or analyses performed by the DL.

As a Ąrst step, we proposed a model to manage the entire data life-cycle in a DL
as follows: (i) metadata representing different types of ingested data (structured, semi-
structured and unstructured) and different ingestion modes (batch and real-time), (ii)
metadata representing different data transformation processes (ETL, statistical mining
and the preparation phase of data science) through the speciĄcation of high-level oper-
ations, (iii) metadata that are oriented to analysis and in particular machine learning
to characterize the analyses performed in the DL and to be able to reuse and quickly
parameterize future analyses.

In a second step, we deĄned a metadata management system, named DAMMS. DAMMS
allows users (i) to automatically ingest metadata and (ii) to explore the content of the
DL (data, transformation processes or analyses) in an ergonomic way in order to be able
to reuse or adapt them. DAMMS thus has the advantage of responding to the need for
data science industrialization. Finally, in order to evaluate the feasibility and usability of
our proposal, we have jointly conducted a performance study of metadata ingestion and
a study analyzing the user experience of DAMMS.
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1.1. RESEARCH CONTEXT 2

1.1 Research Context

According to the report ŞData Age 2025Ť (Reinsel et al., 2017), published by International
Data Corp, the global data sphere is expected to grow to 163 zettabytes (ZB) in 2025, a
volume ten times greater than the 16.1 ZB of data generated in 2016. Beyond the volume,
the user have to deal with the variety of data without forgetting the data velocity which
is commonly supported by social networks or Internet of Things (IoT). Exploiting large,
veloce and varied data requires processes to be put in place to manage its veracity. So that
we are able to carry out relevant analyses for users. All these characteristics constitute
today, what we cal l the 5V big data: Volume, Velocity, Variety, Value and Veracity
(Demchenko et al., 2013).

Among the 5Vs, Value is the most important characteristic regarding business con-
cern. Back to 2006, Clive Humby declared that Şdata is the new oilŤ (Arthur and editor,
2013). Afterwords, (Palmer, 2006) extended the opinion, he thinks Şdata is just like
crudeŤ, to obtain the value, data have to be analyzed. For enterprises, it is important
to analyze data to compile comprehensive information for decision making or problem
solving. However, the fact of voluminous, heterogeneous and fast created data makes the
value digging and veracity checking difficult. The ability to effectively and efficiently ex-
tract knowledge from data is now seen as a key competitive advantage (Cavanillas et al.,
2016).

Today, one of the most popular big data analytics solutions dedicated to industrialize
data science and to reduce the time and money consumption of data analysis is data lake
(Syed, 2020). The concept data lake was put forward by (Dixon, 2010) in the industrial
world and then has been studied at the academy. A data lake ingests raw data (structured,
semi-structured and unstructured) from various sources, stores data in their native format
and processes data upon usage (Fang, 2015; OŠLeary, 2014; Miloslavskaya and Tolstoy,
2016). Its ambition is to offer various capacities such as data ingestion, processing and
analysis to different users (e.g. data scientists, analysts and BI professionals).

1.2 Problem Statement

Data lake is a relatively new concept which was put forward only a decade ago, even
though there are already some so-called data lake solutions proposed by Information
Technology (IT) companies (Amazon, 2016; Azure, 2016) and some academic works that
focus on this subject (Fang, 2015; Madera and Laurent, 2016; Inmon, 2016; Munshi and
Mohamed, 2018), there is not a standard deĄnition nor an acknowledged architecture of
data lake.

Moreover, one of the basic characteristics of data lake is Şschema on readŤ, which
means that raw data are ingested without transformation, stored in their native format
and processed until needed. This characteristic ensures the Ćexibility and the possibility
of being able to Ąnd the original data of analyses at any time of data lake. Nevertheless,
the ingestion of a great volume of heterogeneous data (structured, semi-structured and
unstructured) without implicit information makes data lake easily turning into a data
swamp which is invisible, inaccessible and unreliable to users (Paschalidi, 2015).

To prevent a data lake from turning into a data swamp, metadata management is
emphasized by different authors (Walker and Alrehamy, 2015; Hai et al., 2016; Halevy
et al., 2016a,b; Diamantini et al., 2018). Metadata can help users to Ąnd data that
correspond to their needs, accelerate data accesses, verify data origin and processing

2
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history to gain conĄdence and Ąnd relevant information to enrich their analyses. However,
the existing metadata solutions can not perfectly be adapted to data lakes. Firstly, current
metadata solutions mainly only focus on ingested datasets whereas the transformation
processes and preformed analyses in data lakes are not described with metadata to ensure
their reuse. Secondly, most of the existing works of metadata management of data lakes
are not introduced with a formalized model, the works that presented metadata model
do not show details of used metadata (no attributes). Thirdly, the presented metadata
management systems rarely provide both the functions of automatic metadata generation
and user-friendly exploration with predeĄned and free queries.

1.3 Research Overview

The objective of this thesis is to propose a metadata management solution for data lakes
to improve the effectiveness and efficiency of big data analytics by helping users to Ąnd,
access, interoperate and reuse ingested datasets, transformation processes and performed
analyses. This solution must be based on a complete metadata model and a system
making it easy to ingest and above all explore the metadata of all the elements stored in
the data lake.

1.4 Manuscript Outline

The thesis is organized in three parts. The Ąrst part concerns the presentation of the
context of data lake metadata management. It is presented in one chapter.

• In the chapter 2, we study the existing data lake deĄnitions and functional archi-
tectures and propose our proper deĄnition and architecture of data lake to agree on
the basis of the thesis. Moreover, we compare the existing metadata solutions of
data lakes.

The second part concerns the presentation of our proposed metadata model for data
lakes. It is composed of three chapters.

• In the chapter 3, we focus on the metadata of data ingestion in data lakes. We bring
up a ingestion metadata management solution that can be adapted to different types
of data sources (IoT objects, databases, Ąles), different structural types of datasets
(structured, semi-structured and unstructured) and different ingestion modes (batch
and real-time). The solution is twofold: a metadata model and formalized metadata
integration processes for the relative metadata.

• In the chapter 4, we focus on the metadata of data preparation in data lakes.
We bring up a preparation metadata management solution that can be adapted to
different types of data processes (transformation process of ETL used in Business
intelligence (BI), data mining, machine learning (ML)) and different ingestion modes
(batch and real-time). The solution is twofold: a metadata model and formalized
metadata integration processes for the relative metadata.

• In the chapter 5, we focus on the metadata of data analysis in data lakes. We
bring up an analysis metadata management solution that capitalizes all relevant

3



1.4. MANUSCRIPT OUTLINE 4

experiences, such as used datasets, characteristics of analyses (e.g. name, type,
creation date, description), information of analysis implementations (e.g. imple-
mentation environment, used algorithms, parameters, script URL), evaluation of
analysis result (e.g. output model, evaluation measure, result) in a data lake to
improve the efficiency of data analysis. The solution is twofold: a metadata model
and formalized metadata integration processes for the relative metadata.

The third part concerns the validation of our proposed solution. It is composed of two
chapters.

• In the chapter 6, we present our implemented system DAMMS: DAta lake Meta-
data Management System which is based on our proposed metadata model. This
system has two main function: (1) it integrates the proposed metadata in a semi-
automatic way and (ii) it allows users to explore all the metadata of stored elements
in the data lake with hierarchical navigation and ergonomic interfaces.

• In the chapter 7, we present the results of experiments of DAMMS. The experi-
ments have objective of validating the effectiveness of metadata generation and the
satisfaction of users utilization.

Finally, we conclude the manuscript in the chapter 8 which concerns a balance sheet
of our contribution and a presentation of our future work.
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2.1. DATA LAKE DEFINITION 6

This chapter is dedicated to deĄne the scope of the PhD proposal. The scope of
the thesis is based on three key concepts: data lake deĄnition, data lake architecture
and metadata management. In this chapter, we will study the three concepts in details.
Firstly, we will introduce and compare different data lake deĄnitions in eight aspects and
then propose our own data lake deĄnition to cover different aspects of data lake. Secondly,
we will present and discuss different existing data lake architectures and then propose our
own architectures to consider different functions of data lake. Last but not least, we will
study metadata management which is one of the most essential concept of data lakes.
We will introduce and discuss different solutions in the aspects of metadata model and
metadata management system.

2.1 Data Lake DeĄnition

In both academia and industry, data lake is a trendy and popular solution of big data
analytics (see Fig. 2.1a1). However, today, data lake does not have a commonly acknowl-
edged deĄnition, different deĄnitions have different emphases. In the following, we give an
overview of the different deĄnitions in the literature then we present our proper deĄnition
of data lake which is more complete and detailed then the state-of-the-art.

(a) General evolution (b) Evolution in academic world

Figure 2.1: Evolution of the interest of data lake

2.1.1 Related Work

The concept of data lake was initially emitted in the industrial world in 2010 to show the
interest of the Ąrst Hadoop release. It was (Dixon, 2010) who put forward the concept at
the aim of improving the data reporting and analysis based on Hadoop:

ŞIf a data warehouse may be a store of bottled water Ű cleansed and packaged and struc-
tured for easy consumption Ű the data lake is a large body of water in a more natural state.
The contents of the data lake stream in from a source to Ąll the lake, and various users
of the lake can come to examine, dive in, or take samplesŤ.

From this presentation, Dixon pointed up that a data lake is a data repository which
stores heterogeneous data in their native format and serves different users. However, this

1https://trends.google.fr/trends/explore?date=2010-01-01%202021-11-14&q=data%20lake
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2.1. DATA LAKE DEFINITION 7

explanation cannot be treated as a formal deĄnition and it had been unclear for a few
years.

Since 2014, the academic world has started to study data lake and researchers have be-
come more and more enthusiastic about this new big data analysis solution (see Fig. 2.1b2).

(OŠLeary, 2014) and (Fang, 2015) proposed the Ąrst academic works about data lake.
In their work, data lake has the following characteristics: (i) single data repository, (ii)
designed for an enterprise and (iii) closely tied to Apache Hadoop technologies. They also
compared data lake with data warehouse which is another popular data analytics solution.
Both of them indicated some important data lake characteristics such as the data sources
of data lakes are various (structured, semi-structured and unstructured), data are stored
in their native format and are processed upon usage (schema-on-read).

A Ćurry of deĄnitions have succeeded DixonŠs deĄnition from 2014 until today. To
analyze different deĄnitions, we propose 8 features that can characterize data lakes: data
sources, data source types, ingestion mode, process, analysis, data storage, data gover-
nance, architecture, technology and user types. We synthesize in table 2.1-2.2 the state-of
the art deĄnitions according to the features:

• Regarding data sources, they are expanded from enterprise data (Fang, 2015) to
internal and external data (Suriarachchi and Plale, 2016b; Maccioni and Torlone,
2018). The type of data sources can be unstructured, semi-structured or structured.

• Regarding data ingestion, its mode is expanded from batch (Fang, 2015; Miloslavskaya
and Tolstoy, 2016) to real-time and batch (Azure, 2016).

• Regarding data process and analysis, the Ąrst data lake deĄnitions do not allow
users to process and analyze data while new deĄnitions integrate these functions
(Amazon, 2016; Azure, 2016; Couto et al., 2019; Giebler et al., 2021).

• Regarding data storage, all the approaches ingest raw data as native format.

• Regarding data governance, metadata management and data security, privacy
and quality control are applied to new data lake deĄnitions (Walker and Alrehamy,
2015; AlseraĄ et al., 2016; Madera, 2018; Giebler et al., 2021).

• Regarding data lake architecture, it is developed from Ćat architecture (Fang,
2015; Walker and Alrehamy, 2015) which has a single repository to multi ponds/-
zones architecture (Azure, 2016; Inmon, 2016; Panwar and Bhatnagar, 2020).

• Regarding data lake technologies, various techniques (RDBMS, NoSQL, machine
learning) (Giebler et al., 2021) are used to replace the mono Hadoop system.

• Regarding users, we notice that most approaches do not specify the types of users
for whom the data lake is intended.

2.1.2 Our Data Lake DeĄnition

As mentioned in the previous subsection, the different deĄnitions are vague, they are not
integrated with each other or are even contradictory. To be as complete as possible, we
propose a deĄnition that includes input, process, output and governance of data lakes
(Ravat and Zhao, 2019a).

2https://dblp.org/search?q=data+lake
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2.2. DATA LAKE ARCHITECTURE 10

DeĄnition 2.1.2. Data lake is a big data analytics solution that allows different types
of users (data scientists, data analysts, BI professionals etc) to:

• ingest heterogeneous (structured, semi-structured, unstructured) raw data from var-
ious sources (local or external to the organization) and store these raw data in their
native format,

• process data to prepare for new business requirements,

• analyze stored available data for different types of data analysis (statistical analysis,
data reporting, queries, data visualization and Machine Learning (ML), etc),

• govern data to ensure the data quality, data security and data life cycle.

2.2 Data Lake Architecture

After having presented the deĄnition of a data lake, the second important concept is
the architecture of the data lake. We can distinguish data lake architecture between
functional and technical architectures. We are interested in the functional architecture
from a conceptual point of view. In this section, we summarize the different deĄnitions
of functional architecture proposed in the literature and we propose our own deĄnition.

2.2.1 Related Work

The functional architecture of data lake has evolved from mono-zone to multiple zones.

2.2.1.1 Flat architecture

Until now, researchers have been working on technical architectures of data lakes. The
Ąrst vision of data lake functional architecture was a Ćat architecture with mono-zone
that is closely tied to the HADOOP environment (Fang, 2015; Walker and Alrehamy,
2015). This zone allows users to collect and store raw data in their native formats. It
includes the data from web logs, sensor devices, operational data store (ODS) and online
transaction processing (OLTP) systems. The advantage of this architecture is to enable
loading heterogeneous and voluminous data with a low cost.

Discussion: The Ćat architecture is simple and can be hardly realized especially in
the context of big data analytics. As a matter of fact, this architecture does not reĆect
the activities performed by data scientists, such as the pre-processing phases inherent in
decisional analyzes with a set of intermediate data storages. To overcome these drawbacks,
some extended visions of architecture with multiple ponds or zones were proposed with a
more diverse technological environment.

2.2.1.2 Multi-ponds architecture

Inmon (2016) proposed an architecture with multi-ponds which deals with different types
of data in different ponds (see Fig. 2.2):

10



2.2. DATA LAKE ARCHITECTURE 11

Figure 2.2: Multi ponds data lake architecture

• Data sources can be ingested in the raw data pond. This pond is not used for
performing analysis but for storing jumble data. Data that are stored in the raw
data pond should be processed and sent to the supporting data ponds (analog,
application, textual data ponds) as quickly as possible. Once raw data are reĄned
and passed to other ponds, they are removed from the raw data pond. It is as well
possible that data do not pass the raw data pond but directly go the supporting
data pond.

• The analog data pond is designed for analog data. Analog data are typically gener-
ated by machines or connected objects, they have voluminous and repetitive char-
acteristics. These data are usually reduced or compressed then stored in the analog
data pond.

• The application data pond is designed for data that are created by applications
or transactions. Raw data need to be integrated and stored in this pond. The
application data are uniformly structured and relevant to business activities.

• The textual data pond is designed for unstructured text data. These data should
pass the textual disambiguation phase to be able to be analyzed by computers.

• The archival data pond is used to store data that are not actively needed. All other
ponds can send data to the archival data pond.

Discussion: This architecture ensures the ingestion of different structural types of data.
The classiĄcation of three types of data (analog, application and textual) makes data
Ąnding faster and data analytics easier. However, not all of the data types are considered,
such as images, videos, sound Ąles. Moreover, in this data lake, once the raw data are
processed and sent to other ponds, they are no longer remained in the raw data pond.

11



2.2. DATA LAKE ARCHITECTURE 12

This design is contrary to one of the basic characteristics of data lake which is to keep all
raw data and to avoid creating data silos.

2.2.1.3 Multi-zones architecture

There are different multi-zone architectures proposed in the academic and industry world.
In this subsection, we introduce Ąve architectures: the architectures of (Mehmood et al.,
2019), (John and Misra, 2017), (Panwar and Bhatnagar, 2020), Amazon Web Services
(Nadipalli, 2017) and Zaloni (LaPlante, 2016).

Architecture of (Mehmood et al., 2019) nothinghere
(Mehmood et al., 2019) proposed a data lake architecture of data lakes that strongly

relies on Hadoop Ecosystem, in particular, Cloudera Distribution including Hadoop. This
architecture allows data collection, storage and processing of diverse data (see Fig. 2.3).

Figure 2.3: Data lake architecture of (Mehmood et al., 2019)

• Custom data collection enables data retrieval from data sources which requires cus-
tom scripts. It allows users to pre-process data sources.

• Data ingestion concerns the process of importing data from external sources to the
data lake in different modes (batch or real-time).

• Data storage is used to store data in Hadoop Distributed File System (HDFS).

• Data Exploration & Analysis is for processing and analyzing data.

• Data visualization is for drawing insights from data.

Discussion: The architecture indicates the different functions of a data lake: data
ingestion, storage, exploration, analysis and visualization. However, this architecture
allows users to customize data collection before the ingestion phase and outside of the
data lake, which makes it difficult to retrieve the data source. In addition, there is no
data governance in the data lake which results in the impossibility of data security and
quality control.

12
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Architecture of (John and Misra, 2017) nothinghere
(John and Misra, 2017) proposed a data lake architecture leveraging Lambda architec-

ture to ensure batch and real-time data processing. This architecture divided the overall
data lake architecture into different layers with the help of Lambda Architecture pattern:

Figure 2.4: Data lake architecture of (John and Misra, 2017)

• Data acquisition layer is used to get data from various sources (structured, semi-
structured and unstructured).

• Messaging layer is used to guarantee data delivery.

• Data ingestion layer is used to ingest data for processing and storage. It should allow
highly scalable loading, data recovery and resiliency and multi-thread execution.

• Data storage layer is used to store all data.

• Lambda layer:

Ű Batch layer is used to ensure batch processing of ingested data. Its primary
responsibility is the conversion of raw data to modeled data.

Ű Speed layer is used to ensure near-real-time data processing on the data that
are received from the ingestion layer.

Ű Serving layer is used to delivery and export data to the consuming application.

Discussion: This architecture considers both batch and (near) real-time data processing
by integrating the Lambda architecture. Moreover, the data lake allows users to ingest,
process and analyze various types of data (structured, semi-structured and unstructured).
However, the authors did not consider the governance of data lake. So, the data life-cycle,
security and quality can not be ensured.

13
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Figure 2.5: Multi-tiers data lake architecture

Architecture of (Panwar and Bhatnagar, 2020) nothinghere
(Panwar and Bhatnagar, 2020) proposed a reference architecture of data lake which

contains 9 different tiers and each tier corresponds to one function/responsibility (see
Fig. 2.5):

1. Data source tier contains different types of data sources (batch /real-time, struc-
tured /semi-structured /unstructured).

2. Flexible data ingestion tier is for extracting data from various data sources as shown
in the Ąrst tier.

3. Data discovery tier helps users to understand and search data by ensuring the
metadata storing, auto-tagging and keyword search.

4. Data governance tier ensures (i) data quality which is essential for users to get
actual business insights; (ii) data lineage which concerns the data life-cycle from the
beginning source to Ąnal destination; and (iii) data auditing which is the technique
of recording data access and modiĄcations.

5. Exploration tier helps users to explore data by getting more details after data dis-
covery.

6. Data security tier protects sensitive data in different levels (dataset, entity/attribute
and cluster).

7. Infrastructure and operation management tier concerns the establishment of an
Hadoop ecosystem for a data lake.

8. Data storage tier stores different types (structured, semi-structured and unstruc-
tured) and stages (raw, in-process and curated) of data and provides accesses of the
stored data.

9. Insights tier concerns the business values of data which can be got from data re-
porting, analysis and visualization.

Discussion: This architecture has the advantages of centralizing data store, being
ensured by security and governance control and being able to help users to discover and
explore data. However, the architecture is ambiguous. Firstly, data sources which should

14
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be external to the data lake are shown in the architecture. Secondly, different tiers have
common functions and they are not well explained. For instance, both infrastructure
and operation management tier and governance tier have the auditing function; both
discovery tier and security tier have the searching function. It seems that functions are
overlapping in different tiers and the border or objective of the different tiers is not clear.

Architecture of Amazon Web Services (AWS) nothinghere
Amazon uses a data lake architecture containing four zones: ingestion zone, storage

zone, processing zone and a govern & secure zone (Nadipalli, 2017). Data from various
sources are extracted and loaded in the ingestion zone. These raw data are stored in the
storage zone. When data are needed, they are structured in the processing zone. Govern
& secure zone is for controlling the data security, data quality, metadata management
and data life cycle (see Fig. 2.6).

Figure 2.6: AWS data lake architecture

Discussion: This architecture clearly presents the data Ćow in a data lake. All data
are ingested and centralized upon analysis. However, data Ćow is unidirectional in the
schema. Raw data are ingested and stored in the central data store, but there is no
data created by transformation processes and stored in the central store. Nevertheless,
the cleansed and transformed data can be directly reused by users to improve the data
processing effectiveness.

Architecture of Zaloni (LaPlante, 2016) nothinghere
Zaloni data lake architecture (LaPlante, 2016) goes beyond the AWS architecture: it

separated the processing and storage zones into reĄned data zone, trusted data zone and
discovery sandbox zone (see Fig. 2.7). In the reĄned zone, data scientists and business
analysts integrate and structure the data that they want to discover. Trusted data zone
stores all the cleansed and validated data. Data for discovery and exploratory analysis
moves from the trusted area to the discovery sandbox.
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Figure 2.7: Zaloni data lake architecture (LaPlante, 2016)

Discussion: This architecture divided data into different zones according to their
maturity. Its advantages are that users can more efficiently Ąnd reĄned or trusted data
and that data are governed no matter they are in which zone. However, data lake is
characterized by Şschema on readŤ, all the raw data are stored and the same data may
need to be transformed in different ways for different objectives. For instance, a cancer
table which contains missing values can be analyzed directly for one project, for which
this dataset is trusted. But the same dataset may need to be transformed to replace all
the missing values to be ready for the analysis, in this case, the dataset is not trusted
anymore.

2.2.2 Our Data Lake Functional Architecture

Most the above-mentioned proposals are supported by software editors or IT compa-
nies. They are not independent of the inherent technical environment. Consequently,
none of the existing architectures draws a clear distinction between functionality-related
components and technology-related components. Nevertheless, the concept of multi-zone
architecture is interesting and deserves further investigations. We believe that some zones
are essential, while others are optional. Concerning the essential zones, based on our data
lake deĄnition, a data lake should be able to ingest raw data, process data upon usage,
store processed data, provide access for different users and govern data.

In order to have a homogeneous deĄnition of the zones and to meet the limits of the
current solutions, we propose a generic functional data lake architecture which contains
the four essential zones (Ravat and Zhao, 2019b). Our proposal is depicted in Figure 2.8.

DeĄnition 2.2.2. A data lake functional architecture consists of four essential zones
each of which contains two layers: data processing layer and data storage layer:

• Ingestion zone: all types of data are ingested, with the help of metadata tags,
in their native format without processing. Big Data ingestion involves connecting
to various data sources, extracting the data, and detecting the changed data. The
ingestion processes may be implemented in batch, real time or hybrid processing.
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Figure 2.8: Our data lake architecture

• Preparation zone: in this zone, users can transform raw data into standardized
formats according to their requirements. Data processing is an unavoidable step for
data analysis. The processing layer includes batch and/or real-time processing.

• Analysis zone: this zone allows self-service data consumption and data are for-
matted for different analyses (reporting, statistical analysis, business intelligence
analysis, machine learning algorithms).

• Governance zone: data governance is applied to all the other zones. It is in charge
of insuring data security, data quality, data life-cycle, data access and metadata
management. It is essential to prevent a data lake from deteriorating into a data
swamp which is a massive data repository that is completely inaccessible to end
users.

2.3 Data Lake Metadata Management

Once we have deĄned a data lake and its architecture, we now turn to the third key
concept of this thesis, namely metadata management.

Data lake is characterized by Şschema on readŤ. In a data lake, different types of
datasets (structured, semi-structured and unstructured) can be ingested in different modes
(batch and real-time) without explicit needs or schemas, and different transformations and
analyses can be applied on these datasets by different users (data scientists, engineers,
analysts) upon usage. Therefore, a data lake can easily turn into a data swamp which is
invisible, inaccessible and incomprehensible by users. To avoid this situation, data gov-
ernance is emphasized (Derakhshannia et al., 2019, 2020) and many authors highlighted
metadata management as the core of a data lake (Quix et al., 2016; Sawadogo et al., 2019;
Diamantini et al., 2018; Halevy et al., 2016a).
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2.3.1 Concepts

Before introducing different solutions of metadata management for data lakes, we deĄne
the concepts of metadata, metadata management and metadata management system.

2.3.1.1 Metadata

Metadata are often called Şdata about dataŤ or Şinformation about informationŤ. They
have been used in information management long before computer science in Ąelds related
to documentation and cataloging (Zgolli et al., 2020). Metadata, according to the point
of view of the National Information Security Organization (NISO, 2017), are deĄned as
structured information for describing, explaining, localizing and aiding the retrieval, the
management of an information resource.

DeĄnition 2.3.1.1. In a data lake, metadata are structured information to describe
and explain all the resources (datasets, preparation, analyses) stored in the data lake,
and relationships between them as well as common sense about them.

2.3.1.2 Metadata Management

The metadata management, according to (whatls, 2021) and (Zgolli et al., 2020), seeks
to provide business and technical users with easier access to integrated and high quality
metadata. Among the beneĄts of metadata management, metadata management ensures
the: (i) consistency of deĄnitions of metadata, (ii) less redundancy of effort and greater
consistency across multiple instances of data because data can be reused appropriately,
(iii) maintenance of information across the organization and (iv) greater efficiency, leading
to faster product and project delivery. We highlight that metadata management is used in
different contexts such as in data preparation (Alexandropoulos et al., 19ed; Zhou et al.,
2017; Garćıa et al., 2015), ontologies for machine learning (Esteves et al., 2016; Keet et al.,
2015; Panov et al., 2014) or simply data cataloging in general.

DeĄnition 2.3.1.2. In a data lake, the metadata management ensures the availability,
quality and persistence of metadata through a set of feeding, updating and querying
processes. So that users can Ąnd, access, interoperate and reuse all the stored elements
(datasets, preparation, analyses) in the data lake.

2.3.1.3 Metadata Management System

To ensure a proper and efficient metadata management, a system should be implemented
to help users to manage and use metadata (Quix et al., 2016; Liu et al., 2021; Sawadogo
and Darmont, 2021). a uniĄed schema of metadata (said also metadata model) shared
transparently between users, and a system for metadata management that can help users
to generate and explore metadata are essential.

DeĄnition 2.3.1.3. For a data lake, a metadata management system is a system which
is based on deĄned metadata standards and which can help users to generate and maintain
metadata in an automatic way and explore them with ergonomic interfaces.

In this chapter we focus on and discuss only the Ćagship papers for the metadata
management in data lakes.
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2.3.2 Related Work

In this section we summarize the work related to metadata in data lakes. We study each
of the state-of-the-art work according to three viewpoints: general presentation, proposed
metadata and metadata management system.

2.3.2.1 Personal Data Lake

Walker and Alrehamy (2015) proposed a personal data lake design which has a uniĄed
storage of data regardless of their format (structured, semi-structured and unstructured)
and a metadata management to help users to analyze and query metadata of personal
data.

Metadata nothinghere
In a Personal Data Lake, when a dataset (also called data fragments in this paper)

is submitted, metadata about the dataset are submitted at the same time to record the
information of the dataset. The metadata contains the following properties:

• source: a URI (Uniform Resource IdentiĄer) that deĄnes the provider of the dataset.

• context: a URI that deĄnes the context of the dataset by pointing to referenced
sources which indicate dataset categories, classes and schema. In addition, other
semantic information, such as a set of ontologies, can also be added.

• type: a URI that indicates the type of the dataset.

• assertion: used to indicate whether the dataset schema is extracted directly from
structured / semi-structured data or it requires more analysis for unstructured data.

• custom abstraction (optional): a key-value pair which is added to represent facets
of raw data.

Figure 2.9: Metadata storage of Personal Data Lake
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Metadata management system nothinghere
A metadata management system is integrated in the Personal Data Lake Architecture.

Each submitted dataset is serialized into a special JSON object (PLSF object). The PLSF
object is then Ćattened into a sequence of string that carries metadata. The sequence is
Ąnally sliced and generated into different segments and stored in a graph database (Neo4j).

In the graph database, each dataset can be represented by four nodes which are
grouped up by undirected edges (see Fig. 2.9): (i) a metadata-node which includes the
previously presented information; (ii) a rawdata-node which refers to the raw dataset; (iii)
a semantics-node which is a key-value pair representing a speciĄc facet of raw data; and
(iv) a identiĄer-node which is created to store the unique identiĄer of a dataset. In the
graph, the metadata-node acts as a bridge to inter-connect different datasets when they
share common metadata, for instance, two datasets share the context keyword ŞhealthŤ.

All the stored datasets can be searched through a Functional Query Interface (FQI).

2.3.2.2 Constance Data Lake

Hai et al. (2016) presented the data lake system Constance which contains a metadata
management framework to help users to discover, extract and summarize metadata from
structured and semi-structured data (relational databases, JSON, spreadsheets and XML,
etc.). The system can provide a common access interface to a data lake which is a schema-
less repository of raw data.

Metadata nothinghere
Constance can extract metadata from the data sources. According to (Hai et al.,

2016), the extracted metadata are generated to Ąt a uniĄed model. However, they did
not present a formalized model, instead, they indicated different categories of metadata:

• Explicit schematic metadata from relational datasets, for instance, tables, attributes
and constraints of relational database;

• Implicit schema metadata of semi-structured datasets, for instance, entity types,
relationship types, and constraints of JSON or CSV Ąles. These metadata are
extracted by the structured metadata discovery component.

• Semantic metadata such as attribute annotation, record linkage. These metadata
can help users to link different labels if they have the same tag and they are managed
by the component Semantic Metadata Matching. The output of this component a
graph representation of the extracted metadata nodes and their relationships.

Metadata management system nothinghere
In Constance, a metadata management system is integrated which can extract ex-

plicit, implicit metadata and semantic annotations. Moreover, based on the extracted
metadata, Constance can also cluster different schemas according to the distance between
them and summarize schemas by Ąltering the most important elements or relationships.
Nevertheless, there is an integrated user interface that allows users to query stored data
in the data lake.
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2.3.2.3 GEMMS

To reduce the upfront integration costs and provide a more Ćexible solution of data in-
tegration and analysis, (Quix et al., 2016) proposed GEMMS (Generic and Extensible
Metadata Management System). GEMMS can automatically extract metadata from var-
ious datasets when they are loaded in their original format into the data lake repository.

Metadata nothinghere
The proposed metadata in GEMMS can be classiĄed into three categories:

• Structure metadata provide information about the structure of a dataset and its
basic data types. GEMMS speciĄcally extracts internal abstract tree (only element
names and cardinalities) from tree-like datasets (e.g. XML, JSON Ąles) and extracts
matrix structural metadata from structured metadata.

• Semantic metadata provide annotations of datasets to describe their meaning. The
simplest form of an annotation is an ontology term (an URI), but it can also to
other types of identiĄers.

• Properties metadata are a set of properties of datasets. These metadata are stored
in key-value pairs to describe raw data, such as Ąlename, size, location and last
modiĄcation date.

Figure 2.10: Conceptual model of GEMMS

These metadata are modeled into the model shown in Fig. 2.10. In the model, a
data Ąle is used to present a dataset (also called Ąle in this paper), such as a database,
a separate sheet or a XML Ąle. A data unit is a piece of data in a dataset such as a
table in a relational database or sub-tree in a XML Ąle. Both data Ąle and data unit can
be described by metadata property and semantic data. Besides, a data unit can also be
described by structure data because it carries raw data.

Metadata management system nothinghere
The system has three main functions: (i) Metadata extraction which concerns the

extraction of metadata from data sources, such as Ąle type and structural information.
This function is done by the extractor component. (ii) Metadata transformation which
performs the transformation between models and the storage format. This function is
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realized through the serialization component. And (iii) Metadata storage concerns storing
the serialized metadata in a MongoDB database. This function is done with thepersistence
component.

2.3.2.4 GOODS (Google Dataset Search)

To handle structured and semi-structured datasets (structured Ąles, databases, spread-
sheets, etc.) at scale, (Halevy et al., 2016a,b) proposed a post-hoc system dedicated to
organize the datasets that are generated and used in Google. The post-hoc manner allows
the system to collect and aggregate metadata about datasets after the creation, access or
updating of different pipelines without interfering with dataset owners or users.

Metadata nothinghere
GOODS aggregates metadata in a central catalog and it also correlates metadata of

a speciĄc dataset with other dataset information. The catalog contains different types of
information:

• Basic metadata: basic information of each dataset such as size, timestamp, format,
owners, access permissions.

• Provenance: information extracted from productions or consumption, such as read-
ing jobs, writing jobs, downstream and upstream datasets.

• Schema: information of the dataset structure.

• Content summary: information that summarizes the content of the dataset, such as
frequent tokens and data Ąngerprint.

• User-provided annotations: information entered by users to describe the dataset
such as description and annotations.

• Semantics: comments extracted from datasets who conform to a protocol buffer.

• Relationships: relationships among datasets including dataset containment, prove-
nance, logical clusters and content similarity.

Metadata management system nothinghere
A metadata management system is integrated in the GOODS system which has four

principal services: (i) a search engine to narrow search results to help users Ąnd relevant
datasets; (ii) a per-dataset proĄle page displays metadata of a speciĄc dataset; (iii) a
monitoring service to monitor datasets and alter users if they change unexpectedly; (iv)
a annotation service to allow users to annotate datasets to extend dataset metadata.

2.3.2.5 Data Lake of Suriarachchi

Suriarachchi and Plale (2016b) focused on data provenance metadata in the case of process
transformation for data lakes. They introduced the provenance integration challenge of
data lakes and they proposed a reference architecture which contains a central provenance
collection subsystem.
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Metadata nothinghere
The solution of Suriarachchi stores the Ąne-grained provenance information (source

and result data of each process). As a simple example, for the data Ćow diagram presented
in Fig. 2.11: the dataset (also called data product in this work) d1 is transformed (T1 )
to produce datasets d2 and d3. T2 uses d3 and a new dataset d4 to generate d5, d6
and d7. Finally, the dataset d8 is created by T3 with datasets d6 and d7. The stored
metadata are shown in Fig. 2.12.

Figure 2.11: An example of data transformation Ćow

Figure 2.12: Data lineage of the example according to Suriarachchi

Metadata management system nothinghere
The system proposed by Suriarachchi is not a complete metadata management system.

Instead, it extracts only provenance information through its Ingest API and store this
information in a graph database.

2.3.2.6 KAYAK Framework

Maccioni and Torlone (2018) proposed the framework KAYAK which can help data sci-
entists to deĄne, execute and optimize data preparation pipelines in a data lake.

Metadata nothinghere
Regarding metadata management, KAYAK extracts metadata from datasets with ad-

hoc primitives or tasks. The extracted metadata can be classiĄed into intra-metadata
and inter-metadata:

• Intra-metadata concern information of each signal dataset, for instance, descriptive,
statistical, structural and usage information.

• Inter-metadata concern relationships between datasets including integrity constraints
such as inclusion dependencies, and user deĄned relationships such as joinability and
affinity.
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Metadata management system nothinghere
Maccioni and Torlone (2018) did not present a metadata management system in this

work, they focused mainly on the data transformation pipelines.

2.3.2.7 Metadata model of Diamantini

To extract thematic views from heterogeneous and generally unstructured data sources,
Diamantini et al. (2018) presented a metadata model that can structure unstructured
data.

Metadata nothinghere
The metadata model concerns a network-based model for business (business rules,

such as upper and lower limit of a speciĄc Ąeld and integrity constraints) and technical
metadata (data format and schema). The model consists of two elements:

• Objects can be tables and attributes of relational databases, complex/simple element
and their attributes of XML or JSON documents, keywords of unstructured datasets.

• Relationships are used to link different objects. There are three types of relation-
ships: (i) Structural relationship which is used to present that an object ŞcontainsŤ
another object. For instance, a relational database ŞcontainsŤ a table and this table
ŞcontainsŤ its attributes, or a unstructured dataset ŞcontainsŤ a keyword. (ii) Sim-
ilarity relationship which is used to present that an object is ŞsimilarToŤ another
object. (iii) Lemma relationship is used to present that a target object is a ŞlemmaŤ
of the source one. For instance, ŞimpurenessŤ is a lemma of ŞpollutionŤ.

Figure 2.13: Metadata model of Diamantini

The generated metadata are represented in a graph, each object becomes a node and
each relationship becomes an edge. There are two examples of generated datasets. The
Ąrst one is a XML (semi-structured source) called Climate (see Fig. 2.14a). The second
one is a unstructured source called Environment Video (see Fig. 2.14b).

Metadata management system nothinghere
Diamantini et al. (2018) did not present a metadata management system in this work.

2.3.2.8 MEDAL

To ensure the efficiency and comprehension of metadata management, Sawadogo et al.
(2019) proposed evaluation criteria through a list of features for data lake metadata
systems and a metadata typology for MEDAL (MEtadata model for DAta Lakes).
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(a) Climate database metadata (b) Environment Video dataset metadata

Figure 2.14: Examples of generated metadata model of Diamantini

Metadata nothinghere
The authors proposed different metadata to manage datasets (also called data objects

in this paper) that are stored in a data lake. The proposed metadata can be classiĄed
into three categories :

• Intra-metadata refer to information associated with datasets and include (i) proper-
ties which concern a general description of a dataset, such as dataset title, size, last
modiĄcation date and access path, etc.; (ii) summaries and previews which concern a
overview of the content (e.g. word cloud of textual datasets) or structure of a dataset
(schema of structured or semi-structured datasets); (iii) versions which concern dif-
ferent updated datasets; (iv) representations which concern different transformation
results of datasets; and (v) semantic metadata which concern annotations of dataset
meaning, such descriptive tags, textual descriptions or business categories.

• Inter-metadata refer to relationships between different datasets and they can be:
(i) objects groupings which organize datasets into collections according to semantic
metadata (tags, business categories) or some properties (e.g. format or language);
(ii) similarity links concern the similarity between datasets. Similarity are calculated
based on summaries and previews metadata (content or schema information); (iii)
parenthood relationship concern data transformation source and result facts to ensure
the traceability of data in a data lake.

• global-metadata are applied to the entire data lake instead of speciĄc datasets and
include (i) semantic resources which concern knowledge bases (e.g. ontologies, tax-
onomies, thesauri, dictionaries); (ii) indexes which are data structures such as key-
words of textual datasets, patterns or colors of images; and (iii) logs which are used
to track user interactions in the data lake, such as logging in, viewing, modifying
records.

Metadata management system nothinghere
Sawadogo et al. (2019) did not present a metadata management system in this work.

However, they proposed six main features that can be used to evaluate a metadata man-
agement system: semantic enrichment (semantic annotation / proĄling), user tracking,
link generation and conservation, data polymorphism, versioning and indexing.
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2.3.2.9 HANDLE

To ensure the exploitation of data value in a data lake, Eichler et al. (2020) proposed
HANDLE (Handling metAdata maNagement in Data LakEs). HANDLE is a generic
model for metadata which enables comprehensive metadata management.

Metadata nothinghere
HANDLE consists of two parts, a core model and three core model extensions adapted

to different implementations (see Fig. 2.15).
The core model deĄnes all the required elements and relations to model metadata.

The core model consists of three entity classes: data, metadata and property. (i) A data
represents a pointer to a stored data element. To consider different granularity of a
dataset, a data element can be a dataset or its component (a row, a key-pair or a frame
etc.). The attribute storageLocation is used to store the path to the data element. (ii)
A metadata is a piece of information used to describe a data element. For instance, to
record the access information of a data element, the metadata element accessing user can
be used. This information is stored in the attribute connectionContext.(iii) A property is
a key-value pairs to indicate the value of a metadata, for instance, Şname: Hans MullerŤ
can be used to link to the metadata accessing user.

The core model extensions deĄnes more details about zone, granularity and catego-
rization topics. (i) The granularity extension is used to describe data element granularity,
such as table, row, column, header and Ąeld etc. (ii) The zone extension is used to indicate
data maturity, such as transient loading zone, trusted zone, reĄned zone, sandbox and
raw zone. (iii) The categorization extension is indicated metadata category (technical,
business and operational).

Figure 2.15: Metadata model of HANDLE

Metadata management system nothinghere
HANDLE is not yet implemented as a complete metadata management system, but a

graph database (Neo4j) is implemented as the metadata storage.
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2.3.2.10 goldMEDAL

To propose a generic metadata model and to enable the data lineage tracing with the
concept of process, Scholly et al. (2021) introduced a revision of MEDAL model. The
model is compared with different state-of-the-art metadata models and is implemented
for a textual and tabular data lake (AUDAL).

Metadata nothinghere
The goldMEDAL metadata model is presented in Fig. 2.16. Comparing to its previous

version MEDAL, goldMEDAL (i) uses data entity to generalize raw data, representations
and versions, a data entity can be a dataset of any type; (ii) adds the concept process to
record updates, transformations and parenthood relationship information for data lineage
tracking; (iii) uses link to replace similarity links, a link can associate different data
entities or data groups; and (iv) remains the concept of grouping to ensure multiple data
granularity levels.

Figure 2.16: Metadata model of goldMEDAL

Metadata management system nothinghere
To validate the proposition, goldMEDAL metadata model is applied into three differ-

ent data lake systems. The Ąrst one is HOUDAL (Public Housing Data Lake). in this
data lake, the metadata are stored in a graph database (Neo4j) and can be interacted
with Neo4j Cypher queries. The second one is AUDAL which is a textual and tabu-
lar data lake. In this data lake, documents are stored in a document-oriented database
(MongoDB) and their metadata are stored in a Neo4j database which can be accessed
with Cypher queries. The third one is the Archaeological Data Lake. In this data lake,
a metadata management system is integrated and is implemented by using the Apache
Atlas framework.

2.3.3 Global analysis

All the works that we introduced in the section 2.3.2 proposed their metadata solution for
data lakes with different aspects of information. Our global analysis is divided into two
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parts: a Ąrst part where we compare the two components of the approaches, namely the
metadata model and the metadata management system, a second part concerns a FAIR
evaluation.

Metadata Management Approach nothinghere
All the solutions introduced different categories of useful metadata except Eichler et al.

(2020) who proposed only a model of metadata without detailing used metadata (see table
2.3).

Metadata
model

System of metadata management
(MMS)

(Walker and
Alrehamy, 2015)

JSON format
with different

properties

a metadata system with searching interface

(Hai et al.,
2016)

no model a metadata system with searching interface

(Quix et al.,
2016)

UML class
diagram without

attribute

a metadata system with searching interface

(Halevy et al.,
2016a,b)

no model a metadata system that generates and
manages metadata

(Suriarachchi
and Plale,

2016b)

no model no system

(Maccioni and
Torlone, 2018)

no model no system

(Diamantini
et al., 2018)

UML class
diagram without

attribute

no system

(Sawadogo
et al., 2019)

no model no system

(Eichler et al.,
2020)

UML class
diagram without

attribute

no system

(Scholly et al.,
2021)

UML class
diagram without

attribute

Apache Atlas metadata system for
Archaeological data lake

Table 2.3: Global Analysis

Regarding metadata model, a few approaches formalized metadata in a standard
model. Walker and Alrehamy (2015) introduced that, in their data lake, dataset metadata
are Ąrstly serialized in a JSON object and they described the sections and properties of
the JSON object. Quix et al. (2016); Diamantini et al. (2018); Eichler et al. (2020);
Scholly et al. (2021) introduced their metadata solutions with formalized UML metadata
models. However, these metadata models are presented only with entity classes and their
relationships, none of the metadata details (attributes of classes) are introduced.

Regarding metadata management systems, Walker and Alrehamy (2015); Hai
et al. (2016); Quix et al. (2016); Halevy et al. (2016a,b); Scholly et al. (2021) presented
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their solutions that can extract, transform and store metadata. Among them, the meta-
data management systems of Walker and Alrehamy (2015), Scholly et al. (2021) and Hai
et al. (2016) contain interfaces that allow users to search stored metadata.

FAIR Analysis nothinghere
We evaluate the presented approaches according to the FAIR principles (gof, 2016).

FAIR principles concern the guidelines to improve the Ąndability, accessibility, interoper-
ability and reuse of internet digital assets. The FAIR principles are originally proposed
for scientiĄc data through implementation network. We rely on the FAIR principles in
the speciĄc context of data lakes so some deĄnitions was simpliĄed (marked with asterisk)
in the following list:

• Findable
F1. (Meta)data are assigned a globally unique and persistent identiĄer
F2. Data are described with rich metadata (dataset, process and analysis metadata)
*
F3. Metadata clearly and explicitly include the identiĄer of the data they describe
F4. (Meta)data are registered or indexed in a searchable resource

• Accessible
A1. (Meta)data are retrievable in the data lake system *
A2. Metadata are accessible, even when the data are no longer available

• Interoperable
I1. Metadata use a formal, accessible, shared representation *
I2. Metadata use standard vocabularies *
I3. (Meta)data include qualiĄed references to other (meta)data

• Reusable
R1. (Meta)data are associated with detailed provenance *

We summarized the presented approaches and checked if they respect the FAIR prin-
ciples in table 2.4.

Regarding the Ąndability, all of the approaches emphasize that their proposed meta-
data can help users to search datasets stored in a data lake. However, most of them
do not indicate that each stored element is assigned a globally unique identiĄer and this
information is stored as the element metadata. Moreover, none of the approaches contain
metadata of all datasets, transformation processes and analyses.

Regarding accessibility, the approaches of Walker and Alrehamy (2015), Hai et al.
(2016), Quix et al. (2016), Halevy et al. (2016a,b) and Scholly et al. (2021) present
metadata systems that allows users to search and access datasets through interfaces.
None of these authors mentioned metadata in their approaches, metadata are always
available even if the linked data are no longer available.

Regarding interoperability, the authors of all of the approaches explained their
metadata solution with or without a formalized model. With all of the approaches,
different datasets can be linked with common metadata (e.g. a common tag) and/or
provenance metadata. However, only Hai et al. (2016), Quix et al. (2016), Halevy et al.
(2016a,b), Diamantini et al. (2018) and Sawadogo et al. (2019) mentioned that datasets
can have semantic annotations (e.g. ontology).
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Findable Accessible Interoperable Reusable
F1 F2 F3 F4 A1 A2 I1 I2 I3 R1

(Walker and Alrehamy, 2015) ✓ - ✓ ✓ ✓ ? ✓ - ✓ -
(Hai et al., 2016) ? - ? ✓ ✓ ? ✓ ✓ ✓ -
(Quix et al., 2016) ? - ? ✓ ✓ ? ✓ ✓ ✓ -
(Halevy et al., 2016a,b) ✓ - ✓ ✓ ✓ ? ✓ ✓ ✓ ✓

(Suriarachchi and Plale, 2016b) ? - ? ✓ - ? ✓ - ✓ ✓

(Maccioni and Torlone, 2018) ? - ? ✓ - ? ✓ - ✓ -
(Diamantini et al., 2018) ? - ? ✓ - ? ✓ ✓ ✓ -
(Sawadogo et al., 2019) ? - ? ✓ - ? ✓ ✓ ✓ ✓

(Eichler et al., 2020) ? - ? ✓ - ? ✓ - ✓ -
(Scholly et al., 2021) ? - ? ✓ ✓ ? ✓ - ✓ ✓

✓: mentioned or explained with details
? : not mentioned
- : not considered in the approach

Table 2.4: FAIR analysis

Regarding reusability, Halevy et al. (2016a,b), Suriarachchi and Plale (2016b), Sawadogo
et al. (2019) and Scholly et al. (2021) introduced process provenance metadata to trace
the data life-cycle.

2.3.4 Analysis of metadata models

Different authors introduced their metadata models that include information of datasets
and processes. To clarify the comparison of different metadata models on different aspects,
we Ąrstly propose a classiĄcation of dataset metadata. According to the characteristics,
we propose to classify them into three categories:

• Intra-metadata that concern the information of each single dataset, including: (i)
Dataset properties that are dataset basic information, such as name, size, creation
date, etc.. (ii) Schematic metadata that are the information used to describe dataset
structure, such as, table and attribute information of relational datasets, entity
class and property information of semi-structured datasets. (iii) Basic semantic
metadata that are the basic information describing dataset meaning, such as tags,
descriptions. Intra-metadata are tied to single datasets, to ensure that there are
intra-metadata stored in a metadata management system, the data lake should
have at least one dataset. Note that even different datasets can be linked with their
common intra-metadata, these metadata should not be treated as inter-metadata.
For instance, two datasets have the same tag ŞhealthŤ, this information is always
an intra-metadata because one dataset and its metadata are deleted, the tag still
exists for another dataset.

• Inter-metadata that concern the relationships among different datasets, such as
containment (e.g. a relational database instance contains different users/schemas),
similarity/dissimilarity between datasets or user indicated relationship. An inter-
metadata can be added only when there are at least two datasets.
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• Global-metadata that concern advanced semantic annotations such as ontologies.
The global metadata are independent from any datasets, they can exist in a data
lake when there is no dataset.

In table 2.5, we summarized the ingestion mode, ingested dataset type and generated
metadata type of different metadata solutions.

2.3.4.1 Dataset Ingestion

Regarding the data ingestion or process, all the solutions can deal with the batch mode,
only Suriarachchi and Plale (2016b) indicated that they can work with real-time data
transformation processes.

Regarding the ingested or processed dataset type, Quix et al. (2016) only works with
structured datasets; Hai et al. (2016) and Maccioni and Torlone (2018) can only deal
with structured and semi-structured datasets; the other solutions can adapt to all types
of datasets (structured, semi-structured and unstructured).

2.3.4.2 Metadata type

Although data lakes allow users to ingest, process and analyze different types of data,
we observe that the majority of metadata solutions focus only on dataset metadata or
data catalog. Few of them consider the metadata of transformation processes and none
of them studies the metadata of performed analyses.

Regarding dataset metadata, most of the authors explained different types of meta-
data used in their models except Suriarachchi and Plale (2016b) who worked on data
processes and Eichler et al. (2020) who only proposed a model of metadata without in-
troducing the metadata that can be used in their model.

Among authors who proposed dataset metadata, all of them considered intra-metadata
with more or less attributes. Hai et al. (2016) and Diamantini et al. (2018) introduced
schematic and basic semantic metadata categories without describing dataset basic prop-
erties. Scholly et al. (2021) introduced dataset properties and basic semantic metadata. In
their model, different granularity of data and the links among them may implicitly present
dataset schema, but since the author mainly focus on unstructured datasets, they did not
emphasize schematic metadata. Walker and Alrehamy (2015), Quix et al. (2016), Halevy
et al. (2016a) and Maccioni and Torlone (2018) presented their dataset intra-metadata
with properties, schematic and basic semantic metadata. However, Walker and Alrehamy
(2015) only listed 5 metadata and the other authors only introduced the three categories
of metadata with examples, none of the work listed in details all the possible metadata.
Sawadogo et al. (2019) proposed presentations and versions metadata besides the three
categories. However, the authors need to explain with more details their solution in which
data (e.g. a dataset presentation) are stored as metadata (presentations). For instance,
regarding representations and parenthood relationship, when a dataset A is transformed
to dataset B, the B should be representation metadata of A or a new dataset or both? If
B is representation metadata, why choose to use parenthood relationship to link a dataset
and its metadata? If B is a new dataset, are representation metadata still needed? If B
is both, what are the difference between them?

Inter-metadata of datasets are considered by less authors. GOODS (Halevy et al.,
2016a,b) uses four types of relationships of datasets: containment, provenance, logical
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Table 2.5: Context analysis of metadata models
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clusters and content similarity. KAYAK (Maccioni and Torlone, 2018) calculates join-
ability and affinity between datasets. The solution of (Diamantini et al., 2018) calculate
dataset similarity. MEDAL (Sawadogo et al., 2019) considers objects grouping and simi-
larity links. GoldMEDAL(Scholly et al., 2021) uses grouping metadata to cluster datasets.

Global-metadata are also proposed by different solutions. Hai et al. (2016), Quix et al.
(2016) and Halevy et al. (2016a,b) considered to use semantic annotations (e.g. ontology)
to create global links among datasets. Diamantini et al. (2018) proposed to use lemma
metadata in their semantic models of datasets. Sawadogo et al. (2019) considered, besides
semantic annotations, dataset indexes and data lake logs as global metadata too. However,
in our metadata classiĄcation, dataset index and access/process logs are intra-metadata
because they are tied to speciĄc datasets.

Regarding process metadata, Halevy et al. (2016a,b), Suriarachchi and Plale (2016b),
Sawadogo et al. (2019) and Scholly et al. (2021) considered process provenance metadata
to trace data life-cycle. Among them, only Scholly et al. (2021) mentioned that transfor-
mation script can be stored as metadata. Nevertheless, the proposed process metadata
are limited. Other process information, for instance, process execution environment and
logs, is not considered. Users do not have enough metadata to Ąnd and reuse transforma-
tion processes easily. We will also discuss these solutions and other preparation metadata
approaches that are not in the data lake domain in section 4.5.

Regarding analysis metadata in data lakes, to the best of our knowledge, there is
no approach in the literature that deals with this aspect. We will discuss other analysis
metadata approaches that are not in the data lake domain in section 5.4.

2.3.5 Analysis of metadata management systems

Different metadata management system for data lakes are implemented to validate the re-
lated metadata models and to facilitate the metadata generation and searching for users.
To compare the different solutions, we summarized them in four features: metadata gen-
eration, metadata storage, interface of exploration and metadata querying (see table 2.6).

Regarding metadata extraction, all the authors explained how to extract metadata
from different types of data sources. Among their solutions, most of the authors worked
on the automatic extraction of metadata from structured and semi-structured datasets.
Scholly et al. (2021) and Liu et al. (2021) focused on the metadata extraction from
unstructured data sources.

Regarding the metadata storage system, all of the users chose to use NoSQL sys-
tems. Walker and Alrehamy (2015) chose to use a graph database because it focus on rela-
tionships between entities and it is optimized for processing of dense interrelated datasets.
Quix et al. (2016) chose to use a document-oriented database adapted to their metadata
model. Halevy et al. (2016a) chose to use Bigtable, a key-value database, because it offers
per-row transactions consistency and it Ąts the most their GOODS system. Scholly et al.
(2021); Liu et al. (2021) chose to stored metadata in HBase which is integrated in Apache
Atlas.

Regarding interfaces of the systems, Hai et al. (2016) showed a hierarchical search-
ing interface and Scholly et al. (2021); Liu et al. (2021) uses the Apache Atlas interface.

Regarding metadata querying, Hai et al. (2016), Halevy et al. (2016a,b) and Scholly
et al. (2021); Liu et al. (2021) provide predeĄned searching functions for users so that users
who do not know the metadata querying language can explore the data lakes. Walker and
Alrehamy (2015), (Hai et al., 2016) and Quix et al. (2016) offered free query function of
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deep and complicated search for users who can write queries with the metadata system
querying language.
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Table 2.6: Analysis of metadata management systems
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2.4 Conclusion

In this chapter we presented the three main concepts deĄning the scope of our Ph.D
proposals. The concepts are: data lake, data lake architecture and metadata management.

Regarding data lake, we compared different related work and we introduced our proper
deĄnition of data lake. In our deĄnition, data lake is a big data analytics solution that
allows different types of users to ingest, process and access different structural types of
data and guarantees data quality, data security and data life cycle. This deĄnition is
validated by our publication (Ravat and Zhao, 2019a).

Regarding data lake architecture, an overview of the main architectures in industrial
and academic Ąelds were presented. Our proper architecture was also presented which
contains four essential zones: ingestion, preparation, analysis and governance. This ar-
chitecture is validated by our publication (Ravat and Zhao, 2019b).

Regarding metadata management which is the core of data lake governance, we ana-
lyzed different solutions in different aspects. Firstly, we deĄned the concepts of metadata,
metadata management as well as metadata management system. Secondly, we presented
the key works of data lake metadata management in the literature, in particular, we intro-
duced their metadata design and implemented metadata management system. Finally, we
conducted initial cross-cutting discussions of these works from different aspects: global,
metadata model and metadata management system.

After comparing existing solutions, we see the current metadata management are
limited. There is no formalized and detailed metadata model that can be applied to
different types of datasets (structured, semi structured and unstructured) and different
phases of data life-cycle (ingestion, process and analysis). Moreover, there is no system
of metadata management that respects FAIR principles to help users to Ąnd, access,
interoperate and reuse different elements stored in the data lake with ergonomic interfaces.
To remedy these deĄciencies, in chapters 3, 4 and 5, we will introduce our own proposals
and discuss in more details the positioning of the approaches speciĄcally on each part of
the data life cycle (ingestion, processing and analysis).
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3.1 Introduction

Data integration is the phase during which data are moved from one or more sources
to a destination where data are stored and can be accessed by users (Lenzerini, 2002;
Meehan et al., 2017). Today, data integration is commonly discussed under the name of
(i) Extract, Transform and Load (ETL) for data warehousing (Bansal and Kagemann,
2015; Bansal, 2014) and (ii) ingestion for data lake.

ETL of data warehousing has objective of providing an access of integrated and man-
ageable data for decision-making (Simitsis et al., 2009; Vassiliadis, 2009) by the following
steps:

• Extract which is responsible for accessing to different sources and extracting part
of the source data that are deĄned as necessary for decision making during the
conception phase.

• Transform which is responsible for converting the extracted data into coherent and
reliable data for decision making. This phase is also called data consolidation which
is based on data sorting, cleaning, standardization and calculation.

• Load which is responsible for inserting the transformed data into a permanent stor-
age system such as a data warehouse.

Although ETL tools are well developed for data warehousing, it is not adapted to the
big data era. Big data have the characteristics of 3Vs: (i) Various means that the ingested
data are various in data sources (databases, IoT objects, Ąles, etc), data modes (real-time
and batch) and data structural types (structured, semi-structured, unstructured). (ii)
Velocity means that the speed of data creation can be high. And (iii) Volume means
that a great amount of data can be ingested. However, ETL, characterized by Şschema
on writeŤ, integrates data to a predeĄned schema which can not adapt to various data
and the cost of data warehouse can grow exponentially for a greater volume, a better
performance or demanded changes. Therefore, a more Ćexible solution Şschema on readŤ
of data ingestion is proposed for data lakes.

Regarding data lakes, data ingestion concerns only extraction and loading; data are
ingested without transformation and stored in their native format (Dixon, 2010; Fang,
2015). However, data ingestion can not just be a copy-paste process. Data with a large
variety, volume and velocity increase the difficulty of Ąnding and reusing datasets. On
the contrary, all the ingested data are expected to be found, accessed, interacted with
and reused by different types of users (data analysts, data engineers ans data scientists)
who do not have the same needs in the use of data. In addition, trust and conĄdence are
also excepted from users for data exploitation.

Therefore, to ensure the Ąnding and reusability of data in a data lake, during the
ingesting phase, not only data, but also their metadata should both be extracted and
stored.

Different authors proposed data lake metadata management solutions to ensure the
data ingestion phase. Nevertheless, current researches only partially respond to this
problem. Most of the works that are dedicated to ingestion processes are not generic and
focus on a speciĄc aspect. Some works focus only on one type of data (structured (Halevy
et al., 2016a), semi-structured (AlseraĄ et al., 2016) or unstructured (Sawadogo et al.,
2019)), an ingestion mode (batch (AlseraĄ et al., 2016; Sawadogo et al., 2019) or real-
time (Gupta and Giri, 2018)) or a speciĄc domain (Walker and Alrehamy, 2015). Some
works address metadata partially (Halevy et al., 2016a; AlseraĄ et al., 2016). Some works
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deal with metadata but do not propose a formalized model to organize them (Quix et al.,
2016). To the best of our knowledge, there is no solution that formalizes the ingestion
phase of data lake with a metadata model dedicated to this phase.

With the aim of facilitating the search and exploitation of all the ingested data in
a data lake, we propose a data lake ingestion solution. The solution is twofold: (i) an
exhaustive metadata model related to the data ingestion that is introduced in section
3.2, (ii) a formalized process of data ingestion including the generation of all the relative
metadata that is introduced in section 3.3. We also compare our solution with the state
of the art in section 3.4 and we conclude the chapter in section 3.5.

3.2 Metadata of Data Ingestion

To ensure the Ąndability and reuse of ingested data by different users (data analysts, data
scientists, data engineers), the metadata applied on data ingestion (see Fig. 3.1) should
include as much information as possible and should be comprehended by experts who
work in different areas.

Figure 3.1: Data ingestion in a data lake

To include different aspects of information which can help users to comprehend how
data are ingested and to achieve a methodical thinking, we chose to use the 5W1H method
(Shimazu et al., 2006) (abbreviation summarizing what? who? where? when? why?
how?) . Note that for data ingestion in data lakes, the question ŞwhyŤ is not answered
for the reason that data are ingested into a data lake in their native format without
business reasons.

The questions concerning one data ingestion activity are:

• What are the external data sources? What is the data ingestion activity? What
dataset is ingested? What is the ingested dataset quality? What is the ingested
dataset security level? What are the relationships between different ingested datasets?

• Who owns the source data? Who ingested the data? Who is in charge of the
ingested dataset?
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• Where are the ingested dataset stored? Where is the data ingestion code stored?
Where is the ingested dataset stored?

• When are the source data created? When did the ingestion start/end ? When is
datasets created in the data lake?

• How are the data ingested?

The above questions can be classiĄed into four categories: questions of the data lake
common knowledge, external data source, data ingestion activity and ingested dataset (in
our work, the word dataset is used for all different types of collections of data, for instance,
relational databases, spreadsheets, comma-separated values (CSV) Ąles, text Ąles, images,
music Ąles and videos, etc).

3.2.1 Metadata Model on Data Ingestion

To answer all the questions and to consider different types of data sources, datasets and
ingestion modes, we propose a metadata model which includes the following categories of
information (see Fig. 3.2):

Figure 3.2: Metadata model of data ingestion

• With the aim of helping users to understand the common knowledge of the data
lake and to facilitate data processing and analysis, we propose global metadata
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(class GlobalDict) (marked in red). The global metadata concern the knowledge
that is not tied to a speciĄc element in the data lake, but they include:

Ű Word knowledge, as in a dictionary, thesauri and thesaurus, etc. For in-
stance, in a hospital data lake, the organization structure information (rela-
tionships between hospital sites, departments, services and teams etc.) should
be added in the thesauri, so that users can easily understand the structure
regardless if they work on the electronic health record (EHR) database or in-
voicing database.

Ű Semantic annotations, such as ontology.

• With the aim of answering all the questions concerning data source to help users
to conĄrm the origin of ingested data, we propose the external data sources
metadata. These metadata are regrouped in 2 classes: DatasetSource (subclass of
Dataset) and SourceOfStream (marked in orange). DatasetSource will be generated
for all types of data sources while SourceOfStream is for IoT (Internet of Things)
data so that users can Ąnd the origin of the stream data and regroup data from the
same source easily. The metadata include:

Ű name, type (structured, semi-structured, unstructured) of DatasetSource and
description of SourceOfStream answer the question of ŞwhatŤ.

Ű owner, which is the organization who owns the data source, to answer the
question of ŞwhoŤ.

Ű location indicates where the data source is stored to answer the question of
ŞwhereŤ, this information can help users to Ąnd the root of data to give them
more conĄdence.

Ű creationDate to answer the question of ŞwhenŤ.

• With the aim of answering all the questions concerning data ingestion activity to
help users to understand how data are ingested and provide the possibility of reusing
the ingesting process, we propose the data ingestion process metadata (class
Ingest and its association relationships)(marked in yellow) including:

Ű ingestionMode (batch, real-time), ingestionComment and relationships ingest-
From, ingestTo to answer the question of ŞwhatŤ.

Ű relationship ingestedBy that links to class User to answer the question of ŞwhoŤ.

Ű ingestionSourceCodeUrl and ingestionBinaryMachineCodeUrl to answer the
question of ŞwhereŤ.

Ű ingestionStartTime, deĄnedDuration and ingestionEndTime to answer the ques-
tion of ŞwhenŤ. For batch and real-time ingestion, the start time (ingestion-
StartTime) and end time (ingestionEndTime) is the real start and end time of
an ingestion process, however, the duration (deĄnedDuration) is only required
in the case of real-time ingestion.

Ű ingestionMethodName, ingestionEnvironment, ingestionOutputLog and inges-
tionErrorLog to answer the question of ŞhowŤ.
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• With the aim of answering all the questions concerning ingested dataset to help users
to have a global view of ingested data, we propose intra- and inter- metadata. Intra-
metadata describe each single dataset, such as basic characteristics, security and
quality information. while inter-metadata describe the relationships and common
knowledge between different datasets:

Ű The ingested dataset characteristics metadata have the objective of help-
ing users to easily Ąnd, access and understand a dataset without opening it and
checking its content by themselves. The classes DatalakeDataset, EntityClass,
Attibute and Tag (marked in green) are involved and they include:

∗ name, format, ĄlenameExtension, type (structural type), size that are the
basic information to answer the question of ŞwhatŤ.

∗ description and tag that are the semantic information to answer the ques-
tion of ŞwhatŤ.

∗ lined entityClass and attributes that are the schematic information for
(semi-) structured datasets to answer the question of ŞwhatŤ.

∗ administrator to answer the question of ŞwhoŤ.

∗ location, connectionURL to answer the question of ŞwhereŤ.

∗ creationDate to answer the question of ŞwhenŤ.

Ű The quality metadata have the objective of helping users to have more con-
Ądence on the ingested data by providing a Ąrst glimpse of data quality. The
classes QualityMeasurement, QualityDimension and QualityMetric (marked in
blue) are involved. The most commonly used Ąve dimensions (accuracy, in-
tegrity, consistency, completeness and readability) are set by default in the
model (Gyulgyulyan et al., 2019), and users can add more dimensions or met-
rics according to their needs.

Ű The security metadata have the objective of protecting sensitive data. The
classes SensitivityMark, SensitivityLevel (marked in purple) are involved. Sen-
sitivity level is predeĄned by the administrator of data lake, for example, 0
to 5 and 0 indicate the least sensible level, 5 indicate the most sensible level.
And for each dataset or entity class (table) or attribute, a sensible mask which
indicates the sensible level can be added. For instance, in a hospital, the pro-
duction database of the electronic health record (EHR) should be marked with
level 5. If the production data are pseudonymized and stored in a dataset, this
dataset can then be marked with a lower level. The sensitivity information can
help data lake administrator to limit data accesses of users.

Ű The dataset relationship metadata have the objective of helping users to
Ąnd relevant datasets and enrich their analyses. The classes RelationshipDS,
AnalysisDSRelationship (marked in pink) are involved. There are some prede-
Ąned relationships that can be automatically detected by the system such as
the similarity, correlation, containment and logical cluster. In addition, users
can deĄne relationships by themselves, for instance, they indicate overlapping
data or common objects in two different datasets. Moreover, for the same type
of relationship, users can choose different algorithms.

A metadata management system is developed which allows users to search datasets
and consult the different categories of metadata easily (see a use case in section 6.4.1).
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3.2.2 Example of Metadata Instantiation

To demonstrate our metadata model, we introduce two examples of data ingestion result
with real datasets. The used datasets are of different types.

Dataset Description Type Entities Columns Size
MIMIC a freely accessible crit-

ical care database
relational
database

40 534 6.2 GB

CHSI cancer health indicators for
the US counties

csv Ąle 11 587 15 MB

Table 3.1: Ingested datasets

Figure 3.3: Object diagram of MIMIC dataset ingestion

MIMIC is a relational database of health care data1. The data lake administrator
Bob David ingested the dataset on the 25 may 2021 into the data lake. He inputs the
data source name (MIMIC critical care database), location (http://physionet.org), type
(structured), owner (MIT) information and chose to ingest the dataset in the mode of
batch, these information is used to instantiate the DatasetSource class. When the dataset
is ingested in the data lake, Ąrstly, the ingestion information, user (Bob) and the ingested
dataset basic information (name, type, location, creation date, size, connection URL) is

1https://mimic.mit.edu/
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stored in the metadata system. Then Bob added tags (health care, open source, labora-
tory) to the dataset, and chose to let the system detect the schematic information of the
dataset. The system detected 40 tables and 535 attributes of the dataset in total and all
the information is stored as metadata of the dataset. We present the object diagram of
the ingested dataset in Fig. 3.3 (due to the page limit, we only present the metadata of
one table and one attribute).

Figure 3.4: Object diagram of CHSI dataset ingestion

CHSI cancer is a set of CSV Ąles which contain health indicators for each of the
3,141 United States counties2. This dataset was ingested by Ann Rick the 25 may 2021
and is stored in the server srlbd. This dataset is ingested in the same way as MIMIC
dataset, we present the object diagram of the ingestion metadata in Fig. 3.4 (due to the
page limit, we only present the metadata of one table and one attribute of the dataset).

The presented metadata model is dedicated to data ingestion of data lakes. It is
a complete model that is adapted to different structural types of datasets (structured,
semi-structured and unstructured) and different ingesting modes (batch and real-time).
Moreover, the model well describes all data sources, data ingestion activities and ingested
datasets to help users search all elements concerning data ingestion. Especially for data
lake datasets, we consider both inter- and intra- metadata. Inter-metadata help users Ąnd
relevant datasets and enrich their analyses by providing relationships between datasets.

2https://catalog.data.gov/dataset/community-health-status-indicators-chsi-to-

combat-obesity-heart-disease-and-cancer
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Intra-metadata help users to understand each single dataset from different aspects: basic
characteristics, semantic, schematic, sensitivity as well as quality information.

3.3 Ingestion Process and Generation of the Inges-

tion Metadata

The data ingestion process consists of not only ingesting datasets in the data lake but
also instantiating the metadata schema.

Regarding the dataset ingestion, we propose a process for which we combine user ac-
tions and automatic processes done by the system to explain the interactions between
users and the system. Normally, when ingesting a dataset, users can choose (i) to man-
ually input all the information to ensure the metadata accuracy, (ii) to leave the system
automatically detect all the metadata, or (iii) to let the system Ąrstly detect the metadata
then secondly ask users to validate the result so that quality is ensured. We chose the
third solution for our data lake management system because it not only is convenient for
users to balance the efficiency and accuracy but also ensures the sensitive data protection.
Particularly in the healthcare domain, patient medical data need to be protected so that it
is important to let users input or validate the sensitivity metadata to ensure the certainty
of the data usage, such recommendations are mentioned in (Halevy et al., 2016b).

We formalize the data ingestion process by BPMN for the following reasons: (i) BPMN
diagrams can represent complex processes with an intuitive language, (ii) BPMN diagrams
can clearly deĄne the scope of a process from the beginning to the end and (iii) non-
experts can easily understand processes through the graphical language (El Akkaoui and
Zimanyi, 2009; Oliveira and Belo, 2012). The last point is particularly important in a DL
environment with different types of users. Moreover, we also use algorithms to precise
instantiated metadata.

Regarding the generation of metadata, we introduce it through algorithms so as to
clearly identify the complementarity between the metadata instantiation and metadata
storage for each step of data ingestion.

The data ingestion in a data lake consists of two sub-processes (see Fig. 3.5):

Figure 3.5: The data ingestion process

• SP1: The Ąrst sub-process concerns the storage of a new dataset. This phase
permits to establish the data source connection, store the dataset in data lake and
store the metadata of the data source, ingestion process and ingested dataset. In
order to meet the needs of data lake users, we offer different ingestion modes and
several alternatives of storage.
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• SP2: In order to generate all the metadata in the proposed model, the objective
of the second sub-process is to completely instantiate the metadata schema. The
metadata include inter-metadata which concern the relationships among different
datasets and intra-metadata which concern the semantic, schematic, quality and
sensitivity metadata.

3.3.1 SP1. The process of Storing data in the data lake

The objective of this sub-process is to ingest source data into data lake and store metadata
of the data source, ingestion activity as well as some metadata of the ingested datasets.

To do so, Ąrstly, the source data connection needs to be established. Users need to
input the data source name, location and/or connection information manually. Moreover,
in the aim of making the data provenance checking easier, users can input data source
creation date and owner. The data lake framework veriĄes the entered information by
connecting the data source. Once the connection is established, the metadata of the data
source are stored.

Figure 3.6: Store the dataset in the data lake

Secondly, according to the operation mode and data storage chosen by the user, dataset
is stored in the right repository at the right moment. For this sub-process, as depicted
in Fig. 3.6, we offer two operation modes: (i) real-time which concerns the ingestion of
streaming data for a period and (ii) batch for which we proposed three alternatives for
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physical data storage in the data lake: create a new dataset, replace an existing dataset
and merge new data to an existing dataset. During this step, data ingestion process
information (class Ingest, User) and ingested data information (class DatalakeDataset) is
generated and stored.

We also introduce Algo. 1 which includes two main functions of the process of metadata
generation for this step. The Ąrst function is used to instantiate data source metadata
during the connection phase. After the data connection, all the user input information
of the data source are stored (line 1-8 ). When a dataset is ingested in the data lake, the
ingestion process information and the ingested dataset basic information (location, name,
creation time) are instantiated and stored (line 9-13 ).

Algorithm 1: Functions used to ingest datasets into a data lake

/* establish source dataset connection */

1 Function connectDataSource(dataSourceConnection, dataSourceType,
dataSourceLocation, dataSourceName, dataSourceOwner, sourceOfStream,
owner):

2 if tryConnectDataSource(dataSourceConnection, dataSourceLocation) then
3 datasetSource ← instantiateClass(ŚDatasetSourceŠ,

createProperties(ŚnameŠ, dataSourceName, ŚtypeŠ, dataSourceType,
ŚlocationŠ, dataSourceLocation, ŚownerŠ, owner))

4 if sourceOfStream then
5 createRelation(ŚDatasetSource-SourceOfStreamŠ, datasetSource,

sourceOfStream)

6 return datasetSource

7 else
8 return None

/* ingest dataset */

9 Function ingestDataset(datasetSource, ingestionComment, sarteT ime,
duration):

10 ingestionProcess, ingestedDataset ← ingestDatasetInDL(datasetSource,
ingestionMode, startT ime, duration)

11 ingest ← instantiateClass(ŚIngestŠ, getPropertiesIngest(ingestionProcess),
ŚcommentŠ, ingestionComment)

12 createRelation(ŚDatasetSource-IngestŠ, datasetSource, ingest)
13 datalakeDataset ← instantiateClass(ŚDatalakeDatasetŠ,

getPropertiesDatalakeDataset(ingestedDataset))

3.3.2 SP2. The process of completing and storing metadata

The objective of this phase is to facilitate the Ąndability, accessibility and interoperability
of ingested datasets for future analyses by recording more useful information. To achieve
this objective, we need to complete and store not only the information of each single
dataset but also the relationships and shared information between different datasets.
Therefore, during this phase, we instantiate intra-metadata, inter-metadata as well as
global-metadata (see Fig. 3.7).

The generation of intra-metadata includes three sub-processes:
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Figure 3.7: Complete and store corresponding metadata

• The generation of deĄnitional metadata (see Fig. 3.8) concerns storing semantic
and schematic metadata. Semantic metadata consist a list of tags (class Tag) and
a description (attribute datalakeDataset.description) linked a dataset. These meta-
data can be manually input by users. Schematic metadata of structured and semi-
structured databases consist of the database model with the tables/entities (class
EntityClass) and attributes (class NumericAttribute and NominalAttibute) informa-
tion. For unstructured datasets, the data format is detected and stored.

We precise the details of the generation of deĄnitional metadata in Algo. 2. Regard-
ing semantic metadata, users need to input a description and a set of tags linked to
the dataset. The description is stored in the DatalakeDataset object as a propriety
(line 2 ). For each of the input tags, Ąrstly, if it exists already in the data lake,
the system retrieves the existing tag, if not, the system creates an new tag object;
secondly, the tag is linked to the dataset (line 3-9 ). Regarding schematic metadata,
for a structured or semi-structured dataset, the system Ąrstly detects automatically
all its table/entity with attributes and store this information (line 12-21 ). Then
for each predeĄned attribute relationship, the system calculates and stores the re-
sult value between every two attributes (line 22-17 ). For unstructured dataset, the
system detects its format (image, video, text Ąles etc.) and adds this information
to the dataset (line 28-29 ).

• The generation of quality metadata is about collecting predeĄned measures (accu-
racy, integrity, consistency, completeness and readability) and user deĄned measures
to adapt to different use-cases (see Fig. 3.9). This information is calculated accord-
ing to the approaches of (Kwon et al., 2014; Cai and Zhu, 2015) then validated by
users. During this step, information of classes QualityMeasurement, QualityMetric
and QualityDimension is generated.
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• The generation of security metadata consists of the security levels of different data
granularity (dataset, table, column, etc) (see Fig. 3.10). The security metadata is
not necessary, they can be manually input or not, the default value is zero which
means that all users can access the dataset. However, for some special domains, for
example, hospitals, to protect the personal data of patients, the sensitivity meta-
data are mandatory. During this step, information of classes SensitivityMark and
SensitivityLevel is generated. We do not precise the metadata generation process
because it is a manual entry.

Figure 3.8: Complete and store deĄnitional metadata
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Algorithm 2: Functions used to complete deĄnitional metadata

/* instantiating definitional metadata - semantic */

1 Function instantiatingSemanticMetadata(datalakeDataset,
datalakeDatasetDesc, datalakeDatasetTags):

2 addProperties(ŚDatalakeDatasetŠ, datalakeDataset,
createProperties(ŚdescriptionŠ, datalakeDatasetDesc))

/* store tags for datalakeDataset */

3 allTags[] ← getAllTags()
4 foreach t ⊂ datalakeDatasetTags do
5 if t in allTags[] then
6 tag ← getTag(t)

7 else
8 tag ← instantiateClass(ŚTagŠ, createProperties(ŚnameŠ, t))

9 createRelation(ŚDatalakeDataset-TagŠ, DatalakeDataset, tag)

/* instantiating definitional metadata - schematic */

10 Function instantiatingSchematicMetadata(datalakeDataset):
11 if (datalakeDataset.type = ŞstructuredŤ or Şsemi-structuredŤ) then
12 entities[]← getEntityClasses(datalakeDataset)
13 foreach e ⊂ entities do
14 entityClassProperties ← createProperties(ŚnameŠ, getEntityName(e))
15 entityClass← instantiateClass(ŚEntityClassŠ, entityClassProperties)
16 createRelation(ŚDatalakeDateset-EntityClassŠ,

datalakeDataset, entityClass)
17 atts[]← getAttributes(e)
18 foreach att ⊂ atts[] do
19 attributeProperties← createProperties(ŚnameŠ, getAttName(att),

ŚtypeŠ, getAtttype(att))
20 attribute← instantiateClass(ŚAttributeŠ, attributeProperties)
21 createRelation(ŚEntityClass-AttributeŠ, entityClass, attribute)

/* For each predefined RelationshipAtt, calculate the value of

relationship between attributes */

22 analysisAttributes[]← getAnalysisAttribute(atts[], rsAtts[])
23 foreach an ⊂ analysisAttributes[] do
24 relationArr ← instantiateClass(ŚAnalysisAttributeŠ,

createProperties(ŚvalueŠ, an.value)
25 createRelation(ŚAnalysisAttribute-AttributeŠ,

relationArr, an.attribute1)
26 createRelation(ŚAnalysisAttribute-AttributeŠ,

relationArr, an.attribute2)
27 createRelation(ŚAnalysisAttribute-RelationshipAttŠ,

relationArr, an.relationshipAtt)

28 else
29 addProperties(ŚDatalakeDatasetŠ, datalakeDataset,

getDatasetFormat(datalakeDataset))
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Figure 3.9: Complete and store quality metadata

Figure 3.10: Complete and store security metadata

Inter-metadata help users to link different datasets, which are important for data
Ąnding, reuse and interoperability in a data lake (see Algo. 3). The relationships among
datasets (similarity, correlation, containment and logical cluster) can be automatically
generated by the system (Halevy et al., 2016a; Quix et al., 2016; Suriarachchi and Plale,
2016a) (line 1-7 ) or input manually by users (line 8-12 ). Note that the generation of
inter-metadata is not limited in this sub-process, for example, the provenance metadata
can be instantiated during the data storage phase as we mentioned previously. Moreover,
the relationships between different datasets are not limited in the inter-metadata, with
some other intra-metadata attributes, for example, keywords and administrators, we can
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also Ąnd relationship between datasets.
Global-metadata help users to reduce the time on understanding datasets. The the-

saurus is manually input or imported by users.

Algorithm 3: Functions used to complete inter metadata

/* for chosen dataset, calculate automatically relationships */

1 Function calculateRelationships(datalakeDataset):
/* For each predefined RelationshipDS we calculate the value of relationship

between datasets */

2 analysisDSRelationships[]←
getAnalysisDSRelation(datalakeDataset, datalakeDatasets[], relationshipDSs[])

3 foreach anDs ⊂ analysisDSRelationships[] do
4 relationDs← instantiateClass(ŚAnalysisDSRelationshipŠ,

createProperties(ŚvalueŠ, anDs.value))
5 createRelation(ŚAnalysisDSRelationship-DatalakeDatasetŠ,

relationDs, anDs.datalakeDataset1)
6 createRelation(ŚAnalysisDSRelationship-DatalakeDatasetŠ,

relationDs, anDs.datalakeDataset2)
7 createRelation(ŚAnalysisDSRelationship-RelationshipDSŠ,

relationDs, anDs.relationshipDS)

/* for chosen datasets, users input a relationship manually */

8 Function inputRelationships(datalakeDataset1, datalakeDataset2,
relationshiDS, dsRelationshipName, dsRelationshipdesc,
dsRelationshipV alue):

9 analysisDSRelationship ← instantiateClass(ŚAnalysisDSRelationshipŠ, )
10 createRelation(ŚAnalysisDSRelationship-DatalakeDatasetŠ,

relationDs, anDs.datalakeDataset1)
11 createRelation(ŚAnalysisDSRelationship-DatalakeDatasetŠ,

relationDs, anDs.datalakeDataset2)
12 createRelation(ŚAnalysisDSRelationship-RelationshipDSŠ,

relationDs, anDs.relationshipDS)

3.4 Discussion

We introduced our metadata solution of data ingestion in data lakes in the previous
sections. Our solution consists of a metadata model as well as formalized processes of
data ingestion and metadata generation.

Our metadata model includes all the information to answer the 5W1H questions that
we listed in section 3.2. Nevertheless, to present the completeness of our metadata man-
agement and in order to discuss our proposal compared to the state of the art approaches,
we summarize in table. 3.2 - 3.4 the different types of metadata that should be addressed.
In the table, we can see that we have Ąlled in all the metadata categories and for each
categories, we proposed more metadata than the other solutions.

Regarding the data lake management aspects, we can observe that our approach is
the only one that covers different types of ingested data (structured, semi-structured and
unstructured) supported with a metadata model. Moreover, regardless its importance,
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the state of the art approaches do not precise the ingesting mode. Our approach satisĄes
both batch and real-time data ingestion which are both crucial in data lake environment.

Regarding data source metadata, we proposed external data source metadata that
allow users to check the provenance of ingested datasets so that they can easily Ąnd the
data source in case of updating datasets. Six attributes were dedicated in our model for
this subject but we have noticed that the other approaches neglected this point.

Regarding datasets metadata, we distinguish three types of metadata: intra-metadata,
inter-metadata and global-metadata, we underline that:

• Intra-metadata provides a vision of each single dataset which help users to under-
stand datasets easier and faster. Globally most of the approaches mentioned the
characteristics, semantic and schematic metadata. In our approach, we have the
originality of sensitivity and quality metadata to ensure the access control and data
governance. Note that in our model, different versions, representations or updates
of one datasets are stored as different datasets. Moreover, even a dataset is deleted,
we always keep its metadata to ensure the tracability and Ąndability of data.

• Inter-metadata indicate the relationships between different datasets to improve the
efficacy of data Ąnding and version tracing. Inter-metadata are also important to
help users Ąnd relevant datasets to enrich their analyses. We remark that CM4DL,
DL-Wrangling and GEMMS do not deĄne this type of metadata. Our model is more
complete with particularly the possibility for users to deĄne their own relationships
between datasets.

• Global-metadata concern the common knowledge and logs of a data lake, which
reduces user learning costs. A few authors (Sawadogo et al., 2019)(Terrizzano et al.,
2015) deĄne these metadata. In our approach, we use a global dictionary for shared
information among datasets and it can be simply used by research engines.

Regarding the ingestion process metadata, to the best of our knowledge, there is only
GOODS (Halevy et al., 2016a,b) which address this point without a formalized processing
model. We highlight that ingestion process metadata are as important as other metadata
because the ingestion information allows users to reuse, update and modify ingestion
process to ensure the efficiency of data ingestion. For the ingestion process, program,
execution and data Ćow metadata should be saved. The approach of Goods (Halevy
et al., 2016a) saves reading and writing jobs. In our approach, we are more generic as we
save source code URL, binary machine code URL and the whole environment. GOODS
does not track the execution metadata while we back up ingestion start time, duration,
output log, error log and further comments. Our approach is then compliant with lineage
on processes.

Concerning the process of data ingestion in data lakes, to the best of our knowledge,
there are only a few solutions. (AlseraĄ et al., 2016) introduced metadata management
during the data ingestion phase by three phases (ingest, digest and exploit) for batch data.
They focused on the extraction of inter-metadata from semi-structured data. (Gupta and
Giri, 2018) presented a data ingestion framework which consists of a data collector and
a data integrator. They explained different approaches to bring data into a Hadoop
data lake without integrating a formalized ingestion processing and a metadata model
for this phase. (Terrizzano et al., 2015) introduced data ingestion by three steps without
a formalized processing. These data ingestion solutions did not introduce a formalized
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and detailed ingestion process. Moreover, they did not include both the aspects of data
ingestion process and the metadata generation of data ingestion. Therefore, we proposed a
more complete metadata model and a data ingestion process that includes the interaction
of the data lake system and users.

3.5 Conclusion

In this chapter, we focus on the metadata of data ingestion in data lakes. Data ingestion is
the Ąrst phase of data life-cycle in data lakes, it concerns only data extraction and loading.
During this phase, data are ingested without transformation and stored in their native
format. However, with the aim of facilitating data analysis in data lakes by ensuring the
Ąndability and reusability of datasets, the ingestion process is much more complicated
than a simple copy and paste of data.

To answer to this question, we brought up a complete metadata management solution
that can be adapted to different types of data sources (IoT objects, databases, Ąles),
different structural types of datasets (structured, semi-structured and unstructured) and
ingestion modes (batch and real-time).

Our solution is twofold: Ąrstly, we proposed a metadata model which contain more
categories of information and more attributes in different categories than the existing
solutions. Moreover, the model is formalized in a class diagram that can help users
to easily understand different aspects of metadata. We also instantiated the ingestion
metadata for two real datasets to validate the model.

Secondly, with the aim of facilitating data lake user work, we proposed a formalized
process of data ingestion for data lakes which can be rarely found in the state of the
art. The ingestion process is formalized by BPMN to show the interactions between the
data lake system and users. Moreover, we used three algorithms to introduce the details
of metadata generation for different tasks of data ingestion. Our solution balances the
efficiency and accuracy of data ingestion and also can protect sensitive data.

The metadata model with a use-case of IoT (Internet of Things) data is validated by
our published work in IDEAS2021 (Zhao et al., 2021b).

Data lake is a solution of big data analytics and it is not limited to the ingestion of
raw data. In the next chapter, we will introduce the next step - data preparation.
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4.1 Introduction

Data preparation is a set of acts that transform raw data into a form which is appropriate
to be analyzed (Brownlee, 2020; Coussement et al., 2017). In the context of data mining
(DM) and machine learning (ML), data preparation is also called data pre-processing, it
concerns the construction of Ąnal dataset on which analysis algorithms can be applied
by data cleaning, integration, transformation, reduction and discretization. (Alasadi and
Bhaya, 2017; Alexandropoulos et al., 19ed; Garćıa et al., 2016; Zhou et al., 2017).

Data wranglers (data analysts, engineers and scientists) spend a bulk of time to clean-
ing and reĄning data workĆows to answer analytical questions (Rezig et al., 2019). It is
commonly agreed that up to 80% of a data wrangler time can be spent on transforming
data into a usable dataset for either descriptive or predictive analysis (Jin et al., 2017).
Data lakes offer the possibility of facilitating the data preparation phase by helping data
wranglers to Ąnd, consult and reuse existing data preparation processes across different
stored elements. Additionally, in a data lake, data lineage can be presented to help users
easily understand how a dataset is created, so that users can have more trust on the data
that they use.

To ensure the Ąndability, accessibility, interoperability and reusability of existing pro-
cesses to facilitate data preparation in data lakes, a metadata management system ded-
icated to data preparation is essential. On one hand, the metadata should describe not
only the general information of processes, such as name, created time and execution log,
but also the content of processes to help data wranglers to Ąnd and to understand a pro-
cess in a easy way. On the other hand, the metadata generation should be standardized
to facilitate the work of data lake users.

Different metadata solutions for data lakes have been proposed or implemented in
academia and industry. Nevertheless, only a few academic data lake metadata solutions
deal with information about data preparation processes for speciĄc objectives (Hidalgo
et al., 2009; Maccioni and Torlone, 2018; van Vlymen and de Lusignan, 2005; Zhang and
Ives, 2020) which can not be applied on all different types of data preparation (transforma-
tion process of ETL used in BI, data mining, machine learning). The industrial products,
such as Zaloni1 or Azure2, provide lineage metadata by retrieving the information about
data source, process, and result data but these process metadata primarily provide basic
process information such as program name, created time, user and free text description.
This basic information is not enough to help different data wranglers, such as business
intelligence (BI) experts, data scientists and data analysts on preparing data.

In the aim of doing this, we propose a data preparation metadata solution which not
only contains basic information of processes but also integrates a controlled vocabulary
to describe them. Moreover, we formalize the metadata generation through algorithms to
help data wranglers better understand how to manage the preparation metadata.

To present our contribution, the purpose of the chapter is threefold. Firstly, in section
4.2, we present the metadata of data preparation in data lakes. Secondly, in section 4.3,
we introduce in detail a list of predeĄned operations of data preparation which is the
core of our metadata solution. Thirdly, in section 4.4, we explain how to generate the
metadata by three algorithms. We discuss other metadata solutions of data preparation
in data lakes and compare them with our solution in section 4.5. And we conclude the
chapter in section 4.6.

1https://www.zaloni.com/aws/
2https://azure.microsoft.com/en-us/solutions/data-lake/
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4.2. METADATA OF DATA PREPARATION 59

4.2 Metadata of Data Preparation

To ensure the efficiency and efficacy of data preparation by helping different data wran-
glers (data analysts, data scientists, data engineers) to Ąnd and reuse existing processes,
the data preparation metadata (see Fig. 4.1) are essential and should include as much
information as possible.

Figure 4.1: Data preparation in a data lake

To consider different aspects of information to help data wranglers comprehend how
data are prepared, we chose to use the 5W1H method (abbreviation summarizing what?
who? where? when? why? how?) (Shimazu et al., 2006) to achieve a methodical thinking.

The questions concerning a data process are:

• What is the source data of process? What is the result data of process? What is
the process (It contains what operations)? What is the execution environment?

• Who created the processes?

• Where is the source code stored? Where is the binary machine code stored?

• When is the process created? When is the process modiĄed? When is the process
executed?

• Why the process is performed?

• How data are processed?

The above questions concern the source datasets, processes and result datasets, in
this chapter, we only introduce the information of processes for the reason that dataset
metadata are already introduced in the previous chapter. Regarding the questions of pro-
cesses, they can be classiĄed into three categories: process technical information, business
objectives and content details.

4.2.1 Metadata Model on Data Preparation

To answers all the questions to facilitate data preparation of data wranglers, we propose
a metadata model (see Fig. 4.2) that includes the three different aspects of information:
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• In order to ensure that data wranglers can easily Ąnd, access and re-execute existing
data processing programs, we propose process technical metadata. We decompose
these metadata into characteristics, location and execution metadata:

Ű Characteristics metadata has the objective of helping data wranglers to
search all the data processing programs of data preparation and to have a global
view of them (for instance, the programming language, input and output of
a program) without going into details. These metadata are modeled through
attributes in classes Process, User and JobTitle) (marked in red) which include:

∗ name to answer the question of ŞwhatŤ

∗ programLanguage to answer the question of ŞwhatŤ

∗ creationTime to answer the question of ŞwhenŤ.

∗ lastModifTime to answer the question of ŞwhenŤ.

∗ relationships sourceData, targetData and realtimeProcess to help data wran-
glers to understand the data lineage. The metadata sourceData and target-
Data are for batch process which transforms one or more datalakeDataset
and create new datasets. While realtimeProcess is for real-time process
which connects to a data source and transforms it directly. This informa-
tion is for answering the quesiton of ŞwhatŤ.

∗ relationship hasSubprocess to link subprocess to parent process to answer
the question of ŞwhatŤ.

∗ user.lastName, user.ĄrstName, user.Privilege, jobTitle.description and jobTi-
tle.jobtitle to answer the question of ŞwhoŤ.

Ű Location metadata have objective of helping data wranglers to access pro-
cessing program codes when they want to check, modify, or reuse them. These
metadata are modeled through attributes in class Process (marked in orange)
which include:

∗ binaryMachineCodeUrl to help data wranglers Ąnd the executable program
to answer to question of ŞwhereŤ.

∗ sourceCodeUrl to help data wranglers Ąnd the program source code so
that they can reuse the source code directly or after modiĄcations. This
information answers the question of ŞwhereŤ.

Ű Execution metadata have the objective of helping data wranglers to un-
derstand how data are processed and providing the possibility of reusing or
re-executing data preparation processes. These metadata are modeled through
attributes in class Process (marked in green) which contains:

∗ executionEnvironment, executionOutputLog, executionErrorLog and execu-
tionComment to answer the question of ŞhowŤ.

∗ executionDate to answer the question of ŞwhenŤ.

• In order to help data wranglers to understand the business objective of processes
besides technical information, we propose the business metadata. These metadata
are modeled through attributes in classes Process and Tag (marked in yellow) which
include:

Ű process.description to answer the question of ŞwhyŤ.
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Ű tag.name and the relationship hasTag to tie some keywords to a process to
facilitate the process understanding and searching. This information answers
as well the question of ŞwhyŤ.

• In order to help data wranglers to fast understand the content of a process with-
out requiring them to open and check the programs source code line by line, we
propose the operation metadata. These metadata are modeled through classes
OperationOfProcess and Operation (marked in pink) which include:

Ű operation which is a set of data preparation operations that are predeĄned in
the system to answer the question of ŞwhatŤ (we will introduce the operations
in the next section with more details).

Ű operationOfProcess to describe the details of used operation to answer the
question of ŞwhatŤ.

Figure 4.2: Metadata model for data preparation

A metadata management system is developed which allows users to search preparation
processes and consult different categories of metadata easily (see a use case in section
6.4.2).
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4.2.2 Example of Metadata Instantiation

To demonstrate our metadata model of data preparation, we introduce two examples of
real data preparation cases (see table 4.1). The used datasets are of different types and
are transformed by different modes.

Preparation process Source dataset Target dataset
MIMIC-OMOP MIMIC OMOP
CHSI-Cancer analysis CHSI cancer Colon cancer, Breast cancer, lung cancer

Table 4.1: Preparation examples

MIMIC-OMOP3 is a process that uses ETL to transform the MIMIC dataset to
a relational database OMOP that respects the OMOP CDM (common data model) for
future analysis. This process includes both mapping structural clinical data and stan-
dardizing local terminologies. We present the object diagram of the data preparation in
Fig. 4.3.

Due to the size of the page, we only present part of the project metadata that concerns
a sub-process (etl/person) and its operations. The process MIMIC-OMOP is created at
the 22 Jun 2021 to transform MIMIC dataset to OMOP dataset. Its source code is
stored in srlbd.***:***/user0120/ preparation/mimic-omop/sourceCode/. The process
has an sub-process which concerns the creation of the person table of OMOP, to create
this table, the sub-process joined different useful tables, split dob attribute, converted
patient gender information, selected useful features, and used aggregation function.

CHSI-Cancer analysis is a process to prepare an analysis that has the objective of
identifying the indicators having an important impact on the colon cancer. The process is
about extracting three datasets (colon, breast and lung) from the CHSI initial dataset for
the reason that with an high number of indicators dedicated to multiple types of illnesses
(especially on cancers), an analysis can be difficult to be performed directly in a unique
dataset. The extracted datasets contain indicators oriented on the analysis of the colon,
breast and lung cancers, respectively, through individuals with measures of obesity, high
blood pressure and smoker. Each line represents a set of individuals living in a same
county for each state of the United States. Thus, 3,141 rows are available. We present
the object diagram of the data preparation in Fig. 4.4.

Due to the page limit, we only present the metadata of one sub-process that creates
colon table and its operations. To start the metadata generation, user inputs data source
(USA CHSI DATASET ), prescription description (create colon cancer dataset), creation
time (2021-06-22T00:00:00Z ), source code URL (srlbd.***:***/user0120/preparation/
chsi cancer analysis/ ). For this process, user also inputs the used operation himself,
the process concerns only feature selection and this information is added in the metadata
system.

The presented metadata model is dedicated to data preparation of data lakes. It is
a complete model that is adapted to different types of data preparation (transformation
process of ETL used in BI, data mining, machine learning) and different ingesting modes
(batch and real-time) by different data wranglers (data analysts, data scientist and data
engineers). Moreover, the model well describes the data preparation process by different
aspects to help data wranglers to search and reuse existing process easily. Especially for
the data process content, we chose to use a set of predeĄned operations to describe it

3https://github.com/MIT-LCP/mimic-omop
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Figure 4.3: Object diagram of process MIMIC - OMOP

so that data wranglers can easily and fast Ąnd useful processes without read the process
source code in details (we will introduce the list of operation in the following section).

4.3 Coarse-Grained Data Preparation Operations

To help users to easily understand the content of a data preparation process, it is impor-
tant to describe the used operations in the processing program. In a data lake, differ-
ent types of data preparations (transformation process of ETL used in BI, data mining,
machine learning etc.) can be applied on different types of datasets (structured, semi-
structured and unstructured). However, to the best of our knowledge, there is no solution
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Figure 4.4: Object diagram of process CHSI - Cancer analysis

that summarizes and standardizes all the operations that can be carried out in a data lake.
Moreover, current solutions mainly work on a special type of data preparation and focus
on the automatization of data transformation (Maccioni and Torlone, 2018; El Akkaoui
and Zimanyi, 2009) by translating every line of the code of existing data processes. Never-
theless, Ąne-grained operational metadata require a long and tedious work that decreases
the effectiveness and efficiency of data lake management.

Therefore, with the objective of helping data wranglers to know what are the main
activities of preparation processes to ensure the Ąndability and reusability of processes and
at the same time to guarantee the efficiency and effectiveness of metadata management,
we propose to use a set of coarse-grained operations to describe data processes. Moreover,
with the aim of deĄning clear and standardized metadata, we propose to use a controlled
language to describe all different data preparation operations.

In the context of data lake, a data process is composed of a set of operations. We deĄne
Ąve categories that can include all the different operations: data integration, data cleaning,
data transformation, data discretization and data reduction (see Fig. 4.5). Each operation
can be deĄned as OP ((DSinput1, [DSinput2...DSinputN ]);[CONDITION ]), where:

• OP is the data preparation operation.

• DSinput is the source dataset(s).

• CONDITION is the optional argument of the operation.
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Figure 4.5: Data preparation in data lake

To be complete, for each category, we explain its operations with a deĄnition and a
controlled language (see table. 4.3).

• Data integration operations are used for combining multiple datasets. A data
lake stores different types of datasets, whether they are schema-less or not. If data
wranglers can Ąnd existing integrating operations, they can prepare data more easily
and Ąnd relative datasets to enrich their data analysis.

Data integration
Merge/Appending MERGE(DSinput1, DSinput2)

Combination of different data sources which have compatible
elements (same data type).

Join JOIN((DSinput1, DSinput2); [JOINED ATT ])
Combination of different datasets with common values.

Table 4.2: Data preparation operations - data integration

• Data cleaning operations are used to solve the missing values, noise data, outlier,
redundancy and inconsistencies problems. This step is important to ensure the
required level of data quality.

Data cleaning
Missing values MISSING V ALUES (DSinput; [ATTRIBUTES])

Imputation of missing values and (i) discard the instances con-
taining missing values or (ii) Ąll the missing value.

Incorrect data INCORRECT DATA (DSinput; [ATTRIBUTES])
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Table 4.3 continued from previous page
Data cleaning

Correction of error data by (i) Ąltering or (ii) replacing them.
Outlier OUTLIER (DSinput; [ATTRIBUTES])

Detection and correction of outliers.

Duplication
DUPLUICATION (DSinput; [ATTRIBUTES
/OBSERV ATIONS])
Detection and limitation of same instances or columns that
appears for more than one time.

Inconsistency INCONSISTENCY (DSinput; [ATTRIBUTES])
Consistency checking and converting or replacing inconsistent
data.

Table 4.3: Data preparation operations - data cleaning

• Data transformation operations aim to convert or manipulate data to meet the
analysis requirements. In a data lake, raw data are stored in their native format
and are processed while in use, in other words, data that are not formalized or
cleansed are still stored. The relevant metadata can help data wranglers to save
time and effort by helping them understand the native format of data and reuse
existing transformations.

Data transformation
Data aggregation AGGREGATE (DSinput; [AGGREGATEDATTRIBUTES])

Gathering data and presents them in a summary form
Data normalization NORMALIZE (DSinput; [NORMALIZEDATTRIBUTES])

Adjusting data values to a speciĄc range

Data generalization
GENERALIZE(DSinput; [GENERALIZED
(ATTRIBUTES])
Abstracting data in a dataset from a low conceptual level to a
higher one

Data standardization
STANDARDIZE(DSinput; [STANDARDIZED
ATTRIBUTES])
Transforming data to a common format according to a stan-
dard

Data converting CONV ERT (DSinput; [CONV ERTED ATTRIBUTES])
Modifying data value and updating data type

Data splitting SPLIT (DSinput; [SPLITTED ATTRIBUTES])
Spliting or dividing one data value into two or more data values

Data combination COMBINE (DSinput; [ATTRIBUTES])
Combining two or more data values into one data value

Data calculation
CALCULATE (DSinput; [CALCULATED
ATTRIBUTES])
Appliying method on existing values to judge the number

Data de-identiĄcation
DEIDENTIFY (DSinput; [DEIDENTITIED
ATTRIBUTES])
Anonymizing data to protected user privacy

Data encryption ENCRY PT (DSinput; [RESULT FORMAT ])

66



4.3. COARSE-GRAINED DATA PREPARATION OPERATIONS 67

Table 4.4 continued from previous page
Data transformation

Translating dataset from the original format into another form
or code

Data encoding ENCODE (DSinput; [RESULT FORMAT ])
Encoding dataset into a speciĄed format

Data structuring STRUCTURE (DSinput; [RESULT STRUCTURE])
Restructuring a dataset format into another format

Table 4.4: Data preparation operations - transformation

• Data discretization transforms continuous variables, models or functions into dis-
crete form: DISCRETIZE(DSinput; [ATTRIBUTES]). For instance, data bin-
ning, histogram, entropy based and clustering. Data discretization metadata allow
data wranglers to understand what data is transformed and how the transformations
are done so data wranglers can directly reuse the result or process.

Data discretization
Data discretization DISCRETIZE(DSinput; [ATTRIBUTES])

Transforming continuous variables, models or functions into
discrete form

Table 4.5: Data preparation operations - discretization

• Data reduction has the objective of reducing dataset size by selecting a portion
of data, compressing data or replacing or mapping data to an alternate or smaller
representation of data. Data reduction information can help data wranglers to better
prepare data for analysis. For instance, the feature selection metadata helps data
wranglers to understand potentially relative attributes; the dimensionality reduction
process allows data wranglers to represent data in a reduced dimension space.

Data reduction
Instance selection IS (DSinput; [INSTANCES NUMBER /CONDITION ])

Reducing the quantity of data by removing instances
Feature selection FS (DSinput; [FEATURES NUMBER /CONDITION ])

Selecting a subset of attributes
Dimensionality reduc-
tion

DR (DSinput); [DIMENSION NUMBER])

Transforming data from a high-dimensional level into a low-
dimensional level to compress data

Table 4.6: Data preparation operations - reduction

Example of the controlled language. To better introduce the operations, we present
an example application of a process which have for objective of mapping MIMIC patient
data to OMOP standardized person table4. This process concerns extracting data from
three MIMIC tables (patients, admissions, gcpt ethnicity to concept), transforming data

4https://ohdsi.github.io/CommonDataModel/cdm531.html
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according to OMOP standards and loading data into the person table. Regarding the
extraction of patients table, four attributes (features) are selected (subject id, mimic id,
gender, dob) before which gender is converted to OMOP concept id ( ŚFŠ → 8532, ŚMŠ →
8507) and dob (data of birth) is split into year, month and day. Regarding the extraction of
gcpt ethnicity to concept, two attributes (features) are selected (ethnicity, race concept id,
ethnicity concept id). Regarding the extraction of admissions table, two attributes (sub-
ject id, ethnicity) are selected before which data are aggregated by the attribute subject id.
Then all the three tables are joined to load all extracted data into one OMOP table person.
This process uses the following operations:

• patients ← FS (patients; subject id, mimic id, CONV ERT (patients; gender),
SPLIT (patients; dob))

• gcpt ethnicity to concept← FS (gcpt ethnicity to concept; ethnicity, race concept id,
ethnicity concept id)

• admissions ← AGGREGATE (admissions; subject id)

• OMOP SCHEMA.PERSON← JOIN((gcpt ethnicity to concept, JOIN((patients,
admissions); subject id)) ; race source value)

4.4 Generation of the Preparation Metadata

In the aim of facilitating the tasks of data wranglers and ensuring homogeneous integration
of metadata, the generation of metadata should be standardized. To do so, we propose to
use algorithms to systematize the metadata generation. Metadata can be generated in two
ways: manual and automatic. Manual generation requires data wrangler to input all the
used operations by hand. The manually input metadata have a better veracity but it costs
wranglers effort and time. Automatic generation is done by the metadata system, this
type of generation saves time and effort of data wranglers but the result is less veracious
than manual input. To balance the efficiency and correctness of operation metadata
generation, we propose to mix the two ways: (i) data wranglers need to input metadata
that can not be detected by the system, such as process description, tags, process binary
machine code URL and source code URL, they can also input or validate the operation
metadata in the case that they want to improve the veracity. (ii) The metadata system
should automatically detect execution and operation metadata to facilitate the work of
data wranglers.

We explain the metadata generation through two algorithms, in Algo. 4, we introduce
how the system can store the general preparation metadata and in Algo. 5, we introduce
the detection of operation metadata in details.

To start the generation of preparation metadata, users need to indicate the source
data; input the process description, creation data, process source code location, binary
machine code location, execution environment; upload execution log and process source
code Ąle; and set the operation detection level (see Algo. 4). The system Ąrstly detect
the process name and program language from the process code Ąle (line 1-2 ). Secondly,
it detects execution date and error log from the log Ąle (line 3-5 ). Thirdly, all the input
and detected information are stored for the process object (line 6-7 ). Finally, the system
detects and stores operation metadata.
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Algorithm 4: Detect general data preparation metadata

Input: data source, prcs desc, prcs creation date, prcs source code url,
prcs binary machine code url, prcs execution env,
prcs execution comment, detection level

Data: process Ąle, prcs execution log, dic file extensions
1 prcs name ← get process name(process)
2 prcs lang ← get process language(get Ąle extension(process),

dic file extensions)
3 execution date ← get execution date(prcs execution log)
4 execution log ← get execution log(prcs execution log)
5 execution error log ← get execution error log(prcs execution log);
6 proc ← createNode(ŚProcessŠ, createProperties(ŚnameŠ, prcs name,

ŚcreationDateŠ, prcs creation date, ŚdescriptionŠ, prcs desc, ŚsourceCodeUrlŠ,
prcs source code url, ŚlanguageŠ, prcs lang, ŚbinaryMachineCodeUrlŠ,
prcs binary machine code url, ŚexecutionEnvironmentŠ, prcs execution env,
ŚexecutionDateŠ, execution date, ŚexecutionOutputLogŠ, execution log,
ŚexecutionErrorLogŠ, execution error log, ŚexecutionCommentŠ,
prcs execution comment)

7 createRelation(ŚDatalakeDataset-ProcessŠ, data source, proc)
8 if detection level == Ścomment levelŠ then
9 detecte operation comment(proj lang, process, proc)

10 else
11 detecte operation code(proj lang, process, proc)

The automatic operation metadata generation can be done in two levels (see Algo. 5).
(i) The Ąrst level is the comment level for which the operation detection will run on all
the comments of a processing program. The advantage of this level is that explicit words
in the comments can facilitate the coarse-grained operation detection. The disadvantage
is that when a program code does not have comment or the comments are scribble, then
there is no result or the result does not make sense. (ii) The second level is the code
level for which the auto-detect program will run on the process script code. This level
can always provide a result but the detection can be lengthy when the program code
is complicated. For the automatic operation detection, the following prerequisites are
required:

• A dictionary of Ąlename extension (Dic Ąle extensions) to recognize different types
of language (.py, .java ...).

• A dictionary of comment syntax (Dic comment syntax) of different languages to
extract comments from different languages (Ś#Š for Python, Ś//Š, Ś/*Š and Ś*/Š for
Java...).

• A dictionary of operations (Dic operations) to link keywords in comments to oper-
ations. For instance, the words ŞjoinŤ, ŞjoinsŤ, ŞleftjoinŤ, ŞrightjoinŤ are all linked
to the operation JOIN(). The process of detecting keywords from comments can be
optimized by tokenization borrowed from nature language processing (NLP) tech-
niques, for instance, Byte Pair Encoding (BPE).
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• A dictionary of predeĄned words used in the syntax of different languages (Dic syntax
words) to extract operations from source code of processes. For instance, select is

a word used in SQL language to select features, SelectKBest is a word (function
name) used in Python for the same objective.

When users choose comment level, the function detect operation comment() is called
(see Algo. 5). The system Ąnds Ąrstly the comment syntax of the programming language
with the help of Dic comment syntax (line 2 ). Secondly, all the comments in the program
code will be extracted (line 3 ). Then, for each line of comment, the system detects key
annotation words to generate and store operation metadata (line 4-9). When code level is
selected, the function detect operation code(), the code level has the same logic then the
comment one, but it get all the code lines and detects syntax key words with (Dic syntax
words) to retrieve used operations.

Algorithm 5: Detect operation metadata at comment level and code level

Input: proj lang, process, proc
Data: dic comment syntax, Dic syntax words

1 Function detect operation comment(proj lang, process, proc):
2 comment syntaxes[] ← get comment syntaxe(proj lang,

dic comment syntax)
3 comments[] ← get all comments(process, comment syntaxes[])
4 foreach com ⊂ comments[] do
5 op ← check operation(com, dic operations)
6 if op then
7 operation of process ← createNode(ŚOperationOfProcessŠ,

createProperties(ŚdescriptionŠ, com))
8 createRelation(ŚProcess-OperationOfProcessŠ, proc,

operation of process)
9 createRelation(ŚOperationOfProcess-OperationŠ, operation of process,

op)

10 Function detect operation code(proj lang, process, proc):
11 comment syntaxes[] ← get comment syntaxe(proj lang,

dic comment syntax)
12 code lines[] ← get all code lines(process, comment syntaxes[])
13 foreach cl ⊂ code lines[] do
14 op ← check operation(cl, dic syntax words)
15 if op then
16 operation of process ← createNode(ŚOperationOfProcessŠ,

createProperties(ŚdescriptionŠ, cl))
17 createRelation(ŚProcess-OperationOfProcessŠ, proc,

operation of process)
18 createRelation(ŚOperationOfProcess-OperationŠ, operation of process,

op)

70



4.5. DISCUSSION 71

4.5 Discussion

In this chapter, we introduced a metadata model dedicated to data preparation and a
formalized process of metadata generation.

Regarding metadata of data preparation in data lakes, we proposed a model that
includes process technical (characteristics, location and execution), deĄnitional and op-
eration metadata to allow data wrangler to Ąnd, access, interoperate and reuse existing
data preparation processes. Our model is more complete than current solutions. To the
best of our knowledge, there are only a few works (Maccioni and Torlone, 2018; Hidalgo
et al., 2009; van Vlymen and de Lusignan, 2005; Zhang and Ives, 2020) in the literature
that introduced metadata on data preparation in the context of big data or data lake.

The author of (Maccioni and Torlone, 2018) presented a framework KAYAK that
helps data scientists to deĄne and optimize data preparation pipelines of data mining
in data lakes. Their data lake has a metadata management which manages inter- and
intra- metadata of datasets. Although their solution uses pipelines (a set of primitives),
primitives (a set of tasks) and tasks (an atomic operation in KAYAK) to describe data
preparation process, this information is not included in their metadata system.

The authors of (Hidalgo et al., 2009) deĄne a metadata schema describing data prepa-
ration tasks in the context of data mining. The system aims to automate data preparation
by identifying its requirements which are classiĄed into eight categories: objective, out-
put, deĄnition, control, Ćow, content, composition and execution. This approach focuses
on the automatization of data preparation by identifying tasks of processes. However, the
proposed metadata model does not have enough information to help users easily reuse
a process, such as, process source code location, process binary machine code location,
program language and execution environment, etc.

The authors of (van Vlymen and de Lusignan, 2005) introduced a metadata system for
primary care big data to control the process of transformation and analysis. The system
adds six elements of metadata to the Primary Care Data Quality (PCDQ) renal program:
study/audit name, queries of data extraction, data collection number, data type, repeat
number and a processing suffix. As described in this approach, we observe that there is a
focus on quality aspects which does not cover all the transformations and problems that
we Ąnd in DL. Moreover, in this work there is not a generic metadata model presented.

The authors of (Zhang and Ives, 2020) develop a DL solution of search and manage-
ment for the Jupyter Notebook data science platform. The framework additionally takes
into account the data process to help users specify the type of task to perform. However,
their solution focuses on the datasets relatedness searching in Machine Learning (ML)
domain. It is not enough for data lakes that allow different types of data processing.

In the industrial world, different solutions of data lake with integrated metadata man-
agement are offered, eg. Microsoft Azure, Amazon AWS. There are also well devel-
oped open-source solutions such as Apache Atlas. Nevertheless, these metadata solutions
mainly take into account the data stored in data lake. Regarding data preparation, meta-
data are limited to basic information, eg. source data, target data and process time which
are not enough to help wranglers to Ąnd and reuse processes.

Moreover, our metadata model can be applied on different types of data preparation
(transformation process of ETL used in BI, data mining, machine learning). To check the
completeness of our proposed operation metadata, we compare in table. 4.7-4.8 the list of
our data preparation operations with other solutions. The work we refer to in the table
is mostly for data mining or machine learning data preparation, because to the best of
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Table 4.7: Comparison of different solutions of data preparation operations (Part I)
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Table 4.8: Comparison of different solutions of data preparation operations (Part II)
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our knowledge, there is no data lake metadata solution summarized possible preparation
operations. From the table, we can see that some authors only mentioned names of op-
erations without explaining them in details (Iliou et al., 2018), some authors explained
limited operations with details (Alasadi and Bhaya, 2017; Alexandropoulos et al., 19ed;
Zhou et al., 2017; Garćıa et al., 2015, 2016; Berti-Equille, 2019; Wirth and Hipp, 2000).
Our list of coarse-grained operations covers all different tasks of data preparation (in-
tegration, cleaning, transformation, reduction and discretization) and can be applied on
different types of preparations (Extract, Transform, Load (ETL) procedure, data mining,
machine learning) for all different structural types of data (structured, semi-structured
and unstructured).

Regarding the preparation metadata generation, to the best of our knowledge, our
solution is the only one that can generate all the preparation metadata thought wranglers
manual input and system automatic generation at comment and code levels in data lakes.

4.6 Conclusion

In this chapter, we focus on the metadata of data preparation in data lakes. Data prepa-
ration is the phase during which raw data are transformed by a set of acts into a form that
is appropriate to analyze. It is commonly agreed that is the most time-consuming and
effort-consuming phase of data analysis. Data lakes can facilitate the data preparation
phase by helping data wranglers to Ąnd, access and reuse existing data transformations
if an efficient and effective metadata management system is integrated. However, today,
only few works focus on data preparation in data lakes and none of them are dedicated
to data preparation searching and reuse.

To address this deĄciency, we proposed a complete metadata management solution
dedicated to data preparation that can be adapted to different types of data processes
(transformation process of ETL used in BI, data mining, machine learning) and ingestion
modes (batch and real-time). Our solution is twofold: Ąrstly, we borough up a formal-
ized metadata model which is complete and which includes different categories of process
information (technical, business, operation). The operation metadata is based on a pre-
deĄned list of operations which can be applied to different types of data preparation and
which are formalized by a controlled language. Secondly, in order to facilitating the work
of data wranglers by automatizing metadata generation, we proposed a formalized pro-
cess through algorithms. This process combines data wranglers manual input and system
automatic metadata detection to balance the efficiency and correctness of metadata man-
agement. Moreover, the automatic detection can be done on two levels (program code
level and comment level) for different use cases.

The metadata model is validated by our published work in SOFSEM2021 (Megdiche
et al., 2021).

Data lake is a solution of big data analytics and data preparation is dedicated to
prepare data for Ąnal analyses. In the next chapter, we will introduce the next step - data
analysis.
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5.1 Introduction

Data analysis is the activity during which different users (such as data scientists, data
analysts and BI professionals) study and examine data by different techniques (such as
data mining, machine learning and reporting) to discover useful information for supporting
decision-making (Judd et al., 2011; OŠNeil and Schutt, 2013).

Data lakes, one of the most popular data analytic solutions of today, should help users
to perform more efficient and efficacious data analysis on different aspects:

• helping users to Ąnd useful and relevant existing datasets or analyses by crossing all
stored elements.

• helping users to interoperate or reuse existing analyses by providing information of
used algorithms with parameters and evaluation results etc.

• helping users to choose the most appropriate model/algorithm by providing infor-
mation or pre-executed landmarkers results.

• helping users to generate and maintain the above information to facilitate data lake
management.

Although the ultimate goal of data lake is to facilitate data analysis, few data lake
solution is proposed to improve the effectiveness and efficiency of the work of data ana-
lysts through metadata dedicated to support decisional analysis. Regarding data analysis
without considering data lakes, in the Ąeld of meta-learning, different metadata models
of machine learning or data mining analysis are proposed by W3C (Esteves et al., 2016)
and other authors (Keet et al., 2015; Panov et al., 2014). Although these solutions can
support data analysts to make better choices on data mining process for speciĄc datasets,
users can not Ąnd needed information by looking though all the existing datasets and
analyses as well as the relationships between them.

Therefore, to address this absence, with the aim of facilitating data analysis by im-
proving the Ąndability, accessibility, interoperability and reusability of existing analysis
and providing datasets and attributes descriptive information to help users on dataset
and feature selection, we propose a metadata solution dedicated to data analysis. Our
solution is twofold, Ąrstly, we propose an exhaustive metadata model related to the data
analysis phase in section 5.2. Secondly, we formalize the process of analysis metadata
generation to make it systematic, standardized for all users and to ensure the automati-
zation of metadata generation in section 5.3. Finally, we compare our solution with the
state of the art in section 5.4 and conclude the chapter in section 5.5.

5.2 Metadata Model of Data Analysis

In order to help users to Ąnd and reuse performed model or algorithms, the metadata
applied on data analysis (see Fig. 5.1) should include as much information as possible and
should be comprehended by different types of users (data analysts, data scientists and
data engineers).

To consider different aspects of information that can help users to search existing
analyses, to understand how an analysis is designed and performed, to know interest-
ing datasets detailed information, we choose to apply the 5W1H method (abbreviation
summarizing what? who? where? when? why? how?) to achieve a methodical thinking.

The questions concerning a data analysis are:
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Figure 5.1: Data analysis in a data lake

• What is the analysis? What is the analyzed dataset? What are the analyzed
attributes? What are the selected features? What is the selected class (target
attribute)? What is the output model? What are the relevant datasets of the
analyzed dataset? What are the datasets that correspond to a new analysis subject?
What are the details of an interesting dataset? What are the attributes in an
interesting dataset?

• Who performed the analyses?

• Where is the analysis implementation stored?

• When was the analysis performed?

• Why was the analysis performed?

• How was the analysis performed (used tool, algorithm, parameters)? How was the
analysis result evaluated (measures, results)?

The above questions can be classiĄed into three categories: questions of the dataset,
attribute and analysis information.

5.2.1 Metadata Model on Data Analysis

To answer the questions, we propose a metadata model that capitalizes the full experi-
ences of data analysis which includes (i) descriptive information about datasets (statistics
of dataset values), (ii) descriptive information about attributes and (iii) analytical in-
formation about analyses (performed implementations and the used algorithms with pa-
rameters). Note that we already introduced dataset metadata including characteristics,
quality and security information in section 3.2. However, the introduced dataset metadata
are not enough to help users to decide whether or not analyze a dataset. Therefore in this
section, we will introduce in details more datasets metadata oriented to data analysis.

5.2.1.1 Metadata on Datasets

The dataset metadata have the objective to allow users to have a clear vision of dataset
schema and the statistical information of its value without necessarily opening and brows-
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Figure 5.2: Metadata on datasets and attributes

ing the dataset to facilitate data examining. With this objective, we propose metadata of
datasets which include Ąve categories of information (see white classes in Fig. 5.2):

• To facilitate the feature engineering step (including feature selection problems and
target class understanding) by helping users to understand the structure of datasets,
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we propose schema metadata which relate to tables/entities and attributes of
dataset. These metadata are modeled through the attributes marked in blue in
three classes (DatalakeDataset, EntityClass and Attribute).

• To help users to solve dimensionality issues such as reducing dimensionality of size
limits related to execution environments, we propose dimension metadata which
relate to the size of dataset. The metadata include the number of attributes, number
of instances as well as the dimensionality (number of attributes divided by number of
instances) of each table/entity in a dataset. They are modeled through the statistical
information of datasets which is marked in orange in the class EntityClass.

• To be transparent on the quality of analysis results, data analysts should be aware
of the presence of missing data in dataset and adopt the best strategy. To handle
this need in data analysis, we propose missing value metadata. These metadata
include the information of the number and percentage of missing values as well as the
number and percentage of instances containing missing values of each table/entity
of a dataset. They are modeled through the attributes marked in green in the class
EntityClass.

• When users want to do an analysis, they have to agree on the bias of the data that
they want to manage. To help users to understand the data bias (such as mea-
surement bias, sampling bias, representation bias(Dorleon et al., 2021) we propose
distribution metadata. These metadata are expressed by 34 information, such as
attribute entropy, kurtosis of numeric attributes and standard deviation of numeric
attributes of a dataset. They are modeled through the attributes marked in yellow
in the class EntityClass.

• To select analysis algorithm, past experiences in similar datasets can be very help-
ful, so the dataset relationship metadata are proposed. These metadata refer to
relationships between different datasets such as similarity/dissimilarity and corre-
lation. They are modeled through the attributes marked in purple in the classes
AnalysisDSRelationship and RelationshipAtt.

5.2.1.2 Metadata on Attributes

In order to allow users to have detailed information of attributes in the chosen dataset and
facilitate the feature selection and algorithm selection phase of data analysis. We propose
the attribute metadata to help users to understand a dataset at the attribute level. For
example, to select features, users may need to choose attributes that do not contain any
missing values for their predictive analysis. Or when dimensionality reduction approaches
(Principal Component Analysis (PCA)) are employed, users need to know indicators of
correlation or covariance.

The metadata on attributes includes Ąve categories of information (see the gray classes
in Fig. 5.2):

• Attribute type metadata concern two levels of classiĄcation, the Ąrst one in-
dicates if an attribute is nominal or numeric (classes NominalAttribute and Nu-
mericAttribute, the second one indicates precisely the type of an attribute (At-
tribute.type).
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• Missing value metadata (marked in red) consist of the number of missing values,
number of non-missing values, normalized missing values count and their percent-
ages of each attribute.

• Distribution metadata (marked in pink) concern the statistical analysis of at-
tribute values, such as the entropy, distinct values, Kurtosis of numerical attribute
and whether the values of a nominal attribute follow a discrete uniform distribution.

• Attribute relationship metadata concern the relationships between two differ-
ent attributes (marked in dark blue), for which different relationships such as the
SpearmanŠs rank correlation, PearsonŠs correlation and mutual information can be
calculated.

5.2.1.3 Metadata on Data Analysis

The purpose of metadata on analysis is to ensure collaborative capabilities. As far as ma-
chine learning is concerned, especially supervised machine learning, metadata on datasets
and attributes are useful but not sufficient. Indeed, the same dataset can be used for
different analyses with different classes/targets or features (in this chapter, we deĄne the
class/target attribute for supervised analysis as the target attributes, all the other at-
tributes are features.). It is important to help users to obtain information on previous
analyses, as existing analyses can be directly reused or contribute to improve current
analyses. In addition, a user can also be interested in landmarker information which is
obtained by performing basic learning algorithms.

Therefore, we propose the analytical metadata (see the dark blue classes in Fig. 5.3)
to help users Ąnd and potentially reuse existing analyses with their basic characteristics,
selected features and target class, implementation technical information, output model
and evaluation of the result.

• In order to facilitate analysis searching and to help users to have a general view of an
analysis, we propose analysis basic characteristics metadata. These metadata
are modeled in classes Analysis, Study, Task, Tag and User (marked in red). A
study is a project which is a set of analyses that have the same subject. An analysis
can link to a task which concerns an aspect of objective of the project.

Ű Analysis.name, Study.name, Task.name, Analysis.typeAnalysis (for instance,
machine learning), Analysis.subTypeAnalysis (for instance, supervised) are the
basic information of analysis and they answer the question of ŞwhatŤ.

Ű Analysis.creationDate is the date of creation of an analysis, it answers the
question of ŞwhenŤ.

Ű Analysis.descriptionAnalysis, Study.description, Task.description describe the
objective or subject of analyses, they answer the question of ŞwhyŤ.

Ű user is the person who preformed the analysis, it answers the question of ŞwhoŤ.

• In order to help users to know the selected features and target/class of an analysis so
that they can decide easier weather or not use the same features for other analyses,
we propose analysis of features/target metadata. These metadata concern
statistical analysis of features/target values and they answer the question of Şwhat
features/targetŤ. They are modeled in the classes AnalysisTarget, AnalysisFeatures,
AnalysisNumericFeatures, AnalysisNominalFeatures (marked in purple).
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Figure 5.3: Metadata on data analysis

• In order to help users understand how an analysis is preformed to facilitate the
algorithm selection or parameter setting, we propose implementation metadata
which concerns technical information of analysis. These metadata are modeled
through classes Implementation, Landermarker, Software, Algorithm, Parameter
and ParameterSetting (marked in green).
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Ű name and description of class Implementation present the semantic information
of implementations, they answer the question of ŞwhatŤ.

Ű sourceCodeURL of class Implementation indicates the location of implementa-
tion source code to answer the question of ŞwhereŤ.

Ű languageProgram of class Implementation and the information in class Software
explain how the analysis is implemented.

Ű information in classes Algorithm, Parameter, ParameterSetting shows the al-
gorithms details of an implementation to answer the question ŞhowŤ.

• In order to help users to check the result of an analysis to let them evaluate different
implementations and easily make decisions on algorithm selection and parameter se-
lection, we propose evaluation metadata. These metadata answer the question
of Şwhat resultŤ and they are modeled through classes OutputModel, ModelEvalua-
tion, EvaluationMeasure, EvaluationSpeciĄcation and EvaluationProcedure (marked
in yellow).

• In order to help users to Ąnd relevant tables to enrich their analysis or to help them
to Ąnd possibly useful implemented analyses, we propose the dataset relationship
metadata (marked in pink). These metadata are introduced in section 3.2.

A metadata management system is developed which allows users to search analyses
and consult different categories of metadata easily (see a use case in section 6.4.3).

5.2.2 Example of Metadata Instantiation

To demonstrate our metadata model, we introduce an example of data analysis cases.
The analyzed dataset is the breast cancer dataset which is transformed from the CHSI
dataset (we introduced the CHSI dataset in section 3.3 and the preparation process of
the creation of breast cancer in section 4.4.)

The Ąrst part of the example concerns the dataset and attribute metadata. The
dataset breast cancer contains only one one-dimension table which has six attributes
(CHSI County Name,CHSI State Name,Obesity,High Blood Pres,Smoker,Brst Cancer) and
3141 instances. The statistical metadata are presented in dataset and attribute objects.
The attribute relationships are calculated for the dataset and the dataset relationships
are calculated among three datasets (breast cancer, lung cancer, colon cancer datasets).
In Fig. 5.4, we present the object diagram of metadata of breast cancer dataset, due to
the page limit, we only show details of one numeric attribute, one nominal attribute,
one relationship of datasets (dissimilarity) and one relationship of attributes (Pearson
correlation).

The second part of the example concerns an analysis performance. In this example,
users carried out an analysis about the breast cancer dataset. For this analysis, the at-
tributes county, state, obesity, high blood pressure and smoker are selected as features
and breast cancer is selected as the class/target. The statistical and distribution in-
formation are calculated to instantiate the AnalysisFeaturesm, AnalysisNumericFeatures,
and AnalysisNominalFeatures classes. Moreover, the algorithm KNN with parameters
n neighbors=10 and test size=0.2 is used to analyze the dataset. An object diagram
which contains all the above metadata of the analysis is shown in Fig. 5.5.

The presented metadata model is dedicated to data analysis of data lakes. It is a
complete model that contains not only descriptive information of datasets and attributes
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Figure 5.4: Object diagram of breast cancer analysis - datasets and attributes

(statistics on attribute values, management of missing values and relationships between
datasets and attributes), but also analytical information on performed analyses of these
datasets (studies, analyses, implementations with used algorithms and parameters and
evaluations of result). All these metadata can facilitate data analysis by providing sta-
tistical information of dataset values to help users select features and class/target and
providing performed analyses experience information to help users to choose algorithms
and parameters.
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Figure 5.5: Object diagram of breast cancer analysis - implementation

5.3 Generation of the Analysis Metadata

To facilitate the work of users, the data science process including analysis metadata gen-
eration and maintenance should be industrialized. To achieve this objective, we propose a
standardized process of analysis metadata generation through algorithms. With the three
algorithms, we can not only differentiate metadata that should be entered by hand and
those can be detected automatically, but also explain how metadata are generated and
stored.
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Algorithm 6: DatasetAttributesMetadata

Input: connectionURL, descriptionDS
Data: newDS
/* store dataset properties */

1 datalakeDatasetProperties ← createProperties(ŚdescriptionŠ,
getDatasetName(newDS), ŚconnectionURLŠ, connectionURL, ŚsizeŠ,
getFileSize(newDS))

2 datalakeDataset ← createNode(ŚDatalakeDatasetŠ, datalakeDatasetProperties)
/* store schematic metadata */

3 datasetStruct ← getDatasetStructurality(connexionURL)
4 if (datasetStruct.type = ŞstructuredŤ or Şsemi-structuredŤ) then
5 entities[] ← getEntityClasses(newDataset)
6 foreach e ⊂ entities do
7 atts[] ← getAttributes(e)
8 entityClassProperties ← createProperties(ŚnameŠ, getEntityName(e),

getEntityStatistics(atts[]))
// function getEntityStatistics() returns an array including the name and

value of each statistical metadata

9 entityClass← createNode(ŚEntityClassŠ, entityCLassProperties)
10 createRelation(ŚDatalakeDateset-EntityClassŠ,

datalakeDataset, entityClass)
11 foreach att ⊂ atts[] do
12 if getAttType(att) = ŚnumericŠ then
13 numericAttributeProperties← createProperties(ŚnameŠ,

getAttName(att), getNumericAttStat(att)) attribute←
createNodeNeo4j(ŚNumericAttributeŠ,
numericAttributeProperties)

14 else
15 nominalAttributeProperties← createProperties(ŚnameŠ,

getAttName(att), getNominalAttStat(att))
16 attribute← createNode(ŚNominalAttributeŠ,

nominalAttributeProperties)

17 createRelation(ŚEntityClass-Attribute]Š, entityClass, attribute)

/* For each predefined RelationshipAtt we calculate the value of

relationship between attributes */

18 analysisAttributes[]← getAnalysisAttribute(atts[], relationshipAtts[])
19 foreach an ⊂ analysisAttributes[] do
20 relationArr ← createNode(ŚAnalysisAttributeŠ,

createProperties(ŚvalueŠ, an.value)
21 createRelation(ŚAnalysisAttribute-AttributeŠ,

relationArr, an.attribute1)
22 createRelation(ŚAnalysisAttribute-AttributeŠ,

relationArr, an.attribute2)
23 createRelation(ŚAnalysisAttribute-RelationshipAttŠ,

relationArr, an.relationshipAtt)
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24 else
25 addAttToNeo4jNode(datalakeDataset, getDatasetFormat(newDS))

/* For each predefined RelationshipDS we calculate the value of relationship

between datasets */

26 analysisDSRelationships[]←
getAnalysisDSRelation(datalakeDataset, datalakeDatasets[], relationshipDSs[])

27 foreach anDs ⊂ analysisDSRelationships[] do
28 relationDs← createNode(ŠAnalysisDSRelationshipŠ, createProperties(ŠvalueŠ,

anDs.value))
29 createRelation(ŠAnalysisDSRelationship-DatalakeDatasetŠ,

relationDs, anDs.datalakeDataset1)
30 createRelation(ŠAnalysisDSRelationship-DatalakeDatasetŠ,

relationDs, anDs.datalakeDataset2)
31 createRelation(ŠAnalysisDSRelationship-RelationshipDSŠ,

relationDs, anDs.relationshipDS)

The Ąrst algorithm has the objective of generating analysis metadata of datasets and
attributes (see Algo. 6). Users need to input dataset location or connection URL and
a description, so that the system stores the location and description metadata of the
dataset (line 1-2 ). Then data structural type is detected (line 3 ). For a structured
or semi-structured dataset, the system retrieves all its tables/entities (line 4-5 ), and
for each of them (i) calculates statistical information of dataset values (line 6-10 ); (ii)
calculates different statistical information of each attribute (line 11-17 ) according to its
type (numeric or nominal); (iii) relationships between different attributes (line 18-23 ).
For an unstructured dataset, only its format is detected and stored (line 24-25 ). Finally,
the relationships between different datasets are calculated (line 26-31 ).

The second algorithm is for collecting pre-analyzing metadata which concern features/-
target analysis and landmarker information (see Algo. 7). For each business requirement,
users can create a study. Within a study, users can perform different analyses. For each
analysis, users need to describe the analysis with a name and a description, indicate the
used dataset, choose class/target attribute and features. All the input information is
stored in the system (line 1-8 ). Moreover, the system calculates automatically statistical
metadata of the set of features (line 9-14 ). Besides the statistical information, the system
can perform predeĄned or user deĄned basic learning algorithms (landmarkers) and store
the relative metadata (line 15-25 ).

The third algorithm is for generating metadata of implementations of analyses (see
Algo. 8). The system provides an interface with which users can input descriptive in-
formation, for instance, name and description of implementation, preformed algorithm
with the set of parameters. The system can store all these metadata appropriately in the
metadata database.
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Algorithm 7: Pre analysis

Input: studyName, studyDesc, datalakeDataset, targetAtt, features[],
analysisName, analysisDesc

Data: selected dataset ds
/* calculate statistics for analysis */

1 Function statisticsAnalysis(study, datalakeDataset, targetAtt, features[],
analysisName, analysisDesc):

2 analysis ← createAnalysis(ŚAnalysisŠ, createProperties(ŚnameŠ,
analysisName, ŚdescriptionŠ, analysisDesc)

3 createRelation(ŚAnalysis-DatalakeDatasetŠ, analysis, datalakeDataset)
4 createRelation(ŚAnalysis-StudyŠ, analysis, study)
5 analysisTarget ← createNode(ŚAnalysisTargetŠ)
6 createRelation(ŚAnalysis-AnalysisTargetŠ, analysis, analysisTarget)
7 createRelation(ŚAnalysisTarget-AttributeŠ, analysisTarget, targetAtt)
8 analysisFeatures ← createNode(ŚAnalysisFeaturesŠ,

createProperties(getStatAnalysisFeatures(features[])))
9 createRelation(ŚAnalysis-AnalysisFeaturesŠ, analysis, analysisFeatures)

10 analysisNumericFeatures ← createNode(ŚAnalysisNumericFeaturesŠ,
createProperties(getStatAnalysisNumericFeatures(features[])))

11 createRelation(ŚAnalysisNumericFeatures-AnalysisFeaturesŠ,
analysisNumericFeatures, analysisFeatures)

12 analysisNominalFeatures ← createNodeNeo4j(ŚAnalysisNominalFeaturesŠ,
createProperties(getStatAnalysisNominalFeatures(features[])))

13 createRelation(ŚAnalysisNominalFeatures-AnalysisFeaturesŠ,
analysisNominalFeatures, analysisFeatures)

14 return analysis

/* run predefined landmarkers */

15 Function runLandmarkers(study, datalakeDataset, targetAtt, features[]):
16 landmarkers[] ← getLandmarkers()
17 foreach lm ⊂ landmarkers[] do
18 analysis ← statisticsAnalysis(study, datalakeDataset, targetAtt,

features[], lm.name, lm.description)
19 output ← runAlgo(analysis, lm)
20 outputModel ← createNode(ŚOutputModelŠ, createProperties(ŚnameŠ, ,

ŚdescriptionŠ, output))
21 createRelation(ŚAnalysis-OutputModelŠ, analysis, outputModel)
22 foreach m ⊂ getEvaluationMeasures() do
23 modelEvaluation ← createNode(ŚMoedlEvaluationŠ,

createProperties(ŚvalueŠ, evaluate(m, analysis))
24 createRelation(ŚAnalysis-ModelEvaluationŠ, analysis,

modelEvaluation)
25 createRelation(ŚModelEvaluation-EvaluationMeasureŠ,

modelEvaluation, m)

26 study ← createNode(ŚStudyŠ, createProperties(ŚnameŠ, studyName, ŚdescriptionŠ,
studyDesc))

27 runLandmarkers(study, datalakeDataset, targetAtt, features[])
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Algorithm 8: Analyse dataset

Input: study, analysisName, analysisDesc, datalakeDataset, targetAtt, features[],
sourceCode, algo, paras[], paraSets[]

Data: selected dataset ds
1 analysis← statisticsAnalysis(study, datalakeDataset, targetAtt, features[],

analysisName, analysisDesc)
2 implementation← createNode(ŚImplementationŠ, createProperties(ŚsourceCodeŠ,

sourceCode))
3 createRelation(ŚImplementation-AnalysisŠ, implementation, analysis)
4 algo← createNode(ŚAlgorithmŠ, createProperties(ŚnameŠ, algo.name,

ŚdescriptionŠ, algo.description))
5 createRelation(ŚImplementation-AlgorithmŠ, implementation, algo)
6 foreach para ⊂ paras[] do
7 parameter ← createNode(ŚParameterŠ, createProperties(ŚnameŠ, para))
8 createRelation(ŚImplementation-ParameterŠ, implementation, parameter)

9 foreach paraSet ⊂ paraSets[] do
10 parameterSetting ← createNode(ŚParameterSettingŠ,

createProperties(ŚvalueŠ, paraSet.value))
11 createRelation(ŚImplementation-ParameterSettingŠ,

implementation, parameterSetting)
12 createRelation(ŚParameterSetting-ParameterŠ, parameterSetting,

getParameter(paraSet.para))

13 output← runAlgo(analysis, algo)
14 outputModel← createNode(ŚOutputModelŠ, createProperties(ŚnameŠ, ,

ŚdescriptionŠ, output))
15 createRelation(ŚAnalysis-OutputModelŠ, analysis, outputModel)
16 foreach m ⊂ getEvaluationMeasures() do
17 modelEvaluation← createNode(ŚMoedlEvaluationŠ, createProperties(ŚvalueŠ,

evaluate(algo, analysis))
18 createRelation(ŚAnalysis-ModelEvaluationŠ, analysis, modelEvaluation)
19 createRelation(ŚModelEvaluation-EvaluationMeasureŠ, modelEvaluation, m)

5.4 Discussion

In this chapter, we introduced a metadata model dedicated to data analysis and a for-
malized process of metadata generation.

Regarding metadata of data analysis, in the literature, the metadata challenge for
data analysis is especially studied in the meta-learning Ąeld. Meta-learning solutions are
able to learn from the past analysis experiences (Hutter et al., 2019) in order to improve
the effectiveness of machine learning algorithms. In this paradigm, metadata describe
learning tasks (algorithms) and previously learned models (results). These metadata
concern, for instance, hyper-parameters of predictive models, pipelines of compositions or
also meta-features.

In a high level vision of these works, a lack of consensus is emerging about the metadata
to be used, not only in the machine learning context, but also in data analysis more
generally. The works deĄning in a formal setting the classiĄcation of the relevant metadata
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Table 5.1: Comparison of different ML schemas and ontologies
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are scarce. The works of (Bilalli et al., 2016; Rivolli et al., 2018; Keet et al., 2015; Panov
et al., 2014) and a W3C machine learning model (Esteves et al., 2016) investigate a
classiĄcation of metadata related to data analysis.

Regarding machine learning model, different ontologies of data mining are proposed
(Keet et al., 2015; Panov et al., 2014). (Keet et al., 2015) contains detailed descriptions of
data mining tasks, data, algorithms, hyper-parameters and workĆows. (Panov et al., 2014)
deĄnes data mining entities in three layers: speciĄcation, implementation and application.
The W3C ML model (Esteves et al., 2016) is oriented to machine learning process. Never-
theless, the relationships between datasets and attributes are not considered whereas we
intend to do it in the context of data lakes. However, one of the important advantages of
data lakes is to cross multiple sources of data, so that the relationships between these data
are crucial. Hence, adding relationship metadata is inevitable in order to facilitate the
work of analysts by selecting and querying relevant datasets and corresponding attributes.

We dress in table 5.1 a comparison between our model and the basic W3C ML spec-
iĄcation (Esteves et al., 2016) and ontologies schemas (Keet et al., 2015; Panov et al.,
2014). We remark a compatibility between the approaches on the basic components of ML
such as task algorithm or parameter. However, our model contains not only data model-
ing and algorithm metadata, but also the metadata generated during the data collection
and preparation phases, including characteristics, statistical metadata, and relationships
between datasets and between attributes. This information is essential to deal with the
Feature Selection (FS) (Solorio-Fernández et al., 2020) problem. It also facilitates data
analysis tasks by allowing users to broaden their perspective on the data by viewing the
results of performed analyses (Al-Tashi et al., 2020).

Regarding formalized process of analysis metadata generation, to the best of our knowl-
edge, we are the only one who offered standardized process to generate metadata in an
semi-automatic way for the enhancement of the metadata model.

5.5 Conclusion

In this chapter, we focus on the metadata of data analysis in data lakes. Data analysis
is the activity during which different users recover and examine data to discover useful
information for decision-making. Data analysis is the last but not the least phase of data
life-cycle in a data lake. Data lakes can facilitate the data analysis phase by helping
users to search, analyze, reuse existing datasets and analyses to select features, choose
algorithms, analysis models or establish reports. However, in the context of data lake,
only few solutions focus on data analysis.

To overcome this shortfall, we proposed an analysis metadata solution that capitalizes
all relevant experiences in a data lake to improve the efficiency of data analysis. Our
solution is twofold: Ąrstly, we proposed a complete and formalized metadata model that
includes not only descriptive information on datasets and attributes (statistics, missing
values and relationships between datasets and attributes), but also analytical information
on performed analyses of these datasets (studies, tasks, implementations with algorithms
and their parameter settings and evaluations of analyses). These metadata allow users to
cross different elements in a data lake to get inspired by the existing analysis experiences
to make better decisions on dataset, feature and algorithm selection. Secondly, in order
to facilitate the metadata generation and maintenance tasks for users, we formalized the
analysis metadata generation and we demonstrated it through a real example.
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The metadata model and the metadata generation process are validated by our pub-
lished work in IDEAS2021 (Zhao et al., 2021c).

We already proposed a complete data lake metadata solution which includes ingestion,
preparation and analysis metadata. In the next chapter, we will introduce a developed
system which allows users to generate and search all the proposed metadata for different
data lake elements.
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6.1 Introduction

The metadata management in a data lake has for objective to facilitate the Ąndability,
accessibility, interoperability, and reusability of different elements (datasets, preparation
processes, analyses) stored in a data lake for different types of users (data engineers,
scientists, analysts). For this purpose, we proposed metadata model dedicated to different
aspects in previous chapters. To ensure that the model can adapt to real word scenarios,
to guarantee that the proposed metadata can easily be generated and explored by all
types of users and to verify if it respects the FAIR principles, we propose the DAMMS
system, a DAta lake Metadata Management System1.

DAMMS, as presented in Fig. 6.1, is positioned in the govern zone of data lake and
can interact with the other DL zones and with different types of users. Regarding the users
of a data lake, we Ąnd data lake managers, data engineers, data scientists, data analysts
or simple data lake visitors. These users will participate in the development of different
projects for which elements stored in the data lake are accessed and used. During their
experiments on the data lake, DAMMS will be a support that allows users to generate the
metadata corresponding to different stages of the life-cycle of data (ingestion, preparation
and analysis). We can therefore designate these users as creators from the point of view
of DAMMS. The same types of users can also rely on DAMMS to search metadata for
exploring the data lake. We refer to these users as explorer when they take advantage
of the metadata of the stored elements. Note that we distinguish creators and explorers
according to the way that they use the data lake at a time, a user can change his role
at different point of time. For instance, when an explorer have identiĄed the datasets or
the processes that he needs via the metadata exposed by DAMMS and he starts a new
analysis, he will then take over the hat of creator and works on the underlying activities.

Figure 6.1: DAMMS in a data lake

In section 6.2, we introduce the system DAMMS and its functional and technical archi-

1https://github.com/yanzhao-irit/data-lake-metadata-management-system
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tectures. In section 6.3, we introduce in details the semi-automatic metadata generation.
In section 6.4, we present in details the exploration of metadata.

6.2 DAMMS : A Data Lake Metadata Management

System

To ensure the usability of the system, we developed an application which allows users
to generate metadata in a semi-automatic way and to explore all the existing elements
in the data lake through intuitive search results. In the following, we will introduce the
functional and technical architectures of DAMMS then we present the metadata storage
system with details.

6.2.1 Functional Architecture of DAMMS

Figure 6.2: DAMMS - functional architecture

DAMMS has two principal functions (see Fig. 6.2):

• The Ąrst function aims to help creators to generate metadata. To ensure that all the
information in the proposed model are covered, metadata are generated during all
ingestion, preparation and analysis phases. To facilitate the tasks of users, metadata
are generated in a semi-automatic way. All the generated metadata are stored in
the metadata database in the data lake.

• The second function aims to help explorers to explore metadata. To ensure that
users can Ąnd different elements and consult their details, the application allows
users to Ąnd datasets, processes and analyses. For each element, users can Ąnd
more different details depend on its type according to the description of differ-
ent metadata in chapters 3-5. For instance, properties, lineage and relationships
for datasets; parent / children processes and used main operations for preparation
transformations; used algorithms, parameters and features for analyses.

6.2.2 Technical Architecture of DAMMS

The technical architecture of DAMMS is presented in Fig. 6.3. We chose to apply the
client-server architecture to our application. This architecture is able to centralize the
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Figure 6.3: DAMMS - technical architecture

control of the application, to share resources from clients to servers, to reduce data repli-
cation and to ensure the security and scalability of the application (Sulyman, 2014).

The application is developed with the framework Electron. Electron is a framework
dedicated to build cross-platform desktop applications using JavaScript. We chose this
framework for the following reasons (Kredpattanakul and Limpiyakorn, 2019; Peguero
and Cheng, 2021):

• It is an open-source project which is maintained by an large and active community.

• An Electron application can run on all major desktop operating systems, such as
Windows, macOS, and Linux.

• It uses Chromium and Node.js so that the application can simply be built with
HTML, CSS, and JavaScript.

For DAMMS, we built the application under the Electron framework with the front-
end running in a Chromium browser and a back-end using the Node.js platform.

Regarding the front-end, the application interface is developed with JavaScript, HTML
and CSS which are the core technologies of the World Wide Web.

Regarding the back-end, the environment Node.js is used. Node.js an open-source
runtime that is built on ChromeŠs V8 JavaScript and is geared towards highly competitive
event web applications. We chose Node.js for the following reasons:

• JavaScript is a common skill of web developers, Knowing JavaScript simpliĄes the
learning of Node.js.

• Node.js provides different APIs to interact with the operating system. In DAMMS,
different APIs (Application Programming Interface) are applied, for instance, the
API node-postgres is used to connect to PostgreSQL database and generate meta-
data and node-oracle db is used to connect to ORACLE database and generate
metadata.

95



6.3. METADATA GENERATION 96

Regarding the metadata storage, a graph database (Neo4j) is implemented. We will
introduce more details on this point in the following subsection.

6.2.3 Metadata Storage

We chose to use a graph database (Neo4j) to store metadata for the reason that:

• Graph database has a good scalability. As introduced previously, in a data lake,
a great amount of datasets can be stored, we need to ensure the volume and the
velocity of metadata storage.

• Graph database has a good Ćexibility. We introduced metadata models for different
elements stored in data lake in chapters 3-5, users can always extend or reduce the
model to Ąt their requirements.

• The search depth is ensured when querying graph database. One of most important
advantages of data lake is to search information across different datasets, processes
and analyses, a graph database can facilitate the search without lots of self-joins.

To model a graph, the following concepts are used (Lal, 2015): (i) Nodes represent
entities, a graph database contains at least one node. (ii) Labels are used to group nodes
into sets. (iii) Relationships are used to connect nodes. (iv) Properties, name-value pairs,
are used to describe nodes.

A mapping from UML class diagram to property graphs was proposed by (Delfosse
et al., 2012). We extended the mapping to Neo4j Cypher query language to transform
and implement our model (see Fig. 6.4). All the classes become labels; all the instantiated
classes become nodes; all the attributes become properties and relationships are used to
connect nodes. Note that Neo4j does not support bidirectional relationship and direction
can be ignored while querying, so that for bidirectional association, only one direction
needs to be created. To illustrate the mapping from UML model to Neo4j database, we
instantiated three examples that we have presented in the form of object diagram in the
previous chapters (see Fig. 6.5-6.7).

6.3 Metadata Generation

Metadata generation has the objective of extracting metadata from data ingestion, prepa-
ration and analyses. So that users need to do as less as manual work to store as much
as possible metadata. In the actual version of DAMMS, we provide functional interfaces
that allow data lake users, in particular, creators to generate ingestion metadata. The
algorithms for preparation and analysis metadata generation are implemented but not yet
integrated in the front view interfaces.

According to our proposal in chapter 3, different types of datasets (structured, semi-
structured and unstructured) can be ingested in the data lake. In section 3.2, we intro-
duced different metadata that should be generated and stored in the system to ensure that
metadata operators can Ąnd and reuse ingested datasets. For this objective, we developed
different interfaces to ingest different types of datasets. With these interfaces, ingestion
metadata are generated according to the processes proposed in section 3.3.
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Figure 6.4: Mapping from UML class diagram to Neo4j Cypher language

Figure 6.5: Mapping result of the object diagram 3.3
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Figure 6.6: Mapping result of the object diagram 4.3

Figure 6.7: Mapping result of the object diagram 4.4

6.3.1 General Functioning

To generate metadata, the system should (i) Ąrstly allow metadata creators to enter
essential information, in particular, connection information and descriptive information
to start the metadata generation and (ii) secondly extract database basic and schematic
information automatically. For this purpose, we implemented functions that can generate
partial metadata from PostgreSQL and ORACLE databases for the proof of concept.

6.3.1.1 Front-end

To start to generate dataset metadata, creators need to be able to (i) establish dataset
connections and and (ii) add basic properties and semantic information (see Fig. 6.8).

Regarding the establishment of dataset connection, for structured datasets (Post-
greSQL and ORACLE databases), users need to enter user name, password, server host,
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Figure 6.8: DAMMS interface - metadata generation

port and database name (see Fig. 6.8a,b). For semi-structured datasets (CSV Ąles),
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users need to enter the owner and location of the dataset and choose the delimiter (see
Fig. 6.8c). For unstructured datasets, users only need to enter the owner and location
information (see Fig. 6.8(d)).

Regarding the basic properties and semantic information adding, for all three different
types of datasets, users can add tags and description.

6.3.1.2 Back-end

Once users start the metadata generation in the front end, the back-end starts to (i)
connect to the dataset, (2) extract metadata automatically and (iii) stored input and
extracted metadata in the Neo4j database.

Regarding the dataset connection, for structured datasets, it is done with the help
of different API. For instance, Oracle database is connected by Oracledb, PostgreSQL is
connected by pg. For semi-structured and unstructured datasets, the API Ąlereader
is used.

Regarding the metadata extraction, the same APIs are used to extract metadata. For
structured datasets, different types of dataset metadata are extracted and calculated,
such as basic properties (e.g. database name, type, location (server), creation date, size),
schematic metadata (e.g. tables, table comment, attributes) and statistic metadata (e.g.
number of attributes and instances, number of instances with missing value, number of
missing value, nominal and numeric attribute count). Note that we extract the same
metadata from ORACLE and PostgreSQL databases, but for ORACLE database, we use
ŞDBA OBJECTSŤ and ŞDBA TAB COLUMNSŤ to extract directly metadata such as
max, min, missing value count wheres for PostgreSQL, we extract all the values and then
calculate the same metadata. For semi-structured datasets, we extract almost the
same metadata as structured dataset, the differences are that the name extension and
format (e.g. music, image, video, etc.) are extracted for semi-structured datasets but not
the table comment. For unstructured datasets, less metadata are extracted (name,
location, ingestion mode, Ąle name extension, creation date, size, format).

Regarding the metadata storage, the system stores all the automatically extracted
and manually input metadata according to our proposed metadata model. To explain
this funciton with more details, the script that stores metadata of ORACLE databases in
the Neo4j database can be found in the Listing A.1) in annex A.

6.3.2 Example

To illustrate our design, we introduce an example of metadata generation for an ORACLE
database OT 2 which is a database storing computer selling information. This database
was ingested by Bob David. Once Bob entered all the information in the interface (see
Fig. 6.9a), DAMMS tries to (i) connect to the database, (ii) extract metadata and (iii)
store the input and extracted metadata in the Neo4j database (see an excerpt of the used
Cypher query in listing A.2 in annex A). The result of the metadata generation is shown
in Fig. 6.9b.

2https://www.oracletutorial.com/getting-started/oracle-sample-database/
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(a) Interface of metadata generation (b) Stored metadata

Figure 6.9: Metadata generation example - OT ORACLE database

6.4 Exploration of Metadata

The goal of the data lake exploration is to help explorers to model and analyze data more
efficiently and efficaciously by facilitating the Ąndability, accessibility, interoperability
and reusability of existing elements (datasets, preparation processes and analyses). Such
a system should make it possible to industrialize the use of data lake and implicitly ensure
the FAIR recommendations when a large volume of data is shared between different users
(data analysts, engineers and scientists).

To archive this goal, DAMMS is designed in such a way that allows users to explore
everything stored in the data lake without getting lost in the amount of information
provided. Indeed, to facilitate the search of users who have different skills, we provide
two accesses in the system:

• The Ąrst access concerns graphical interfaces that dedicated to all users of the data
lake (data scientists, statisticians and analysts) to then Ąnd, access and reuse ex-
isting elements. With this access, users only need to enter one or more keyword(s)
to launch a search, the system will Ąnd all the elements (datasets, processes and
analyses) whose name, description, related tags contain the entered keyword(s). We
chose to apply keyword search for the reason that the result can correspond the best
to the subject of user needs (Deng et al., 2015). In addition, to ensure that users
can efficiently Ąnd useful information and easily understand selected elements with
ergonomic interfaces, we chose to present the search result through a hierarchical
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navigation. The degree of depth of information seeking was also considered, as we
will exemplify in sections 6.4.1-6.4.3.

• The second access concerns querying the metadata database directly for elaborated
searches for specialists who have the skills of Neo4j querying language Cypher.

In the following, we present the different exploration facts while searching datasets,
processes and analysis.

6.4.1 Explore Datasets

Datasets are the base of data preparation processes or analyses. To improve the efficiency
and efficacy of the work of different types of data lake explorers (data analysts, scientists
and engineers), datasets should be easily found and understood.

6.4.1.1 User Needs

When users explore datasets stored in the data lake, they should be able to Ąnd all the
subject-related datasets they need. In addition, to avoid having too many results, they
should be able to add Ąlters such as created date and type of dataset to limit the search
result. Moreover, if they are interested in a dataset, they should be able to look at all of
its metadata for more detail so that they can decide weather or not to use the dataset.

To be more precised, users should Ąnd all the following information:

• Properties: the basic information of dataset, such as its name, type, size, owner and
creation date, etc.

• Lineage: visualized data lineage which shows the origin of the dataset (dataset
source) and all the ingestion, transformation processes until the selected dataset.

• Hyper-graph: the process that creates the dataset.

• Relationship of dataset: the already calculated relationships between the selected
dataset and other datasets in the data lake. The predeĄned relationships include
ŚcontainŠ (a relational database contain different schemas/users) and ŚdissimilarityŠ
(dissimilarity between different datasets), etc.

• Relationship of attribute: the calculated relationships between every two attributes
in the selected structured or semi-structured dataset. Relationship can be predeĄned
in the system, such as Pearson correlation coefficient, mutual information, Spearman
correlation coefficient and covariance, etc. or can be deĄned by users.

• Similarity: Node Similarity algorithm from Neo4j Graph Data Science (gds) to
calculate the similarity of nodes in the graph.

6.4.1.2 General Functioning

Front-end nothinghere
To ensure the datasets search, DAMMS should have (i) a search bar with which

explorers can use keywords to obtain a list of all corresponding datasets, (ii) Ąlters that
can be applied on dataset search to limit the result, such as dataset type (structured,
semi-structured, unstructured) and creation date and (iii) a result panel where all the
datasets that correspond to the search are listed (see Fig. 6.10).
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Figure 6.10: DAMMS - element search interface with Ąlters on datasets

Figure 6.11: DAMMS - dataset panel

To ensure the datasets understanding, DAMMS uses a hierarchical navigation. The
Ąrst level is the list of datasets presented with their name. The second level concerns
different aspects information of each dataset. Each aspect of information is regrouped in
one tab that contains the metadata that we proposed in section 3.2 (see Fig. 6.11 and an
example in Ąg. 6.12).

Back-end nothinghere
When users enter one or more keywords to start the dataset search, DAMMS will

launch a query (see Listing B.1 in Annex B) to Ąnd all the datasets whose name, descrip-
tion or lined tags contain the input keyword(s) to ensure that all the relative datasets are
listed and shown with their name in the result area. If different Ąlters are added to limit
the result, the above query will be modiĄed by adding more conditions and be launched
automatically to refresh the result (see annex B.1).

In the result list, if users want to Ąnd more details of one dataset, they can click on
it. DAMMS will Ąnd and load the metadata about the selected dataset to display the
dataset detail panel. Metadata are classiĄed and displayed in different tabs in the panel.
Different queries that are used to Ąnd metadata in the Neo4j database can be found in
Listing B.2 in Annex B.
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Figure 6.12: DAMMS - dataset result
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6.4.1.3 An example of use case

The system allows users to easily Ąnd and consult existing datasets in the data lake via
the interface. Our example concerns a data analyst user interested in cancer analysis. For
this goal, he needs to Ąnd the useful datasets in the data lake to create a project in cancer
analysis. To do so, he needs to Ąrstly Ąnd all the datasets related to cancer in the data
lake by launching the search with the keyword ŚcancerŠ. Secondly, he needs to chose the
best dataset Ątting with his business needs (see Fig. 6.12). He should (i) check the type
and creation date of the selected dataset in the properties tab to exclude those that are
not of the required type or are too old; (ii) check the origin of the dataset in the lineage
tab to have more conĄdence; (iii) check the previous process created on the dataset in the
hyper-graph tab; (iv) check the relationships between different attributes of the dataset in
the relationship of attribute tab to have a Ąrst idea of the dataset content and (v) check
the relationships between this dataset and other datasets in the relationship of dataset
tab to Ąnd relevant datasets to enrich the dataset Ąnding result.

6.4.2 Explore Data Preparation Processes

Data preparation exploration has for objective to help users to understand how a dataset
is transformed and created and enable users to Ąnd and reuse existing processes to improve
the data preparation effectiveness.

6.4.2.1 User Needs

When users explore preparation processes that are stored in the data lake, they should
be able to Ąnd all the subject-related processes with a search bar where they can input
keywords. Moreover, the result should be limited by Ąlters to avoid having a too long
list. For preparation process, different Ąlters than those of datasets are proposed, such as
program language, creation date, used operations and execution environment. In addition,
if they are interested in a process, they should be able to consult the details of the process,
including:

• Properties: basic information of the selected process, such as its name, description,
creation date, binary machine code, source code URL and execution environment
etc. This information helps users to have the general idea of a process.

• Lineage: visualized data lineage which shows the source and target dataset of a
process. This information helps users to understand the life-cycle of processes and
relevant datasets.

• Hyper-graph: for each process that contains sub-processes, show all its sub-processes;
for each sub-process, show its parent process. This information helps users to un-
derstand the containing relationship of different processes.

• Operation: used operations of the selected process. This information helps users to
understand the main activities of a process without reading its source code line by
line.
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6.4.2.2 General Functioning

Front-end nothinghere
To ensure the process search, similar to dataset search, DAMMS also should have (i)

a search bar with which explorers can use keywords to obtain a list of all corresponding
processes, (ii) Ąlters that can be applied on processes to limit the result, such as pro-
cess language, creation date and used operation(s) and (iii) a result panel where all the
processes that correspond to the search are listed (see Fig. 6.13).

To help users to understand a process, the result information is also displayed in
different hierarchies. The Ąrst level is the list of processes presented with their name.
The second level concerns different aspects of information of selected process, each aspect
of information is presented in a tab in DAMMS. In different tabs, users can Ąnd different
metadata that are introduced in section 4.2 (see Fig. 6.14 and an example in Fig. 6.15).

Figure 6.13: DAMMS - element search interface with Ąlters on processes

Figure 6.14: DAMMS - process panel

Back-end nothinghere
To meet user needs, we use a process similar to datasets Ąnding. Users use the same

search bar to enter keyword(s), DAMMS will launch a query to Ąnd all the processes
whose name, description or lined tags contain the entered keyword(s) (see Listing C.1
in Annex C). If users add Ąlters to limit the result, the above query will be modiĄed to
adapt to the Ąlters and be automatically launched to obtain new result (see Listing C.1).
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When users select a process in the result list, all the metadata about the process will
also be searched and loaded in the process panel. Different queries that are used for this
task can be found in Listing C.2 in Annex C.

Figure 6.15: DAMMS - data preparation use case 1

6.4.2.3 Use case 1 : Data preparation guidance

Bob, a data analyst, wants to start a time series analysis on diabetic data. There are
several ways to perform an analysis with time series, with the application, Bob can search
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for existing project on diabetic and/or through time series. To do so, Bob launches a
search with the keywords Ştime seriesŤ and checks the process box to have a Ąrst batch
of potentially useful processes.

The application returns a list of processes / sub-processes that relate to time series (see
Fig. 6.15). The Bob discovers the CASTOR process which is a process containing several
sub-processes. He can check all the operations used by CASTOR in the OPERATION
tab and verify the operations used by each sub-process.

He gets a holistic view of a time-series process without reading the source code. Since
the process is closely linked to his analysis, he decides to start preparing a database on
this existing process.

Figure 6.16: DAMMS - data preparation use case 2

6.4.2.4 Use Case 2 : Data origin check

For another project, Bob wants to analyze patient history to help doctors improve medical
treatment, the data source is the OMOP dataset. Bob needs to Ąrstly verify how OMOP
dataset has been created. In addition, to ensure the quality of his analysis, he needs to
know if the data are already cleaned up when creating the OMOP dataset. Therefore,
he uses the application to Ąnd the OMOP dataset and uses the lineage tab to check the
dataset creation process, and he searches the details of the creation process to check if it
contains data cleaning operations (see Sec. 4).
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With the application result (see Fig. 6.16), Bob Ąnds out the lineage of OMOP dataset:
a external dataset MIMIC is ingested in data lake and then is transformed to create
OMOP dataset through the process mimic-omop etl observation. So Bob checks the
hyper-graph of the process to see all its sub-process. He Ąnds one process mimic-omop etl
visit occurrence concerning the patient consultation results and stays which is important
for his research. So he checks if these data are cleaned up during the data preparation
phase. In the Operation tab, he Ąnds out that visit table is created by using feature
selection and join without data cleaning operations. Therefore, to ensure his patient
history analysis, he needs to clean OMOP dataset data.

6.4.3 Explore Analyses

Analyses exploration has for objective to help users to Ąnd preformed useful analyses,
consult features and landmarkers information and reuse existing analyses.

6.4.3.1 User Needs

When users explore analyses that are stored in the data lake, they should at least be
able to use keyword(s) to search all the subject-related analyses (same as datasets and
processes). To limit the result of search, we provide Ąlters that are related to data analysis,
such as type of analysis (machine learning, other), creation date. Moreover, we provide
also secondary Ąlters to help users to have a more precise result. For instance, when
machine learning is selected, more Ąlters will be displayed, such as type of machine learning
(supervised, unsupervised, reinforcement), applied landmarkers, applied algorithms with
parameters and evaluations (see Fig. 6.17). For analyses, users should be able to consult
details of each single analysis as well:

• Properties: basic information of selected analysis, such as its name, description and
creation date. This information helps users to have a general view of a dataset.

• Lineage: visualized data lineage that shows the dataset on which the selected anal-
ysis was performed and the study in which the analysis exists.

• Hyper-graph: details of an analysis which include the used algorithm, selected pa-
rameters and set values, output model of the analysis and the evaluation of different
measures. This information helps users to know if an analysis is performed with
which algorithm and what parameters.

• Features: statistics of the numeric features and nominal features. In this tab, user
can also Ąnd statistics of each attribute existing in the dataset. This information
helps users understand the selected features of the analysis.

• Relationship of attribute: the calculated relationships between every two attributes
in the selected structured or semi-structured dataset. It is the same tab in the
dataset result.
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Figure 6.17: DAMMS - element search interface with Ąlters on analyses

Figure 6.18: DAMMS - analysis panel

Front-end nothinghere
To ensure the process search, similar to other DL elements, DAMMS also should

have (i) a search bar with which explorers can use keyword(s) to obtain a list of all
corresponding analyses, (ii) Ąlters that can be applied on analyses to limit the result,
such as analysis type, creation date and applied algorithm and (iii) a result panel where
all the analyses that correspond to the search are listed (see Fig. 6.13).

Similar to dataset and process search, for data analyses, DAMMS displays search result
in a hierarchical navigation. The Ąrst level is a list of analyses that correspond to the
input keywords and Ąlters. The second level is about all used detests/tables of an analysis
project (see Fig. 6.18), for each table, the statistic information of its values is displayed
to help users to have a general view of its content. The third level concerns details of
a selected analysis (analysis panel). Analysis details are regrouped in different tabs in
the application, each tab contains different categories of metadata that are introduced in
section 5.2 (see Fig. 6.18 and an example in Fig. 6.19).
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Back-end nothinghere
Same as searching datasets and processes, when users look for analyses, they enter

keyword(s) in the search bar, DAMMS launches a query to Ąnd all the analyses whose
name, description or lined tags contain the entered keyword(s) (see Listing D.1 in annex
D). If any Ąlter is added to limit the result, the above query will be modiĄed to adapt to
the new condition and be automatically launched to obtain new result (see Listing D.1).

When users select an analysis in the result list, all the metadata about this analysis
will be searched and loaded in the analysis panel. Different queries that are used for this
task can be found in Listing D.2 in Annex D.

6.4.3.2 Use Case 1: Dataset similarity detection

Identifying the right machine learning model for a given dataset can be a very tedious
task. On this way, detecting similar datasets where previous models have already been
executed is a possible solution. This would make it easier for a user to identify the
type of algorithm that can be launched for their dataset. This approach is inspired by
the automated machine learning Ąeld where a model is automatically proposed from a
set of existing datasets and machine learning workĆows (Feurer et al., 2015). Thanks
to the dataset and attribute metadata, it is easier to detect stored close datasets, as
long as a proximity measure has been implemented in the machine learning (Relationship
metadata).

In our running example, a dissimilarity measure, proposed in (Raynaut et al., 2016),
is used. This measure is deĄned on two levels. The Ąrst level estimates a dissimilarity
between datasets (classes AnalysisDSRelationship and RelationshipDS) and the second
level is between attribute (classes AnalysisAttribute and RelationshipAtt).

Bob wants to retrieve more datasets which are close to the colon cancer dataset that
he analyzes. Thus, he uses the metadata management application to Ąnd colon cancer
dataset, and goes to the Relationship Dataset tab to check the information that he needs
(see top image in Fig. 6.20). He Ąnds out that breast cancer dataset and lung cancer
dataset are both similar to the colon cancer dataset (with the dissimilarities <0.01).

Thanks to the result, Bob decides to enrich his analysis with the breast and lung cancer
datasets. Moreover, Bob can search all the analyses/algorithms that are already executed
on these datasets. For each algorithm, he can get the information of used algorithm name,
parameter names, parameter values and evaluation values (see bottom image in Fig. 6.20).
For instance, the shown result concerns an analysis of lung cancer, for which a random
forest algorithm is preformed with two parameters (n estimators = 20, test size = 0.2)
and the result is evaluated by accuracy (0.58).

Looking at these results, Bob decided to perform a Random Forest and SVM algo-
rithms on his dataset because they give the best results in terms of accuracy on the breast
(0.48) and lung cancer (0.58) analyses.

6.4.3.3 Use Case 2: Machine learning guidance

Metadata based on landmarkers are a powerful solution to estimate which kind of machine
learning model will be performed better on a dataset. By running a set of diverse simple
models on the dataset, a baseline of model performances can be established. This baseline
is a Ąrst indicator of possible performances for more complex versions of each model,
which reduces the need for trial and error testing commonly associated with the choice of
machine learning model.
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Figure 6.19: DAMMS - analyses result
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Figure 6.20: DAMMS - search analyses use case 1

In our running example, four landmarkers (and derived versions using different param-
eters) are available in the Data Lake. These landmarkers include: Decision Tree, Naive
Bayes, KNN and Random Forest (see class Landmarker in Fig. 5.3). They are evaluated
thanks to one measure: Error rate.

Bob wishes to execute a predictive model on the colon cancer dataset. To guide
him, he wants to know the error rate of the landmarkers available in the data lake. In
the application, he can check the existing landmarkers and evaluations one by one. For
instance, the left image of Fig. 6.21 concerns the landmarker RandomTreeDepth3 and its
error rate is 0.4649; the right image of Fig. 6.21 concerns the landmarker REPTreeDepth3
and its error rate is 0.5070.

After checking all the landmarkers that have been executed on the colon cancer dataset,
Bob Ąnds the lowest error is performed by J48.0001. Therefore, Bob can use the land-
marker J48 which gives him a basis to build a better model then.

If Bob does not want to click on every landmarker to look for the lowest error rate, he
can always do advanced research by writing query by himself. We provide a function of
free consultation in the web-application which requires Cypher (Neo4j querying language)
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Figure 6.21: DAMMS - search analyses use case 2

skill. So that Bob can use the Chyper query below to Ąnd all the landmarkers of colon
cancer dataset (top result in Fig. 6.22).

1 MATCH

2 (ds) -[: hasEntityClass ]->(ec: EntityClass ),

3 (a: Analysis ) -[: analyze ]->(ec),

4 (a) -[: hasImplementation ]->(lm: Landmarker ),

5 (evl: ModelEvaluation ) -[: evaluateAnalysis ]->(a),

6 (evl) -[: useEvaluationMeasure ]->(m)

7 WHERE

8 ds.name = ’Colon cancer ’

9 AND m.name = ’Error rate ’

10 RETURN ds , ec , a, lm , evl , m

By adding one condition on the query, Bob can get the lowest error rate landmarker
directly (bottom result in Fig. 6.22).

1 ORDER BY evl.value ASC LIMIT 1
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Figure 6.22: DAMMS - free query

6.5 Conclusion

Metadata management is essential for preventing a data lake turning into a data swamp
which is invisible, inaccessible and incomprehensible. To ensure that users are able to Ąnd,
access, interoperate and reuse existing datasets, processes and analyses to take advantage
of all the capitalized experiences, we proposed different categories of metadata in chapters
3-5. And in this chapter, we introduced a developed DAda lake Metadata Management
System (DAMMS) which can generate the proposed metadata and allows users to search
all the metadata of stored elements in the data lake. The system has ergonomic interfaces
which visualize different types of information to allow users to search and understand
different elements easily.
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7.1 Introduction

Metadata of different elements in a data lake can be generated by DAMMS and stored in
a graph database (Neo4j). Moreover, the stored metadata can be explored and discovered
by users through ergonomic interfaces of DAMMS. In the previous chapter, we explained
the two functions provided by the DAMMS tool that can meet the FAIR requirements.

Beyond the functionalities of DAMMS, it is necessary to analyze the userŠs appropri-
ation of this tool. This study must take into account the two main functionalities of the
tool: (i) the generation of metadata and (ii) the exploration of the DL elements.

Regarding the generation of metadata, the major problem that may encounter users
is the difficulty in integrating different types of elements and the processing time for the
generation of metadata. From the exploration point of view, it is necessary to check
whether it is easy to Ąnd different elements and if the results correspond to the usersŠ
expectations.

To answer these problems, we propose two types of analysis: the Ąrst one analyzes the
metadata generation performance, the second one is oriented to user experiences for the
exploration of the data lake elements.

In this chapter, we will present the experiments that have been conducted to evaluate
DAMMS in the two aspects. We have jointly conducted a performance study of metadata
ingestion in the section 7.2 and a study analyzing the user experience of DAMMS in the
section 7.3.

7.2 Quantitative Evaluation

To carry out the evaluation of the metadata generation and to ensure its completeness,
we propose experiments with different parameters of the input type and analysis metrics.

Regarding the input of experiments, datasets vary in type and size which can be used
evaluate the scalability of our system. We address the different types : structured, semi-
structured and unstructured. To be more precise, structured datasets can be stored in
different DBMS (database management system, e.g. ORACLE, PostgreSQL). The semi-
structured datasets can have different forms (e.g. XML, JSON, NoSQL) and unstructured
datasets designate different formats (e.g. image, text, video).

Regarding the analysis metrics, we choose to evaluate the system according to the (i)
time spent for the generation of metadata and (ii) the size of the generated metadata.
These metrics allow us to evaluate the efficiency and discuss the amount of metadata
stored in the DL compared to the ingested data.

Regarding the infrastructure of the experiments, all the results are performed on a
computer with a Intel(R) Xeon(R) E3-1230 v3 3.30GHz processor and 16GB of RAM

In rest of the section, we regroup different experiments according to the structural
type of input. For each type of input, we analyze the result with different metrics. In
section 7.2.1, we evaluate metadata generation of structured datasets. In section 7.2.2,
we worked on semi-structured datasets. And in section 7.2.3, we compare the metadata
generation of different unstructred datasets.
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7.2.1 Metadata generation from structured data sources

Input nothinghere
To vary the size of data sources, we use three relational databases. From the volume

point of vue, the DB may have from 1 to 15 tables and from 2981 to 460268 instances.
Besides the data source size, DAMMS supports the metadata generation from two dif-
ferent DBMS: ORACLE and PostgreSQL. To evaluate metadata generation of datasets
of different sizes and stored in different DBMS, we implemented the four databases in
ORACLE and in PostgreSQL (see table 7.1). The three databases, ranked according the
volume of their instances, are the following:

• OT1, a database storing Ąctitious computer selling information, which contains 12
tables, 54 columns and 2981 instances in total;

• LCD (Leading causes of death)2, a table that summarizes death reasons of each of
the US counties, which contains 235 columns and 1315 instances in total;

• Rent DVD3, a database for DVD renting, which contains 15 tables, 86 columns and
44820 instances in total;

• MIMIC4, an open-source medical database (only 6 tables are imported for the exper-
iment due to disk limit), which contains 6 tables, 82 columns and 460269 instances.

Database
Name

Database
type

Number of
tables

Number of
columns

Number of
instances

Database
size (MB)

OT ORACLE 12 54 2981 0.75
PostgreSQL 12 54 2981 8.813

LCD ORACLE 1 235 1315 1.91
PostgreSQL 1 235 1315 12

Rent DVD ORACLE 15 86 44820 8
PostgreSQL 15 86 44820 15

MIMIC(part) ORACLE 6 82 460268 41
PostgreSQL 6 82 460268 62

Table 7.1: Data sources (structured datasets)

Result nothinghere
After the metadata generation, 72-243 nodes and 71-242 relationships are created in

the Neo4j database (see table 7.2).
Regarding the size of metadata, the created metadata are around 1MB for the eight

datasets. Regarding the time spent for metadata generation, as shown in Fig. 7.1, the
generation time of ORACLE databases is globally stable. However, the generation time of
PostgreSQL increases as the number of instances or columns of database increases. More-
over, in general, DAMMS spends more time on generating metadata from PostgreSQL
than ORACLE databases.

1https://www.oracletutorial.com/getting-started/oracle-sample-database/
2https://data.world/us-hhs-gov/fcdb091a-3d47-4f43-a99c-19c9e95c8ca9
3https://www.postgresqltutorial.com/postgresql-sample-database/
4https://mimic.mit.edu/
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Database
type

nodes relationships metadata size
(MB)

% of dataset
size

OT ORACLE 72 71 0.914 122%
PostgreSQL 72 71 0.914 10%

LCD ORACLE 243 242 0.929 51%
PostgreSQL 243 242 0.929 8%

Rent DVD ORACLE 108 107 0.914 11%
PostgreSQL 108 107 0.914 6%

MIMIC(part) ORACLE 94 93 0.914 2%
PostgreSQL 94 93 0.914 1%

Table 7.2: Metadata generation result (structured datasets)
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Figure 7.1: Metadata generation time of structured data sources

Analysis nothinghere
Regarding the generated metadata volume, we can see that the stored metadata have

the same size (0.914MB) for the OT, Rent DVD and MIMIC(part) datasets regardless of
the DBMS and the size of dataset source. It is because metadata are stored with almost
the same number of nodes and relationships for the three datasets which are related to
the number of tables and columns of datasets. The metadata of LCD dataset have a
bigger size than the other datasets because more nodes and relationships were created.
The volume of metadata is not necessarily linked to the size of datasets but the number
of tables and columns of structured datasets. For the datasets who have nearly the same
number of tables and columns, the larger the dataset (more instances), the lower the
proportion of metadata stored.

Regarding the time spent on metadata generation, in general, the consumed time
is very short (of the order of a few seconds) for the eight datasets. By extrapolating
these values on large volume of data, especially for PostgreSQL, it remains reasonable
in the order of a few minutes. Metadata generation from LCD dataset takes lightly
more time because this dataset has more columns. The reason why it takes more time
to generate metadata from PostgreSQL than ORACLE databases when there are more
tables/columns/instances is that DAMMS uses different functions to extract metadata:

• for PostgreSQL databases, we use the ŞpgŤ API and extract the information such
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as database name, size and schematic directly by SQL queries. However, regarding
statistical information, such as max, min value and missing value count, we collect
Ąrstly the values of different columns and then calculate them by the functions that
we deĄned.

• for ORACLE databases, we use the ŞoracledbŤ API and extract metadata from
the views of ŞDBA OBJECTSŤ and ŞDBA TAB COLUMNSŤ from the instance of
database directly. Therefore, the increase database size (number of instances) does
not inĆuence a lot the metadata generation time.

7.2.2 Metadata generation from semi-structured data sources

Input nothinghere
In DAMMS, the generation of metadata from semi-structured datasets is currently

supported for CSV Ąles. To ensure that the datasets used for the evaluation vary in size,
we ingested different CSV Ąles from 1MB to 500MB (see table 7.3).

Name Rows Columns Size (MB)
Country GDP 42451 4 0.995
Leading causes of death 3142 235 3.86
Videos 12919 9 5.17
Clients 50000 9 9.95
Train splits 1019926 8 100
DATETIMEEVENTS (from mimic database) 1048576 14 501.43

Table 7.3: Data sources (semi-structured datasets)

Result nothinghere
After the generation of metadata, 9-19 nodes and 8-18 relationships are created in the

Neo4j database (see table 7.4).
Regarding the size of stored metadata, it remains the same (≈ 0.9 MB) regardless of

the size of the Ąve CSV Ąles. Regarding the time spent on generating the metadata, we
can see in Fig. 7.2 that the execution time increases as the size of dataset increases.

Name nodes relationships metadata size
(MB)

% of dataset
size

Country GDP 9 8 0.891 89.50%
Leading causes of death 240 239 0.953 24.69%

Videos 15 14 0.891 17.22%
Clients 14 13 0.891 8.95%

Train splits 13 12 0.891 0.89%
DATETIMEEVENTS
(from mimic database)

19 18 0.898 0.18%

Table 7.4: Metadata generation result (semi-structured datasets)
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Figure 7.2: Metadata generation time of semi-structured data sources (CSV)

Analysis nothinghere
Regarding the generated metadata volume, we note the same observation as the pre-

vious sub-section, the volume of stored metadata is not necessarily linked to the size of
datasets but the number of columns.

Regarding the time spent on metadata generation, we notice also that the execution
time increases as the number of rows and columns increases. The exponential growth of
time is related to the process performed on csv Ąles: we collect Ąrstly the Ąle content
(all its values), then we extract basic information (e.g. name, size, data of creation),
schematic information (e.g. columns name, type) and statistical information (e.g. min,
max, missing value count). As the metadata feeding for semi-structured datasets is evolv-
ing exponentially, we plan to implement mechanisms for parallelizing calculations (such
as MapReduce) on the implemented algorithms in order to reduce execution times.

7.2.3 Metadata generation from unstructured data sources

Input nothinghere
In DAMMS, the generation of metadata from unstructured datasets is supported. To

evaluate different data sources, we carry out the experiments with datasets that vary in
format (image, music, video and text) and size. (from 1MB to 100MB). For each format
of dataset, we prepared 3 or 4 datasets (see table 7.5).

Format Size
images 1MB, 5MB, 10MB
texts 1MB, 5MB, 10MB, 100MB
music 1MB, 5MB, 10MB
videos 1MB, 5MB, 10MB, 100MB

Table 7.5: Data sources (unstructured datasets)
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Result nothinghere
After the generation of metadata, 4 nodes and 3 relationships are created in the Neo4j

database for each of the datasets (see table 7.6).
Regarding metadata size, the same volume (0.882MB) is stored for all the datasets.

Regarding the time of metadata generation, it is globally stable (≈ 0.6s) regardless of the
dataset format or size (see Fig. 7.3).

nodes relationships metadata size (MB)
image/music/video/text 4 3 0.882

Table 7.6: Metadata generation result (unstructured datasets)
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Figure 7.3: Metadata generation time of unstructured data sources

Analysis nothinghere
Regarding the metadata storage size, it is small and stays stable as we only store

the information of name, location, ingestion mode, Ąle name extension, creation date,
size, format, owner and location with 4 nodes and 3 relationships in the Neo4j database
regardless of the dataset size and format.

Regarding the metadata generation time, we note that no matter the size and the
format of datasets, the time of generation is around 0.6 second. The reason why the
result is stable is that we extract the same metadata from unstructured datasets without
reading its content. This information can be extracted directly.

7.3 Usability Evaluation

Usability, according to the Merriam-Webster dictionary5, means the quality or state of
being usable: ease of use. Evaluating the usability of the DAMMS when exploring different
elements in the data lake is the issue of this section. Indeed, the exploration of metadata
and the functions of DAMMS requires an interaction with the users which it is necessary

5https://www.merriam-webster.com/
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to validate. To address this issue, we designed a controlled experimental, with different
users, in which we analyze different aspects of the usability of our system. To measure
the usability of a system in general, ISO 9241-11:2018 (Ergonomics of human-system
interaction - Part 11: Usability) emphasized three aspects (Bevan et al., 2015; ISO, 2018):

• Effectiveness: accuracy and completeness with which users achieve speciĄed goals.

• Efficiency: resources used in relation to the results achieved (typical resources in-
clude time, human effort, costs and materials).

• Satisfaction: extent to which the userŠs physical, cognitive and emotional responses
that result from the use of a system.

We will use these aspects to evaluate the usability of DAMMS. This section will
be divided into four parts. Firstly, we introduce the experimental assessment protocol,
then we analyze the experiment results in the three aspects: effectiveness, efficiency and
satisfaction.

7.3.1 Experimental Assessment Protocol

Protocol nothinghere
The controlled experiment consisted of two sessions realized by the same participants:

• The Ąrst session consists of two parts:

Ű A quick introduction (around 2 minutes) of a simulated data lake which con-
cerns a folder that contains 9 sub-folders (see table 7.7). Each sub-folder con-
cerns a project which contains different Ąles (datasets, data preparation and
analysis scripts) (see an example in Fig. 7.4).

Ű Participants need to answer 6 questions (2 questions for each type of the data
lake elements: datasets, data preparation and analyses) (see appendix E) by
searching useful information in the folder. Note that the use of the search bar
of the Ąle system is authorized.

• The second session, a self-control experiment using DAMMS, consists of two parts:
(i) a short introduction (around 5 minutes) of DAMMS. The metadata of all the
projects used in the Ąrst session are generated and stored in the system. (ii) partic-
ipants need to answer the same 6 questions by using the DAMMS system.

To prepare the efficiency analysis, during the two sessions, we will record the consumed
time and the number of clicks for each question that participants answer.

Questionnaire Design nothinghere
When participants Ąnished the two sessions, they need to answer a questionnaire which

contains 24 questions following three aspects (see appendix F):

• General: questions about user data lake or data lake metadata management system
experiences.
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Projects/Folders Sub-folders Files
Argos 10 90
Breast Cancer Wisconsin (Diagnostic) Data Set 1
Castor 6 59
Chest X-Ray Images (Pneumonia) 30 17591
CHSI 8
COVID-19 World Vaccination Progress 2
Fetal Health ClassiĄcation 1
Lung Cancer DataSet 1
OMOP 86 8110

Table 7.7: Projects in the simulated data lake

Figure 7.4: Screen shot of a project in the simulated data lake folder

• Usability: (i) Questions of the System Usability Scale (SUS) method (Brooke, 1995),
overview and suggestion of the usability of the system. The method SUS is one of the
most popular system usability evaluation methods (Lewis and Sauro, 2018; Lewis,
2018). It consists of 10 questions to answer and it yields a single score on a scale of
0Ű100. (ii) Questions about the interfaces including the clearness, smoothness and
stability of layout, navigation and information presentation.

• Practicality: questions of the layout and the navigation plan of the system.

Participants nothinghere
To ensure the comprehensiveness of the experiment, participants need to have proĄles

that vary in (i) their experience of data analysis, (ii) knowledge of the concept of data
lake and (iii) hands-on experience of data lake system.

15 participants joint the controlled experiments. 80% of them have done data anal-
ysis before, 20% never did it (1 participant works in the Ąeld of law about information
technology, 2 work on decision support systems) (see Fig.. 7.5a). Among the participants
with data analysis experience, 83% have heard of the data lake concept (see Fig. 7.5b)
whereas only 2 of them already used a data lake system (see Fig. 7.5c). Globally, all the
participants are interested in data lake metadata management system (see Fig. 7.5d).
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yes

80%

no

20%

(a) Do you have experience in
data analysis (machine learning, data
mining, BI etc.)?

yes

83%

no

17%

(b) Have you heard of the concept of
data lake? (for participants who have
experience in data analysis)

yes

17%

no

83%

(c) Have you ever used a data lake sys-
tem? (for participants who have expe-
rience in data analysis)

yes 100%

(d) Do you plan to use the data lake in
your future career or recommend oth-
ers to use it?

Figure 7.5: Experiment participants distribution

In the following sections, we will present (i) the results of the 6 questions that partic-
ipants needed to answer to analyze the effectiveness, (ii) the time and number of clicks
that participants used to answer the question manually and with the help of DAMMS to
analyze the efficiency and (iii) the questionnaire results to analyze the user satisfaction.

7.3.2 Effectiveness of DAMMS

To evaluate the effectiveness of DAMMS, we introduce and analyze the accuracy and
completeness of the answers of the 6 questions. Note that if a participant cannot Ąnd an
answer for a question, he/she can skip it, in this case, the result of the question will be
considered as wrong.

In general, when searching manually, the ratio of correct answers to the six questions
is 85% of which 63% are entirely correct and 12% are partially correct (see Fig. 7.6a).
When researching with DAMMS, the ratio of correct answers increases to 98% of which
91% are entirely correct (see Fig. 7.6b). With the help of DAMMS, the effectiveness of
data lake exploration is improved.
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(a) Question results - searching manually
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Figure 7.6: Question results

7.3.2.1 Question 1

Question 1 is about letting participants to Ąnd datasets about a subject/tag: ŞThere
are different medical datasets, can you try to Ąnd how many of them are about ŞbreastŤ
cancer?Ť

Result nothinghere
The result of the question 1 is shown in Fig. 7.7a-7.7b. From Fig. 7.7a, we can see

that nobody found the right answer, 80% of participants found some relative datasets
but they did not Ąnd all the relative datasets, 20% of participants found wrong datasets.
From Fig. 7.7b, we can see that with the help of DAMMS, 93% of participants found
relative datasets in which 73% of them found all the relative datasets. 20% of participants
submitted partially correct answer and 7% found the wrong answer.

wrong

20%

partially right

80%

(a) Question 1 result - searching manually

right

73%

wrong

7%partially right

20%

(b) Question 1 result - searching with DAMMS

Figure 7.7: Question 1 result

Analysis nothinghere
For this question, we can see that DAMMS greatly improved the effectiveness of answer

with a contribution of 100% of entirely correct answers.
When searching with DAMMS, 73% of participants found the entirely correct answer

as in DAMMS, all the datasets whose title, description, tags containing the keyword are
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displayed in the result panel. 20% of participants did not answer the question with all
relative datasets because although they saw three datasets in the result panel, they did
not trust it and they still chose the datasets whose name contains ŞbreastŤ. There is
7% of participants answered incorrectly, because he searched two keywords ŞbreastŤ and
ŞcancerŤ, and he found all the datasets about cancer (not only breast cancer).

7.3.2.2 Question 2

Question 2 is about letting participants to Ąnd data provenance information: ŞThe dataset
Şcancer breast.csvŤ is stored in Ş\Exploration\ CHSI\ cancer_ breast. csv Ť, there are
two other datasets Şcolon cancerŤ and Şlung cancerŤ stored in the same folder, can you
Ąnd out if the three datasets are similar or not?Ť

Result nothinghere
The result of the question 2 is shown in Fig. 7.8a - 7.8b. From Fig. 7.8a, we can see

that all the participants found the entire correct answer when researching manually. From
Fig. 7.8b, all the participants found the right answer in DAMMS in which 20% submitted
partially correct answer.

right100%

(a) Question 2 result - searching
manually

right

80%

partially right

20%

(b) Question 2 result - searching with DAMMS

Figure 7.8: Question 2 result

Analysis nothinghere
From this result, we can see that regarding correctness, user manual work is more

effective.
When searching manually, all participants opened the three datasets to check if they

have common or similar columns (name, type) and/or if they have the same or almost the
same dimensions (number of columns and instances). One participant found the creation
scripts of the three datasets and found out directly that they have common columns.

When searching with DAMMS, participants used different functions in the system
to check the similarity between datasets, such as ŞsimilarityŤ, Şrelationship of datasets -
dissimilarityŤ, ŞlineageŤ. 80% of participants who found the right tabs and understood the
result graphs submitted the right answer. However, 20% participants indicated that two
of the three datasets are similar. Two of them (67%) did not submit the full right answer
because they did not check the tabs ŞsimilarityŤ, Şrelationship of datasets - dissimilarityŤ
the Ąrst time, when they Ąnally clicked on these tabs, they only read the Ąst line of result
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table. One participant (33%), besides the dataset relationship tab, also checked the tab
of relationship of attribute and he answered the question with irrelevant information.

7.3.2.3 Question 3

Question 3 is about letting users to Ąnd a data preparation process (lineage) when the
result dataset is indicated: ŞThe dataset Şcancer breast.csvŤ was obtained through a trans-
formation process, can you identify the data source file of this transformation?Ť

Result nothinghere
The result of the question 3 is shown in Fig. 7.9a-7.9b. From the two Ągures, we

can see that the accuracy of the results is the same with or without DAMMS: 93% of
participants found the entirely correct answer and 7% submitted the wrong answer.

right

93%

wrong
7%

(a) Question 3 result - searching manually

right

93%

wrong
7%

(b) Question 3 result - searching with
DAMMS

Figure 7.9: Question 3 result

Analysis nothinghere
Comparing the accuracy of results, there is no difference. However, the accessibility

of the information is different from the two experiences.
When searching manually, 73% of participants found the script of data preparation,

they read the script in details to Ąnd the answer. 27% of participants chose to look for
the source dataset directly by opening different datasets and try to Ąnd common columns.
7% of participant found a dataset which has a column with the same name of one column
in the dataset Şcancer breast.csvŤ in a another project/folder, so he submitted the wrong
answer.

When searching with DAMSS, all participants checked the lineage tab of breast cancer
dataset and found the right answer. 7% participant found the right tab, he saw the
lineage of the dataset, but he did not read labels of nodes with attention. He answered
the question with the process node instead of the data source of the process.

7.3.2.4 Question 4

Question 4 is about checking if users can understand the main operations of a data prepa-
ration process: ŞDo you understand the main operations (such as cleaning, aggregation,
merging, etc.) used in the transformation script?Ť
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Result nothinghere
The result of the question 4 is shown in Fig. 7.10a-7.10b. From Fig. 7.10a, we can see

that 93% of participants found the entirely correct answer whereas 7% of them submitted
the wrong answer. From Fig. 7.10b, 100% of participants submitted the entirely correctly
answer.

right

93%

wrong
7%

(a) Question 4 result - searching manually

right100%

(b) Question 4 result - searching
with DAMMS

Figure 7.10: Question 4 result

Analysis nothinghere
From the result, we can see that DAMMS improves the preparation process under-

standing. A participant who never programmed could not understand the python script
of transformation but she found the main steps of data transformation with DAMMS.

Note that in order to ensure that the experiment will not be too long, the script that
we prepared for the experiment is short and easy to understand. With longer or more
complicated script, the advantages of the system will be more obvious.

7.3.2.5 Question 5

Question 5 is about the missing value count to prepare an analysis: ŞTo analyze breast
cancer, ŞobesityŤ is a feature in the dataset, can you Ąnd there are how many missing

values in the ŞobesityŤ column?Ť

right

40%

wrong

60%

(a) Question 5 result - searching manually

right100%

(b) Question 5 result - searching
with DAMMS

Figure 7.11: Question 5 result
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Result nothinghere
The result of the question 5 is shown in Fig. 7.11a-7.11b. From Fig. 7.11a, we can see

that only 40% of participants found the right answer while manually searching whereas
60% participants did not. From Fig. 7.11a, we note that all of the participants submitted
the right answer with the help of DAMMS.

Analysis nothinghere
From the result, we can see that DAMMS improved the fulĄllment ratio from 40% to

100%.
When searching manually, 80% of participants converted the CSV Ąle to EXCEL

whereas 20% of them did not know how to process CSV Ąles. Among the 80% of par-
ticipants who Ąnally worked on the EXCEL Ąle, 50% of them found the right answer by
using the function COUNTBLANK or sorting data then count or selecting the column
then check the automatically counted information; the other 50% of participants did not
Ąnd the right answer even they worked on the EXCEL Ąle because they did not know the
function or they used wrong functions. The 20% of participants who did not convert the
CSV Ąle gave up either directly or after trying by counting manually.

When searching with DAMMS, 100% of participants found the correct answer by
checking the statistics metadata of the attributes in the dataset.

7.3.2.6 Question 6

Question 6 is about Ąnding the analysis basic information, in particular, its type: ŞThe
dataset ŞCHSIŤ was already used for a machine learning analysis, can you Ąnd out the
type of the analysis (such as descriptive, predictive)?Ť

Result nothinghere
The result of the question 6 is shown in Fig. 7.12a-7.12b. From Fig. 7.12a, we can see

that, when searching manually, 60% of participants submitted the right answer whereas
40% of them did not. From Fig. 7.10b, we note that, with the help of DAMMS, all the
participants submitted the right answer.

right

60%

wrong

40%

(a) Question 6 result - searching manually

right

100%

(b) Question 6 result -
searching with DAMMS

Figure 7.12: Question 6 result

130



7.3. USABILITY EVALUATION 131

Analysis nothinghere
To Ąnd information of performed analyses, DAMMS can improve the effectiveness of

searching.
When searching manually, participants had to locate the script of data analysis, read

the code in detail and try to understand the code to Ąnd out the type of analysis. All the
participants found the script but only 60% of them understand to code.

When searching with DAMMS, participants did not have to read the script line by
line to try to understand the analysis. They can see the basic information of analysis
directly, therefore, the ratio of correctness is 100%.

7.3.3 Efficiency of DAMMS

To analyse the efficiency of DAMMS, we observed the time consumed for both experiences
and the number of clicks to access the information.

Time spent nothinghere
From the time consumed by users with and without DAMMS (see Fig.7.13), we notice

a signiĄcant gain of time (saved 46% of time in general), especially to access to information
on datasets and analyzes.

Regarding questions about datasets (Q1 and Q2), a large margin is observed using
DAMMS (saved 57% of time for the two questions) while stressing that the results are
correct by referring to Ągure 7.7a-7.7b. For Q1, 78% of time was saved by using DAMMS.
The average time spent on searching manually is 2 to 3 times longer than searching with
DAMMS. In particular, the max time of searching manually is about Ąve time longer
than the max time of searching with DAMMS. For Q2, the difference of time spent on
searching with or without DAMMS is not as signiĄcant as Q1 (24% of time was saved),
but we also note that the time spent on searching manually is longer than when using
DAMMS.

Regarding questions about processes (Q3 and Q4), we can always mark the shortening
of time when using DAMMS (9% of time was saved). Especially, for Q3 and Q4, the max
time spent on searching manually are outliers (plotted as individual points).

Regarding questions about analyses (Q5 and Q6), we underline a signiĄcant saving
of time when using DAMMS (saved 54% of time). Note that for the question 5, 20% of
participants gave up on Ąnding the number of missing values for a column after a short
try, if users are obliged to Ąnd the right answer, the gain of time will be more important.

Number of clicks nothinghere
By observing the results, the number of clicks are positively correlated to the time

spent on information search. In general, 55% of clicks were saved.
We notice that depending on the difficulty of the questions the number of clicks can

explode by doing the exploration manually. For instance, for the Q1, the number of clicks
when searching manually is about 14 times bigger than searching with DAMMS (93% of
clicks are saved). Note that we only prepared a small simulated data lake which contains
9 projects (141 folders and 85863 Ąles), considering the sacalability of a data lake in the
real life, the difference will be more extensive.

Knowing that in the data analysis process, the search of datasets, transformation pro-
cesses and analyses are essential tasks to help users to access and reuse existing elements,
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search with metadata is highly useful for data lake users. Moreover, DAMMS offers rapid
access.

Figure 7.13: Time spent on answering different questions

Figure 7.14: Number of clicked used on answering different questions
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7.3.4 Satisfaction of DAMMS

Regarding the satisfaction of DAMMS, we measure it in two aspects: (i) SUS score and
(ii) practicality of interfaces.

System Usability Scale nothinghere
The SUS consists of ten questions that collect the subjective point of view of users on

a system. In the second part (part B. usability) of the questionnaire, the questions from
Q8 to Q17 are the 10 questions of SUS.

SUS gives a single score representing a composite measure of the general usability of
the system studied. We followed the following steps to calculate the SUS score (Brooke,
1995):

• For odd-numbered questions (questions 1, 3, 5, 7, 9), with positive consonance, we
subtract 1 from the result given by the respondent. For instance, if the respondent
answers 4, the corresponding score is 3 (4-1).

• For even-numbered questions (questions 2, 4, 6, 8, 10), with negative consonance,
the score is equal to 5 minus the score given by the respondent. For instance, if the
respondent answers 3, the score is 2 (5-3).

• We add up all the scores and we multiply the total score by 2.5. This gives us the
SUS score between 0 and 100.

The SUS score of DAMMS is 77.33 out of 100, according to (Bangor et al., 2008),
DAMMS is at the 3rd quartile ranges, it is acceptable and can be classiĄed as a good
system (see Fig.7.15).

Figure 7.15: SUS score of DAMMS

System Interfaces nothinghere
Besides the SUS score, we also want to check if the designed and developed interfaces

conform to the usage habits of users. Therefore, we prepared 5 questions in the question-
naire (Q19 to Q23) to ask users opinions in different aspects about interface design.

The result is shown in Fig. 7.16, globally, participants are satisĄed with the interface
with the score of 4.19 out of 5. We note that 93% of participants think that the system is
fast and stable to use. 87% of participants think that the system has beautiful and clear
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interface and layout and 80% of participants think that the information presentation is
full and comprehensive. However, participants think that the navigation classiĄcation is
less clear and the system is not perfectly easy and smooth to use.

Regarding the navigation of the system, some participants think that the operation
interface is too streamlined, many functions can only be used in the second-level or third-
level directory and cannot be found on the homepage at the Ąrst time.

Regarding the smoothness of use, some participants think that the interactivity should
be improved, for instance, in the result panel, when a node in the graph is clicked, the
system should present all the information of the node directly.

Figure 7.16: Evaluation of interfaces of DAMMS

7.4 Conclusion

In this chapter, we evaluated our system DAMMS according to quantitative and usability
aspects.

Regarding the quantitative evaluation, we studied the performance of metadata gener-
ation in DAMMS. The carried out experiments were done with data sources that vary in
type and size. Moreover, we evaluate the experiment results according to the size of gen-
erated metadata and time spent generation metrics. For structured datasets, we conclude
that the volume of generated metadata is not necessarily linked to the size of datasets
but the number of tables and columns. The time spent on metadata generation increases
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when the number of tables/columns increases for ORACLE databases while it increases
when the number of tables/columns and instances increases for PostgreSQL databases.
For semi-structured datasets, the similar conclusion can be summarized. For unstruc-
tured datasets, the metadata generation is quick and the size of generated metadata is
small regardless of the dataset format and size. From the point of view of volume of data
sources, we did not focus on very large volumes of data but we studied medium volumes
of data.

Regarding the usability evaluation, we analyzed user experiences of data lake explo-
ration with DAMMS. The participants of the experiments vary in experience of data
analysis, knowledge of the concept of DL and hands-on experience of DL system. The
results of experiment were analyzed in three aspects: effectiveness, efficiency and satisfac-
tion. Regarding the effectiveness, DAMMS improved the accuracy and completeness ratio
(31%) of data lake exploration result. Regarding the efficiency, DAMMS can help users
to have a signiĄcant gain of time consumption (46%) and human effort (55%). Regarding
the satisfaction, the system usability scale of DAMMS is 77.33 out of 100 which means
users think the system is acceptable and is in the good range. Moreover, users think the
system have globally clear and comprehensive interfaces to use with an obtained note of
4.19 out of 5.
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8.1 Assessments and contributions

In this work, we focused on one of the most popular Big Data analytics solutions: Data
Lake. Data lakes are essential for the use as well as the sustainability of analyzes. Data
lake governance is the core to ensure the industrialization of data science. The concept
of data lake was brought up in 2010 (Dixon, 2010) and has been studied in depth in the
last seven years. To contribute to such a relatively new concept, we have made various
proposals.

8.1.1 Contributions on Data Lake Concept

At the beginning of the thesis, the concept of data lake was rarely recognized by the
research community; it had no standard deĄnition nor acknowledged architecture. There-
fore, to clearly deĄne the concept of data lake, we proposed a more generic deĄnition and
a more complete functional architecture than the state of the art.

Data Lake DeĄnition nothinghere
We emphasized that a data lake is not just a simple data storage space but a big data

analytics solution which is in charge of all the different phases of data life-cycle (ingestion,
preparation, analysis). Our deĄnition has the advantages of being more complete than
the literature by indicating that different types of users (data scientists, data analysts, BI
professionals, etc.) can carry out different activities (ingest, process, analyze, govern) for
different structural types of datasets (structured, semi-structured and unstructured).

Data Lake Functional Architecture DeĄnition nothinghere
In the extension of the previous deĄnition, we have formalized a complete and generic

data lake functional architecture. Regarding the completeness, we proposed 3+1 zones:
the three zones (ingestion, preparation, analysis) are deĄned to manage the data life-cycle
for decision making and the one zone (data governance) is deĄned to manage the entire
data lake. Regarding the generalization, contrary to the solutions of the state of the art,
we have deĄned an architecture that can meet the expectations of different users for doing
different activities (ingest, process, analyze, govern). Moreover, each zone has standard
functionalities (processing and storage).

8.1.2 Contributions on Metadata Management of Data Lake

To ensure data lake governance, we proposed a solution of metadata management which
includes a metadata model and the processes of metadata generation.

Metadata Model nothinghere
Our metadata model is formalized and it can be adapted to different types of data

sources and all phases of data life-cycle (ingestion, preparation and analysis). This solu-
tion has the following characteristics:

• Completeness of the data life-cycle (not limited to the data catalog). We have
deĄned a complete metadata model which covers all the stages of the data life-cycle
in a data lake (ingestion, preparation and analysis).
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Ű Ingestion is the phase during which data are moved from one or more sources
to a destination. For this phase, we proposed ingestion metadata to ensure the
Ąndability and reuse of datasets. The proposed metadata can be adapted to
various types of data sources (e.g. IoT objects, databases, Ąles), different types
of datasets (structured, semi-structured and unstructured) and ingestion modes
(batch and real-time). These metadata can not only describe each single DL
element (e.g a dataset or an ingestion process) but the relationships between
different elements.

Ű Preparation is a set of acts that transform raw data into a form which is ap-
propriate to be analyzed. It is commonly agreed that up to 80% of a data
wrangler time can be spent on data preparation. For this phase, we proposed
process metadata to help users to easily Ąnd, understand and reuse existing
processes. The proposed metadata can be adapted to different types of data
processes (transformation process of ETL used in BI, data mining, machine
learning) and ingestion modes (batch and real-time). Moreover, these meta-
data cover different categories of process information (technical, business, op-
eration). In particular, the operation metadata is based on a predeĄned list of
coarse-grained operations which are formalized by a controlled language.

Ű Analysis is the activity during which different data are recovered and examined
to help on decision-making. For this phase, we proposed analysis metadata to
help users to search, analyze, reuse existing datasets and analyses. The pro-
posed metadata capitalize all relevant experiences including not only descrip-
tive information on datasets and attributes, but also analytical information on
performed analyses of these datasets. With the help of these metadata, users
are able to select features, choose algorithms, analysis models or establish re-
ports based on existing experiences.

• Complete vision of metadata. The proposed metadata contains three levels of infor-
mation : intra-, inter- and global. Intra-metadata describe each single DL element
to help users to understand different elements easier and faster. Inter-metadata
describe the relationships between different DL elements (e.g. provenance, contain-
ment, similarity) to improve the efficacy of element Ąnding, version tracing and
analysis enrichment. Global metadata are applied to the entire data lake instead
of speciĄc DL element, such as common knowledge and DL logs to reduces user
learning costs.

• A formalized metadata structure. We formalized the proposed metadata by UML
class schema to clearly present different types (classes) of metadata and the details
(attributes) of each type. The formalized and detailed model is more comprehensive
than the state of the art and can facilitate the Ąndability, accessibility, interoper-
ability and reuse (FAIR) of data and metadata. Moreover, we proposed a solution
to translate UML class diagram to Neo4j Cypher language to ensure the implemen-
tation of the proposed metadata model.

Metadata Generation Processes nothinghere
Besides the metadata model, we also proposed formalized metadata generation pro-

cesses. To ensure a semi-automatic extraction of metadata, we formalized the processes
of metadata generation of different phases (ingestion, preparation and analysis) through
BPMN schemas and algorithms.
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8.1.3 Contributions on Metadata Management System of Data
Lake

Implemented Data Lake Metadata Management System (DAMMS) noth-
inghere

We implemented DAMMS (DAta lake Metadata Management System) to validate our
proposed metadata model and metadata generation processes. DAMMS allows different
types of users to (i) generate different types of metadata and (ii) explore metadata to
have access to different elements (datasets, processes and analyses) stored in the data
lake. DAMMS has the following advantages:

• It helps users to generate metadata of different structural types of datasets in a
semi-automatic way. Users do not have to enter tedious information to manage or
maintain metadata.

• It has ergonomic interfaces dedicated to metadata exploration and consultation that
can be used by different types of users (e.g. data scientists, analysts, BI profession-
als). The search results are displayed through a hierarchical navigation to help users
to easily understand the results.

• It is accessible for users having advanced Cypher skills to query metadata with more
complex scenarios.

Evaluation of DAMMS nothinghere
We assessed DAMMS according to quantitative and usability point of views. Regard-

ing the quantitative evaluation, we analyzed the performance of metadata generation from
different types of datasets and different sizes. Regarding the usability evaluation, we ana-
lyzed user experiences when exploring data lake in three aspects: effectiveness, efficiency
and satisfaction. In general, when exploring data lake with DAMMS, the effectiveness
was improved 31%, the efficiency was improved 50% (46% of time consumption and 55%
of human effort (clicks) are saved). Moreover, DAMMS is noted 77.33 out of 100 for the
system usability scale score and 4.19 out of 5 for the system interfaces.

8.2 Future Work

During this thesis, we have made several contributions regarding the concept of data
lake, its metadata management as well as its metadata management system. However,
new directions of research are opened up according to our work. In this section, we
introduce future research perspectives in short, mid and long terms.

8.2.1 Short-term plan

Extension of DAMMS nothinghere
In the short term, we will extend DAMMS with more user functionalities and a better

performance in the generation of all types of metadata from all type of datasets.
Regrading user functionalities, we will complement DAMMS (i) to allow users to inte-

grate other types of datasets (e.g. MySQL, NoSQL, NewSQL, XML, JSON, etc.) and (ii)
to ingest other types of DL elements (processes and analyses) and generate automatically
as many corresponding metadata as possible.
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Regarding the performance of metadata generation, currently, for CSV Ąles and Post-
greSQL, the execution time of metadata generation evolves exponentially with the volume
of raw data in DAMMS. To address this deĄciency, we plan to modify the program scripts
or apply new APIs to improve the performance.

Continuation of DAMMS assessment nothinghere
We also plan to pursue the assessment of DAMMS in the aspects of quantitative and

usability. Regarding quantitative evaluation, from the point of view of volume of data
sources, we will test larger volumes with a wider scope on the types of data sources.
Regarding usability evaluation, we will engage more participants to join the experimen-
tation with a more sophisticated protocol. Their feedback and suggestions can help us to
improve DAMMS.

8.2.2 Mid-term plan

Application of DAMMS on real world projects nothinghere
So far, our system is validated on open-source data for reasons of data conĄdentiality.

In the mid-term, we plan to set up the system DAMMS on real projects and for real
users. The University Hospital of Toulouse (CHU of Toulouse) is an environment to be
developed. For the existing experimental assessments, we ingested the MIMIC dataset
and transformed it to the OMOP CDM as a similar project at the CHU of Toulouse
which aims to transform a local Electronic Health Record (EHR) database to OMOP
CDM database (Zhao et al., 2021a). In addition, we integrated the project EBERS which
aims to extract and analyse different medical reports from the EHR database (Megdiche
et al., 2021). In future, we plan to apply our solution to more complete and larger projects
for the CHU of Toulouse and other organisations over a longer period and involving more
users. The results of the experimental protocol will be compared with the results obtained
by the current evaluations.

Extension of Data Security and Quality Metadata Management nothinghere
Our metadata model, for data ingestion, includes security and quality information.

These two aspects will be further enriched, particularly with regard to the question of the
Big Data veracity.

Data security, data conĄdentiality, integrity and availability, also known as the CIA
triad, should be ensured (Covert et al., 2020). To guarantee data security, data lake can
integrate functions such as privacy control and fully supervised access control (Bertino and
Ferrari, 2018; Zhang, 2018). Regarding data quality in a data lake, a quality metrics that
can be applied on different types of datasets is required (Gómez et al., 2018; Gyulgyulyan
et al., 2019) to ensure the quality of various types of datasets.

8.2.3 Long-term plan

Our proposed metadata model in this thesis is generic and can adapt to different data
lakes or data management systems. In a long term, we plan to set up the metadata model
on open systems or multi-data lake systems (Gorelik, 2020) to ensure interoperability
of different systems. These system can be internal, such as multiple data lakes, data
warehouses and data marts, or external, such as open systems from which we do not
ingest data but we need to link to their data with metadata.
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Appendix A

Scripts to Generate Metadata

1 module . exports . ingestFromOracle = ( datasetSource , datasetDatalake , eC ,

attribute , tags) => {

2 var t1 = Date.now ()

3 var session = driver . session ();

4 query = ‘MERGE ( dsource : DatasetSource {name:’‘ + datasetSource [0]. name

+ ‘’,owner:’‘ + datasetSource [0]. owner + ‘’ ,type:’‘ + datasetSource

[0]. type + ‘’ , uuid: apoc. create .uuid ()})

5 MERGE (dsDl: DLStructuredDataset {name:’‘ + datasetSource [0]. name +

‘’,size:’‘ + datasetSource [0]. size + ‘’ ,type:’‘ + datasetSource [0].

type + ‘’ , uuid: apoc. create .uuid (), creationDate : datetime ()})

6 CREATE ( ingest : Ingest { ingestionMode :’Batch ’, ingestionStartTime :

datetime ()})

7 CREATE ( dsource ) <-[: ingestFrom ]-( ingest ) -[: ingestTo ]->( dsDl)

8 MERGE (rds: RelationshipDS {name:’Contains ’, description :’The

database is part of a bigger database ’})‘

9 for (var t = 0; t < tags. length ; t++) {

10 query += ‘MERGE (t‘ + t + ‘:Tag {name:’‘ + tags[t]. name + ‘’}) MERGE

(t‘+ t + ‘) <-[: hasTag ]-( dsDl)‘

11 }

12 for (var i = 0; i < datasetDatalake . length ; i++) {

13 query += ‘MERGE (dsDl ‘ + i + ‘: DLStructuredDataset {name: ’‘ +

datasetDatalake [i]. name + ‘’, uuid: apoc. create .uuid ()})

14 CREATE (aDSR ‘+ i + ‘: AnalysisDSRelationship {name:’

contains ’})

15 CREATE (aDSR ‘+ i + ‘) -[: hasRelationshipDataset ]->(rds)

16 CREATE (dsDl) <-[: withDataset ]-(aDSR ‘+ i + ‘) -[:

withDataset ]->(dsDl ‘ + i + ‘)‘

17 for (var j = 0; j < eC. length ; j++) {

18 if (eC[j][0] == datasetDatalake [i]. name) {

19 query += ‘CREATE (ec ‘ + i + ‘0‘ +j + ‘: EntityCLass {name:’‘ + eC[j

][1]. name + ‘’,numberOfAttributes :’‘ + eC[j][1]. numberOfAttributes +

‘’})

20 CREATE (ec ‘ + i + ‘0‘ +j + ‘) <-[: hasEntityClass ]-(

dsDl ‘ + i + ‘)‘

21 for (var k = 0; k < attribute . length ; k++) {

22 if (eC[j][1]. name == attribute [k][0]) {

23 if ( attribute [k][1]. type == ’Numeric ’){

24 query += ‘CREATE (att ‘ + i + ‘0‘ +j + ‘0‘ +k + ‘:

NumericAttribute {name:’‘ + attribute [k][1]. name + ‘’, type: ’‘ +

attribute [k][1]. type + ‘’ , min: ’‘ + attribute [k][1]. min +‘’ , max:

’‘ + attribute [k][1]. max + ‘’, missingValue : ’‘ + attribute [k][1].

missingValue + ‘’}) CREATE (att ‘ + i + ‘0‘ +j + ‘0‘ +k + ‘) <-[:
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hasAttribute ]-(ec ‘ + i + ‘0‘ +j + ‘)‘

25 } else {

26 query += ‘CREATE (att ‘ + i + ‘0‘ +j + ‘0‘ +k + ‘:

NominalAttribute {name:’‘ + attribute [k][1]. name + ‘’, type: ’‘ +

attribute [k][1]. type + ‘’}) CREATE (att ‘ + i + ‘0‘ +j + ‘0‘ +k + ‘)

<-[: hasAttribute ]-(ec ‘ + i + ‘0‘ +j + ‘)‘

27 }

28 }

29 }

30 }

31 }

32 }

Listing A.1: Script of ORACLE database metadata storing

1 MERGE ( dsource : DatasetSource {name:’mimic ’,owner:’MIT Laboratory

computational ’ ,type:’structured dataset ’ , uuid: apoc. create .uuid ()

})

2 MERGE (dsDl: DLStructuredDataset {name:’mimic ’,size:’1.9000000000000001

Go’ ,type:’structured dataset ’ , uuid: apoc. create .uuid (),

creationDate : datetime ()})

3 CREATE ( ingest : Ingest { ingestionMode :’Batch ’, ingestionStartTime :

datetime ()})

4 CREATE ( dsource ) <-[: ingestFrom ]-( ingest ) -[: ingestTo ]->( dsDl)

5 MERGE (rds: RelationshipDS {name:’Contains ’, description :’The database is

part of a bigger database ’}) MERGE (t0:Tag {name:’opensource ’})

6 MERGE (t0) <-[: hasTag ]-( dsDl)MERGE (t1:Tag {name:’healthcare ’})

7 MERGE (t1) <-[: hasTag ]-( dsDl)MERGE (t2:Tag {name:’laboratory ’})

8 MERGE (t2) <-[: hasTag ]-( dsDl)MERGE (dsDl0: DLStructuredDataset {name: ’

INTRO_USER ’, uuid: apoc. create .uuid ()})

9 CREATE (aDSR0: AnalysisDSRelationship {name:’contains ’})

10 CREATE (aDSR0) -[: hasRelationshipDataset ]->(rds)

11 CREATE (dsDl) <-[: withDataset ]-( aDSR0) -[: withDataset ]->( dsDl0) CREATE (

ec000: EntityCLass {name:’LABEVENTS ’,numberOfAttributes :’9’})

12 CREATE (ec000) <-[: hasEntityClass ]-( dsDl0) CREATE ( att0000196 :

NominalAttribute {name:’FLAG ’, type: ’VARCHAR2 ’})

13 CREATE ( att0000196 ) <-[: hasAttribute ]-( ec000) CREATE ( att0000197 :

NominalAttribute {name:’VALUEUOM ’, type: ’VARCHAR2 ’})

14 CREATE ( att0000197 ) <-[: hasAttribute ]-( ec000) CREATE ( att0000198 :

NumericAttribute {name:’VALUENUM ’, type: ’Numeric ’ , min: ’null ’ ,

max: ’null ’ , missingValue : ’0’ })

15 CREATE ( att0000198 ) <-[: hasAttribute ]-( ec000) CREATE ( att0000199 :

NominalAttribute {name:’VALUE ’, type: ’VARCHAR2 ’})

Listing A.2: Excerpt of script of OT database metadata storing
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Scripts to Explore Datasets

1
2 // Function to search dataset metadata , with parameters for each filter .

3 module . exports . getDatabases = (tags , type = ’defaultValue ’, creationdate

= ’0001 -01 -01 T00 :00:00 Z’, quality = [], sensitivity = 0,

entityAttributeNames = "") => {

4 var session = driver . session ();

5 // Cypher query with ifs to have the dataset type filter used.

6 var query = "MATCH (ds) ,(a) ,(e: EntityClass ) WHERE ("; // ,(q:

QualityMetric ) ,(s: SensitivityMark ), (sv: SensitivityValue )

7 if (! type. includes (" Structured ") && !type. includes ("Semi - Structured ")

&& !type. includes (" Unstructured ")) {

8 query += " ds: DLStructuredDataset OR ds: DLSemistructuredDataset OR

ds: DLUnstructuredDataset ";

9 } else {

10 if (type. includes (" Structured ") && type. includes ("Semi - Structured ")

&& type. includes (" Unstructured ")) {

11 query += " ds: DLStructuredDataset OR ds: DLSemistructuredDataset OR

ds: DLUnstructuredDataset ";

12 } else {

13 if (type. includes (" Structured ") && type. includes ("Semi - Structured "

)) {

14 query += " ds: DLStructuredDataset OR ds: DLSemistructuredDataset

";

15 } else {

16 if (type. includes (" Structured ") && type. includes (" Unstructured ")

) {

17 query += " ds: DLStructuredDataset OR ds: DLUnstructuredDataset

";

18 } else {

19 if (type. includes ("Semi - Structured ") && type. includes ("

Unstructured ")) {

20 query += " ds: DLSemistructuredDataset OR ds:

DLUnstructuredDataset ";

21 } else {

22 if (type. includes ("Semi - Structured ")) {

23 query = query + "ds: DLSemistructuredDataset ";

24 } else {

25 if (type. includes (" Unstructured ")) {

26 query = query + "ds: DLUnstructuredDataset ";

27 } else {

28 if (type. includes (" Structured ")) {

29 query = query + "ds: DLStructuredDataset ";
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30 }

31 }

32 }

33 }

34 }

35 }

36 }

37 }

38 query = query + ") AND (";

39 for (var i = 0; i < tags. length ; i++) {

40 if (i != tags. length - 1) {

41 query = query + " toLower (ds.name) CONTAINS toLower (’" + tags[i] +

" ’) OR toLower (ds. description ) CONTAINS toLower (’" + tags[i] + " ’) OR

"

42 }

43 else {

44 query = query + " toLower (ds.name) CONTAINS toLower (’" + tags[i] +

" ’) OR toLower (ds. description ) CONTAINS toLower (’" + tags[i] + " ’)"

45 }

46 }

47 // Cypher query for dates filter

48 query = query + ’ ) AND ( datetime (ds. creationDate ) >= datetime ("’ +

creationdate + ’")) RETURN distinct ds ’

49
50 // Cypher query for the quality filter

51 if( quality .lenght >0){

52 query += "AND (n) -[qv: qualityValue ]-(q) AND ("

53 for( var i=0; i< quality . length ; i++){

54 if(i!= quality . length -1){

55 query += " toLower (q.name) CONTAINS toLower ("+ quality [i][0] +")

AND qv.value >= "+ quality [i][1] +" OR" ;

56 }else{

57 query += " toLower (q.name) CONTAINS toLower ("+ quality [i][0] +")

AND qv.value >= "+ quality [i][1] +" ) "

58 }

59 }

60 }

61
62 // Cyper query for the sensitivity filter

63 if( sensitivity != 0){

64 query += "(n) -[: hasSensitivity ]-(s) -[: hasValue ]-(sv) AND (sv. value

>= "+ sensitivity +" )";

65 }

66
67 // Cypher query for the entity class filter

68 if ( entityAttributeNames . length > 0) {

69 query += "AND (a: NominalAttribute OR a: NumericAttribute ) AND ((ds)

-[: hasEntityClass ]->(e: EntityClass ) -[: hasAttribute ]->(a)) AND (

toLower (e.name) CONTAINS toLower (’" + entityAttributeNames + " ’) OR

toLower (a.name) CONTAINS toLower (’" + entityAttributeNames + " ’))"

70 }

71
72 // Cypher query that allow a dataset to not have a Tag , else it is not

taken in account

73 query = query + ’ union MATCH (ds) -[: hasTag ]->(t:Tag) WHERE ( ’

74 for (var i = 0; i < tags. length ; i++) {

75 if (i != tags. length - 1) {
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76 query = query + " toLower (t.name) CONTAINS toLower (’" + tags[i] + "

’) OR "

77 }

78 else {

79 query = query + " toLower (t.name) CONTAINS toLower (’" + tags[i] + "

’)"

80 }

81 }

82
83 query = query + ") RETURN distinct ds"

84 }

Listing B.1: Script to Ąnd datasets with keywords and Ąlters

1
2
3 // Get information of lineage

4
5 query = ‘MATCH path = allshortestpaths ((ds: DatasetSource ) -[*]-(d))

6 WHERE NONE(n IN nodes(path) WHERE n:Tag OR n: Operation OR n:

AnalysisDSRelationship ) AND (d: DLStructuredDataset OR d:

DLSemistructuredDataset OR d: UnstructuredDataset ) AND NONE(x IN nodes

(path) where exists (() -[: hasSubprocess ]->(x: Process ))) AND d.uuid = ’

‘ + $(this).attr(’id ’).split(’$’)[2] + ‘’

7 RETURN path

8 UNION ALL

9 MATCH path = allshortestpaths (( sos: SourceOfSteam ) -[*]-(d))

10 WHERE NONE(n IN nodes(path) WHERE n:Tag OR n: Operation OR n:

AnalysisDSRelationship ) AND (d: DLStructuredDataset OR d:

DLSemistructuredDataset OR d: UnstructuredDataset ) AND NONE(x IN nodes

(path) where exists (() -[: hasSubprocess ]->(x: Process ))) AND d.uuid = ’

‘ + $(this).attr(’id ’).split(’$’)[2] + ‘’

11 RETURN path ‘

12
13 // Get information of Hyper Graph

14
15 query = ‘MATCH (d)

16 WHERE (d: DLStructuredDataset OR d: DLSemistructuredDataset OR d

: DLUnstructuredDataset ) AND d.uuid = "‘ + $(this).attr(’id ’).split(’$

’)[2] + ‘"

17 OPTIONAL MATCH (d) -[r: sourceData ]->(p: Process )

18 WHERE NOT (p) <-[: hasSubprocess ]-()

19 OPTIONAL MATCH (d) <-[s: targetData ]-(p1: Process )

20 WHERE NOT (p1) <-[: hasSubprocess ]-()

21 with d,p,p1 ,r,s

22 RETURN d,p,p1 ,r,s

23 UNION ALL

24 MATCH (d)

25 WHERE (d: DLStructuredDataset OR d: DLSemistructuredDataset OR d

: DLUnstructuredDataset ) AND d.uuid = "‘ + $(this).attr(’id ’).split(’$

’)[2] + ‘"

26 OPTIONAL MATCH (d) -[r: sourceData ]->(p: Process )

27 OPTIONAL MATCH (d) <-[s: targetData ]-(p1: Process )

28 with d,p,p1 ,r,s

29 WHERE NOT exists ((p) <-[: hasSubprocess ]-(: Process ) -[]-(d)) AND

NOT exists ((p1) <-[: hasSubprocess ]-(: Process ) -[]-(d))

30 RETURN d,p,p1 ,r,s‘

31
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32 // Get information of Relationship of Dataset

33
34 query = ‘MATCH (dl) <-[r1: withDataset ]-(a) -[r2: hasRelationshipDataset ]->(

rDS: RelationshipDS ) ,(a) -[r3: withDataset ]->(dl2)

35 WHERE dl.name CONTAINS ’‘ + datasetChosed [0] + ‘’ and dl.uuid =

’‘ + datasetChosed [1] + ‘’

36 AND

37 (dl: DLStructuredDataset OR dl: DLSemistructuredDataset OR dl:

DLUnstructuredDataset )

38 AND

39 (dl2: DLStructuredDataset OR dl2: DLSemistructuredDataset OR dl2:

DLUnstructuredDataset )

40 and rDS.name=’‘+ relationDS + ‘’

41 RETURN DISTINCT dl ,dl2 ,rDS ,a,r1 ,r2 ,r3 ‘

42
43 // Get information of Reationship of Attributes

44
45 query = ‘MATCH (dl) -[]-(e: EntityClass ) -[]-(a) ,(a) -[r1: hasAttribute ]-(AA:

AnalysisAttribute ) -[r2: useMeasure ]-(RA: RelationshipAtt ) ,(AA) -[r3:

hasAttribute ]-(a2)

46 WHERE dl.uuid = ’‘ + trans + ‘’

47 AND

48 (a: NominalAttribute OR a: NumericAttribute OR a: Attribute ) and

RA.name=’‘ + relationAtt + ‘’

49 RETURN DISTINCT a,r1 ,AA ,r2 ,RA ,a2 ,r3 union all MATCH (dl) -[]-()

-[]-(e: EntityClass ) -[]-(a) ,(a) -[r1: hasAttribute ]-(AA:

AnalysisAttribute ) -[r2: useMeasure ]-(RA: RelationshipAtt ) ,(AA) -[r3:

hasAttribute ]-(a2)

50 WHERE dl.uuid = ’‘ + trans + ‘’

51 AND

52 (a: NominalAttribute OR a: NumericAttribute OR a: Attribute ) and

RA.name=’‘ + relationAtt + ‘’

53 RETURN DISTINCT a,r1 ,AA ,r2 ,RA ,a2 ,r3 ‘

54
55 // Get information of Similarity

56
57 query = ‘CALL gds. nodeSimilarity . stream (’graph -DDDT ’)

58 YIELD node1 , node2 , similarity

59 RETURN gds.util. asNode (node1).name AS Person1 , gds.util. asNode (node2).

name AS Person2 , similarity

60 ORDER BY similarity DESCENDING , Person1 , Person2 ‘

Listing B.2: Queries used to Ąnd details about a dataset
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Scripts to Explore Processes

1 // Function to search processus metadata with parameters to apply filter .

2 // Attributed values are default value if no parameter is given.

3 module . exports . getProcesses = (tags , language = "", date = "0001 -01 -01",

typeOpe = [], exeEnv = []) => {

4 var session = driver . session ();

5 // Classic query without filter , search with name , description and tag

name.

6 var query = "MATCH (p: Process ) OPTIONAL MATCH (p) -[r: hasTag ]->(t :Tag)

OPTIONAL MATCH (o: Operation ) -[: isUsedBy ]->(: OperationOfProcess ) <-[:

containsOp ]-(p) WITH p,t,o WHERE ("

7 for (var i = 0; i < tags. length ; i++) {

8 if (i != tags. length - 1) {

9 query = query + " toLower (t.name) CONTAINS toLower (’" + tags[i] + "

’) OR toLower (p.name) CONTAINS toLower (’" + tags[i] + " ’) OR toLower (

p. description ) CONTAINS toLower (’" + tags[i] + " ’) OR toLower (o.name)

CONTAINS toLower (’" + tags[i] + " ’) OR "

10 }

11 else {

12 query = query + " toLower (t.name) CONTAINS toLower (’" + tags[i] + "

’) OR toLower (p.name) CONTAINS toLower (’" + tags[i] + " ’) OR toLower (

p. description ) CONTAINS toLower (’" + tags[i] + " ’) OR toLower (o.name)

CONTAINS toLower (’" + tags[i] + " ’) )"

13 }

14 }

15 // Cypher query for language filter

16 if ( language . length > 0) {

17 query += " AND ("

18 for (var i = 0; i < language . length ; i++) {

19 if (i != language . length - 1) {

20 query += " p. programLanguage CONTAINS (’" + language [i] + " ’) OR

"

21 } else {

22 query += " p. programLanguage CONTAINS (’" + language [i] + " ’) )

"

23 }

24 }

25 }

26 // Cypher query for execution environment

27 if ( exeEnv . length > 0) {

28 query += " AND ("

29 for (var i = 0; i < exeEnv . length ; i++) {

30 if (i != exeEnv . length - 1) {
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31 query += " p. executionEnvironment CONTAINS (’" + exeEnv [i] + " ’)

OR "

32 } else {

33 query += " p. executionEnvironment CONTAINS (’" + exeEnv [i] + " ’)

) "

34 }

35 }

36 }

37 // Cypher query for dates filter

38 query = query + ’ AND ( datetime (p. creationDate ) >= datetime ("’ + date

+ ’"))’

39 // Cypher query for used operation filter

40 if ( typeOpe . length > 0) {

41 query += " AND (p) -[]-() -[]-(o: Operation ) AND ("

42 for (var i = 0; i < typeOpe . length ; i++) {

43 if (i != typeOpe . length - 1) {

44 query += " o.name CONTAINS (’" + typeOpe [i] + " ’) OR "

45 } else {

46 query += " o.name CONTAINS (’" + typeOpe [i] + " ’) )"

47 }

48 }

49 }

50 query = query + " RETURN distinct p"

51 }

Listing C.1: Script to Ąnd processes with keywords and Ąlters

1 // Get information of lineage

2
3 query = ‘MATCH path =(m) <-[: targetData ]-(c: Process {uuid:’‘ + $(this).

attr(’id ’).split(’$’)[1] + ‘’})

4 OPTIONAL MATCH (c) <-[q: hasSubprocess ]-(w: Process )

5 RETURN path ,w,q

6 UNION ALL

7 MATCH path3 =(c: Process {uuid:’‘ + $(this).attr(’id ’).split(’$’)

[1] + ‘’}) <-[: sourceData ]-(d)

8 OPTIONAL MATCH (c) <-[q: hasSubprocess ]-(w: Process )

9 RETURN path3 AS path ,w,q

10 UNION ALL

11 MATCH path2 =(( dl) -[]-(i: Ingest ) -[]-(p: Process {uuid:’‘+ $(this).

attr(’id ’).split(’$’)[1] + ‘’}) -[]-(d: DatasetSource ) -[]-( sos:

SourceOfSteam ))

12 WHERE (dl: DLStructuredDataset OR dl: DLSemistructuredDataset OR dl:

DLUnstructuredDataset )

13 RETURN path2 AS path , null as w, null as q‘;

14
15 // Get information of hyper graph

16
17 query = "MATCH path= (p: Process {name:’" + $(this).text () + " ’}) -[:

hasSubprocess ]-(t: Process ) RETURN path"

18
19 // Get information of operation

20
21 query = ‘MATCH (p: Process {name:"‘ + $(this).text () + ‘"})

22 OPTIONAL MATCH (p) -[r3: containsOp ]->(c: OperationOfProcess )

23 OPTIONAL MATCH (p) -[r5: hasSubprocess ]->(p1: Process ) -[r1: containsOp

]->(c1: OperationOfProcess )

24 OPTIONAL MATCH (c) -[f: followedBy ]-()
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25 RETURN c,c1 ,f, null as p, null as p1 , null as r1 , null as r5

26 UNION ALL

27 MATCH (p: Process {name:"‘ + $(this).text () + ‘"}) -[r5:

hasSubprocess ]->(p1: Process ) -[r1: containsOp ]->(c1: OperationOfProcess )

28 OPTIONAL MATCH (c1) -[f: followedBy ]-()

29 RETURN p,p1 ,r1 ,c1 ,r5 ,f, null as c‘

Listing C.2: Queries to Ąnd details about a process
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Scripts to Explore Analyses

1 // Function to search study metadata

2 module . exports . getStudies = (tags , type , creationdate = ’0001 -01 -01 ’,

landmarker , algoNames , parameter = [], evaluation = [], omNames ) => {

3 var session = driver . session ();

4 let typeRech = Object . values (type);

5 console .log(’Algorithm names : ’ + algoNames )

6 var query = "MATCH (s:Study) -[: hasAnalysis ]->(a: Analysis ) ,(l:

Landmarker ) ,(al)"

7 // Classic cypher query to search for study without filter .

8 if( parameter . length > 0){

9 query += ’,(p)’

10 }

11 if( evaluation . length > 0){

12 query += ’,(e)’

13 }

14 query += "WHERE ("

15 for (var i = 0; i < tags. length ; i++) {

16 if (i != tags. length - 1) {

17 query = query + " toLower (s.name) CONTAINS toLower (’" + tags[i] + "

’) OR toLower (s. description ) CONTAINS toLower (’" + tags[i] + " ’) OR

toLower (a.name) CONTAINS toLower (’" + tags[i] + " ’) OR "

18 }

19 else {

20 query = query + " toLower (s.name) CONTAINS toLower (’" + tags[i] + "

’) OR toLower (s. description ) CONTAINS toLower (’" + tags[i] + " ’) OR

toLower (a.name) CONTAINS toLower (’" + tags[i] + " ’) )"

21 }

22 }

23 if ( typeRech . indexOf (’machineLearning ’) != -1 && typeRech . indexOf (’

otherAnalysis ’) == -1) {

24 query = query + ’ AND toLower (a. typeAnalysis ) CONTAINS toLower ("

Machine Learning ")’

25 }else if ( typeRech . indexOf (’machineLearning ’) == -1 && typeRech .

indexOf (’otherAnalysis ’) != -1) {

26 query = query + ’ AND toLower (a. typeAnalysis ) CONTAINS toLower ("

Other Analysis ")’

27 }

28 if ( typeRech . indexOf (’machineLearning ’) != -1 ) {

29 typeRech . splice ( typeRech . indexOf (’machineLearning ’), 1)

30 }

31 if ( typeRech . indexOf (’otherAnalysis ’) != -1) {

32 typeRech . splice ( typeRech . indexOf (’otherAnalysis ’), 1)

151



APPENDIX D. SCRIPTS TO EXPLORE ANALYSES 152

33 }

34 // Cypher query for analysis type filter

35 if ( typeRech . length > 0) {

36 query += ’ AND (’

37 for (var i = 0; i < typeRech . length ; i++) {

38 if (i != typeRech . length - 1) {

39 query += ’ toLower (a. subTypeAnalysis ) CONTAINS toLower ("’ +

typeRech [i] + ’") OR ’

40 } else {

41 query += ’ toLower (a. subTypeAnalysis ) CONTAINS toLower ("’ +

typeRech [i] + ’") )’

42 }

43 }

44 }

45 // Cypher query for landmarkers query

46 if ( landmarker . length > 0) {

47 query += ’ AND (s) -[: hasAnalysis ]->(a) -[: hasImplementation ]->(l) AND

(’

48 for (var i = 0; i < landmarker . length ; i++) {

49 if (i != landmarker . length - 1) {

50 query += ’ toLower (l.name) CONTAINS toLower ("’ + landmarker [i] +

’") OR toLower (l. description ) CONTAINS toLower ("’ + landmarker [i] +

’") OR ’

51 } else {

52 query += ’ toLower (l.name) CONTAINS toLower ("’ + landmarker [i] +

’") OR toLower (l. description ) CONTAINS toLower ("’ + landmarker [i] +

’") )’

53 }

54 }

55 }

56
57 if( evaluation . length > 0){

58 query += ’ AND (s) -[: hasAnalysis ]->(a) -[: evaluateAnalysis ]-() -[]-(e:

EvaluationMeasure ) AND ( ’

59 for (var i = 0; i < evaluation . length ; i++) {

60 if (i != evaluation . length - 1) {

61 query += ’ toLower (e.name) CONTAINS toLower ("’ + evaluation [i] +

’") OR ’

62 } else {

63 query += ’ toLower (e.name) CONTAINS toLower ("’ + evaluation [i] +

’") )’

64 }

65 }

66 }

67
68 if( parameter . length > 0){

69 query += ’ AND (s) -[: hasAnalysis ]->(a) -[: hasImplementation ]->() -[:

hasParameter ]-(p: Parameter ) AND ( ’

70 for (var i = 0; i < parameter . length ; i++) {

71 if (i != parameter . length - 1) {

72 query += ’ toLower (p.name) CONTAINS toLower ("’ + parameter [i] +

’") OR ’

73 } else {

74 query += ’ toLower (p.name) CONTAINS toLower ("’ + parameter [i] +

’") )’

75 }

76 }

77 }
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78
79 // Cypher query for algo filter . The database does not have all the

algo type implemented so this part of query is commented .

80 if ( algoNames . length > 0 || type. includes (’algosupervised ’) || type.

includes (’algoUnsupervised ’) || type. includes (’AlgoReinforcement ’)) {

81 query += ’ AND (s) -[: hasAnalysis ]->(a) -[: hasImplementation ]->() -[:

usesAlgo ]->(al) ’

82 if (type. includes (’algosupervised ’) || type. includes (’

algoUnsupervised ’) || type. includes (’AlgoReinforcement ’)) {

83 query += ’AND (’

84 if (! type. includes (" algosupervised ") && !type. includes ("

algoUnsupervised ") && !type. includes (" AlgoReinforcement ")) {

85 query += " al: AlgoSupervised OR al: AlgoUnsupervised OR al:

AlgoReinforcement ";

86 } else {

87 if (type. includes (" algosupervised ") && type. includes ("

algoUnsupervised ") && type. includes (" AlgoReinforcement ")) {

88 query += " al: AlgoSupervised OR al: AlgoUnsupervised OR al:

AlgoReinforcement ";

89 } else {

90 if (type. includes (" algosupervised ") && type. includes ("

algoUnsupervised ")) {

91 query += " al: AlgoSupervised OR al: AlgoUnsupervised ";

92 } else {

93 if (type. includes (" algosupervised ") && type. includes ("

AlgoReinforcement ")) {

94 query += " al: AlgoSupervised OR al: AlgoReinforcement ";

95 } else {

96 if (type. includes (" algoUnsupervised ") && type. includes ("

AlgoReinforcement ")) {

97 query += " al: AlgoUnsupervised OR al: AlgoReinforcement "

;

98 } else {

99 if (type. includes (" algoUnsupervised ")) {

100 query = query + "al: AlgoUnsupervised ";

101 } else {

102 if (type. includes (" AlgoReinforcement ")) {

103 query = query + "al: AlgoReinforcement ";

104 } else {

105 if (type. includes (" algosupervised ")) {

106 query = query + "al: AlgoSupervised ";

107 }

108 }

109 }

110 }

111 }

112 }

113 }

114 }

115 query += ’) ’

116 }

117 // Cypher query to search a particular algo names.

118 if ( algoNames . length > 0) {

119 query += ’ AND ( toLower (al.name) CONTAINS toLower ("’ + algoNames +

’") OR toLower (al. description ) CONTAINS toLower ("’ + algoNames + ’")

) ’

120 }

121 }
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122
123 query = query + ’ AND ( datetime (s. creationDate ) >= datetime ("’ +

creationdate + ’"))’

124 query = query + " RETURN DISTINCT s"

125
126 }

127
128 // module . exports .to get entity class by dataset

129 module . exports . getEntityClassByDataset = ( datasetName , datasetId , typeDS

) => {

130 var session = driver . session ();

131 query = ’MATCH (e: EntityClass ) <-[: hasEntityClass ]-(a) WHERE ’

132 if ( typeDS . includes ("Semi - Structured ")) {

133 query = query + "a: DLSemistructuredDataset ";

134 } else {

135 if ( typeDS . includes (" Unstructured ")) {

136 query = query + "a: DLUnstructuredDataset ";

137 } else {

138 if ( typeDS . includes (" Structured ")) {

139 query = query + "a: DLStructuredDataset ";

140 }

141 }

142 }

143 query += ’a.name = "’ + datasetName + ’" AND a.uuid = "’ + datasetId +

’" RETURN DISTINCT e’;

144 }

Listing D.1: Script to Ąnd analyses with keywords and Ąlters

1
2 // Get information of lineage

3
4 query = ‘MATCH path = shortestPath ((d: DatasetSource ) -[*] -(u: Analysis {

uuid:"‘ + $(this).attr(’id ’).split(’$ ’)[1] + ‘"}))

5 WHERE NONE(n IN nodes(path) WHERE n:Tag OR n: Operation OR n:

AnalysisDSRelationship OR n:Study)

6 RETURN path

7 UNION ALL

8 MATCH path = shortestPath ((d) -[*..1] -(u: Analysis {uuid:"‘ +

$(this).attr(’id ’).split(’$ ’)[1] + ‘"}))

9 WHERE NONE(n IN nodes(path) WHERE n:Tag OR n: Operation OR n:

AnalysisDSRelationship OR n:Study)

10 AND (d: DLStructuredDataset OR d: DLSemistructuredDataset OR d

: DLUnstructuredDataset )

11 RETURN path ‘

12
13 // Get information of hyper graph

14
15 query = ‘MATCH (a: Analysis )

16 MATCH (a) <-[r1: hasAnalysis ]-(s:Study)

17 MATCH (a) <-[r2: evaluateAnalysis ]-(me: ModelEvaluation ) -[r3:

useEvaluationMeasure ]->(em: EvaluationMeasure )

18 WHERE

19 toLower (a.name) CONTAINS toLower (’‘+ $(this).attr(’id’).

split(’$’)[0] + ‘’) AND a.uuid = ’‘ + $(this).attr(’id’).split(’$’)

[1] + ‘’

20 WITH a,s,em ,me ,r1 ,r2 ,r3

21 OPTIONAL MATCH (a) -[r4: hasImplementation ]-(ld: Landmarker )
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22 WITH a,s,em ,me ,ld ,r1 ,r2 ,r3 ,r4

23 OPTIONAL MATCH (a) -[r5: hasImplementation ]->(i: Implementation

) -[r6: usesAlgo ]->(al: AlgoSupervised ) ,(i) -[r7: hasParameterSetting ]->(

ps: ParameterSetting ) <-[r8: hasParameterValue ]-(p: Parameter ) <-[r9:

hasParameter ]-(i)

24 RETURN a,s,me ,em ,ld ,i,al ,p,ps ,r1 ,r2 ,r3 ,r4 ,r5 ,r6 ,r7 ,r8 ,r9 ‘

25
26 // Get information of features

27
28 // Numeric attribute use the same query but replace all the nominal with

numeric

29
30 query = ’Match (na: NominalAttribute ) ,(nf: AnalysisNominalFeatures ) ,(f:

AnalysisFeatures ) ,(a: Analysis ) ,(ta: AnalysisTarget ) WHERE a.uuid = "’

+ analyseId + ’" AND ((a) -[: hasFeaturesAnalysis ]->(f) -[:

hasNominalFeaturesAnalysis ]->(nf) -[: hasFeatures ]->(na) OR (a) -[:

hasTargetAnalysis ]->(ta) -[: hasTarget ]->(na)) RETURN DISTINCT na’

31
32 // Bouton attribute

33 // Numeric attribute use the same query but replace all the nominal with

numeric

34 query = ’Match (na: NominalAttribute ) ,(nf: AnalysisNominalFeatures ) ,(f:

AnalysisFeatures ) ,(a: Analysis ) ,(ta: AnalysisTarget ) WHERE a.uuid = "’

+ analyseId + ’" AND na.name= "’ + name + ’" AND ((a) -[:

hasFeaturesAnalysis ]->(f) -[: hasNominalFeaturesAnalysis ]->(nf) -[:

hasFeatures ]->(na) OR (a) -[: hasTargetAnalysis ]->(ta) -[: hasTarget ]->(

na)) RETURN DISTINCT na’

35
36 // Get information of relationship of attributes is the same query with

Datasets

37
38 // Get information of entity class

Listing D.2: Queries used to Ąnd details about a analysis
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Experiment Protocol

Thank you for participating in this experiment which is divided into three parts:

• Firstly, weŠll show you a folder in which you can Ąnd different projects. In each
project Ąle, you may Ąnd datasets, transformation scripts and/or analysis scripts
related to project. You need to answer 6 questions by looking through different
projects manually. We will record the number of clicks and time that you spend on
each question.

• Secondly, after a quick presentation, you will answer the same questions with the
help of DAMMS (data lake metadata management system). We will record the
number of clicks and time that you spend on each question.

• Finally, Finally, you can give us feedback on your experience in the form of a ques-
tionnaire.

Questions: nothinghere
nothinghere

About datasets

1. There are different medical datasets, can you try to Ąnd how many of them are
about ŚbreastŠ cancer?

2. The dataset Şcancer breast.csvŤ is stored in Ş\Exploration\CHSI\cancer_breast.

csvŤ, in the same folder, there are two other datasets Şcolon cancerŤ and Şlung
cancerŤ stored in the same folder, can you Ąnd out if the three datasets are similar
or not?

About processes

3. The dataset Şcancer breast.csvŤ was obtained through a transformation process, can
you identify the data source Ąle of this transformation?

4. Do you understand the main operations (such as cleaning, aggregation, merging,
etc.) used in the transformation script?

About analyses

5. To analyze breast cancer, ŞobesityŤ is a feature in the dataset, can you Ąnd there
are how many missing values in the ŞobesityŤ column?

6. The dataset ŞchsiŤ was already used for a machine learning analysis, can you Ąnd
out the type of the analysis (such as descriptive, predictive)?
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Questionnaire
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Ivanović, M., Gamper, J., Morzy, M., Tzouramanis, T., Darmont, J., and Kamǐsalić Lat-
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