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Abstract

Cancer is a fatal disease considered the second leading cause of death. Any

advances in diagnosis and detection of cancer are thus crucial to save lives.

The analysis of histological images -also known asWhole Slide Images (WSIs)-

is considered as the gold standard in cancer diagnosis and staging. The

pathologists’ manual analysis of WSIs is still the primary diagnosis process.

It is time-consuming, laborious, prone to error, and difficult to grade in

a reproducible manner. Computer-aided diagnosis techniques can assist

pathologists in their workflow. Machine learning techniques, specifically

deep learning algorithms, such as Convolutional Neural Networks (CNNs),

are widely used in various domains that involve image analysis. The success

of CNN models, however, depends on several hyper-parameter settings, such

as the network architecture, the data used to train the model, and the class

distribution of the training data. To the best of our knowledge, among the

hyper-parameters, the class distribution of the training data is not studied yet

in the literature for the WSI data, while it could be one of the most important

criteria to regulate the model performance. One of the aims of this thesis is

to study in-depth the impact of class distribution both at the training stage

and at the test or forecasting stage. Another aim of this thesis is related to

evaluation in a broader sense. We studied ways of evaluating the results that

fit more the pathologist’s goals and solve the issues of current metrics that

suffer from their incapacity to distinguish models in many cases, lacking

information regarding false predictions and being optimistic in the case of

imbalanced data. Considering both the class distribution and the evaluation

for cancer detection from WSIs, the specific contributions of this thesis are

as follows:

The first main contribution of this thesis is to investigate the effectiveness

of the balanced distribution in automatic cancer detection which is used in

many studies. We propose a systematic approach to analyze the class distri-

bution of the WSI data in the training set; put forward different hypotheses

on the class distribution and test those hypotheses using three data sets and

two CNN architectures, the U-net and the group equivariant convolutional

network (G-CNN). We also introduce a patch-based (i.e., image region-based)

evaluation method over the usual pixel-based one to obtain a better match in

comparison to how a pathologist checks images. We found that the balanced
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distribution is not optimal for CNN training for cancer detection from WSI,

rather with the class-biased distribution, it is possible to inflect the model

toward the desired accuracy (e.g., toward recall or precision). These results

are a step forward to understand the model behavior towards the different

distributions of classes in the training set.

The second main contribution of this thesis is to develop a continuous

threshold-based representation of precision and recall (PR-T) curves as an

alternative to the Receiver Operating Characteristics (ROC) and Precision-

Recall (PR) curves, the state-of-the-art evaluation metrics in binary classifica-

tion as is cancer detection. Additionally, we developed end-to-end algorithms

to compute the mean PR curve and the mean Area Under the Curve (PR-AUC).

Keywords: Class distribution analysis, Evaluation method, Histological im-

age, Deep learning, Cancer diagnosis, Image segmentation and classification



Résumé

Le cancer est une maladie mortelle considérée comme la deuxième cause

de décès. Toute avancée dans le diagnostic et la détection du cancer est donc

cruciale pour sauver des vies. L’analyse d’images histologiques - également

appelées Whole Slide Images (WSI) - est considérée comme la référence dans

le diagnostic et l’étude du stade du cancer. L’analyse manuelle de ces images

par les pathologistes reste le principal processus de diagnostic. Il prend du

temps, est laborieux, sujet aux erreurs et difficile à évaluer de manière repro-

ductible. Les techniques de diagnostic assisté par ordinateur peuvent aider les

pathologistes dans leur travail. Les techniques d’apprentissage automatique,

en particulier les algorithmes d’apprentissage profond, tels que les réseaux

de neurones convolutifs (CNN), sont largement utilisés dans divers domaines

dont l’analyse d’images. Le succès des modèles CNN dépend cependant de

plusieurs hyper-paramètres, tels que l’architecture du réseau, les données util-

isées pour entraîner le modèle et la distribution des données d’entraînement.

A notre connaissance, parmi les hyper-paramètres, la distribution des données

d’entraînement n’est pas encore étudiée dans la littérature pour les données

WSI, alors qu’elle pourrait être l’un des critères les plus importants pour

réguler les performances du modèle. L’un des objectifs de cette thèse est

d’étudier en profondeur l’impact de la répartition des classes tant au stade

de l’apprentissage qu’au stade du test ou de la prévision. Un autre objectif

de cette thèse est lié à l’évaluation au sens large. Nous avons étudié des

moyens d’évaluer les résultats qui correspondent davantage aux objectifs du

pathologiste et résolvent les problèmes des métriques actuelles qui souffrent

de leur incapacité à distinguer les modèles dans de nombreux cas, manquent

d’informations concernant les fausses prédictions et sont optimistes dans le

cas de données déséquilibrées. Considérant à la fois la distribution des classes

et l’évaluation de la détection du cancer à partir des WSI, les contributions

spécifiques de cette thèse sont les suivantes:

La première contribution principale de cette thèse est d’étudier l’efficacité

de la distribution équilibrée dans la détection automatique du cancer qui

est utilisée dans de nombreuses études. Nous proposons une approche sys-

tématique pour analyser la distribution des classes des données WSI dans

l’ensemble d’apprentissage, pour proposer différentes hypothèses sur la dis-
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tribution des classes et tester ces hypothèses en utilisant trois ensembles de

données et deux architectures CNN, le réseau U-net et le réseau convolutif

équivariant de groupe (G-CNN). Nous introduisons également une méth-

ode d’évaluation basée sur les régions de l’image alternative à la méthode

habituelle basée sur les pixels. Elle permet d’obtenir une meilleure corre-

spondance par rapport à la façon dont un pathologiste vérifie les images.

Nous avons constaté que la distribution équilibrée n’est pas optimale pour

l’entrainement d’un CNN, et qu’avec la distribution biaisée par classe, il est

possible d’infléchir le modèle vers la précision souhaitée (par exemple, vers

le rappel ou la précision). Ces résultats constituent une avancée pour com-

prendre le comportement du modèle vis-à-vis des différentes distributions de

classes dans l’ensemble d’apprentissage.

La deuxième contribution principale de cette thèse est de développer une

représentation continue basée sur un seuil des courbes de précision et de

rappel (PR-T) comme alternative aux courbes de caractéristiques de fonc-

tionnement du récepteur (ROC) et de précision-rappel (PR), les métriques

d’évaluation usuelles en classification binaire. De plus, nous avons développé

des algorithmes de bout en bout pour calculer la courbe PR moyenne et la

moyenne de l’aire sous la courbe (PR-AUC).

Mots clés : Analyse de la distribution des classes, Méthode d’évaluation,

Image histologique, Apprentissage profond, Diagnostic du cancer, Segmenta-

tion et classification d’images
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Chapter 1

Introduction

Cancer is one of the deadly diseases and considered as the second leading

cause of death globally [Deniz et al., 2018; Cortes et al., 2020]. More than 100

types of cancer, such as, breast, skin, lung, colon, prostate, and lymphoma,

are identified and categorized according to the tissue of origin [Deniz et al.,

2018; Grixti and Ayers, 2020]. Once a type of cancers affects the human

body, it can spread through the blood or lymphatic system and can damage

other organs of the human body [Padera et al., 2016; Pang et al., 2016; Deniz

et al., 2018]. According to the International Agency for Research on Cancer,

GLOBOCAN cancer statistics1 for the year 2020, there were an estimated

19.3 million new cases of cancer (18.1 million excluding non-melanoma skin

cancer) and almost 10.0 million deaths from cancer (9.9 million excluding

non-melanoma skin cancer) worldwide [Ferlay et al., 2021]. Any advances in

diagnosis and detection of cancer are thus crucial for saving lives.

If any suspected case is found, a doctor must diagnose whether it is due

to cancer or any other reason. The diagnosis process includes analysis of

personal and family medical history, lab tests (e.g., blood, urine, or other body

fluids test), imaging tests (e.g., X-ray, ultrasound, computed tomography, nu-

clear medicine including Positron Emission Tomography (PET), fluoroscopy,

and Magnetic Resonance Imaging (MRI)), and biopsy2 [Schiffman et al., 2015].

Among all the tests, the most common method for cancer diagnosis is based

on tissue biopsy3 [Li et al., 2021b]. The tissue biopsy or simply biopsy is a

procedure in which a sample of tissue is extracted from the suspected area,

and a pathologist looks at the tissue through a microscope by placing it on a

glass-slide after some pre-processing and runs other tests to see if the tissue is

cancer2. The process of examining the tissue to study the manifestation of the

disease is called histological analysis [Slaoui and Fiette, 2011; He et al., 2012;

Kandel and Castelli, 2020]. It plays an important role in cancer diagnosis and

1https://gco.iarc.fr/today/home
2https://www.cancer.gov
3https://training.seer.cancer.gov/disease/diagnosis/
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staging [Gupta and Madoff, 2007; He et al., 2012].

About a decade ago, histological analysis of the glass-slide of a tissue sam-

ple with a microscope was the primary diagnosis method for cancer [Barisoni

et al., 2020]. The digitization of the glass-slide of the tissue sample, which

was introduced in 1999 after the invention of the whole slide scanner [Bera

et al., 2019], was considered as a fairly novel technology and of insufficient

maturity for primary diagnostic purposes [Barisoni et al., 2020]. The digitized

version is called the histological image, which is also known as Whole Slide

Image (WSI) or virtual slide [Naylor et al., 2017; Barisoni et al., 2020; Otálora

et al., 2021]. The whole process of creating a WSI is given in the Figure 1.1.

The biopsied tissue sample is placed on a glass-slide after doing some pre-

processing, including fixation, dehydration, cleaning, infiltration, embedding,

sectioning, staining. The processed glass-slide of the tissue sample is then

scanned with a whole slide scanner to produce a WSI [He et al., 2010].

Figure 1.1: Histological tissue preparation and image production in tissue
biopsy (Fig. 2 from [He et al., 2010]).

At the beginning of WSI technology, WSI was limited for educational

uses, and its role in clinical practice was not apparent given the preference

of conventionally trained pathologists to work with the conventional glass-

slide of a tissue sample under microscope [Barisoni et al., 2020]. The status,

however, has been changed by the emergence of rapidly evolving technologies

in combination with developments in computational image analysis [Naylor

et al., 2017; Barisoni et al., 2020; Otálora et al., 2021]. This new approach

is being increasingly adopted in clinical trials [Barisoni et al., 2012] and for

clinical research [Wang et al., 2016a; Liu et al., 2017, 2019; Lin et al., 2018;

Veeling et al., 2018; Fan et al., 2019a], and with the approval of the FDA (US

Food and Drug Administration)4, it has even been using as a tool for primary

diagnosis from 2017 [Evans et al., 2018; Barisoni et al., 2020].

4https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-
whole-slide-imaging-system-digital-pathology
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WSIs, however, have some limitations: they are very large, usually gi-

gapixels; their appearance can be different in color intensities depending on

the staining process, operator ability, and scanner specifications [Komura and

Ishikawa, 2018; Dimitriou et al., 2019; Salvi et al., 2020]. Moreover, through the

collaboration with practicing pathologists, we come to know that sometimes

more than 30 WSIs are required to be analyzed by pathologists to diagnose

cancer on one patient. Analyzing this number of gigantic-sized WSIs without

any assistance is time-consuming, laborious, and prone to error or misin-

terpretation. Additionally, it depends heavily on the expertise, experience,

and fatigue level of pathologists, being difficult to grade in a reproducible

manner, and empirically, it is known that there are substantial intra- and

inter-observation variations among experts [He et al., 2012]. To assist the

pathologists in this regard, computer-aided diagnosis (CAD) techniques can

be added to the pathologists’ workflow [Antropova et al., 2017; Liu et al.,

2019]. Machine learning techniques, both classical and deep learning, are

utilized in developing CAD systems [Gurcan et al., 2009; Bejnordi et al., 2017;

Litjens et al., 2017; Hu et al., 2018; Komura and Ishikawa, 2018]. The deep

learning algorithms, e.g., Convolutional Neural Networks (CNNs), are the

current state-of-the-art methods [Otálora et al., 2021] in this case following

their incredible success in visual recognition tasks [Krizhevsky et al., 2012a;

LeCun et al., 2015; Rawat and Wang, 2017].

The CAD systems with CNNs for WSI, however, face some difficulties as

well, e.g., the heterogeneity and high complexity of tissue area, the inter-class

similarities and intra-class difference, the fact that advanced image processing

systems for other imaging applications (such as, computed tomography, MRI,

X-ray) cannot be directly adapted to the WSI due to the different imaging

characteristics, and the scarcity of enough ground truth cancerous WSIs.

All these difficulties makes the algorithm evaluation largely subjective or

dependable to the minimal confidence testing [He et al., 2012; Komura and

Ishikawa, 2018; Otálora et al., 2021]. The success of CNN models also depends

on several hyper-parameter settings [Hinz et al., 2018; Bacanin et al., 2020],

e.g., network architecture, data used to train the model, the class distribution

of the training data. To address the increasing demand for experts’ time to

interpret WSIs for cancer diagnosis, the CAD system can play a vital role. It

can provide rapid and consistent results compared to the manual system [He

et al., 2012]. With the advances in scanning technology paired with the

increasing ability of computing resources, pathologists in a collaboration
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with technology experts, including data scientists, computational engineers,

imaging physicists, explore the potentiality of converting the pathology

specialty to fully digital workflows and clinically applicable CADs [Barisoni

et al., 2020].

To our knowledge, among the aforementioned hyper-parameters regu-

lating the performance of CNN models, the class distribution of the training

data is not studied yet in the literature for the WSI data -which is imbalanced

usually [Wang et al., 2016a; Lin et al., 2018]. Class distribution is one of the

important hyper-parameters, as the training data provides the supervision

for all learning-based systems [Cracknell and Reading, 2014; Crawford, 2016;

Deisenroth et al., 2020; Sarker, 2021].

Generally, in machine learning an imbalanced data distribution has been

shown as problematic [Chawla et al., 2002; Khan et al., 2017], and hence, a

lot of efforts have been put in to develop methods to overcome the problem.

Buda et al. [2018] have reviewed the popular methods, such as oversampling,

undersampling, thresholding, cost-sensitive learning, one-class classification,

and various hybrids. These studies may indeed lay the path for balanced distri-

bution to become the default choice as a deep learning state-of-the-art method

[Bejnordi et al., 2017; Liu et al., 2017; Halicek et al., 2019], although Prati et al.

[2015], for example, have shown that it is not optimal in all cases. A lot of

studies make the imbalance data balanced, but, very few analytically consider

the performance impact of different distributions [Weiss and Provost, 2001,

2003; Prati et al., 2015]. The available studies have been mainly conducted

on toy data sets, even though real data sets may be very different and more

complex. Thus, there is no evidence from the conclusions of these studies

that they would be appropriate for cancer WSIs.

The outcomes of available studies are contradictory: some support an

imbalanced distribution [Weiss and Provost, 2001, 2003] while others support

a balanced distribution [Prati et al., 2015]. It is thus not straightforward

to decide on a specific class distribution for all types of tasks. We believe

that elaborate domain-specific analysis is required for each specialized task,

especially for a comparatively new and sensitive case, such as cancer detection

from WSIs. It is also worth knowing which distribution produces fewer false

positives with high sensitivity and why. It would help in choosing training

examples and their ratios for building robust training data sets and utilizing

the existing ones optimally; this is specifically crucial because of the cost and

expertise needed to annotate WSI.
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Considering the evaluation of the models, we found that the state-of-the-

art evaluation methods (e.g., the Receiver Operating Characteristics, ROC

Curve) have some limitations, e.g, the inability of model performance separa-

tion, not being much informative regarding false predictions, being optimistic

to imbalanced data. This thesis also contributes to this topic.

The contributions resulting from this thesis are as follows.

• To conduct an analytical study on different class distributions or a

comparative study on different evaluation metrics, we require a gen-

eral methodological framework to generate predictive models. We

thus develop a methodological framework consisting of four major

steps, including pre-processing of the data, training of models, infer-

ring class probabilities of unseen data samples or test set, and evaluating

models. In the pre-processing steps, we propose a patch (i.e., image-

block/region) extraction and categorization method to address the size

problem of WSIs. It facilitates coverage of all tissue areas without

repetition and the creation of different class distributions in data for

training a model. Moreover, in the evaluation step, we propose to use a

patch-based (i.e., image-block-based) evaluation methodology rather

than the usual pixel-based one. Indeed it corresponds more to patholo-

gists’ evaluation where they look into image blocks (i.e., patches) rather

than pixels. The framework is applicable for both image segmentation5

and classification6 task.

• We investigate the effectiveness of the default choice, the balanced

distribution, in cancer detection fromWSI.More precisely, we addressed

two research questions: is the most adopted balanced distribution optimal

for the cancer detection from WSI? If not, which class the training set

should be biased toward?

To answer the questions, we conduct a preliminary study on the model

performances when trained with different distributions including the

natural (i.e., the original distribution of the training set), cancer-biased,

non-cancer-biased, and balanced distributions. We design and run

several experiments with the mentioned class distributions. We found

that the balanced distribution is not optimal for CNN training for cancer

5The task of assigning a class label to each pixel of the input image.
6The task of assigning class label(s) to the entire input image.
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detection. Rather using natural distribution leads to the best recall-

precision trade-off; when training with class-biased distribution, it is

possible to inflect the model toward the desired accuracy (e.g., toward

recall or precision). Moreover, we found that most of the errors in

this task come from False-Positive (FP) -the number of samples that

are falsely predicted as positive/cancer- rather than False-Negative

(FN) -the number of samples that are falsely predicted as negative/non-

cancer-, and reducing FP is more difficult than reducing the FN. In the

cancer detection task, pathologists’ goal is to reduce FN; our finding will

be useful to reset the goal of this task since FN reduction is already easy,

while FP reduction is not. This work was presented in a paper accepted

by the International Conference on Advances in Signal Processing and

Artificial Intelligence (ASPAI 2019) [Reshma et al., 2019].

Moreover, we compute the evaluation with patch dimension from 1×1

pixel (i.e., pixel-level) to 1000×1000 pixels to observe the result at

different levels of patch dimension. We found that recall increases

while precision decreases when the patch dimension increases.

This preliminary study has some limitations, e.g., not all the experi-

ments have the equal number of training examples, which hampers

the fair comparison. We thus formalize the analysis in our next deeper

analysis.

We present a hypothesis-driven deeper analysis, which determines the

performance impact of different class distributions on training data. We

derive several hypotheses with regard toWSIs used for cancer detection

and test them with two commonly used target applications: image seg-

mentation and classification. We employ two data sets for training: one

is multi-class (annotated with cancer, non-cancer, and other histological

structures), and is applicable to the segmentation setting, whereas the

other is binary-class (annotated with cancer and non-cancer classes),

and is applicable to the classification setting. With both data sets, we

conduct a series of experiments and analyze the results in detail to

be able to provide comprehensive conclusions. Additionally, we also

discuss the case of test data distribution. To this end, we use the test

set from an additional data set along with the two previous data sets.

Our experimental results are consistent with our preliminary findings.

Moreover, we observe several interesting findings regarding different
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WSI regions, test set distribution, and classification types. Our approach

was presented in a paper accepted by the 36th Annual ACM Symposium

on Applied Computing (ACM SAC) [Reshma et al., 2021]. An extended

version was submitted to the Journal of Digital Imaging (JDI) on 23

December 2020; we are waiting for the first review.

• Another contribution of this thesis is developing an evaluation metric

that addresses the limitations of the state-of-the-art metrics -the Re-

ceiver Operating Characteristics (ROC) curve and Precision-Recall (PR)

curve- popularly utilized in binary classification (e.g., cancer detection

task).

In an imbalanced data set, the outnumbered class is usually easy to

classify, which causes inflation of the ROC curve [Fu et al., 2017; Saito

and Rehmsmeier, 2017; Sofaer et al., 2019; Cook and Ramadas, 2020].

Because of this inflation, the ROC curve can hardly distinguish the

performances of two different models. We show that for a large test

set, the PR curve -which is usually used as an alternative to the ROC

curve for imbalance data [Brodersen et al., 2010; Keilwagen et al., 2014;

Ozenne et al., 2015; Fu et al., 2017; Sofaer et al., 2019]- have the same

problem. The first challenge in binary classification evaluation is thus

to define a metric that is not falsely inflated and cannot mislead about the

actual performance of themodel due to data imbalance. More importantly,

the measure should also be able to separate models that differ from

each other.

Some applications need to minimize false negatives (e.g., medical di-

agnosis) while others need to minimize false positives (e.g., fraud de-

tection). From ROC and PR curves, especially from inflated ones, it is

difficult to know the type of false prediction the model produces the

most. The second challenge we address is thus to develop an evaluation

metric that allows the model designer to analyze properly the model errors.

PR curves also face the difficult problem of interpolation, which is

however important during mean curve and the Area Under Curve

(AUC) computations. While it is straightforward for the ROC because

FPR and TPR are linearly correlated, it is not for the PR curve since

precision does not monotonically change with recall. Therefore, it

requires non-linear interpolation. Existing methods to non-linearly

interpolate a point on the PR space [Davis and Goadrich, 2006; Boyd
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et al., 2013; Keilwagen et al., 2014] are not enough to compute the

mean PR curve (and PR-AUC) since the start-, intermediate-, and end-

point with the tied x-axis values need to be treated as well. The third

challenge we address is thus to propose an evaluation metric that neither

requires interpolation nor needs to handle any cases specially.

With the aim to target the three challenges above-presented, we present

a novel metric, named the PR-T curves, which present precision and

recall in two separate curves as functions of the threshold used on

the predicted scores. Both theoretically and experimentally, we show

that PR-T curves eliminate the above-mentioned limitations of ROC

and PR curves. Moreover, by considering the third challenge in the

state-of-the-art metric, the difficulty in mean curve computation of the

PR curve, we propose new methods of mean PR curve and PR-AUC

computations by handling all special cases. Additionally, we develop a

method to non-linearly interpolate a point on the PR space, which is

easy to implement and computation-friendly.

At the time of writing this manuscript, we are preparing an article on

the contribution of proposing the PR-T curves to submit to a journal

and another article on the contribution of proposing algorithms for

mean PR curve and PR-AUC to submit to a conference.

The structure of this thesis is as follows:

Chapter 1 is this introduction in which the research questions and main

contributions have been presented.

Chapter 2 presents the basic context of this research to familiarize the

reader with general terminologies. Specifically, we discuss the WSI -the data

to be analyzed- in more detail, task description, the techniques of machine

learning we utilized, data sets, and evaluation metrics popularly utilized in

the cancer detection task.

Chapter 3 reviews the literature on cancer researches utilizing med-

ical images (both radiology and histology images), image processing, and

machine learning techniques. It also describes our general methodological

framework and evaluation technique for cancer detection in WSI, which is

utilized throughout this thesis.
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Chapter 4 discusses the problem of finding the optimal class distribution

of a training set to train an optimal model that detects cancer in WSIs. At

first, we conduct a preliminary study. Based on the findings from that study,

we formulate several hypotheses, which are then tested and discussed based

on the test result.

Chapter 5 proposes a continuous threshold-based evaluation metrics

to evaluate model on binary classification problem (e.g., cancer detection)

by addressing limitations of state-of-the-art metrics, ROC and PR curves. In

addition, it proposes a method to correctly compute the mean PR curve and

PR-AUC since, in literature, there are no precise algorithms to compute them

by handling all special cases that could happen with the PR curve.

Chapter 6 concludes this thesis, discusses the main contributions and

limitations of our work, and proposes some future directions.
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To enhance the readability of the thesis, it requires describing its materials

and related contexts. This chapter serves that purpose. We include the tech-

nical details of elements of this thesis, including the main data (i.e., the WSI),

the task description (i.e., the cancer detection), the techniques of machine

learning we utilized, the data sets, and evaluation metrics with a short survey

about each of them. Along with the motivation presented in the introduction

chapter, the surveys help us deciding the materials or elements for our task of

interest. The description will help the reader to familiarize themselves with

the general terminologies of this thesis. The included contents, however, are

limited. We assume that the readers are already familiar with general image

processing and machine learning, specifically deep learning techniques.

The structure of this chapter is as follows: In Section 2.1, we detail theWSI,

including its acquisition, manipulation, regions, and pixel class distribution.

Section 2.2 defines our task of interest cancer detection and its research

dimensions. Usually, machine learning techniques are utilized in cancer

research that we define and describe in Section 2.3. We present a mini-survey

on one of the important elements of a machine learning system, the data

set utilized in cancer detection from WSIs in Section 2.4 and also present

the descriptions of our selected data sets in this thesis in the same section.

Section 2.5 presents another survey on evaluation measures, which is another

important element of a machine learning system. The same section also

defines our selected evaluation measures based on the survey and the purpose

of the thesis. Finally, Section 2.6 concludes the chapter.

2.1 Whole Slide Image (WSI)

WSI is a special kind of image data. To understand and analyze this data, it

requires to know about its technical details. Moreover, it requires to know

about its different regions and distribution of pixels to utilize these data to

solve a problem, e.g., cancer detection, automatically. This section discusses

these two topics.

2.1.1 Technical detail: acquisition and manipulation of

WSI by pathologists

Whole slide images (WSIs) are the digital conversion of conventional histo-

logical glass slides containing tissue samples [Farahani et al., 2015; Kumar
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Figure 2.1: A schematic view of analyzing WSI by a pathologist. It
consists of two steps: image acquisition (left part) and visualization (right
part). The WSI file is acquired by a WSI scanner from a conventional glass
slide, which is then stored in a repository. A WSI file viewing software is

used to visualize or manipulate the file. An example software is CaseViewer.

et al., 2020]. WSIs can be generated by taking biopsied tissue samples from

the various suspected anatomical site of the body depending on the purpose

of examination. The lymph node WSIs, for example, are examined to see if

the cancer is metastasized 1 or not; it helps to decide the stage and treatment

of a variety of cancers [Liu et al., 2019]. In general, analysis of WSIs by a

pathologist includes two processes: image acquisition and visualization [Melo

et al., 2020; Kumar et al., 2020] (Figure 2.1).

For the image acquisition (Figure 2.1: left part), specialized hardware

known as digital slide scanner or WSI scanner2 is required along with some

pre-processing (as shown in Figure 1.1). Modern scanners can obtain WSIs

1Metastasized cancer or metastatic cancer or simply metastasis is the spread of malignant
cells from its primary tumor site to distant sites, which poses the biggest problem to cancer
treatment and is the main cause of death of cancer patients [Geiger and Peeper, 2009].

2A WSI scanner is a trinocular microscope with robotic control of illumination intensity,
mechanical stage, objectives, and coarse and fine focusing facilities and is equipped with a
high-resolution camera connected to a computer [Bueno et al., 2014].
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from slides stained with hematoxylin & eosin (H&E), special stains (such as,

Acid Fast Bacilli, Alcian Blue, Periodic Acid Schiff, Gram, Congo Red, and Tolu-

idine Blue), immunohistochemistry stains, and fluorescence stains [Aeffner

et al., 2018]. WSIs can vary depending on their acquisition process on a

scanner. There are several different manufacturers with varying designs of

WSI scanners (e.g., 3D Histech, Leica, Hamamatsu, Olympus, TissueGnostics,

and Sakura). These scanners have various magnifications, scanning method-

ologies, hardware, and software employed to convert a glass slide into a

WSI [Indu et al., 2016; Abels and Pantanowitz, 2017; Kumar et al., 2020].

Table 2.1: File size of WSI change with the change of magnification:
data is collected from CaseViewer software for different magnification levels
of an example WSI, which was originally scanned at magnification 20× with

a 3DHISTECH Pannoramic 250 digital slide scanner.

Magnification Dimension in pixel File size

20× 83200× 123136 2.52 GB

10× 41728× 61696 1.06 GB

5× 20992× 30976 355 MB

Unlike the still microscopic images, WSI scanners capture sequential

images either in a tiled or line-scanning manner which are subsequently

assembled or stitched into a virtual slide that mimics the glass slide under a

microscope [Indu et al., 2016; Aeffner et al., 2018; Kumar et al., 2020]. Apart

from the x- and y-axes, some scanners capture several scans along the z-

axis and assemble them on top of each other (“z stacking”) to allow digital

fine focusing on an area of interest [Aeffner et al., 2018; Kumar et al., 2020].

Z-stack is identified as the nominal physical height (in µm) of image focus

above the glass slide, which is used for relative spatial positioning of image

planes3 [Garcia-Rojo et al., 2016]. Independent of the scanning and focusing

methodology, most scanners allow for scanning at multiple magnifications.

Most commonly, this includes 20× (typically at resolution of 0.5 µm/pixel)

and 40× (typically at resolution of 0.25 µm/pixel) magnification. Scans

at 20× magnification are sufficient for standard viewing and interpretation,

while higher magnification, e.g., 40×, is required for the cytological analy-

sis [Wright et al., 2013; Aeffner et al., 2018; Kumar et al., 2020]. Note that

3http://dicom.nema.org/Dicom/DICOMWSI/
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Figure 2.2: A “pyramid" structure of WSI file with a thumbnail on top
and high resolution on the bottom. In this example, 5 levels of

resolutions are illustrated. The highest magnification is considered as level 0,
while the lowest magnification is considered as level 4, which is 16 times

downsampled from level 0. Each level is composed of tiles. (Figure taken and
modified from [McClintock, 2018])

the higher the resolution used for scanning, the larger the data file created

for each slide, which then needs much storage to be archived and stored.

Doubling the magnification from a 20× scan to 40× increases the file size by

approximately 2 times (see Table 2.1). A WSI with the highest resolution can

be several gigapixels in size.

Unlike a normal image, aWSI is stored in a pyramid structured file contain-

ingmultiple digital slides of multiple magnifications or resolutions (Figure 2.2).

Each level of resolution is stored in a separate “page” of the WSI and com-

posed of a set of tiles (Figure 2.2: right part). Level 0 or page 0 contains the

image at the full resolution. Other levels contain downsampled images with

lower resolutions. The factor between two consecutive levels of resolution is

traditionally of 2 (see Figure 2.2: left part), but it may vary. Depending on

the scanner specification, the pyramidal WSI file can contain 7 to 10 levels

of resolution. The pyramidal file structure allows the extraction of the WSI

image at any available resolution and takes low to high magnification levels

into account. Libraries such as openslide or libvips allow to process such

WSI formats and provide methods to directly access the downsampled levels,

optimizing the processing time spent on the WSI. Moreover, this pyramidal

structure gives a high level of flexibility for the user to zoom and pan in the
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image, and so mimic the behavior of slide review under a microscope [Guet,

2021]. For example, when a WSI viewing software (Figure 2.1: right part) is

connected to the WSI repository, the software requests a particular part of

the WSI file (for example, the green marked area in Figure 2.2) at a particu-

lar zoom level; the repository then sends only the tiles needed to fulfill the

request instead of sending the full file, which allows fast viewing and saves

memory [McClintock, 2018].

For the visualization (Figure 2.1: right part), a specialized digital slide

viewing software (e.g., Surface slide, Aperio ImageScope, PathXL, Definiens,

CaseViewer) is required [Webster and Dunstan, 2014; Melo et al., 2020]. This

kind of software is used to mimic the process of viewing a glass slide under a

microscope digitally [Abels and Pantanowitz, 2017]. Due to the large amount

of information on a WSI, pathologists cannot view an entire sample at high

resolution. Instead, they pan through the slide with a viewing software

at a relatively low resolution -typically 5µm/pixel (2× magnification) or

2.5µm/pixel (4× magnification)- and then zoom in to higher resolution for

selected regions of diagnostic interest in a similar manner microscopists

examine a sample under a microscope3. When multiple Z-stacks are captured,

viewers also provide a rapid change of Z-stack selection. Viewing softwares

often able to annotate the image and export it to other file formats [Kumar

et al., 2020].

2.1.2 Regions and pixel class distributions in WSIs

In the previous section, we discuss how a pathologist utilizes WSIs manually

through viewing software. In this section, we discuss the regions and class

distribution in WSIs, which is beneficial to know to develop a CAD with

machine learning algorithms. While applying machine learning, two regions

in a WSI are considered:

• Regions of interest (ROIs) are the regions that alert pathologists to

check for abnormalities. In the case of lymph node WSIs, for example,

the regions containing lymph nodes are ROIs, since the health of lymph

node tissue is what pathologists observe. The ROIs can in turn be

divided into two classes: positive and negative. Metastasis is considered

as positive class, cancer (denoted by C in the rest of the manuscript),

while any remaining ROIs are considered as negative class, non-cancer

(denoted by ¬C).
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Figure 2.3: An example (i) metastatic lymph node WSI and (ii) its annotation.
In (ii), the color red represents the cancer class (C), blue represents the
non-cancer class (¬C), and gray represents other class, mainly the

background (O). Both C and ¬C are ROIs, while O is not.

• Other regions (non-ROIs) are mainly background and histological struc-

tures other than lymph node tissue. The non-ROIs, that is to say,

non-lymph nodes, are considered as belonging to the negative class

other (denoted by O).

In other words, three classes are usually considered in the utilization of

a WSI: the positive ROI class, cancer (C), the negative ROI class, non-cancer

(¬C), and the negative non-ROI class, other (O). For the binary classification,

both O and ¬C are merged into one class and simply considered as being the

negative class ¬C.

Figure 2.3 shows an example of a metastatic lymph node WSI with its

corresponding regions. In a WSI data set, the non-ROI class is usually over-

represented, while the two ROI classes are balanced or imbalanced, depending

on which WSIs have been included in the data set (more details are provided

in Section 2.4). On average, a WSI contains 70 to 80% of non-ROI pixels [Wang

et al., 2016a; Lin et al., 2018]. We consider this usual bias towards non-ROIs

as the natural distribution.
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2.2 Cancer detection

Cancer, also called malignancy and neoplasms, is an abnormal growth of cells

in a multistage process that generally progresses from a pre-cancerous lesion

to a malignant tumor, which can then invade adjoining parts of the body

and spread to other organs [Coleman and Tsongalis, 2010]. Any checking

for abnormalities in cells that might be cancer or might become cancer in

the future is cancer detection. As a life-threatening disease, cancer gets the

attention of many researchers, including computer scientists, to investigate

it. For the research purpose, different modalities of data have been using,

including texts, images, or tissue samples of the confirmed or probable affected

area for cancer detection and other related fields [Schiffman et al., 2015].

The research with imaging modalities (e.g., computed tomography, MRI,

X-ray, WSI) is a popular track for cancer research in the computer science

community. Among them, the researcheswith radiology4 images have become

more advanced than that of the histology images [Barisoni et al., 2020]. The

research outcomes on the radiology images reach such a height that some

developers have sought commercialization of their models [Yu et al., 2020].

The radiology imaging tests are particularly important to identify cancer in its

earliest stage when patients not experiencing any symptoms, look for a lump

or tumor inside the body, predict if the tumor is potentially cancerous, decide

on if a biopsy is needed, guide the biopsy needle, see if cancer spreads to

other body parts, plan treatment, check if the treatment working, and identify

if cancer returned after the treatment5. Numerous systems and products have

been developed with these image modalities [McAuliffe et al., 2001; Ibanez

et al., 2003; Schneider et al., 2012; Roth et al., 2015; Shen et al., 2015; Lian

et al., 2016; Sun et al., 2017b,a; McQuin et al., 2018; Zhou et al., 2021]. These

systems, however, are not directly applicable to histology images (i.e., WSIs)

because of the huge difference in image characteristics [He et al., 2012].

For precision oncology, however, the analysis of WSI from biopsy plays a

key role [Djuric et al., 2017], which is comparatively newer and fewer than

the radiology one in computational medical research [Barisoni et al., 2020]. In

the recent decade, with the advances of imaging technologies, huge storage

4The study of high-energy radiation used to examine and diagnose internal structures
of the body [Christensen et al., 2019]

5https://www.cancer.org/treatment/understanding-your-diagnosis/tests/imaging-
radiology-tests-for-cancer.html
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Figure 2.4: Various machine learning types, their prediction target types, and
applicable problems to solve. (Figure is taken and modified from [Sarker,

2021]).

devices, and high-performance computing devices, the exploration ofWSIs for

cancer research is becoming popular. Like other images, the machine learning

algorithms, both classical [DiFranco et al., 2011; Chang et al., 2013a,b; Sharma

et al., 2015; Vu et al., 2015; Lu and Mandal, 2015] and deep learning [Wang

et al., 2016a; Liu et al., 2017, 2019; Lin et al., 2018; Veeling et al., 2018; Fan

et al., 2019a; Han et al., 2020; Alzubaidi et al., 2020; Otálora et al., 2021; Li

et al., 2021a] are used either to classify or segment the WSIs. Deep learning

algorithms produce state-of-the-art results [Otálora et al., 2021].

2.3 Machine learning

Machine learning is the field of study in computer science, specifically in

Artificial Intelligence (AI), that deals with the automated detection of mean-

ingful patterns in data [Shalev-Shwartz and Ben-David, 2014]. It is one of

the fastest-growing areas of computer science, which is the foundation of

countless important applications, e.g., web search, email anti-spam, speech

recognition, product recommendations, and more, that require information

extraction from large data sets [Shalev-Shwartz and Ben-David, 2014; Ng,

2019]. It is also widely used in other scientific fields, such as bioinformatics,

medicine, and astronomy.

What is a machine learning algorithm? According to Goodfellow et al.

[2016], it is an algorithm that is able to learn from data. To explain “learning"

in this definition, Mitchell et al. [1997] provides a brief definition: “A computer

program is said to learn from experience E with respect to some class of tasks

T and performance measure P, if its performance at tasks in T, as measured
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by P, improves with experience E.” The algorithm gathers experience from

the data set for a particular task (e.g., classification) by tuning its parameters

-which is known as training-, and its performance is evaluated on an unseen

set of data -which is known as validation and test sets- by a performance

measure (e.g., accuracy, error rate). The experienceE, taskT, and performance

measure P can be of wide variety [Goodfellow et al., 2016]; in this chapter,

we discuss those that belong to our topic of interest.

Machine Learning algorithms can be mainly divided into four types ac-

cording to the type of experience (E) they are allowed to have during the

learning process: Supervised, Unsupervised, Semi-supervised, and Reinforce-

ment learning [Sarker, 2021], which are used to solve various problems/tasks

of classification, regression, clustering, association, and control (Figure 2.4).

Sarker [2021] provides comprehensive definitions of all these types. In this

thesis, we focus on the classification problem with supervised learning, where

the algorithm gathers the experience from WSI data for the cancer detection

task. This type is described in the following section.

2.3.1 Supervised learning: regression, classification, and

segmentation

According to Liu [2011], supervised learning is a machine learning paradigm

for acquiring the input-output relationship information of a system based on

a given set of paired input-output training samples. As the output is regarded

as the label of the input data or the supervision, an input-output training

sample is also called labeled training data, or supervised data. The supervised

learning problem can be further divided into two categories: regression and

classification.

In the supervised learning paradigm, the goal is to infer a function, f :

X → Y from a sample data or training set, An = {(x1, y1), ....., (xn, yn) ∈

(X× Y)n}. Typically,X ⊂ R
d, Y ⊂ R for regression problems, and Y ⊂ N0

for classification problem [Cunningham et al., 2008]. xi ∈X is a feature6 set

of dimension d, and yi ∈ Y is usually either 1 or 0 for the binary classification

and any natural number -where the number belongs to a class label- for

multi-class classification.

6Each piece of information included in the representation of data is known as a fea-
ture [Goodfellow et al., 2016].
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Figure 2.5: Block diagram of the supervised learning (Figure 1 from [Liu,
2011]).

Figure 2.5 shows a block diagram of supervised learning. During a super-

vised learning process, a training input xi is fed to the learning system that

generates an output ỹi. The learning system output ỹi is then compared with

the ground truth label yi. The difference, termed error signal in this diagram,

is then sent to the learning system for adjusting the parameters of the learner.

The goal of this learning process is to obtain a set of optimal learning system

parameters that can minimize the differences between ỹi and yi for all i. A

minimum training error does not necessarily indicate good performance in

testing [Liu, 2011]. The reason for this is mainly due to the possible over-

fitting to the training data. This issue is referred to as generalizability. A

good learning algorithm must have a good generalizability [Liu, 2011; Vapnik,

2013].

A special type of classification problem is segmentation (although seg-

mentation can also be achieved by clustering, discussion about this is out of

the scope of this thesis) [Farmer and Jain, 2005; Dean, 2014]. It is the process

of separating the data into distinct groups. A well-defined segment is one

in which the members of the segment are similar to each other and also are

different from members of other segments based on their features [Dean,

2014]. In the case of image processing -the topic of interest of this thesis-, the

goal of segmentation is to segment predefined objects from the input image

[Everingham et al., 2010; Noh et al., 2015; Khan et al., 2020] for the purposes

of localization. This is performed by labeling each pixel of the corresponding

object with a predefined color that corresponds to a class label. Image classi-

fication, on the other hand, is the process of assigning a class label (or labels

for a multi-class problem) to the entire input image (Figure 2.6).
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Figure 2.6: Difference between classification and segmentation tasks. In
classification whole image belongs to a label (single-label problem) or

multiple labels (multi-label problem), while in segmentation, each pixel or
region of the image belongs to a label.

Source (modified): Detection and Segmentation
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

2.3.2 Types ofmachine learning algorithms based on learn-

ing strategy

Algorithms to solve machine learning problems can also be grouped into

two types based on their learning strategies: traditional/classical and deep

learning. They mainly differ from each other in terms of the representation

of the data (i.e., feature set) they are given to tune their parameters during

training.

2.3.2.1 Traditional/classical learning

The traditional learning algorithm is the one that needs to break down the

problem statements into two parts: the features engineering by the domain

expert and model selection or parameters tuning.

Some of the renowned traditional learning algorithms are naive bayes,

linear discriminant analysis (LDA), linear regression, polynomial regression,
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LASSO and ridge regression, logistic regression, k-nearest neighbors (k-NN),

support vector machine (SVM), decision tree, random forest, adaptive boost-

ing (AdaBoost), extreme gradient boosting (XGBoost), k-means clustering,

mean-shift clustering, gaussian mixture models (GMMs). All of the algorithms

require pre-extracted hand-craft features from the data to train and test a

model [O’Mahony et al., 2019]. Indeed, the efficiency of these algorithms

highly relied on the goodness of the representation of the input data or fea-

tures. A bad data representation often leads to lower performance compared

to a good data representation. Therefore, feature engineering is an important

research step in classical machine learning. It is often very domain-specific

and requires significant human effort. It becomes more and more challenging

and cumbersome as the number of classes to classify increases [Pouyanfar

et al., 2018; Indolia et al., 2018; O’Mahony et al., 2019]. Numerous research

studies have defined efficient feature descriptors. For the image processing or

computer vision task, some of the traditional feature descriptors are histogram

of oriented gradients(HOG), local binary pattern (LBP), scale invariant fea-

ture transform (SIFT), speeded-up robust features (SURF), and binary robust

independent elementary features (BRIEF) [O’Mahony et al., 2019].

Moreover, selection of appropriate features for a given problem is also

important for reducing computation time, improving prediction performance,

and a better understanding of the data [Chandrashekar and Sahin, 2014;

Khalid et al., 2014; Indolia et al., 2018; O’Mahony et al., 2019]. In feature selec-

tion process, a subset from the input features data are selected for the model

selection or parameter tuning of the learning algorithm [Chandrashekar and

Sahin, 2014]. The selected subset should efficiently describe the input data

while reducing effects from noise or irrelevant variables and still provide

good prediction results. The best subset is the one with the least number of

dimensions that most contribute to learning accuracy [Ladha and Deepa, 2011;

Khalid et al., 2014]. A lot of efforts are also given for devising feature selection

and feature extraction techniques [Khalid et al., 2014; Chandrashekar and

Sahin, 2014]; some worth mentioning approaches are minimal redundancy

and maximal relevance, conditional mutual information maximization, corre-

lation coefficient, between-within ratio, genetic algorithm, recursive feature

elimination, principal component analysis, non-linear principal component

analysis, independent component analysis, and correlation based feature

selection. Khalid et al. [2014] and Chandrashekar and Sahin [2014] detail

different feature selection and feature extraction techniques.
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Figure 2.7: The structure of artificial neuron/perceptron used in the
ANN [Agatonovic-Kustrin and Beresford, 2000].

At the beginning of the WSI technology, classical machine learning al-

gorithms with feature engineering were mainly utilized [Gurcan et al., 2009;

Komura and Ishikawa, 2018], although the trend changes very fast with the

success of deep learning in the visual recognition task.

2.3.2.2 Deep learning

Deep learning is also known as deep structured learning and hierarchical

learning that consists of multiple layers of abstraction which includes non-

linear processing units for features transfer and extraction [Dargan et al.,

2019]. The learning process takes place either in a supervised or unsuper-

vised way [Dargan et al., 2019]. Unlike classical learning algorithms, these

algorithms do not require to separate the feature engineering part from the

parameter tuning part [Indolia et al., 2018]. The algorithms include both

feature extraction and parameters tuning in end-to-end learning architec-

tures. They were originally inspired by AI simulating the neurons of the

human brain and nervous system. The brain can automatically extract data

representation from different scenes and situations through the neurons and

can process as per need. A deep learning algorithm mimics these criteria of

the human brain thus works on the so-called artificial neural network system

(ANN) [Pouyanfar et al., 2018].

The fundamental computational unit of ANN is an artificial neuron or
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perceptron that takes multiple signals as input then integrates these signals

linearly with the weight -which represents the strength of interconnection be-

tween neurons of two adjacent layers- and transfers the combined signals over

the nonlinear function named activation function to produce outputs [Dargan

et al., 2019] (Figure 2.7).

A typical ANN has single input and output layers along with multiple

hidden layers that can learn various features of data through multiple levels

of abstraction [Pouyanfar et al., 2018; Indolia et al., 2018; Dargan et al., 2019].

Every subsequent layer takes the results from the previous layer as the input.

Multiple layers naturally allow the network to integrate low/mid/high-level

features and the “levels” of features can be enriched by the number of stacked

layers (i.e., by depth) [Zeiler and Fergus, 2014; He et al., 2016a; Indolia et al.,

2018]; the low-level features (e.g., edge) are extracted from the earlier layers of

the networks, while more abstract features (e.g., shape) are extracted from the

later layers [Pouyanfar et al., 2018; Liu et al., 2019]. Indeed, in “deep learning”,

the term “deep” comes from the concept of numerous layers through which

the data is transformed [Dargan et al., 2019].

The deep learning algorithms are preferred to the classical ones since

learned features from deep learning often produce much better performance

than can be obtained with hand-craft features. This process of feature extrac-

tion (i.e., the one provided by the ANN system) is also rapidly adaptable to

new tasks, with minimal human intervention [Hu et al., 2018]. It can discover

a good set of features for a simple task in minutes, or for a complex task in

hours to months; in contrast, manually designing features for a complex task

requires a great deal of human time and effort, sometimes it take decades for

an entire community of researchers [Goodfellow et al., 2016]. Although these

algorithms are successful in many application domains, it is worth noting

that there are also some disadvantages. Hu et al. [2018] enlisted some of

them: deep learning models often require a large amount of training data

for convincing performance, the training process is extremely computation-

ally expensive and it is quite time-consuming to train a deep and complex

model even with the support of the most powerful GPU hardware, the body

of trained deep learning model is like a black box, we still lack the perfect

methodology to fully comprehend its deep structure.

Some of the basic types of deep learning algorithms are: Auto-Encoder

(AE), Convolutional Neural Network (CNN), Restricted Boltzmann Machine

(RBM), Deep Stacking Network (DSN), Long Short Term Memory (LSTM)/
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Figure 2.8: A general architecture of CNN. [Krizhevsky et al., 2012b].

Gated Recurrent Unit (GRU) Network, and Recurrent Neural Network (RNN).

Out of these, CNN is the fundamental and the most commonly used ap-

proaches to solve complex problems [Pouyanfar et al., 2018; Indolia et al.,

2018; Dargan et al., 2019]. CNNs are widely being used in various domains

due to their remarkable performances, such as image classification, object

detection, face detection, speech recognition, natural language processing,

vehicle recognition, facial expression recognition, cancer detection, health

care, and many more [Indolia et al., 2018; Dargan et al., 2019]. CNNs have

three main advantages, namely, parameter sharing, sparse interactions, and

equivalent representations [Pouyanfar et al., 2018]. A generic CNN architec-

ture consists of a number of convolutional layers -which ensure parameter

sharing- followed by activation functions (e.g., RELU) and pooling/subsam-

pling layers -which ensure dimensionality reduction and sparse interaction-,

and in the final stage, fully connected layers -which generate the high-level

abstraction from the data- followed by an activation function, e.g., Softmax

or SVM -which generate the classification scores [Pouyanfar et al., 2018] (Fig-

ure 2.8). If the fully connected layers in a CNN architecture are replaced with

upsampling layers and deconvolutional layers, then it is called a Fully Convo-

lutional Neural Network (FCNN), which is usually utilized for segmentation

tasks. Instead of predicting one probability score to each class to classify the

whole image/patch, FCNNs classify each pixel of the image/patch [Hu et al.,

2018]. Pouyanfar et al. [2018], Indolia et al. [2018], and Tabian et al. [2019]

provide detail descriptions of each components of CNNs. In this thesis, we

utilize a CNN and an FCNN to classify patches and pixels of WSIs (describe

in the next chapter).
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2.4 Data sets

Learning algorithms gather experience (E) from data sets, as mentioned ear-

lier. There are several data sets of WSIs available online. Those are usable

for research purposes, where some of them require registration. Hu et al.

[2018] and Komura and Ishikawa [2018] list up them. Most of the data sets

are variable-sized patch-based (i.e., image region-based instead of full WSI),

e.g., BreakHis7 [Spanhol et al., 2016], KIMIA9608 [Kumar et al., 2017], Bio-

segmentation9 [Gelasca et al., 2008], Bioimaging challenge 201510 [Araújo

et al., 2017], GlaS11 [Sirinukunwattana et al., 2017], MITOS-ATYPIA-1412, MI-

TOS 201213 [Roux et al., 2013], and Patch Camelyon14 (PCam) [Veeling et al.,

2018]. A few data sets contain full WSIs with multi-resolution, e.g., CAME-

LYON1615 [Litjens et al., 2018], CAMELYON1716, The Cancer Genome Atlas

(TCGA)17 [Weinstein et al., 2013], Genotype-Tissue Expression (GTEx)18 [Lons-

dale et al., 2013]. There are also some data sets not available publicly due to

different constraints on using private information of patients, e.g., in [Mejbri

et al., 2019; Mejbri, 2019], authors proposed such type of data set for different

types of breast cancer.

The data sets are designed for various kinds of tasks, e.g., disease classi-

fication, gland segmentation, mitosis detection, nuclear segmentation, and

tumor detection. Some of them are multi-class, and some of them are binary

class and specific to a particular type of cancer, e.g., breast, colon, lung cancer.

Most of the data sets mentioned here, including the patch-based ones, require

pre-processing (except KIMIA960, PCam) since they are not in a manage-

able size by the CNNs with existing computational devices. Among the full

WSI-based data sets, CAMELYON data sets (both 16 and 17) are annotated at

7https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathologicaldatabase-
breakhis/

8http://kimia.uwaterloo.ca/kimia_lab_ data_Path960.html
9http:// bioimage.ucsb.edu/research/bio-segmentation
10https://rdm.inesctec. pt/dataset/nis-2017-003
11https://warwick.ac.uk/fac/sci/dcs/ research/tia/glascontest/
12https://mitos-atypia-14.grand-challenge.org/dataset/
13http://ludo17.free.fr/mitos_ 2012/index.html
14 https://github.com/basveeling/pcam
15https://drive.google.com/drive/folders/0BzsdkU4jWx9Bb19WNndQTlUwb2M
16https://camelyon17.grand-challenge.org
17https://portal.gdc.cancer.gov/ legacy-archive/
18https://brd.nci.nih.gov/brd/image-search/ searchhome
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pixel-level, others are annotated in slide-level/case-level or are weakly anno-

tated. In the later case, their use requires extra efforts from domain experts

for model training as well as for evaluation [Hu et al., 2018; Komura and

Ishikawa, 2018]. We utilized PCam and CAMELYON16 from the patch-based

and full WSI-based data sets, respectively, and a full WSI-based private data

set fully annotated by expert pathologists. This section describes the data

sets we utilized in this thesis.

2.4.1 Multi-class data set: the MLNTO data set

We used theMetastatic LymphNode data set from the Institut Universitaire du

Cancer Toulouse Oncopole (IUCT-Oncopole), which is abbreviated asMLNTO.

It is a private data set composed of WSIs of metastatic lymph nodes from

various primary tumors, such as melanoma, adenocarcinoma, and squamous

cell carcinoma relating to various anatomical sites. The data set contains 61

WSIs of lymph nodes with 34 WSIs in the training set and 27 in the test set.

All the WSIs are pre-extracted from the multi-resolution pyramid structure

at level 3, i.e., the WSIs are 8-times downsampled from the highest resolution.

The average size of a training WSI is 9, 488× 14, 648 pixels (at level 3).

In the preparation process of the WSIs, the glass slides of the histological

biopsy were stained with H&E and digitized with a 3DHISTECH Pannoramic

250 digital slide scanner at 0.243 µm per pixel resolution. Two expert pathol-

ogists provided the ground-truth annotation masks for all the WSIs manually

while the WSIs were downsampled 8 times (i.e., level 3) with respect to the

highest resolution (level 0). The manual annotation processed by pathologists

(by Dr. Camille FRANCHET and Dr. Margot GASPARD from IUCT-Oncopole

under the supervision of Prof. Pierre BROUSSET) was done in two steps:

- The WSIs were first analyzed using Definiens 19 Developer XD software.

Superpixels were generated using the multi-resolution segmentation func-

tion provided by the image analysis environment. As a result, images were

roughly segmented.

- Each superpixel was then annotated by the pathologists who defined three

classes: “metastasis/cancer" (C), “lymph node/non-cancer" (¬C), and so-called

“other” (O) which can be either background or histological structures not

included in the first two classes, such as adipose or fibrous tissue (Figure 2.3).

19www.definiens.com : Definiens (the tissue phenomic company) provides image analysis
tools, which is used in particular for tissue phenomics analysis.
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Table 2.2: Pixel statistics reporting the average number (in millions and
percentage) of pixels of each class per WSI in the training and test sets of
MLNTO data set. Considered WSIs are downsampled by a factor of 8 from

the original resolution.

C ¬C O

Train
Mean in millions 15.2 14.6 107.4

Mean in % 11.1 10.6 78.3

Test
Mean in millions 20.0 9.8 114.8

Mean in % 13.8 6.8 79.4

These manually annotated masks are used as the ground truth. On aver-

age, three hours per image were needed by an experienced pathologist for

annotation. The ground-truth annotations make MLNTO suitable for the

segmentation task, although it can be adapted for the classification task as

well.

Figure 2.9: The natural class distributions of the pixels in the training (i) and
test (ii) sets of the MLNTO data set.

With one exception, all the WSIs included in the MLNTO data set contain

metastasis. However, the metastatic WSIs contain enough healthy regions to

collect ¬C examples for training and testing. Table 2.2 and Figure 2.9 shows

the natural class distributions of the pixels in the training and test sets. The

statistics indicate that the natural data distribution is imbalanced with an

over-representation of class O in comparison to classes C and ¬C. In the

training set, the percentage of classO, C, and ¬C are on average 78.3%, 11.1%,
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and 10.6%, respectively, while in the test set, they are 79.4%, 13.8%, and 6.8%.

The imbalanced nature of the data convinced us to better understand the

impact of a balanced versus an imbalanced distribution of the classes for the

learned models, as well as the difficulty of choosing which WSIs to annotate

when creating a training set.

2.4.2 Binary class data set: the CAMELYON16 and Patch

Camelyon

We also have utilized two well-known binary class benchmark data sets,

namely CAMELYON1615 [Litjens et al., 2018], and PCam14 [Veeling et al.,

2018].

The CAMELYON16 data set is a breast cancer data set consisting of 399

WSIs of sentinel lymph nodes, with 270 WSIs in the training set and 129

WSIs in the test set. There are 111 training WSIs and 49 test WSIs containing

tumors (i.e., classC). All the WSIs are in a multi-resolution pyramid structure,

generally with 10 levels of resolution. In the ground truth, only classC regions

are annotated at pixel-level. Unlike the MLNTO data set, the non-lymph node

areas (i.e., class O) are not separated from the lymph node ones (i.e., class

¬C), and both classes are considered as normal/non-cancer/¬C class. It is

a large data set with full-sized WSIs and required huge pre-processing to

use for CNN training; we thus use another data set named PCam -which

is a subset of CAMELYON16 and already pre-processed- described in the

following paragraph. It helps us concentrate on the main focus of this thesis,

the class distribution analysis. Although we did not use the CAMELYON16

training set to avoid huge pre-processing, we utilized its test set as an example

of an imbalance test set. We describe how we utilize it after describing the

PCam data set since both are linked.

The PCam data set is a new benchmark generated from CAMELYON16.

Unlike the MLNTO and CAMELYON16 data sets, PCam is a ready-to-go

data set, as the patches have already been separated. PCam contains 327,680

patches of 96 × 96 pixels at level 2 (i.e., 4-times downsampled from the

highest resolution). In PCam, the ratio of training, validation, and test data

is 6:1:1. The data set is balanced, i.e. the ratio of C and ¬C patches is 1:1

(Figure 2.10(i)). The data set considers 32 pixels at the edge as border pixels,

while the central region is 32×32 pixels. The patch-level labels are established

as follows: if there are any class C pixels in the central region, the whole
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Figure 2.10: Class distributions of the PCam data set (i) and the extracted
patches from CAMELYON16 test set (ii).

patch is labeled as category C; otherwise, the patch-level label is ¬C.

By using the same patch extraction process of the PCam data set, the

number of extracted test patches from the CAMELYON16 test set is 10,487,709.

Specifically, the patches were extracted after filtering out the background of

WSIs at level 2, the stride being 32 and the central region being 32×32 pixels.

Figure 2.10(ii) shows the class distribution of the extracted patches, where

the ratio of C to ¬C is 1:12.

2.5 Evaluation measures

According to the definition of learning system given by Mitchell et al. [1997],

the remaining element in a learning system is the performance measure

(P)/evaluation measure/evaluation metric. This section covers that topic for

our task of interest, cancer detection from WSIs. We conducted two different

surveys on this topic: one by reading articles on cancer detection task, another

by the PubMed20 search.

First survey. We conducted our first survey on evaluation metrics by read-

ing articles on cancer detection from image data, including WSIs. Specifically,

Hu et al. [2018] surveyed 79 deep learning-based methods for cancer detection

from image data, and we did our survey on the evaluation metrics authors of

those methods utilized, in addition to 16 more papers that we find interesting

but not included in those 79 papers. The statistics of different evaluation

metrics are given in Table 2.3. Most of the papers we surveyed utilized more

20https://pubmed.ncbi.nlm.nih.gov/
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Table 2.3: Evaluation metric statistics collected from the deep
learning based methods for cancer detection from image data. The

first column belongs to the metric name and the second column indicates the
number of papers from our survey that utilized the metric.

Metric #times
utilized

Accuracy 40

Recall, Sensitivity, True-Positive Rate (TPR) 36

ROC/ROC-AUC 24

Dice coefficient/Dice coef./Dice index 23

Precision, positive predictive value (PPV) 20

F1-measure 16

Specificity 14

Hausdorff distance/Hausdorff 8

Jaccard index/Jaccard coef. 5

False-Positive Rate (FPR) 5

Free response operating characteristic curve (FROC) 5

Average surface distance 4

Competition Performance Metric (CPM) 3

Volume intersection ratio/ average volume intersection 2

Negative predictive value 1

Overlapping ratio 1

True-Negative Rate (TNR) 1

Root mean square (RMS) error 1

False-Positive (FP) 1

True-Positive (TP) 1

False-Negative (FN) 1

Volume error 1

Concordance index 1

PR curve 1

than one metric depending on the work they did. According to our survey, the

most utilized metrics are accuracy, recall, ROC, dice coefficient, and precision.
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The evaluation metrics can mainly be divided into two categories: single

threshold-based / single-valued scalar metrics (e.g., accuracy, recall, precision,

dice-coefficient) and multi-threshold-based / threshold-free / multidimensional

graphical metrics (e.g., ROC, FROC, PR curves). The evaluation metrics that

require selecting a threshold of the predicted score (e.g., predicted probability)

to compute themetric values are categorized as single threshold-basedmetrics

otherwise, they are threshold-free. Threshold-free metrics can also be defined

as multi-threshold metrics since they consider all possible thresholds instead

of selecting one. They are named as threshold-free since they do not require

any particular threshold selection (like single threshold-based ones) in their

computation.

Figure 2.11: Paper count per year for the single threshold-based
evaluation metrics: we collected the statistics from the PubMed Search for
the terms “Sensitivity”, “Accuracy”, "Positive predictive value (PPV)", "Dice

coefficient", and "F-measure" for the last 20 years. Here, Sens:
sensitivity/recall, Acc: accuracy, PPV: precision, Dice: dice coefficient, and
Fm: F-measure. The paper count per year for the sensitivity and accuracy are
much higher than the remaining metrics. We thus present them in two

different scales in the y-axis: left side for the sensitivity and accuracy, and
right side for the remaining.

Second survey. Since we conducted our first survey on limited articles,
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Figure 2.12: Paper count per year for the threshold-free /
multi-threshold evaluation metrics: we collected the statistics from the
PubMed Search for the terms “FROC”, “Precision-Recall”, and “ROC” for the
last 20 years. The paper count per year for the ROC curve is much higher
than the two other metrics. We thus present them in two different scales in

the y-axis: left side for the ROC and right side for the FROC and PR.

we conducted a second one on broader range by utilizing the result of our

first survey. Our second survey was based on the articles in PubMed for

the most frequently used metrics according to our first survey (see Table 2.3

for our first survey result). We present the second survey statistics in Fig-

ure 2.11 and 2.12 for the single threshold-based and multi-threshold-based

metrics, respectively. These statistics are almost consistent with our previ-

ous survey presented in Table 2.3: the most utilized single threshold-based

metrics are recall/sensitivity, accuracy, and precision, while the most utilized

multi-threshold-based metrics are ROC and PR curves. Although different

papers might use a different name for the same metric, we consider only the

most popular name used in the biomedical field to search for the paper count

for that metric in PubMed; the actual paper counts might be thus slightly

different from the presented ones. Nevertheless, these surveys present a

concise idea about the popular metrics utilized in the biomedical field.

Based on these mini-surveys, we selected our evaluation metrics suitable
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Table 2.4: Confusion matrix for binary classification problem. Here,
TP, FP, TN, and FN are the number of True-Positive, False-Positive,

True-Negative, and False-Negative, while neg and pos are the total number
of negative and positive samples in the test set.

Predicted
negative

Predicted
positive

Actual negative TN FP neg = FP + TN

Actual positive FN TP pos = TP + FN

for our task of interest. We considered several metrics in our evaluation

because no single metric can serve all our purposes [Bylinskii et al., 2018].

For all the considered evaluation metrics, a pre-requisite is to compute a

confusion matrix. It is a table that presents the statistics of the true and

false predictions by a model. In this thesis, we consider binary classification,

even for the multi-class data set, we convert the problem to a binary one

by considering the class of interest as positive and the remaining classes as

negative. For a binary class problem, a confusion matrix has four elements:

the number of TP, FP, TN, and FN (see Table 2.4). All the considered metrics

can be defined by the elements of the confusion matrix.

Short descriptions of our selected metrics are given in the following

sections.

2.5.1 Single threshold-based evaluation metrics

We utilized the popular metrics, recall (also known as sensitivity or TPR) and

precision (also known as PPV), as single threshold-based evaluation measures.

The recall is useful to reflect the TP, while precision is useful to reflect the

FP. Since recall and precision varies in reverse order, it is important to report

both. To evaluate the model performance by considering both recall-precision

at the same time, we also reported F-measure. They are computed as follows:

Recall =
TP

TP + FN
(2.1)

Precision =
TP

TP + FP
(2.2)
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F −measure =
2 ∗ Precision ∗Recall

Precision + Recall
(2.3)

In Equation 2.1, the denominator, (FN + TP ) is the number of positive

samples (pos, second row in Table 2.4) in the test set while in Equation 2.2, the

denominator, (FP + TP ) is the total number of predicted positives (second

column in Table 2.4) by the respective model.

Themajor limitation of using single threshold-basedmetrics is their values

depend on pre-selected thresholds, and they do not provide the opportunity

to users of selecting an optimal threshold by providing a range of options.

Nevertheless, they are useful to present the result in a compact way.

2.5.2 Threshold-free / multi-threshold-based evaluation

metrics

We utilized ROC and PR curves as threshold-free/multi-threshold-based eval-

uation metrics since they are popular in the literature according to our survey

(see Figure 2.12). The ROC curve expresses the trade-off between the TPR

and the FPR, while the PR curve expresses the trade-off between precision

and recall. Among the elements of ROC and PR, TPR/recall (Equation 2.1)

and precision (Equation 2.2) have been defined previously; the remaining

element FPR is defined by the following equation:

FPR =
FP

FP + TN
(2.4)

where the denominator, (FP + TN) is the number of negative samples

in the test set.

By changing the threshold on predicted scores, it is then possible to match

the desired FPR (resp. recall) [Freeman and Moisen, 2008; Grau et al., 2015],

find the associated TPR (resp. precision), and plot the corresponding point on

the ROC (resp. PR) curve. Each point on a ROC curve is thus calculated with

a different threshold. Following the definition given by Boyd et al. [2013],

mathematically,

ROCcurve = {(fpr(t), tpr(t)) : −∞ < t <∞} (2.5)
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PRcurve = {(recall(t), prec(t)) : −∞ < t <∞} (2.6)

where fpr(t), tpr(t), recall(t), and prec(t) are the FPR, TPR, recall, and

precision computed at a threshold t. From a ROC or PR curve of a single

model, it is possible to know the threshold information, t; however, there is

no guarantee to have it from a mean ROC or PR curves of multiple models

(we detail it in Chapter 5).

Along with the ROC and PR curves, we also utilized precision and FPR

curves -where the precision and FPR are presented as a function of continuous

threshold in two separate curves- to serve our purpose of reflecting FP in

a range of thresholds. The precision curve thus can be defined as the plot

of precision at different thresholds of the predicted score, and similarly, the

FPR curve is the plot of FPR at different thresholds of the predicted score.

Mathematically,

Precisioncurve = {(t, prec(t)) : −∞ < t <∞} (2.7)

FPRcurve = {(t, fpr(t)) : −∞ < t <∞} (2.8)

where fpr(t) and prec(t) are the FPR and precision, respectively com-

puted at a threshold t.

The presentations of precision and FPR as functions of threshold can

provide several advantages over the ROC and PR that we cover with examples

in Chapter 4. Moreover, by observing the advantages of these curves, we

formally present a new metric named PR-T curves as an alternative to the PR

curve. The PR-T curves provide the opportunity for threshold selection even

in the case of mean curves. We detail it in Chapter 5.

2.5.3 The area under the curve (AUC)

The area under a curve (AUC) can be calculated for any curve-based metric,

including the ones presented in Section 2.5.2. The AUC has great importance

in expressing the model performance with a single scalar value. It helps to

express the model performance without plotting any curve [Brodersen et al.,

2010; Yu, 2012]. We thus define it separately in this section.



48 Chapter 2. Context

Figure 2.13: AUC approximation. (i) If we directly apply the trapezoidal
rule to approximate the AUC of curve function (in blue), the AUC will be
equal to the area under the linear function (in red). The pink area from the
AUC will be then excluded, while the green area will be extra added. (ii) If
we divide the AUC into small enough portions and apply trapezoidal rule to

each portion, the problem can be solved.

It is defined as the definite integral,
∫ b

a f(x) dx [Tallarida and Murray,

1987]. Here, f(x) is the function of x, where [a, b] is the range of the x. x and

f(x) are plotted on the x- and y-axis of the curve space. In the ROC curve, for

example, the TPR (i.e., f(x)) is presented as the function of FPR (i.e., x) and

the range of the TPR value is [0, 1]. If f(x) is a linear function (Figure 2.13:

red line), the area under the function f(x) can be correctly approximated by

the trapezoidal rule (Equation 2.9).

∫ b

a
f(x) dx ≈ (b− a)

f(a) + f(b)

2
(2.9)

If f(x) is a curve function (Figure 2.13: blue curve), however, the area under

the function f(x) (i.e., AUC) cannot be correctly approximated by the trape-

zoidal rule given in Equation 2.9 since the pink area from the AUC will be

excluded, while the green area will be extra added in that case. According to

the general rule of integral calculus, we have to divide the AUC into small

enough portions and apply trapezoidal rule to each portion to compute the

area of that portion, then summing up all the computed areas approximates

the AUC value (Figure 2.13: ii). We can achieve it by dividing the range [a, b]

into small enough N intervals, i.e., making an interval, △x (= xk+1 − xk)

−→ 0, and applying the trapezoidal rule as follows gives the approximation
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of AUC:

∫ b

a
f(x) dx ≈

N∑

k=1

(xk+1 − xk)
f(xk) + f(xk+1)

2
(2.10)

2.6 Conclusion

To summarize, the whole slide image is a very special kind of image data

currently utilized by researchers to develop computer-aided cancer detection

systems. They are complex regarding file structure, size, and pattern, which

makes them different from other images. The current advances in other

imaging modalities are thus not directly applicable to them. Machine learning

algorithms -both classical and deep learning- are utilized to develop computer-

aided detection systems, where deep learning, specifically, CNNs produce

state-of-the-art results. Any such learning-based system has three crucial

elements: the data set from where the system gathers experience, the task for

which the system is built for, and the performance measures that evaluate

the system efficiency. We surveyed and discussed all these three elements.

Based on the surveys, we determine CAMELYON16, PCam, and MLNTO as

the data sets and recall, precision, F-measure, ROC, PR, precision, and FPR

curves as the evaluation metrics from the state-of-the-art for our target task

cancer detection.
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Conducting an analytical study (e.g., on class distribution and evalua-

tion metric) requires designing a general methodological framework that

generates predictive models for a targeted task (e.g., cancer detection). The

framework should have all the elements that facilitate the desired analysis. In

this chapter, we propose our ones. At first, we review the literature on cancer

researches utilizing medical images (both radiology and histology images),

image processing, and machine learning techniques, then describe our devel-

oped framework for cancer detection in WSI. The framework is applicable to

both classification and segmentation tasks. In our framework, we proposed a

patch extraction and categorization method that overcomes the limitation of

usually adopted random patch sampling. Moreover, the framework includes

an evaluation methodology for segmentation tasks which is more relevant to

the pathologists’ way of checking a WSI.

The structure of this chapter is as follows: Section 3.1 reviews the related

work on cancer research utilizing both non-WSI and WSI data. Section 3.2

articulates our methodological framework and hyper-parameter settings to

produce CNN-based models to detect cancer on WSIs. We present our patch-

based evaluation method for the segmentation task, which is a part of our

proposed framework, in a separate Section 3.3. Finally, Section 3.4 concludes

the chapter.

3.1 Related work

3.1.1 Cancer research based on non-WSI data

Articles published on non-WSI images for cancer research are numerous.

For example, Roth et al. [2015] proposed a two-tiered coarse-to-fine cascade

framework for bone lesions, enlarged lymph nodes, and colonic polyps classi-

fication from computed tomography. In the first tier, they utilized an existing

detection system as a candidate generation system at sensitivities of 100%

but at high FP levels from where the coordinates of regions or volumes of

interest were generated. The candidates were the input for the second tier. In

the second stage, they generated 2D or 2.5D views via sampling through 4

different scale transformations, 5 different random translations, and 5 differ-

ent rotations. These random views were used to train deep CNN classifiers

(modified AlexNet). In testing, CNNs assigned class probabilities for a new

set of random views (4*5*5=100) that were then averaged to compute a fi-
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nal per-candidate classification probability. They showed that the proposed

method improved the sensitivity from 57% to 70%, 43% to 77%, and 58% to 75%

at 3 FPs per patient for sclerotic metastases, lymph nodes, and colonic polyps,

respectively. However, it was not clear enough whether they re-trained the

model with candidate FPs only or the data-augmented version of all training

examples.

In [Shen et al., 2015], authors proposed a multi-scale Convolutional Neural

Networks (MCNN) architecture to extract multi-scale features from nodules in

computed tomography with different sizes. In their method, they concatenate

the features from three parallel CNNs. The features were extracted from

three different sizes of patches, which were reshaped into the smallest patch

size to train CNNs. The features from CNNs were concatenated to construct

the final feature vector. The extracted CNN features were used to train

SVM and random forest classifiers then the results were compared with

the corresponding results for histogram of oriented gradients(HOG) and

local binary pattern (LBP) features. According to their experiments, MCNN

outperformed HOG and LBP descriptors with 10.91% and 13.17%, respectively,

and the MCNN feature was noise tolerant.

Lian et al. [2016] proposed a framework for predicting the outcome of

cancer therapy from multi-sources of information, including radiomics in

FDG-PET images and clinical characteristics. As the main contribution, they

improved the features selection method, EFS [Lian et al., 2015] to select

features from uncertain, small-sized, and imbalanced data set. They experi-

mentally proved the effectiveness of their method on two real data sets.

In [Sun et al., 2017b], the authors proposed a new multi-channel ROI

combining the original ROI, nodule ROI, and gradient ROI as RGB channel,

which was applied for lung cancer diagnosis in computed tomography images.

They also compared different deep learning-based features with traditional

hand-craft features. According to them, their multi-channel ROI won over

original ROI by 2.8%; deep learning feature won over traditional feature by

2.3%.

In [Sun et al., 2017a], authors hypothesized that combining a small amount

of labeled data with a large amount of unlabeled data could be a solution

to collect enough data to train the deep learning algorithms. To test this

hypothesis, they designed a graph-based semi-supervised learning scheme

consisting of three modules: data weighing, feature selection, and a newly pro-

posed dividing co-training data labeling, and utilized a deep CNN. They also
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compared three different dimension reduction methods and three different

weighing functions. For the breast cancer mammogram data, the difference

of accuracy between the originally labeled data and their semi-supervised

data was 3.75% at voting threshold 7. They concluded that the unlabeled data

could not replace labeled data, and using unlabeled data is only a supplement.

In [Zhou et al., 2021], the authors proposed a novel segmentation archi-

tecture by including a correlation model and attention-based fusion modules

to combine multiple U-net architectures for multiple imaging modalities. Ac-

cording to them, this was the first segmentation method, which is capable of

describing the latent multi-source correlation representation among modali-

ties and allows to help segmentation on missing modalities. They tested the

efficiency of the proposed architecture on two data sets of multi-modal MRI

of brain tumor data and got competitive results with state-of-the-art methods.

In summary, different dimensions have been investigated, such as FP

reductions, features engineering, combining multi-modal data, utilizing un-

labeled data and proposed different interesting methods in the domain of

radiology images. The studies, however, are not directly applicable to histol-

ogy images, WSIs, because of the huge difference in image characteristics [He

et al., 2012]. The FP reductions and efficient data utilization could also be

interesting tracks to investigate with WSI. This thesis contributes to similar

problems, FP reductions, and data utilization for WSI.

3.1.2 Cancer research based on WSI data

During last decades, several studies were done to facilitate computer-aided

diagnosis for cancer detection from WSIs [Barisoni et al., 2012; Wang et al.,

2016a; Bejnordi et al., 2017; Liu et al., 2017, 2019; Evans et al., 2018; Khan

et al., 2019; Bera et al., 2019; Dimitriou et al., 2019; Barisoni et al., 2020; Zhou

et al., 2020]. Although at the early age of WSIs, classical machine learning

algorithms with feature engineering were mainly utilized [Gurcan et al., 2009;

Komura and Ishikawa, 2018], in recent years, the deep learning algorithms

with the representation learning are mainly emphasized [Hu et al., 2018; Li

et al., 2021a]. Several deep learning systems have been proposed during the

last few years, specifically from 2015 onward, and has shown incredible per-

formance levels [Liu et al., 2019]. The recommended methods, however, have

not been adopted at a clinical level, as the performance threshold needed to

gain the trust of pathologists has not yet been met [Bera et al., 2019]. There-
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fore, developing efficient methods for cancer detection from WSIs remains

an active area of research [Fan et al., 2019b].

Different dimensions, such as pre-processing of WSIs [Khan et al., 2014;

Vahadane et al., 2016; Zheng et al., 2019; Tellez et al., 2019; Salvi et al., 2020;

Alzubaidi et al., 2020], transfer-learning [Chen et al., 2016; Khan et al., 2019;

Han et al., 2020; Alzubaidi et al., 2020; Otálora et al., 2021], developing end-to-

end systems [Wang et al., 2016a; Liu et al., 2017, 2019; Lin et al., 2018; Veeling

et al., 2018; Fan et al., 2019a], proposing new network architectures, or utiliz-

ing the existing ones differently [Chen et al., 2016; Lin et al., 2018; Alzubaidi

et al., 2020; Toğaçar et al., 2020; Shirazi et al., 2020], post-processing of the

predictions [Liu et al., 2019; Kaushal and Singla, 2020] are being explored.

For example, Vu et al. [2015] proposed a cancer detection system utilizing

the classical machine learning algorithm, SVM. They proposed an automatic

feature extraction method via learning class-specific dictionaries. In [Salvi

et al., 2020], the authors proposed a fully automated stain separation and

normalization approaches for H&E-stained WSIs named SCAN (Stain Color

Adaptive Normalization). The proposed algorithmwas based on segmentation

and clustering strategies for cellular structure detection. According to them,

SCAN was able to improve the contrast between histological tissue and

background and preserve local structures without changing the color of the

lumen and the background. They showed that the proposed method was both

quantitatively and qualitatively superior to the state-of-the-art techniques,

although some other studies claim that data augmentation is more preferable

to color normalization for dealing with color variations [Liu et al., 2019;

Otálora et al., 2021].

From 2015, Bejnordi et al. have organized a worldwide challenge known

as CAMELYON to gather together different methods for cancer detection

in WSIs; the overview of their first challenge, the CAMELYON16, is pub-

lished in [Bejnordi et al., 2017]. Before this annual event, the use of WSIs in

computational tasks was limited to patches that had been pre-extracted by

the pathologist [Lin et al., 2018]. In the challenge, there were two sub-tasks,

the metastasis/cancer identification and localization task (task 1) and the

WSIs classification task (task 2). A total of 23 teams submitted 32 methods,

and 21 teams described their methodologies. All methods proposed in the

challenge followed a similar workflow: 1) pre-processing of WSIs, 2) train-

ing a machine learning model for detection of tumor regions, 3) producing

tumor probability map for each test slide with the trained model, and 4) post-
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processing probability maps to produce tumor lesion locations and scores,

and a score for the entire slide. As a machine learning algorithm, most of the

proposed methods utilizing deep learning: the variation in the participants’

results was induced by hyper-parameter settings and data pre-processing.

The methods that placed within rank 10 for at least one sub-task are sum-

marized in Table 3.1. In the table, we present only some of the promising

hyper-parameters: the training set distribution, the network architecture, if

the methods used transfer learning, data augmentation, stain normalization

or not. The result indicates that hyper-parameter settings contribute to the

models’ performances, although the fair comparison is not ensured because

of the variable settings of different methods.
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Figure 3.1: The framework for cancer detection from WSI utilized by the
winner of CAMELYON16 (Figure 2 of [Wang et al., 2016a]).

The winning team [Wang et al., 2016a] in the CAMELYON16 challenge

trained two 22-layer GoogleNets (V1), one with randomly sampled training

patches (HMS &MIT I in Table 3.1) and another with additional hard negative

examples–probably biased towards negative examples (HMS & MIT II in

Table 3.1). The final decision was based on the combination of predictions

from the two models. Additionally, they trained a random forest classifier

with 28 handcrafted features extracted from the output heatmaps of the

CNNs. They used color normalization to cope with color variation in WSIs

while also applied rotation and color noise to the training patches for data

augmentation. Figure 3.1 shows the basic framework they utilized, where they

collected positive (metastatic cancer) and negative (normal tissue) samples

randomly to train a deep model. The trained model was then used to predict

the overlapping patches from unseen test WSIs, then stitched them together

to generate the probability heatmap. They post-processed the heatmaps

to generate the result for task1 (the metastasis/cancer identification and

localization task) and task2 (the WSIs classification task).

Liu et al. [2017] (from GoogleAI) improved the result of CAMELYON16’s

winner. They used the GoogleNet (V3) [Szegedy et al., 2015] and applied a

random patch sampling technique to obtain a balanced training set. More-

over, to deal with the scarcity of tumor patches, they applied several data
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augmentation techniques, including rotation, mirroring, and extensive color

perturbation. However, in their extended work [Liu et al., 2019], they selected

a training distribution biased towards the negative class by a factor of four.

Lin et al. [2018] proposed a framework for fast and dense scanning during

prediction. In their framework, they converted the modified VGG16 to a Fully

Convolutional Neural Network (FCNN) -a CNN architecture, where dense lay-

ers in the classification part are replaced with the 1× 1 convolutional layers-,

which was followed by a patch reconstruction method. To train their model,

they used FP generating patches from the training set. Veeling et al. [2018]

proposed a rotation equivariance framework by adopting G-CNN architecture

[Cohen and Welling, 2016]. To test the effectiveness of their method, they

proposed a new data set known as PCam (see Section 2.4.2). In [Mejbri et al.,

2019; Mejbri, 2019], authors proposed a new data set for different types of

breast cancer, and an end-to-end deep learning framework for multilabel

tissue segmentation utilizing their data set while network parameters were

determined with a deep analysis.

In [Chen et al., 2016], authors proposed a deep cascaded neural network

(CasNN) for mitosis detection in breast cancer WSIs, which is a combination

of different existing methods. Their framework was composed of two models:

a coarse retrieval model with FCNN to identify and locate the candidates

of mitosis with high sensitivity, and three fine discrimination models with

caffeNet [Jia et al., 2014] and transfer learning (from ImageNet data) to fine-

tune the candidate. The average and threshold were used to determine the

final output. In [Toğaçar et al., 2020], authors proposed a CNN architecture

named BreastNet consisting of convolutional, dense, and residual blocks.

They compared their method with the AlexNet, VGG-16, VGG-19. By utilizing

the data augmentation and combining the data of different resolutions, the

classification success with their method increased by 0.29% and obtained as

98.80% on BreakHis data set.

In [Khan et al., 2019], the authors proposed a deep learning-based frame-

work for the detection and classification of breast cancer inWSI patches using

transfer learning. They also provided a comparative analysis of three different

deep learning architectures with respect to accuracy in the context of transfer

learning. In their framework, different low level features were extracted

separately by three well-known CNN architectures, GoogLeNet [Szegedy

et al., 2015], VGGNet [Simonyan and Zisserman, 2014], and ResNet [He et al.,

2016b] pre-trained with ImageNet [Deng et al., 2009]. They combined the
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extracted features using average pooling and fed them into a fully connected

layer for the classification task. The images were normalization before feeding

to networks. The data augmentation techniques including color processing,

transformation (translating, scaling, and rotation), flipping, and noise per-

turbation were utilized. Compared to the previous methods, the proposed

method improved the accuracy by .02%, and compared to the ResNet, it

improved by 3.2%. Otálora et al. [2021] did a comparative study on fully-,

weakly-supervised CNN models using two freely accessible data sets -tissue

microarrays (TMAs) with strong annotations and WSIs with weak labels-,

and transfer learning, targeting prostate cancer scoring. They trained models

in three different ways: fully-supervised with strongly labeled TMA data

set (let say, it is model ms), feature transferred from ms which is fine-tuned

with weakly labeled WSI data set (model mf ), and weakly-supervised with

weakly labeled WSI data set (model mw), whereas all three models utilized

a pre-trained model on ImageNet data set for weight initialization. More-

over, they adopted balanced distribution to the training set by applying data

augmentation to under-represented classes. According to them, fine-tuned

model, mf , outperformed the remaining two for the WSI test set. Their result

shows the importance of transferring features from the same base domain

in the transfer learning scheme similar to the result presented in [Yosinski

et al., 2014]. Nevertheless, fine-tuning with weakly labeled data might not

be a rational choice for a medical domain since it produces many wrong

predictions. Rather the weakly labeled data could be an option to pre-train a

model to use as a base. The base should be later fine-tuned with a strongly

labeled data set -at least with a small one- to correct the existing probable

errors in the base model.

In [Kaushal and Singla, 2020], the authors proposed a post-processing

technique on the segmented output of WSIs. Their method is based on

the one-dimensional energy curve [Singla and Patra, 2017] which includes

neighborhood information. They showed the effectiveness of their method

over existing state-of-the-art methods.

Some other studies on image-based cancer research have been covered

comprehensively in [Bera et al., 2019; Zhou et al., 2020]. Although different

dimensions of research have been done on WSI, class distribution analysis

has not been explored yet for it, while it is worth exploring. We investigate

this topic as a part of this thesis. The investigation requires an end-to-end

framework to generate predictive models for cancer detection; the survey
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helps us to design it. The framework we design is described in the following

section.

3.2 ACNN-basedmodel to detect cancer inWSI

In this section, we detail our approach of generating a cancer detection model

for the analysis we conducted in this thesis.

3.2.1 The methodological framework

Figure 3.2: Our methodological framework for cancer detection from WSI. It
is composed of 4 major steps: pre-processing, training, inference, and

evaluation. Here, CR: central region.

To pursue the analytical study, we design an end-to-end cancer detection

system (Figure 3.2). The system has four major steps: pre-processing, training,

inference, and evaluation. All these steps are applicable for both segmentation

at the pixel level and classification at the patch level settings: we mention

some minor differences for each step. The framework is inspired by the one

proposed by the winner of CALELYON16 challenge in [Wang et al., 2016a].

Unlike them, however, we propose to use systematic patch extraction rather



64 Chapter 3. Machine Learning Model for Cancer Detection

than random sampling. The patch extraction method and its advantages are

described in the following paragraph.

Figure 3.3: Systematic approach for extracting and categorizing patches from
WSIs

Pre-processing. In the pre-processing step, we extract same-sized train-

ing patches from the training WSIs and their corresponding masks/labels

from their ground truth (Figure 3.2: Pre-processing). It makes the gigantic

WSIs adaptable to the CNN architecture with available memory. The dimen-

sion (l2) of the patches is a system hyper-parameter. We extract overlapping

patches.

More precisely, for a multi-class data set (e.g., MLNTO), the patches are

extracted by convolving the WSI (and ground truth mask) from the (0,0) pixel

coordinate to the last pixel coordinate with a stride of l/2 (making them

overlapping patches). We consider overlapping patches to utilize all the tissue

areas as center regions in extracted patches since there is a lack of sufficient

contextual information from the border pixels of a patch [Kellenberger et al.,



3.2. A CNN-based model to detect cancer in WSI 65

2018]. We did some preliminary experiments to set the patch dimension and

use l = 384 pixels for the training patches extracted from the MLNTO data

set. The extracted patches are categorized into different categories based on

the pixel classes they consist of (detail of patch categorization is given in

Section 4.3). The systematic approach for the patch extraction and catego-

rization is illustrated in Figure 3.3. We developed this systematic approach

for extracting and categorizing patches from WSIs as an alternative to the

usual random sampling [Wang et al., 2016a; Liu et al., 2017; Bejnordi et al.,

2017] since we empirically found that it performs better than with random

extraction. Moreover, our approach facilitates the coverage of all desire areas

of the WSI without repetition of any particular area. The repetition of a par-

ticular area -which might happen in random sampling- during training may

cause biases of the model toward that repeated area. The patch categorization

facilitates creating an expected class distribution during training.

For the patch-based binary class data set (i.e., PCam), the described pre-

processing step is not required since the extraction and categorization of

patches have been performed by its creators [Veeling et al., 2018] (see Sec-

tion 2.4.2). We can therefore use the PCam data set as it is.

Training. In the training step, we select training patches from the ex-

tracted ones of the previous step by maintaining a desire distribution of

classes. The patches from a particular category are selected randomly from

all available patches for that category. The random patch selection is followed

by shuffling the whole training set to prevent having all the patches in a mini-

batch from the same category. This makes the convergence faster during

training and provides greater accuracy [Koller et al., 2015]. The generated

training set is used to train an FCNN model for the segmentation task (i.e.,

pixel classification) or a CNN model for the classification task (i.e., patch

classification). The network architectures and hyper-parameter settings are

described in Section 3.2.2.

Inference. During inference, the trained model is employed to predict

either pixels (in the segmentation task) or patches (in the classification task)

for unseen test WSIs. We extract same-sized overlapping patches from the

WSIs. When the non-ROIs are annotated in the data set (i.e. for the multi-

class data set), we predict the patches from whole WSIs by applying the same

process of extracting the training patches we described. For the binary-class

data set, the patches from regions with histological structures are considered

for prediction. In this case, we separate the regions without histological
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Figure 3.4: Inferring probability matrix for a test WSI by a trained
model If the model is for segmentation, it produces probability for each
class for each pixel of a patch (R⋖×⋖×C); stitching the probabilities of the
center regions in their corresponding places makes the probability matrix for
the full WSI. If the model is for classification, it produces probability for each
class for each patch (RC); stitching the probabilities for all patches to their
corresponding places produces the probability matrix for the full WSI. Here,

CR means center region.

structures, i.e., background, using Otsu thresholding [Otsu, 1979]; then we

extract the patches from the remaining regions following the same systematic

approach described for themulti-class data set. From the extracted patches, we

focus on a particular part in the middle, the central region, and the remaining

part as a border for each patch. Similar to the PCam data set, the ground-truth

of the central region is considered as the ground-truth of the whole patch.

While the patches overlap, the central regions do not overlap. When the

patches from test WSIs are fit to the trained model one by one for prediction,

the trained-model produces the probability (∈ R
l×l×C or RC , where C is

the number of classes) of each class either for each pixel (for segmentation

model) or for each patch (for classification model) (see Figure 3.4). For the

segmentation task, stitching the probabilities of the center regions in their

corresponding places makes the probability matrix for the full WSI. For the
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classification task, we stitch the probabilities of patches to get the probability

matrix. The matrix for the classification task is downsampled by a factor of

patch size, while it is the same size as the input WSI for the segmentation

task. As a default choice, taking the argmax decision on that matrix produces

the predicted segmented mask. It is also possible to generate the heatmap of

a class from the probability matrix by considering the probabilities of each

pixel/patch for that class. If the patches are already extracted in the test set

like PCam, it is not possible to generate segmented masks or heatmaps. For all

cases (the test set with full WSIs or already extracted patches), the probability

of each patch can be processed for evaluation by considering each patch as a

sample.

Evaluation. We consider both the single threshold-based (e.g., recall,

precision) and multi-threshold-based (e.g., ROC, PR curves) metrics for the

evaluation. For the single threshold-based metrics, we consider the argmax

decision as the threshold of predicted probabilities. Those metrics are com-

puted in two different ways for the segmentation task that we described in

Section 3.3. For the threshold-free/multi-threshold-based metrics, we utilize

the predicted probabilities.

3.2.2 Neural architecture and hyper-parameters

In this section we describe the hyper-parameter settings for the segmentation

and classification tasks along with the selected network architectures.

3.2.2.1 Segmentation task

We selected U-net [Ronneberger et al., 2015] as our CNN architecture (see

Figure 3.5) for the segmentation task as it allows to propagate large context

information without losing localization accuracy. Moreover, it has been

proven to be effective, even when using a limited number of training images,

and only requires a moderate amount of time to train [Ronneberger et al.,

2015]. We implemented the architecture using Keras [Chollet et al., 2015] on

the TensorFlow backend. We used 8 GPUs Nvidia Geforce GTX 1080 TI (3584

Cuda cores each).

We used MLNTO to test our hypotheses in the segmentation setting. In

all the experiments, we randomly selected 80% of the training data to train

the model and the remaining 20% for validation. All data were normalized by
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Figure 3.5: The U-net architecture: the first and last layers represent the
input and the output of the model respectively, while the layers that come
after an arrow indicate the output of the operation denoted by the arrow.
The number on top of each layer indicates the number of feature channels.

scaling the pixel value from [0, 255] to [0.0, 1.0] dividing each value by 255.

It makes the convergence of training faster [LeCun et al., 2012].

Each model was trained from scratch, i.e. without using transfer learning.

After a preliminary empirical evaluation, we set the number of epochs (i.e.

the number of times the algorithm passes through the entire training data)

to 35 and the mini-batch size (i.e., the number of training examples the

algorithm sees in one pass) to 5. We opted for the categorical cross-entropy

as the loss function, similarly to the original U-net. To optimize the objective

function, we used the Adam optimizer [Kingma and Ba, 2014]. After empirical

preliminary evaluation, we set the learning rate -the amount of change of

weights in the direction of the gradient for a mini-batch- of Adam as 1e−5.

The initial weights were drawn randomly from the zero-mean Gaussian

distribution as recommended in [Krizhevsky et al., 2012a]. We used a standard

deviation of 0.05, which is the default setting in Keras.

3.2.2.2 Classification task

The CNNs are inherently translation equivariant, i.e. they can learn the

same features from any particular location in an image. In WSIs, besides

translation, the histological structures can be in any orientation. In other

words, the rotation and reflection are common features in WSIs [Graham

et al., 2020]. Thus, we selected the group equivariant convolutional networks

(G-CNN) architecture [Cohen and Welling, 2016], a rotation and reflection

equivariant architecture which was tuned for PCam data set by Veeling et al.
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[2018]. The equivariant nature of G-CNNs is effective, and leads to state-

of-the-art performance levels for WSI data [Veeling et al., 2018]. For the

G-CNN architecture, we kept the default settings of all the hyper-parameters

to reproduce the results (when we use full training set) achieved by Veeling

et al. [2018], the only exception being the reduced mini-batch size. With

our hardware configuration, the maximum possible mini-batch size while

training a G-CNN is 8.

3.3 Patch-based evaluationmethod for segmen-

tation task

A model evaluation is done by considering assigned label(s) to each sample

by that model. In an image classification problem, a whole image is con-

sidered as a sample. The evaluation for the classification task is thus by

default patch/image-based. In an image segmentation problem, by contrast,

the sample is a pixel. Each pixel is thus considered during the evaluation of a

segmentation-based model. A common measure used to evaluate segmenta-

tion models is the percentage of pixels correctly labeled [Everingham et al.,

2010].

In our work, we are aiming at helping pathologists in detecting the re-

gion(s) with unhealthy tissue and filtering out the remaining (i.e., healthy

ones that do not show any signs of cancer) in WSIs. In this context, it is

not harmful if some pixels around a detected region are miss-classified due

to the existing gaps between the actual ground truth and human annota-

tions. Notably, having annotation gaps in the ground truth is acceptable for

images whose size can be measured in gigapixels since it is impractical to

consider every pixel during manual annotation by a human. Consequently,

it becomes less relevant to consider the usual pixel-based evaluation for the

segmentation task. Hence, we consider the patch-based evaluation for the

segmentation task similar to the classification one. The approach is similar

to the pathologist’s way of checking a WSI.

In this section, we describe howwe conduct patch-based evaluation for the

segmentation task. We consider two different methods described as follows:

First method. We utilize the predicted mask for the full WSI. We divide a

predicted mask and its corresponding ground-truth mask into regions that we

call evaluation patches. The patches are not overlapping (unlike the training
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Figure 3.6: Illustration of the patch-based evaluation process when
evaluating, for example, the class C (red). Each image patch (i.e., evaluation
patch) from the predicted output (ii) is compared to the ground truth (i).
True-positive is when the model detects cancer (the class C) in the patch,

and the patch indeed contains cancer in the ground truth.

patches) and could be of any dimension from 1 × 1 pixel to the full image.

When the patch dimension is 1x1, the evaluation measure is equivalent to a

pixel-based evaluation.

In our case, the analogy is, when we evaluate the class C, a patch in the

predicted mask (see Figure 3.6 (ii)) is defined as TP if it contains class C pixels

(at least one pixel) and the corresponding patch in the ground truth mask

(see Figure 3.6 (i)) also has class C pixels, otherwise that patch is defined as

FP. On the other hand, a patch in the predicted mask is defined as TN if it

does not contain class C pixels and the corresponding patch in the ground

truth mask has no class C pixel, otherwise that patch is defined as FN.

Figure 3.6 illustrates the way we generate the confusion matrix for the

class C (red) with this method, where (i) is a ground truth mask divided into

patches, and (ii) is a predicted mask divided into the same corresponding

patches of ground truth and annotated as TP, FP, TN. Since the predicted

mask in (ii) has no false-negative, there is no annotation as FN. With the
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generated confusion matrix, we compute the evaluation metrics presented in

the previous chapter (Section 2.5).

The size or dimension of a patch is a system hyper-parameter that have an

impact on the results. We analyze the impact of the evaluation patch size in

the next chapter. The pathologists’ interest is on the in-between dimension;

we thus set the default evaluation patch dimension as 500× 500 in our result

with this evaluation method.

Second method. We process the pixels-based predicted probabilities

of each patch (Rl×l×C) just after the prediction, instead of forming the full

predicted mask then dividing it into evaluation patches. We convert the

pixels-based predicted probabilities of each patch to patch-based probabilities

(RC) thus making it resemble the prediction of a classification model. We

take the class-wise maximum probability of the central region and assign it

to the whole patch. In this way, the patch gets a probability for each class

similar to the output of a classification model.

The first method is applicable to compute the single threshold-based

metrics only since it does not consider the predicted probabilities. In con-

trast, the second method is applicable to compute both single threshold

and multi-threshold based metrics. The argmax decision on the computed

patch-based probabilities is considered as the predicted class label of that

patch for computing the single threshold-based metrics, and the computed

patch-based probabilities themselves are further considered to compute the

multi-threshold-based metrics.

3.4 Conclusion

By reviewing different studies on cancer research from the literature, we

figure out that the topic of hyper-parameters tuning is under-studied, es-

pecially, there is no dedicated work on class distribution analysis for WSI

data. To fulfill the gap, we consider this topic in this thesis. For this purpose,

we design a framework suitable for this task, where patch extraction and

categorization are considered to facilitate the generation of different distribu-

tions for training. Additionally, we also propose two patch-based evaluation

approaches, which are practical and similar to pathologists’ observation of a

WSI. This basic framework and evaluation approaches are utilized in the rest

of the manuscript.





Chapter 4

Analyzing Class Distributions in

WSI for Deep Learning

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Studies on class imbalance problems . . . . . . . . . 77

4.2.2 Studies on class distribution analysis . . . . . . . . . 78

4.3 WSI patch categories . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Preliminary studies . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Class distributions for training sets . . . . . . . . . . 82

4.4.2 Findings and discussion . . . . . . . . . . . . . . . . 83

4.4.2.1 Balanced distribution is not generalizable

to WSI data . . . . . . . . . . . . . . . . . 83

4.4.2.2 Impact of the evaluation patch size . . . . 88

4.4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Analyzing class distributions: hypothesis-driven approach . 90

4.5.1 Methodological framework . . . . . . . . . . . . . . 90

4.5.1.1 Hypotheses and relevant class distributions 90

4.5.1.2 Pipeline for testing the hypotheses . . . . 96

4.5.2 Experimental setup . . . . . . . . . . . . . . . . . . . 97

4.5.2.1 Data sets and pre-processing . . . . . . . . 97

4.5.2.2 Hyper-parameter settings . . . . . . . . . 98

4.5.2.3 Evaluation measures . . . . . . . . . . . . 98

4.5.3 Results and discussion . . . . . . . . . . . . . . . . . 99

4.5.3.1 Results for segmentation task . . . . . . . 100

4.5.3.2 Results for the classification task . . . . . . 109

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



74 Chapter 4. Analyzing Class Distributions in WSI

The class distribution of a training data set is an important factor

which influences the performance of a deep learning-based system.

In this chapter, we tackle the problem of finding the optimal class

distribution of a training set to train an optimal model that detects

cancer in WSIs. At first, we conduct a preliminary study. Based on

the findings from that study, we formulate several hypotheses, which

are then tested. The experiments have been designed to account

for both segmentation and classification frameworks with various

class distributions in the training set, including natural, balanced,

over-represented cancer, and over-represented non-cancer.

Our experimental results show that the natural class distribution is

better than the artificially generated balanced distribution. Moreover,

we found that the over-representation of non-cancer classes compared

to the cancer class reduces the number of samples which are falsely

predicted as cancer (false-positive), although the result depends on

some other hyper-parameters. Furthermore, we found that the least

expensive to annotate non-ROI (non-Region-of-Interest) data can

be useful in compensating for the performance loss in the system

due to a shortage of expensive to annotate ROI data. The multi-

label examples are more useful than the single-label ones to train a

segmentation model. When the classification model is tuned with a

balanced validation set, it is less affected than the segmentation model

by the class distribution of the training set.

Abstract.

4.1 Introduction

The huge success of deep learning approaches, such as CNNs, in visual

recognition [Krizhevsky et al., 2012a; LeCun et al., 2015; Rawat and Wang,

2017] has encouraged researchers to explore their use in various domains,

including cancer detection from histological images or WSIs [Wang et al.,

2016a; Bejnordi et al., 2017; Liu et al., 2017].

When working on a patient’s case, the manual analysis of WSIs demands

a high level of concentration and is time-consuming for pathologists. In this
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context, an automatic system can help by filtering out the healthy regions of

the images and indicating possible (otherwise potentially overlooked) cancer

regions. During the last few decades, many automatic systems based on

machine learning techniques [Gurcan et al., 2009; Bejnordi et al., 2017; Litjens

et al., 2017; Hu et al., 2018; Komura and Ishikawa, 2018; Bera et al., 2019;

Srinidhi et al., 2020; Zhou et al., 2020; Li et al., 2021a] have been put forward

for cancer detection. Some of them are reviewed in the previous chapter

(Section 3.1). Among them, methods based on deep learning have recently

become the most popular because of their impressive performance levels

in vision tasks. These methods however are mainly focused on end-to-end

pipeline developments for cancer detection, while the success of such systems

depends on several hyper-parameters [Hinz et al., 2018; Bacanin et al., 2020].

We hypothesized that one of the important hyper-parameters is the class

distribution of the training set, as the training set provides the supervision

for all learning-based systems [Cracknell and Reading, 2014; Crawford, 2016;

Deisenroth et al., 2020; Sarker, 2021]. Moreover, several studies have focused

on class distribution analysis, in particular, the comparison between balanced

and imbalanced distributions for different tasks, which illustrates its impor-

tance [Weiss and Provost, 2003; Batista et al., 2004; Prati et al., 2015; Buda

et al., 2018; Thabtah et al., 2020]. Nonetheless, the results of different studies

are inconsistent, depending on the tasks, data sets and the machine learning

techniques employed [Prati et al., 2015]. This inconsistency casts doubt on

their generalization for WSI data in the context of cancer detection, which is

our topic of interest.

Generally, in machine learning, an imbalanced data distribution has been

shown to lead to inferior models compared to a balanced distribution [Chawla

et al., 2002; Khan et al., 2017], and hence, a lot of efforts have been put in to

develop methods that overcome data imbalance by making the data artificially

balanced. Some studies [Buda et al., 2018; Thabtah et al., 2020] have reviewed

the popular methods, such as oversampling, undersampling, thresholding,

cost sensitive learning, one-class classification, and various hybrids. These

studies may indeed lay the path for balanced distribution to become the

default choice as a deep learning state-of-the-art method [Bejnordi et al.,

2017; Liu et al., 2017; Halicek et al., 2019], although Prati et al. [2015], for

example, have shown that it is not optimal in all cases. Unfortunately, very

few analytical studies on the performance impact of different distributions

exist in the literature [Weiss and Provost, 2001, 2003; Prati et al., 2015; Thabtah
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et al., 2020]. Moreover, the available studies have been mainly conducted

on toy data sets, even though real data sets may be very different and more

complex. There is no evidence from the conclusions of these studies that they

would be appropriate for cancer WSIs thus.

Furthermore, the outcomes of available studies are contradictory: some

support an imbalanced distribution [Weiss and Provost, 2001, 2003; Thabtah

et al., 2020] while others support a balanced distribution [Prati et al., 2015]. For

this reason, it is not straightforward to decide on a specific class distribution

for all types of tasks. Consequently, being a special kind of image type,

domain-specific studies are required to answer the research questions: Is the

most adopted balanced distribution optimal for the WSI data for the cancer

detection task? If not, which class the training set should be biased toward?

State-of-the-art methods for cancer detection [Bejnordi et al., 2017; Liu

et al., 2017; Halicek et al., 2019] utilize different types of distribution (usu-

ally balanced) and obtain very convincing results for a large-scale breast

cancer data set using different models. In particular, the existing systems

achieve very high sensitivity/recall [Wang et al., 2016a; Liu et al., 2017], while

false-positives remain an ongoing issue [Pham et al., 2019]. However, to our

knowledge, no analysis indicates if the commonly-adopted balanced distri-

bution is the most appropriate distribution for cancer detection in WSIs nor

which class should be over-represented. Moreover, it is also worth knowing

which distribution produces fewer false-positives with high sensitivity and

why. It would help in choosing training examples and their ratios for building

robust training data sets.

In this chapter, we present an analysis that determines the performance

impact of different class distributions on training data. In our analysis, at first,

we answer to the research questions about balanced distribution through a

preliminary study. Based on the outcome of that study, we derive several

hypotheses concerning WSIs used for cancer detection and test them with

two commonly used target applications: image segmentation and image clas-

sification. We choose a FCNN and a CNN architecture to test the hypotheses

using segmentation and classification settings, respectively (see Section 3.2.2).

We employ two data sets for training, MLNTO -which is a multi-class data set

(see Section 2.4.1) and is applicable to the segmentation setting- and PCam

-which is a binary-class data set (see Section 2.4.2) and is applicable to the

classification setting. We conduct a series of experiments and analyze the

results in detail to be able to provide comprehensive conclusions.
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While the main focus of this chapter concerns training class distribution,

we also discuss the case of test data distribution. We use the test set of

CAMELYON16 data set (see Section 2.4.2) along with the other data sets.

The rest of the chapter is structured as follows. We first review the

literature on the class imbalance problem and class distribution analysis in

Section 4.2. In Section 4.3, we describe the patch categories in WSIs that we

utilize in our analysis. We present a preliminary study on class distribution

analysis in Section 4.4, while a deeper analysis is presented and discussed

in Section 4.5 which addresses the limitations of the preliminary study. In

Section 4.6 we draw our conclusions and discuss future directions.

4.2 Related work

The natural imbalanced distribution of data is generally considered as a prob-

lem/obstacle in machine learning. For example, Crawford [2016] identified

an unfair AI in predictive policing due to data imbalance. Researchers put a

lot of effort into balancing data. In contrast, comparative analytical studies

of different distributions are few in number. In this section we investigate

several studies related to class imbalance problems and class distribution

analysis.

4.2.1 Studies on class imbalance problems

One of the common problems in machine learning is dealing with class-biased

or imbalanced data. In the real world, the availability of some classes makes

them an over-represented majority, while the scarcity of other classes makes

them an under-represented minority. This imbalance usually makes the

classification task challenging for a classifier. There are many studies [Kubat

et al., 1997; Chawla et al., 2002, 2003; Sun et al., 2007; Masko and Hensman,

2015; Levi and Hassner, 2015; Wang et al., 2016b; Khan et al., 2017; Jaccard

et al., 2017; Buda et al., 2018; Yuan et al., 2018; Afzal et al., 2019; Wu et al., 2020;

Zhang et al., 2020; Abou Elassad et al., 2020] showing that imbalanced training

data leads to a loss in performance, so various methods have to be adopted to

make the training data balanced. Prati et al. [2015] and Thabtah et al. [2020]

listed some of the most popular methods. Most studies were conducted on

classical machine learning methods, and only a few discuss the deep learning

perspective [Buda et al., 2018; Johnson and Khoshgoftaar, 2019]. Among the
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studies referring to this perspective, some suggested data-level modifications

(e.g., oversampling of the minority class, undersampling of the majority

class) [Levi and Hassner, 2015; Jaccard et al., 2017; Afzal et al., 2019; Hamad

et al., 2020; Zhang et al., 2020], some preferred tweaking different hyper-

parameters of the network or making algorithm-level modifications (e.g.

thresholding, cost sensitive learning) [Wang et al., 2016b; Khan et al., 2017;

Baloch et al., 2019], while others suggested combining data and algorithm-

level modifications [Chawla et al., 2003; Havaei et al., 2017; Rendón et al., 2020].

Buda et al. [2018] performed a comparative study of different methods to

address the class-biased problem. According to the authors, imbalanced data

had an adversarial effect on the classification accuracy of the CNNs, similarly

to classical machine learning techniques. The most recommended solution

was to oversample the minority class [Masko and Hensman, 2015; Buda et al.,

2018]. Johnson and Khoshgoftaar [2019] conducted another detailed survey

on recent techniques used to deal with the imbalanced data problem in deep

learning. They concluded that not enough evidence existed to suggest that a

particular technique was superior in dealing with class imbalance through

the use of deep learning.

4.2.2 Studies on class distribution analysis

All the articles from the previous subsection described the adversarial effects

of imbalanced data, and suggested methods for making the class distribution

of the training data balanced. However, these methods did not provide the

answer to the important question of whether the balanced distribution is

optimal for all types of learning techniques and data sets. To answer this

question, comparative study on different class distributions of training data is

required. Such studies are few in number [Thabtah et al., 2020]. Among the

available comparative studies, Weiss and Provost [2001, 2003] showed that

neither a naturally occurring class distribution nor a balanced distribution

was the best for learning, and often a substantially better performance could

be obtained by using a different class distribution. For their analysis they

employed 26 data sets from the University of California Irvine (UCI) repository

[Dheeru and Karra Taniskidou, 2017]. According to the analysis by Prati et al.

[2015] on 20 data sets from UCI [Frank and Asuncion, 2010] and a small

number of private data sets, the best distribution for seven different learning

algorithms, including neural networks, was a balanced distribution. They
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concluded that only SVMs were less affected by class imbalance. However,

the study was carried out on toy data sets, and hence there is no evidence that

the commonly prescribed balanced distribution is a generalizable solution for

more complex real data sets. Consequently, a separate analysis is required for

each special kind of data. This conclusion is clearly connected to the No Free

Lunch Theorem [Wolpert, 1996], which states that there is no single model

that works best for every task. For example, Zhu et al. [2016] conducted an

elaborate domain specific study to optimize the training data distribution

for land cover data in a bid to detect change. According to the authors, a

class distribution proportional to the naturally occurring distribution was

superior to a balanced distribution for land cover data when using random

forests as the learning algorithm. Thabtah et al. [2020] did an analysis of

class distribution on the autism spectrum disorder (ASD) diagnosis problem

with the probabilistic Naive Bayes as the base classifier. Using five data

sets from the UCI repository, they showed that for the majority of data sets,

the evaluation metrics are at their minimum values when the data sets are

balanced (50%:50%). The highest evaluation metric values are derived when

the data set is imbalanced, specifically, 10%:90% or 90%:10%. To our knowledge,

there is no such comparative study for cancer detection in WSIs except ours

one presented in [Reshma et al., 2021]. In our study, we discussed the impact

of non-ROIs and natural distribution where the conclusion was in favor of

non-ROIs biased data set (see Section 4.5.3.1.1).

4.3 WSI patch categories

The main material of this analysis is WSI (see Section 2.1). Due to typical

memory limitations, rather than using the whole images as training examples,

it is common practice to use patches extracted from WSIs. The patch extrac-

tion process is described in our methodological framework (see Section 3.2.1).

For our analysis, the extracted patches need to be placed in different cate-

gories to create different distributions in training sets. We consider different

categories of patches based on the annotation of the WSIs in the data set.

This section describes how we categorize the patches in different categories,

both for multi-class and binary-class data sets.

For a multi-class WSI data set, MLNTO (presented in Section 2.4.1), we

consider four categories of patches as defined in Table 4.1. Patches that contain

more than 99.999% class O pixels are labeled as the other (O) category. The
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Table 4.1: Definition of Patch Categories

.

Data
set
type

Patch cate-
gory

Definition Label
type

Comment

M
u
lti-class

Other (O) Containing > 99.999%
O pixels

Single-
label

Non-ROI/non-
lymph node as the
negative non-ROI
class

Cancer (C) Containing > 0.001% C

pixels and no ¬C pixels.
Single-
label

Metastasis as the
positive ROI class

Non-cancer

(¬C)
Containing > 0.001%
¬C pixels and no C pix-
els.

Single-
label

Lymph node with-
out metastasis as
the negative ROI
class

Mixed

(C&¬C)
Containing > 0.001% C

pixels and > 0.001% ¬C
pixels.

Multi-
label

Belongs to both C

and ¬C class at the
same time

B
in
ary

class

Cancer (C) Containing C pixels at a
particular center region
of the patch.

Single-
label

Metastasis as the
positive class

Non-cancer

(¬C)
Containing ¬C or O pix-
els and noC pixels at the
central region.

Single-
label

Lymph node or
non-lymph node
(unlike multi-class
data set case)
without metastasis
as the negative
class

remaining patches belong to the other categories: cancer (C), non-cancer (¬C),

or mixed (C&¬C) with an optional presence of class O pixels (< 99.999%).

The category C&¬C is multi-labeled (since it contains two ROI classes at the

same time), and the others are single-labeled. We use the same notations for

both patch categories and pixel classes.

When considering the MLNTO data set and 384 square-sized overlap-

ping patch extraction described in pre-processing step of our methodological

framework (Section 3.2.1), a total of 127,898 patches were extracted from the

training set. They were indeed pairs, the patch from WSI and its correspond-
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ing annotated mask from the ground truth. On average, about 3,761 patches

were extracted from each training WSI.

Table 4.2: The number of patches belonging to each category in the MLNTO
training set when WSIs are downsampled by a factor of 8 and the stride is

l/2 (i.e., 192).

patch category #patches

Background/other (O) 90, 374

Metastasis/cancer (C) 15, 328

Lymph node/non-cancer (¬C) 17, 274

Mixed (C&¬C) 4, 922

The number of patches in each category is given in Table 4.2 where we can

see that the categoryO (other) patches are much higher than other categories.

For the binary classWSI data set, PCam, the patches are already categorized

by its creator. For the CAMELYON16 data set, we follow the same approach of

categorization as for PCam: the patches containing C pixels at a pre-defined

center regions are labeled as C, otherwise as ¬C category. The numbers

of patches from binary data sets are given in the corresponding data set

description (see Section 2.4.2).

We use the categories described above to design several experiments with

the aim of answering the research questions (Section 4.4) and testing various

hypotheses concerning the class distribution of the training set (Section 4.5).

4.4 Preliminary studies

We design and conduct several experiments with different distributions, in-

cluding balanced, natural, C-biased, and ¬C-biased distributions and perform

a data-driven comparative study. All the experiments are design based on the

MLNTO data set and segmentation task. Moreover, our preliminary study

shows the impact of different evaluation patch dimensions.

Our design techniques of balanced and class-biased training are described

in the following section.
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4.4.1 Class distributions for training sets

To analyze the impact of class-biased (both naturally and artificially obtained)

and balanced (artificially obtained) training on the cancer detection task with

the MLNTO data set, we design several experiments. In a given experiment,

we first select the patches categories presented in Table 4.2 as defined in the

corresponding experiments and then use the patches for training.

In the baseline experiment (All), we use all the extracted patches from

the training set (Table 4.2), its class distribution thus is "natural" and class

O-biased. The second experiment (C&¬C) focuses on patches from the

category that mixes C and ¬C, while some class O pixels can also be present

in the corresponding patches. The class distribution of the second experiment

could be considered as a "balanced" distribution since here all the training

examples contain all three classes. In the next experiment (C,C&¬C), we

increased the number of examples from the class C, thus creating class "C-

biased" training set artificially. We hypothesize that the model resulting from

this training will produce higher recall for class C, and at the same time,

over-representation of this class will produce more false-positive, i.e., lower

precision for the C class. Reversely, it prevents the false-positive generation

of the class ¬C thus provides higher precision for the class ¬C. The next

experiment (¬C,C&¬C) is the twin case of the previous one, where now we

select patches from categories ¬C thus creating class "¬C-biased" training

set artificially. We hypothesize that the model will produce twin results

compared to the previous model. Finally, experiment (C,¬C,C&¬C) aims at

studying another "balanced" case, where all the patches that contain class C

and ¬C are included. The description of the experiments are as follows and

summarized in Table 4.3:

• (All): it includes all possible patches, and the distribution of the training

set is natural since we did not modify the original data distribution

here.

• (C&¬C): this experiment is donewith patches from theC&¬C category.

The three classes are balanced in terms of pixels however, the number

of training examples is small (4,922), we thus named it balanced_S.

• (C,C&¬C): patches are from theC andC&¬C categories. Themajority

of the pixels are class C. By excluding the ¬C category, here, we limit

the presence of class ¬C and the training set is C-biased.
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• (¬C,C&¬C): patches are from the ¬C and C&¬C categories. This is

the twin case of (C,C&¬C) for class ¬C: the training set is ¬C-biased.

• (C,¬C,C&¬C): all the patches from the categories C, ¬C, and C&¬C

are used. Here, the class C and ¬C pixels are almost balanced (see

Figure 2.9 (i) and Table 4.2). Class O pixels however are downsampled

in comparison to the experiment (All) to make all three class pixels

almost balanced. Note that this experiment differs from the experiment

(All) by the absence of patches belonging to category O. Considering

the large number of training examples, we named it balanced_L.

Table 4.3: Experiments with the corresponding class distribution and size of
the training set (the numbers of 3rd column are from Table 4.2)

Experiment Class distribution Size of the training set
(O + C + ¬C + C&¬C)

(C&¬C) Balanced_S 0 + 0 + 0 + 4, 922

(C, C&¬C) C-biased 0 + 15, 328 + 0 + 4, 922

(¬C, C&¬C) ¬C-biased 0 + 0 + 17, 274 + 4, 922

(C, ¬C, C&¬C) balanced_L 0 + 15, 328 + 17, 274 + 4, 922

All Natural 90, 374 + 15, 328 + 17, 274 + 4, 922

4.4.2 Findings and discussion

Pathologists are interested in high recall in class C (they do not want to

miss any cancer) and high precision in class ¬C (they want to filter out only

the non-cancer regions but do not want to filter out an image that contains

cancer by mistake). For this reason, we evaluated our model for both the

classes C and ¬C separately. The results we reported were computed on our

first method of patch-based evaluation approaches and then averaged over

the 27 test WSIs of the MLNTO data set. The evaluation patch dimension is

500× 500 pixels as an in-between dimension of pixel-based to the full image.

4.4.2.1 Balanced distribution is not generalizable to WSI data

In Figure 4.1, we report the results for both class C (top row) and class ¬C

(bottom row). The x-axis of the figure reports different distributions presented
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Figure 4.1: C(resp. ¬C)-biased training produced the highest recall
(resp. precision) for class C. Model performance for class C (top row) and
¬C (bottom row) when using different combinations of the patch categories
as a training set, i.e., different distributions of the classes in the training set.
Here, the x-axis presents class distributions used in different experiments
(see Table 4.3) and the y-axis presents the performance of those experiments
based on precision, recall, and F-measure. The experiments are arranged

according to the ascending order of the recall on class C.

in Table 4.3, and the y-axis is either precision, recall, or F-measure. The height

of the bar thus represents the performance of the corresponding experiment

with a particular class distribution. Experiments are ordered according to the

ascending order of recall on class C. From Figure 4.1, we can see that recall
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is higher than precision for both classes, which implies that in this domain,

most of the errors come from false-positives rather than false-negatives.

Is the most adopted balanced distribution optimal for the WSI data for the

cancer detection task?

Unlike it has been reported in [Prati et al., 2015] for 20 different data sets from

UCI machine learning repository [Frank and Asuncion, 2010], Statlog [Michie

et al., 1995], and some private data sets, here, balanced distribution (Figure 4.1:

black and gray bars), i.e., experiments (C,¬C,C&¬C) and (C&¬C) does not

produce the best result; thus balanced distribution is not optimal for the WSI

data for the cancer detection task.

If not, which class the training set should be biased toward?

The natural distribution (biased to classO), is the best distribution (Figure 4.1:

purple); it produces reasonable recall and precision for both classes C and ¬C

at the same time. Since, our main objective is to help pathologists in all cancer

locations detection with the less false-positives generation as possible, the

distribution producing the best results on cancer class C is the most desirable.

For class C, the best precision is for ¬C-biased training set (Figure 4.1:

top row, green), i.e., the distribution produces the least false-positives, while

the best recall is for C-biased training set (Figure 4.1: top row, orange), i.e.,

the distribution produces the least false-negatives. While considering both

recall and precision at the same time, i.e., F-measure, however, ¬C-biased

distribution is the best distribution, and C-biased distribution is the worst

distribution for class C. According to this result, we can hypothesize that

some ¬C regions look like class C regions, i.e., there are some inter-class

similar regions. That could be the reason why the absence of enough ¬C

examples compared to class C examples in the training set (i.e., experiment

(C,C&¬C)) causes false-positive for class C during the test.

When considering the class ¬C, this is the other way around: the best

precision is for C-biased training set (Figure 4.1: bottom row, orange), while

the best recall is for ¬C-biased training set (Figure 4.1: bottom row, green).

While considering both recall and precision at the same time, i.e., F-measure,

however, C-biased distribution is the best distribution for class ¬C.

In a nutshell, for cancer class C, C(resp. ¬C)-biased training makes recall

(resp. precision) higher. For non-cancer class ¬C, the result is the opposite.

The balanced training causes an average result for both classes and the natural

distribution, i.e., training with the original distribution of the training set

leads to the best trade-off in recall and precision for both classes at the same



86 Chapter 4. Analyzing Class Distributions in WSI

time. The class O is predicted well whatever the experiment is. Detailed

results are presented in Table 4.4.

Table 4.4: Average results computed from the results of 27 test WSIs
for the different experiments. Here, R, P, F means the recall, precision,

and F-measure, respectively.

Experiment Distribution Class C Class ¬C Class O Comment

(All) Natural

R: .88 R: .96 R: 1.0

Best trade-offP: .61 P: .53 P: .93

F: .68 F: .65 F: .96

(C,C&¬C) C-biased

R: .943 R: .89 R: 1.0

Best R for CP: .47 P: .68 P: .94

F: .58 F: .74 F: .97

(¬C,C&¬C) ¬C-biased

R: .72 R: .98 R: 1.0

Best P and F for CP: .78 P: .36 P: .93

F: .71 F: .51 F: .96

(C&¬C) Balanced_S

R: .939 R: .96 R: 1.0

Average for CP: .49 P: .41 P: .95

F: .59 F: .55 F: .97

(C,¬C,C&¬C) Balanced_L

R: .89 R: .97 R: 1.0

Average for CP: .52 P: .44 P: .93

F: .61 F: .57 F: .96

In Figure 4.2, we present some example predictions from four cases, includ-

ing easy, hard, full ¬C, and full C by the models trained with four differently

distributed data. The remarks on each distribution are given on the right

side of the same row on the figure. According to these examples, again the

experiment with natural distribution gives the best result because of its high-

est number of examples from all three classes. The experiment with the

balanced_S distribution gives the worst result because of its lowest number

of examples from all three classes. On the other hand, the C-biased and

¬C-biased experiments cause miss-classification of the class O pixels due to

the downsampling of the class O pixels from the training set. From these

example predictions, it is clear that all the experiments can correctly locate

cancer (although not all pixels are identified and it is not important if all the
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Figure 4.2: Natural distribution maintains the best trade-off in
predicting class C and ¬C. Predictions considering four examples (Easy,
Hard, Full ¬C (healthy), and Full C (cancer)). Remarks on each distribution

are given on the right side of the same row.
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cancer locations are correctly identified) however, produce a lot of FP at the

same time. The FP reduction is thus the major challenge in this task.

For cancer class C, an interesting result is found from the experiment

with the smallest training set, i.e., from the experiment with the balanced_S

distribution (see Table 4.3). In Figure 4.1 top row, while comparing the gray

and orange bars, both bars are comparable. Especially the recall are almost the

same for both experiments, and they are the best. Since the smallest training

set provides one of the best recall, while it is not the case for precision, it can

be claimed that getting a high recall is cheaper than getting high precision.

In other words, reducing false-positives is more difficult than reducing the

false-negatives.

4.4.2.2 Impact of the evaluation patch size

Figure 4.3: Performance of the model at different evaluation patch

dimension. The result is presented for two experiments, the experiment
with natural (left) and C-biased (right) distributions.

We alsomeasure the impact of different dimensions of the evaluation patch

(Figure 4.3). We considered experiments with natural (Figure 4.3: left) and C-

biased (Figure 4.3: right) distributions. At the lowest level of dimension (1× 1

pixel), this is the pixel level, which means that the model should determine for
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each pixel if the pixel is class C, ¬C or O. At the highest level of dimension,

this is the image level (full image), and the model should decide whether or

not the entire WSI contains class C. For a pathologist, the most interesting

level is in-between. That is why, we decided to consider several dimensions

of patches as follows: 1 × 1, 10 × 10, 50 × 50, 100 × 100, 500 × 500, and

1000×1000 pixels. We did not consider the full-image case since the MLNTO

data set has only one WSI without class C, and three WSIs without class

¬C. There is thus very limited scope to produce FP -which cases very high

precision- for both classes in the full-image level of evaluation.

For the experiment with natural distribution (Figure 4.3: left), we can see

that for both C and ¬C classes, recall increases when the patch dimension

increases, while at the same time the precision decreases.

For the experiment with C-biased distribution, (Figure 4.3: right), we can

see that the results for bothC and¬C classes are very similar. The same trend

as in the experiment with the natural distribution can be observed (increase

of recall and decrease of precision when the patch dimension increases).

In summary, at the low dimension of the evaluation patch, the perfor-

mance is average in terms of both recall and precision, while at the higher

dimensions of the evaluation patch, the performance gets higher in terms

of recall and lower in terms of precision. Both cases of dimension do not

help end-users to get a proper view of model performances. The in-between

dimension is thus preferable, which is also consistent with pathologists’

preference.

4.4.3 Limitations

Although this analysis gives a preliminary flavor of the behavior of the model

towards the different distribution of classes in the training set, it demands

deeper analysis. Specifically, here, the numbers of training examples were not

the same for all experiments; we tested the class distribution for a fixed set

of network parameters; the evaluation was done on single threshold-based

metrics only. The next section (Section 4.5) reports further analysis that

solves the above-mentioned issues.



90 Chapter 4. Analyzing Class Distributions in WSI

4.5 Analyzing class distributions: hypothesis-

driven approach

From our preliminary experiments, we found that the balanced set does

not provide the best performance, and FP reduction is the major challenge

in cancer detection from WSIs. The results encouraged us to draw certain

hypotheses and investigate the results at length. These hypotheses led to

the design of a new generic framework that can be applied to any new task

to provide an optimal choice of class distribution in the training set for a

machine learning model.

4.5.1 Methodological framework

Figure 4.4 illustrates the methodological framework for this analytical study.

There are two major steps in this framework: 1) identifying the research

questions/hypotheses and 2) testing those hypotheses. For each hypothesis,

to answer the general question of what the optimal class distribution of the

training set should be, we created d training sets of d different distributions

with n patches in each set. We then trained d models with the created training

sets. The models were tested and evaluated on the same unseen test set. We

repeated the process 10 times for each hypothesis and calculated the mean to

be able to make the final decision.

The details about hypotheses are described in Section 4.5.1.1 and the

pipeline to test those hypotheses is presented in Section 4.5.1.2.

4.5.1.1 Hypotheses and relevant class distributions

Wemake several hypotheses and design several experiments with the relevant

class distributions to be able to test the proposed hypotheses.

While testing one hypothesis, the total number of patches in the training

set (n) of each experiment is kept the same to ensure fair comparison. The

experiments within a group of experiments differ from one another according

to the patch categories that make up the training set, and according to their

ratio, i.e. the distribution of the classes in the training set. The hypotheses

are presented below.

H1: Natural distribution is not optimal for training
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Figure 4.4: Our methodological framework. To answer the general question
of what the optimal class distribution of the training set should be, we

created d training sets of d different distributions with n patches in each set.
We then trained d models with the created training sets. The models were
tested and evaluated on the same unseen test set. We repeated the process 10
times for each hypothesis and calculated the mean to be able to make the

final decision.

Table 4.5: Experiment settings E1: E1 settings are designed to test H1
(natural distribution is not optimal) with a total of 9 units (U) of patches in

the training set of each experiment.

Experiment ID Distribution Patch ratio
(O : C : ¬C)

E1.a Balanced 3 : 3 : 3

E1.b Over-represented O (natural) 7 : 1 : 1

The WSI data are naturally biased towards the non-ROI class, O. Class O

is not a region of interest for pathologists. It is a common practice to filter
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out the excessive examples of class O and make a balanced training set out

of the remaining classes.

We hypothesize that the trained model with over-represented class O (i.e.

natural distribution) will be effective at detecting the regions that are not

of interest (non-ROIs) to pathologists, since it will be trained using a large

number of different non-ROI cases. However, we also hypothesize that this

distribution will be less effective for the less frequently occurring ROI cases,

although these cases are much more interesting for pathologists.

To test H1, we designed two experiments: E1.a and E1.b (i.e., d = 2). In

E1.a, we consider the same number of patches in each of the three classes,

whereas in E1.b the training examples are highly biased (7 times) towards

classO similar to the natural distribution (see Table 4.5). We hereby introduce

U to denote a unit, a fixed amount of patches. The size of U is determined

by the expected patch ratio and the total number of extracted patches in the

smallest patch category for a particular data set so that we can consider both

the under and over-representation of that smallest category. We consider

only single-label patch categories. For example, let us suppose that C is the

smallest category with size N (total number of extracted patches) and one of

the expected patch ratios for C and ¬C is 3 : 1, then U = N/3. To test H1, a

total of 9U of patches is used to create a natural, balanced distribution (i.e.

n = 9U).

This hypothesis can be tested on the multi-class data set only. Since class

O is not annotated separately in binary class data sets, it is not possible to

accurately separate classO from class ¬C, especially if histological structures

are available in O regions.

H2: Over-representing the ¬C class in the training set reduces false-

positives during cancer detection.

We observed that inWSIs the regions for class¬C aremore heterogeneous

than the regions for class C. Indeed, class ¬C regions may contain germinal

centers, macrophage, blood vessels or artifacts (e.g. blur areas), etc. (see

Figure 4.5). Some of these are visually similar to class C regions. To ensure

the coverage of different variations and to reduce any confusion with class

C regions, the over-representation of class ¬C could be useful. Thus, over-

representing class ¬C compared to class C should reduce the false-positive

rate for class C.

To test this hypothesis, we designed three experiments (i.e. d = 3), as

presented in Table 4.6. In E2.a, we consider the balanced case between C and
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Figure 4.5: Samples of heterogeneous patches of class ¬C (lymph node): (i)
usual lymphocytes in lymph nodes, (ii) sinusal macrophages in lymph nodes,
(iii) germinal center, (iv) blood vessel, (v) fibrosis with lymphocyte, and (vi)
artifact (blur area). Here, (ii) and (iii) have some common visual features

with class C; on the other hand, (iv), (v) and (vi) are non-specific structures
which might also appear in the other two classes, C and O.

Table 4.6: Experiment settings E2: E2 settings are designed to test H2 (i.e.
¬C-biased training produces less false-positives) with single-label patches.

There is a total of 4U patches in the training set of each experiment.

Experiment ID Distribution Patch ratio
(C : ¬C)

E2.a Balanced 2 : 2

E2.b Over-represented ¬C 1 : 3

E2.c Over-represented C 3 : 1

¬C, while E2.b (resp. E2.c) over-represents ¬C (resp. C). In the literature, the

ratio of under-representation to over-representation is around 1:3 [Bejnordi

et al., 2017; Liu et al., 2019], so we follow the same ratio in our experimental

design. The total number of patches in the experiments used to test hypothesis

H2 is lower than that of H1, mainly because of the expected ratio (1:3) and
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the total number of extracted patches for the less frequently occurring ROI

classes (C and ¬C). Thus, the results of experiments E1 and E2 are not fully

comparable.

The hypothesis H2 can be tested on both multi-class and binary-class data

sets. For the multi-class data set, we do not consider patches from categoryO

–there are manyO pixels in ROI patches– to be able to focus on the ROI cases,

similarly to the common trends in the literature of filtering out non-ROIs.

H3: Multi-label examples aremore useful than single-label examples

as training data.

This hypothesis states that the patches containing both ROI classes C

and ¬C (i.e. category C&¬C) add more valuable information during training

than the patches containing a single ROI class (i.e. categories C or ¬C).

Indeed, by having both classes of pixels at the same time, multi-label patches

include boundary information for the two classes, and hence there is more

contextual information that could be helpful during training, especially for

segmentation models, which can localize multiple classes within the same

patch. In other words, we consider having multiple ROI classes in the same

patch as advantageous.

Table 4.7: Experiment settings E3: E3 settings are designed to re-test H2
when multi-label patches are used and to test H3 (i.e. multi-label patches are

more useful than single-label patches).

Experiment ID Distribution Patch ratio
(C : ¬C : C&¬C)

E3.a Balanced 1.5 : 1.5 : 1

E3.b Over-represented ¬C 0 : 3 : 1

E3.c Over-represented C 3 : 0 : 1

To test this hypothesis, we designed a trio of experiments analogous to E2

(which are designed with single-label patches). To construct class-biased dis-

tributions, we replaced the under-represented class examples (category C or

¬C) in E2.b and E2.c with examples of multi-label patches (category C&¬C).

At the same time, to re-evaluate H2 in the current case, we designed the cor-

responding E2.a experiment as well. The detailed design of the experiments is

given in Table 4.7. First, in E3.a, we considered a balanced case betweenC and

¬C. Then, similarly to E2, in E3.b and E3.c we considered over-represented
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¬C and over-represented C cases. The total number of patches in E3.* is

the same as in E2.*, namely 4U. Hence, the result of an E2.* experiment is

comparable with the result of the corresponding E3.* experiment, where *

can be replaced by a, b or c.

In short, we re-tested H2 with the current E3 experiment setting and

tested H3 by comparing the corresponding pairs (E3.*, E2.*).

H4: Non-ROI data are useful for training.

Training CNNs requires very large data sets; sometimes data augmenta-

tion is applied to make a data set artificially larger [Walach and Wolf, 2016].

Although data augmentation is useful in increasing the generalization power

of CNN models, it can cause overfitting in the case of small data sets [Shorten

and Khoshgoftaar, 2019]. Obtaining a non-artificially augmented large data

set of WSIs is generally expensive, since annotating ROI data requires do-

main experts. However, in our particular case, annotating non-ROIs is less

expensive. Furthermore, inside the ROIs there are some common non-ROI re-

gions. Non-ROI examples are required to learn how to classify these common

non-ROIs inside the ROIs. By considering all these reasons, we hypothesize

that non-ROI data could be useful for training a CNN, especially when the

annotated ROI data set is small.

To test this hypothesis, we designed a trio of experiments analogous to

E3. Specifically, we replaced some examples of class C and ¬C from E3.* with

class O examples (see Table 4.8) to simulate the shortage of ROI data. We

kept the balanced, ¬C-biased and C-biased distribution in the corresponding

experiment for ROI classes. This represents another setting for testing H2

in which, along with class ¬C, we consider another negative class (non-ROI

class, O). We are thus revisiting H2 as over-representing negative classes (both

¬C and O) compared to the positive class (C) reduces the false-positives.

Table 4.8: Experiment settings E4: E4 settings are designed to re-test H2
where non-ROI patches are used, and to test H4 (i.e. non-ROI data are useful).

Experiment ID Distribution Patch ratio
(O : C : ¬C : C&¬C)

E4.a Balanced 1 : 1 : 1 : 1

E4.b Over-represented ¬C 1 : 0 : 2 : 1

E4.c Over-represented C 1 : 2 : 0 : 1
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We designed three experiments denoted as E4.*, as shown in Table 4.8,

analogous to the E3.* experiments. Similarly to the E3 experiment settings,

E4 serves two purposes. The first purpose is to test H4 by comparing E4

with E3; the second is to re-test H2 with the current E4 settings. Here, we

designed E4.a by replacing the same number of patches for categories C

and ¬C with patches for category O from E3.a, thereby adding some extra

non-ROI information while keeping the balance between ROI classes. We

designed the following two experiments, E4.b and E4.c, as the corresponding

pair for E3.b and E3.c by replacing 1U patches from the over-represented ROI

class with patches of category O. As we kept the total number of training

examples 4U, the E4.* experiments are comparable with the previous E2.* and

E3.* experiments.

In summary, the E1 experiment settings test H1 on the impact of a natural,

balanced distribution, while the E2, E3, and E4 experiment settings test H2

on the impact of balanced, class-biased distributions in three different cases.

Moreover, the comparison between E2 and E3 tests the H3 on the impact of

multi-label patches. On the other hand, the comparison between E3 and E4

tests H4 on the usability of non-ROI patches.

Note that H2 is the only hypothesis that can be tested on both multi-class

and binary-class data sets: the other three are based on multi-class data sets

only.

4.5.1.2 Pipeline for testing the hypotheses

After formulating the hypotheses, the next step is to test the hypotheses

(Figure 4.4). The pipeline for testing a hypothesis consist of 4 steps, including

pre-processing, training, inference, and evaluation. All these steps are the

ones in our general processing framework described in Section 3.2.1. Here,

we reformulate the steps, specifically the tanning, inference, and evaluation

with mathematical instances for both the segmentation and classification

formats.

Training. At the training step, we generate different class distributions

as described in Section 4.5.1.1. Let Td = {(Ik, gk) : 1 ≤ k ≤ n} be a training

set of size n for a particular distribution, where Ik ∈ R
l×l×3 is a patch of

dimension l × l with its corresponding ground-truth gk. Here, gk ∈ R
l×l×C

for the segmentation task and gk ∈ R
C for the classification task, and C is

the number of classes in the ground-truth annotation (not to be confused
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with the cancer class C). The training is a process of finding a classifier

function Md : Rl×l×3 → R
l×l×C (for segmentation) or Md : Rl×l×3 → R

C

(for classification) by minimizing a loss function L (gk, Md(Θ, Ik)), where Θ

is the set of parameters of the classifier.

Inference. During inference, the trained model is employed to predict

either pixels (in the segmentation task) or patches (in the classification task)

for unseen test WSIs. Let Wi be the ith WSI from the test set, and Iij the jth

patch in Wi. The trained model (Md) predicts the probability (ĝij ∈ R
l×l×C

or RC) of each class for each pixel in Iij for segmentation, or for the whole

patch for classification. In the case of segmentation, the predicted probability

of the central region of a patch is taken into account during evaluation, i.e.,

the predicted probability sij ∈ R
r×r×C is considered, where r × r is the

dimension of the central region and sij is the centre crop of ĝij .

Evaluation. During the evaluation, we consider class C as the positive

class and the other class(es) as the negative class for both the binary and

multi-class data sets. Moreover, only the evaluation result for class C is pre-

sented, hence focusing on cancer detection. We also consider the patch-based

evaluation for both the segmentation and classification tasks (see Section 3.3).

We convert the pixel-based predicted probabilities of the segmentation task

to a patch-based probability since we require the predicted probability of

class C (sCij ∈ R) for each patch rather than for each pixel, which we obtain

by taking the class-wise max over sij ∈ R
r×r×C . The predicted probabilities

(sCij) are computed for all the patches from the test set.

Since one random fold is not enough to validate a hypothesis, we perform

10 trials (runs) for each experiment. The final result for an experiment is

given by the mean computed over the 10 runs. We also compute the standard

deviation to reflect how accurately the mean represents the 10 runs [Lee et al.,

2015]. For our 11 experiments presented in Tables 4.5, 4.6, 4.7 and 4.8, we

therefore have a total of 11× 10 = 110 runs to test all the hypotheses for a

particular hyper-parameter setting in relation to a particular data set.

4.5.2 Experimental setup

4.5.2.1 Data sets and pre-processing

The descriptions of data sets are given in Section 2.4. In this section, we

mentioned the task-specific settings and pre-processing for the considered
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data sets.

Data set for segmentation task. For the segmentation task, we utilized

the MLNTO data set (see Section 2.4.1). In the pre-processing step of our

methodological framework, a total of 127,898 overlapping patches of size

384×384 pixels were extracted from the training set (for detail, see Table 4.2).

According to the number of extracted patches, the value of U in the different

experiment settings presented in Table 4.5 to 4.8 for MLNTO is 5,000. By

applying the same extraction process of training patches to the test set, we

obtain 101,262 patches, of which 17,351 belong to class C.

Data set for classification task. We used the PCam data set (see Sec-

tion 2.4.2) for the classification task. Since the ground-truth annotations of

the PCam are class labels instead of class masks, we can only use it for the

classification task. Besides, since PCam is a binary-class data set, we are only

able to test H2 on this data set. To create an imbalanced distribution of a

1:3 ratio in the training set, we set U = 43, 690. Note that, we created an

artificially imbalanced distribution for the training set only: the validation

and test sets are still balanced. As an example of imbalanced test set, we

utilized the test set of CAMELYON16 (see Section 2.4.2).

4.5.2.2 Hyper-parameter settings

For the network architectures and other hyper-parameter settings of this

analysis, we refer to Section 3.2.2. Along with the settings presented in that

section for the segmentation task, we ran the same experiments for one more

learning rate (10−4) and different random seeds; results were consistent across

the various configurations.

4.5.2.3 Evaluation measures

In our hypotheses, we emphasize false-positives (FPs), and consider the pre-

cision and the false-positive rate (FPR) as representative metrics. Along with

the FPs, measuring the false-negatives (FNs) is also important. We consider

recall (also known as sensitivity or TPR) as a metric which is responsive to

FNs.

Rather than measuring these values separately, we preferred to resort

to curve-based metrics that show the trade-off between two measures, i.e.,

considered multi-threshold-based metrics. Specifically, we considered ROC

and PR curves. Note that, in these cases the predicted probability threshold
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is automatically set to obtain a certain value of, let us say, recall. This means

that in a ROC or PR space, a particular point is computed for different models

at different thresholds of predicted probability. Thus, a fair comparison

has to be prevented to enable hypothesis testing. To resolve this challenge,

we computed precision and FPR for a constant list of predefined predicted

probability thresholds for all the models, and presented them as precision

and FPR curves. The constant list of thresholds includes 101 points from 0.0

to 1.0 by maintaining a regular stride. Moreover, we used the Area Under

Curve (AUC) to compare curves overall.

To calculate the mean curve of the 10 runs, we normalized the predicted

probabilities for each run by applying min-max normalization, then computed

the curve-based metrics for each run. To calculate the mean ROC and PR

curves, we selected 1,001 points from both the ROC and PR spaces for each

run by using linear interpolation. We then calculated the mean over 10 runs.

We considered 1,001 points, as we have a huge number of data points (i.e. test

patches) ranging from 32k to 10.5M, depending on the data set.

For FPR and precision curves, no interpolation is required to compute

mean curves since the predicted probability threshold is constant for all runs.

Although we emphasized the multi-threshold-based metrics, we also com-

puted the result on single threshold-based metrics. We, however, presented

only the statistical test on the precision in that case since the conclusion of the

results based on these metrics was consistent with the multi-threshold-based

ones.

4.5.3 Results and discussion

In this section we present the results which allow us to decide whether a

hypothesis is true or false. First, we experiment on the multi-class data set (i.e.

MLNTO) while taking the segmentation task into account. Later, we discuss

the results for the binary class data sets while taking the classification task

into account. In both cases, we make a decision about a hypothesis based on

the numeric results before discussing the reasons for the validity or invalidity

of a hypothesis.
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Figure 4.6: Natural distribution (E1.b) is better than balanced
distribution (E1.a) (¬H1). Mean curves for (i) the ROC curve, (ii) the PR
curve, and (iii) the precision and FPR curves. Sub-figures are obtained for 10

runs for balanced distribution (E1.a, lines in green) and for natural
over-representation of O distribution (E1.b, lines in blue). The standard

deviation is represented by green/blue colored shading. MLNTO data have
been used.

4.5.3.1 Results for segmentation task

4.5.3.1.1 Natural imbalanced distribution is better (¬H1)

If we consider the experiment settings E1 as summarized in Table 4.5, we can

observe that the results do not confirm hypothesis H1 and we can conclude

that the naturally imbalanced distribution for class O (E1.b) is better than the

artificial balanced distribution (E1.a) for WSIs in the segmentation setting.

Figure 4.6 shows the main results for H1. While considering the trade-

off between two metrics, in Figure 4.6(i), which represents the ROC curve,

we can observe that E1.b has a higher true-positive rate (TPR) than E1.a at

almost every false-positive rate (FPR) point. Models trained under the natural

distribution give higher recall while also producing fewer false-positives (FPs)

than models trained under the balanced distribution.

According to the precision-recall (PR) curve presented in Figure 4.6(ii),

the precision of E1.b is also higher at almost every recall point than that of

E1.a. Even at the recall point 1.0, the precision of E1.b is better than that

of the random chance baseline, while the precision of E1.a is as low as the

random chance.

With regard to the precision and FPR curves in Figure 4.6(iii), the conclu-

sion in favor of E1.b also holds: E1.b has higher precision and a lower FPR
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Figure 4.7: Some examples of confusion between other (O) and cancer

(C) classes showing inter-class similar regions with common histological
structures. On the first row, (i), (ii) and (iii) are patches of category C with
fluid, blood and fibrosis with lymphocytes, respectively, which are taken
from the training set. On the second row, (iv), (v) and (vi) are patches of
category O from the test set with the same histological structures. During

training, if there are not enough examples of class O containing the
aforementioned structures compared to C, the common histological
structures in the test patches are predicted as C (false-positive).

than E1.a for all predefined thresholds.

We also applied statistical tests. When precision is calculated using the

default argmax decision of the model, precision is about 7% higher in E1.b

than E1.a, and the difference is statistically significant according to the t-test

(p-value < 0.002).

We further investigated why the distribution helps the models, if it is

imbalanced towards O, by manually looking at the predicted masks of the

models. Pathologists confirmed that the miss-classification by E1.a (the bal-

anced distribution) is certainly due to inter-class similar regions: the regions

containing common histological structures, e.g. blood, fibrous tissue, etc.

These histological structures are common in both ROI (C and ¬C) and non-

ROI (O) regions (see Figure 4.7). When an ROI contains such a histological
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structure in a small area, the human annotator overlooks the small area,

annotating it as a corresponding ROI (C or ¬C), although the annotation is

actually wrong. During training, we therefore need enough examples of these

inter-class similar regions (i.e. the over-representation of class O) with their

actual annotation to compensate for the unavoidable pitfalls arising from the

annotation, or else false-positives may be caused during prediction.

4.5.3.1.2 Over-representing ¬C class reduces false-positives (H2)

For testing hypothesis H2, “over-representing ¬C class reduces false-positives",

we first used the E2 settings, where every example belongs to a single-label

category (see Table 4.6).

Figure 4.8: Over-representation of negative classes ¬C reduces
false-positives (hypothesis H2). Mean curves with standard deviation for
experiment settings E2.a (for balanced distribution in the training set, green),
E2.b (for over-represented ¬C, blue) and E2.c (for over-represented C, red).
Experiments test H2 in the case of E2, and every example belongs to a

single-label category. Same notations as in Figure 4.6.

Figure 4.8 presents the main comparative results among the experiments,

E2.a (for balanced distribution), E2.b (for over-represented ¬C) and E2.c

(for over-represented C) for H2. In Figure 4.8, we can first observe that the

balanced distribution (E2.a) is not as robust as the other distributions (high

standard deviation in green). We suspect that the random selection of the

under-represented class C in the training set could not cover all the cancer

types, thereby inducing more uncertainty in the results and causing this

deviation (we further discuss this in Section 4.5.3.1.3).

Nonetheless, if we consider the mean results (curves) over 10 runs, we can
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see that the balanced distribution (green curve) is at its lowest for the ROC

curve (see Figure 4.8(i)). The results are closer for the over-representation of

C (red curve) and ¬C (blue curve).

The same holds for precision-recall (PR) curves (Figure 4.8(ii)): while

the balanced distribution is the lowest on average and has a high standard

deviation, the two other settings are close to each other and more robust,

with a very small superiority in favor of the over-representation of C.

While the previous two curves (ROC and PR) are computed for automatic

non-fixed thresholds and present the trade-off between two metrics, the

precision and FPR curves are computed for predefined constant thresholds for

all models and present threshold by threshold fair comparison (Figure 4.8(iii)).

When looking at the curves on Figure 4.8(iii), we can see that the precision is

the highest and the false-positive rate (FPR) the lowest in the case of the over-

representation of ¬C (blue curve). We can also examine the area between

the curve and the x-axis (i.e., AUC) to compare the curves. The AUC for

the over-representation of ¬C (E2.b) in terms of precision is 0.77 compared

to 0.67 and 0.68 for the over-representation of C (E2.c) and balanced (E2.a)

distribution. Moreover, according to the t-test on the precision calculated

from the default argmax decision of the models, we found that the precision

of E2.b is statistically significantly higher than E2.a and E2.c with p-values

< 0.0274 and 0.0013. These results show that our hypothesis is true: the

over-representation of the negative class ¬C reduces the false-positives, and

the balanced distribution may be less robust than the others we tested.

We took a closer look at the data in order to gain a better insight into the

numeric results. While examining several heatmap images for the balanced

distribution (E2.a) and for the over-represented C distribution (E2.c), and

comparing them to the ground-truth image, we observed that the errors are

caused by the inter-class similar regions between classes C and ¬C along

with the case of common histological structures we described earlier.

The inter-class similar regions are the regions which share common visual

characteristics between class C and class ¬C. Specifically, there are some ¬C

regions containing a germinal center, macrophages and a blur area (a kind

of artifact) (see Figures 4.5 and 4.9) that have some visual characteristics in

common with class C regions.

In Figure 4.9, we illustrate an example of inter-class similarity and intra-

class difference. In Figure 4.9 (i), the regions inside the blue contours are

visually different from the usual ¬C region (i.e. the region outside of the
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(i) Three full non-cancer (¬C) patches.

(ii) First two patches are cancer (C) patches with 100% class C pixels, while the last
one is a mixed (C&¬C) patch (cancer inside the red contour and non-cancer outside).

Figure 4.9: Examples of intra-class difference in ¬C and inter-class
similar regions between cancer C and non-cancer ¬C classes. (i) The
regions inside the blue contours are examples of the intra-class different
regions for the non-cancer ¬C class, which are visually different from the
usual non-cancer ¬C region (i.e. the region outside the blue contour); these
regions are visually more similar to the cancer C regions in (ii) than the

non-cancer ¬C regions, and are thus examples of inter-class similar regions
between cancer C and non-cancer ¬C classes.

blue contour); hence, they are the intra-class difference regions of ¬C. These

¬C regions (inside blue contours) are visually more similar to the C regions

in Figure 4.9 (ii) than the usual ¬C regions (outside the blue contours) and

hence they are examples of inter-class similar regions between C and ¬C

classes. For instance, both are lighter in color than the other parts of the

lymph node, the nuclei in both regions are farther from each other than the

usual parts of the lymph node, and the nuclei in both regions are larger than

the usual size of a nucleus. Hence, during training, if there are not enough

examples of ¬C containing these specific inter-class similar regions compared

to class C examples, class C will dominate. As a result, it is more likely that
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Figure 4.10: Illustrative example E3.b is the best. Heatmaps of class C
for the WSI given in Figure 2.3 (one of the WSIs with the most

false-positives) from the test set of MLNTO. Here, (i) is the ground-truth, (ii)
is the heatmap generated by the E3.a, (iii) by E3.b, and (iv) by E3.c.

these regions will be predicted as C in any of the test WSIs, although many of

them will be false-positives. Indeed, in practice, the number of these specific

regions in the lymph node are few compared to the whole lymph node. Thus,

it is better to choose a class-biased distribution toward ¬C so that enough

examples containing the aforementioned specific regions are used during

training. The result of experiments E2 in Figure 4.8 indicates this conclusion

empirically. We further test the H2 in two other settings, E3 and E4, in the

following subsections, along with two other hypotheses H3 and H4.

Figure 4.10 shows some examples of heatmaps of class C generated by

the experiments E3.a, E3.b and E3.c for a WSI. From Figure 4.10, we can see

that the prediction by E3.b is better than the two other predictions regarding

the number of false-positives in the prediction.
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4.5.3.1.3 Multi-label examples give extra advantages over single-label

examples (H3)

Figure 4.11: Multi-label examples give extra advantages over
single-label examples (H3 hypothesis). Mean curves with standard

deviation using E3 settings (Table 4.7) where there are multi-label examples:
E3.a (for balanced distribution in the training set, green), E3.b (for

over-represented ¬C, blue) and E3.c (for over-represented C, red) and using
the same notations as in Figure 4.8.

Unlike in the E2 settings, where every example belongs to a single-label

category, in the E3 settings presented in Table 4.7, some of the examples

belonging to a single-label category are replaced by multi-label examples

(i.e. some pixels are C and some are ¬C in the same patch example). E3

setting serves two purposes; one is to test H3 (multi-label examples are more

useful than single-label examples) by comparing with the experiment setting

E2, and another is to revisit hypothesis H2 in a different setting. Figure 4.11

presents the mean curves and the standard deviation of 10 runs for E3.

By comparing single-label (Figure 4.8) with multi-label (Figure 4.11), we

can see that the results in Figure 4.11 have improved when considering both

the curves and AUC values. The ROC curves in Figure 4.11(i) are more stable

(i.e. have less deviation) and have higher AUC than those in Figure 4.8(i)

except for E3.c (C-biased). Same improvements are observed in the precision-

recall (PR) curves, precision curves, and FPR curves.

According to the t-test on the precision calculated from argmax decision,

we found that the precision of E3.a and E3.b are significantly higher (p-value<

0.002 and 0.0002) than those of E2.a and E2.b, respectively, while the precision

of E3.c is significantly lower (p-value < 0.04) than that of E2.c. The findings
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are consistent in all evaluation metrics. Hence, the H3 is true for E3.a and

E3.b while not for E3.c.

We investigate the reason for having lower result for E3.c than for E2.c.

According to our observation, the reason is the ratio of positive and negative

classes in the training set of E3.c. Including the patch category C&¬C in E3.c

changes the ratio of classes (negative:positive) from 1:3 (see Table 4.6) to 1:4

(see Table 4.7), i.e., it decreases the presence of negative class since C&¬C

category contains classC (positive class) pixels along with class ¬C (negative

class) pixels. Consequently, increasing the over-representation of the positive

class decreases the result of E3.c. Thus, according to our general hypothesis

H2, having a lower result in E3.c than E2.c is expected. At the same time, the

better result of E3.a and E3.b than the corresponding E2.* empirically proves

that H3 is true.

The multi-label patch category C&¬C gives two advantages. 1) It gives

an opportunity to the FCNN models to learn about two classes from the same

patches thus gives a chance to learn boundary line between those classes.

2) In the case of micro-metastasis, it is not always possible to extract single-

label patches for category C thus there is a chance of missing examples from

a cancer type or WSI. It is, however, always possible to extract patches of

category C&¬C from both micro and macro metastases; thus it reduces the

chance of missing any cancer type and example from a WSI which reduces

the uncertainty and produces a less deviated result.

We re-tested the H2 in the current setting E3 by comparing the results of

E3.a, E3.b, and E3.c as described in the following paragraphs.

While considering the trade-off between FPR and TPR in ROC curves

(see Figure 4.11 (i)), the results are comparable for all experiments (all ROC

AUCs are 96), i.e., the ROC curve is insensitive to the different distributions

in training set for this case.

According to the PR curves, and depending on the trade-off under con-

sideration, the settings have a different impact. For high precision, the over-

represented ¬C (in blue) is both robust (low standard deviation) and has

a higher impact than the other settings. From these results, it is also clear

that along with the distribution of the training set, the cutoff or threshold

selection is also important if we are to obtain a desirable performance from

the system.

The differences are much greater when we consider precision and false-

positive rates (FPR) curves (Figure 4.11 (iii)). If we take a closer look at the



108 Chapter 4. Analyzing Class Distributions in WSI

blue curves on the right side of Figure 4.11, the over-representation of ¬C

(E3.b) has the highest precision (AUC 0.87 ±0.04) and the lowest FPR (AUC

0.03±0.01), while the balanced distribution reaches an AUC of 0.75 ± 0.04

for precision and 0.07 ±0.02 for FPR. These results are consistent with the

results from Figure 4.8(iii) in terms of the interest of over-representing ¬C,

i.e., hypothesis H2.

Additionally, we performed statistical tests for precision when it was cal-

culated using the default argmax function. We found that precision is higher

(statistically significant) for E3.b (for the over-represented ¬C distribution)

than for both E3.a (for balanced distribution) and E3.c (for over-represented

C distribution). In other words, H2 is true in setting E3 as well.

4.5.3.1.4 Non-ROI data are useful (H4)

Figure 4.12: Non-ROI data are useful (H4 hypothesis). Mean curves with
standard deviation using E4 settings (Table 4.8) where O examples replace
some C examples and some ¬C examples: E4.a (for balanced distribution in
the training set, green), E4.b (for over-represented ¬C, blue) and E4.c (for
over-represented C, red) and using the same notation as in previous figures.

If we compare the result of E4.* (with non-ROI patches (Figure 4.12) with

the result of E3.* (without non-ROI patches) (Figure 4.11), we can see that the

results for E4.* are slightly better than, or comparable to the corresponding

result for E3.*.

ROC curves in Figure 4.12(i) are very similar to each other and also very

similar to the curves obtained in E3 (AUC=0.96) (Figure 4.11(i)). Precision-

recall (PR) curves in Figure 4.12(ii) have similar shapes and are ordered the

same way as in E3 (Figure 4.11(ii)). AUC values are also quite similar to each
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other when compared to E3.

According to Figure 4.12(iii), the results for E4 have slightly improved

compared to E3 (AUC increases slightly for precision and decreases slightly

for the false-positive rate (FPR)) in Figure 4.11(iii). The standard deviation

for the 10 runs also slightly decreases, except for the balanced distribution,

which still has the highest standard deviation, regardless of the measure

being considered. By using the t-test on precision with the default argmax

decision on predicted probabilities, we found that the higher precision for

E4.b compared to E3.b is not statistically different (p-value 0.22), while it is

for the E*.c case (p-value 0.0034).

Nonetheless, the better results for E4.* compared to E3.* indicate that

a considerable number of errors come from inter-class similar regions or

common histological structure between ROIs and non-ROIs. However, miss-

classification due to common histological structure (e.g. blood) between

ROIs and non-ROIs is easy to identify, even with the naked eye, while miss-

classification due to inter-class similarity between the ROI classes, C and ¬C,

is more difficult to identify. This explains why the experiment setting for

E3.b is more appropriate than the setting for E4.b. Nevertheless, as H4 is a

true hypothesis, inexpensive to annotate non-ROI examples will be useful for

CNN training. Therefore, if there is a shortage of expensive to annotate ROI

examples while training a CNN, this can be compensated by adding relatively

easy-to-annotate non-ROI examples. This result is also consistent with our

results from hypothesis H1.

We also re-test H2 in the E4 setting, and the findings are consistent with

the E3 case. In other words, H2 is true in the E4 setting as well.

4.5.3.2 Results for the classification task

In this section, we further discuss the results of hypothesis H2 (¬C-bias pro-

duces fewer false-positives) for the binary class data sets PCam and CAME-

LYON16 for the classification task. Here, all the models were trained on the

PCam data set. The trained models were then tested on both PCam (balanced)

and CAMELYON16 (highly imbalanced) test sets.
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Figure 4.13: Over-representing the negative class ¬C reduces
false-positives - on PCam. Mean curves with standard deviation (std.
dev.) of experiments for balanced distribution (E2.a), for over-represented

¬C (E2.b), and for over-represented C) (E2.c) on PCam.
.

4.5.3.2.1 Balanced test set: over-representing the negative class re-

duces false-positives (H2)

According to the ROC and PR curves in Figure 4.13 (i) and (ii), all the distribu-

tions produce comparable results (also observed when zooming in). However,

we can see that E2.b has a higher level of performance than the other two

experiments at low thresholds.

According to the precision and FPR curves in Figure 4.13 (iii), E2.b has

the highest level of performance, although for the threshold of predicted

probability greater than 0.8, the results are comparable. According to the

evaluation based on the argmax decision on the model, the precision of E2.b

is higher than that of E2.c (p-value < 0.019) and not statistically different

from E2.a.

In other words, for the classification task with balanced test and validation

sets, the ¬C-biased distribution produced fewer FPs than the other two

distributions, which is consistent with previous results, and confirms the H2

hypothesis. However, this is not always significantly true for this classification

task with balanced test and validation sets. We must assume that the balanced

distribution of the validation set, which is used for parameter tuning during

training, might be the reason.
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4.5.3.2.2 Imbalanced test set: over-representing the negative class

reduces false-positives (H2)

Figure 4.14: Over-representing the negative class ¬C reduces
false-positives - on CAMELYON16. Mean curves with standard deviation

(std. dev.) of experiments E2.a (for balanced distribution), E2.b (for
over-represented ¬C) and E2.c (for over-represented C) using the same keys
as in the other figures. In all the experiments, the models were trained on

PCam and tested on CAMELYON16.

Figure 4.14 illustrates the test results for H2 on CAMELYON16, whereas

the models were trained on PCam (a subset of CAMELYON16). According to

this figure, the results on CAMELYON16 are consistent with the results on

PCam, i.e. H2 is true, although not always significantly true for both balanced

and imbalanced test sets, while the validation set has a balanced distribution.

Figure 4.14 (i) shows that the ROC curves are insensitive to the different

distributions in the training set. It may be because of the highly optimistic

nature of ROC curves with regard to a highly imbalanced test set [Davis and

Goadrich, 2006].

On the other hand, in Figure 4.14(ii), it is clear that the PR curves are

also insensitive to the different distributions in the training set for a highly

imbalanced test set, except for a certain range of recall where we can observe

some slight differences in favor of the balanced distribution for the recall

range between 0.75 and 0.85, along with a high standard deviation.

On the contrary, in Figure 4.14(iii), the precision of E2.b is higher than the

two others for predicted probability threshold less than 0.7. Moreover, E2.b

has the lowest FPR. These results are consistent with the results we obtained

for the PCam test set. According to the t-test on the precision calculated
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from the default argmax decision of the models, the finding is consistent

with the PCam case as well. Specifically, we found that the precision of E2.b

is not significantly higher (p-value ≈ 0.37) than that of E2.a, i.e., both are

comparable, while it is significantly higher (p-value < 0.04) than that of E2.c.

In short, for the classification task with the mentioned setting, H2 is true,

however, not always with a significant difference.

Note that the CAMELYON16 test set is highly imbalanced towards class

¬C (see Figure 2.10(ii)). Thus, there is a strong likelihood of producing

FPs, which is what the models do. Hence, the AUC of the precision curve

in Figure 4.14(iii) is lower than the other two data set cases presented in

Figures 4.8(iii), 4.11(iii), 4.12(iii), and 4.13(iii). However, the high performance

levels of the models in terms of the ROC, PR and FPR curves shown in

Figure 4.14 indicate that they fail to reflect our observation, while the precision

curve succeeds. Consequently, the precision curve is more robust than the

ROC, PR and FPR curves in comparing the performances of the different

models.

We also observed the predictions of different experiments for the CAME-

LYON16 test set, and we found that, like the MLNTO data set, the false-

positives are the major problem caused by inter-class similarity and intra-

class difference. Figure 4.15 shows some examples of heatmaps predicted by

different experiments. According to this figure, the E2.b (for over-represented

¬C) produces fewer false-positives than the other two experiments, which

confirms that H2 is true.

4.6 Conclusion

In this chapter, we performed a data-level analysis to determine the optimal

distribution of the classes in the training set for WSIs when using deep

learning. According to our preliminary study, we found that the default

choice - the balanced distribution- is not optimal for cancer detection from

WSIs. Rather class-biased distributions perform better, and FP is the major

cause of error in this task. Based on these findings, we derived several

hypotheses and performed a deeper analysis. In this analysis, we considered

the case of FCNN for segmentation and CNN for patch classification.

To the best of our knowledge, our analysis is pioneering in the case of

class distribution analysis of WSI data for deep learning models; previous

research has mainly focused on end-to-end pipeline development for cancer
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Figure 4.15: Illustrative examples for ¬C-biased training (E2.b)
produces the smallest number of FPs (H2). Example heatmaps of class
C generated by the experiments E2.a (for balanced distribution), E2.b (for
over-represented ¬C) and E2.c (for over-represented C) for WSIs with

macro-metastasis, micro-metastasis and normal tissue from the
CAMELYON16 test set. Here, in the WSIs, the regions inside the green

contours are ground-truth annotations for class C.
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detection.

We first compared the natural distribution (biased towards non-ROI pix-

els/patches) with the more commonly used balanced distribution (H1, experi-

mental setting E1). We found that the natural distribution of the WSI data is

superior to the artificially balanced distribution. In natural distribution, the

data is highly biased towards the non-ROIs, while the distribution of the two

ROI classes is variable, depending on the WSIs which have been included in

the data set. Since non-ROI examples are usually much easier to annotate,

and annotation of ROI is costly in domains where only experts can provide

the labels, this result is of huge importance.

We then focused on the distribution of ROI classes. The ROI class distribu-

tion can be balanced, as in the MLNTO training set, or highly imbalanced, as

in the CAMELYON16 test set. Since the natural distribution of the ROI classes

in a WSI data set is variable, choosing an optimal distribution for the ROI

class while building a training set is an issue. In H2, and with experimental

setting E2, we show that the generally recommended balanced distribution is

not the best. Instead, the non-cancer-biased training set produces the best

performance, bearing in mind precision and the number of false-positives.

In the literature, multi-label patches are considered problematic [Halicek

et al., 2019]. According to the test result of hypothesis H3, we found that multi-

label patches give extra advantages over single-label patches. Thus, when

building a training data set, they can be of huge importance. In other words,

it is better to have multi-label patches than additional positive examples.

We carried out an in-depth analysis of the results from the first hypothesis

that non-ROIs can still be of use. They are indeed useful as a replacement of

ROI data in a case where the ROI data are limited or small. Moreover, they

are easier to annotate than cancer/non-cancer (i.e., ROI data). This finding is

very important because non-ROIs could be the choice for obtaining a large

enough data set at a low cost for training a deep model.

In addition to observing the results of deep learning models, we also had

a close look at the data to be able to form medically-oriented conclusions.

While manually observing the predicted mask, we learned the importance

of class heterogeneity and inter-class similarity. When building a new data

set of histological images, more examples should be added from a heteroge-

neous class, which can compensate for the confusion caused by inter-class

similarities.

When it comes to the two different tasks, segmentation and classification,
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we found that classification task is less sensitive to the different distributions

in the training set than the segmentation task.

While we mainly focused on the training set distribution and, to a lesser

extent, on the test set distribution for which we obtained consistent results,

we did not study the distribution of the validation set. This set can also

have an impact, since it is used for tuning the models during training. For

example, for the classification task and when analyzing the impact of the

test set distribution, we kept the original (balanced) distribution of the PCam

validation set. The balanced distribution of the validation set may have an

impact on the relative insensitivity of the test distribution with regards to

the classification task. We aim to address this challenge in future work.

In summary, our study is representative, although not exhaustive. The

conclusions could be further tested in other domains and some other machine

learning algorithms to test the generalizability of the proposed hypotheses.

Although here we considered the class ratio as 1:3 to create class-biased data

distribution as recommended in [Bejnordi et al., 2017; Liu et al., 2019], other

class ratios could also be explored to find the optimal class ratio. Nevertheless,

we believe that the outcomes of the analysis will be helpful for researchers

who are building a training data set of WSIs. Similar kind of analyses on

any domain could serve for deciding which examples should be first added

in the training set when they are costly to add, and which class distribution

should be followed while utilizing existing training sets in CNN training.

Especially, such analyses could help in the real-world problems where data

have a complex history, as discussed by Crawford [Crawford, 2016] regarding

the importance of building a training set with the proper distribution.

This contribution on the preliminary study has been published in [Reshma

et al., 2019]. A part of the contribution on deeper analysis has been published

in [Reshma et al., 2021], and the full contribution has been submitted to the

Journal of Digital Imaging (JDI).





Chapter 5

PR-T Evaluation Metric for

Binary Classification

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.1 State-of-the-art metrics . . . . . . . . . . . . . . . . . 122

5.2.2 Mean curve computation for ROC and PR . . . . . . 126

5.3 Limitations of ROC and PR curves . . . . . . . . . . . . . . . 127

5.3.1 Not always possible to retrieve threshold information 128

5.3.2 Can be optimistic or pessimistic . . . . . . . . . . . . 128

5.3.3 Artificial inflation or deflation . . . . . . . . . . . . . 128

5.3.4 Performance inseparability of models . . . . . . . . . 129

5.4 A new multi-threshold-based evaluation metric . . . . . . . 131

5.4.1 The PR-T curves . . . . . . . . . . . . . . . . . . . . 131

5.4.2 Area under the PR-T curve . . . . . . . . . . . . . . . 132

5.4.3 Solution of Pareto front for PR-T curves . . . . . . . 132

5.4.4 PR-T properties and experimental design overview . 134

5.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 135

5.5.1 Imbalanced training set - En and Ep . . . . . . . . . 135

5.5.2 Multi-trial models . . . . . . . . . . . . . . . . . . . . 136

5.5.3 Data Sets and pre-processing . . . . . . . . . . . . . 136

5.5.4 Hyper-parameter settings . . . . . . . . . . . . . . . 137

5.6 Pre-assessing the models with predicted score statistics . . . 138

5.7 Result and discussion . . . . . . . . . . . . . . . . . . . . . . 140

5.7.1 PR-T curves appropriately distinguish predictive models140

5.7.2 PR-T mean curves . . . . . . . . . . . . . . . . . . . 142

5.7.3 PR-T curves are more informative than the PR curve 143

5.8 Re-evaluation of representative results from the previous con-

tribution with PR-T curves . . . . . . . . . . . . . . . . . . . 145



118 Chapter 5. PR-T Evaluation Metric for Binary Classification

5.9 Proposed methods for non-linear interpolation and mean PR

curve computation . . . . . . . . . . . . . . . . . . . . . . . . 147

5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Binary classification efficiency is usually evaluated with the Receiver

Operating Characteristics (ROC) curve, which considers the trade-off

between the incorrectly predicted negative example rate and correctly

predicted positive example rate. The ROC curve is too optimistic in

the case of imbalanced class distribution of the examples, which is

common in real-life use cases. The Precision-Recall (PR) curve does

not have this drawback. Computing the mean PR curve, however,

is not straightforward since it requires non-linear interpolation or

approximation and has to address start, end, intermediate points

with tied values cases. There is no precise method that correctly

computes the mean PR curve by handling all these special cases. In

this chapter, we show that the PR curve can also be inefficient because

of presenting precision as a function of equally spaced recall and using

interpolation. We present the precision and recall as functions of

continuous threshold thus develop precision and recall (PR-T) curves

as an alternative to existing measures. It is a multi-threshold-based

evaluation metric. We show that it is more informative than the

existing measures and not over-optimistic to the imbalanced data

sets. Moreover, it does not require interpolation and does not need

to address any special cases with the tied values. It can be applied to

any binary classification problem, either with balanced or imbalanced

data sets. Additionally, we propose a method to compute the mean PR

curve correctly to ensure a fair comparison with mean PR-T curves.

Abstract.

5.1 Introduction

Binary classification aims at classifying data examples into two classes. It

has many applications, such as determining whether a person suffers from a

disease or whether a connection to a system is a fraud. The usual practice is
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to consider the class of interest, for example the disease class, as the positive

class and the other class as the negative one. In automatic binary classification,

a model is trained from positive and negative examples based on their features

and the target class. The trained model can then predict a confidence score

(also known as classification score or predicted score) for each of the classes for

any new example based on its features. The confidence score is the probability

for the example to belong to a class. A decision boundary or threshold is

used to determine the predicted class from the predicted score. When the

predicted score for an example is greater or equal to a given threshold, it is a

predicted positive.

The performance of a classification model is evaluated on a data set -the

test set- with different metrics. The Receiver Operating Characteristics (ROC)

curve is one of the most popular evaluation metrics for binary classification

problem [Fawcett, 2006; Saito and Rehmsmeier, 2015]. It is also validated

by our survey in Section 2.5 which shows that it is the third most popular

metrics among 24 metrics, including both single and multi-threshold-based,

and the most popular among the multi-threshold-based metrics. The ROC

curve graphically represents the trade-off between the false-positive rate

(FPR) and the true-positive rate (TPR) for different thresholds. It has many

advantages [Cook and Ramadas, 2020] including a visual representation of

TPR and FPR for all possible thresholds, easy computation of the curve,

the applicability of linear interpolation [Davis and Goadrich, 2006]. Along

with the curve, the area under the ROC curve (ROC-AUC) is also popularly

used to have a summarized evaluation of the model without the graphical

representation [Boyd et al., 2012].

However, the ROC curve is not recommended for an imbalanced test set

where the negative class usually outnumbers the positive class. Because the

model has many negative examples to learn from, it may predict well the

negative examples but poorly the positive ones. In that case, TPR will be

high for a very small change in FPR considering the ratio of correctly and

incorrectly predicted examples. In other words, the easy to predict negative

examples will influence getting high curve values. Consequently, the ROC

curve (and ROC-AUC) will be inflated: the ROC is then overly optimistic to

the model [Fu et al., 2017; Saito and Rehmsmeier, 2017; Sofaer et al., 2019;

Cook and Ramadas, 2020] and will not be able to distinguish appropriately

two models that differ in their performance on the minority class.

Unlike the ROC curve, the Precision-Recall (PR) curve, which represents
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the trade-off between TPR and the proportion of True-Positive (TP) to the

total predicted positive examples, is less sensitive to the over-representation

of negative data [Sofaer et al., 2019] because by definition it excludes True-

Negative (TN) examples from the computation. It is thus a popular alternative

metrics to the ROC curve [Brodersen et al., 2010; Keilwagen et al., 2014;

Ozenne et al., 2015; Fu et al., 2017; Sofaer et al., 2019]. Nevertheless, if the

number of positive examples is high enough thus get high TP, the PR curve

can be amplified by the easy to predict positive examples since it is easy to

obtain high precision (say 96 percent) in domains where the positive class is

over-represented (say 95 percent) [Prati et al., 2011]. Hence, PR does not fully

solve the problem of imbalanced class and distinction of model performances.

The first challenge in binary classification evaluation is thus to define

a measure that is not falsely inflated and cannot mislead about the actual

performance of the model due to data imbalance. More importantly, the

measure should also be able to separate models that differ from each other.

The second challenge regarding an evaluation metric is whether it allows

the model designer to analyze properly the model errors. Some applications

need to minimize False-Negative (FN) (e.g., medical diagnosis), while others

need to minimize False-Positive (FP) (e.g., fraud detection). For example, mis-

classification of a patient with a certain disease as a negative (i.e., FN) might

delay the treatment, which might cost a life. In contrast, misclassification

of a non-fraud as a fraud (i.e., FP) might be the reason for punishment to an

innocent. Hence, presenting the reflection of false predictions is beneficial to

measure the application-specific reliability of the classifier model. From ROC

and PR curves, especially from inflated ones, it is difficult to know the type

of false prediction the model produces the most.

PR curves also face the difficult problem of interpolation, which is however

important. When evaluating a model, it is common that different trials of the

model are run, e.g., with different parameter values or different train/test splits.

In these cases, the mean values for the PR curve cannot be computed directly

since not all trial-models have common recall (x-axis) values. Interpolation

is then required to compute the mean curve of several trial-models and

get the corresponding y-axis values for common predefined x-axis values

or to compute the intermediate points when two adjacent points on the

curve are distantly separated [Saito and Rehmsmeier, 2017]. While it is

straightforward for the ROC because FPR and TPR are linearly correlated, it

is not for the PR curve since precision does not monotonically change with
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recall. Therefore, it requires non-linear interpolation. Existing methods to

non-linearly interpolate a point on the PR space [Davis and Goadrich, 2006;

Boyd et al., 2013; Keilwagen et al., 2014] are not enough to compute the mean

PR curve (and PR-AUC) since the start, intermediate, and endpoints with the

tied recall (ties in x-axis values) need to be treated as well1.

With the aim to target the three challenges above-presented, we present in

this chapter a novel metric, named the PR-T curves, which present precision

and recall in two separate curves as functions of the threshold used on the

predicted scores. Both theoretically and experimentally, we show that PR-

T curves eliminate the limitations of ROC and PR curves. Moreover, by

considering the difficulty in mean curve computation of the PR curve, we

propose a new method of mean PR curve computation by handling all the

special cases.

We consider the imbalanced data sets and the related problem of appro-

priately distinguishing models. Later we test it on the balanced data set as

well. We also consider the mean of several models to illustrate the mean

computation process and corresponding effects. On the experimental part,

we use a real data set of cancer detection, the CAMELYON16 as an example

of a large imbalanced test set and the PCam as an example of the ready-made

training set and balanced test set, as well as a toy data set of natural images

(CIFAR10 [Krizhevsky et al., 2009]).

The rest of the chapter is organized as follows: Section 5.2 presents the

related work; Section 5.3 details the limitations of state-of-the-art metrics,

ROC and PR curves. In Section 5.4, we explain our proposed evaluation metric,

PR-T curves, along with its properties. We describe the experimental setup

to train our desire models in Section 5.5. Before assessing our trained models

with evaluation metrics, we present a pre-assessment of those models with

the predicted score statistics in Section 5.6. In Section 5.7, we present and

discuss comparative studies between our proposed metric and state-of-the-art

ones. In Section 5.8, we re-evaluate some representative results from our

previous contribution with our proposed PR-T curves. In Section 5.9, we

propose methods to compute the mean PR curve and PR-AUC. Finally, in

Section 5.10, we draw some conclusions.

1Note that it is not the ties in predicted scores that can be solved by randomized order.
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5.2 Related work

5.2.1 State-of-the-art metrics

Many papers analyzing, reviewing, and proposing different evaluationmetrics

are available in the literature. In this section, at first, we review the survey

papers, then papers on the ROC, alternative to ROC, PR, alternative to PR,

and extension on PR curves.

Prati et al. [2011] surveyed different graphical evaluationmetrics including

ROC, PR, and cost curves, and suggested when to use which metric. Accord-

ing to them, for example, the PR curve was suggested when the data is biased

to the negative class and the positive class is more interesting to detect; the

ROC curve is suggested if primary interest in the discriminability of the pre-

dictive model rather than the predicted score. Padilla et al. [2020] did another

survey on the evaluation metrics used in object detection and localization

task. According to them, the most popular metric in object detection domain

is Average Precision (AP). However, there are several methods (e.g., 11-point

interpolation, all-point interpolation) to compute AP, and different method

might give different AP. Therefore, comparing two models’ performances

with AP might be incorrect if the APs for both models are not computed

with the same method [Padilla et al., 2020]. To resolve the limitation, they

proposed a standard implementation of AP with the programming language

Python, which takes the bounding box description in two different formats

and can produce the result in different variations of the AP metric including

mean AP (mAP), AP@50, AP@75 and AP@50:5:95 using the 11-point or the

all-point interpolations. However, the implementation was specific to the

localization with the bounding box. Tharwat [2020] did a comprehensive

review on different evaluation metrics, including single-valued scalar met-

rics (e.g., accuracy, precision, sensitivity, specificity, F-measure, geometric

mean, Youden’s index) and multidimensional graphical metrics (ROC, PR, and

Detection Error Trade-off curves), used to evaluate binary and multi-class

classification models. In their review, they detailed overviews of different

metrics including the definitions, the relations among them, their way of

calculation, the robustness of each metric against imbalanced data (e.g., PR

curve is sensitive to the class imbalance and can be applicable to that kind of

data, while ROC is not), and explanations of different curves in a step-by-step

approach. They specifically detailed the methodology of computing ROC
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and PR curves comprehensively with the illustration of tied predicted score.

With the ties in predicted scores, both ROC and PR curves can be optimistic,

pessimistic, or expected.

According to the literature analysis done by Saito and Rehmsmeier [2015],

the most popular metric in bioinformatics for binary classification including

the classification on imbalance data is ROC. On ROC, Fawcett [2006] presented

a detail tutorial by describing its basics, computing methodology, and AUC.

McClish [1989] proposed a method to compute AUC at any portion of the

ROC curve -which is called partial AUC- and to compare two such areas.

According to them, most of the ROC curves from continuous or binormal2

data are indistinguishable; one curve might be superior over the other for

a particular range of FPR, while for the remaining range of FPR, it is not.

Consequently, the AUC might be the same and indistinguishable. In the

case of large test sets, however, the ROC curves of the two models can be

indistinguishable for all ranges of FPR. In that case, the idea of partial AUC

will not work. Apart form the McClish [1989]’s one, some other methods

were proposed to compute partial AUC [Jiang et al., 1996; Wu et al., 2008;

Bradley, 2014; Yang et al., 2019; Carrington et al., 2020]. The latest one was

proposed by Carrington et al. [2020]. They proposed a new concordant partial

AUC, which is the sum of the vertical and horizontal partial ROC-AUC, while

previous methods only considered vertical partial. By defining concordant

partial AUC, they also define partial c-statistics for ROC data. The c-statistic

for a classifier is the proportion of times when the classification score for

the actual positive is greater than the score for the actual negative, which

is actually the AUC, i.e., AUC = c-statistics. According to them, the AUC

has mathematical relationships to concordance/c-statistics, average TPR, and

average TNR, however, none of the state-of-the-art partial AUCs including

the McClish [1989]’s one, have the same three mathematical relationships that

the AUC has. By including both vertical and horizontal parts of c-statistics

into their concordant partial AUC, they maintained the same relationship

with the three elements an actual AUC has. Although they demonstrated

their concordant partial AUC worked on a small test set, which is biased

to negative class, there is no guarantee that it will work on a large test set.

Performance inseparability of multiple models on a large test set thus remains

unsolved.

2Binormal distributions are the joint distributions over two independent variables which
are normally distributed [Macskassy and Provost, 2004].
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Yu [2012] proposed an alternative metric maned ROC surface (ROCS) to

evaluate results on imbalance data, specifically for the data biased to negative

class. The ROCS combines the original ROC and one of the ROC variants

depicting FDR (False Discovery Rate)-TPR. It is a three-dimensional surface-

based metric that expresses the relationship among TPR, FPR, and the True

Discovery Rate (TDR)/1-FDR/precision. They also defined FDA-controlled

AUC (FCAUC) for a pre-determined FDA as the area under the traditional

ROC –which is actually a partial AUC defined by McClish [1989]- and Volume

Under the Surface (VUS) to summarize their ROCS. Authors showed that their

metric is efficient for gauging classifier performance on the class-skewed test

set, specifically biased to negative class. The metric values of two models,

however, can be inseparable when the test set is biased to positive class or

being large due to the same reason we explain for the PR curve. Moreover,

it is not straightforward to compare two models with this metric because of

being a three-dimensional surface-based one.

Saito and Rehmsmeier [2015] and Cook and Ramadas [2020] rather sug-

gested to use PR curve as an alternative to ROC. Considering the efficiency of

the PR curve in handling imbalance data, some studies utilized it in solving

different problems in different domains. For example, Fu et al. [2017] utilized

PR curve in model selection by coupling it with the sparse regularized variable

selection algorithm for handling imbalance data case. Sofaer et al. [2019]

discussed the efficiency of the PR curve over ROC curve in accessing the rare

species distribution models in biogeographical domain. According to them,

PR-curve is useful in that domain because PR-AUC does not increase with

the inclusion of many highly unsuitable locations within the study area, and

secondly, PR-AUC reflects the ability of a model to guide surveys for new

populations.

In contrast, some studies described the limitations of PR curve and pro-

posed an alternative evaluation metric to PR curve. Among them, Flach and

Kull [2015] suggested the Precision-Recall-Gain (PRG) curve by relating the

enclose area of PR curve to the expected F-measure on a harmonic scale.

According to them, the arithmetic mean that is used to compute the PR-AUC

in different methods is methodologically wrong and instead of it, they pro-

posed to use harmonic scale since the standard way to combine precision and

recall into a single performance measure is through the F-measure, which is a

harmonic mean of recall and precision. They assumed that the classifier pre-

dicting always positive as baseline, hence the minimum and maximum limit
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of recall and precision should be [π, 1], where π is the skewness -the ratio of

the number of the positive examples to the total number of examples- of the

test set. Assuming this, they re-scaled the precision and recall using min-max

normalization in harmonic scale thus compute precision- and recall-gain for

their PRG curve. However, a model can be worse than the baseline thus limit

should be [0, 1]. Oksuz et al. [2018] proposed a new metric specifically for

object detection and localization named Localization recall precision (LRP)

error which is composed of three elements related to localization, FPR, and

FNR. The metric considered the inability of the AP, the PR-AUC, to distin-

guish very different PR curves, and the lack of directly measuring bounding

box localization accuracy.

Some of the articles considered computing the PR-AUC and interpolating a

point on the PR curve were challenging because of the non-linear relationship

of the recall and precision; thus proposed a method to interpolate a point

on the PR-curve. Among them, Davis and Goadrich [2006] are the pioneer.

According to them, for a fixed data set, a point can be translated between

ROC and PR spaces and linear interpolation is appropriate for ROC curve.

Using this theory, they proposed a very first method to correctly interpolate

a point on the PR space. In their method, they non-linearly interpolated a

point on the PR space for discrete change in TP between two adjacent points

(say A and B) in PR space. They computed the local skew, skew = F PB−F PA

T PB−T PA
,

i.e. computed the number of false-positive to have one true-positive, where

(TPA, FPA) and (TPB, FPB) were the TP and FP pairs of the known points

A and B, respectively. They created the TPs of new points as TPA + x for all

discrete values of x such that 1 ≤ x ≤ (TPB − TPA). For all new TPs, they

interpolated the corresponding FPs (FPxs) by the Equation 5.1.

FPx = FPA + skew.x (5.1)

Form the interpolated TPs and FPs, they computed the corresponding recall

and precision on the PR curve. Once interpolation is done, they suggested

to use trapezoidal rule (Eq. 2.10) to compute the PR-AUC. In [Keilwagen

et al., 2014], authors reintroduced the method of interpolating a point on the

PR space non-linearly using the linearity in ROC space. Instead of discrete

change in TP, however, they applied continuous change. They however did

not consider the tied values on the x-axis. Boyd et al. [2013], conducted

an empirical analysis on different methods of computing PR-AUC and their
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confidence intervals, specifically in handling the tied scores of the x-axis (i.e.,

recall) of PR curve. According to them, the best method to compute the PR

curve and its AUC is not readily apparent. They recommended the lower

trapezoid, average precision, and interpolated median for estimating point of

the PR curve and the binomial and logit methods for constructing interval

estimates.

5.2.2 Mean curve computation for ROC and PR

Fawcett [2006] described twomethods, the vertical averaging and the threshold

averaging, to compute the mean ROC curve of a list of ROCs that belong to a

list of trial-models.

In the vertical averaging, each ROC curve is treated as a function, ROCi,

such that tpr = ROCi(fpr), where tpr and fpr are the instances/values of

TPR and FPR, respectively. Indeed, for a predefined list of equally spaced

x-axis values (fpr), the corresponding maximum y-axis values (tpr) of each

trial-model are considered. If the corresponding y-axis value is not available

for any trial-model, the value is interpolated. The linear interpolation is

applicable in this case since the x- and y-axes components for the ROC

curve are linearly correlated [Davis and Goadrich, 2006]. The mean curve

is then calculated as ROC(fpr) = mean[ROCi(fpr)]. It is also possible to

compute the standard deviations of the y-axes values in vertical manner in

order to draw confidence bars [Fawcett, 2006]. In the threshold averaging, a

predefined set of thresholds is considered. For each of these thresholds, the

ROC points (i.e., FPR and TPR) of all trial-model are searched and averaged

vertically (y-axis value of ROC) and horizontally (x-axis value of ROC). The

standard deviation can also be computed in both vertically and horizontally.

The vertical averaging requires only single-dimensional (on y-axis values)

computation and is usually utilized in the literature, while the other method

requires two-dimensional (on both x- and y-axes values) computation. Among

the two methods, the threshold averaging gives the information about the

threshold, however still getting the threshold information for the interpolated

points is not possible since they are not computed for any particular threshold.

The mean computation of the PR curves of several models, by contrast is

tricky. To our knowledge, there is no precise method to compute the mean

PR curve. Since the computation methods of the ROC and PR for the single

model are the same [Saito and Rehmsmeier, 2015; Tharwat, 2020], the mean
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computation methods described for the ROC curve can be customized for the

PR curve. The interpolation and some special cases, such as, start, end, and

intermediate points with tied x-axis values, however, need to be considered.

Saito and Rehmsmeier [2017] proposed a tool to compute the mean PR

curve with the programming language R. They did not mention however how

to handle the tied recall at x-axis including at the endpoint (recall = 1.0). Thus,

the endpoint of the PR-curve is not always correctly computed. Cook and

Ramadas [2020] introduced a Stata module prtab to plot PR curves where they

handled the tied predicted score of positive and negative examples. However,

they did not handle the tied recall values and used linear interpolation, which

is the wrong way to interpolate a point on the PR space, as shown in [Davis

and Goadrich, 2006] and [Boyd et al., 2013]. Among the available tools tomean

PR curve and PR-AUC computation, Saito and Rehmsmeier [2017] showed

that theirs is the most accurate, however as we identified, the endpoint with

the tied recall is not correctly computed.

After ordering the predicted score in descending order, the ground

truth ranked list is [1, 0, 1, 0, 0] for Model 1 and [1, 0, 0, 0, 1] for Model

2. Model 1 is better than Model 2 since it achieves recall 1.0 without

scanning all negative examples. Using Saito and Rehmsmeier [2017]’

formula, both models will have the same precision, 2/5 at the endpoint

of the curve. In case of ties, it leads to misinformation at recall 1.0

when computing the mean curve. Indeed, that calculation requires to

interpolate one precision per recall for tied recall cases (Model 1 has

three precision values at recall 1.0). Even considering the recommended

median of the precision values for tied recall 1.0, it will under-estimate

Model 1.

Example 1: the problem of ties in [Saito and Rehmsmeier, 2017]

5.3 Limitations of ROC and PR curves

We describe the ROC and PR curves with their component metrics earlier

(Section 2.5.2). This section describes their limitations that lead us to propose

a new metric, PR-T.
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5.3.1 Not always possible to retrieve threshold informa-

tion

From the ROC (resp. PR) curve of a single model, it is possible to retrieve the

threshold ti for any point i on the curve. When different trials of the model

are run, what we call multiple trial-models however, there is no guarantee of

having the same thresholds for all trial-models for a given FPR. fpr1(t1) =

fpr2(t2), where fpr1(t1) and fpr2(t2) are the FPRs from two trial-models,

for example, does not guarantee that threshold, t1 = t2.

While it is possible to calculate a mean point for each FPR, there is not a

single threshold associated with that mean point which does not help in select-

ing the best threshold for an intended purpose (e.g. low false-negatives). This

problem can be partially solved if the mean is calculated by the threshold av-

eraging method without applying any interpolation. It is impossible to know

the threshold for an interpolated point since the point is an approximation

and is not computed for a particular threshold.

5.3.2 Can be optimistic or pessimistic

Saito and Rehmsmeier [2015] and Tharwat [2020] described the method to

compute the ROC and PR curves. In those methods, the test examples are

ranked in descending order of their predicted score. Every predicted score is

then considered as a threshold for which a confusion matrix can be created,

and a point on the curve space can be computed.

Those papers show that due to the tied predicted scores for negative and

positive examples, both ROC and PR curves can be optimistic, pessimistic,

or expected for the same model and test set. During the computation of the

curve, if all the positive examples with the predicted score s are ordered

before all the negative examples with the same score, the curve will be

optimistic. Likewise, if the examples are ordered the other way around, the

curve will be pessimistic, and if they are ordered randomly, the curve will

be as expected [Tharwat, 2020]. Both ROC and PR curves thus are strongly

impacted by the order of presentation of examples with tied predicted scores.

5.3.3 Artificial inflation or deflation

In the ROC and PR curves, if two adjacent points are distantly separated,

interpolation is required to approximate intermediate points on the curve
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and to obtain small enough intervals on the x-axis for AUC computation

[Davis and Goadrich, 2006; Saito and Rehmsmeier, 2017] (see Section 2.5.3).

As a consequence, the interpolation might give an artificially high or low

indication of performance when the real points from where the interpolated

points are derived are high or low [Carrington et al., 2020].

Along with the AUC computation, interpolation can be required to com-

pute the mean curve of several curves from trial-models.

5.3.4 Performance inseparability of models

Table 5.1: Example of confusion matrices of two models, m1 and m2,
for a large and a small sized test sets.

Size of test set Model Confusion matrix

Large

m1
TP=80,000 FN=400

FP=4,000 TN=10,000,000

m2
TP=80,200 FN=200

FP=2,000 TN=10,002,000

Small

m1
TP=8,000 FN=400

FP=4,000 TN=100,000

m2
TP=8,200 FN=200

FP=2,000 TN=102,000

In the real world, if it is possible to collect a large number of data examples

of a particular class, it can be assumed that most of the collected examples

have some common features. Because of these common features, most of

the examples can be easily classified. For example, in a metastatic lymph-

node image data for cancer detection task, most of the image patches that

belong to the non-region-of-interest (non-ROI) or non-lymph-node class are

very similar to each other; thus, they are easy to classify. Only the patches

with inter-class similar regions are difficult to classify and might cause false

predictions according to our findings in [Reshma et al., 2021]. In this kind of

situation, the number of true predictions (TP or TN) is much higher than the

number of false predictions (FN or FP).

According to the mathematical formula (Eq. 2.1, 2.2, 2.4) of the TPR (or

recall), precision and FPR, if FN<<TP, FP<<TP, and FP<<TN, even with the
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Table 5.2: Example of performance inseparability of two models, m1
and m2, in terms of TPR and FPR for a large sized test set. We

considered two different sized test sets, large and small. Here,△* means
difference of the performances of two models in terms of a metric and

indicates if the performances are separable or not, where * can be replaced
by TPR, Prec, or FPR; the TPR, Prec, and FPR are computed by placing the
value of TP, FN, FP, and TN from Table 5.1 at Equation 2.1, 2.2, and 2.4.

Size Model TPR △TPR FPR △FPR Prec △Prec

Large
m1 80,000

400+80,000 .003
4,000

4,000+10,000,000 .000
80,000

4,000+80,000 .024
m2 80,200

200+80,200
2,000

2,000+10,002,000
80,200

2,000+80,200

Small
m1 8,000

400+8,000 .024
4,000

4,000+100,000 .019
8,000

4,000+8,000 .005
m2 8,200

200+8,200
2,000

2,000+102,000
8,200

2,000+8,200

significant difference in false predictions (i.e., FN or FP), performances of two

models might be indistinguishable in terms of these metrics. We present such

a situation in the row for the large test set of Table 5.1 (the 1st row), where the

number of positive examples (80,400) and negative examples (10,004,000) both

can be considered as high3. In such case, if the number of false predictions

(FN, FP) is much lower than the true predictions (TP, TN) similar to the row

for Large in Table 5.1, performance inseparability of models can happen (see

Table 5.2: row for Large). Here, the model m1 and m2 are inseparable (i.e.,△*

is too small) in terms of TPR and FPR thus will be inseparable in terms of ROC,

while they aremore separable in terms of precision thuswill bemore separable

in terms of PR. For example, if the number of negative examples is 10, 004, 000,

FP generated by models, m1 and m2 are 2000 and 4000, respectively, the

performance of the models will be indistinguishable according to FPR (too

small △FPR) since 2000/10, 004, 000 ≈ 4000/10, 004, 000, although there

is a significant difference in FP (FP (m2) − FP (m1) = 2000) for the two

models. If the test set is small, for the same number of false predictions,

however, performances of models can be separable (see Table 5.2: row for

Small).

The precision also will be inseparable if we flip the number of examples

between classes, i.e., if the test set is biased to positive class instead of negative

3The way of calculating the number of positive and negative examples from a confusion
matrix is given in Table 2.4.
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class, thus the FP is comparatively much smaller than the TP for the same

test set.

5.4 Anewmulti-threshold-based evaluationmet-

ric

By tuning the threshold of predicted scores, it is possible to increase or de-

crease the false predictions; thus, presenting the evaluation metric as a func-

tion of the continuous threshold should be beneficial to facilitate application-

dependent optimal threshold selection [Freeman and Moisen, 2008]. PR-T

curves follow this intuition.

5.4.1 The PR-T curves

The PR-T metric we develop presents the trade-off between recall and preci-

sion as a function of the continuous threshold.

In PR-T, the precision and recall are presented in two separate curves (y-

axis) while thresholds correspond to the (x-axis). In that way, the performance

on the positive class (by recall) and error from the negative class (by precision)

are clearly expressed; unlike the ROC and PR curves, the performance on

the under-represented class is perceivable in an imbalance test set, thus it is

not misleading the analyst. Because of this representation also, PR-T does

not require interpolation, thus, artificial inflation or deflation of curves is

impossible and PR-T mean curve and AUCs can be easily calculated without

error. PR-T is easy to read and interpret aswell. Algorithm 1 shows themethod

of computing the lists of recall (RECALL4) and precision (PREC4) points on

the PR-T curves. In this method, we scale up the predicted score of a model

within 0.0 to 1.0 by applying min-max normalization. The normalization

makes the predicted scores of different models commensurate. Then, ∀ti ∈ T

(T is a list of predefined thresholds), we compute a confusion matrix by

considering all the examples having predicted score≥ ti as predicted positive

otherwise predicted negative. For the computed confusion matrix, we find

the precision, prec(ti) and recall, recall(ti) and store in the lists RECALL

and PREC , respectively.

4Note that, here, recall, precision: metric names; recall, prec: single values; RECALL,
PRECISION : lists of values



132 Chapter 5. PR-T Evaluation Metric for Binary Classification

Once the RECALL and PREC are computed with Algorithm 1, plotting

ti at the x-axis and corresponding prec(ti) ∈ PREC at the y-axis provides

the precision curve. Likewise, the recall curve for RECALL can be drawn.

Unlike for ROC and PR curves computations, there is no sorting step of

the test examples. The order of examples thus does not affect the results, and

there is no chance of being optimistic, pessimistic. The curves will be always

the same as expected for the same model and test set.

5.4.2 Area under the PR-T curve

The general trapezoidal rule as presented in Equation 2.9 can be applied to

each interval of the x-axis to compute the AUC of that interval. Summing

up AUCs of all intervals results in the final AUC of a curve. Specifically, the

trapezoidal rule is applied to each interval of the x-axis for precision and

recall curves separately to compute the precision-AUC and recall-AUC in a

similar manner presented in Equation 2.10. Algorithm 2 shows the procedure

of computing those.

The higher the size of T, |T | (N = |T | in Eq. 2.10), the closer the computed

AUC to the actual AUC; |T |=101 could be a good trade-off between computing

time and accuracy of the obtained AUC.

Unlike the ROC and PR AUCs, the PR-T AUCs are neither affected by the

ties of the predicted score nor it has ties in x-axis values. Due to considering

all the test examples at once, the order of positive and negative examples

with tied predicted score does not affect the PR-T AUCs. Since the x-axis of

the PR-T is threshold, and for each threshold only one confusion matrix can

be computed, hence there is no tie in the x-axis values. Since no interpolation

is required to compute the PR-T AUCs, the AUCs are real and reliable than

the ROC-AUC and PR-AUC.

5.4.3 Solution of Pareto front for PR-T curves

Finding the optimal points on the PR-T curves is a two-objectives (recall and

precision) optimization problem like the PR curve. Any application prefers to

maximize both recall and precision, although which objective is preferable

to the other depends on the application type. Pareto fronts are the set of

probable optimal points. There may be an infinite number of Pareto optimal

points constituting the Pareto optimal set or Pareto fronts for any given
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Algorithm 1:Method for generating PR-T points

Input: L be the list of ground truth consists of 0 (if negative) and 1
(if positive); pos and neg be the number of positive and
negative examples, respectively in L;
T = {ti : 0.0 ≤ ti ≤ 1.0} be the set of equally spaced
thresholds, where i = 1, 2, · · · , 101 (or 1001) when stride,
△t = 0.01 (or 0.001); S = {sj : sj ∈ R

+
0 } be the set of

predicted scores by the classifier, that is to say the probability
that the example j is a positive example, where
j = 1, 2, · · · , |L| and |L| is the size of L.

Output: RECALL, a list of recall points; PREC , a list of precision
point

Require: pos > 0, neg > 0
1 Sn ← S normalized by min-max normalization
2 for i = 1 to |T | do
3 Lp

i = [ ] // an empty list to store predicted class

4 for j = 1 to |L| do
5 if sn

j ∈ Sn ≥ ti then

6 Lp
i [j]← 1

7 else
8 Lp

i [j]← 0

9 TPi, FNi, FPi, _← CONFUSION_MATRIX(L, Lp
i ) // Get

confusion matrix for ti

10 PREC[i]← T Pi

F Pi+T Pi
, RECALL[i]← T Pi

F Ni+T Pi

11

12 Function CONFUSION_MATRIX(L, Lp):
13 TP ← FN ← FP ← 0 // Initialization to 0

14 for j = 1 to |L| do
15 if L[j] == 1 then
16 if Lp[j] == 1 then
17 TP ← TP + 1

18 else
19 FN ← FN + 1

20 else
21 if Lp[j] == 0 then
22 TN ← TN + 1

23 else
24 FP ← FP + 1

25 return TP, FN, FP, TN
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Algorithm 2:Method for computing PR-T AUCs

Input: T = {ti : 0.0 ≤ ti ≤ 1.0} be the set of equally spaced
thresholds, where i = 1, 2, · · · , 101 (or 1001) when stride,
△t = 0.01 (or 0.001); PREC and RECALL be the list of
precision and recall computed for T by Algorithm 1.

Output: precision-AUC, the area under the precision curve;
recall-AUC, the area under the recall curve.

Require: |T | ≥ 101
1 precision-AUC← recall-AUC← 0 // Initialization

2 for i = 1 to (|T | − 1) do
3 precision-AUC← precision-AUC + TRAPEZOID_AREA(prec(ti),

prec(ti+1),△t)
4 recall-AUC← recall-AUC + TRAPEZOID_AREA(recall(ti),

recall(ti+1),△t)

5

6 Function TRAPEZOID_AREA(base1, base2, h):
7 return h base1+base2

2

problem [Marler and Arora, 2004]. The problem of finding the optimal point

of an evaluation metric, however, seeks a single final point usually. One of the

methods to find the final optimal point could be converting the two-objective

optimization problem to a single objective optimization problem [Giagkiozis

and Fleming, 2014]. The conversion is done by assigning weight to each

objective: f = w1 ∗ recall + w2 ∗ prec, where w1 and w2 are the preferred

weights for recall and precision, respectively. The weight of each objective

depends on the corresponding application and the analyst.

5.4.4 PR-T properties and experimental design overview

Imbalance Class Case andModel Separability with PR-T.An evaluation

metric should be able to separate models when they differ. To measure

this ability, we trained two models En and Ep considering two oppositely

distributed training subsets so that the models will have different behaviors on

the test set that the evaluation measures should reflect. Details are provided

in Section 5.5.1 for the experimental design and in Section 5.7.1 for the results

and discussions.

PR-T mean curves. In the case of PR-T curves, the mean curve calculation
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Table 5.3: Experiment design with two different distributions of
classes in the training data: experiments with negative-biased (En) and
positive-biased (Ep) class distributions with a total of 4 units (U) of examples

in the training set of each experiment.

Experiment ID Distribution Class ratio
(Negative:Positive)

En Negative-biased 3 : 1

Ep Positive-biased 1 : 3

is straightforward, as well as the mean AUC. It consists in repeating the

Algorithm 1 and 2 for all trial-models and compute their threshold-wise

average and standard deviation for the precision and recall. Because the same

thresholds are used for all curves, the mean is directly applicable without

interpolating any point. The same holds for their AUCs. An illustration of the

power of PR-T in the case of multiple trials model is presented in Section 5.7.2,

while the experimental design is presented in Section 5.5.2

Interpretability. The precision and recall are presented in separate curves in

PR-T, hence class-wise performance or false predictions are easy to interpret.

If the recall curve goes upper than the precision curve, that means the model

produces higher FP than FN and the other way around (See Section 5.7.3).

5.5 Experimental setup

5.5.1 Imbalanced training set - En and Ep

To illustrate the efficiency of the evaluation metrics in assessing predictive

models’ performance, we trained two different types of models. The models

were trained with two oppositely distributed training data set so that their

prediction could be separable to each other. Specifically, we considered the

negative-class-biased distribution with an over-represented negative class and

the positive-class-biased distribution with an over-represented positive class

in the training data. This opposition is beneficial to check if the evaluation

metric can separate the model performances when they are opposite indeed.

Table 5.3 illustrate the experiment design for the models’ training. In En, we

considered a 3 : 1 ratio of negative and positive classes in the training data;

it is thus negative-biased, whereas it is 1 : 3 in Ep, thus positive-biased. This
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experimental design also illustrates the case of imbalanced class distributions.

Note that the experiment design of En and Ep are similar to that of the

E2.b and E2.c, respectively presented in Table 4.6 in the previous chapter.

The total number of examples in each experiment and the unit (U) design

methodology are the same as described in Section 4.5.1.1. Specifically, in each

experiment, a total of (3+1=) 4 U of examples were considered. The size of U

= n/3, where n is the size of the smallest class (usually, the positive class) in

an original training set of a data set, and the 3 is its largest presence in the

considered training subset’s class ratios (Table 5.3).

Once the distribution (i.e., ratio) of the classes in training data was fixed,

we randomly selected training examples from the original training set of the

data set by maintaining that distribution as we did in the previous chapter.

We then trained a Convolutional Neural Network (CNN) model.

5.5.2 Multi-trial models

In the literature, ROC and PR metrics are under-explored for the mean curve

computation of several trial-models. It is, however a common practice to train

several models for the same task and taking the mean result of all trials; this

can show the robustness of the model. We consider the case of multiple trial

models as follows: we trained 10 trial-models for each experiment of En and

Ep. Each trial-model was created by training the CNN with a different subset

of the training data. The subset was selected randomly from the original

training set of the data set by maintaining the class ratio. We then calculated

the mean and standard deviation of all trial-models for each experiment (En

and Ep) for ROC, PR, and PR-T and associated AUCs.

5.5.3 Data Sets and pre-processing

To test the efficiency of the evaluation metrics on a very large and a moderate-

sized data set, we utilized two different data sets for two real-world problems:

1) histological image data sets, PCam and CAMELYON16, for the cancer

detection task, 2) natural image data set, CIFAR10 [Krizhevsky et al., 2009],

for the automobile detection.

Cancer detection task. For the first task, cancer detection, we used

PCam and CAMELYON16 data sets in a similar manner described for the

classification task in Section 4.5.2.1.
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Object detection task. For the object detection task, we utilized CI-

FAR10 [Krizhevsky et al., 2009], a popular toy data set of natural images. It is

a multi-class (10 classes) data set with a training set of 50,000 images and a

test set of 10,000 images of size 32× 32 pixels. All 10 classes have the same

number of images in the data set. To follow our purpose, we converted it to a

binary class and imbalanced data set. We considered one of the 10 classes,

the “automobile" class, as the positive class and the remaining classes as the

negative class. The “automobile" class can be considered as difficult since

there are three other classes (“airplane", “ship", and “truck") which share some

visually similar features.

After converting the data set to a binary one, the ratio of the positive and

negative classes is 1:9 in both training and test sets. In the training set, the

positive class (automobile) consists in 5,000 images; we thus considered 1U

as (5,000/3=) 1,666. The training subset size was (1,666*4=) 6,664, from where

20% was used as validation. We selected the negative classes examples such

that each negative class has an equal number of examples.

5.5.4 Hyper-parameter settings

We focused on the evaluation metric thus utilized off-the-shelf CNN architec-

tures and hyper-parameter settings.

Cancer detection task. For the network architectures and other hyper-

parameter settings of this task, we refer to Section 3.2.2.2.

Object detection task. For the object detection task, we used a pre-

trained ResNet50 model from the Keras [Chollet et al., 2015], i.e., we utilized

transfer learning since the training subset taken from CIFAR10 was small

to train a model from scratch. In Keras, the model was pre-trained with the

ImageNet [Deng et al., 2009] data set, which consists of natural images like

CIFAR10. Moreover, using Keras’s ImageDataGenerator function, we utilized

applicable data augmentation techniques for natural images, such as random

rotation (range 15), width, and height shift (range 5.0/32), and horizontal

flip. The model was fine-tuned by applying the early stopping scheme to

stop training before overfitting with mini-batch size 32. As an optimizer,

we utilized the popular default, Adam, with a very small starting learning

rate of 1e−4. As loss function, we utilized categorical cross-entropy. If the

validation loss did not change for a maximum of 10 epochs, the learning rate

was reduced by a factor of 0.3.
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5.6 Pre-assessing themodelswith predicted score

statistics

Figure 5.1: Illustration of the model’s predicted scores (x-axis) in the
linear scale and the corresponding mean frequencies of test

examples in the log scale (y-axis). (i) is for the cancer detection task,
where models were trained on the subset of PCam, and tested on the

CAMELYON16 test set, and (ii) is for the automobile detection task, where
models were trained on the subset on the CIFAR10 and tested on the test set
of same data set. Here, top row: for the actual negative class, bottom row: for
the actual positive class, dashed black line: a representative threshold, left
side of the black line: predicted negative class, and right side of the black
line: predicted positive class. Each column resembles a confusion matrix.



5.6. Pre-assessing the models with predicted score statistics 139

To have an intuitive idea about the superiority of one model over the

other, we assessed the models according to their predicted scores before

assessing them with evaluation metrics in the next section. For this purpose,

in Figure 5.1, we presented the predicted scores of models on the x-axis as 101

intervals in linear scale and the corresponding mean frequencies of examples

on the y-axis in logarithmic scale. In a logarithmic scale, equal spaces on the

plot indicate the same rate of change, unlike in a linear scale where equal

spaces mean the same difference. For example, in the y-axis of the lower-left

plot from the point 103 to 104, the difference in frequencies is (10,000-1,000=)

9,000, and the rate of change in frequencies is (10,000/1,000=) 10, where from

the point 104 to 105, the difference is (100,000-10,000=) 90,000 and the rate of

change is (100,000/10,000=) 10, i.e., the rates of change are the same while

the differences are not.

The mean frequencies were computed from 10-trials of each experiment

(En, Ep). Here, in the left column (i), the plots were for the cancer detection

task; in the right column (ii), the plots were for the automobile detection task.

In both tasks, the top row presents the histogram for the actual negative class,

while the bottom row presents the actual positive class. The dashed black line

indicates a representative threshold to perceive the true and false predictions

by the models. The left side of a threshold line indicates the predicted negative

class, while the right side indicates the predicted positive. The presentation

of each column is analogous to the confusion matrix presented in Table 2.4.

While plotting such a histogram, an ideal model would have a plot where

all the negative examples (top row) are on the left side of the threshold line

(dashed black line) and all the positive examples (bottom row) are on the right

without any overlap between two classes [Freeman and Moisen, 2008]. While

looking at the histograms, however, it is not the case, i.e., the models have an

overlap of positive (bottom row) and negative (top row) classes throughout

the x-axis. In other words, the models produced false predictions. For both

tasks, En (histograms in blue) produced higher FN (bottom row and left sides

of the threshold lines), while Ep (histograms in orange) produced higher

FP (top row and right sides of the threshold lines) at almost all positions of

the threshold line (i.e., while moving the dashed black line at any position

left or right), that is, the type of false prediction generated by each model is

apparent. We will see in Section 5.7.3 that the same is reflected in the PR-T

curves.

In Figure 5.1, one model (Ep) produced more FN, while another model
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(En) produced more FP than the other, which implies that the models were

indeed different from each other. If we consider two different threshold lines

for two different models, however, the number of false predictions of both

models could be the same. For example, if we move the threshold line for the

Ep model to the right enough and keep the threshold line for the En model

in the current place, it is possible to have the same FN with different FP by the

two models. If the difference between FP is not high enough in comparison

to the number of true predictions, however, the models’ performance could

be comparable. According to the logarithmic scale in the y-axis, the true

predictions (TP and TN) were indeed much higher than the false predictions

(FP and FN). Theoretically, thus, the difference in results -computed with the

fraction of true and false prediction-based metrics- of two models will be

very small, that is, the performance of models will be inseparable. Intuitively,

this phenomenon usually happens in ROC and PR curves, where the metric

values at the x-axis are kept common for all models.

Moreover, if we consider the logarithmic scale of the y-axis, the generated

FP is much higher than the FN. Consequently, En is a better model than Ep

while considering both types of false prediction at a particular threshold line

because of producing fewer FP than Ep. We will see in Section 5.7 that if the

evaluation metrics can reflect the phenomenon of one model’s superiority

over the other.

5.7 Result and discussion

5.7.1 PR-T curves appropriately distinguish predictive

models

To compare the utility of PR-T curves with ROC and PR curves as evaluation

metrics of classification model, we investigated whether they could distin-

guish between the performances of two different predictive models En and

Ep. We considered the two imbalanced test sets CAMELYON16 (large size

with 10.45M patches) and CIFAR10 (moderate size with 10K patches). The

results of the Ep and En models are plotted as the ROC, PR, and PR-T curves

(See Figure 5.2).

When the results were analyzed by the ROC curve, there was little ap-

parent difference between the performance of the Ep and En models either
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Figure 5.2: PR-T curves show better than ROC and PR curves the
different performances of two predictive models. The models were

trained either on the PCam data set and tested on the very large
CAMELYON16 test set (top row), or were trained on the CIFAR10 training
set and tested on the moderate-sized CIFAR10 test set (bottom row). The Ep
models (orange) were trained on data subsets biased toward the positive

class (e.g., cancer); the En models (blue) were trained on data subsets biased
toward the negative class (e.g., non-cancer). The performances of the models
were evaluated by ROC curve (left), PR curve (middle), or PR-T curves (right).

Their corresponding AUCs are presented in parenthesis.

on the very large data set (Figure 5.2 (i)) or on the moderate-sized data set

(Figure 5.2 (ii)). When the results were analyzed by the PR curve, the different

performances of the Ep and En models could be distinguished to some extent

on the very large data set and much better on the moderate-sized data set.

When they were analyzed by PR-T curves, by contrast, the performances of

the two models were very clearly different both for the very large and the

moderate-sized data sets.

Considering recall (dotted lines) on the PR-T curves, theEpmodel (orange)

goes higher than the En model (blue); this indicates that the Ep model

produced less FN than did En. Considering precision (solid lines), the En

model (blue) goes higher than the Ep model (orange), which indicates that



142 Chapter 5. PR-T Evaluation Metric for Binary Classification

the En model produced less FP than did the Ep model. This is an expected

results since En is trained with more negative examples, it is likely to be less

effective on recall. Both ROC and PR curves however fail to properly show

this result, while PR-T curves clearly show it.

On PR-T, we can also observe that the precision curve for En (blue) is

much higher than the one for Ep (orange) while the recall curves are not

very different. This indicates the En model is performing better than the Ep

model when considering precision recall trade-off and this hold for both data

sets. ROC is unable to show this difference. PR hardly shows this difference

for the large test set (CAMELYON16), while a little for the moderate size test

set (CIFAR10).

These results are consistent with the pre-assessment of models with the

predicted score statistics in Section 5.6.

5.7.2 PR-T mean curves

To complete the previous result, we considered the case of 10 trial-models and

the mean curves on the same two data sets. When the results were analyzed

by the ROC curve, there is no apparent difference between the various trials

of a given model since its standard deviation is very low. This holds for both

data sets (See Figure 5.3 left part). We can observe that PR curves are better

in that perspective where the difference between trials or the absence of

difference slightly appear on the orange and blue shadings that represent

standard deviation on the various trials. On the contrary, using PR-T, the

differences between the trials -or here the standard deviation- are clear. In

the case of CAMELYON16 the standard deviation considering the various

trials is large while there is not much difference on CIFAR10. This was also

an expected results since CAMELYON16 is very large but that ROC and PR

hardly show.

As an additional information, we can also observe that the differences

across trials on CAMELYON16 are larger for precision (solid line) than recall

(dotted line) and larger for En (blue) than for Ep (orange). This analysis can

help the designer in understanding the results s/he obtain.
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Figure 5.3: Mean PR-T curves along with standard deviation
appropriately summarize results and show better than mean ROC
and PR curves the different performances of the trials. The models,
data sets, measures and notations are the same as in Figure 5.2 unless
mentioned. 10-trials were used, where each trial differs by the training
subset used ((See Section 5.5). The solid and the dotted lines indicate
corresponding mean curves from 10 trial-models; the orange and blue

shading indicates the standard deviation.

5.7.3 PR-T curves aremore informative than thePR curve

PR curves should be preferred to ROC since it expresses the trade-off between

the recall and precision in where by definition, the true predictions from

the negative class (i.e., TN) are excluded [Sofaer et al., 2019]. Our results in

Sections 5.7.1 and 5.7.2 also consistently indicate the superiority of PR on

ROC.

The PR-T can also express the recall precision trade-off with other ad-

vantages. We illustrated those advantages by taking as an example, the PR

and PR-T curves produced by using the En model trained on the negative

class-biased subset of the CIFAR10 training data set and used to predict the

CIFAR10 test set (Figure 5.4).

When considering recall precision trade-off, it is usual that the end-user
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Figure 5.4: PR-T curves are more informative than the PR curve. The
curves were generated using the same settings as in Figure 5.3; the notations
are also the same. While there may be different thresholds used for single
point (r,p) on PR mean curve, there is a single and identifiable threshold in
the case of PR-T for that point (r,p). The areas under the PR curve in (a) and
precision curve in (b) shaded with the gray line segments indicate the areas

occupied by the precision for recall range 0.0 to 0.9.

needs to consider some specific point from the PR curve, often with the

threshold information. Let us notate that point (r, p), where r is the recall and

p the precision (See Figure 5.4 (a)). The threshold information of that point

on the PR curve can only be obtained if the point is not an interpolated one.

By contrast, the corresponding point is also quite easy to obtain on the PR-T

curves from the points (t, r) and (t, p) along with the threshold information

t (See Figure 5.4 (b)). Since PR-T does not require interpolation, and its

computation (along with the mean) is threshold-oriented, it is always possible

to obtain recall and precision with the corresponding threshold information

from PR-T.

PR-T curves also provide information about the type of false prediction

a model tends to generate. In the PR-T curves in Figure 5.4(b), when the

precision curve (solid line) is below the recall curve (dotted line), by definition,

it indicates that the model produces more false positives than false negatives.

When the precision curve is upper than the recall curve, this indicates that
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the model produces more false negatives than false positives. It is difficult to

extract this information from the PR curve (Figure 5.4(a)).

A further advantage of PR-T curves over PR curves is related to the area

under the curve (AUC). In the example PR curve (Figure 5.4 (a)), the PR-AUC

value misleads the analyst who can observe a high value (0.92). This value is

due to the high precision at low levels of recall (which is insignificant in most

of the applications). PR-T has not this drawback. We illustrated this on an

example (See Figure 5.4). The areas under the PR and precision curves shaded

with the gray line segments indicate the areas occupied by precision for recall

in the range of 0.0 – r, where r = 0.9. In the case of PR curve (left-side part

of the ) the AUC is obviously exaggerated by the high values of precision at

low recall (e.g. precision is about 1.0 when recall is below 0.3). This is not the

case for PR-T where the grey part of AUC occupied by precision for recall

r < 0.9 is not artificially inflated. PR-T is thus more appropriate to compare

different models.

The interpolation required to approximate intermediate points on the

PR curve; this might also give an artificially high indication of performance

when the real points from where the interpolated points are derived are high.

PR-T curves, by contrast, do not contain interpolated points: the values of

precision and recall are real measures given the number of thresholds (|T |)

used large enough. AUCs calculated from the PR-T curves are thus more

reliable than PR-AUC and provide a true evaluation of the performance of a

model.

The limitations we just mentioned for the PR curve also hold for the ROC

curve for similar reasons. PR-T curves provide more information to evaluate

a classification model than the PR and ROC curves and that the information

PR-T curves encompass is more reliable.

5.8 Re-evaluation of representative results from

the previous contributionwithPR-T curves

In the previous chapter (Chapter 4), we evaluated the result with ROC, PR,

precision, and FPR curves, where the last two curves were the threshold-wise

representation similar to the PR-T curves. Since in the previous chapter,

the hypotheses were based on FP, we selected the FP-oriented metrics -the

precision and FPR- there to emphasize FP. Indeed, the advantage of precision
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and FPR curves encourages us formalizing the representation and proposing

the PR-T curves as an alternative to ROC and PR curves. In this section, we

re-evaluate and discuss a representative result from that chapter with PR-T

curves.

Figure 5.5: The result is consistent with the findings in Chapter 4 and
Section 5.7 - on PCam. Mean curves with standard deviation (std. dev.) of
experiments for balanced distribution (E2.a), for over-represented ¬C (E2.b),

and for over-represented C) (E2.c) on PCam. The standard deviation is
represented by green/blue/yellow colored shading.

.

To apply the PR-T curves in a use-case, we consider the hypothesis H2

result on the PCam test set; the test set is an example of a balanced one. We

choose it since we already discuss the result on two imbalanced test sets in

Section 5.7.

When considering the hypothesis H2 (Over-representing the ¬C class

in the training set reduces false-positives during cancer detection) from the

previous chapter, we can test it with the precision curve of PR-T (Figure 5.5:

rightmost part) since it reflects the FP. The conclusion is clearly the same as

described in Chapter 4 since the precision curve in Figure 5.5 is the same one of

the precision curve in Figure 4.13(iii) presented in that chapter. The conclusion

is that PR-T curves also confirm the H2 hypothesis; for the classification task

with balanced test and validation sets, the ¬C-biased (E2.b) distribution

produced fewer FPs than the two other distributions.

Additionally, the PR-T curve in Figure 5.5 also reflects the FN by the recall

curve. The recall curve of E2.b (dotted blue curve) is the lowest among the

three recall curves but with the highest standard deviation. It says that the

E2.b produces the least FP with the highest FN, although the high standard

deviation says that the FN production is less certain than that of two others
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(E2.a and E2.c). One of the reasons could be the number of positive examples

in the training set. To keep the same total number of training examples in

all the experiments (for a fair comparison), we did not use all the positive

examples (class C) in E2.b, while in E2.a, we utilized little more and in E2.c

almost all positive examples, which reduces the recall in E2.b. The reason

for the high standard deviation could be of selecting a small subset (5k) of

positive examples from a larger set (15k) randomly. It also indicates that all

the cancer patches are not equally effective in CNN training.

The result on the balanced test set in Figure 5.5 also reflects another

interesting finding. In Section 5.7, we showed the ineffectiveness of the ROC

and PR curves in the cases of imbalanced test sets. In this section, we can

see that the same conclusions hold even for a balanced test set. The ROC

(Figure 5.5: leftmost part) and PR (Figure 5.5: middle part) curves fail to

separate the performance of models for the balanced test set as well.

From the segmentation task, we choose the same hypothesis (H2) result

on MLNTO data set to re-evaluate with the PR-T curves (see Figure 5.6). To

test the H2, we consider the precision curve of PR-T (Figure 5.6: the solid

curve of the rightmost plot), which says that the hypothesis is true, i.e., the

¬C-biased training (E2.b) produces less FP since its precision curve (solid

blue curve) is the highest one. Its lowest recall curve (dotted blue curve),

however, says that E2.b produces the highest FN, which is expected since

we did not utilize all the C patches to keep the training set size the same

for all experiments. In summary, the findings are consistent with findings in

Chapter 4 and Section 5.7.

5.9 Proposed methods for non-linear interpo-

lation and mean PR curve computation

To compute a mean PR curve, we develop a new method, where we utilize

the ROC curve components (TPR, FPR) in a way so that we can fix the stride

(i.e., interval) on the x-axis of the PR curve and approximate AUC. We utilize

the ROC curves of all trial-models as input. We either interpolate or retrieve

points from each input ROC curve for a fixed set of equally spaced TPRs or

recall, then convert those points to the PR space. It is possible because ROC

components, TPR and FPR, are linearly correlated and straightforward to pro-

cess, and because the ROC and PR have a one-to-one correspondence [Davis
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Figure 5.6: The result is consistent with the findings of H2 in Chapter
4 and Section 5.7 - on MLNTO.Mean curves with standard deviation for
experiment settings E2.a (for balanced distribution in the training set, green),
E2.b (for over-represented ¬C, blue) and E2.c (for over-represented C, red).
Experiments test H2 in the case of E2 (Table 4.6). Same notations as in

Figure 5.5

and Goadrich, 2006; Flach and Kull, 2015]. Like in [Davis and Goadrich, 2006;

Boyd et al., 2013; Keilwagen et al., 2014], we interpolate a point in the non-

linear PR space by utilizing the linear interpolation in the ROC space. Unlike

them, however, we utilize the original components of the ROC (TPR, FPR)

instead of discrete [Davis and Goadrich, 2006] or continuous [Keilwagen et al.,

2014] TPs or deriving any complex coefficients [Boyd et al., 2013]. Because

of using the linear space of the ROC curve and its original components di-

rectly, our method is straightforward to understand and computation friendly.

Moreover, we also handle the special cases (start, end, intermediate points

with ties) and AUC calculation. After the conversion of points from the ROC

space to PR space, we apply the straightforward and popular vertical aver-

aging [Fawcett, 2006], where, for a predefined list of equally spaced x-axis

values, the corresponding y-axis values of all trial-models are averaged.

The overview described above is formalized in Algorithm 3 for the mean

PR curve and in Algorithm 4 for the PR-AUC computations. Moreover, we

detail our interpolation technique in the text, how we determine the start and

endpoints in the usual case, and how we handle the special cases with ties

since those are the cases usually handled in a wrong way in the literature.

Interpolating a point on the PR space. As mentioned earlier, we in-

terpolate a point linearly at the ROC space and convert it to the PR space, we

consider the following equation to linearly interpolate a point at the ROC
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Algorithm 3:Mean PR points computation

Input: TPRmean = {tprm ∈ R : 0.0 ≤ tprm ≤ 1.0} is the set of
equally spaced TPRs (or recalls), where m = 1, 2, · · · , 101
when stride,△tpr = 0.01; ROCs = {ROCi ∈ R

2} is the set
of ROC curves computed for nT trials according to Eq. 2.5,
where i = 1, 2, · · · , nT ; |ROCi| is the size of the ROC curve
of ith trial; pos (resp. neg) is the number of positive (resp.
negative) examples.

Output: PRECmean, a list of mean precision points
1 PRECs← [ ][ ]
2 for i=1 to nT do
3 for m=1 to |TPRmean| do
4 fpr ← FPR_FOR_TPR(tprm, ROCi)
5 PRECs[i][m]← tprm∗pos

tprm∗pos+fpr∗neg

6 if PRECs[i][1] ==∞ then PRECs[i][1]← PRECs[i][2]

/* Compute vertical mean with standard deviation */

7 PRECmean ← vertical_mean(PRECs)± vertical_std(PRECs)
8 Function FPR_FOR_TPR(tprm, ROC):
9 FPR = {fprj ∈ R : 0.0 ≤ fprj ≤ 1.0} and

TPR = {tprj ∈ R : 0.0 ≤ tprj ≤ 1.0} are the multisets of FPR
and TPR that constitute the ROC , where the frequency of any
fpr ∈ FPR (and tpr ∈ TPR), frq(fpr) ≥ 1 ( and
frq(tpr) ≥ 1); j = 1, 2, · · · , |ROC|.

10 j ← 1
11 while j < |ROC| and tprj < tprm do
12 j ← j + 1 // finding the location of tprm in ROC

13 if tprm == tprj then
14 if frq(tprj) > 1 then
15 FPRj ← the corresponding subset of FPR for tprj

16 case j==1 return maximum(FPRj)
17 case 1 < j < |ROC| return median(FPRj)
18 case other return minimum(FPRj)

19 else
20 return fprj

21 else

22 return fprj−1 + (fprj − fprj−1)
(tprm−tprj−1)

(tprj−tprj−1)

We consider 101 equally spaced x-axis values to approximate AUC while the stride on the
x-axis is 0.01. We also tested stride 0.001 and 1001 values for a large and a small test set, but
we did not find differences on AUCs.
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Algorithm 4:Mean PR-AUC computation

Input: Same input as Algorithm 3.
Output: PR-AUCmean, the area under the mean PR curve
Require: Function from Algorithm 5

1 AUCs← [ ]
2 for i=1 to nT do
3 RECALLi ← PRECi ← [ ]; AUCs[i]← 0; j ← 1
4 for m=1 to |TPRmean| do
5 R, P ← RECALL_PREC_FOR_AUC(tprm, ROCi)
6 RECALLi[j : j + |R|]← R
7 PRECi[j : j + |R|]← P
8 j ← j + |R|

9 if PRECi[1] ==∞ then PRECi[1]← PRECi[2]
10 for k=1 to j-1 do

/* Add AUC computed with trapezoidal rule */

11 AUCs[i]← AUCs[i] + P RECi[k]+P RECi[k+1]
2

(RECALLi[k +
1]−RECALLi[k])

12 PR-AUCmean ← mean(AUCs)± std(AUCs)

We present the function RECALL_PREC_FOR_AUC utilized in this algorithm at Algo-
rithm 5 since both together do not fit on a single page.
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Algorithm 5: Functions for mean PR-AUC computation

1 Function RECALL_PREC_FOR_AUC(tprm, ROC):
2 FPR = {fprj ∈ R : 0.0 ≤ fprj ≤ 1.0} and

TPR = {tprj ∈ R : 0.0 ≤ tprj ≤ 1.0} are the multisets of FPR
and TPR, respectively that constitute the ROC , where the
frequency of any fpr ∈ FPR (and tpr ∈ TPR), frq(fpr) ≥ 1
( and frq(tpr) ≥ 1); j = 1, 2, · · · , |ROC|.

3 PRECm ← {}; RECALLm ← {tprm}; j ← 1
4 while j < |ROC| and tprj < tprm do
5 j ← j + 1 // finding the location of tprm in ROC

6 if tprm == tprj then
7 if frq(tprj) > 1 then
8 FPRj ← the corresponding subset of FPR for tprj

9 if j==1 then
10 return RECALLm,

PRECISION(tprm, maximum(FPRj))

11 else if 1 < j < |ROC| then
12 for k = 1 to |FPRj| do
13 RECALLm[k]← tprm

14 PRECm[k]← PRECISION(tprm, FPRj[k])

15 return RECALLm, PRECm

16 else
17 return RECALLm,

PRECISION(tprm, minimum(FPRj))

18 else
19 return RECALLm, PRECISION(tprm, fprj)

20 else

21 fprm ← fprj−1 + (fprj − fprj−1)
(tprm−tprj−1)

(tprj−tprj−1)

22 return RECALLm, PRICISION(tprm, fprm)

23 Function PRECISION(tpr, fpr):
24 return tpr∗pos

tpr∗pos+fpr∗neg

This algorithm is a part of Algorithm 4.
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space:

fprm = fprj−1 + (fprj − fprj−1)
(tprm − tprj−1)

(tprj − tprj−1)
(5.2)

where (fprj−1, tprj−1) and (fprj, tprj) are two adjacent points of the

ROC curve, (fprm, tprm) is the point to be interpolated for a predefined TPR

(or recall), tprm, and tprj−1 < tprm < tprj . We then convert the interpolated

point (fprm, tprm) from ROC space to PR space (Alg. 3, line 5; Alg. 5, line 24)

by computing fpm(= fprm ∗ neg) and tpm(= tprm ∗ pos). Then, by placing

them at the equation of precision (Eq. 2.2), we compute the corresponding

interpolated precision, precm. Since recallm = tprm, (recallm, precm) is the

corresponding interpolated point.

Start- and endpoint. When computing precision for the start point,

there is however an exception as follows: if tp0 and fp0 are both zero, the

precision is undefined for that point. Then, as usual practice, the precision at

the start point, prec0 = prec1 (Alg. 3, line 6; Alg. 4, line 9), where prec1 is the

precision of the next point of the start point. The precision for the endpoint

of the PR curve is pos/(pos + neg), if the x-value, i.e., the recall is not a tie,

where pos and neg are the numbers of positive and negative test examples.

To further check if the method of calculating interpolated point was

correct, we considered all the examples provided in related work [Davis

and Goadrich, 2006; Saito and Rehmsmeier, 2017] as examples of correct

interpolation. While in [Saito and Rehmsmeier, 2017], the endpoint did not

work well in the case of ties, in our case, we fix it. For mean PR curve

computation, Saito and Rehmsmeier [2017] did not describe how they handle

ties in other points; we handle and describe these cases in the following

paragraphs.

Handling spacial cases. We suggest to compute the mean PR curve and

PR-AUC by handling the tied scores of the x-axis more rationally. Usually,

for a tied value in the x-axis, the maximum of the corresponding y-values is

taken for further computation [Boyd et al., 2013], which is irrational in some

cases (as described below) for the PR curve.

We consider three special cases: tied TPR5 for ROC values at the start,

end, and in-between points, that may happen. As illustrated in Figure 5.7, to

5Here, we consider TPR/recall from the ROC components since it is the x-axis value for
the PR curve, which we need to pre-define for the mean PR curve computation.
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Figure 5.7: Determining FPRs for tied TPRs for start, end, and
in-between points.

compute the mean PR curve by utilizing ROC space, the red triangle, blue

square, and green hexagon are the selected points for the start, in-between,

and endpoints. For the PR-AUC, the selected points are the same except for

the in-between points with ties. We select the minimum FPR for the left-side

interval (0.5 to 0.75 -purple hatched to the left area) and the maximum FPR

for the right-side interval (0.75 to 1.0 -yellow hatched to the right area) for

the in-between points during PR-AUC computation. All the special points

selected from the ROC space are then converted to the points in PR space

(Alg. 3, line 5; Alg. 5, 24).

Start point: The TPR of the start point becomes a tie for multiple FPR

when some negative examples get the highest predicted score. In Figure 5.7

(Case 1), two negative examples get the highest precedence over all the

positive examples while they are ordered in descending for curve computation

(the first point at the (0.0, 0.0) is the default start when all examples are

predicted as negative or threshold is equal to the∞). As a cost of giving the

highest precedence to negative examples over positives examples, taking the

corresponding maximum FPR (the red triangle in the Figure) is rational. The

selection of the start point is common to both mean PR curve and PR-AUC
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computation (See Alg. 3, line 16; Alg. 5, lines 9 and 10).

Intermediate point of the start- and endpoints with ties TPR (See Figure 5.7

Case 2): Mean PR curve requires having one FPR per TPR (or recall) for one

trial-model; thus, we consider the median (the blue square in Figure 5.7) of

the corresponding FPRs as a selected FPR for the tied TPR as recommended

in [Boyd et al., 2013] (Alg. 3, line 17). On the other hand, for PR-AUC of

a trial-model, we keep all the real FPRs for a tied TPR (Alg. 5, lines 11 to

15) since using the median of FPRs might under (resp. over) estimate the

areas computed for the left side from 0.5 to 0.75 (resp. right from 0.75 to 1.0)

intervals of the tied TPR.

End point. A tie in TPR (or recall) happens at the endpoint (TPR=1.0)

when all the positive examples get higher predicted scores than at least some

of the negative examples, which illustrates the model’s efficiency. Thus, as a

reward, the earliest corresponding FPR (i.e., the minimum) should be chosen

(see the green hexagon in Figure 5.7 Case 3). This selection of the endpoint is

common to both mean PR curve and PR-AUC computation (Alg. 3, line 18;

Alg. 5, lines 16 and 17).

In short, for PR-AUC, in the case of tied TPR (or Recall), we suggest to

use the minimum FPR for the left-side interval and the maximum FPR for the

right-side interval. For the mean PR curve, it should be the same, except for

tied TPR for intermediate points for which the median is more appropriate.

Once the mean PR points are computed by the Algorithm 3, plotting the

predefined TPRmean (i.e., recall) at the x-axis and corresponding computed

PRECmean at the y-axis provides the mean PR curve.

5.10 Conclusion

In this chapter, we discuss the limitations of the ROC and PR curves, popularly

utilized to evaluate the performance of binary classification. It is acknowl-

edged that the ROC curve is not appropriate for imbalanced data sets, and

usually, the PR curve is prescribed in that case. We have illustrated that

even the PR curve is not appropriate, specifically with large test sets. Con-

sidering limitations of the ROC and PR, we developed a new metric, named

PR-T curves. We have shown the specialities of PR-T curves which are as

follows: PR-T curves are superior to both PR and ROC curves in distinguish-

ing between the performances of the two models; the positive class was

under-represented in both test sets we utilized, however, unlike the ROC and
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PR, the performance separation of that class (through recall) is highlighted

by PR-T curves; they do not require interpolation to compute mean curves

and AUCs; they are able to reflect false prediction type and can be helpful to

the practitioners to decide on the type of false prediction that needed to be

reduce. Unlike ROC and PR, PR-T is also independent of the test examples

order, which is an interesting property to avoid handling ties of predicted

scores in the calculation. Theoretically and experimentally, we have shown

that PR-T curves is both more accurate and more informative than PR curve

while keeping the precision recall trade-off information. Additionally, we

also propose end-to-end methods to compute the mean PR curve and PR-

AUC since they are absent in the literature but still useful to ensure a fair

comparison with any newly proposed metrics.

This chapter uses two image data sets and two CNN architectures; it is

thus not exhaustive. The efficiency of the PR-T should be demonstrated on

other data sets and other machine learning algorithms, especially on classical

ones, e.g., Naive Bayes. Determining optimal points in PR-T is tricky since

it has two separate curves; although we discuss it from the perspective of

finding the solution to the Pareto front, we did not illustrate it with an example

problem. PR-T curves and associated AUCs can however be applicable for

any balanced, imbalanced, or non-image data sets in the same way we applied

here. Although we did not apply the metric to a multi-class setting, the metric

is also applicable in that case in the same way the ROC and PR curves are

applied to multi-class problems. Moreover, we present our algorithms to

compute the mean PR curve and PR-AUC by applying the vertical averaging,

while the algorithms can also be customized for the threshold averaging. In

future work, we will work on application-dependent techniques to find the

optimal points on the curves, and test its efficiency on other data sets and

machine learning algorithms.

We are preparing a manuscript on the contribution of proposing the PR-T

curves to submit to a journal and preparing a manuscript on the contribution

of proposing algorithms for the mean PR curve and PR-AUC to submit to a

conference.





Chapter 6

Conclusions

This thesis has contributed to the class distribution analysis as well as the

analysis of balance and imbalance data problem for deep learning models

applied to whole slide images (WSI) data for computer-aided cancer detection.

It is a domain-specific research. For this domain, there were no studies about

the impact of class distribution in the training phase of models, although

it is one of the crucial hyper-parameters that regulates the performance of

learning-based models. We consider several research questions and propose

several hypotheses that emerged from current state-of-the-art on cancer de-

tection in WSIs and class distribution analysis in other non-medical domains.

We test and answer them through several experiment settings (e.g. different

class distributions, CNN architectures, and some other hyper-parameters)

and data sets. Among the data sets, one includes WSIs of multiple types of

cancer and other data sets contain breast cancer WSIs only. All the WSIs are

created from lymph-node biopsies.

To conduct the analysis, we designed an end-to-end framework for train-

ing and testing deep learning models (both CNNs and FCNNs). We developed

approaches for extracting and categorizing patches from WSIs as an alterna-

tive to the usual random patch selection method for training. Our approach

facilitates the coverage of all desire areas of a WSI without repetition of any

particular area. The patch categorization is useful to create an expected class

distribution.

Through this analysis, we found several interesting findings, e.g., (1) the

default choice, balanced distribution is not optimal to train a model for the

task of cancer detection in WSIs, (2) most of the errors of such model come

from FP due to inter-class similarities and intra-class variations, (3) the natural

distribution which is biased to non-ROI provide the best result in terms of FP

reduction, (4) the non-cancer-biased is preferable for the distribution in ROI

classes (cancer and non-cancer) since this distribution resolves the confusions

between cancer and non-cancer classes due to the similarities between the

two classes and ensures the coverage of all variations from the most hetero-
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geneous class, non-cancer. This analysis also proved the usefulness of usually

neglected mixed patches (containing both cancer and non-cancer at the same

time) and non-ROI class. Among the two different tasks, segmentation and

classification, the analysis shows that the classification task is less sensitive

to the different distributions in the training set than the segmentation one.

Moreover, we also test our proposed hypotheses while predicting data from

two differently distributed test sets and found consistent results. We, however,

did not study the distribution of the validation set. This set can also have

an impact since it is used for tuning the models during training. We aim

to address this challenge in future work. Nevertheless, the outcomes of the

analysis provide useful remarks that are helpful in both creating a new WSI

data set and utilizing the existing ones optimally.

In addition, with regard to evaluation for machine learning models, we

developed a new patch-based evaluation approach and a multi-threshold-

based metric (PR-T curves) to represent precision and recall as functions

of continuous threshold in two separate curves. We also developed end-

to-end algorithms for mean precision-recall (PR) curve and mean PR-AUC

computations.

The patch-based evaluation approach is preferable to the pixel-based one

for huge images like WSI; it is also closer to the way pathologists examine

images to look for cancer-affected areas. The PR-T curves can distinguish

between the performances of the two models for both balanced and imbal-

anced test sets, they do not require interpolation to compute mean curves

and AUCs, they can reflect false prediction type, and independent of the test

examples order. The algorithms to compute the mean PR and PR-AUC are

helpful to avoid common mistakes (regarding interpolation and handling of

special cases) usually done in literature in their computations and ensures

fair comparison. Our approach, metric, and algorithms solve the limitations

of the existing state-of-the-art ones.

The efficiency testing of the proposed metric, PR-T curves, however, is not

exhaustive. It would be interesting to see the efficiency of this metric on some

other classical machine learning algorithms (e.g., Naive Bayes) and non-image

data sets. Moreover, finding optimal points in terms of both precision and

recall would be interesting. In future work, we will work on application-

dependent techniques to find the optimal points on the PR-T curves (e.g.,

finding an optimal solution to the Pareto Front) and test the efficiency of PR-T

on more machine learning algorithms and data sets.
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Future work. Along with the future work mentioned previously, the

probable extensions of this thesis are as follows:

• A dedicated algorithm to detect micro-metastasis. Macro-metastases

are easy to detect by both pathologists and automatic systems. Micro-

metastases, however, are difficult to detect or overlooked without the

highest resolution of WSI. A dedicated model could be trained with

the training examples containing micros at the highest resolution to

solve the problem. The prediction of WSIs in the highest resolution,

however, is very time and resource consuming. To cope with this,

FCNNs could be an option. They accept any sizes of patches during

prediction. Unlike CNNs, they do not require to match with the training

patch size. The FCNNs themselves have some limitations. Because of

the downsampling, some important pieces of information are lost at

the encoder stage of an FCNN; at the decoder stage thus it could not

regain the accurate annotation. Toward this problem, we could utilize

FCNNs without their decoder part, which is similar to a CNN without

dense layers.

• Algorithms to reduce FP. Our analysis recommends a less FP-producing

class distribution. The next work could be to develop an algorithm

that reduces FP in cancer detection from WSIs. FP either cause wrong

treatment or demand extra time to recheck it manually by pathologists.

According to our observation, the FP area is usually as small as micro-

metastasis; thus, rechecking all the predicted micro-metastases with

different dedicated models could be a solution. The final decision

could be taken either by ensembling the decisions of all models or by

a majority voting scheme. Moreover, the ground truth might not be

100% perfect in the case of WSIs. It is normal to have some parts of a

gigantic WSI be overlooked or miss-classified, which might misguide

the model during training and produce FPs. Furthermore, there are

some confusing and challenging locations (e.g. germinal center, blur

area) in the WSIs that might cause FP during prediction. Training

image fine-tuning and hard or confusing examples finding and fixing

the trained model accordingly could be a solution towards this problem.

• A content and context aware CNN for high recall and precision at the

same time. A system trained with patches from the high-resolution
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WSIs leads to high recall. Because of the limitation of resources such

as memory, the context information may not be enough and precision

might be reduced. On the other hand, a system trained with patches

from the down-resolution WSIs gives high precision since enough con-

text information can be given, however, downsampling the resolution

causes losing the important details and reduces recall. Towards this

problem, a two-branched CNN architecture could be a solution. In

the architecture, one branch would accept patches from the highest

resolution WSIs for the content information and serve for the recall,

while the other branch would accept patches from the lower resolution

WSIs for the context information and serve for the precision. The fea-

ture sets from the two branches could then be concatenated before the

classification layer.

• Exploring different pre-processing and post-processing of data for CADs.

In our systems, we applied different conventional data augmentation

techniques, however, did not conduct any comparative studies. For

example, which types of data augmentation techniques are applicable to

WSI data, and why? Which one is more effective, and why? Analyzing

these research questions would be useful to deal with data scarcity. The

same investigation could be beneficial for different data normalization

techniques to cope with the viability of WSI data due to the difference

in their preparation process in labs. In addition to the pre-processing of

data just mentioned, the post-processing of the predicted outputs is also

an important factor to get a desirable accuracy of the prediction. For

example, filtering, smoothing, thresholding, ensembling are popular

post-processing on outputs. A dedicated analytical study could be

conducted on this topic as well.

• Exploring unlabeled WSI data. Training a deep model requires a large

set of data. In biomedical research, however, getting labeled data is

costly since it requires domain experts to annotate [Otálora et al., 2021].

To resolve this issue, transfer learning is popularly utilized. In this

case, learned features from a base domain are transferred to a target

domain. The performance, however, depends on how similar the two

domains (base and target) are [Yosinski et al., 2014]. As mentioned

earlier, labeled-data scarcity is common in biomedical domains, e.g.,

cancer detection in WSIs; thus, getting a large data set of the same
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domain to transfer learned features is not always possible. To this end,

exploring the use of unlabeled data from the same domain could be

beneficial. Using autoencoder, the representation of unlabeled data, the

unsupervised features, could be learned. These unsupervised features

could be explored as a base for a small target labeled data in a feature

transfer manner. Moreover, to increase the hard negative and positive

examples -the reasons of FP and FN- in the training set, the unlabeled

data could be a source of harvesting those examples.
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