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Résumé

En apprentissage statistique et traitement du signal, de nombreuses tâches se formulent sous
la forme d’un problème d’optimisation de grande taille. Dans ce contexte, les méthodes du
premier ordre, qui utilisent uniquement l’information apportée par le gradient de la fonction
objectif, sont privilégiées en raison de leur faible coup par itération et de leur simplicité. Nous
étudions dans cette thèse les méthodes du premier ordre à distance de Bregman, qui constituent
une généralisation de la célèbre méthode de descente de gradient. Cette généralisation consiste
à remplacer la distance euclidienne par une distance plus générale, dite de Bregman, générée
par une fonction convexe noyau suffisamment simple. La fonction noyau est choisie de manière
à être adaptée à la géométrie de la fonction objectif au travers de la condition de régularité
relative, introduite en 2017 par Bauschke, Bolte et Teboulle. Depuis son apparition, cette
condition a fait naître de nouvelles perspectives en optimisation du premier ordre.

Tout d’abord, nous appliquons les méthodes de Bregman aux problèmes d’optimisation sur
des espaces de matrices de rang faible. En exploitant la structure matricielle et en utilisant
la propriété de régularité relative, nous proposons des noyaux de Bregman qui permettent
d’améliorer la performance numérique par rapport aux méthodes euclidiennes.

Ensuite, nous nous penchons sur la complexité théorique de ces algorithmes. Un des prob-
lèmes les plus importants est de déterminer s’il existe une version accélérée de l’algorithme
de gradient de Bregman qui possède un meilleur taux de convergence. Dans le cas général,
nous démontrons que la réponse est négative : la complexité de la descente de gradient de
Bregman standard ne peux pas être améliorée pour des noyaux génériques. La preuve repose
sur un contre-exemple pathologique qui a été découvert au travers de méthodes d’analyses de
pire cas par ordinateur. Nous évoquons aussi une tentative pour obtenir des résultats posi-
tifs d’accélération en spécialisant cette analyse dans le contexte plus restreint de la géométrie
entropique.

Enfin, nous étudions la version stochastique de l’algorithme de Bregman pour minimiser des
fonctions sous la forme d’espérance, ainsi que des méthodes de réduction de variance lorsque
la fonction objectif est une somme finie.
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Abstract

We study large-scale optimization problems with applications to signal processing and machine
learning. Such problems are typically solved with first-order methods that perform iterative
updates using the gradient of the objective function. We focus on the class of Bregman first-
order methods, for which the direction of the gradient step is determined by the Bregman
divergence induced by a convex kernel function. The choice of the kernel is guided by the
relative smoothness condition, which requires the kernel to be compatible with the objective
through a descent inequality. This condition was introduced recently by Bauschke, Bolte and
Teboulle in 2017 and has opened new perspectives in first-order optimization.

In the first part, we apply Bregman methods to minimization problems on the space of
low-rank semidefinite matrices. By leveraging the matrix structure and using the relative
smoothness property, we show that well-chosen Bregman kernels allow to improve performance
over standard Euclidean methods.

Then, we study the theoretical complexity of these algorithms. An important question is
to determine whether there exists an accelerated version of Bregman gradient descent which
achieves a better convergence rate in the same setting. In the general case, we show that
the answer is negative as the complexity of the standard Bregman gradient method cannot be
improved for generic kernels. The proof relies on a pathological example which was discovered
by analyzing the worst-case behavior of Bregman methods with a computer-aided technique
called performance estimation. We also detail an attempt towards improving the convergence
speed in a more restricted setting, by specializing the performance estimation framework to the
entropic geometry.

Finally, we study a stochastic variant of Bregman gradient descent for expectation min-
imization problems, which are pervasive in machine learning, along with variance reduction
methods for finite-sum objectives.
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Contributions and Thesis Outline

Throughout this thesis, we consider the minimization problem

min
x2C

f(x)

where C is a convex set and f a differentiable function. We focus on the setting where f satisfies
a relative smoothness condition with respect to some kernel function h:

f(x)  f(y) + hrf(y), x� yi+ LDh(x, y), 8x, y 2 int C,

where Dh is the Bregman divergence induced by h. The basic algorithm for solving this problem
is Bregman gradient descent (also known as NoLips or mirror descent).

Chapter 1: we introduce the framework of Bregman gradient methods for relatively-smooth
problems, and review related work on theoretical aspects, algorithmic extensions and applica-
tions. We also provide a more general historical overview on the use of Bregman divergences
in optimization.

Chapter 2: in this chapter, we apply the Bregman gradient method to nonconvex low-rank
problems. We wish to minimize a L-smooth function F on the space of semidefinite matrices
of size n⇥n and rank at most r with the nonconvex Burer-Monteiro formulation, which writes

f(X) = F (XXT ) + g(X)

where X 2 R
n⇥r, and g is a (possibly nonsmooth) regularization or constraint function. We

show that the factorized function f is not globally smooth with respect to the squared Euclidean
norm, but it can be proven to be relatively-smooth with respect to well-chosen quartic kernels,
allowing to apply Bregman proximal gradient methods. We study two types of quartic kernels.
The norm kernel is defined as

hn(X) =
↵

4
kXk4 + �

2
kXk2

and can be used for various functions g, such as the sparsity-inducing `1 norm or the indicator
set of the nonnegative orthant. We also introduce the Gram kernel,

hG(X) =
↵

4
kXk4 + �

4
kXTXk2 + �

2
kXk2,

which is more complex to use as the Bregman gradient iterates can only be computed easily
for problems without penalization, i.e., with g ⌘ 0. We show that, by leveraging the low-
rank matrix structure, the Gram kernel allows to improve numerical performance for well-
conditionned functions F . We provide numerical experiments on two applications: symmetric
nonnegative matrix factorization (SymNMF) and Euclidean distance matrix completion.
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Chapter 3: we study the theoretical complexity of relatively-smooth convex minimization.
We prove a lower bound stating that Bregman gradient descent is an optimal method in this
setting, among the general class of methods that use Bregman divergences and basic linear
operations. This result demonstrates that the O(1/k) convergence rate of Bregman gradient
descent cannot be improved for generic kernel h, and thus that additional regularity assumptions
are needed in order to devise a faster algorithm.

The worst-case instances involved in the lower bound were inferred from the numerical
solution to a performance estimation problem, which we describe in the next chapter.

Chapter 4: in this chapter, we use computer-aided tools for analyzing the worst-case com-
plexity of Bregman methods. This technique, called performance estimation, was initially
designed for the study of Euclidean gradient methods. We extend it to the setting of relatively-
smooth problems, for computing theoretical guarantees of Bregman methods with generic kernel
h. That is, we search for the worst-case behavior among the class of relatively-smooth problem
instances of the form

BL(C) = {(f, h) : h is a kernel function on C and f is convex and L-smooth relative to h} .

By establishing interpolation conditions, we reduce this task to a finite-dimensional semidefinite
program defined on an open set. Then, we use topological arguments to show that this problem
is equivalent to a simpler problem on a larger class BL(C), which can be seen as the closure of
BL(C) and involves possibly nonsmooth convex functions.

We showcase this approach on several examples. First, solving the dual performance esti-
mation problem allows to infer analytical proofs for two different convergence results of BGD.
Then, we are also able to discover the corresponding worst-case functions f and h. Because of
the topological fact mentioned above, these worst-case elements are actually nonsmooth func-
tions from BL(C), and can be approached by a sequence of elements of BL(C). This limiting
nonsmooth behavior is at the core of the proof of the lower bound in Chapter 3, which was
inferred from these numerically generated worst-case examples.

Chapter 5: in this chapter, we describe an attempt to perform computer-aided analyses
of Bregman methods in the more restricted setting of a fixed kernel h. Indeed, results from
previous chapters suggest that the class BL(C) of general relatively-smooth problems is too
large, as functions can approach pathological nonsmooth instances from BL(C). To consider a
more realistic setting, we focus on the particular case of the entropic kernel

he(x) =

dX

i=1

x(i) log x(i) � x(i),

which is one of the most common kernels used in Bregman methods and presents favorable
regularity properties. Therefore, we now search for the worst-case of Bregman methods on the
class

Fhe
L = {f : f is convex and L-smooth relative to he} .

We show that the corresponding performance estimation problem (PEP) can be reduced to
a finite-dimensional problem through interpolation conditions, which we establish using the
smoothing properties of Bregman-Moreau envelopes. We then formulate this problem as a

2



convex program on the set of matrices of pairwise Kullback-Leibler divergences, the Kullback-
Leibler cone.

Since no solvers are available for this type of problem, we use simple heuristics for solving
small instances of the PEP and report preliminary numerical results.

Chapter 6: we study stochastic Bregman gradient methods for problems where the objective
is an expectation of relatively-smooth convex functions. We first prove the convergence of
Bregman stochastic gradient descent under a condition on the variance of the gradients at the
optimal point.

We then focus on variance reduction techniques for finite-sum problems, which are widely
used for accelerating the convergence of stochastic methods in the Euclidean setting. We
propose the Bregman counterpart of the SAGA method [Defazio et al., 2014]. The analysis is
more tedious and requires additional regularity conditions of the kernel h. We show that, with
the right choice of step sizes, the desired fast convergence rate is reached asymptotically.

Finally, we demonstrate the effectiveness of these stochastic variants by reporting numerical
experiments on Poisson inverse problems.

References: publications related to this thesis are listed below.

• Chapter 2 is based on the article [Dragomir et al., 2021a]: Radu-Alexandru Dragomir,
Alexandre d’Aspremont, and Jérôme Bolte. Quartic First-Order Methods for Low-Rank
Minimization. Journal of Optimization Theory and Applications, 189(2), 2021.

• Chapters 3 and 4 are based on the article [Dragomir et al., 2021c]: Radu-Alexandru
Dragomir, Adrien Taylor, Alexandre d’Aspremont, and Jérôme Bolte. Optimal Com-
plexity and Certification of Bregman First-Order Methods. Mathematical Programming,
2021.

• Chapter 6 is based on the article [Dragomir et al., 2021b]: Radu-Alexandru Dragomir,
Mathieu Even, Hadrien Hendrikx (2021). Fast Stochastic Bregman Gradient Methods:
Sharp Analysis and Variance Reduction. To appear in International Conference on Ma-
chine Learning, 2021.
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Chapter 1

Relative Smoothness and Bregman

Optimization Methods

Many tasks in computational science, engineering and operations research can be formulated
as constrained optimization problems of the form

min
x2C

f(x) (P)

where C is a convex subset of Rd and f is a differentiable function. We are particularly interested
in large-scale applications from signal processing, data analysis and machine learning, where
the dimension d typically ranges between 103 and 109. Problem (P) is generally solved with
iterative algorithms, which successively minimize local approximations of the function f based
on its derivatives. As higher-order derivatives are too costly to compute for high dimension d,
we consider methods that only rely on the information provided by the gradient rf : they
constitute the class of first-order methods.

The simplest and most known first-order method is projected gradient descent (GD), which
amounts to iterate

xk+1 = ΠC (xk � �krf(xk)) , (1.1)

where k � 0 is the iteration counter, ΠC is the Euclidean projection on C and �k > 0 is the
step size. Equivalently, this update can be written as

xk+1 = argmin
u2C

f(xk) + hrf(xk), u� xki+
1

2�k
ku� xkk2, (GD)

where h·, ·i and k·k denote the Euclidean inner product and norm on R
d. Thus, gradient descent

successively minimizes a surrogate of f consisting of the first-order approximation penalized
with a quadratic term which quantifies the inexactness of the linear model far from xk. The
efficiency of the method is connected to how well this surrogate approximates f . The classical
condition for analyzing this is to assume that the gradient rf is Lipschitz continuous. This
ensures that, for �k small enough, the inner objective in (GD) is an upper bound on f , and
therefore that every iteration decreases the value of the objective.

However, in some problems, the quadratic model is a poor approximation of f and a different
geometry might be more adapted. This is the purpose of the Bregman gradient descent method,
which performs the update

xk+1 = argmin
u2C

f(xk) + hrf(xk), u� xki+
1

�k
Dh(u, xk), (BGD)
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where the quadratic term has been replaced by the more general Bregman divergence

Dh(x, y) = h(x)� h(y)� hrh(y), x� yi

induced by some convex kernel function h. This divergence is nonnegative by convexity of h.
Note that taking h(x) = 1

2kxk2 yields the Euclidean distance Dh(x, y) =
1
2kx� yk2. However,

choosing a different kernel fuction h can result in a more accurate local model than the standard
Euclidean one. This choice is guided by the so-called relative smoothness condition, introduced
in Bauschke et al. [2017], which amounts to assume that the inner objective in (BGD) is an upper
bound on f . Naturally, the kernel h also needs to be simple enough so that the subproblem
defining xk+1 can be solved easily, that is, in closed form or with efficient numerical schemes.

The Bregman gradient method is also known as Mirror Descent, and has been originally pro-
posed by Nemirovski and Yudin [1983] for minimizing convex, possibly nonsmooth, functions.
In their context, the kernel h is chosen according to the set C, in order to minimize its diameter
with respect to the corresponding Bregman divergence (see the discussion in Section 1.5). In
this thesis, we study the more recent relatively-smooth setting, where h is chosen to fit the
curvature of the differentiable function f , and use the Bregman gradient descent terminology,
although there is no consensus in the litterature.

1.1 Relative smoothness and the Bregman gradient method

In this section, we review the general setting for relatively-smooth optimization as well as the
main theoretical results. We use standard notation and definitions from convex analysis; see
e.g., Rockafellar [1970], Bauschke and Combettes [2011].

The first step is the choice of a kernel function h adapted to the optimization set C. While the
blanket assumptions on h vary between papers, there is usually a set of minimal requirements.

Definition 1.1 (Kernel function). A function h : Rd ! R [ {+1} is called a kernel function
on C if

(i) h is closed convex proper,

(ii) h is continuously differentiable and strictly convex on int C,

(iii) the Bregman gradient iterates are well-posed, i.e., for every p 2 R
d, the problem

min
u2C
hp, ui+ h(u)

has a unique minimizer, which belongs to int C.

The set C is sometimes called the zone of h. The kernel h induces the Bregman divergence

Dh(x, y) = h(x)� h(y)� hrh(y), x� yi

defined for x 2 domh, y 2 domrh. Because of strict convexity of h, the Bregman divergence
Dh(x, y) is nonnegative and equal to zero if and only if x = y. However, it is not a proper
distance, as it is not symmetric in general. If h is sufficiently regular, then Dh is locally
approximated by a quadratic function when x is close to y:

Dh(x, y) ⇡
1

2
hr2h(y)(x� y), x� yi when x! y,
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where r2h denotes the Hessian matrix of h. Equiped with the geometry induced by h, we can
now define for x 2 int C the Bregman gradient map with step size � > 0:

T�(x) = argmin
u2C

hrf(x), u� xi+ 1

�
Dh(u, x),

which we assume to be easily computable. Due to Definition 1.1(iii), T� is well defined on int C.
We now list the most standard examples of kernels.

• The Euclidean kernel h(x) = 1
2kxk2 induces the Euclidean distance Dh(x, y) =

1
2kx� yk2,

and T� is the projected gradient step (1.1).

• The quadratic kernel is defined as h(x) = 1
2hAx, xi, where A 2 R

d⇥d is a positive
definite matrix. Using this kernel corresponds to performing linear preconditioning.

• The entropy kernel h(x) =
Pd

i=1 x
(i) log x(i) defined for x 2 R

d
+ with the convention

0 log 0 = 0, induces the Kullback-Leibler divergence Dh = DKL with

DKL(x, y) =

dX

i=1

x(i) log

 

x(i)

y(i)

!

� x(i) + y(i).

In the case when C is the unit simplex {x 2 R
d
+ :

Pd
i=1 x

(i) = 1}, the gradient map is

T�(x)
(i) =

x(i) exp(��rf(x)(i))
Pd

j=1 x
(j) exp(��rf(x)(j))

for i = 1 . . . d, see, e.g., Beck and Teboulle [2003]. This formula is also known as expo-
nential weight update, or exponentiated gradient [Kivinen and Warmuth, 1997].

• The log kernel h(x) =
Pd

i=1� log x(i) for x 2 R
d
++ induces the Itakura-Saito divergence

Dh = DIS with

DIS(x, y) =

dX

i=1

 

� log

 

x(i)

y(i)

!

+
x(i)

y(i)
� 1

!

.

defined for x, y 2 R
d
++. The corresponding Bregman gradient map for C = R

d
++ is

T�(x)
(i) =

x(i)

1 + �x(i)rf(x(i)) , i = 1 . . . d.

See Section 1.2 for more examples. It should be emphasized that, while a kernel function
is differentiable on the interior of its domain, it is not required to be differentiable on the
boundary. For instance, the entropy is continuous but not differentiable on the boundary of
R
d
+. Moreover, the domain of h can be closed, such as for the entropy which is finite on R

d
+, or

open, as for the log kernel.
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Convex conjugate and mirror formulation. If h is a kernel function, we define its convex
conjugate h⇤ as

h⇤(y) = sup
u2Rd

hu, yi � h(u).

By Assumption (iii), h⇤ is finite-valued on R
d. Moreover, its gradient satisfies for every u 2 R

d

[Rockafellar, 1970, Sect. 26]

rh⇤(y) = argmax
u2Rd

hu, yi � h(u).

Hence the Bregman gradient map T� can be alternatively written as

T�(x) = rh⇤ [rh(x)� �rf(x)] ,

which is sometimes called the mirror descent formulation (see Section 1.5 for historical com-
ments on this expression).

We now introduce the fundamental notion of relative smoothness, also known as smooth
adaptable property, or Lipschitz-like condition [Bauschke et al., 2017].

Definition 1.2 (Relative smoothness). We say that the function f is smooth relative to h if it
is differentiable on int C and if there exists a constant L > 0 such that

f(x)  f(y) + hrf(y), x� yi+ LDh(x, y) (RelSmooth)

for every x, y 2 int C.

An equivalent characterization of relative smoothness is to assume that Lh � f is convex
on int C, or, if f and h are twice differentiable, to the condition

r2f(x) � Lr2h(x) 8x 2 int C,

where � denotes the semidefinite order. If h is the Euclidean kernel, then (RelSmooth) corre-
sponds to the standard notion of smoothness in optimization, implied by Lipschitz continuity
of rf (which we will refer to as L-smoothness to avoid ambiguity).

Similarly, Lu et al. [2018] also defined the notion of relative strong convexity.

Definition 1.3 (Relative strong convexity). We say that the function f is strongly convex
relative to h if it is differentiable on int C and if there exists a constant µ > 0 such that

f(y) + hrf(y), x� yi+ µDh(x, y)  f(x)

for every x, y 2 int C.

In the same, way, relative strong convexity is equivalent to the function f�µh being convex
on int C, or to the second-order characterization

µr2h(x) � r2f(x) 8x 2 int C.

The ratio  = L/µ is called the relative condition number : a value close to 1 indicates that f is
well approximated by the right-hand side of (RelSmooth). Now, note that this right-hand side
provides a simple global majorant of f . A natural approach for solving (P) is then to successively
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minimize this majorant, and this leads to the Bregman Gradient method (Algorithm 1), also
known as NoLips [Bauschke et al., 2017].

Algorithm 1 Bregman Gradient Descent (BGD) / NoLips

Input: Initial point x0 2 int C, step size �.
for k = 0,1,. . . do

xk+1 = argmin
u2C

f(xk) + hrf(xk), u� xki+
1

�
Dh(u, xk)

end for

We now state the theoretical convergence rate of Bregman gradient: as in the Euclidean
case, the convergence is sublinear for convex functions and linear for relatively-strongly convex
functions.

Proposition 1.4 (BGD convergence rate for convex functions). Assume that f is convex on C
and L-smooth relative to a kernel function h. Let {xk}k�0 be the sequence of iterates produced
by Algorithm 1 with step size � 2 (0, 1/L]. Then, for every u 2 C, we have

f(xk)� f(u)  LDh(u, x0)

k
, (1.2)

and if f is additionally µ-strongly convex relative to h,

f(xk)� f(u)  L
⇣

1� µ

L

⌘k
Dh(u, x0). (1.3)

See [Bauschke et al., 2017, Thm. 1] for the proof of the sublinear rate and [Lu et al., 2018,
Thm. 3.1] for the linear convergence result.

Remark 1. If the relative smoothness constant L is unknown or too conservative in theory,
one can also use Armijo-like line search techniques to determine the step size dynamically (see
Chapter 2).

Remark 2. Let x⇤ 2 argminC f . In order to take u = x⇤ in Equations (1.2) and (1.3) and
obtain a bound on the suboptimality gap f(xk) � f(x⇤), we need x⇤ to belong to the domain
of h. In most cases, this condition is trivially satisfied. However, it can fail if x⇤ lies on the
boundary of C and domh is open, such as for the log kernel.

Benefits of Bregman gradient descent with relative regularity. The convergence rate
of the Bregman Gradient method generalizes that of Euclidean gradient descent on L-smooth
and strongly convex functions [Nesterov, 2003, Chap. 2]. Using a different geometry than the
Euclidean one can benefit in two types of situations:

1. Problems with unbounded curvature: in some problems, the Hessian r2f(x) grows
unbounded as x reaches some boundary points of C; this is the case for instance with
functions involving the Kullback-Leibler divergence (Figure 1.1). Therefore, f is not L-
smooth in the standard sense, but relative smoothness can be established with a well
chosen kernel that takes into account this singularity. This allows to apply the Bregman
gradient method with a fixed step size and ensure global convergence.
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2. Bregman preconditioning: in other situations, even if f is globally L-smooth, the
performance of gradient methods can be improved by choosing a kernel that provides a
better approximation of the objective, i.e., such that the gap between r2h and r2f is as
small as possible. There is however a tradeoff, as a tighter approximation usually implies
that the subproblem defining the Bregman iterate is harder to solve. This is analogous
to the effect of preconditioning for solving linear systems.

(a) f(x) = 1
2
kAx� bk2 (b) f(x) = DKL(b, Ax)

Figure 1.1: Level lines of the objective function of a linear inverse problem on R
2
+, with the same

data A 2 R
2×2, b 2 R

2 and different loss functions. Left: Euclidean loss (Gaussian noise). Right:
Kullback-Leibler loss (Poisson noise). Unlike the Euclidean loss, the Poisson loss is not globally smooth
as its Hessian diverges near some boundary points of R2

+.

1.2 Examples of relatively-smooth problems

We now provide a list of examples of relatively-smooth problems with various applications.

1.2.1 L-smooth objective and strongly convex kernel

Prior to the introduction of relative smoothness, most analyses of Bregman gradient descent
for differentiable objectives made the assumption that the objective f is L-smooth and that the
kernel h is �-strongly convex with respect to some general norm k ·kE [Auslender and Teboulle,
2006, Walid et al., 2015]. This is a particular case of a relatively-smooth problem, as we have
for x, y 2 int C,

f(x)  f(y) + hrf(y), x� yi+ L

2
kx� yk2E

 f(y) + hrf(y), x� yi+ L

�
Dh(x, y)

(1.4)

by definition of smoothness and strong convexity with respect to the norm k · kE . However,
this is a restrictive setting as many problem of interest are not globally L-smooth. Or, even if
they are, tighter relative smoothness constants can be established by eliminating the need for
the intermediate bound involving k · kE in the inequality (1.4). We provide such examples in
the sequel.
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1.2.2 Kernels on nonnegative orthant

This category corresponds to kernels defined on the nonnegative orthant C = R
d
+. These kernels

are mainly designed to tackle problems that have unbounded curvature near the boundary of C.

Log kernel: inverse problems with Poisson noise. Consider the problem

min
x2Rd

+

f(x) = DKL(b, Ax) (1.5)

where DKL(x, y) =
Pm

i=1 x
(i) log

⇣
x(i)

y(i)

⌘

� x(i) + y(i) denotes the Kullback-Leibler divergence,

A 2 R
m⇥d
+ is a measurement matrix and b 2 R

m
+ is a vector of observations. Problem (1.5)

models the task of recovering an unknown signal corrupted by Poisson noise, where A encodes
the measurement process. It is a fundamental problem in signal processing, with a large range
of applications in astronomy, microscopy [Bertero et al., 2009] and medical imaging [Ollinger,
1994, Ben-Tal et al., 2001, Kak and Slaney, 2001]. This is a typical situation of an objective
function with unbounded curvature, as r2f(x) grows to infinity when Ajx ! 0 for some
j 2 {0 . . .m} (see Figure 1.1). However, when choosing the log-kernel

h(x) =

dX

i=1

� log x(i),

we can show that f is smooth relative to h with constant L = kbk1 [Bauschke et al., 2017] and
thus guarantee that BGD converges with a constant step size �  1/L.

Entropy kernel: nonnegative entropy regression. Consider now the problem

min
x2Rd

+

f(x) = DKL(Ax, b)

where A 2 R
m⇥d
+ , b 2 R

m
+ , which differs from (1.5) as DKL is not symmetric. Then, f is smooth

relative to the entropy kernel

h(x) =
dX

i=1

x(i) log x(i)

with constant L = maxj=1...d
Pm

i=1Aij [Bauschke et al., 2017]. Such a function appears in
entropy-regularized optimal transport, see e.g., Chizat et al. [2018], Mishchenko [2019].

1.2.3 Polynomial kernels

In this situation, the objective function is usually a polynomial of degree higher than 2, whose
Hessian then grows unbounded as kxk ! +1. Choosing an appropriate polynomial kernel
allows to prove relative smoothness globally, and possibly to improve conditioning.

Quartic polynomials. A large class of polynomial optimization problems is composed of
quadratic inverse problems, that is, with objectives of the form

min
x2Rd

f(x) =
mX

j=1

(hx,Ajxi � bj)
2
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where Aj 2 R
d⇥d, bj 2 R , j = 1 . . .m. Quadratic inverse problems have a broad range of

applications, such as phase retrieval [Candès et al., 2015], matrix factorization and unsupervised
learning (see Chapter 2 and references therein). As shown by Bolte et al. [2018], such functions
are smooth relative to the quartic kernel

h(x) =
1

4
kxk4 + 1

2
kxk2.

In Chapter 2, we specialize the analysis to low-rank matrix problems and leverage this structure
to provide tighter kernels.

Another important application is given in Nesterov [2020, 2021], Grapiglia and Nesterov
[2021], where the authors propose to use a refined quartic kernel for solving the subproblem
that appears in regularized third-order tensor methods.

Higher-order polynomials. Kernels of higher degree have also been considered for deep lin-
ear neural networks [Mukkamala et al., 2019] and structure learning on causal models [Romain
and D’Aspremont, 2020].

1.2.4 Other applications

Statistical preconditioning for distributed optimization. Consider the finite-sum min-
imization problem

min
x2Rd

f(x) =
1

n

nX

i=1

fi(x)

where f1, . . . fn are differentiable functions with similar structure; e.g., the loss function on
different parts of the dataset in the setting of empirical risk minimization. Then, statistical
preconditioning consists in choosing the kernel h as

h(x) = fi0(x) +
�

2
kxk2

for some i0 2 {1 . . . n}, where � > 0 is a given constant.Typically, fi0 is the loss function on a
part of the dataset of size nprec. This idea, proposed originally by Shamir et al. [2014], has been
developped further through the lens of relative regularity by Hendrikx et al. [2020]. The latter
show that, on random datasets and with high probaiblity, f is smooth and strongly convex
relative to h with a relative condition number rel that satisfies

rel = 1 +O

✓
eucl

nprec

◆

where eucl is the standard Euclidean condition number of f . Thus, this kernel allows to
improve conditioning over the Euclidean setting. There is however a tradeoff, as computing the
Bregman iterates becomes harder when nprec is large. Nevertheless, this method is advantageous
in the setting of distributed optimization, where the Bregman subproblem is solved efficiently
by a central server, and the goal is to reduce the total number of iterations performed, since
computing the gradient of f requires costly communication between different machines.
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Algorithmic reinterpretations: EM and Sinkhorn. Some classical iterative methods can
also be interpreted as Bregman gradient descent on relatively-smooth functions. Kunstner et al.
[2020] show that the celebrated Expectation-Maximization (EM) for maximizing the likelihood
of a statistical model with latent variables is an instance of BGD. For exponential families, the
objective function of EM is smooth relative to the log-partition function of the distribution.
This sheds light on a new theoretical analysis of EM algorithms, as well as improved local
convergence rates.

In the same spirit, Léger [2020] studies the Sinkhorn algorithm, which is widely used for
solving matrix scaling and entropy-regularized optimal transport problems. He shows that this
scheme can also be seen as an instance of BGD with a relatively-smooth objective1. The theo-
retical analysis establishes that Sinkhorn converges at a subblinear rate, as in Proposition 1.4.

1.3 Extensions and variants of Bregman gradient descent

We now review the algorithmic variants of BGD and extensions of relative smoothness for
various classes of optimization problems.

Bregman proximal gradient. An important class of problems in signal processing and
machine learning is that of composite optimization problems of the form

min
x2C

f(x) + g(x)

where f is smooth relative to h and g is a (possibly nonsmooth) function that encodes a penalty
on the solution, such as sparsity when g is an `1 norm. This problem can be tackled with the
Bregman proximal gradient method

xk+1 = argmin
u2C

f(xk) + g(u) + hrf(xk), u� xki+
1

�k
Dh(u, xk), (BPG)

provided that g is simple enough so that the inner subproblem can be solved easily. This
method generalizes the Euclidean proximal gradient method, also known as forward-backward
splitting [Combettes and Wajs, 2005]. In their work, Bauschke et al. [2017] prove that (BPG)
enjoys a sublinear convergence rate of O(1/k) when f and g are convex; see also Bùi and
Combettes [2019] for a more general analysis.

Nonconvex problems. Bolte et al. [2018] extend the Bregman proximal gradient method to
relatively-smooth nonconvex objective functions, and establish the following convergence rate
of the stationarity measure:

min
i=1...k

Dh(xi, xi�1)  O

✓
1

k

◆

.

Moreover, they prove convergence to a critical point when the objective satisfies the Kurdyka-
Lojasiewicz property [Bolte et al., 2007] as well as some additional local regularity properties.
In subsequent work, Bauschke et al. [2019] study different conditions for guaranteeing local
linear convergence to a stationary point. Ahookhosh et al. [2021] describe a line-search method
for determining the step size of BGD which enjoys favorable local convergence properties.

1Interestingly, the author does not make the connection with other work on relative smoothness and seems
to have discovered the same notion independently.
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Inertial variants of BGD have been proposed for nonconvex problems with similar conver-
gence guarantees and improved numerical performance [Mukkamala and Ochs, 2019, Zhang
et al., 2019, Mukkamala et al., 2020]. In these methods, the update of BGD is augmented with
an additional momentum term of the form ↵k(xk�xk�1), where the coefficient ↵k is determined
by a line search procedure.

Stochastic gradients. Hanzely and Richtárik [2018], Davis et al. [2018] analyze stochastic
variants of the Bregman gradient method, under additional restrictive regularity assumptions.
We study stochastic BGD for general relatively-smooth problems in Chapter 6, as well as
variance reduction techniques for finite-sum objectives.

Bregman block coordinate methods. In some problems, it can be advantageous to lever-
age a block coordinate structure of the type

x = (x1, . . . , xp)

where xi 2 R
di and

Pp
i=1 di = d, and to assume that f is smooth relative to a different kernel

hi on each coordinate block. This allows the application of Bregman block coordinate methods,
which alternate updates of the form

xk+1 = argmin
u2Rdi

hrif(xk), u� xiki+
1

�k
Dhi

(u, xik),

for i 2 {1 . . . p}, where rif denotes the partial gradient of f on the block i. This approach
has been considered in several works [Teboulle and Vaisbourd, 2019, Ahookhosh et al., 2019,
Hendrikx et al., Gao et al., 2020]. It is particularly efficient in situations where Bregman block
coordinate updates are much easier to compute, or if restricting on separate blocks allows to
prove tighter relative smoothness inequalities than on the full coordinates, such as for certain
matrix factorization problems.

Relative regularity beyond differentiable functions. The idea of choosing a Bregman
geometry that is adapted to the singularities of the objective through relative regularity has also
been extended to other settings than that of differentiable functions, such as nonsmooth convex
functions [Lu, 2019], online learning [Antonakopoulos et al., 2020], variational inequalities and
monotone operators [Antonakopoulos et al., 2019, Stonyakin et al., 2020, Cohen et al., 2020].

Variants of relative smoothness. Gutman and Peña [2020] extend the notion to other
type of distances than Bregman divergences, and to also take into account the geometry of the
optimization set. Maddison et al. [2021] propose a dual variant of relative smoothness, which is
invariant to translation (unlike the standard version), with application to `p norm regression.
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1.4 The issue of acceleration and non-homogeneity

Algorithm 2 Accelerated Bregman gradient method in generic form

Input: initial point x0 2 int C

Set z0 = x0.

for k = 0,1,. . . do

Determine interpolation coefficient ↵k and step size �k,

yk = (1� ↵k)xk + ↵kzk,

zk+1 = argmin {hrf(yk), u� yki+ 1
�k
Dh(u, zk) |u 2 R

n},

xk+1 = (1� ↵k)xk + ↵kzk+1,

end for

Acceleration. For convex relatively-smooth functions, Proposition 1.4 states that BGD con-
verges at a rate of O(1/k) in function values, which is a rather slow rate, both in theory and in
practice. An important question is whether there exists a first-order Bregman algorithm that
achieves a better convergence rate on the same class of problems.

In the Euclidean setting, the answer is positive and was provided in the seminal work of
Nesterov [1983]2. He showed that the accelerated gradient method, obtained by adding a simple
and well-chosen linear extrapolation step to gradient descent, achieves a rate of O(1/k2) on
L-smooth convex functions, and that this worst-case rate is optimal among all first-order Eu-
clidean methods [Nesterov, 2003]. Significant improvement in convergence speed is also observed
in practice. This so-called acceleration technique has been adapted to improve the efficiency of
several other algorithms in continuous optimization; see the monograph by D’Aspremont et al.
[2021] for a recent survey.

Naturally, the acceleration technique has been applied to Bregman gradient methods; most
instances of accelerated BGD follow the generic form described in Algorithm 2. The choice of
the interpolating coefficients ↵k and the step size parameters �k are crucial for guaranteeing
fast convergence. Several choices have been proposed in different settings:

• Smooth objective and strongly convex kernel: the first instance of accelerated BGD
was studied by Auslender and Teboulle [2006], under the assumption that f is Lk·kE -
smooth and h is �k·kE -strongly convex with respect to some norm k · kE . In this setting,
they show that Algorithm 2 with the same choice of coefficients as Nesterov’s accelerated
gradient method (that is, �k / k and ↵k / 1/k) yields the improved convergence rate of
O(1/k2). However, the algorithm’s performance is dependent on �k·kE/Lk·kE , which can
be very small or even equal to 0 in the context of problems with unbounded curvature.

• Relatively-smooth objective: in this setting, the first tentative of acceleration was
proposed by Hanzely et al. [2021]. Their analysis rely on the triangle scaling exponent of
the Bregman divergence, that is, the largest exponent � such that

Dh

�
(1� ✓)x+ ✓z, (1� ✓)x+ ✓y

�
 ✓�Dh(x, y), 8✓ 2 [0, 1], (TSE)

2There were actually earlier versions of accelerated algorithms proposed by A. Nemirovski which were slightly
more complex as they required to perform a two-dimensional minimization subroutine, see e.g., Bubeck [2019].
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for every x, y, z 2 int C. Under such property, the authors show that an appropriate choice
of coefficients in Algorithm 2 allows to achieve a O(1/k�) convergence rate. However, be-
sides quadratic kernels for which � = 2 and the entropy where � = 1, the inequality (TSE)
usually does not hold globally. It is nevertheless valid on small bounded subsets under
sufficient regularity of h, as the Bregman divergence locally behaves as a quadratic func-
tion. Thus, the authors propose adaptive variants of accelerated BGD to take advantage
of this property. Qualitative arguments can then be used to show that the improved rate
of O(1/k2) is reached asymptotically, and numerical experiments demonstrate improved
performance over standard BGD.

Similar results are obtained by Hendrikx et al. [2020] with application to statistical precon-
ditioning for distributed optimization. They propose an adaptive variant of Algorithm 2
which also leverages relative strong convexity. The analysis shows that an improved linear

convergence rate of O
⇣

(1�
q

µ
L)

k
⌘

is reached asymptotically.

Although numerical experiments are encouraging, there is still a gap in our theoretical
understanding of accelerated Bregman gradient methods in the relatively-smooth setting. In
Chapter 3, we show that in the general case, the O(1/k) rate of BGD is optimal among
Bregman first-order methods and therefore that global acceleration is out of reach without
additional regularity assumptions.

Non-homogeneity and other difficulties. The main difficulty when trying to transpose
convergence results of Euclidean methods to the Bregman setting arises from the lack of ho-
mogeneity and translational invariance of the Bregman divergence. Indeed, for non-quadratic
kernels, the quantity

Dh(x+ �v, x)

depends on the point x, and is not proportional to �2, whereas it reduces to �2kvk2 in the
Euclidean setting. This issue is met when analyzing methods that combine gradients taken at
different points and those that rely on step size scaling. This is the case for accelerated methods
as well as variance reduction techniques for stochastic optimization (see Chapter 6).

Although it is a different setting, the difficulty of accelerating gradient methods also arises
in Riemannian optimization for similar reasons [Zhang and Sra, 2018]; see Hamilton and Moitra
[2021] for a negative result on the hyperbolic plane and an interesting intuitive explanation.

Besides acceleration, there is also difficulty in proving the convergence of the iterates of
Bregman methods towards the optimal point. Bolte and Pauwels [2020] provide an an instance
of BGD where the iterate sequence {xk}k�0 does not converge and cycles indefinitely. In their
example, the objective function is linear; the issue is created uniquely by the choice of a highly
pathological Bregman kernel.

1.5 A brief history of Bregman methods before relative smooth-

ness

Optimization methods with Bregman divergences have also been considered for a long time
outside of the relatively-smooth setting. In this section, we provide a historical overview.

15



Bregman projections. Given a kernel h, the Bregman projection of a point x on a convex
set A ⇢ R

d is
projhA(x) = argmin

u2A
Dh(u, x). (1.6)

This tool was first introduced by Bregman [1967], along with the corresponding divergence,
in order to find a point in the intersection of N convex sets A1 . . . AN by alternating such
projections. The main interest of choosing a specific kernel h is that it induces a bias that
drives the algorithm towards the part of the intersection set that minimizes h3. More precisely,
with a proper initialization, the method of alternating Bregman projections converges to the
solution of the problem

min
x2dom h

h(x) s.t. x 2 A1 \ · · · \AN .

See also Bauschke and Borwein [1997] for a more detailed analysis of Bregman projections.

Bregman proximal methods. For a convex proper function g : Rd ! R [ {+1} and a
kernel h, the Bregman proximal map of g is defined as

proxhg (x) = argmin
u2Rd

g(u) +Dh(u, x),

which generalizes the Moreau proximal map [Moreau, 1965] to the non-Euclidean setting. Note
also that taking g as the indicator function of a convex set recovers the Bregman projection
(1.6). This operator has been introduced by Censor and Zenios [1992], who study the Bregman
proximal point algorithm

xk+1 = argmin
u2Rd

g(u) +
1

�k
Dh(u, xk) (BPP)

for minimizing the (possibly nonsmooth) function g on C. Simultaneously, Teboulle [1992]
studied the proximal map with Bregman divergence and also an alternative class of divergences
called �-divergences. He showed that these maps enjoyed a smoothing effect, as does the Moreau
proximal map in the Euclidean case. The (BPP) scheme was then extended by Eckstein [1993]
to the more general setting of monotone operators, which allows to build nonquadratic versions
of augmented Lagrangian methods.

One of the main advantages of using a Bregman divergence adapted to C in proximal
methods is that the kernel acts as a barrier, forcing the iterates to belong to the interior of
C, thus ensuring favorable regularity properties. For instance, augmented Lagrangian methods
with a well-chosen Bregman kernel have a twice continuously differentiable Lagrangian, unlike
the Euclidean counterpart, allowing the use of efficient second-order methods for computing
the iterates. Further analysis is provided in Chen and Teboulle [1993], Iusem et al. [1994].

Nonsmooth kernels for ill-posed inverse problems. Although Bregman methods are
generally used with differentiable kernels, nonsmooth convex kernels can also be used, provided
that the subgradient defining Dh is well-chosen. This extension was first studied by Kiwiel
[1997] for the Bregman proximal point method.

3This idea of implicit bias of gradient methods has been re-discovered recently in the context of mirror
descent [Gunasekar et al., 2018].
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In this situation, the Bregman kernel is chosen so as to exploit the idea of implicit bias :
in the same way as for Bregman projections (see the paragraph above), the iterates of (BPP)
converge towards the part of argmin f that also minimizes h. This can be useful for solving
ill-posed inverse problems: for instance, taking h to be a `1 norm allows to induce sparsity in
the iterates of the algorithm. This idea has had great success in compressed sensing and image
denoising, where the Bregman proximal point scheme is also known as Bregman iteration, or
Bregman iterative regularization [Osher et al., 2005, Yin et al., 2008, Goldstein and Osher,
2009], see also Benning and Riis [2021] for a recent survey.

Mirror descent subgradient method. The mirror descent algorithm, designed for mini-
mizing a possibly nonsmooth convex function f over a set C, writes

xk+1 = argmin
u2Rd

hf 0(xk), u� xki+
1

�k
Dh(u, xk), (MD)

where f 0(xk) 2 @f(xk) is any subgradient of f at xk, and the sequence of step sizes {�k}k�0 is
decreasing to 0. Mirror descent was originally proposed by Nemirovski [1979], Nemirovski and
Yudin [1983] in the form of

xk+1 = rh⇤
⇥
rh(xk)� �kf 0(xk)

⇤
(MD’)

and applied by Ben-Tal et al. [2001] to Poisson inverse problems (which were then classified as
nonsmooth problems, because of the unbounded curvature). Later, Beck and Teboulle [2003]
provided a simplified analysis and showed that, under appropriate assumptions on h, the update
(MD’) can be rewritten as the subgradient scheme with Bregman divergence desribed in (MD).
A central element in the analysis of Mirror Descent is the choice of a (possibly non-Euclidean)
norm k · kE for the space E of iterates xk, along with the corresponding dual norm k · kE⇤ for
the space E⇤ of gradients rh(xk), f 0(xk). The kernel h is assumed to be strongly convex with
respect to k · kE , and the subgradients of f are assumed to be bounded with respect to k · kE⇤

by a constant Lk·kE on C. The efficiency estimate of (MD) is proportional to

Lk·kE (Dh(x⇤, x0))
1/2 .

Therefore, the goal is to choose the geometry that minimizes this estimate on the set C. The
most classical example is the unit simplex C = {x 2 R

d
+ :

P

i xi = 1}, for which choosing the `1
norm along with the entropy kernel allows to improve the efficiency by a factor of (d/ log d)1/2

over the Euclidean geometry. This is a considerable theoretical and practical gain for large-
scale problems. As an additional advantage, the Bregman projection on the simplex can be
computed in closed form, unlike the Euclidean one. A detailed analysis of the computational
complexity of mirror descent in various situations is provided in the survey by Juditsky and
Nemirovski [2011].

Beyond nonsmooth convex minimization, the mirror descent scheme has been studied in
the context of stochastic convex minimization and saddle-point problems [Nemirovski et al.,
2009, Duchi et al., 2010] as well as online learning [Hazan, 2011, Bubeck, 2011]. As the simplex
models discrete probability measures, entropic mirror descent has had great success in online
learning, where it is also known as multiplicative weight updates. More recently, mirror descent
schemes have also been used for solving reinforcement learning problems [Tomar et al., 2020,
Lan, 2021].
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From mirror descent to Bregman gradient method and relative smoothness. The
mirror descent method (MD) has a similar form to the Bregman gradient scheme. However,
mirror descent has mainly been applied in the context of nonsmooth, stochastic and online
convex optimization. In that setting, the kernel h is usually chosen accordingly to the constraint
set C and the step size sequence {�k}k�0 needs to be decreasing towards 0 to account for non-
smoothness.

The idea of adapting the kernel to the curvature of the objective function through the simple
condition

r2f(x) � Lr2h(x)

has opened new possibilities for applying Bregman methods to differentiable objectives. In-
terestingly, the relative smoothness assumption was suggested for the first time by Birnbaum
et al. [2011] in the context of algorithmic game theory, but remained unnoticed by the opti-
mization community. Later, Bauschke et al. [2017] discovered the same concept independently
and popularized the subject among researchers in this field.
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Chapter 2

Quartic First-Order Methods for

Low-Rank Minimization

Chapter Abstract

We study a general nonconvex formulation for low-rank minimization prob-
lems. We use recent results on relatively-smooth optimization to provide effi-
cient and scalable algorithms. Our approach uses the geometry induced by the
Bregman divergence of well-chosen kernel functions; for unconstrained prob-
lems we introduce a novel family of Gram quartic kernels that improve numer-
ical performance.

Numerical experiments on Euclidean distance matrix completion and sym-
metric nonnegative matrix factorization show that our algorithms scale well
and reach state of the art performance when compared to specialized methods.

Reference: this chapter is based on a publication in Journal of Optimization Theory and
Applications [Dragomir et al., 2021a].

2.1 Introduction

Consider a low-rank semidefinite program, written

minF (Y ) subject to Y ⌫ 0, rank(Y )  r (SDP-r)

in the variable Y 2 R
n⇥n, where F : Rn⇥n ! R is typically a differentiable convex function

with Lipschitz continuous gradient and r  n is the target rank. Fundamental applications
of (SDP-r) arise in various areas including matrix completion [Candès and Recht, 2009, Cai
et al., 2010, Jain et al., 2013], matrix sensing [Recht et al., 2007], Euclidean matrix completion
[Mishra et al., 2011, Fang and O’Leary, 2012], phase retrieval [Candès et al., 2015], robust
principal component analysis [Chen and Wainwright, 2015], to name a few.

A popular approach to solving (SDP-r), known as the Burer-Monteiro formulation [Burer
and Monteiro, 2005], consists in representing Y as Y = XXT to solve

minΨ(X) , F (XXT ) + g(X) (P)
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in the variable X 2 R
n⇥r, where g is a lower semicontinuous simple function (in a sense that

will be made clear later) that enforces additional constraints or penalties on the factor X. We
will write f : Rn⇥r ! R the factorized function with f(X) = F (XXT ).

This reformulation has been thoroughly studied for various low rank minimization problems
[Mishra et al., 2014, Tu et al., 2016, Candès et al., 2015, Zheng and Lafferty, 2015, Chen and
Wainwright, 2015, Bhojanapalli et al., 2016, Zhao et al., 2015, Sun and Luo, 2016, Park et al.,
2016]. It has several benefits: first, the rank constraint is directly enforced by the factorization
XXT . Second, it allows adding penalty functions g to impose additional structural properties
on the factor, like nonnegativity or sparsity. More importantly, the problem size is reduced
from n2 to nr variables, which makes it far more efficient on large-scale problems, since r is
usually much smaller than n.

This formulation comes however with an important drawback: the objective function of (P)
becomes nonconvex, even when F is originally convex. Therefore, local optimization methods
can generally only hope to find a stationary point, or at best a local minimum. Nevertheless,
recent work shows convergence towards a global optimum for a close enough initialization
[Tu et al., 2016, Bhojanapalli et al., 2016, Park et al., 2016], or under additional statistical
assumptions about the problem [Chen and Wainwright, 2015, Zheng and Lafferty, 2015, Ge
et al., 2016]. Although these global optimality results often impose restrictive assumptions
that may not be satisfied in practice, they help to explain why the use of local algorithms for
solving (P) usually leads to satisfactory solutions in practice.

The most commonly used algorithm to solve these problem formulations is some variant of
the proximal gradient method. However, a critical issue with gradient schemes is the choice of
step sizes, which significantly impacts performance. This step size choice is closely related to
the smoothness of the objective. In particular, when it has a L-Lipschitz continuous gradient
with respect to the Euclidean norm, standard gradient methods can be applied with a step
size lying in ]0, 1/L]. This smoothness assumption is used in the broad majority of theoretical
analyses of gradient algorithms, yet there are many cases where it is not satisfied [Bauschke
et al., 2017, Bolte et al., 2018]. In particular, it does not hold for the general Burer-Monteiro
low-rank problem, as we will show in what follows.

Of course, there is a way to circumvent this issue in classical Euclidean methods, by using an
Armijo line search [Lin, 2007]. However, in some cases, this naive line search strategy generates
very small step sizes which in turn involve costly subroutines. Other approaches impose a step
size that is only proven to be valid in a small neighborhood of the optimum [Bhojanapalli et al.,
2016, Park et al., 2016].

Bregman gradient methods. We adopt an original approach based on a recent line of work
on non-Euclidean gradient methods [Bauschke et al., 2017, Bolte et al., 2018] and subsequent
work [Lu et al., 2018]. Unlike standard gradient descent that uses the uniform Euclidean ge-
ometry, the NoLips method, also known as Bregman proximal gradient/Mirror descent, uses
the Bregman divergence induced by a well-chosen convex kernel function. This allows the
algorithm to take gradient steps that are more adapted to the geometry of the problem, ad-
vancing faster in directions where the gradient of the objective changes slowly, thus improving
convergence speed. The kernel function is chosen so that the objective function satisfies a com-
patibility condition called relative smoothness [Bauschke et al., 2017, Lu et al., 2018], which is
a generalization of the usual smoothness assumption mentioned earlier.

In our setting, the objective has a quartic growth, hence choosing the geometry induced by
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a quartic polynomial will prove to be efficient.

Contributions. In this work, we focus on deriving efficient algorithms to find stationary
points of nonconvex low-rank problems. Our main contribution is to identify favorable non-
Euclidean geometries for these problems, induced by well-chosen quartic kernels.

We first study a simple quartic norm kernel that is compatible with various regularization
terms. We then introduce a novel family of quartic kernels that we call Gram kernels, which
can be applied to unregularized problems. They provide richer geometries which greatly im-
prove convergence speed with little impact on the iteration complexity. We also extend the
NoLips/Bregman Gradient scheme to Dyn-NoLips, allowing for adaptive step size strategies.

To highlight the benefits of our approach, we study applications to symmetric nonnegative
matrix factorization and Euclidean distance matrix completion and show competitive numerical
performance compared to specialized algorithms for these problems.

Notation. For a square matrix M , we denote its trace TrM =
Pn

i=1Mii. For two matrices
X and Y of same size, we denote the standard Euclidean inner product and norm by hX,Y i =
Tr(XTY ) and kXk =

p

Tr(XTX). For a function f : Rn⇥r ! R, we denote by rF (X) its

gradient matrix rF (X)ij = @F (X)
@xij

and by r2F (X)[U, V ] the second derivative at X in the

directions U, V 2 R
n⇥r. Ir denotes the identity matrix of size r ⇥ r. For two square matrices

X,Y , we write X � Y if the matrix Y � X is positive semidefinite. We write kAkop for the
operator norm of a linear application A.

2.2 Quartic geometries for low-rank minimization

2.2.1 Problem Setup

We first state our standing assumptions for Problem (P).

Assumption 2.1. (a) F : Rn⇥n ! R is a twice continuously differentiable function which is
µF -strongly convex and LF -smooth, i.e.,

hrF (X)�rF (Y ), X � Y i � µF kX � Y k2,
krF (X)�rF (Y )k  LF kX � Y k 8X,Y 2 R

n⇥n,

(b) g : Rn⇥n ! R [ {+1} is a closed convex proper function,

(c) minRn⇥r Ψ > �1.

Our analysis will involve the following lemma.

Lemma 2.1. Let F : Rn⇥n ! R be a twice differentiable µF -strongly convex and LF -smooth
function. Then, the function G := F � µF

2 k · k2 is convex and (LF � µF )-smooth.

Proof. It suffices to use the second-order characterization [Nesterov, 2003] and notice that, for
Y, U 2 R

n⇥n, we have r2G(Y )[U,U ] = r2F (Y )[U,U ]� µF kUk2 and hence

µF kUk2  r2F (Y )[U,U ]  LF kUk2 =) 0  r2G(Y )[U,U ]  (LF � µF )kUk2.
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We write f : Rn⇥r ! R the factorized function defined by

f(X) := F (XXT ).

Therefore Problem (P) can be written as a standard composite optimization problem

min
X2Rn⇥r

Ψ(X) = f(X) + g(X). (2.1)

2.2.2 Relative Smoothness and the Bregman Proximal Gradient Map

In this section, we recall the framework of Bauschke et al. [2017], Bolte et al. [2018] to derive
non-Euclidean gradient methods for solving composite problems of the form (2.1).

The first essential step is the choice of a distance kernel. In our context we choose a dif-
ferentiable strictly convex function h : Rn⇥r ! R, with domh = R

n⇥r (although more general
distance kernels can be used). The distance kernel h induces in turn a Bregman divergence

Dh(X,Y ) = h(X)� h(Y )� hrh(Y ), X � Y i.

Note that Dh is not a proper distance, as it is not symmetric in general. However Dh enjoys
a distance-like separation property: Dh(X,X) = 0 and Dh(X,Y ) > 0 for X 6= Y . The choice
of a distance kernel suited to the function f is guided by the following relative smoothness
condition, also called generalized Lipschitz property.

Definition 2.2 (Relative smoothness). We say that a differentiable function f on R
n⇥r is L-

smooth relative to the kernel function h if there exists L > 0 such that for every X,Y 2 R
n⇥r,

f(X)  f(Y ) + hrf(Y ), X � Y i+ LDh(X,Y ). (RelSmooth)

For twice differentiable functions, relative smoothness has an elementary characterization:
f is L-smooth relative to h if and only if

r2f(X)[U,U ]  Lr2h(X)[U,U ], 8X,U 2 R
n⇥r. (2.2)

Notice that if h(X) = 1
2kXk2, then Dh(X,Y ) = 1

2kX � Y k2 and we recover the standard
Euclidean descent lemma that would be implied by Lipschitz continuity of the gradient of f .

Bregman proximal gradient map. Now that we are equipped with a non-Euclidean geo-
metry generated by h, we define the Bregman proximal gradient map with step size � as follows.

T�(X) = argmin
U2Rn⇥r

⇢

g(U) + f(X) + hrf(X), U �Xi+ 1

�
Dh(U,X)

�

, (2.3)

which consists in minimizing a surrogate for Ψ where f has been replaced by the upper ap-
proximation given by (RelSmooth) and the nonsmooth part g is kept intact, generalizing thus
the approach used in the proximal gradient method. The relative smoothness condition en-
sures that this operation decreases the objective Ψ when � 2]0, 1/L]. This map is the basic
brick for non-Euclidean methods à la Bregman. The simplest method is the Bregman proximal
gradient method, also known as NoLips [Bauschke et al., 2017] and its extension Dyn-NoLips
(Algorithm 3), which simply amounts to iterating Xk+1 = T�k

(Xk), but other possibilities exist
using momentum ideas [Auslender and Teboulle, 2006, Hanzely et al., 2021, Mukkamala et al.,
2020].
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2.2.3 The Quartic Geometry

In order to provide some insight into the quartic geometry of our problem, let us consider the
example where F is a quadratic function, i.e.,

F (Y ) =
1

2
hAY, Y i+ hB, Y i 8Y 2 R

n⇥n, (2.4)

where B 2 R
n⇥n and A : Rn⇥n ! R

n⇥n is some linear map. Then, f writes

f(X) = F (XXT ) =
1

2
hA(XXT ), XXT i+ hBX,Xi 8X 2 R

n⇥r.

Clearly, f is a quartic function and its gradient is not Lipschitz continuous on R
n⇥r, as the

Hessian “grows" to infinity when kXk ! 1. In other words, (RelSmooth) does not hold with
the Euclidean kernel h = 1

2k · k2. We now show that relative smoothness holds with a family of
well-chosen quartic kernels, which are more adapted to the geometry of f .

The Quartic Norm Kernel

We begin with a simple quartic kernel, which depends solely on the Frobenius norm of X.
Define the norm kernel hN as

hN (X) =
↵

4
kXk4 + �

2
kXk2 8X 2 R

n⇥r,

where ↵,� > 0 are fixed parameters. Note that this kernel is not new by itself, as it has been
already studied in Bolte et al. [2018] for vectors in R

n. Our first contribution is to show that
it is adapted to every function of our class of problems.

Proposition 2.3 (Norm kernel). The function f is 1-smooth relative to the norm kernel hN
for ↵ � 6LF and � � 2krF (0)k.

Proof. As F is twice differentiable, then so is f and we can use the Hessian characterization
(2.2). For X,U 2 R

n⇥r, the second derivative of hN is written

r2hN (X)[U,U ] = ↵
�
kXk2kUk2 + 2hX,Ui2

�
+ �kUk2

� ↵kXk2kUk2 + �kUk2.
(2.5)

On the other hand, the second derivative of f is

r2f(X)[U,U ] = r2F (XXT )[UXT +XUT , UXT +XUT ] + 2hrF (XXT ), UUT i. (2.6)

Since F has a Lipschitz continuous gradient, the standard second derivative inequality yields

r2F (XXT )[UXT +XUT , UXT +XUT ]  LF kUXT +XUT k2.

Now, the second term can be bounded by using the triangle inequality, the Cauchy-Schwarz
inequality and the gradient Lipschitz property, to get

hrF (XXT ), UUT i = hrF (0), UUT i+ hrF (XXT )�rF (0), UUT i
 krF (0)k kUk2 + krF (XXT )�rF (0)k kUUT k

⇣

krF (0)k+ LF kXXT k
⌘

kUk2
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hence

r2f(X)[U,U ]  LF kUXT +XUT k2 + 2
�
LF kXXT k+ krF (0)k

�
kUk2

 2LF

�
kUXT k2 + kXUT k2

�
+ 2

�
LF kXXT k+ krF (0)k

�
kUk2

 6LF kXk2kUk2 + 2krF (0)kkUk2

 ↵kXk2kUk2 + �kUk2

(2.7)

where we used the submultiplicative property of the Frobenius norm, and our choice of param-
eters ↵,�. Combining (2.5) and (2.7) gives that

r2f(X)[U,U ]  r2hN (X)[U,U ]

for all X,U 2 R
n⇥r, hence that f is 1-smooth relative to h [Bauschke et al., 2017].

The Bregman proximal gradient map (2.3) associated with the kernel hN can be computed
easily in closed form. We give its expression in the unconstrained case [Bolte et al., 2018].

Proposition 2.4 (Bregman gradient map for hN , unconstrained case). Assume that there is
no penalty term, i.e., that g ⌘ 0. The Bregman gradient map of the norm kernel hN with step
size � > 0 is given by

T�(X) =
1

⌧�(↵kUk2)
U

where
U = rhN (X)� �rf(X) = (↵kXk2 + �)X � �rf(X)

and ⌧�(c) denotes the unique real solution z to the cubic equation z2(z � �) = c.

Note that ⌧�(c) can be computed in closed form using Cardano’s method:

⌧�(c) =
�

3
+

3

s

c+
p
∆

2
+
�3

27
+

3

s

c�
p
∆

2
+
�3

27
where ∆ = c2 +

4

27
c�3.

Compared to a standard gradient iteration, the additional operations are elementary and have
a minimal impact on the arithmetic complexity.

Constraints and regularization terms. Following the ideas in Bolte et al. [2018], the
Bregman proximal gradient map of hN can also be easily computed in closed form when g is
the `1 norm or the `0 pseudonorm. As we will show in Section 2.4.1, this is also elementary
when g is the indicator function of the nonnegative orthant.

A More Refined Kernel for Unregularized Problems: the Gram Kernel

While the kernel hN is simple and compatible with many penalties g, a better kernel can
be derived for unconstrained instances by considering a richer geometry involving the Gram
matrix. Define the Gram kernel as

hG(X) =
↵

4
kXk4 + �

4
kXTXk2 + �

2
kXk2 8X 2 R

n⇥r,
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where ↵,� � 0, � > 0 are given parameters. The Gram kernel is more refined than the previous
norm kernel since it incorporates some nonisotropic information with the kXTXk2 term. To
show where this term stems from, observe that following Lemma 2.1, F can be decomposed as
F = µF

2 k · k2 + F̃ where F̃ is (LF � µF )-smooth. Hence f writes

f(X) = F (XXT ) =
µF

2
kXXT k2 + F̃ (XXT ).

Since kXXT k2 = kXTXk2, the first term can be directly incorporated into the kernel, which
allows to prove a tighter relative smoothness inequality.

Proposition 2.5 (Gram kernel). f is 1-smooth relative to the Gram kernel hG a choice of
constants satisfying ↵ � 2(LF � µF ), � � 2LF and � � 2krF (0)k.

Proof. This amounts to refine the analysis of the proof of Proposition 2.3. Let X,U 2 R
n⇥r.

The second derivative of hG at X in the direction U writes

r2hG(X)[U,U ] = ↵
�
kXk2kUk2 + 2hX,Ui2

�

+ �

✓
1

2
kUXT +XUT k2 + kUTXk2

◆

+ �kUk2

� ↵kXk2kUk2 + �

✓
1

2
kUXT +XUT k2 + kUTXk2

◆

+ �kUk2.

On the other hand, following (2.6) the second derivative of f satisfies

r2f(X)[U,U ]  LF kUXT +XUT k2 + 2hrF (XXT ), UUT i.

To bound the second term, we use Lemma 2.1 which states that the function G(Y ) := F (Y )�
µF kY k2/2 is convex and smooth with constant LF �µF . Using the gradient Lipschitz property
of G yields

hrF (XXT ), UUT i = hrF (0), UUT i+ µF hXXT , UUT i
+ hrF (XXT )�rF (0)� µF (XXT � 0), UUT i

= hrF (0), UUT i+ µF kUTXk2 + hrG(XXT )�rG(0), UUT i
 krF (0)k kUk2 + µF kUTXk2 + (LF � µF )kXXT k kUUT k
 krF (0)k kUk2 + LF kUTXk2 + (LF � µF )kXk2kUk2,

using that µF  LF , and so we have

r2f(X)[U,U ]  2(LF � µF )kXk2kU2k+ LF kUXT +XUT k2 + 2LF kUTXk2

+ 2krF (0)k kUk2

 ↵kXk2kUk2 + �

2
kUXT +XUT k2 + �kUTXk2 + �kUk2

 r2hG(X)[U,U ]

which shows that, for the prescribed choice of ↵,�,�, the function f is 1-smooth relative to
hG.
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Approximation quality for well-conditioned F . Let us illustrate the advantage of the
Gram kernel when F is well-conditioned. For simplicity, assume here that F is a quadratic
function, as in (2.4), i.e., F (Y ) = 1

2hAY, Y i + hB, Y i where A is a positive semidefinite linear
operator on R

n⇥r, and hence f has a quartic and a quadratic term

f(X) =
1

2
hA(XXT ), XXT i+ hB,XXT i.

The gap between f and hG with the choice of coefficients prescribed by Proposition 2.5 writes,
for X 2 R

n⇥r,

hG(X)� f(X) =
(LF � µF )

2
kXk4 + LF

2
kXTXk2 + krF (0)k kXk2

� 1

2
hA(XXT ), XXT i � hBX,Xi

=
(LF � µF )

2
kXk4 + 1

2
h(LF I �A)(XXT ), XXT i

| {z }

d4(X)

+ h(krF (0)kI �B)X,Xi
| {z }

d2(X)

where we separated the gap into a quartic term d4 and a quadratic term d2. It can be seen from
(2.2) that the quality of approximation of the kernel is given by the difference of the Hessians.
Focusing on the quartic part, the Hessian difference is

r2d4(X)[U,U ] = 2(LF � µF )
�
kXk2kUk2 + 2hX,Ui2

�
+ 2h(LF I �A)(XXT ), UUT i

+ h(LF I �A)(UXT +XUT ), UXT +XUT i
 6(LF � µF )kXk2kUk2

+ kLF I �Akop
�
2kXXT k kUUT k+ kUXT +XUT k2

�

for X,U 2 R
n⇥r. Recalling that F is LF -smooth and µF -strongly convex, we have that

kLF I �Akop  (LF � µF ), therefore

r2d4(X)[U,U ]  (LF � µF )
�
6kXk2kUk2 + 2kXXT k kUUT k+ kUXT +XUT k2

�

 12LF (1�
µF

LF
)kXk2kUk2

which shows that the quality of approximation of the quartic part of f by the Gram kernel
depends on the condition number F := LF /µF of F . Note that one could actually refine the
analysis by replacing F with the condition number of F restricted to the set of matrices of
rank at most 2r, which can be much smaller. This is the case when the linear map A satisfies
the restricted isometry property (RIP), which occurs with high probability in matrix sensing
applications with a sufficiently large number n of samples [Recht et al., 2007, Meka et al., 2010,
Jain et al., 2013].

Computing the Bregman gradient map. We now show that, when there is no penalty
term g, the Bregman gradient map of hG can be computed efficiently, as it involves solving an
easy quartic minimization subproblem of size r.
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Proposition 2.6 (Bregman gradient map, Gram kernel). Assume that g ⌘ 0. For X 2 R
n⇥r,

the Bregman gradient map of f for the Gram kernel hG with step size � > 0 is given by

T�(X) = V [↵Tr(Z)Ir + �Z + �Ir]
�1

where the matrices V, Z are computed through the routine:

• set V = rhG(X)� �rf(X),

• diagonalize V TV as V TV = P TDP where P 2 Or and D = diag(⌘21, . . . , ⌘
2
r ),

• let µ = (µ1, . . . , µr) be the unique solution of the convex minimization problem

min
x2Rr

�(x) :=
↵

4
kxk4 + �

4

rX

i=1

x4i +
�

2
kxk2 �

rX

i=1

⌘ixi,

• finally set Z = P T diag
⇥
µ2
1, . . . , µ

2
r

⇤
P.

Proof. When g ⌘ 0, The Bregman gradient map of hG writes, for X 2 R
n⇥r,

T�(X) = argmin
U2Rn⇥r

⇢

hrf(X), U �Xi+ 1

�
DhG

(U,X)

�

= argmin
U2Rn⇥r

{hG(U)� hV, Ui}
(2.8)

where we remove constant terms and defined V := rhG(X) � �rf(X). Write for the sake of
clarity U? := T�(X). The optimization problem (2.8) is strictly convex and the unique solution
U? satisfies rhG(U?) = V , meaning that

U?
�
↵kU?k2Ir + �U?TU? + �Ir

�
= V. (2.9)

Define Z := U?TU? 2 R
r⇥r. Then, the knowledge of Z determines U?, since kU?k2 = Tr(Z)

and therefore U? = V (↵Tr(Z)Ir + �Z + �Ir)
�1.

Now, taking (2.9) and multiplying by its transpose implies that

(↵kU?k2Ir + �Z + �Ir)
2Z = V TV. (2.10)

This shows that V TV is a polynomial in Z, and therefore that they admit the same eigenvectors.
Write the diagonalization

V TV = P T diag(⌘21, . . . , ⌘
2
r )P,

Z = P T diag(µ2
1, . . . , µ

2
r)P

where P 2 Or and µi, ⌘i � 0 for i = 1 . . . r. It follows from diagonalizing (2.10) and taking the
square root that 0

@↵

0

@

rX

j=1

µ2
j

1

A+ �µ2
i + �

1

Aµi = ⌘i 8i = 1, . . . , r

This is exactly the first-order optimality condition on µ = (µ1, . . . , µr) for the problem

µ = argmin
x2Rr

↵

4
kxk4 + �

4

rX

i=1

x4i +
�

2
kxk2 �

rX

i=1

⌘ixi. (2.11)
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Note that we do not need to enforce the nonnegativity constraint on x, since we chose ⌘i � 0
it follows that the optimal solution will be nonnegative. Hence, we can reconstruct Z from
the diagonalization of V TV and the solution of Problem (2.11), and thus we get the procedure
described in the theorem for computing U⇤ = T�(X).

Complexity. Note that the order of multiplication is important: we only need to compute
the eigendecomposition of V TV , which is of size r ⇥ r. We additionally need to solve a small
minimization problem of size r, which can be done efficiently using the quartic Bregman gradient
algorithm with norm kernel (see Appendix 2.5 for implementation details). Due to this, the
complexity of computing the Bregman gradient map of hG is O(nr2+ r3+Kr), where K is the
number of iterations needed to solve the subproblem. Since r is usually much smaller than n by
several orders of magnitude, the main computational bottleneck remains in most applications
computing the gradient rf(X).

2.2.4 How to choose the most appropriate kernel?

In order to devise efficient methods, one should search for the kernel h such that the upper
approximation of f in (RelSmooth) is as tight as possible, or, equivalently, such that the Hessian
of the residual Lh � f is small. On the other hand, h has to be simple enough so that the
Bregman gradient map (2.3) is easy to compute (which precludes choosing h = f , as the
iteration would be as hard to solve as the initial problem). This trade-off is key in choosing
the appropriate kernel. Let us review these two conflicting criteria in our situation.

Complexity of the Bregman gradient map. For the norm kernel hN , one iteration in-
volves computing the gradient of f , then solving a simple scalar equation. The Gram kernel hG
involves solving a subproblem which requires O(nr2+ r3) additional operations. This overhead
is negligible for the typical regime where r ⌧ n; however, the iterate can be computed easily
only for unconstrained problems.

Quality of Hessian approximation. We showed in Section 2.2.3 that the quality of the
approximation of the quartic component of f by the Gram kernel is bounded by O(1�µF /LF ).
Therefore, it is expected to show good performance when F is sufficiently well-conditioned. The
norm kernel, however, has no such property, as its approximation of f is much coarser. The
difference stems from the supplementary kXTXk2 term, which can be much smaller than kXk4,
especially when the columns of X are nearly orthogonal.

Note that even if F is not globally strongly convex or µF is unknown, the Gram kernel can
take advantage of local strong convexity through adaptive step sizes, as we show in the sequel.

2.3 Algorithms for quartic low-rank minimization

Now that we are equipped with a non-Euclidean geometry induced by one of the kernels hN and
hG, we are ready to define the minimization scheme Dyn-NoLips in Algorithm 3. It extends
the Bregman proximal gradient, a.k.a NoLips, algorithm from Bolte et al. [2018] to allow step
sizes larger than the theoretical value 1/L.
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Algorithm 3 Dyn-NoLips

Input: A distance kernel h such that f is smooth relative to h and a maximal step size �max

Initialize X0 2 R
n⇥r such that Ψ(X0) <1.

for k = 1,2,. . . do

Choose a step size �k  �max such that the sufficient decrease condition (2.12) holds
Set Xk = T�k

(Xk�1)
end for

Step size choice The step size �k is chosen so that the new iterate Xk = T�k
(Xk�1) satisfies

f(Xk)  f(Xk�1) + hrf(Xk�1), Xk �Xk�1i+ 1

�k
Dh(X

k, Xk�1). (2.12)

There are two ways to ensure this condition holds.

• Fixed step size. Since f is L-smooth relative to h, (2.12) holds as soon as 0 < �k  1/L.

• Dynamical step size. In some cases, the relative Lipschitz constant might be too
conservative, and better numerical performance can be achieved by taking larger steps.
We therefore can use a dynamical strategy for extending the step size, ensuring that
(2.12) holds at each iteration. There are many strategies to efficiently adjust the step
size; see, e.g., Nesterov [2007]. In our case, we choose a simple strategy similar in spirit
to the Armijo line search: at iteration k, start with a tentative step size �k, then find the
smallest nonnegative integer j such that (2.12) is satisfied with step size 2�j�k. Then,
set �k+1 = 2�j+1�k.

Convergence to a stationary point. We now extend the theoretical convergence results
from Bolte et al. [2018] to handle the dynamical step size strategy.

Theorem 2.7 (Convergence results). Let {Xk}k�0 be the sequence generated by Algorithm 3.
Assume that

1. f is L-smooth relative to a distance kernel h such that h is strongly convex and twice
continuously differentiable on R

n⇥r, and the penalty function g is convex,

2. �max � 1/(2L),

3. the function Ψ = f + g is coercive (meaning that Ψ(X) ! +1 when kXk ! +1) and
semialgebraic.

Then, the sequence {Ψ(Xk)}k�0 is nonincreasing, and the sequence {Xk}k�0 converges towards
a critical point X⇤ of problem Ψ.

Proof. First, the step size �k can be bounded for k � 0 as

1

2L
 �k  �max.

Indeed, the upper bound holds by construction of the algorithm. The lower bound comes from
the relative smoothness property: condition (2.12) is true for every � 2 (0, 1

L ], so the inner loop
will stop whenever � gets below 1/L.
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Let us now prove the result. Since Condition (2.12) holds at each iteration k, we can write

f(Xk+1)  f(Xk) + hrf(Xk), Xk+1 �Xki+ 1

�k
Dh(X

k+1, Xk). (2.13)

On the other hand, the optimality condition characterizing Xk+1 = T�k
(Xk) writes

0 2 �k
⇣

@g(Xk+1) +rf(Xk)
⌘

+rh(Xk+1)�rh(Xk), (2.14)

where @g denotes the subdifferential of the convex function g. Combining (2.14) with the
subgradient inequality for g yields

g(Xk+1)  g(Xk) +
1

�k
hrh(Xk)�rh(Xk+1), Xk+1 �Xki (2.15)

� hrf(Xk), Xk+1 �Xki.

Summing (2.13) and (2.15) gives

Ψ(Xk+1)  Ψ(Xk) +
1

�k

⇥
Dh(X

k+1, Xk) + hrh(Xk)�rh(Xk+1), Xk+1 �Xki
⇤
,

which yields

Ψ(Xk+1)  Ψ(Xk)� 1

�k
Dh(X

k, Xk+1).

From this inequality, we can now prove the same convergence properties as for the standard
BPG scheme. Indeed, the monotonicity of the sequence {Ψ(Xk)}k�0 is a direct consequence of
the above. Since �k  �max, it follows that at every iteration k � 0,

Ψ(Xk)�Ψ(Xk+1) � 1

�max
Dh(X

k, Xk+1).

Now, this inequality is the same as the one needed to prove convergence in the case of the
fixed step size in Bolte et al. [2018]. Thus, global convergence towards a critical point is a
consequence of [Bolte et al., 2018, Th. 4.1], since all the assumptions are met: the kernel h
is defined over the entire space R

n⇥r, it is strongly convex, and rh is Lipschitz continuous
on bounded subsets of R

n⇥r (because we assumed it is C2). We also need the fact that the
sequence {Xk}k�0 is bounded, which is a consequence of the monotonicity of {Ψ(Xk)}k�0 and
the fact that the function Ψ is coercive.

The semialgebraicity assumption is needed to establish the crucial nonsmooth Lojasiewicz
property Bolte et al. [2007], required to show convergence to a critical point. It holds for all the
applications we cited, since the class of semialgebraic functions includes polynomial functions,
`1 and `2 norms, the `0 seminorm and indicators of polynomial sets.

2.4 Applications

We now illustrate applications of our methodology to two different low-rank problems, sym-
metric nonnegative matrix factorization and Euclidean distance matrix completion. We show
that good numerical performance can be reached using the dynamical step strategy, and that,
for Euclidean matrix completion, it can be further improved by using the Gram kernel.
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2.4.1 Symmetric Nonnegative Matrix Factorization

Symmetric Nonnegative Matrix Factorization (SymNMF) is the task of finding, given a sym-
metric nonnegative matrix M 2 R

n⇥n, a nonnegative matrix X 2 R
n⇥r such that M ⇡ XXT .

This is done by solving

min
1

2
kM �XXT k2F subject to X � 0 (SymNMF)

in the variable X 2 R
n⇥r, where the inequality constraint is meant componentwise and r  n

is the target rank.
(SymNMF) is used as a probabilistic clustering or graph clustering technique [Ding et al.,

2005, He et al., 2011]. Numerical experiments by Kuang et al. [2015] have shown that it achieves
state-of-the-art clustering accuracy on several text and image datasets.

Solving SymNMF

While (SymNMF) looks similar to the well-known asymmetric NMF problem

min
X,Y

1

2
kM �XY T k,

it is actually harder. This is because NMF has a favorable block structure that allows the
application of efficient alternating algorithms [Kim and Park, 2013, Cichocki and Phan, 2009].
SymNMF, however, does not enjoy the same block structure. Current solvers fall into two
categories:

Direct solvers. There have been several attempts at solving the original problem, including
multiplicative update rules [He et al., 2011], projected gradient algorithm quasi-Newton schemes
[Kuang et al., 2015], and coordinate descent [Vandaele et al., 2016].

Nonsymmetric relaxations. Another idea is to use a mere penalty method [Kuang et al.,
2015, Lu et al., 2017, Zhu et al., 2018], relaxing (SymNMF) to the following penalized nonsym-
metric problem

min 1
2kM �XY T k2F + µkX � Y k2F

subject to X,Y � 0,
(P-NMF)

in the variables X,Y 2 R
n⇥r, with parameter µ � 0. This formulation is very similar to asym-

metric NMF and can be solved by the same fast alternating algorithms that exploit the block
structure, such as Alternating Nonnegative Least Squares (ANLS) and Hierarchical Alternating
Least Squares [Zhu et al., 2018] (HALS), which are arguably the fastest SymNMF solvers.

Applying NoLips. We propose to apply the NoLips/Bregman proximal gradient algorithm
for optimizing the original objective function. Problem (SymNMF) falls within our framework
with F (Y ) = 1

2kM � Y k2, which has a Lipschitz gradient with constant 1, and g(X) = i{X � 0}
the indicator function of the nonnegative orthant. Therefore, Proposition 2.3 implies that
f(X) := 1

2kM�XXT k2 is 1-smooth relatively to the kernel hN with ↵ = 6 and � = 2krF (0)k =
2kMk. Since, in addition, f is polynomial and g is the indicator of a polynomial set, f + g
is semialgebraic, and it is also coercive, so Theorem 2.7 guarantees that NoLips will converge
towards a stationary point of problem (SymNMF).
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In this problem, the Bregman iteration map is solved by simply adding a projection step

T�(X) =
1

⌧�(↵kΠ+(U)k2)Π+(U),

where U = rhN (X)��rf(X), ⌧� has been defined in Proposition 2.4 and Π+ is the projection
on the nonnegative orthant: Π+(U) = max(U, 0) (entrywise).

Computational complexity for NoLips. The computational complexity of an iteration is
dominated by gradient computations and objective function evaluations, as all other operations
are linear in the size of the variable.

If M is a n ⇥ n dense matrix, each gradient and function evaluation uses O(n2r + nr2)
floating point operations. If M is represented as a sparse matrix with p << n2 nonzero
elements, then we can take advantage of this structure [Vandaele et al., 2016, Rmk. 2] by using

f(X) =
1

2
kXXT �Mk2 = 1

2
kMk2 + 1

2
kXTXk2 � hMX,Xi

rf(X) = 2X(XTX)� 2MX

which yields a much improved O
�
(r2 + p)n

�
complexity per iteration.

Numerical experiments

We implemented the following algorithms: Algorithm 3 with dynamical step size and the norm
kernel (Dyn-NoLips), the �-SNMF scheme from He et al. [2011], where we set � = 0.99 as advised
by the authors, the projected gradient algorithm (PG) with Armijo line search from Kuang et al.
[2015], where we use the line search parameters � = 0.1 and � = 0.01, the coordinate descent
scheme (CD) from Vandaele et al. [2016], the ADMM algorithm [Lu et al., 2017], and the two fast
algorithms from Zhu et al. [2018] for solving the penalized problem (P-NMF): SymANLS and
SymHALS. For the last two, we tuned the µ penalization parameter for best performance. We
left out the quasi-Newton algorithm from Kuang et al. [2015] because of its prohibitive O(n3)
complexity for large datasets.

All algorithms were implemented in Julia [Jeff Bezanson, Alan Edelman and Shah, 2017]
which is a highly-optimized numerical computing language. Since our algorithms have different
complexity per iteration, it is essential to compare them in terms of running time, and Julia
provides a fairly accurate way to do so as there is little interpreter overhead in loops. Tests
were run on a PC Intel CORE i7-4910MQ CPU @ 2.90 GHz x 8 with 32 Go RAM.

We used two image and two text datasets.

• Image.

– CBCL1: 2,429 images of faces of size 19⇥ 19

– Coil-202: 1440 images of size 128⇥128 representing 20 objects under various angles.

• Text.

– TDT23: dataset of 11,201 news articles classified in 96 semantic categories.

1http://cbcl.mit.edu/software-datasets/FaceData2.html
2http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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(a) COIL-20 (image) n = 1440, r = 20 (b) CBCL (image) n = 2429, r = 20

(c) TDT2 (text) n = 9394, r = 30 (d) Reuters (text) n = 7963, r = 30

Figure 2.1: SymNMF normalized objective gap
�
f(Xk)� fmin

�
/kMk2 averaged over 10 ran-

dom initializations, for various sparse similarity matrices M 2 R
n⇥n. Hyperparameters for

SymHALS, SymANLS were tuned for best performance, while Dyn-NoLips is parameter-free.

– Reuters3: dataset of news articles, which we restricted to the largest 25 categories,
leaving a total of 7,963 documents.

For all image and text datasets, we construct a sparse similarity matrix M following the
procedure described in [Kuang et al., 2015, Section 7.1]. We begin by computing the similarity
graph between data points, using cosine similarity on term frequency vectors for text, and a
Gaussian kernel for image (with the self-tuning method for the scale). The graph obtained is
sparsified by keeping only the edges connecting the k-nearest neighbors, with k = blog2 nc+1.
Then, M is taken as a normalized version of the graph adjacency matrix.

We use the usual convergence criterion for constrained nonconvex problems

krP f(Xk)k
krP f(X0)k  ✏ (2.16)
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Table 2.1: CPU time (in seconds) needed to reach a decrease of ✏ = 10�3 in projected gradient
norm (see (2.16) for definition). Results have been averaged over 10 random initializations.
Hyperparameters for SymHALS, SymANLS and ADMM have been tuned for best performance.
Missing values indicate failure of convergence.

Dataset r NoLips PG Beta CD SymHALS SymANLS ADMM

Coil-20

10 24.7 51.4 - 26.2 7.0 32.3 -
20 23.7 36.8 - 21.3 4.0 18.2 -
30 20.7 40.8 - 35.4 6.5 20.2 -
40 21.7 49.5 - 57.6 7.5 28.4 -

CBCL

10 38.2 42.7 44.0 35.6 13.6 35.2 42.8
20 57.7 88.4 - 93.9 17.8 47.8 -
30 60.9 134.3 - 135.0 15.1 43.4 -
40 50.8 126.4 - 90.0 23.7 52.5 -

TDT2

10 35.2 54.2 - 97.5 11.0 - -
20 52.4 76.1 - 109.9 20.1 - -
30 29.4 45.1 - - 12.1 - -
40 28.0 49.8 - - 17.7 - -

Reuters

10 6.5 10.0 - 33.0 3.0 54.2 -
20 28.7 32.8 - 71.7 9.5 74.7 -
30 24.3 45.5 - 69.4 6.5 91.0 -
40 40.2 68.5 - 83.2 10.6 108.3 -

where rP f(X) is the projected gradient defined as

(rP f(X))ij =

(

rf(X)ij if Xij > 0,

min (rf(X)ij , 0) if Xij = 0.

Table 2.1 reports the average time needed to reach a convergence criterion of ✏ = 10�3,
for 10 random initializations. For each dataset, we test several values for the rank param-
eter r. In addition, Figure 1 shows the average evolution of the normalized objective gap
�
f(Xk)� fmin

�
/kMk2, where fmin is the minimal objective value encountered in all initializa-

tions.
Overall, the algorithm that shows the best convergence speed is SymHALS, but it has the

disadvantage of needing to tune the penalization parameter µ. In the experiments we report,
small values of µ yielded optimal performance, while the convergence theory of Zhu et al. [2018]
only holds for large values for which the algorithm is much slower. By contrast, Dyn-NoLips
is hyperparameter-free and has the second best overall performance. The gap with the other
methods is particularly significant on the larger TDT2 and Reuters datasets, showing that the
method scales well with problem dimension.

2.4.2 Euclidean Distance Matrix Completion

Euclidean distance matrix completion (EDMC) is the task of recovering the position of n points
x⇤1, . . . , x

⇤
n 2 R

r, given the knowledge of a partial set of pairwise distances dij = kx⇤i � x⇤jk2
for (i, j) 2 Ω, where Ω ⇢ [1, n] ⇥ [1, n]. It is a fundamental problem with applications in
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(a) n = 2000, r = 3 (b) n = 5000, r = 3

Figure 2.2: Euclidean matrix completion problems on the Helix dataset, with 10% known
distances and two different problem sizes. We present the normalized RMSE over the full
distance matrix versus CPU time. The results are averaged over 10 random initializations.

sensor network localization and the study of conformation of molecules; see Fang and O’Leary
[2012], Qi and Yuan [2013], Dokmanic et al. [2015] and references therein. The Burer-Monteiro
nonconvex formulation for solving this problem writes

min f(X) :=
1

2

X

(i,j)2Ω

�
kXi �Xjk2 � dij

�2
(EDMC)

in the variable X 2 R
n⇥r. It can be rewritten f(X) = 1

2kPΩ((XXT ) � D)k2 where D is
the matrix of known distances, PΩ denotes the projection operator such that PΩ(Y )ij = Yij if
(i, j) 2 Ω, and PΩ(Y )ij = 0 elsewhere, and  is the linear operator defined for Y 2 R

n⇥n by

(Y )ij = Yii + Yjj � 2Yij for 1  i, j  n.

Applying NoLips with the norm kernel. Problem (EDMC) falls within our framework
with F (Y ) = 1

2kPΩ((Y )�D)k2, which can be shown to have a Lipschitz gradient with constant
LEDM := 9maxi=1...n |{j|(i, j) 2 Ω}|. Therefore, as in the case of SymNMF, the norm kernel
hN can be used with a initial step size 1 and parameters ↵ = 6LEDM and � = 1

3krF (0)k =
2kPΩ(D)k.

Using the Gram kernel As the problem is unconstrained, we can also apply minimization
using the Gram kernel hG. We use the parameters ↵ = 2LEDM , � = LEDM and � = 2kPΩ(D)k,
which ensure that f is 1-smooth relatively to hG by Proposition 2.5.

Computational complexity for NoLips. As before, the main computational bottleneck
for an iteration consists in computing the value and gradient of the objective function. If
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p = |Ω| denotes the number of known distances, then the computational complexity is O(pr).
If the Gram kernel is used, each iteration requires an additional O(nr2 + r3) flops (See Section
2.2.3), which is negligible compared to the latter in the usual setting where p >> n and r is
small.

Numerical experiments We implement the following algorithms: NoLips with a dynamical
step size and the norm kernel (Dyn-NoLips), NoLips with a dynamical step size and the Gram
kernel (Dyn-NoLips-Gram), gradient descent with Armijo line search (GD), the Riemannian trust
region algorithm from Mishra et al. [2011] (TR). We leave out semidefinite relaxations because
of their memory requirement which is prohibitive on large data. As the implementation for TR
is provided in Matlab, we run our experiments on Matlab as well, with the same setup as in
Section 2.4.1.

We try the algorithms on a standard EDMC problem, the 3-dimensional Helix dataset
[Mishra et al., 2011] which is generated as Xi = (cos(3ti), sin(3ti), 2ti) where {ti}

n
i=1 are sampled

uniformly in [0, 2⇡]. We randomly keep only 10 % on the pairwise distances, and test on two
different problem sizes: n = 2000 and n = 5000. Figure 2.2 reports the normalized root
mean squared error (RMSE) over all distances (known and unknown) averaged on 10 random
initializations. All the algorithms manage to recover the ground truth; the Dyn-NoLips-Gram

algorithm shows the best numerical performance, which demonstrates the advantage of using
the Gram geometry.

2.5 Conclusion

We proposed a generic approach for solving Burer-Monteiro formulations of low rank minimiza-
tion problems using the methodology of Bregman gradient methods and relative smoothness.
We studied two quartic kernels, including a new Gram kernel, and demonstrated their ben-
efits on numerical experiments. In future work, performance could be improved further by
studying inertial variants [Mukkamala et al., 2020, Hanzely et al., 2021]. New kernels could
also be explored beyond the class of quartic functions to tackle other problems with inherent
non-Euclidean geometries.

Code

The code for reproducing experiments for SymNMF and Euclidean Distance Matrix Completion
can be downloaded from the public repository
https://github.com/RaduAlexandruDragomir/QuarticLowRankOptimization
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Appendix: solving the subproblem for computing the Bregman

gradient map of the Gram kernel

While it seems that computing the Bregman iteration map of the Gram kernel involves solving
another difficult quartic subproblem, it is actually of small size (r is typically not larger than
a few dozens) and can be solved efficiently with the NoLips scheme.

Indeed, the objective function � of problem (2.11) is 1-smooth relatively to the norm kernel
in R

r hN (x) = ↵u
4 kxk4 + �u

2 kxk2 with a choice of parameters ↵u = ↵+ 3� and �u = �.
Algorithm 4 details the procedure. We initialize µ with the values for the previous iteration

of the outer procedure. This proves to be efficient as the values will not vary much from one
iteration to another. For the stopping criterion, we use the scaled gradient norm kr�(v)k/k⌘k
and a tolerance value ✏ = 10�6.

The subproblem being very well conditionned, it is minimized easily; in numerical experi-
ments, it usually convergences in no more than 20 iterations.

Algorithm 4 Computing the Bregman iteration map of the Gram kernel

Input: Matrix X 2 R
n⇥r, gradient of the objective rf(X), step size � > 0, parameters

↵,�,� > 0, subproblem tolerance ✏, and (optionally), values µ� of µ computed at the previous

iteration.

Form V = rhG(X)� �rf(X) =
�
↵kXk2Ir + �XTX + �Ir

�
X � �rf(X)

Compute V TV

Form the eigendecomposition of V TV = P TDP where P 2 Or and D = diag(⌘21, . . . , ⌘
2
r )

Initialize µ as µ� if provided, and as (0, . . . , 0) otherwise.

repeat

Compute r�(µ) where r�(µ)i = ↵kµk2µi + �µ3
i + �µi � ⌘i

Compute rhN (µ) where rhN (µ)i = (↵+ 3�)kµk2µi + �µi

Form v = rhN (µ)�r�(u)
Set µ 

⇥
⌧�
�
(↵+ 3�)kvk2

�⇤�1
v where ⌧� has been defined in Proposition 2.4

until stopping criterion has been satisfied, i.e., kr�(v)k/k⌘k < ✏

Form Z = P T diag(µ2
1, . . . , µ

2
r)P

Compute T�(X) = V [↵Tr(Z)Ir + �Z + �Ir]
�1

Output: Bregman gradient iterate T�(X)
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Chapter 3

A Lower Bound for Relatively-Smooth

Convex Mimization

Chapter Abstract

We prove a lower bound showing that the O(1/k) convergence rate of the
Bregman gradient descent method (a.k.a. NoLips or mirror descent) is optimal
for the class of problems satisfying the relative smoothness assumption, among
all first-order methods that use Bregman divergences and linear operations.
As a consequence, no algorithm of this class can achieve a better rate than
Bregman gradient descent for generic kernel functions.

Reference: this chapter is based on a publication in Mathematical Programming [Dragomir
et al., 2021c]. Part of this work has been done in collaboration with Adrien Taylor.

3.1 Introduction

We consider the constrained minimization problem

min
x2C

f(x) (P)

where f is a convex continuously differentiable function and C is a nonempty closed convex
subset of Rd. In large-scale settings, first-order methods are particularly popular due to their
simplicity and their low cost per iteration.

The (projected) gradient descent (PG) is a classical method for solving (P), and consists in
successively minimizing quadratic approximations of f , with

xk+1 = argmin
u2C

f(xk) + hrf(xk), u� xki+
1

2�
ku� xkk2, (PG)

where k ·k is the Euclidean norm. Although standard, there is often no good reason for making
such approximations, beyond our capability of solving this intermediate optimization problem.
In other words, this traditional approximation typically does not reflect neither the geometry
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of f nor that of C. A powerful generalization of PG consists in performing instead a Bregman
gradient step

xk+1 = argmin
u2C

f(xk) + hrf(xk), u� xki+
1

�
Dh(u, xk), (BGD)

where the Euclidean distance has been replaced by the Bregman divergence

Dh(x, y) := h(x)� h(y)� hrh(y), x� yi

induced by some strictly convex and continuously differentiable kernel function h. A well-
chosen h allows designing first-order algorithms adapted to the geometry of the constraint set
and/or the objective function. Of course, a conflicting goal is to choose h such that each
iteration (BGD) can be solved efficiently in practice, discarding choices such as h = f (for
which performing an iteration would be as hard as solving the original problem).

Recently, Bauschke et al. [2017] introduced a natural condition for analyzing this scheme,
assuming that the inner objective in the iteration (BGD) is an upper bound on f . This
ensures that performing an iteration decreases the function values f(xk). This assumption,
known as relative smoothness, generalizes the standard L-smoothness assumption implied by
Lipschitz continuity of rf . The Bregman gradient algorithm, also called NoLips in the setting
of Bauschke et al. [2017], is thus a natural extension of gradient descent (PG) to objective
functions whose geometry is better modeled by a non-quadratic kernel h. Practical examples of
relative smoothness arise in Poisson inverse problems [Bauschke et al., 2017], quadratic inverse
problems [Bolte et al., 2018], rank minimization [Dragomir et al., 2021a] and regularized higher-
order tensor methods [Nesterov, 2021].

Can we accelerate Bregman gradient descent? In the Euclidean setting where h is
the squared Euclidean norm 1

2k · k2, accelerated projected gradient methods exhibit faster
convergence than the vanilla projected gradient algorithm. These methods, which can be
traced back to Nesterov [1983], are proven to be optimal for L-smooth functions and have
found a number of successful applications, in e.g., imaging [Beck and Teboulle, 2009]. A
natural question is therefore to understand whether the (BGD) algorithm can be accelerated
in the relatively-smooth setting.

This question has been raised in several works, including [Bauschke et al., 2017, Section 6],
[Lu et al., 2018, Section 3.4], and the survey [Teboulle, 2018, Section 6]. Partial answers have al-
ready been provided under somewhat strict additional regularity assumptions (see e.g., Auslen-
der and Teboulle [2006], Walid et al. [2015], Hanzely et al. [2021] and discussions in the sequel),
while the general case was apparently still open, and relevant in practical applications.

In this work, we establish a lower complexity bound proving that BGD is optimal for the
general relatively-smooth setting, and therefore that generic acceleration is impossible.

In order to do so, we adopt the standard black-box model used for studying complexity of
first-order methods [Nemirovski and Yudin, 1983]. We consider that both f and h are described
by first-order oracles, so as to obtain generic complexity results, and we look for worst-case
couples of functions (f, h) satisfying the relative smoothness assumption. A central idea in
our approach is the fact that, when studying the worst-case behavior of Bregman methods in
the relatively-smooth setting, f and h can get arbitrarily close to some limiting pathological
nonsmooth functions.
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Main inspiration: Performance Estimation Problems. The worst-case instance used
for proving our lower bound was inferred from the solution to a Performance Estimation Prob-
lem (PEP). The PEP methodology allows to study worst-case behavior of first-order methods
by solving appropriate semidefinite programs, and was pioneered by Drori and Teboulle [2014]
in the context of smooth convex minimization. In Chapter 4, we show how the PEP technique
can be extended to Bregman first-order methods in the relatively-smooth setting, and how it
allowed us to discover the key elements for proving our lower bound. However, we emphasize
that the proof we give in this chapter is self-contained and can be read independently.

Related work on lower complexity bounds. The first-order black-box model, developed
initially in the works of Nemirovski and Yudin [1983] and later Nesterov [2003] has allowed
to prove optimal complexity results for several classes of problems in first-order optimization
[Drori, 2017]. These results usually rely on well-chosen worst-case functions whose structure
makes them difficult to minimize for all methods within a given class.

Our worst-case instances are obtained from pointwise maxima of affine functions, remi-
niscent of lower bounds for nonsmooth convex minimization [Nemirovski and Yudin, 1983,
Woodworth and Srebro, 2017]. Our construction then involves smoothing those piecewise affine
functions, making them differentiable. This technique is also used in the very related work of
Guzmán and Nemirovski [2015], which studies lower bounds for minimization of convex func-
tions that are smooth with respect to `p norms. To the best of our knowledge, the lower bound
obtained in the sequel is not a particular case of those in Guzmán and Nemirovski [2015], as
smoothness with respect to a certain norm is different from relative smoothness with respect
to the same (squared) norm, beyond the `2-norm.

Notation, We use C to denote the closure of a set C, int C for its interior and @C for its
boundary. We denote (e1, . . . , en) the canonical basis of R

d, and for p 2 {1, . . . n} we write
Ep = Span(e1, . . . , ep) the set of vectors supported by the first p coordinates. Subscripts on a
vector denote the iteration counter, while a superscript such as x(i) denotes the i-th coordinate.

3.2 Algorithmic setup

In this section, we briefly recall the base ingredients and technical assumptions on f and h that
are used within Bregman first-order methods. For a more detailed presentation and examples
of applications, we refer the reader to Chapter 1.

3.2.1 Kernel functions

Let C be a nonempty closed convex subset of Rd. The first step in defining Bregman methods
is the choice of a kernel (or reference) function h on C.

Definition 3.1 (Kernel function). A function h : Rd ! R [ {+1} is called a kernel function
on C if

(i) h is closed convex proper (c.c.p.),

(ii) h is continuously differentiable and strictly convex on int C,

40



(iii) the Bregman gradient iterates are well-posed, i.e., for every p 2 R
d, the problem

min
u2C
hp, ui+ h(u)

has a unique minimizer, which belongs to int C.

A kernel function h induces a Bregman divergence Dh defined as

Dh(x, y) = h(x)� h(y)� hrh(y), x� yi 8x 2 domh, y 2 domrh.

Note that Dh is not a distance in the classical sense, however it enjoys a separation property; due
to the strict convexity of h we have Dh(x, y) � 0 8x 2 domh, y 2 domrh, and Dh(x, y) = 0
iff x = y.

Examples. We list some of the most classical examples of kernel functions (see Chapter 1
for more):

• the Euclidean kernel h(x) = 1
2kxk2 with domain R

d, and for which Dh(x, y) =
1
2kx�yk2

is the Euclidean distance,

• the Boltzmann-Shannon entropy h(x) =
P

i x
(i) log x(i) extended to 0 by setting

0 log 0 = 0, whose domain is thus R
d
+,

• the Burg entropy h(x) =
P

i� log x(i) with domain R
d
++,

• the quartic kernel h(x) = 1
4kxk4 + 1

2kxk2 with domain R
d [Bolte et al., 2018].

Convex conjugate. If h is a kernel function, we define its convex conjugate h⇤ as

h⇤(y) = sup
u2Rd

hu, yi � h(u)

If, for every y 2 R
d, the supremum in the definition of h⇤(y) is attained, then h⇤ is differentiable

and its gradient satisfies for every u 2 domrh⇤

rh⇤(y) = argmax
u2Rd

hu, yi � h(u).

3.2.2 Relatively-smooth optimization problems

We now recall the framework of relatively-smooth optimization [Bauschke et al., 2017, Lu et al.,
2018] for solving the minimization problem

min
x2C

f(x)

For simplicity, we present the setting without nonsmooth regularization term; our lower bound
is a fortiori valid for the Bregman proximal gradient algorithm designed for solving composite
problems [Bauschke et al., 2017, Eq. (12)].

In addition to these assumptions, the central property we need in order to apply the Breg-
man gradient method is the so-called relative smoothness property [Bauschke et al., 2017, Lu
et al., 2018].
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Definition 3.2 (Relative smoothness). Let h be a kernel function on C, and f a function such
that domh ⇢ dom f . We say that f is smooth relative to h if it is differentiable on int C and if
there exists a constant L > 0 such that

Lh� f is convex on domh. (LC)

Relative smoothness allows to build a simple global majorant of f ; indeed, (LC) is equivalent
to the condition (see, e.g, Bauschke et al. [2017])

f(x)  f(y) + hrf(y), x� yi+ LDh(x, y) 8x 2 domh, y 2 domrh,

and the NoLips/Bregman gradient method consists in successively minimizing this upper ap-
proximation.

We use the following convenient notation to characterize the class of relatively-smooth
problems.

Definition 3.3. We say that the couple of functions (f, h) is a relatively-smooth instance, and
write (f, h) 2 BL(C) if

(i) h is a kernel function on C,

(ii) f : Rd ! R [ {+1} is a closed convex proper function,

(iii) f is L-smooth relative to h on C.

Finally, let us denote by BL the union of BL(C) for all closed convex sets C:

BL =
[

d�1

[

C⇢R
d

C closed convex

BL(C)

3.2.3 The NoLips/Bregman Gradient algorithm

Previous assumptions allow defining the Bregman Gradient (BG)/NoLips algorithm for
minimizing f . For simplicity, we consider here the constant step size method.

Algorithm 5 Bregman Gradient (BG) / NoLips [Bauschke et al., 2017]

Input: (f, h) 2 BL(C), x0 2 int domh, step size � 2 (0, 1/L].
for k = 0,1,. . . do

xk+1 = argmin
u2Rd

hrf(xk), u� xki+
1

�
Dh(u, xk) (3.1)

end for

Using first-order optimality conditions, update (3.1) can alternatively be written as

xk+1 = rh⇤ [rh(xk)� �rf(xk)]

involving the gradient rh⇤ which is usually referred to as the mirror map. The three operations
rf,rh and rh⇤ are the basic building blocks of Bregman-type methods, which we now define
formally.
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3.2.4 Defining a class of Bregman first-order methods

For proving a general lower bound for relatively-smooth optimization, we need to specify the
oracle model and the class of methods under consideration.

We adopt the first-order black-box model, where information about a function can be gained
by calling an oracle returning the value and gradient of f at a given point. In the Bregman
setting, we assume that we also have access to the first-order oracles of the kernel function h
and its conjugate h⇤.

Definition 3.4. An algorithm A is called a Bregman first-order algorithm if, for a given problem
instance (f, h) 2 BL and number of iterations T 2 N, it generates at each time step t 2
{0, . . . , T}, a set of primal points Xt and dual points Yt from the following process:

1. Set X0 = {x0}, where x0 2 int domh is some initialization point, and

Y0 = {rf(x0),rh(x0)}.

2. For each t = 1, . . . T , perform one of the two following operations:

• either call the primal oracle (rf,rh) at some point xt chosen such as

xt 2 Span(Xt�1) \ domrh
and update the dual set as

Yt = Yt�1 [ {rf(xt),rh(xt)}.
• Or call the mirror oracle rh⇤ at some dual point yt chosen such as

yt 2 Span(Yt�1)

with
rh⇤(yt) = argmin

u2C
h(u)� hyt, ui

and update the primal set as

Xt = Xt�1 [ {rh⇤(yt)}.
3. Output some point xT 2 Span(XT ).

Such structural assumptions on the class of algorithms are classical from complexity analyses
of Euclidean first-order methods and are used to prove e.g., optimality of accelerated first order
methods [Nesterov, 2003]. Definition 3.4 is a natural extension to the Bregman setting, allowing
additional uses of the oracles associated with the kernel function h. This model can often be
relaxed through the use of more involved information theoretic arguments, see e.g., Nemirovski
and Yudin [1983], Guzmán and Nemirovski [2015], Drori [2017], Woodworth and Srebro [2017].

Here, we focus on Definition 3.4 as it is general enough to encompass all Bregman-type
methods that only use oracles for rf,rh, which we call the primal oracles, the map rh⇤,
which we call the mirror oracle, as well as linear operations. One can verify that all known
Bregman gradient methods, including NoLips and inertial variants such as IGA [Auslender and
Teboulle, 2006] or the recent algorithm in Hanzely et al. [2021], fit in this model.

Observe that, as BGD performs one primal oracle call and one mirror call per iteration, an
iteration of BGD corresponds actually to two time steps of the formal procedure in Definition
3.4. This is why, in order to avoid ambiguity, we state our lower bound as a function of the
number of oracle calls.
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3.3 Convergence rate and optimality of Bregman gradient de-

scent

In this section, we start by recalling the O(1/k) convergence rate bound for the Bregman
gradient/NoLips algorithm in the setting where (f, h) 2 BL(C). We then proceed to prove
that NoLips is an optimal algorithm for the class BL(C), by showing that this rate is also a
lower bound for a generic class of Bregman gradient algorithms that we define below. The key
elements for proving the lower bound were empirically discovered through the solution to a
Performance Estimation Problem (PEP), which is detailed in Chapter 4.

3.3.1 Upper bound

We first recall the O(1/k) convergence rate for Bregman gradient descent/NoLips.

Theorem 3.5 (NoLips convergence rate). Let L > 0, C be a nonempty closed convex subset of
R
d and (f, h) 2 BL(C) be an relatively-smooth instance. Then the sequence {xk}k�0 generated

by Algorithm 5 with constant step size � 2 (0, 1/L] satisfies for all k � 0

f(xk)� f(u)  Dh(u, x0)

� k
(3.2)

for every u 2 domh.

Proof. See [Lu et al., 2018, Thm 3.1.]; we also give an alternative simple proof in Chapter 4
(Section 4.4.1), whose analytical form has been inferred from the solution to a performance
estimation problem.

Faster algorithms under additional assumptions. It is natural to ask whether an accel-
erated Bregman algorithm can be obtained, with a better convergence rate than O(1/k). This
has already been achieved under additional regularity assumptions, as follows:

• in the Euclidean setting, when h(x) = 1
2kxk2 and f is L-smooth, the seminal accelerated

gradient method of Nesterov [1983] enjoys a O(1/k2) convergence rate, which is optimal
for this class of functions [Nesterov, 2003].

• When h is a strongly convex kernel with closed domain and f is L-smooth (which, as
discussed in Section 1.2.1, is a particular case of relative smoothness), the Improved Inte-
rior Gradient Algorithm (IGA) of Auslender and Teboulle [2006] also admits a O(1/k2)
convergence rate using the same momentum technique as Nesterov-type methods.

• Recently, Hanzely et al. [2021] proposed an accelerated Bregman proximal gradient algo-
rithm with rate O(1/k�), where � 2 [1, 2] is determined by some crucial triangle scaling
property of the Bregman divergence, whose genericity is unclear.

However, the existence of an accelerated algorithm for the general relatively-smooth setting
was still an open question prior to this work. Indeed, many applications such as Poisson
inverse problems [Bauschke et al., 2017] or D-optimal design [Lu et al., 2018] do not satisfy the
supplementary assumptions made in the works mentioned above. In the next section, we prove
that, up to a constant factor of 2, the bound (3.2) is not improvable in general for Bregman-type
methods, making NoLips an optimal algorithm in the black box setting for (f, h) 2 BL.
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3.3.2 A lower bound for relatively-smooth Bregman optimization

We show in Theorem 3.12 below that for any ✏ 2 (0, 1) and number of oracle calls N , there
is a pair of functions (f, h) 2 BL(R

2N+1) and some x0 2 R
2N+1 such that for any Bregman

gradient algorithm initialized at x0, the output xN returned after performing at most N oracle
calls satisfies

f(xN )� min
R2N+1

f � (1� ✏) LDh(x0, x⇤)

2N + 1
.

Proof intuition. For finding an instance (f, h) which is difficult for all Bregman methods,
we use two main ideas. The first is the well-known technique used by Nesterov [2003] for
proving that O(1/k2) is the optimal complexity for L-smooth convex minimization. He defines
a “worst function in the world" that allows any gradient method to discover only one dimension
per iteration, hence hiding the minimizer from the algorithm in the remaining unexplored
dimensions.

The second idea is more specific to our setting, and relies on the fact that the set of relatively-
smooth problems BL(C) is not closed. In particular, a limit of differentiable functions need not
be differentiable. Thence, we actually build a worst-case sequence of differentiable functions
parameterized by some parameter µ, whose limit when µ ! 0 is a nonsmooth pathological
function.

Choosing the objective function. Let us fix a dimension d � 1 and a positive constant
⌘ > 0. Define the convex function f̂ for x 2 R

d by

f̂(x) = max
i=1,...,d

|x(i) � 1� ⌘

i
| = kx� x⇤k1

which has an optimal value f̂⇤ = 0 attained at x⇤ := (1 + ⌘, 1 + ⌘
2 , . . . , 1 +

⌘
d ). The behavior of

f̂ as a pathological function comes from the fact that if at least one of the coordinates of x is
zero, then f̂(x)� f̂⇤ � 1. Let us first prove a technical lemma about the subdifferential of f̂ .

Lemma 3.6. Let x 2 R
d and v 2 @f̂(x) be a subgradient of f̂ at x. Then

(i) kvk1  1.

(ii) Let i 2 {1 . . . n}. If v(i) 6= 0 then |x(i) � x
(i)
⇤ | = kx� x⇤k1.

Proof. Write f̂ as f̂(x) = max1id f̂i(x) with f̂i(x) = |x(i) � x
(i)
⇤ |. Then, by [Nesterov, 2003,

Lemma 3.1.10], we have
@f̂(x) = Conv {@f̂i(x)|i 2 I(x)}

where I(x) = {i 2 {1 . . . d} | f̂i(x) = f̂(x)}. Hence, (i) follows immediately from the well-known
property that the subgradients of the absolute value lie in [�1, 1]. (ii) is a consequence of the

fact that if v(i) 6= 0, then i 2 I(x), which means that |x(i) � x
(i)
⇤ | = kx� x⇤k1.

Note that f̂ is nonsmooth hence does not meet our assumptions. We approach it with a
differentiable function by considering its Moreau envelope fµ given by

fµ(x) = min
u2Rd

f̂(u) +
1

2µ
kx� uk2 (3.3)
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(a) f̂ (b) fµ

Figure 3.1: Level curves of function f̂ (left) and of its smoothed Moreau evelope fµ (right)
for n = 2, µ = 0.2 and ⌘ = 1/2. Lemma 3.8 states that if µ is small enough compared to ⌘, the
behaviors of f̂ and fµ at x0 = 0 are the same. Indeed, the size of the smoothed region where
the corners are “rounded" decreases when µ goes to 0.

where µ 2 (0, 1) is a small parameter. fµ is a smoothed version of f̂ , which behaves similarly to

f̂ when we choose µ small enough. Figure 3.1 illustrates this phenomenon in two dimensions.
For general properties of the Moreau proximal envelope, we refer to Moreau [1965]. Let us

state some properties of fµ that we need for the analysis.

Lemma 3.7. fµ is a differentiable convex function, whose minimizers are the same as those

of f̂ . Its gradient at a point x 2 R
d is given by rfµ(x) = µ�1

⇣

x� proxµ
f̂
(x)

⌘

where

proxµ
f̂
(x) = argmin

u2Rd

f̂(u) +
1

2µ
kx� uk2

is the Moreau proximal map. Moreover, rfµ is Lipschitz continuous with constant 1/µ.

Let us now prove the central property of fµ, which states that when the last d � p co-
ordinates of x are small enough, the gradient rfµ(x) is supported on the first p + 1 coordi-
nates. Recall that we denote (e1, . . . , ed) the canonical basis of Rd and write, for p 2 {1 . . . d},
Ep = Span(e1, . . . , ep) and E0 = {(0, . . . , 0)}.

Lemma 3.8. Assume that µ 2 (0, 1) and ⌘ > 4µd2. Let p 2 {0 . . . d � 1}. For any vector
x 2 R

d such that
max

i=p+1,...,d
|x(i)|  µ

we have that rfµ(x) 2 Ep+1. In addition, we have krfµ(x)k1  1.

Proof. Take x 2 R
d such that maxi=p+1,...,n |xi|  µ. By Lemma 3.7, rfµ is given by

rfµ(x) =
1

µ
(x� proxµ

f̂
(x)) (3.4)
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Write y = proxµ
f̂
(x). The optimality condition defining the proximal map yields

y � x+ µv = 0 (3.5)

where v 2 @f̂(y), and therefore the combination of (3.4) and (3.5) implies

rfµ(x) = v 2 @f̂(y). (3.6)

Now, let us assume by contradiction that rfµ(x) is not in Ep+1, meaning that there exists
an index
l 2 {p+ 2 . . . d} such that v(l) 6= 0. It follows from Lemma 3.6 that |(y � x⇤)

(l)| = ky � x⇤k1.

Hence we have in particular that |y(l) � x
(l)
⇤ | � |y(p+1) � x

(p+1)
⇤ |. Using Condition (3.5) to

replace y we get

|x
(l)
⇤ + µv(l) � x(l)| � |x

(p+1)
⇤ + µv(p+1) � x(p+1)|,

and recalling the definition of x⇤ we have

|1 +
⌘

l
+ µv(l) � x(l)| � |1 +

⌘

p+ 1
+ µv(p+1) � x(p+1)|.

By Lemma 3.6, kvk1  1, so for all i we have 1 + µv(i) � 1 � µkvk1 � 0. In addition,
we assumed that maxi=p+1,...,d |x

(i)|  µ < ⌘
4d2

which implies ⌘
i � x(i) � 0 for all i � p + 1.

Therefore, both terms inside the absolute values are nonnegative, it follows that we can drop
absolute values and

µ(v(l) � v(p+1)) � ⌘

p+ 1
� ⌘

l
+ x(l) � x(p+1)

� ⌘ · l � (p+ 1)

l(p+ 1)
� 2µ

� ⌘

l(p+ 1)
� 2µ

� ⌘

d2
� 2µ,

and therefore v(l)�v(p+1) � ⌘
µd2
�2 > 2, because we assumed ⌘ > 4µd2. This is a contradiction

since (v(l) � v(p+1))  2kvk1  2. Finally, the second part of the lemma is a consequence of
(3.6) and kvk1  1.

We also need the following lemma for relating the values of f̂ and fµ.

Lemma 3.9. Let µ > 0 and x 2 R
d. Then fµ(x) � f̂(x)� µ.

Proof. Write y = proxµ
f̂
(x). By definition of fµ and the proximal map we have

fµ(x) = f̂(y) +
1

2µ
ky � xk2

� f̂(y)

= ky � x⇤k1
� kx� x⇤k1 � kx� yk1.
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Recall the optimality conditions defining the proximal map can be written as µ�1(x � y) 2
@f(y),and, since all subgradients of f̂ have coordinates smaller than 1 (Lemma 3.6), we reach
kx � yk1  µ. It follows that fµ(x) � kx � x⇤k1 � kx � yk1 � kx � x⇤k1 � µ = f̂(x) � µ,
which concludes the proof.

Choosing the kernel. As for the objective function fµ, let us pick a family of kernels hµ,
whose behavior approach those of a nonsmooth function as µ! 0.

Let us first define a unidimensional convex function �µ : R! R by

�µ(t) =

⇢
t� µ/2 if t � µ,
1
2µ t

2 elsewhere.

Note that �µ is sometimes known as the Huber function, which is a smooth approximation of
the absolute value and also appears as a worst-case function for first-order methods in L-smooth
minimization [Taylor et al., 2017].

Define dµ : Rd ! R through

dµ(x) =
µ

2
kxk2 +

nX

i=1

�µ(x
(i)), x 2 R

d. (3.7)

dµ is a differentiable strictly convex function, whose gradient satisfies, for x 2 R
d and i 2

{1 . . . n},
rdµ(x)(i) = µx(i) +min(1, x(i)/µ).

From the expression above, we can deduce two crucial properties that we need in the sequel:
for x 2 R

d and i 2 {1 . . . n}, we have

rdµ(x)(i) = 0 if and only if x(i) = 0, (3.8)

|rdµ(x)(i)|  1 implies |x(i)|  µ. (3.9)

Let L > 0. We define the kernel hµ for x 2 R
d as

hµ(x) =
1

L
(fµ(x) + dµ(x)) . (3.10)

By construction, Lhµ � fµ is convex, so the relative smoothness property holds. It is easy to
see that Definition 3.1 is satisfied as hµ is strongly convex, so we have (fµ, hµ) 2 BL(R

d).

Proving the zero-preserving property of the oracles. Now that the functions are de-
fined, we are ready to prove that all oracles involved in the Bregman algorithm allow to discover
only one dimension per oracle call.

Proposition 3.10 (Zero-preserving property of rfµ,rhµ,rh⇤µ). Assume that µ 2 (0, 1) and

⌘ > 4µd2. Let p 2 {0 . . . d� 1}, and x 2 R
d \ Ep a vector supported by the p first coordinates.

Then
rfµ(x),rhµ(x),rh⇤µ(x) 2 Ep+1.
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Proof. Let x 2 Ep. Then x satisfies the assumption of Lemma 3.8 which proves that rfµ(x) 2
Ep+1. By Property (3.8) of dµ, we also have that rdµ(x) 2 Ep, which allows us to conclude
that

rhµ(x) = L�1 (rfµ(x) +rdµ (x)) 2 Ep+1.

It remains to prove the result for rh⇤µ(x). Write z = rh⇤µ(x), which amounts to say that
rhµ(z) = x, that is

rfµ(z) +rdµ(z) = Lx

using (3.10). Let l 2 {p+1 . . . d}. We have x 2 Ep, hence the l� th coordinate of x is zero and

rfµ(z)(l) +rdµ(z)(l) = 0.

Using the second part of Lemma 3.8, we have that krfµ(z)k1  1; it follows that |rdµ(z)(l)| 
1, which implies that |z(l)|  µ, by property (3.9) of dµ. Since this holds for any l � p+ 1, we
have established

max
l=p+1,...,d

|z(l)|  µ.

Applying Lemma 3.8 to z, we obtain that rfµ(z) 2 Ep+1. Remembering that rhµ(z) = x 2 Ep

by construction, we get
rdµ(z) = Lrhµ(z)�rfµ(z) 2 Ep+1.

By Property (3.8) of dµ, it follows that z 2 Ep+1, which concludes the proof.

We can now use Proposition 3.10 inductively to state a lower bound on the performance of
any Bregman gradient algorithm applied to (fµ, hµ).

Proposition 3.11. Let N � 1 and choose the dimension d = 2N + 1. Let µ 2 (0, 1) and
⌘ > 4µd2. Consider the functions fµ, hµ : Rd ! R defined in (3.3) and (3.10) respectively.
Then, for any Bregman gradient method satisfying Definition 3.4, applied to (fµ, hµ) and ini-
tialized at x0 = (0, . . . 0), the output x returned after performing at most N calls to each one of
the primal and mirror oracles satisfies

fµ(x)�min
Rd

fµ �
LDhµ(x⇤, x0)

2N + 1
·

1� µ

1 + µ+ ⌘ + µ
2 (1 + ⌘)2

.

Proof. The zero-preserving property and the structure of Bregman gradient algorithms de-
scribed in Definition 3.4 implies that the set of primal points Xt and dual points Yt at iteration
t are supported by the t first coordinates, i.e.,

Xt,Yt ⇢ Et.

Indeed, since we initialized X0 = {x0} ⇢ E0, this follows by induction. Assume that at time
t, we have Xt,Yt ⇢ Et. If the primal oracle is chosen at iteration t + 1, since the query point
xt+1 is taken as a linear combination of points in Xt it also lies in Et, and thus Proposition
3.10 states that the new dual vectors rfµ(xt+1),rhµ(xt+1) belong to Et+1. If, on the other
hand, the mirror oracle is chosen, then with the same argument we have that yt+1 2 Et an by
Proposition 3.10 that rh⇤µ(yt+1) 2 Et+1.

Now, because the algorithm has called at most N times each oracle, it has performed at
most 2N steps and thus the output point satisfies x 2 E2N , which means that x(2N+1) = 0.
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We use Lemma 3.9 to relate fµ(x) and f̂(x). Recalling that min fµ = f̂⇤ = 0, we get

fµ(x)�min
Rd

fµ = fµ(x)

� f̂(x)� µ

� |x(2N+1) � x
(2N+1)
⇤ |� µ

= 1 +
⌘

2N + 1
� µ

� 1� µ,

(3.11)

where we used the definition of f̂ and the fact that x(2N+1) = 0.
Let us now upper bound the initial diameter. Remembering that Lhµ = fµ + dµ in (3.10),

we have
LDhµ(x⇤, x0) = Dfµ(x⇤, x0) +Ddµ(x⇤, x0).

by definition of the Bregman divergence. To deal with the first term, we recall that fµ(x⇤) = 0
and write

Dfµ(x⇤, x0) = fµ(x⇤)� fµ(x0)� hrfµ(x0), x⇤ � x0i
= �fµ(x0)� hrfµ(x0), x⇤ � x0i
 �f̂(x0) + µ� hrfµ(x0), x⇤ � x0i
= �1� ⌘ + µ� hrfµ(x0), x⇤ � x0i,

where we used again Lemma 3.9 at x0 = (0, . . . , 0). Now, Lemma 3.8 applies to x0 with p = 0
and allows to state that rfµ(x0) 2 E1 and that krfµ(x0)k1  1. Therefore

|hrfµ(x0), x⇤ � x0i| = |rfµ(x0)(1) (x(1)⇤ � x
(1)
0 )|  |x

(1)
⇤ � x

(1)
0 | = 1 + ⌘.

Hence we have the following upper bound

Dfµ(x⇤, x0)  �1� ⌘ + µ+ |hrfµ(x0), x⇤ � x0i|  µ. (3.12)

The second term can be directly computed from Definition (3.7) of dµ, recalling that x
(i)
⇤ �

1 � µ for i 2 {0 . . . d},

Ddµ(x⇤, x0) = dµ(x⇤)� dµ(x0)� hrdµ(x0), x⇤ � x0i
= dµ(x⇤)

=
2N+1X

k=1

hµ

2
(1 +

⌘

k
)2 + 1 +

⌘

k
� µ

2

i

 (2N + 1)
hµ

2
(1 + ⌘)2 + ⌘ + 1

i

.

(3.13)

Combining (3.12) and (3.13) gives

LDhµ(x⇤, x0) = Dfµ(x⇤, x0) +Ddµ(x⇤, x0)

 µ+ (2N + 1)
hµ

2
(1 + ⌘)2 + ⌘ + 1

i

 (2N + 1)
h

µ+
µ

2
(1 + ⌘)2 + ⌘ + 1

i

.
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This bound, along with (3.11), yields

fµ(x)�min
Rd

fµ � 1� µ � LDhµ(x⇤, x0)

2N + 1
·

1� µ

1 + µ+ ⌘ + µ
2 (1 + ⌘)2

whence the desired result.

Since constants µ, ⌘ can be taken arbitrarily small, we now use Proposition 3.10 to show
that the bound can be approached to any precision and thus prove our main result.

Theorem 3.12 (Lower complexity bound for BL). Let N � 1, a precision ✏ 2 (0, 1) and let
x0 2 R

2N+1 be a starting point. Then, there exist functions (f, h) 2 BL(R
2N+1) such that for

any Bregman gradient method A satisfying Definition 3.4 and initialized at x0, the output x
returned after performing at most N calls to each one of the primal and mirror oracles satisfies

f(x)� min
R2N+1

f � LDh(x⇤, x0)

2N + 1
· (1� ✏).

Proof. Consider a number N of oracle calls and a target precision ✏ 2 (0, 1). Choose the
functions fµ, hµ defined respectively in Equations (3.3) and (3.10) on R

d with d = 2N + 1.
These functions satisfy the conditions in Definition 3.3, since their domain is R

d, they are
convex, differentiable, and hµ is strongly convex. Moreover, relative smoothness holds because
Lhµ � fµ = dµ is convex by construction. Hence (fµ, hµ) 2 BL(R

d).
Because the class of problems BL(R

d) is invariant by translation, we can assume without loss
of generality that the algorithm is initialized at x0 = (0, . . . 0). Recall that the only conditions
our analysis imposed on the parameters ⌘, µ are that µ 2 (0, 1) and ⌘ > 4µd2.

Let us then choose ⌘ = ✏/4 and µ = ⌘/(5d2) = ✏/(20d2). Under these conditions, Propo-
sition 3.11 applies and gives that for any point x returned by a Bregman gradient algorithm
that is initialized at x0 and which performs at most N calls to each oracle we have

fµ(x)� min
R2N+1

fµ �
LDhµ(x⇤, x0)

2N + 1
·

1� µ

1 + µ+ ⌘ + µ
2 (1 + ⌘)2

.

The last term can be bounded from below, using our choice of µ, ⌘, and the fact that ⌘ < 1, as

1� µ

1 + ⌘ + µ+ µ
2 (1 + ⌘)2

� 1� µ

1 + ⌘ + 3µ
=

1� ✏
20d2

1 + ✏
4 + 3✏

20d2

� 1� ✏

yielding the desired result.

Remark 3. One can refine the result above in the case where the primal and mirror oracles are
not used the same number of times. Indeed, if the primal oracles are called N1 times and the
mirror oracle is called N2 times, then the same reasoning shows that the lower bound remains
true by replacing 2N with N1 +N2.

Our lower bound involves the relative smoothness constant L instead of the step size �

in (3.2), but it is equivalent (up to a factor 2) when choosing � = 1/L, which is actually the
best possible step size choice. This shows the optimality of NoLips within the class of Bregman
first-order methods (up to a universal constant).
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Connection with Conditional Gradient and the `1 setting. The worst-case function used
for the lower bound involves the smoothing of an `1 norm. As pointed out by one of the
referees, there might be a connection between the hardness of the relatively-smooth setting and
the lower bound for smooth minimization on the `1 ball as done in Guzmán and Nemirovski
[2015]. This lower bound, which is also O(1/k), is used by the authors to prove that the rate
of the Conditional Gradient algorithm is near-optimal in this setting. It might be insightful to
examine connections between these settings in future works, for example by exploiting duality
between Bregman gradient methods and Conditional Gradient, as in Bach [2015].

3.4 Conclusion

We proved that, in the general relatively-smooth setting, the Bregman gradient/NoLips algo-
rithm is optimal within a large class of Bregman first-order methods. The fundamental idea
used for proving our lower bound is that of limiting nonsmooth pathological behavior. Indeed,
the class of relatively-smooth problem instances is not closed and the worst case functions
are reached as (f, h) approach some non-differentiable functions. This idea, along with the
corresponding worst-case functions, have been discovered from the solution to a Performance
Estimation Problem, which we detail in the next chapter.

Our result shows that additional assumptions on functions f and h are needed in order to
prove better bounds or devise faster algorithms than Bregman gradient descent. If the usual
properties of L-smoothness and strong convexity are too restrictive and do not hold in many
applications, the future challenge is to find weaker assumptions, that define a larger class of
functions where improved rates can be obtained. Another possible approach would to enlarge
the oracle model and to find algorithms that do not fit in Definition 3.4, for instance by including
second-order oracles of h, in the case when h is simple enough.
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Chapter 4

Computer-Aided Analyses of Bregman

Gradient Methods with Generic

Kernels

Chapter Abstract

We show how worst-case scenarios of Bregman gradient methods with gen-
eral kernel functions can be computed by solving appropriate semidefinite pro-
grams. Additionally, the corresponding convergence proof can be inferred from
the solution to the dual program. This technique, called performance estima-
tion, has been pioneered by Drori and Teboulle [2014] in the context of Eu-
clidean smooth convex minimization. We extend the performance estimation
framework to Bregman methods for relatively-smooth problems, and use it to
provide several complexity results in this setting. In particular, numerically
generated worst-case examples were used as a basis for obtaining the general
lower bound presented in Chapter 3.

Reference: this chapter is based on a publication in Mathematical Programming [Dragomir
et al., 2021c]. Part of this work has been done in collaboration with Adrien Taylor.

4.1 Introduction

We consider the constrained minimization problem

min
x2C

f(x)

where f is a continuously differentiable convex function and C is a nonempty closed convex
subset of Rd. We are interested in the setting where f satisfies a relative smoothness condition
with respect to some convex function h [Bauschke et al., 2017]. The standard method for
solving such a problem is the Bregman gradient descent scheme (BGD), which writes

xk+1 = argmin
u2C

f(xk) + hrf(xk), u� xki+
1

�
Dh(u, xk), (BGD)
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where
Dh(x, y) = h(x)� h(y)� hrh(y), x� yi

is the Bregman divergence induced by the kernel function h. If f is L-smooth relative to h,
that is, if Lh � f is convex, then the iterates of the (BGD) scheme with step size � = 1/L
satisfy the convergence rate

f(xk)� f(u)  LDh(u, x0)

k
(4.1)

for every u 2 domh (see Chapter 1). Despite this result, there are still some open questions
regarding the complexity of Bregman methods for relatively-smooth minimization. In particu-
lar, is the bound (4.1) optimal? Is there another algorithm that achieves a better rate in the
same setting, for generic kernels h?

Performance estimation problems. In this work, we adopt a computer-aided technique
for analyzing the worst-case behavior of first-order methods, using performance estimation
problems (PEPs). PEPs were first introduced by Drori and Teboulle [2014] for analyzing
the exact convergence rate of Euclidean gradient descent on L-smooth functions. By solving
appropriate semidefinite programs, PEPs allow to:

1. compute (numerically) the exact worst-case complexity of an algorithm on a given class
of problems after a fixed number of iterations,

2. study the corresponding worst-case functions,

3. infer an analytical worst-case guarantee by obtaining a feasible point to the dual PEP.
Such dual feasible points correspond to combinations of inequalities that certify the con-
vergence bound.

The PEP technique was used to analyze the worst-case complexity of gradient methods
in several settings, such as smooth convex minimization [Drori and Teboulle, 2014, Taylor
et al., 2015, Kim and Fessler, 2016, Drori, 2017, Drori and Taylor, 2019, Barré et al., 2020],
nonsmooth convex minimization [Drori and Teboulle, 2016, Drori and Taylor, 2019], stochastic
optimization [Taylor and Bach, 2019, Drori and Shamir, 2019] and monotone operators [Ryu
et al., 2020, Kim, 2019].

Contributions. We propose to use the PEP methodology for computing the worst-case be-
havior of Bregman gradient methods on the set BL(C) of relatively-smooth problem instances
with general kernels :

BL(C) = {(f, h) : h is a kernel function on C and f is convex and L-smooth relative to h} .

To this end, we adapt the interpolation conditions of Taylor et al. [2017] to handle the class
of differentiable and strictly convex functions, which appears in the relatively-smooth setting.
We then use topological arguments to show that the resulting performance estimation problem
is equivalent to a simpler limiting problem on a larger class BL(C), which can be seen as the
closure of BL(C) and involves possibly nonsmooth functions:

BL(R
d) = {(f, h) : f and Lh� f are convex on R

d}.
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This simpler problem can then be solved numerically with semidefinite optimization packages.
We showcase this approach on several examples, including the proof that (4.1) is the exact

worst-case complexity of BGD, a new result on the convergence rate of the stationarity measure
Dh(xk, xk+1) for BGD, and the analysis of the inertial Bregman method from Auslender and
Teboulle [2006]. Finally, we show how numerically generated worst-case functions were used to
infer the lower bound for general Bregman methods from Chapter 3.

Outline. This chapter is organized as follows. In Section 4.3, we describe the methodol-
ogy and theoretical guarantees of performance estimation problems for Bregman methods. In
Section 4.4, we provide numerical experiments and applications.

Notation. We use C to denote the closure of a set C, int C for its interior and @C for its
boundary. Sn denotes the set of symmetric matrices of size n ⇥ n. If (P) is an optimization
problem, then val(P) stands for its (possibly infinite) value.

Subscripts on a vector denote the iteration counter, while a superscript such as x(i) denotes
the i-th coordinate. The set I = {0, 1, . . . N, ⇤} is often used to index the first d iterates of an
optimization algorithm as well as the optimal point:

{xi}i2I = {x0, x1, . . . , xN , x⇤}.

We use the standard notation h·, ·i for the Euclidean inner product, and k · k for the corre-
sponding Euclidean norm. For a vector x 2 R

d, we write kxk1 = maxi=1...n |x
(i)| for its `1

norm.

4.2 Problem setup

In this section, we briefly recall the blanket assumptions and definitions for relatively-smooth
optimization. For a general introduction, we refer the reader to Chapter 1.

Definition 4.1 (Kernel function). A function h : Rd ! R [ {+1} is called a kernel function
on C if

(i) h is closed convex proper (c.c.p.),

(ii) h is continuously differentiable and strictly convex on int C,

(iii) the Bregman gradient iterates are well-posed, i.e., for every p 2 R
d, the problem

min
u2C
hp, ui+ h(u)

has a unique minimizer, which belongs to int C.

Definition 4.2 (Relative smoothness). Let h be a kernel function on C, and f a function such
that domh ⇢ dom f . We say that f is smooth relative to h if it is differentiable on int C and if
there exists a constant L > 0 such that

Lh� f is convex on int C.
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We recall the notation for a general relatively-smooth problem instance. Note that such an
instance is composed of a couple of functions (f, h), as we seek guarantees that are independent
of the chosen kernel.

Definition 4.3. We say that the couple of functions (f, h) is a relatively-smooth instance, and
write (f, h) 2 BL(C) if

(i) h is a kernel function on C,

(ii) f : Rd ! R [ {+1} is a closed convex proper function,

(iii) f is L-smooth relative to h on C.

4.3 Worst-case scenarios of Bregman gradient methods through

optimization

4.3.1 Formulation of the performance estimation problem

We formulate the task of finding the worst-case performance of (BGD) as an optimization
problem. While we focus on the analysis of the vanilla BGD algorithm for ease of presentation,
the same ideas are directly applicable to other Bregman-type algorithms like the inertial variant
of Auslender and Teboulle [2006], as we illustrate in the sequel.

For simplicity, we first focus on the unconstrained setting where functions have full domain,
i.e., C = R

d for some d � 1. In this setting, the set BL(R
d) can be rewritten as

BL(R
d) =

8

>>>><

>>>>:

f is convex and differentiable,
h is strictly convex and differentiable,

(f, h) : Rd ! R Lh� f is convex,
8p 2 R

d, the function u 7! hp, ui+ h(u)
has a unique minimizer.

9

>>>>=

>>>>;

,

The general case when C is a convex subset of Rd can be treated along the same approach,
as we show in the appendix of this chapter. In fact, from the perspective of performance
estimation, every problem in BL(C) can be reduced to some problem in BL(R

d) with equivalent
convergence rate.

Performance estimation problem. Throughout this section, we fix a number of iterations
N � 1, a relative smoothness parameter L > 0, and a step size � > 0. In the currently known
analyses of Bregman gradient descent, worst-case guarantees have the following form

f(xN )� f(x⇤)  ✓(N,L,�)Dh(x⇤, x0). (4.2)

For instance, Equation (4.1) states this result with ✓(N,L, 1/L) = L/N . We then naturally
seek the smallest ✓(N,L,�) such that the bound (4.2) holds for any couple (f, h) 2 BL(R

d),
that is, solve the optimization problem

maximize
�
f (xN )� f (x⇤)

�
/Dh(x⇤, x0)

subject to (f, h) 2 BL(R
d),

x⇤ is a minimizer of f,
x1, . . . , xN are generated from x0 by BGD with step size �,

(PEP)
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in the variables f, h, x0, . . . , xN , x⇤, d. We refer to this problem as a performance estimation
problem (PEP). We use the convention 0/0 = 0, so that the objective is well defined when
x⇤ = x0. Optimizing over the dimension d to get dimension-free bounds allows for the problem
to admit efficient convex reformulations, as we see in the sequel. Importantly, we look for
guarantees that are independent of the kernel h, therefore h is part of the optimization variables.

Let us start by simplifying the problem. First, due to the strict convexity of h, the BGD
iteration can be equivalently formulated via the first-order optimality conditions

rh(xi+1) = rh(xi)� �rf(xi) 8i 2 {0 . . . N � 1},

and, since the domain is Rd, the condition that x⇤ minimizes f reduces to requiring rf(x⇤) = 0.
Second, the problem is homogeneous in (f, h) (i.e., from a feasible couple (f, h), take any
constant c > 0 and observe that the couple (cf, ch) is also feasible with the same objective
value), hence optimizing the objective function f(xN )� f(x⇤) under the additional constraint
Dh(x⇤, x0) = 1 produces the same optimal value as the problem above.

Finally, we use the same argument as in Drori and Teboulle [2014], Taylor et al. [2017] and
observe that the objective of (PEP) and the algorithmic constraints mentioned above depend
solely on the values of the first-order oracles of f and h at the points x0, . . . , xN , x⇤. Denoting
I = {0, 1, . . . , N, ⇤} the indices associated with the points involved in the problem, we proceed
to write these values as

{(fi, gi)}i2I =
��

f(xi),rf(xi)
� 

i2I
,

{(hi, si)}i2I = {
�
h(xi),rh(xi)

�
}i2I .

Using those elements, the iterations of BGD can be expressed as

si+1 = si � �gi

for i 2 {0 . . . N � 1}, and the normalization constraint Dh(x⇤, x0) = 1 becomes

h⇤ � h0 � hs0, x⇤ � x0i = 1.

Using those discrete representations of f and h, we can reformulate (PEP) as

maximize fN � f⇤
subject to fi = f(xi), gi = rf(xi),

hi = h(xi), si = rh(xi), for all i 2 I and some (f, h) 2 BL(R
d),

g⇤ = 0,
si+1 = si � �gi for i 2 {1 . . . N � 1},
h⇤ � h0 � hs0, x⇤ � x0i = 1,

in the variables d, {(xi, fi, gi, hi, si)}i2I . The equivalence with the initial problem is guaranteed
by the first two constraints which are called the interpolation conditions.

It turns out that interpolation conditions for the class BL(R
d) are delicate to establish, due

to assumptions on h. Fortunately, there exist two classes BL(R
d) and BL(R

d) for which they
can be derived. The first class is a restriction of BL(R

d) where f and Lh� f are both assumed
to be strictly convex:

BL(R
d) = BL(R

d) \ {(f, h) : Rd ! R | f and Lh� f are strictly convex},
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whereas the second class consists in considering a relaxation with possibly nonsmooth functions:

BL(R
d) = {(f, h) : Rd ! R | f and Lh� f are convex}.

The following inclusions then directly hold

BL(R
d) ⇢ BL(R

d) ⇢ BL(R
d).

With theses classes, we can now define two easier problems. The first one is a restriction of
(PEP) defined on the class BL(R

d), under the additional constraint that all iterates are distinct:

maximize fN � f⇤
subject to fi = f(xi), gi = rf(xi),

hi = h(xi), si = rh(xi), for all i 2 I and some (f, h) 2 BL(R
d),

g⇤ = 0,
si+1 = si � �gi for i 2 {1 . . . N � 1},
h⇤ � h0 � hs0, x⇤ � x0i = 1,
xi 6= xj for i 6= j 2 I,

(PEP)

in the variables d, {(xi, fi, gi, hi, si)}i2I . The second problem is a relaxation of (PEP), where
(f, h) 2 BL(R

d) are possibly nonsmooth and gi, si are thus subgradients :

maximize fN � f⇤
subject to fi = f(xi), gi 2 @f(xi),

hi = h(xi), si 2 @h(xi),
Lsi � gi 2 @(Lh� f)(xi) for all i 2 I and some (f, h) 2 BL(R

d),
g⇤ = 0,
si+1 = si � �gi for i 2 {1 . . . N � 1},
h⇤ � h0 � hs0, x⇤ � x0i = 1,

(PEP)

in the variables d, {(xi, fi, gi, hi, si)}i2I . We added the technical constraints

Lsi � gi 2 @(Lh� f)(xi),

which are redundant for differentiable functions; but that are necessary in order to establish
interpolation conditions in the nonsmooth case. Because of the inclusions between the feasible
sets of these problems, we naturally have

val(PEP)  val(PEP)  val(PEP).

We prove in the sequel that (PEP) can be solved via a semidefinite program and that val(PEP) =
val(PEP) (Theorem 4.8), allowing to reach our claims.

Note that the relaxed problem (PEP) does not correspond to any practical algorithm, as
BGD is not properly defined for nonsmooth functions h. However, we see in the sequel that
feasible points of this problem correspond to accumulation points of (PEP). In other words,
instances of BGD can get arbitrarily close to pathological nonsmooth functions whose behaviors
are captured by (PEP).

In the following sections, we show that problems (PEP) and (PEP) can be cast as semidef-
inite programs (SDP) [Vandenberghe and Boyd, 1996] and solved numerically using standard
packages [Lofberg, 2004, Mosek, 2019]. The main ingredient consists in showing that interpola-
tion constraints can actually be expressed using quadratic inequalities, as detailed in the next
section.
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4.3.2 Interpolation involving differentiability and strict convexity

In this section, we show how to reformulate interpolation constraints for (PEP) and (PEP) as
quadratic inequalities. We start by recalling interpolation conditions for the class of L-smooth
and µ-strongly convex functions.

Theorem 4.4 (Smooth strongly convex interpolation, Taylor et al. [2017]). Let I be a finite
index set, {(xi, fi, gi)}i2I 2 (Rd ⇥ R⇥ R

d)|I| and 0  µ  L  +1. The following statements
are equivalent:

(i) There exists a proper closed convex function f : Rd ! R[{+1} such that f is µ-strongly
convex, has a L-Lipschitz continuous gradient and

fi = f(xi), gi 2 @f(xi) 8i 2 I.

(ii) For every i, j 2 I we have

fi � fj � hgj , xi � xji �
1

2L
kgi � gjk2 +

µ

2(1� µ/L)
kxi � xj �

1

L
(gi � gj)k2.

In particular, when L = +1 (meaning that we require no smoothness) and µ = 0, those
conditions reduce to the simpler convex interpolation conditions, reminiscent of subgradient
inequalities:

fi � fj � hgj , xi � xji � 0. (4.3)

In our setting, we want to avoid working with smoothness and strong convexity, so we
provide interpolation conditions for the class of differentiable strictly convex functions.

Proposition 4.5 (Differentiable and strictly convex interpolation). Let I be a finite index set
and {(xi, fi, gi)}i2I 2 (Rd ⇥ R⇥ R

d)|I|. The following statements are equivalent:

(i) There exists a convex function f : Rd ! R such that f is differentiable, strictly convex
and

fi = f(xi), gi = rf(xi) 8i 2 I.

(ii) For every i, j 2 I we have

⇢
fi � fj � hgj , xi � xji > 0 if xi 6= xj ,
fi = fj and gi = gj otherwise.

(4.4)

Proof. (i) =) (ii). Assume that (i) holds, and choose such a function f . The first inequality
of (4.4) follows from strict convexity of f , and the second line is a consequence of the fact that
a differentiable convex function has a unique subgradient at each point [Rockafellar, 1970, Thm
25.1].

(ii) =) (i). Assume (ii). If for all i, j 2 I, we have gi = gj and xi = xj , then there is
only one point and one subgradient to be interpolated, and the result follows immediatly from
considering a well-chosen definite quadratic function. In the other case, define

⌫ = min
i,j2I
xi 6=xj

fi � fj � hgj , xi � xji.
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Because of (4.4) and the finiteness of I, we have that ⌫ > 0. Now, define r as

r = max
i,j2I
kgi � gjk2 + kxi � xjk2

so that r > 0. Condition (4.4) implies that for all i, j 2 I we have

fi � fj � hgj , xi � xji �
⌫

r

�
kgi � gjk2 + kxi � xjk2

�
. (4.5)

Indeed, if xi 6= xj , this follows from the definition of ⌫ and r. If xi = xj both sides of the
inequality are 0 because of the second line in (4.4). Let us choose two constants 0 < µ < L <
+1 such that

1

L� µ
 ⌫

r
,

µ

1� µ/L
 ⌫

r
,

which is possible as it suffices to take L large enough and µ small enough. We now proceed
to show that the interpolation conditions of Theorem 4.4 hold with the constants µ,L defined
above. Using the inequality ku� vk2  2kuk2 + 2kvk2 and (4.5), we get that for all i, j,

1

2L
kgi � gjk2 +

µ

2(1� µ/L)
kxi � xj �

1

L
(gi � gj)k2


✓

1

2L
+

µ

L(L� µ)

◆

kgi � gjk2 +
µ

1� µ/L
kxi � xjk2


✓
1

L
+

µ

L(L� µ)

◆

kgi � gjk2 +
µ

1� µ/L
kxi � xjk2

=
1

L� µ
kgi � gjk2 +

µ

1� µ/L
kxi � xjk2

 ⌫

r
kgi � gjk2 +

⌫

r
kxi � xjk2

 fi � fj � hgj , xi � xji.

Under those conditions, Theorem 4.4 states that there exists a convex function f that interpo-
lates {(xi, fi, gi)}i2I which is µ-strongly convex and has L-Lipschitz continuous gradients. A
fortiori, since µ > 0 and L < 1, f is differentiable and strictly convex. Finally, f is finite on
R
d since it is L-smooth.

Using these results, we can now formulate interpolation conditions for the problems (PEP)
and (PEP) involving the classes BL(R

d) and BL(R
d) that were defined above.

Corollary 4.6 (Interpolation conditions for (PEP)). Let I be a finite index set and

{(xi, fi, gi, hi, si)}i2I 2 (Rd ⇥ R⇥ R
d ⇥ R⇥ R

d)|I|.

The following statements are equivalent.

(i) There exist functions (f, h) 2 BL(R
d) such that

fi = f(xi), gi 2 @f(xi),
hi = h(xi), si 2 @h(xi),

Lsi � gi 2 @(Lh� f)(xi).
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(ii) For all i, j 2 I such that i 6= j, we have

fi � fj � hgj , xi � xji � 0,

(Lhi � fi)� (Lhj � fj)� hLsj � gj , xi � xji � 0.
(4.6)

Proof. (i) =) (ii) follows immediately from the definition of a subgradient applied to convex
functions f and Lh� f .
Assume that (ii) holds. By the specialization of (4.3) in Theorem 4.4, conditions (ii) imply that
there exist two convex functions f, d : Rd ! R such that

fi = f(xi), gi 2 @f(xi),
Lhi � fi = d(xi), Lsi � gi 2 @d(xi).

Defining the convex function h = (f + d)/L, we have that d = Lh� f , hence

Lsi � gi 2 @(Lh� f)(xi)

for i 2 I. We also get

hi = h(xi), si 2 @h(xi),

where we used the fact that Lsi 2 @f(xi) + @d(xi) ⇢ @(f + d)(xi) = L@h(xi) (see [Rockafellar,
1970, Thm 23.8] for the subdifferential of a sum of convex functions). Hence (i) holds.

Corollary 4.7 (Interpolation conditions for (PEP)). Let I be a finite index set and

{(xi, fi, gi, hi, si)}i2I 2 (Rd ⇥ R⇥ R
d ⇥ R⇥ R

d)|I|.

Assume that xi 6= xj for every i 6= j 2 I. The following statements are equivalent.

(i) There exist functions (f, h) 2 BL(R
d) such that

fi = f(xi), gi = rf(xi),
hi = h(xi), si = rh(xi).

(ii) For all i, j 2 I such that i 6= j we have

fi � fj � hgj , xi � xji > 0,

(Lhi � fi)� (Lhj � fj)� hLsj � gj , xi � xji > 0.
(4.7)

Proof. Note that since we assumed xi 6= xj for every i 6= j, interpolation conditions of Propo-
sition 4.5 reduce to requiring a strict inequality in (4.4) for every i 6= j. As before, define d the
function

d = Lh� f.

Then since (f, h) 2 BL(R
d) the functions f and d are differentiable strictly convex, hence the

implication (i) =) (ii) follows simply from strict convexity of these functions.
Conversely, assume (ii). By using Proposition 4.5 again, we can interpolate differentiable

strictly convex functions f and d and recover h with h = (f + d)/L, thus we have naturally
Lh � f convex. The function h is thus also differentiable and strictly convex. Moreover, it
can be seen from the proof of Proposition 4.5 that the interpolating functions can actually be
chosen strongly convex, hence with this choice the well-posedness conditions in Definition 4.1
holds, and we can conclude that (f, h) 2 BL(R

d).

61



4.3.3 Semidefinite reformulations

Now that we established the interpolation conditions for (PEP) and (PEP), we may use them to
obtain semidefinite performance estimation formulations as in Drori and Teboulle [2014], Taylor
et al. [2017]. This is made possible by observing that interpolation conditions (4.6)-(4.7) are
quadratic inequalities in the problem variables.

Let {(xi, fi, gi, hi, si)}i2I be a feasible point of one of the PEPs in dimension d. We write
G 2 S3(N+2) the Gram matrix that contains all dot products between xi, gi, si for i 2 I, with

G =

0

@

Gxx Ggx Gsx

Ggx> Ggg Ggs

Gsx> Ggs> Gss

1

A ⌫ 0

whose size is independent of the dimension d, where the blocks are defined as

Gxx
ij = hxi, xji, Ggx

ij = hgi, xji, Ggs
ij = hgi, sji, Ggg

ij = hgi, gji, Gsx
ij = hsi, xji, Gss

ij = hsi, sji,

for i, j 2 I. Denote by

F = (f0, . . . , fN , f⇤) 2 R
N+2, H = (h0, . . . , hN , h⇤) 2 R

N+2,

the vectors representing the function values of f, h at the iterates. Finally observe that all
the constraints of (PEP) and (PEP) can be expressed using only G, F and H. For instance,
interpolation conditions (4.6) for BL(R

d) rewrite for all i, j 2 I as

fi � fj �Ggx
ji +Ggx

jj � 0,

(Lhi � fi)� (Lhj � fj)� L(Gsx
ji �Gsx

jj ) +Ggx
ji �Ggx

jj � 0.

This allows us to reformulate the relaxation (PEP) as a semidefinite program, written

maximize fN � f⇤

subject to fi � fj �Ggx
ji +Ggx

jj � 0,

(Lhi � fi)� (Lhj � fj)� L(Gsx
ji �Gsx

jj ) +Ggx
ji �Ggx

jj � 0

for i, j 2 I,

Ggg
⇤⇤ = 0,

Gsx
i+1,j = Gsx

ij � �Ggx
ij for i 2 {0 . . . N � 1}, j 2 I,

h⇤ � h0 �Gsx
0⇤ +Gsx

00 = 1,

G ⌫ 0,

(sdp-PEP)

in the variables G 2 S3(N+2) and F,H 2 R
N+2.

Any feasible point of (PEP) can be cast into an admissible point of (sdp-PEP) by computing
the semidefinite Gram matrix G. Conversely, if G,F,H is an admissible point of (sdp-PEP),
then the vectors {(xi, gi, si)}i2I can be recovered by performing, for instance, a Cholesky de-
composition of G. Note that we expressed the algorithmic constraint si+1 = si � �gi only
through scalar products with the xi’s in the SDP, since only the projection of the gradients on
Span({xi}i2I) is relevant in the PEPs. Because interpolation conditions from Corollary 4.6 are
necessary and sufficient, we conclude that the problems are equivalent, that is

val(sdp-PEP) = val(PEP).
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The rank of G determines the dimension of the interpolated problem. If we look instead for
a solution that has a given dimension d, this would mean imposing a nonconvex rank constraint
on G. Our formulation, on the other hand, is convex and finds the best convergence bound
that is dimension-independent, which is a usual requirement for large-scale settings.

In the same way, the value of (PEP) can be computed as

maximize fN � f⇤

subject to fi � fj �Ggx
ji +Ggx

jj > 0,

(Lhi � fi)� (Lhj � fj)� L(Gsx
ji �Gsx

jj ) +Ggx
ji �Ggx

jj > 0

for i 6= j 2 I,

Ggg
⇤⇤ = 0,

Gsx
i+1,j = Gsx

ij � �Ggx
ij for i 2 {0 . . . N � 1}, j 2 I,

h⇤ � h0 �Gsx
0⇤ +Gsx

00 = 1,

Gxx
ii +Gxx

jj � 2Gxx
ij > 0 for i 6= j 2 I,

G ⌫ 0,

(sdp-PEP)

in the variables G 2 S3(N+2) and F,H 2 R
N+2, where we used interpolation conditions for

BL(R
d) from Corollary 4.7, since all points {xi}i2I are constrained to be distinct. Therefore,

as above we infer that
val(sdp-PEP) = val(PEP).

Recalling the hierarchy between the problems, we thus have

val(sdp-PEP)  val(PEP)  val(sdp-PEP).

By comparing the two semidefinite programs stated above, one can notice that the only differ-
ence is that (sdp-PEP) imposes some inequalities of (sdp-PEP) to be strict. In the next section,
we use topological arguments to prove that the values of the two problems are actually equal.
In fact, strict inequalities have little meaning in numerical optimization (the value of (sdp-PEP)
is actually a supremum and not a maximum); in our experiments, we focus on (sdp-PEP) as
solvers usually admit only closed feasible sets.

4.3.4 Tightness of the approach: nonsmooth limit behaviors

We are now ready to prove the main result of this section.

Theorem 4.8. The value of the performance estimation problem (PEP) for BGD is equal to
the value of the nonsmooth relaxation (PEP), which can be computed by solving the semidefinite
program (sdp-PEP).

Proof. We show that the closure of the feasible set of (sdp-PEP) is the feasible set of (sdp-PEP).
We first need to prove that the strengthened problem (PEP) is feasible, by finding an instance
of BGD where f and Lh�f are strictly convex and such that all iterates are distinct. It suffices
for instance to consider two one-dimensional quadratic functions. Define f, h : R! R with

f(x) =
↵

2
x2, h(x) =

1

2
x2 where ↵ = min

✓
1

2�
,
L

2

◆

.
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Then f is strictly convex and so is Lh � f = L�↵
2 x2 since L � ↵ � L

2 > 0. The optimum is
x⇤ = 0. Choose

x0 =
p
2

for which we have Dh(x⇤, x0) = x20/2 = 1. Then, BGD is equivalent to gradient descent and
the iterates satisfy

xN = (1� �↵)Nx0.

Since ↵�  1/2 < 1, all the iterates are distinct and therefore we constructed a feasible point
of (PEP). Let us therefore write (G,F,H) a corresponding feasible point of (sdp-PEP), and
(G,F ,H) a feasible point of (sdp-PEP). Define the sequence {(Gk, F k, Hk)}k�1 as

Gk =
1

k
G+ (1� 1

k
)G,

F k =
1

k
F + (1� 1

k
)F ,

Hk =
1

k
H + (1� 1

k
)H.

Then, for every k � 1, (Gk, F k, Hk) is still a feasible point of (sdp-PEP), because of
convexity of the constraints and the fact that adding a strict inequality to a weak inequality
gives a strict inequality. Moreover, the sequence converges to the point (G, f, h) when k ! +1.

Hence we proved that for any feasible point of (sdp-PEP), there is a sequence of admissible
points of (sdp-PEP) that converge to it. Since the objective is linear in the vector F therefore
continuous, we deduce that the two problems have the same value:

val(sdp-PEP) = val(sdp-PEP),

which means that val(PEP) = val(PEP). As val(PEP) lies in between these two values, we
conclude that they are all equal.

Theorem 4.8 states that the value of the original problem (PEP) can be computed numeri-
cally with a semidefinite solver applied to (sdp-PEP). The result itself also helps us gain some
theoretical insight: it tells us that the worst-case for BGD on BL(R

d) might be reached as (f, h)
approach possibly pathological limiting nonsmooth functions in BL(R

d).

4.4 Numerical evidence and computer-assisted proofs

We now provide several applications of the performance estimation framework that we devel-
oped for Bregman methods.

4.4.1 Finding the exact worst-case convergence rate of BGD

We first start by the most direct application, that is finding the exact worst-case performance
of BGD. Theorem 4.8 states that it can be computed by solving the semidefinite program
(sdp-PEP). The link to the Matlab implementation is provided in Section 4.5.

To simplify our setting, note that we can assume without loss of generality that the relative
smoothness constant L is 1, since we can replace h by a scaled version Lh. Recall that we know
from Theorem 3.5, that

val(PEP)  1

�N
.
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Table 4.1 shows the result of solving (sdp-PEP) for several values of N up to 100, for a step
size � = 1/L. We observe that with high precision, val(sdp-PEP) is equal to the theoretical
bound 1/(�N).

Table 4.1: Numerical value of the performance estimation problem (PEP) with � = 1, L = 1.
Rel. error denotes the relative error between val(PEP) and the theoretical bound of 1/N given
by Theorem 3.5. Primal feasibility corresponds to the maximal absolute value of constraint
violation returned by the MOSEK solver.

N val(PEP) Rel. error Primal feasibility

1 1.000 1.8e-11 4.3e-10
2 0.500 1.8e-8 2.8e-9
3 0.333 1.8e-8 2.8e-9
4 0.250 4.9e-8 2.3e-8
5 0.200 1.8e-10 6.4e-11
10 0.100 6.4e-11 1.3e-11
20 0.050 1.1e-8 1.9e-10
50 0.020 6.5e-6 5.0e-7
100 0.01 7.2e-5 1.6e-6

Other values of �. One can wonder how the numerical value evolves when one varies the
step size �. Our experimental observations are as follows:

• For any � 2 (0, 1/L], val(PEP) is exactly equal to the theoretical bound 1/(�N).

• For any � > 1/L, val(PEP) = +1, hence BGD does not converge in general with these
step size values. This suggests that the maximal step size value allowed for BGD is indeed
1/L, unlike the Euclidean setting where gradient descent can be applied with a step size
that goes up to 2/L [Nesterov, 2003].

While results above suggest that 1/(�N) is the exact worst-case rate of BGD, they provide
only numerical evidence. We can however use them to deduce formal guarantees, both for
proving an upper bound and a lower bound.

Upper bound guarantee through duality. As noticed in previous work on PEPs [Drori
and Teboulle, 2014, Taylor et al., 2015], solving the dual of (sdp-PEP) can be used to deduce a
proof. Indeed, the dual solution gives a combination of the constraints that, when transposed to
analytical form, leads to a formal guarantee. This provides the following proof for the O(1/k)
convergence rate of Theorem 3.5, which we recall here.

Theorem 4.9 (NoLips convergence rate, recall of Theorem 3.5). Let L > 0, C be a nonempty
closed convex subset of R

d and (f, h) 2 BL(C) be an relatively-smooth instance. Then the
sequence {xk}k�0 generated by Algorithm 5 with constant step size � 2 (0, 1/L] satisfies for all
k � 0

f(xk)� f(u)  Dh(u, x0)

� k

for every u 2 domh.
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Proof. The proof relies on the fact that, since Lh� f is convex we have that 1
�
h� f is convex

for any � 2 (0, 1
L ], and only consists in performing the following weighted sum of inequalities:

• convexity of f , between u and xi (i = 0, . . . , k) with weights �⇤,i =
1
k :

f(u) � f(xi) + hrf(xi), u� xii,

• convexity of f , between xi and xi+1 (i = 0, . . . , k � 1) with weights �i,i+1 =
i
k :

f(xi) � f(xi+1) + hrf(xi+1), xi � xi+1i,

• convexity of 1
�
h� f , between u and xk with weight µ⇤,k = 1

k :

1
�
h(u)� f(u) � 1

�
h(xk)� f(xk) + h 1�rh(xk)�rf(xk), u� xki,

• convexity of 1
�
h� f , between xi+1 and xi (i = 0, . . . , k � 1) with weight µi+1,i =

i+1
k

1
�
h(xi+1)� f(xi+1) � 1

�
h(xi)� f(xi) + h 1�rh(xi)�rf(xi), xi+1 � xii,

• convexity of 1
�
h� f , between xi and xi+1 (i = 0, . . . , k � 1) with weight µi,i+1 =

i
k

1
�
h(xi)� f(xi) � 1

�
h(xi+1)� f(xi+1) + h 1�rh(xi+1)�rf(xi+1), xi � xi+1i.

The weighted sum is written as

0 �
kX

i=0

�⇤,i [f(xi)� f(u) + hrf(xi), u� xii]

+
k�1X

i=0

�i,i+1 [f(xi+1)� f(xi) + hrf(xi+1), xi � xi+1i]

+ µ⇤,k

⇥
1
�
h(xk)� f(xk)� ( 1

�
h(u)� f(u)) + h 1

�
rh(xk)�rf(xk), u� xki

⇤

+

k�1X

i=0

µi+1,i

⇥
1
�
h(xi)� f(xi)� ( 1

�
h(xi+1)� f(xi+1)) + h 1�rh(xi)�rf(xi), xi+1 � xii

⇤

+

k�1X

i=0

µi,i+1

⇥
1
�
h(xi+1)� f(xi+1)� ( 1

�
h(xi)� f(xi)) + h 1�rh(xi+1)�rf(xi+1), xi � xi+1i

⇤
.

By substitution of rh(xi+1) = rh(xi) � �rf(xi) (i = 0, . . . , k � 1), one can reformulate the
weighted sum exactly as (i.e., there is no residual):

0 � f(xk)� f(u)� h(u)�h(x0)�hrh(x0),u�x0i
�k ,

yielding the desired result.

66



x0 = · · · = x3 x∗

f(x)

h(x)

x0x1x2x3 x∗

fµ(x)

hµ(x)

Figure 4.1: Worst-case functions for BGD in dimension 1 with N = 3 iterations. The left
figure shows the limiting instance (f, h) 2 BL(R), while the right plot represents the smooth
approximation by a valid instance (fµ, hµ) 2 BL(R), with smoothing parameter µ = 0.1. As µ
goes to 0, functions fµ, hµ tend to a pathological behavior where all iterates are equal and for
which we have exactly f(xN )� f⇤ = Dh(x⇤, x0)/N .

Lower bound through worst-case functions. As (PEP) computes the exact worst-case
performance of BGD, experiments above suggest that 1/(�N) is also a lower bound, meaning
that for every ✏ > 0, there exist functions (f, h) 2 BL such that the iterates of BGD satisfy

f(xN )� f⇤ �
Dh(x⇤, x0)

�N
� ✏.

We detail here how such functions can be constructed from the solution of (sdp-PEP). The
numerical solver allows us to find a maximizer G,F ,H (recall that only the relaxed problem
has a maximizer as the feasible set is closed), and by factorizing the matrix G as P TP , we can
thus recover the corresponding discrete representation {xi, gi, f i, hi, si}i2I . This discretization
can in turn be interpolated to get the corresponding functions (f, h) 2 BL. There are multiple
ways to perform this interpolation; see [Taylor et al., 2017, Thm. 1] for a constructive approach.

Recall that since functions (f, h) yield a solution to (PEP), they belong to BL and might
thus form a pathological nonsmooth limiting worst-case. They can be approached by valid
instances (fµ, hµ) 2 BL by performing for instance smoothing through Moreau evelopes (as in
Chapter 3) and adding a small quadratic to h to make it strictly convex.

There are however many possible maximizers of (sdp-PEP). If we seek a low-dimensional
example that may be easily interpretable, we can search for a maximizer such that the Gram
matrix G has minimal rank. Using rank minimization heuristics, we were able to find one-
dimensional worst-case functions. Fix a number of iterations N � 1, assume � = 1/L = 1 and
define f, h : R! R as

f(x) = |x� 1|,

h(x) = f(x) + max(�Nx, 0),

and set x0 = 0, x⇤ = 1. Then clearly (f, h) 2 BL(R). Figure 4.1 shows the functions f, h as well
as their smoothed versions (fµ, hµ) 2 BL(R). Note that the pathological behavior also reflects
in the iterates: in the limiting instance, all iterates x0, . . . , xN are equal. In the smoothed
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version, iterates are distinct (since hµ is strictly convex), but they get closer and closer as the
smoothing parameter µ goes to 0.

The smoothed function fµ is a Huber function, which is also the worst-case instance for
Euclidean gradient descent on L-smooth functions described in Taylor et al. [2017]. This
analysis could be formalized to prove the 1/k lower bound for BGD; however, this bound is
just a particular case of the stronger result for general Bregman gradient methods derived in
Chapter 3.

4.4.2 Extension to other criteria

In our performance estimation problem, we focused on studying bounds of the form

f(xN )� f⇤  ✓(N,L,�)Dh(x⇤, x0).

However, we are not limited to this criterion, and different convergence measures might be
considered by changing the objective and constraints in (PEP). For instance, another popular
criterion is the stationarity measure Dh(xk, xk+1), which boils down to the squared gradient
norm in the unconstrained Euclidean case. By adapting (PEP), we get the following new
convergence result for BGD.

Proposition 4.10 (BGD convergence rate, take II). Let L > 0, C be a nonempty closed convex
subset of R

d and (f, h) 2 BL(C) a relatively-smooth problem instance. Then the sequence
{xk}k�0 generated by Bregman gradient descent with constant step size � 2 (0, 1/L] satisfies
for k � 2

min
1ik

Dh(xi�1, xi) 
2Dh(x⇤, x0)

k(k � 1)

for every x⇤ 2 argminC f \ domh.

Proof. In the same way as before, the formal guarantee has been obtained by examining the
dual of the corresponding PEP. The proof relies on the fact that 1

�
h � f is convex for any

� 2 (0, 1
L ], and only consists in performing the following weighted sum of inequalities:

• convexity of f , between x⇤ and xi (i = 0, . . . , k) with weights �⇤,i =
2�

k(k�1) :

f(x⇤) � f(xi) + hrf(xi), x⇤ � xii,

• optimality of x⇤ for each xk with weight �k,⇤ =
2�
k�1 :

f(xk) � f(x⇤),

• convexity of 1
�
h� f , between x⇤ and xk with weight µ⇤,k = 2�

k(k�1) :

1
�
h(x⇤)� f(x⇤) � 1

�
h(xk)� f(xk) + h 1�rh(xk)�rf(xk), x⇤ � xki,

• convexity of 1
�
h� f , between xi+1 and xi (i = 0, . . . , k � 1) with weight µi+1,i =

2�(i+1)
k(k�1)

1
�
h(xi+1)� f(xi+1) � 1

�
h(xi)� f(xi) + h 1�rh(xi)�rf(xi), xi+1 � xii,
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• definition of smallest residual among the iterates (i = 1, . . . , k) with weights ⌧i =
2(i�1)
k(k�1) :

h(xi�1)� h(xi)� hrh(xi), xi�1 � xii � min
1jk

{Dh(xj�1, xj)}.

The weighted sum is written as

0 �
kX

i=0

�⇤,i[f(xi)� f(x⇤) + hrf(xi), x⇤ � xii]

+ �k,⇤[f(x⇤)� f(xk)]

+ µ⇤,k[
1
�
h(xk)� f(xk)� ( 1

�
h(x⇤)� f(x⇤)) + h 1�rh(xk)�rf(xk), x⇤ � xki]

+

k�1X

i=0

µi+1,i[
1
�
h(xi)� f(xi)� ( 1

�
h(xi+1)� f(xi+1)) + h 1�rh(xi)�rf(xi), xi+1 � xii]

+
kX

i=1

⌧i[ min
1jk

{Dh(xj�1, xj)}� (h(xi�1)� h(xi)� hrh(xi), xi�1 � xii)].

By substitution of rh(xi+1) = rh(xi) � �rf(xi) (i = 0, . . . , k � 1), one can reformulate the
weighted sum exactly as (i.e., there is no residual):

0 � min
1jk

{Dh(xj�1, xj)}� 2 ·
h(x⇤)� h(x0)� hrh(x0), x⇤ � x0i

k(k � 1)
,

yielding the desired result.

4.4.3 Beyond BGD: accelerated Bregman algorithms

Our approach is not limited to the vanilla BGD algorithm. For instance, we can also solve the
performance estimation problem for the accelerated Bregman algorithm proposed by Auslender
and Teboulle [2006], a.k.a. the Improved Interior Gradient Algorithm (IGA). We recall its
simplified formulation in Algorithm 6, in the case where there are no affine constraints.

Algorithm 6 Improved Interior Gradient Algorithm (IGA) [Auslender and Teboulle, 2006]

Input: Functions f, h, initial point x0 2 int domh, step size �.

Set z0 = x0 and t0 = 1.

for k = 0,1,. . . do

yk = (1� 1
tk
)xk +

1
tk
zk

zk+1 = argmin {hrf(yk), u� yki+ 1
tk�

Dh(u, zk) |u 2 R
d}

xk+1 = (1� 1
tk
)xk +

1
tk
zk+1

tk+1 = (1 +
q

1 + 4t2k)/2.

end for

In the setting where f has L̃-Lipschitz continuous gradients and h is a �-strongly convex
kernel function, IGA with step size � = �/L̃ enjoys the following convergence rate [Auslender
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Figure 4.2: Numerical worst-case guarantees obtained from PEPs as functions of the iteration
counter k (shown in log scale as rates are sublinear). Left: guarantees for Bregman Gradient
descent for two different convergence measures. Numerical values confirm exactly the theo-
retical rates of Theorem 3.5 and Proposition 4.10. Right: guarantees for IGA with no affine
constraints (Algorithm 6) under the assumption that h is 1-strongly convex and f is 1-smooth,
compared to the theoretical bound from Auslender and Teboulle [2006]. Notice that the theo-
retical bound is not tight in this case, as it is obtained by making some approximations in the
proof.

and Teboulle, 2006, Thm. 5.2]:

f(xN )� f⇤ 
4L̃

�N2
(Dh(x⇤, x0) + f(x0)� f⇤) . (4.8)

Our PEP framework can also be applied to this algorithm, in order to find the smallest value
of ✓(N, L̃,�,�) which satisfies

f(xN )� f⇤  ✓(N, L̃,�,�) (Dh(x⇤, x0) + f(x0)� f⇤)

for every instance of IGA with the supplementary assumptions made above. In this case, we
use the standard interpolation conditions of Theorem 4.4 for L-smooth and strongly convex
functions. Results are shown in Figure 4.2. The exact numerical worst-case performance of
IGA is slightly below the theoretical bound above, since the proof in Auslender and Teboulle
[2006] makes some approximations.

IGA in the general relatively-smooth case: failure of acceleration. We pointed out
in Section 1.2 that the setting in which f is L̃-smooth and h is �-strongly convex is a particular
case of relative smoothness with constant L = L̃/�. The natural question that was also raised
in [Teboulle, 2018, Section 6] is therefore: does IGA converge for the general class BL? Solving
the corresponding PEP yields the following results. For Algorithm 6 with the setting that
(f, h) 2 BL and several choices of step size in (0, 1/L], the solver states that the value of the
corresponding performance estimation problem is unbounded, i.e., there does not exist any ✓
such that the bound (4.8) holds for every instance (f, h) 2 BL.

As suggested by the anonymous reviewers, one could legitimately wonder whether there
exist other sequences {tk}k�0 with tk > 1, perhaps less aggressive than the one in Algorithm 6,
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such that the method converges (note that choosing tk = 1 for all k would yield the standard
BGD scheme). After solving the PEP with several choices of such sequences and observing
that it is unbounded, we formulate the following conjecture: for any sequence {tk}k�0, in IGA,
such that tk0 > 1 for some k0, it is not possible to bound f(xN ) � f⇤ in general. Of course,
this constitutes numerical evidence and not a formal proof. The conjecture could be proved by
constructing worst-case functions in the same spirit as in Chapter 3, with some pathological
lack of smoothness that would cause the iterates to diverge when taking a step size larger than
1/L.

These experiments lead us to believe that accelerated Bregman methods with non-adaptive
coefficients fail to converge in the general relatively-smooth setting.

4.4.4 From worst-case functions for BGD to a lower bound for general Breg-
man methods

We briefly explain how, with the PEP methodology, the worst case functions from Chapter 3
were discovered.

We described in the previous section how a one-dimensional worst-case instance (f, h) for
BGD was discovered from low-rank solutions of (sdp-PEP). However, this instance may not be
difficult enough for a more generic Bregman algorithm that can use abritrary linear combina-
tions of gradients, and thus cannot be used to prove a general lower bound.

Our objective now is to find worst-case instances that are difficult for any Bregman gra-
dient algorithm. A desirable property would be that these instances allow to explore only one
dimension per oracle call, so that the function hides information in the unexplored dimensions.
This is similar in spirit to the so-called “worst function in the world" of Nesterov [2003]. In
order to achieve this goal, we propose to search for functions f for which all gradients rf(xi)
are orthogonal, guaranteeing that one new dimension is explored at each step. Note that a
similar approach has been used in some previous work on PEPs to find lower bounds or op-
timal methods e.g., in Drori [2017], Drori and Taylor [2019]. This amounts to adding some
orthogonality constraints to (PEP) and solving

maximize
�
f (xN )� f (x⇤)

�
/Dh(x⇤, x0)

subject to (f, h) 2 BL(R
d),

x⇤ is a minimizer of f,
x1, . . . , xN are generated from x0 by BGD with step size �,
hrf(xi),rf(xj)i = 0 for i 6= j 2 I,

(PEP-orth)

in the variables f, h, x0, . . . , xN , x⇤, d. In the same spirit as before, we were able to find a
dimension-N solution of (PEP-orth). This allows us to interpolate the following worst-case
pathological instance:

f(x) = kx� (1, . . . , 1)k1,

h(x) = f(x) +

NX

i=2

max(�x(i), 0).

Again, these are nonsmooth functions and, as such, they do not form valid instances for BGD.
However, they can be approached by a sequence of such functions, for instance by applying
smoothing with the Moreau evelope, and adding a small quadratic term to make h strictly
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convex. Along with a few tweaks, this is how we found the worst-case instance that was used
to prove the general lower bound for BL in Chapter 3.

4.5 Conclusion

In this chapter, we showed how the worst-case complexity of Bregman gradient methods with
generic kernel can be computed with the aid of performance estimation problems. To this end,
we established interpolation condition for the class of differentiable and strictly convex func-
tions. As we showcased on several examples, PEPs allow to conjecture and prove convergence
rates in various situations.

In the setting of Bregman methods, a fundamental concept arising from this work is that of
limiting nonsmooth pathological behavior. When looking for worst-case guarantees over a class
of functions that is open such as the class of differentiable convex functions, the performance
estimation problem is a supremum and the worst-case maximizing sequence might approach
some function that is not in this class, e.g., one that is nonsmooth in our case. This idea,
observed by analyzing the equivalence between (PEP) and the nonsmooth relaxation (PEP),
was used in the proof of the lower bound in Chapter 3. Moreover, the worst-case sequence of
functions was directly inspired by examining particular solutions of (PEP).

Code. Experiments have been run in MATLAB, using the semidefinite solver MOSEK
Mosek [2019] as well as the modeling toolbox YALMIP [Lofberg, 2004]. The support for Breg-
man methods has been added to the Performance Estimation Toolbox (PESTO, Taylor et al.
[2018]) for which we provide some examples. The code can be downloaded from the repository
https://github.com/RaduAlexandruDragomir/BregmanPerformanceEstimation
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Appendix: extension of performance estimation to the case when

C is a general closed convex subset of Rd

For simplicity of the presentation, we left out in Section 4.3 the case when the domain C
is a proper subset of R

d. We show in this section that it actually corresponds to the same
minimization problem (sdp-PEP).

Let us formulate the performance estimation problem for Bregman gradient descent in the
general case. Recall that we denote BL the union of BL(C) for all closed convex subsets of Rd

and for every d � 1. The performance estimation problem writes

maximize
�
f (xN )� f (x⇤)

�
/Dh(x⇤, x0)

subject to (f, h) 2 BL,

x⇤ is a minimizer of f on domh such that x 2 domh,
x1, . . . , xN are generated from x0 by BGD with step size �,

(PEP-C)

in the variables f, h, x0, . . . , xN , x⇤, d. Now, as (PEP-C) is a problem that includes (PEP) in
the special case where C = R

d, its value is larger:

val(PEP)  val(PEP-C)

Let us show that val(PEP-C) is upper bounded by the same relaxation val(PEP), which allows
to conclude that the values are equal. We recall that the problem (PEP) can be written, using
interpolation conditions of Corollary 4.6, as

maximize fN � f⇤
subject to fi � fj � hgj , xi � xji � 0,

(Lhi � fi)� (Lhj � fj)� hLsj � gj , xi � xji � 0 for i, j 2 I,
g⇤ = 0,
si+1 = si � �gi for i 2 {1, . . . , N � 1},
h⇤ � h0 � hs0, x⇤ � x0i = 1,

in the variables n, {(xi, fi, gi, hi, si)}i2I . We show that every admissible point of (PEP-C) can
be cast into an admissible point of (sdp-PEP). This actually amounts to show that, from the
point of view of performance estimation, an instance (f, h) 2 BL(C) is actually equivalent to
some instance in BL(R

d).
Let f, h, x0, . . . , xN , x⇤, d be a feasible point of (PEP-C). We distinguish two cases.

Case 1: x⇤ 2 int domh. This is the simplest case, as the necessary conditions are the same
as in the situation where C = R

d. Indeed, then we have x0, . . . , xN , x⇤ 2 int domh, since x0 is
constrained to be in the interior and the next iterates are in int dom h by definition of a kernel
function. Since f and h are differentiable on int dom h, convexity of f and Lh� f imply that
the first two constraints of (PEP) hold for all i, j 2 I. Finally, g⇤ = 0 follows from the fact that
x⇤ minimizes f and that it lies on the interior of the domain. Hence the discrete representation
satisfies the constraints of (sdp-PEP).

Case 2: x⇤ 2 @domh. In this case, f and h are not necessarily differentiable at x⇤, but
are still differentiable still at x0, . . . , xN for the same reasons. But we can still, with a small
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modification at x⇤, derive a discrete representation that fits the constraints of (PEP) and whose
objective is the same. Indeed, define

(gi, fi, si, hi) = (rf(xi), f(xi),rh(xi), h(xi)) for i = 0, . . . , N,

(g⇤, f⇤, s⇤, h⇤) = (0, f(x⇤), v, h(x⇤)) ,

where v 2 R
d is a vector that are specified later. Then, for i 2 I and j 2 {0 . . . N}, convexity

of f and Lh� f imply that the constraints

fi � fj � hgj , xi � xji � 0

(Lhi � fi)� (Lhj � fj)� hLsj � gj , xi � xji � 0

hold. It remains to verify them for i 2 {0 . . . N} and j = ⇤. The first one holds because x⇤
minimizes f on domh, so with g⇤ = 0 we have fi � f⇤ � 0. We now show that the second one
is satisfied, i.e., that we can choose v 2 R

d so that

(Lhi � fi)� (Lh⇤ � f⇤)� hLv, xi � x⇤i � 0 8i 2 {0 . . . N}.

To this extent, we use the fact that x⇤ 2 @domh and that xi 2 int domh for i = 0 . . . N .
This means that {x⇤} \ int domh = ;, and therefore by the hyperplane separation theorem
[Rockafellar, 1970, Thm 11.3], there exists a hyperplane that separates the convex sets {x⇤}
and int dom h properly, meaning that there exists a vector u 2 R

d such that

hxi � x⇤, ui < 0 8i 2 {0, . . . , N}.

Set

↵ = min
i=0...N

(Lhi � fi)� (Lh⇤ � f⇤),

� = min
i=0,...,N

�hxi � x⇤, ui > 0,

where � > 0 because of the separation result. Choose s⇤ = v as v = |↵|
L�u. Then we have

(Lhi � fi)� (Lh⇤ � f⇤)� hLs⇤, xi � x⇤i � ↵+ L
|↵|

L�
�

� ↵+ |↵|

� 0.

This eventually provides an instance {(xi, gi, fi, hi, si)}i2I that is admissible for (PEP).
To conclude, we proved that in both cases, an admissible point of (PEP-C) can be turned

into an admissible point of (sdp-PEP) with the same objective value. Hence we have

val(PEP-C)  val(sdp-PEP).

Recalling that val(PEP)  val(PEP-C) and that val(sdp-PEP) = val(PEP) by Theorem 4.8,
we get

val(PEP-C) = val(PEP).

In other words, solving the performance estimation problem (PEP-C) for functions with any
closed convex domain is equivalent to solving the performance estimation problem (PEP) re-
stricted to functions that have full domain.
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Chapter 5

Computer-Aided Analyses of

Entropic-Smooth Minimization

Methods

Chapter Abstract

In the previous chapter, we showed that the problem of finding the worst-
case behavior of Bregman methods for generic kernel could be formulated
as a semidefinite optimization problem. This lead to a lower bound proving
the impossibility of acceleration, relying on a pathological worst-case kernel,
and demonstrated the necessity of making additional regularity assumptions
in order to devise faster algorithms.
In this work, we propose to tackle a more restricted setting, by focusing on
the entropic kernel. We show that finding the worst-case behavior of Bregman
methods on functions that are convex and smooth relative to the entropy can
be formulated as a finite dimensional convex program. This problem involves
a new set called the Kullback-Leibler cone with log-linear constraints, for which
no solver is currently available. However, we manage to solve small instances
with heuristic methods and provide some conjectures based on preliminary
numerical results.

Collaboration: the content presented in this chapter has not yet been published. Part of
this work has been done in collaboration with Dmitrii Ostrovskii.

5.1 Introduction

As in the previous chapter, we consider the minimization problem

min
x2C

f(x)

where C is a convex subset of Rd and f a continuously differentiable convex function which is
smooth relative to some convex kernel h. The standard method for solving such problem is the
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Bregman gradient descent scheme (BGD), which writes

xk+1 = argmin
u2C

f(xk) + hrf(xk), u� xki+
1

�
Dh(u, xk), (BGD)

where
Dh(x, y) = h(x)� h(y)� hrh(y), x� yi

is the Bregman divergence induced by h. An important question, among others, is to determine
if there exists an algorithm that achieves a better convergence rate than (BGD) on the same
class of functions.

In the previous chapters, we gave a rather negative answer to this question for general
kernel h. Indeed, we proved in Chapter 3 a lower bound implying that BGD is optimal among a
large class of Bregman-type methods. The worst-case instance involved in this lower bound was
discovered numerically by solving a performance estimation problem (PEP), which we described
in Chapter 4. PEPs allow to formulate the problem of finding the worst-case complexity of
gradient methods as numerical optimization problems. They form a great tool for conjecturing
and proving new results in first-order optimization [Drori and Teboulle, 2014, Taylor et al.,
2015, Kim and Fessler, 2016, Drori and Taylor, 2019, Taylor and Bach, 2019].

A critical limitation of the results from the previous chapters is that we consider generic
kernels, that is, we search for the worst possible couple (f, h) such that f is convex and smooth
relative to h. By doing so, the worst case kernels that we find are pathological and somewhat
unrealistic. For instance, the proof of the lower bound in Chapter 3 involves a sequence of
functions {hµ}µ�0 which approaches a nondifferentiable convex function as µ! 0. In practical
applications of relative smoothness, h is more regular, as is it usually a C1 function. This is
why, in this chapter, we propose to look at the particular case of the discrete entropy

he(x) =

dX

i=1

x(i) log x(i) � x(i),

on the set C = R
d
+, for which the corresponding Bregman divergence is the well-known Kullback-

Leibler divergence, and the update of (BGD) writes

xk+1 = xk � exp (��rf (xk)) .

Therefore, we consider the class of functions f that are convex and smooth relative to the
entropy, which we call the class of entropic-smooth convex functions. We focus on the entropic
kernel for two main reasons. First, it is one of the most common example of non-Euclidean
kernels, with applications such as optimal transport and nonnegative entropy regression (see
Chapter 1). Secondly, the entropy has some favorable properties which are crucial for our anal-
ysis, including the fact that the corresponding Bregman divergence is jointly convex [Bauschke
and Borwein, 2001]. Moreover, studying the entropic geometry might also help gain insight
about other kernels with similar structure on the nonnegative orthant, such as the log-barrier.

In this chapter, we consider only the unnormalized case where C = R
d
+; the setting where

C is the unit simplex {x 2 R
d
+ :

Pd
i=1 x

(i) = 1} is left for future work as it poses additional
difficulties for performance estimation.
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Contributions and outline. We propose to apply the performance estimation framework of
Drori and Teboulle [2014] for finding the worst-case behavior of Bregman methods on entropic-
smooth convex functions.

We start by recalling in Section 5.2 the basic setup and defining the performance estimation
problem (PEP). In Section 5.3, we establish the interpolation conditions which are needed for
formulating the PEP as an equivalent finite-dimensional optimization problem. To do so, we
generalize the Euclidean interpolation conditions of Taylor et al. [2017] to the entropic-smooth
setting. We rely on the smoothing properties of the Bregman-Moreau envelope [Kan and Song,
2012, Bauschke et al., 2018, Laude et al., 2020], which is the Bregman counterpart of the
standard Moreau envelope [Moreau, 1965]. Although part of our analysis can be done for a
more general class of kernels, we need additional restrictive assumptions to reach our claims
(such as joint convexity of the Bregman divergence), which are satisfied by the entropy.

Then, in Section 5.4, we show that the PEP can be written as a convex problem on the
set of matrices of pairwise Kullback-Leibler divergences, which we call the Kullback-Leibler
cone, with additional log-linear constraints. Unfortunately, we are not aware of an explicit
description of such set, or any solvers for this type of problem. We are only able to describe
the set in the simple case without log-linear constraints: in that case, we show that the set is
trivial, as any nonnegative matrix with null diagonal can be approached by a matrix of pairwise
Kullback-Leibler divergences.

Finally, we show in Section 5.5 some preliminary numerical experiments, made by solving
the PEP with basic heuristics. This leads to the following pessimistic conjecture: among the
class of linear-span Bregman methods with fixed coefficients, only vanilla BGD is guaranteed
to converge in the worst-case.

Notation. Throughout this chapter, we use the notation h for a generic convex kernel func-
tion, while he denotes the entropic kernel

he(x) =
dX

i=1

x(i) log x(i) � x(i)

defined for x 2 R
d
+, with the convention that 0 log 0 = 0. The corresponding Bregman diver-

gence is the Kullback-Leibler divergence

Dhe(x, y) =
dX

i=1

x(i) log
x(i)

y(i)
� x(i) + y(i)

defined for x 2 R
d
+, y 2 R

d
++. We write Fh

L the class of convex functions that are L-smooth
relative to h.

1m denotes the vector (1, . . . , 1) 2 R
m. Co(A) is the convex cone spanned by the elements

of the set A. For x, y 2 R
d, x � y denotes the componentwise product of x and y. For

a scalar function � : R ! R and a vector x 2 R
d, �(x) denotes the result of applying �

componentwise to the vector x, i.e., �(x) =
�
�(x(1)), . . . ,�(x(d))

�
. Let X 2 R

d⇥m a matrix,
and denote X = [x1; . . . ;xm] its column vectors. We define the pairwise divergence matrix
Dh[X,X] 2 R

m⇥m as

(Dh[X,X])ij = Dh(xi, xj), i, j = 1 . . .m.
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5.2 Problem setup

5.2.1 Relatively-smooth optimization

We briefly recall the basic ingredients and definitions for relatively-smooth optimization prob-
lems. For a general introduction, we refer the reader to Chapter 1.

Definition 5.1 (Kernel function). A function h : Rd ! R [ {+1} is called a kernel function
on C if

(i) h is closed convex proper (c.c.p.),

(ii) h is continuously differentiable and strictly convex on int C,

(iii) the Bregman gradient iterates are well-posed, i.e., for every p 2 R
d, the problem

min
u2C
hp, ui+ h(u)

has a unique minimizer, which belongs to int C.

The entropy he is a particular case of kernel on C = R
d
+. We also recall the central notion

of relative smoothness [Bauschke et al., 2017].

Definition 5.2 (Relative smoothness). Let h be a kernel function on C, and f a function such
that domh ⇢ dom f . We say that f is smooth relative to h if it is differentiable on int C and if
there exists a constant L > 0 such that

Lh� f is convex on int C,

or equivalently, if

f(x)  f(y) + hrf(y), x� yi+ LDh(x, y) 8x, y 2 int C. (5.1)

For a given kernel h, we write
f 2 Fh

L

if the function f is convex and L-smooth relative to h.

Entropic smoothness. When a function f is smooth relative to the entropy he, we say that
f is entropic-smooth. The canonical example of convex entropic-smooth functions is given by
functions of the form

fA,b(x) = Dhe(Ax, b)

for some matrix A 2 R
p⇥d
+ and vector b 2 R

p
++. The function fA,b is entropic-smooth with

constant L = maxj
P

iAij [Bauschke et al., 2017]. Such a function arises in nonnegative
entropy regression and entropy-regularized optimal transport [Chizat et al., 2018, Mishchenko,
2019].
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Convex conjugate. Recall that if h is a kernel function, we define its convex conjugate h⇤

as
h⇤(y) = sup

u2Rd

hu, yi � h(u).

By Definition 5.1 (iii), h⇤ is finite-valued on R
d. Moreover, its gradient satisfies for every u 2 R

d

[Rockafellar, 1970, Sect. 26]

rh⇤(y) = argmax
u2Rd

hu, yi � h(u).

We recall the relationship between the Bregman divergence of h and its conjugate; see [Bauschke
and Borwein, 1997, Thm. 3.7] for the proof.

Lemma 5.3 (Bregman divergence of conjugate). Let h be a kernel function on C. Then for
every x, y 2 int C, we have

Dh(x, y) = Dh⇤ (rh(y),rh(x)) .

The conjugate of the entropy function is the exponential kernel: for u 2 R
d we have

h⇤e(u) =

dX

i=1

exp(u(i)).

Let us check that Lemma 5.3 holds for this example. Let x, y 2 R
d
++ and define

u = rhe(x) = log(x),

v = rhe(y) = log(y).

Then we have

Dhe(x, y) =
dX

i=1

x(i) log
x(i)

y(i)
� x(i) + y(i)

=

dX

i=1

exp(v(i))� exp(u(i))
⇣

1 + v(i) � u(i)
⌘

= Dh⇤
e
(v, u).

(5.2)

5.2.2 Performance estimation problems for Bregman methods with fixed
kernel

In this section, we formulate the problem of finding the worst-case behavior of a Bregman first-
order method on the class Fh

L. The fundamental difference with the approach from Chapter 4
is that we now look for the worst case for a given kernel h. In the sequel, we will particularly
focus on the entropy he.

Let h be a kernel function, N � 1 be a number of iterations, and A a Bregman first-
order method. We wish to compute the worst-case performance of A on the class Fh

L after N
iterations. Since performance guarantees in the Bregman setting have the form

f(xN )� f(x⇤)  ✓(N,L)Dh(x⇤, x0),
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for some function ✓, it is natural to seek the worst-case performance as the maximal value of
the ratio

�
f(xN )� f⇤

�
/Dh(u, x0)

over the problem class Fh
L. To this extent, we propose to solve the minimization problem, for

an initial radius R > 0,

maximize f (xN )� f (x⇤)

subject to Dh(x⇤, x0) = R
f 2 Fh

L,
xN is the output of algorithm A initialized at x0 after N iterations,

(PEP)

in the variables f, x0, xN , x⇤. We refer to this problem as a Performance Estimation Problem
(PEP). Note that we do not need impose that x⇤ minimizes f , this will occur naturally in
the solutions of (PEP) as to maximize the gap f(xN )� f(x⇤). Although it seems that (PEP)
should be solved for every value of R, we will use homogeneity arguments in the sequel to show
that it suffices to consider R = 1.

Solving (PEP) seems intractable, as it involves the infinite-dimensional variable f . Fol-
lowing Drori and Teboulle [2014], Taylor et al. [2017], we proceed to reformulate it as a finite
dimensional problem. Since we assume that the algorithm A is a first-order method and we
adopt the black box model, it can gain information on f only through the first-order oracle
(f,rf) at query points x0, . . . , xN . Thus we formally write

xN = A
⇣

x0, {(f (xi) ,rf (xi))}
N�1
i=0

⌘

and, introducing the variables fi = f(xi), gi = rf(xi) for i in the index set I = {0, . . . , N, ⇤},
Problem (PEP) is equivalent to

maximize fN � f⇤
subject to Dh(x⇤, x0) = R,

fi = f(xi), gi = rf(xi) for all i 2 I and some f 2 Fh
L,

xN = A
⇣

x0, {(fi, gi)}
N�1
i=0

⌘

,

(PEP-disc)

in the variables {(xi, fi, gi)}i2I . We now deal with a finite-dimensional optimization problem,
the equivalence with the previous PEP being guaranteed by the so-called interpolation con-

straints. We introduce the following convenient definition for interpolable sets [Taylor et al.,
2017].

Definition 5.4. Let I be a finite index set and S = {(xi, fi, gi)}i2I 2 (Rd⇥R⇥R
d)|I| for some

dimension d. Let F be a class of convex functions. We say that the set S is F-interpolable if
there exists a function f 2 F such that

fi = f(xi), gi 2 @f(xi) 8i 2 I.

Hence, the second line in (PEP-disc) amounts to requiring that the set {(xi, fi, gi)}i2I is
Fh
L-interpolable. We now proceed to establish necessary and sufficient conditions in the case of

the entropic kernel.
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5.3 Entropic-smooth convex interpolation

In the Euclidean case, Taylor et al. [2017] provide sufficient and necessary conditions for a finite
set {(xi, fi, gi)}i2I to be interpolated by a L-smooth strongly convex function (Theorem 4.4).
Our aim is to generalize this approach and to provide interpolation conditions for the class Fh

L

of functions that are smooth relative to a given kernel h (recall that, contrary to the previous
chapter where we considered interpolation conditions with generic kernels, h is now considered
to be fixed).

It turns out that this task requires additional assumptions on h, as we show in the sequel.
While necessary interpolation conditions can be derived for any kernel, sufficient conditions
require joint convexity of the Bregman divergence Dh(·, ·), which is a rather restrictive assump-
tion. Fortunately, it is valid for the important case of the entropy [Bauschke and Borwein,
2001]. Finally, we show that the entropy satisfies a favorable algebraic property which allows
to prove the equivalence between the necessary and the sufficient conditions.

5.3.1 Necessary conditions using Bregman co-coercivity

We start by establishing necessary conditions for interpolability. They are based on the follow-
ing consequence of relative smoothness, which we call Bregman co-coercivity. It generalizes a
known inequality for L-smooth convex functions [Nesterov, 2003, Eqn. (2.1.7)].

Proposition 5.5. Let h be a kernel function on C and f a convex functions such that f is
L-smooth relative to h. Then for every x, y 2 int C we have

Df (x, y) � LDh⇤

✓

rh(x)� 1

L

�
rf(x)�rf(y)

�
,rh(x)

◆

.

Proof. Let y 2 int C. Consider the function �y defined for x 2 int C by

�y(x) = Df (x, y).

Since �y is built by adding a linear function to f , it is also convex and L-smooth relative to h.
Thus, we can apply the descent inequality (5.1) which writes for u, x 2 C,

�y(u)  �y(x) + hr�y(x), u� xi+ LDh(u, x) := Qx,y(u) (5.3)

The right-hand side Qx,y(u) is a strictly convex function which is minimized for û such that

1

L
r�y(x) +rh(û)�rh(x) = 0, (5.4)

Thus, using (5.4) to substitute r�y(x) in (5.3) yields

�y(û)  Qx,y(û)

= �y(x) + Lhrh(x)�rh(û), u� xi+ LDh(û, x)

= �y(x)� LDh(x, û)

Recalling that 0  �x by convexity of f and using Lemma 5.3 we get

0  �y(x)� LDh(x, û)

= Df (x, y)� LDh⇤ (rh(û),rh(x))

= Df (x, y)� LDh⇤

✓

rh(x)� 1

L
r�y(x),rh(x)

◆
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which yields the desired result as r�y(x) = rf(x)�rf(y).

As a consequence, we deduce necessary conditions for Fh
L-interpolability.

Proposition 5.6 (Necessary interpolation conditions). Let h be a kernel on C. Let I be a finite
index set and S = {(xi, fi, gi)}i2I 2 (int C ⇥ R⇥ R

d)|I|. If the set S is Fh
L-interpolable, then

fi � fj � hgj , xi � xji � LDh⇤

✓

rh(xi)�
1

L
(gi � gj),rh(xi)

◆

8i, j 2 I.

Proof. This simply amounts to choosing an interpolating function f 2 Fh
L and applying the

Bregman co-coercivity property (Proposition 5.5) at pairs of points (xi, xj).

5.3.2 Sufficient conditions with Bregman-Moreau envelopes

To establish sufficient conditions, we need a constructive procedure for building a function in
Fh
L which interpolates the finite set {(xi, fi, gi)}i2I .

In the Euclidean setting, Taylor et al. [2017] proceed by first building a nonsmooth convex
function as a supremum of affine functions, and then smoothing by taking its Moreau envelope
[Moreau, 1965]1. Recall that the (Euclidean) Moreau envelope of a convex function f̂ with
parameter µ > 0 is given by

envµf̂(x) = min
u2Rd

f̂(u) +
1

2µ
ku� xk2. (5.5)

If f̂ is closed convex and proper, then envµf̂ is convex and µ�1-smooth [Bauschke and Com-
bettes, 2011, Sect. 12.4]. Thus, the Moreau envelope posses a smoothing property, and the
level of smoothing is controlled by the coefficient µ.

Bregman-Moreau envelopes. It is natural to wonder if by replacing the squared Euclidean
distance with a Bregman divergence in (5.5), relatively-smooth functions can be built based on
the same principle. Note that there are two ways to perform this extension, as the Bregman
divergence Dh is not symmetric in general. In this work, we show that, in order to reach the
desired property, we need to consider the right Bregman-Moreau envelope defined as

envhµf̂(x) = min
u2int C

f̂(u) +
1

µ
Dh(x, u), (5.6)

Historically, the variant that has been considered first is the left Bregman-Moreau envelope
which writes minu2Rd f̂(u)+µ�1Dh(u, x), because it is the operation that naturally appears in
Bregman proximal methods [Kan and Song, 2012]. The idea of considering the right Bregman-
Moreau envelope appeared first in Bauschke [2006], and its smoothing properties were studied
in Bauschke et al. [2018]; see also Laude et al. [2020] for a recent extension to nonconvex
functions f̂ .

The study of the right Bregman-Moreau envelope requires additional structural assumptions
on h; in particular, we need to assume that Dh(·, ·) is jointly convex so that envhµf̂ is well defined.

1Actually, the procedure described by Taylor et al. [2017] does not mention explicitly using a Moreau envelope.
They rather propose to build a smooth convex function by adding a quadratic to the conjugate of a nonsmooth
convex function, and taking the conjugate back. One can show that this process is equivalent to applying
the Moreau envelope, by exploiting the relationship between conjugacy and inf-convolution [Bauschke and
Combettes, 2011, Prop. 13.21].
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Assumption 5.1. The function h : Rd ! R [ {+1} satisfies the following properties:

(i) h is convex, proper and closed,

(ii) h is twice continuously differentiable on int C,

(iii) h is of Legendre type , that is, h is strictly convex on int C and such that krh(xk)k ! +1
for every sequence {xk}k�0 ⇢ int C that converges to a boundary point of C [Rockafellar,
1970, Sect 26],

(iv) the Bregman divergence Dh(·, ·) is jointly convex on R
d ⇥ R

d,

(v) for every x 2 int C, the function Dh(x, ·) is strictly convex on C and coercive.

Among these conditions, item (iv) is particularly restrictive; fortunately, besides the squared
Euclidean norm, it is also verified for the entropic kernel he [Bauschke and Borwein, 2001]. All
other conditions from Assumption 5.1 also hold for he.

Under these assumptions, we can now state the properties of the right Bregman-Moreau
envelope studied by Bauschke et al. [2018].

Proposition 5.7. (Relative smoothness of the right Bregman-Moreau envelope) Assume that
f̂ is a finite-valued convex function on R

d which is bounded from below. Let h be a kernel
function on C which satisfies Assumption 5.1. Then, for µ > 0, the right Bregman-Moreau
envelope envhµf̂ defined in (5.6) satisfies the following properties:

(i) envhµf̂ is convex on R
d,

(ii) envhµf̂ is differentiable on int C and 1/µ-smooth relative to h.

In other words, we have
envhµf̂ 2 Fh

L

with L = 1/µ.

Proof. Point (i) is a consequence of [Bauschke et al., 2018, Prop. 2.7 (ii)], and differentiability
on int C follows from [Bauschke et al., 2018, Prop. 2.19 (ii)]. Finally, by [Bauschke et al., 2018,
Prop. 2.4 (ii)] we have

1

µ
h� envhµf̂ =

1

µ

⇣

h⇤ + (µf̂ � rh)
⌘⇤

,

which shows that µ�1h � envhµf̂ is a convex function, since the conjugate of any function is
convex [Bauschke and Combettes, 2011, Prop. 13.11], and thus that relative smoothness holds.

Let also define the right Bregman-Moreau proximal map for x 2 R
d:

proxhµf̂(x) = argmin
u2int C

f̂(u) +
1

µ
Dh(x, u)

which we will often write u(x) for shortness when the context is clear. The next proposition
caracterizes the Breman-Moreau proximal map and establishes the link with the gradient of
the envelope.
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Proposition 5.8. Let x 2 int C. Under the same assumptions as Proposition 5.7, the proximal
map u(x) = proxhµf̂(x) satisfies

µ @f̂(u(x)) 3 r2h(u(x)) (x� u(x)) ,

µrenvhµf̂(x) = rh(x)�rh(u(x)).
(5.7)

Proof. The first equation follows from the first-order optimality conditions defining u(x), and
the second is a consequence of [Bauschke et al., 2018, Prop. 2.19 (ii)].

Using the definition of envhµf̂ and the proposition above, we can note that for u(x) =

proxhµf̂(x) we have

envhµf̂(x) = f̂(u(x)) +
1

µ
Dh (x, u(x)) ,

µrenvhµf̂(x) = r1Dh (x, u(x)) ,

µ @f̂(u(x)) 3 r2Dh (x, u(x)) ,

(5.8)

where r1 and r2 denote the partial gradients in each variable of Dh(·, ·).

Double Bregman divergence. As the function Dh is convex on R
d⇥Rd, we can consider its

Bregman divergence DDh
, which we call the double Bregman divergence. For x, y, u, v 2 int C,

it is defined by

DDh

�
(x, y), (u, v)

�
= Dh(x, y)�Dh(u, v)� hr1Dh(u, v), x� ui � hr2Dh(u, v), y � vi
= Dh(x, y)�Dh(u, v)� hrh(u)�rh(v), x� ui
� hr2h(v)(v � u), y � vi.

(5.9)

The double divergence, which was already studied by Bauschke [2006], will play a central role
in the sufficient conditions for Fh

L-interpolability, which we are now ready to state. These con-
ditions rely on a two-stage procedure: first, we reduce the problem of interpolating a relatively-
smooth convex function to the problem of interpolating a convex function, by the means of the
Bregman-Moreau envelope. Then, we use the interpolation result for convex functions from
Taylor et al. [2017] (which we recalled in Theorem 4.4).

Proposition 5.9 (Sufficient interpolation conditions). Consider a kernel h satisfying Asssump-
tion 5.1, with zone C ⇢ R

d. Let L > 0, I be a finite index set and

S = {(xi, fi, gi)}i2I 2 (Rd
++ ⇥ R⇥ R

d)|I|.

Consider the following statements.

(i) For all i, j 2 I we have

fi � fj � hgj , xi � xji � LDDh

�
(xi, ui), (xj , uj)

�

with

ui := rh⇤


rh(xi)�
1

L
gi

�

, 8i 2 I. (5.10)
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(ii) The set
Ŝ := {(ui, f̂i, ĝi)}i2I

is Γ(Rd)-interpolable, where Γ(Rd) denotes the set of convex closed proper functions on
R
d and the set Ŝ is defined as

ui = rh⇤


rh(xi)�
1

L
gi

�

,

f̂i = fi � LDh(xi, ui),

ĝi = Lr2h [ui] (xi � ui),

(5.11)

for i 2 I.

(iii) The set S is Fh
L-interpolable.

Then (i) =) (ii) =) (iii).

Proof. (i) =) (ii). Define {ui, f̂i, ĝi} as in (5.11). The definition of ui (5.10) implies that

L(rh(xi)�rh(ui)) = gi, (5.12)

and hence we have

f̂i � f̂j � hĝj , ui � uji
(5.11)
= fi � LDh(xi, ui)� fj + LDh(xj , uj)� Lhr2h(uj)(xj � uj), ui � uji

= fi � LDh(xi, ui)� fj + LDh(xj , uj)� Lhr2h(uj)(xj � uj), ui � uji
� hgj , xi � xji+ Lhrh(xj)�rh(uj), xi � xji

(5.12)
= fi � fj � hgj , xi � xji � L

⇣

Dh(xi, ui)�Dh(xj , uj)

� hrh(xj)�rh(uj), xi � xji � hr2h(uj)(uj � xj), ui � uji
⌘

(5.9)
= fi � fj � hgj , xi � xji � LDDh

�
(xi, ui), (xj , uj)

�

(i)

� 0

Hence, the set Ŝ = {ui, f̂i, ĝi}i2I satisfies the interpolation conditions for convex interpolation
[Taylor et al., 2017, Thm. 1], and therefore there exists a convex function f̂ : Rd ! R that
interpolates Ŝ, thus proving (ii).

(ii) =) (iii). Let f̂ be a convex function that interpolates the set Ŝ. Moreover, let us
choose f̂ such that f̂ is finite valued and bounded below on R

d (this is always possible since
the set S is finite). Let µ = 1/L and define the function f as the Bregman-Moreau envelope

f := envhµf̂ .

Since f̂ is convex and bounded below, Proposition 5.7 ensures that f 2 Fh
L. Let i 2 I. As f̂

interpolates Ŝ, we have ĝi 2 @f̂(ui) which means that

Lr2h(ui)(xi � ui) 2 @f̂(ui)
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by definition of ĝi (5.11). Hence, we have that ui satisfies the first-order optimality conditions
defining the Bregman-Moreau proximal map of f̂ at xi (Proposition 5.8), therefore

ui = proxhµf̂(xi).

As f̂ interpolates Ŝ we have f̂(ui) = f̂i and thus

f(xi)
(5.8)
= f̂(ui) + LDh(xi, ui) = f̂i + LDh(xi, ui)

(5.11)
= fi,

and similarly

rf(xi)
(5.7)
=

1

µ

⇣

rh(xi)�rh
⇣

proxhµf̂(xi)
⌘⌘

= L (rh(xi)�rh(ui))
(5.12)
= gi,

which achieves to prove that f interpolates the set S.

5.3.3 Equivalence for the entropic kernel

By examining the necessary conditions from Proposition 5.6 and the sufficient conditions form
Proposition 5.9, one can notice that they do not seem to coincide in general. However, in
the case of the entropic kernel, some favorable algebra allows to show that they are in fact
equivalent.

Lemma 5.10. Let L > 0, he be the entropic kernel, x, x0 2 R
d
++, g, g

0 2 R
d and define

u = rh⇤e(rhe(x)�
1

L
g), u0 = rh⇤e(rhe(x0)�

1

L
g0).

Then

DDhe

�
(x, u), (x0, u0)

�
= Dh⇤

e

�
rhe(x)�

1

L
(g � g0),rhe(x)

�

Proof. For the entropy, we have

u = rh⇤e(rhe(x)�
1

L
g) = x � exp(�g/L).

We use the identity for the double Bregman divergence of the entropy [Bauschke, 2006, Example
2.9] which yields

DDhe

�
(x, u), (x0, u0)

�
= Dhe(x, u � x0/u0),

and thus

DDhe

�
(x, u), (x0, u0)

�
= Dhe(x, x � exp(

g0 � g

L
))

= Dhe

✓

x,rh⇤e(rhe(x) +
1

L
(g0 � g))

◆

= Dh⇤
e

✓

rhe(x) +
1

L
(g0 � g),rhe(x)

◆

.

where we used the duality property of the Bregman divergence (Lemma 5.3).
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Using this identity, we can show that the necessary and sufficient conditions are equivalent
and formulate interpolability conditions for entropic-smooth functions.

Theorem 5.11 (Entropic-smooth interpolability). Let L > 0, d � 1 a dimension, I be a finite
index set and

S = {xi, fi, gi}i2I 2 (Rd
++ ⇥ R⇥ R

d)|I|.

Consider the entropic kernel he. The set S is Fhe
L -interpolable if and only if for every i, j 2 I,

fi � fj � hgj , xi � xji � LDh⇤
e



rhe(xi)�
1

L
(gi � gj),rhe(xi)

�

. (5.13)

Proof. First, note that the entropy satisfies Assumption 5.1. The implication is a consequence
from the necessary condition in Proposition 5.6. Conversely, assume that (5.13) holds. By the
identity stated in Lemma 5.10, we have that

Dh⇤
e



rhe(xi)�
1

L
(gi � gj),rhe(xi)

�

= DDhe

�
(xi, ui), (xj , uj)

�
8i, j 2 I

with ui = xi�exp(�gi/L) for i 2 I and therefore, the set S satisfies Condition (i) in Proposition
5.9, which implies that S is Fhe

L -interpolable.

Remark 4. In fact, the “favorable algebra” from Lemma 5.10 also holds for the squared Eu-
clidean norm; therefore, our analysis can be seen as a strict extension of the Euclidean inter-
polability conditions from Taylor et al. [2017] to the kernels that satisfy this property as well
as Assumption 5.1. However, it seems that the quadratic kernels and the entropy are the only
kernels with such favorable properties. As stated by Bauschke and Combettes [2011], these two
geometries seem to be “limiting cases in a profound sense”.

5.4 Writing the PEP as a convex program on the Kullback-

Leibler cone

We now use the interpolation conditions to formulate the problem of finding the worst-case sce-
nario of Bregman methods in entropic-smooth settings as a finite-dimensional problem. Then,
we show that by relaxing over the dimension d, this problem becomes a convex program on a
new cone that we call the Kullback-Leibler cone.

5.4.1 Formulating the PEP on the set of pairwise Kullback-Leibler matrices

Recall that the performance estimation problem (PEP) for entropic-smooth convex minimiza-
tion writes

maximize fN � f⇤
subject to Dhe(x⇤, x0) = R,

fi = f(xi), gi = rf(xi) for all i 2 I and some f 2 Fhe
L ,

xN = A
⇣

x0, {(fi, gi)}
N�1
i=0

⌘

,

in the variables d, {(xi, fi, gi)}i2I .
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Using the interpolations conditions from Theorem 5.11, we can now write explicitly the
constraints on the second line, and thus the PEP is equivalent to

maximize fN � f⇤
subject to Dhe(x⇤, x0) = R,

fi � fj � hgj , xi � xji � LDh⇤
e

⇥
rhe(xi)� 1

L(gi � gj),rhe(xi)
⇤
, i, j 2 I,

xN = A
⇣

x0, {(fi, gi)}
N�1
i=0

⌘

,

in the variables d, {(xi, fi, gi)}i2I . We now need to express the algorithmic constraints. For
simplicity, we first focus on the case when A is the vanilla Bregman gradient descent (BGD)
algorithm with fixed step size � > 0, which writes

rhe(xi+1) = rhe(xi)� �rf(xi), i = 0 . . . N � 1.

Other Bregman-type algorithms which perform an arbitrary linear combination of past gradi-
ents can be treated with the same approach.

It is now convenient to introduce the dual variables {si}i2I such that

si = rhe(xi) = log(xi)

for i 2 I. We use the three-point identity [Bauschke et al., 2017, Lemma 3] to express the inner
product as

�hgj , xi � xji = hrhe(xj)� (rhe(xj)� �gj), xi � xji
= Dhe(xi,rh⇤e[rhe(xj)� �gj ])�Dhe(xi, xj)�Dhe(xj ,rh⇤e[rhe(xj)� �gj ])
= Dh⇤

e
(sj � �gj , si)�Dh⇤

e
(sj , si)�Dh⇤

e
(sj � �gj , sj)

where the last line uses the result on the Bregman divergence of the conjugate (Lemma 5.3).
Hence, using this formulation on the dual space, the PEP rewrites

maximize fN � f⇤
subject to Dh⇤

e
(s0, s⇤) = R,

�(fi � fj)�Dh⇤
e
(sj � �gj , si) +Dh⇤

e
(sj , si) +Dh⇤

e
(sj � �gj , sj) �

�LDh⇤
e

⇥
si � 1

L(gi � gj), si
⇤
, i, j 2 I,

si+1 = si � �gi, i = 0 . . . N � 1,

(5.14)

in the variables d, {(si, fi, gi)}i2I . We now observe that the constraints depend linearly on the
vector of function values F = (f0, . . . , fN , f⇤), as well as the values of the Bregman divergence
between some dual vectors which are linearly constrained. We make this idea clear in the
following proposition, in which we write the PEP in a generic form.

Proposition 5.12. There exist integers m, p, a constraint matrix A 2 R
q⇥m, vectors c0, c1, . . . , cp

in R
N+2 and matrices B0, B1, . . . , Bp 2 R

m⇥m such that A1m = 0 and the PEP (5.14) is equiv-
alent to the following optimization problem

maximize hc0, F i
subject to D 2 Km(A),

Tr(B0D) = R,
hci, F i+Tr(BiD) � 0, i = 1 . . . q,

(PEP-K)
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in the variables F 2 R
N+2 and D 2 R

m⇥m, where Km(A) is defined as the set of constrained
pairwise KL-distance matrices as follows

Km(A) :=
n

Dh⇤
e
[S, S] : there exists d 2 N and S 2 R

d⇥m such that AST = 0
o

. (5.15)

Proof. Introducing some auxiliary variables {s0i}i2I 2 (Rd)|I| and {s00ij}i,j2I 2 (Rd)|I|
2
, we

reformulate (5.14) as

maximize fN � f⇤
subject to Dh⇤

e
(s0, s⇤) = R,

�(fi � fj)�Dh⇤
e
(s0j , si) +Dh⇤

e
(sj , si) +Dh⇤

e
(s0j , sj) �

�LDh⇤
e

h

s00ij , si

i

, i, j 2 I,

s00ij = si � 1
L(gi � gj), i, j 2 I

s0i = si � �gi, i 2 I,
si+1 = si � �gi, i = 0 . . . N � 1,

(5.16)

in the variables d, {(si, s
0
i, fi, gi)}i2I , {s

00
ij}i,j2I . Eliminating the redundant {gi} variables, the

last three lines of the constraints rewrite

s00ij = si �
1

�L
(si � s0i � sj + s0j), i, j 2 I,

si+1 = s0i, i = 0 . . . N � 1.
(5.17)

Let us stack the variables {si}i2I , {s
0
i}i2I , {s

00
i,j}i,j2I in a matrix S 2 R

d⇥m with m = 3(N + 2)(N + 2).
Define index reorderings �,�0 : I ! {1 . . .m}, and �00 : I ⇥ I ! {1 . . .m} such that.

S[:,�(i)] = si, i 2 I,

S[:,�0(i)] = s0i, i 2 I,

S[:,�00(i, j)] = s00ij , i, j 2 I,

The constraints (5.17) are linear and thus can be written

AST = 0

for some matrix A 2 R
q⇥m with q = 2N + 2. Notice that A1 = 0 as the constraints (5.17)

are invariant by adding a constant term to each variable. Using the index reorderings and
inroducing the distance matrix D = Dh⇤

e
[S, S] 2 R

m⇥m, Problem (5.16) becomes equivalent to

maximize FN � F⇤

subject to D�(0),�(⇤) = R,

�(Fi � Fj)�D�0(j),�(i) +D�(j),�(i) +D�0(j),�(j) � �LD�00(i,j),�(i), i, j 2 I,

D = Dh⇤
e
[S, S] for some d 2 N and S 2 R

d⇥m such that AST = 0,

in the variables F 2 R
N+2, D 2 R

m⇥m. Due to the definition (5.15), the last constraint rewrites
D 2 Km(A), and the others are linear, hence the problem is of the form (PEP-K).
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5.4.2 The Kullback-Leibler cone

Problem (PEP-K) involves linear constraints, and the set Km(A) that we call the Kullback-
Leibler cone with log-linear constraints. Indeed, the matrix A encodes linear constraints on the
dual variables si = log xi. We first show that it is indeed a convex cone.

Proposition 5.13. Let m, q � 1, and a constraint matrix A 2 R
q⇥m such that A1m = 0. The

the set Km(A) defined in (5.15) is a convex cone.

Proof. Scalar multiplication. Let D 2 Km(A) and ↵ > 0. Let us pick S 2 R
n⇥m such that

D = Dh⇤ [S, S]. Consider the matrix S0 = S + (log↵)1n⇥m. Then, since we assumed A1m = 0,
we have AS0 = AS. Moreover, since the dual KL divergence Dh⇤

e
satisfies

Dh⇤
e
(u+ log↵, v + log↵) = ↵Dh⇤

e
(u, v) 8u, v 2 R

d,

(see (5.2) for the expression of Dh⇤
e
) we have Dh⇤

e
[S0, S0] = ↵Dh⇤

e
[S, S] = ↵D and hence

↵D 2 Km(A).

Additivity. Let D,D0 2 Km(A) and ↵ > 0. Choose S 2 R
n0⇥m, S0 2 R

n⇥m such that

D = Dh⇤
e
[S, S], D0 = Dh⇤

e
[S0, S0].

Consider the matrix S00 2 R
(n+n0)⇥m obtained by concatenating S and S0 as S00 = [S;S0]. Then

A(S00)T = AST +A(S0)T = 0, and we have

Dh⇤
e
[S00, S00] = Dh⇤

e
[S, S] +Dh⇤

e
[S0, S0] = D +D0

which proves that D +D0 2 Km(A) and concludes the proof.

The set Km(A) is the entropic counterpart of the Euclidean Distance Matrix cone, which can
be expressed as a linear transformation of the cone of positive semidefinite matrices [Krislock
and Wolkowicz, 2011]. Moreover, in the Euclidean setting, linear constraints on the generat-
ing points are equivalent to a set of linear constraints on the distance matrix, which allows
formulating the PEP as a semidefinite program [Drori and Teboulle, 2014].

To the best of our knowledge, the Kullback-Leibler cone is novel and no method is known
for solving problems of type (PEP-K). However, as a first result, we are able to describe the
cone in the case where there are no linear constraints, i.e. A = 0. In that case, we simply
denote

Km := Km(0)

The unconstrained Kullback-Leibler cone is trivial. It is known that the Kullback-
Leibler divergence is less regular than the Euclidean distance, for instance, it is not symmetric.
Here, we analyze this structure a step further by showing that the closure of the KL cone Km

is trivial. That is, any matrix with nonnegative entries and null diagonal can be approached
by a sequence of pairwise KL divergence matrices.

Proposition 5.14 (The closure of Km is trivial). Let m � 3. The closure of the cone Km is

Km =
n

D 2 R
m⇥m
+ : diag(D) = (0 . . . 0)

o

.
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We start by proving a lemma. Let us denote {Eij}1i,jm the canonical basis of the set of
matrices of size m⇥m.

Lemma 5.15. Let m � 2. The matrix E1,2 belongs to Km, the closure of Km.

Proof. Let us first show the result for m = 3. Consider the points xt, yt, zt 2 R defined as

xt = t, yt = te�1/t, zt = te�1/s

where t, s > 0 are to be chosen later. Then the pairwise KL divergences of xt, yt, zt are

Dhe(xt, yt) = 1 + t(e�1/t � 1)

Dhe(yt, xt) = t� e�1/t(1 + t)

Dhe(xt, zt) = t(
1

s
+ e�1/s � 1)

Dhe(zt, xt) = t(1� e�1/s � 1

s
e�1/s)

Dhe(yt, zt) = e�1/t(
t

s
� 1) + t(e�1/s � e�1/t)

Dhe(zt, yt) = e�1/s(1� t

s
) + t(e�1/t � e�1/s)

When t! 0, the pairwise KL matrix Dhe [Xt, Xt] with X = [xt; yt; zt] satisfies

lim
t!0

Dhe [xt, yt, zt] = lim
t!0

0

@

Dhe(xt, xt) Dhe(xt, yt) Dhe(xt, zt)
Dhe(yt, xt) Dhe(yt, yt) Dhe(yt, zt)
Dhe(zt, xt) Dhe(zt, yt) Dhe(zt, zt)

1

A =

0

@

0 1 0
0 0 0

0 e�1/s 0

1

A

which shows, by taking s! 0, that E12 belongs to the closure of K3 (remember that Dh[Xt, Xt] =
Dh⇤ [logXt, logXt]). For m = 2, it suffices to take the set of points {xt, yt}. For m � 4, using
the same reasoning and by considering the set of points

{xt, yt, zt . . . zt},

we show that E12 2 Km.

We are now able to prove the desired result.
Proof of Proposition 5.14. By symmetry of the roles of x1, . . . , xm, Lemma 5.15 implies

that for every i 6= j 2 {1 . . .m}, Eij 2 Km. Hence, since it is a convex cone, the cone spanned
by these elements also belongs to Km, i.e.,

Cone({Eij}1i 6=jm) ⇢ Km,

which proves the result since Km ⇢
�
D 2 R

m⇥m
+ : diag(D) = (0 . . . 0)

 
= Co({Eij}1i 6=jm).

This result demonstrates the lack of regularity of the Kullback-Leibler divergence, since any
combination of nonnegative distances can be approached by a pairwise KL matrix, unlike the
Euclidean setting where distance matrices have a nontrivial structure [Krislock and Wolkowicz,
2011].

However, the general case of Km(A), where additional log-linear constraints are imposed,
cannot be described as easily. Numerical exploration seems to suggest that adding such con-
straints make the cone non-trivial; but we were not able to provide an explicit description in
such setting.
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5.5 Preliminary numerical results and conjectures

Although we formulated the performance estimation problem for entropic-smooth minimization
as a convex program, there is no known solver for such problem, as we are not able to easily
describe the Kullback-Leibler cone Km(A) (beyond the setting A = 0, where it has a trivial
structure).

In this section, we propose a basic heuristic method for solving the PEP, and provide
preliminary numerical results.

5.5.1 Heuristic solver for Kullback-Leibler cone programs

Recall the generic form of a K-L cone program

maximize hc0, F i
subject to D 2 Km(A),

Tr(B0D) = R,
hci, F i+Tr(BiD) � 0, i = 1 . . . q,

in the variables D,F . We propose here the following basic heuristic:

1. Randomly sample nS elements D1, . . . , DnS of Km(A), and consider the cone spanned by
these elements

Co(D1, . . . , DnS ) ⇢ Km(A).

2. Solve the restricted linear problem on Co(D1, . . . , Dns), writing

maximize hc0, F i
subject to D = ↵1D1 + · · ·+ ↵nSDnS ,

↵ � 0,
Tr(B0D) = R,
hci, F i+Tr(BiD) � 0, i = 1 . . . q,

in the variables D,F,↵ 2 R
nS .

5.5.2 A simple class of linear-span Bregman methods

We propose to analyze the following class of Bregman first-order methods:

rh(xk+1) = rh(xk)�
kX

i=0

�k,irf(xk), k = 0, 1, . . . (BFOM)

where Γ = {�i,k}0ik is a sequence of fixed coefficients (i.e., the method is not adaptive).
While choosing �k,k = � and �i,k = 0 when k 6= i yields the vanilla Bregman Gradient descent
method, one can wonder if there exist some other choice of Γ with better worst-case guarantees.
To this extend, we propose to use the PEP methodology.

For a given number of iterations N , the worst-case behavior of (BFOM) on the class Fh
L

of entropic-smooth convex functions can be computed by solving the performance estimation
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problem

maximize f (xN )� f (x⇤)

subject to Dh(x⇤, x0) = R,

f 2 Fhe
L ,

rh(xk+1) = rh(xk)�
Pk

i=0 �k,irf(xk), k = 0, . . . , N � 1

(PEP-BFOM)

in the variables f, x0, . . . , xN , x⇤, and we denote by EN (Γ) = val(PEP-BFOM) its optimal value.
In the Euclidean setting with h = k · k2/2, the class of algorithms (BFOM) covers a large

number of first-order methods, including gradient descent and inertial algorithms such as Nes-
terov’s accelerated gradient method [Nesterov, 1983]. The approach of finding the “best” coef-
ficients Γ through worst-case performance estimation has been explored in Drori and Teboulle
[2014], Kim and Fessler [2016], Drori and Taylor [2019], Kim [2019].

However, for Bregman gradient methods on relatively-smooth functions, there is currently
no known method with better guarantee than BGD. While, in Chapter 3, we proved that BGD
is optimal for generic kernel h, we propose to study if results can be improved with the specific
entropic geometry by a method of the class (BFOM).

Resolution for N = 2. As a simple problem, we propose to solve (PEP-BFOM) for N = 2
iterations and several values of the three parameters �0,0, �1,0, �1,1. Hence we study the scheme

rhe(x1) = rhe(x0)� �0,0rf(x0)
rhe(x2) = rhe(x1)� �1,1rf(x1)� �1,0rf(x0)

(BFOM-2-it)

For homogeneity reasons, we can assume w.l.o.g that L = 1 and R = 1.
Following the approach detailed in Section 5.4, we write (PEP-BFOM) as a convex program

on the Kullback-Leibler cone, and solve it with the heuristic described above.
In Figure 5.1, we show the numerical results for a fixed value of �0,0 = 1/L, as a function of

�1,1, �1,0. We compare with the worst-case performance of the same algorithm in the Euclidean
setting with h = 1

2k · k2, obtained with the standard PEP methodology [Drori and Teboulle,
2014, Taylor et al., 2017]. Numerical evidence shows the following:

• in the Euclidean case, there is a non-trivial set of values for �1,0 that yields an improved
rate, which include well-known momentum-based algorithms.

• In the entropic setting, however, there is no value of �1,0 6= 0 that allows the functions
value to be bounded, i.e., the value of (PEP-BFOM) is finite only for

�1,1, �0,0 2 (0, 1/L] and �1,0 = 0.

In other words, among the class of methods described by (BFOM-2-it), only Bregman
Gradient Descent with step size bounded by (0, 1/L] has guaranteed worst-case conver-
gence.
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(a) Euclidean (b) Entropic

Figure 5.1: Worst-case performance of generic scheme (BFOM-2-it) for N = 2 iterations, with
�0,0 = 1/L and for different values of (�11, �10). Black denotes an infinite value. In the Euclidean
case (left), the dependence is continous and a large set of values for the parameters is allowed.
For the entropic kernel (right), only the choice �11 2 (0, 1/L] and �10 = 0 (corresponding to
vanilla BGD) guarantees a finite worst-case objective gap.

From numerical evidence to formal counter-examples. Numerical results shown above
are not formal proofs. However, for negative results, they can lead to rigorous arguments by
examining the corresponding worst-case functions, which we deduce from the solutions to the
PEP. For instance; let us show that the worst-case performance of (BFOM-2-it) is not bounded
for �0,0 = �1,1 = 1 and �1,0 > 0 in the entropic setting. Let us choose the one-dimensional
function f

f(x) = Dh(x, x⇤)

for some x⇤ > 0 to be fixed later. f is convex and entropic-smooth with constant 1. Applying
(BFOM-2-it) to f yields

x1 = x0 exp (��0,0rf(x0)) = x⇤,

x2 = x1 exp (��1,1rf(x1)� �1,0rf(x0)) = x⇤

✓
x⇤
x0

◆�1,0

Then, the PEP objective writes

f(x2)� f⇤
Dh(x⇤, x0)

=
x⇤

⇣
x⇤

x0

⌘�1,0
⇣

�1,0 log
x⇤

x0
� 1

⌘

+ x⇤

x⇤ log
x⇤

x0
� x⇤ + x0

Denoting u := x0/x⇤, the quantity rewrites

f(x2)� f⇤
Dh(x⇤, x0)

=
u��1,0 (��1,0 log u� 1) + 1

� log u� 1 + u
!

which shows, for �1,0 > 0, that

lim
x0
x⇤

!0+

f(x2)� f⇤
Dh(x⇤, x0)

= +1

and hence that the worst-case performance is unbounded. Similar arguments can be used to
show that the value is unbounded in the other situations described before.
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5.6 Conclusion

In this chapter, we proposed to study computer-aided analyses of Bregman methods for entropic-
smooth convex functions. First, we established interpolation conditions that allow to write the
PEP as a finite-dimensional problem. These conditions rely on the smoothing property of the
Bregman-Moreau envelope, as well as favorable algebraic properties of the entropic kernel (such
as joint convexity of the Bregman divergence).

Then, we formulated the PEP as a convex problem on the cone of pairwise Kullback-
Leibler divergences with log-linear constraints. Although we showed that in the setting with
no constraints, this cone is trivial, we are not aware of a simple description in the general case.
Therefore, we had to use heuristics for solving simple versions of the PEP.

In particular, we demonstrated on a small example of two iterations that among all general
Bregman first-order methods with fixed coefficients, only Bregman gradient descent with step
size smaller than 1/L is guaranteed to converge in the worst case. This shows that, even if we
consider the specific entropic setting instead of generic kernels like in the previous chapters,
building accelerated Bregman methods is a tedious task.

There are several important questions that arise for future work:

1. Can we find an algorithm that provably solves convex problems on the Kullback-Leibler
cone with log-linear constraints? Note that, since PEPs are usually low-dimensional
problems, we do not need efficient solvers, but rather ones with strong guarantees.

2. How to design accelerated Bregman methods in the entropic-smooth setting? An idea
would be to consider methods like (BFOM) but with adaptive coefficients, in the spirit
of the accelerated Bregman methods proposed in Hanzely et al. [2021], Hendrikx et al.
[2020]. An additional difficulty in that case would be that the PEP methodology is not
directly applicable to adaptive methods.
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Chapter 6

Bregman Stochastic Gradient Descent

and Variance Reduction

Chapter Abstract

We study the problem of minimizing an expectation of relatively-smooth func-
tions using Bregman stochastic gradient methods. We first study Bregman
stochastic gradient descent, and show convergence towards a region that de-
pends on the magnitude of the gradients at the optimum. Then, we consider
variance reduction methods for problems whose objective has a finite-sum
structure. In this setting, we show that improved convergence rates can be
obtained under additional regularity assumptions on the Bregman kernel. We
provide numerical experiments on Poisson inverse problems.

Reference: this chapter is based on a publication in International Conference on Machine
Learning [Dragomir et al., 2021b]. This work has been done in collaboration with Hadrien
Hendrikx and Mathieu Even, and each student contributed equally.

6.1 Introduction

We consider the minimization problem

min
x2C

f(x), where f(x) = E⇠ [f⇠(x)] , (6.1)

C is a convex subset of Rd and f⇠ are differentiable convex functions. These problems typically
arise in machine learning when performing (empirical) risk minimization, in which case f⇠ is
for instance a loss function for some random sample ⇠. Problem (6.1) is also encountered in
signal processing applications such as image deblurring or tomographic reconstruction inverse
problems, in which the goal is to recover an unknown signal from a large number of noisy obser-
vations. First-order methods are often very efficient for solving such problems, but computing
a gradient rf might be very expensive for large-scale problems (large number of components
f⇠), and even impossible in the case of true risk minimization (infinite number of f⇠). In this
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case, stochastic gradient methods have proven to be particularly effective thanks to their low
cost per iteration. The simplest one, stochastic gradient descent (SGD), consists in updating
xt as

xt+1 = argmin
u2C
hgt, u� xi+ 1

2⌘t
ku� xtk2

where gt is a gradient estimate such that E [gt] = rf(xt). In our case, a natural choice would
be gt = rf⇠t(xt) for some ⇠t. The choice of the step size ⌘t is crucial for obtaining good
performances and is typically related to the smoothness of f with respect to the Euclidean
norm.

Beyond simply adapting the step size, a powerful generalization of SGD consists in refining
the geometry and performing instead Bregman gradient (a.k.a mirror) steps as

xt+1 = argmin
u2C
hgt, u� xi+ 1

2⌘t
Dh(u, xt), (BSGD)

where the Euclidean distance has been replaced by the Bregman divergence with respect to a
kernel function h, which writes:

Dh(x, y) = h(x)� h(y)� hrh(y), x� yi, (6.2)

for all x, y 2 int C.The standard SGD algorithm corresponds to the case where h = 1
2k · k2.

However, a different choice of h might better fit the geometry of the set C and the curvature
of the function, allowing the algorithm to take larger steps in directions where the objective
gradient changes slowly. This choice is guided by the notion of relative smoothness and strong
convexity, introduced in Bauschke et al. [2017], Lu et al. [2018]. Instead of the squared Euclidean
norm for standard smoothness, relative regularity is measured with respect to the reference
function h. In most situations, the update of BSGD can be computed in closed form. In some
other cases, it might require running an optimization subroutine. However, it can be worth
doing so to reduce the overall complexity, if the kernel h is chosen so that the inner objective
(BSGD) is a good approximation of the objective function.

Contributions. In this work, we study Bregman stochastic gradient methods for relatively-
smooth problems. First, we analyze the convergence of vanilla BSGD with fixed step size,
relying on a variance condition that depends on the stochastic gradients at the optimum. We
show that this condition leads to a tighter result than that of the previous work from Hanzely
and Richtárik [2018], especially for the interpolation setting where the stochastic gradients are
null at the optimum.

Then, we show that variance-reduction techniques, which are widely used to accelerate tra-
ditional Euclidean stochastic methods when the objective has a finite-sum structure, can be
adapted to the Bregman setting. Although this generally requires stronger regularity assump-
tions (such as global smoothness of h and Lipschitz continuity of r2h⇤) and an accurate step
size schedule, we show that the asymptotical rate of convergence solely depends on relative
regularity constants. The same type of results (asymptotic speedup under additional smooth-
ness assumptions) is observed when applying Nesterov-type acceleration to Bregman gradient
methods [Hendrikx et al., 2020, Hanzely et al., 2021].

Finally, we illustrate the efficiency of our approach on inverse problems with Poisson noise,
which are a typical application of relatively-smooth optimization.
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Outline. We start by discussing related work in Section 6.2. Section 6.3 introduces the setup
and useful lemmas. We study Bregman stochastic gradient descent in Section 6.4, variance
reduction techniques in Section 6.5, and describe numerical experiments in Section 6.6.

6.2 Related work

Euclidean stochastic gradient methods and variance reduction. Stochastic optimiza-
tion methods, and in particular SGD, are very efficient when the number of samples is high [Bot-
tou, 2012] and are often referred to as “the workhorse of machine learning”. The problem with
SGD is that, in general, it only converges to a neighbourhood of the optimum unless a di-
minishing step-size is used. Variance reduction can be used to counter this problem, and
many variance-reduced methods have been developed, such as SAG [Schmidt et al., 2013],
SDCA [Shalev-Shwartz and Zhang, 2013, Shalev-Shwartz, 2016], SVRG [Johnson and Zhang,
2013] or SAGA [Defazio et al., 2014].

Mirror descent for nonsmooth functions. In the deterministic setting, Bregman gradient
descent was originally proposed as the mirror descent scheme for nonsmooth convex optimiza-
tion [Nemirovski and Yudin, 1983, Beck and Teboulle, 2003]1. Mirror descent was also extended
to the stochastic setting [Nemirovski et al., 2009, Lan, 2012, Zhou et al., 2017, Zhang and He,
2018, Antonakopoulos et al., 2020], but remained focused on nonsmooth objectives.

To the best of our knowledge, variance reduction for Bregman stochastic methods was only
studied in Shi et al. [2017] in the context of stochastic saddle-point optimization, but without
leveraging relative regularity assumptions like we do in this work.

Stochastic Bregman methods for relatively-smooth problems. The introduction of
relative smoothness by Bauschke et al. [2017] has opened new perspectives for applying Bregman
methods to differentiable objectives. In this more recent context, we are only aware of a few
works that study the stochastic variant of Bregman gradient descent.

Hanzely and Richtárik [2018] consider the same setting as us and obtain comparable con-
vergence rates for Bregman SGD, but with a much looser notion of variance, which we discuss
more in details in the next section. This is problematic since their bound on the variance is
thus proportional to the magnitude of the gradients along the trajectory, and may thus be very
large when far from the optimum. In contrast, our definition of variance leverages the stochas-
tic gradients at the optimum, which allows us to obtain significant results without bounded
gradients and in the interpolation regime (zero gradients at the optimum). Davis et al. [2018]
also analyze a similar setting for Bregman SGD, but again with more restrictive assumptions
on the noise and boundedness of the gradients.

When preparing the final version of this work, we became aware of the recent paper by
Latafat et al. [2021], who also study variance-reduced Bregman stochastic algorithms for finite-
sum minimization. Unlike us, they focus more on nonconvex objective functions. They also

1Note that mirror descent and Bregman gradient refer to the same algorithm, but that mirror descent is
typically used when f is non-smooth, or in the online optimization community, whereas Bregman gradient

is generally preferred when using the relative smoothness assumption. However, there is no consensus in the
litterature; for instance, Hanzely and Richtárik [2018] use the mirror descent terminology although they consider
the relatively-smooth setting.
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prove a convergence rate on strongly convex objectives under additional regularity assumptions
on f and h, but with a weaker dependence on relatively smoothness constants than ours.

6.3 Problem setup and preliminary lemmas

We begin by recalling the base ingredients for relatively-smooth minimization, and prove prelim-
inary lemmas which will be useful for our analysis. For a more general introduction to Bregman
methods, we refer the reader to Chapter 1. Let us begin with the blanket assumptions on the
kernel function h.

Assumption 6.1. The function h is a kernel function on C, that is,

(i) h : Rd ! R [ {+1} is a convex function,

(ii) h is finite-valued, strictly convex and differentiable on int C,

(iii) the Bregman gradient iterates are well-posed, i.e., for every p 2 R
d, the problem

min
u2C
hp, ui+ h(u)

has a unique minimizer, which belongs to int C.

Moreover, we additionally assume that h is twice continuously differentiable on int C.

We also recall the notions of relative smoothness and strong convexity [Bauschke et al.,
2017, Lu et al., 2018].

Definition 6.1. The function f is said to be L-relatively smooth and µ-relatively strongly
convex with respect to h if it is differentiable and for all x, y 2 int C,

µDh(x, y)  Df (x, y)  LDh(x, y), (6.3)

where Df is defined similarly to (6.2).

Note that if µ = 0, the left-hand side inequality reduces to assuming convexity of f . Simi-
larly, if h = 1

2k ·k2, then Dh(x, y) =
1
2kx�yk2, and the usual notions of smoothness and strong

convexity are recovered. If both functions are two times differentiable, Equation (6.3) can be
turned into an equivalent condition on the Hessians:

µr2h(x) � r2f(x) � Lr2h(x).

Throughout the chapter, we will generally write µf/h and Lf/h to insist on the relative aspect.

Recall that the conjugate h⇤ of h is defined for y 2 R
d as

h⇤(y) = sup
x2Rd

hx, yi � h(x).

Under Assumption 6.1, h⇤ is convex and differentiable on R
d [Bauschke and Combettes, 2011,

Cor. 18.12], and rh⇤(rh(y)) = y for y 2 intC. We recall the relation between the Bregman
divergence of h and that of its conjugate h⇤.
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Lemma 6.2 (Duality). For x, y 2 int C, we have Dh(x, y) = Dh⇤(rh(y),rh(x)).
See, e.g., Bauschke and Borwein [1997, Thm 3.7.] for the proof. Using duality, we prove

the following key lemma.

Lemma 6.3. Let x 2 int C, and g1, g2 2 R
d. Define the points x+, x+1 , x

+
2 as the unique points

satisfying

rh(x+1 ) = rh(x)� g1,

rh(x+2 ) = rh(x)� g2,

rh(x+) = rh(x)� (g1 + g2)

2
.

Then we have

Dh(x, x
+)  1

2

⇥
Dh(x, x

+
1 ) +Dh(x, x

+
2 )
⇤
.

Proof. Using Lemma 6.2 (duality), we have:

Dh(x, x
+) = Dh⇤

�
rh(x+),rh(x)

�

= Dh⇤

✓

rh(x)� g1 + g2
2

,rh(x)
◆

= Dh⇤

✓
1

2
[rh(x)� g1] +

1

2
[rh(x)� g2],rh(x)

◆

 1

2
Dh⇤ (rh(x)� g1,rh(x)) +

1

2
Dh⇤ (rh(x)� g2,rh(x))

=
1

2
Dh⇤

�
rh(x+1 ),rh(x)

�
+

1

2
Dh⇤

�
rh(x+2 ),rh(x)

�

where the inequality step is obtained by convexity of the Bregman divergence in its first argu-
ment. The final result is obtained by using Lemma 6.2 back.

In the Euclidean case h = k · k2, we recover kg1+g2
2 k2  1

2

�
kg1k2 + kg2k2

�
.

We also recall the Bregman counterpart of an inequality linked to co-coercivity of the
gradients [Nesterov, 2003, Eq. 2.1.7], which we proved in Chapter 5 (Proposition 5.5).

Lemma 6.4. If a convex function f is L-smooth relative to the kernel h, then for any ⌘  1
L

and x, y 2 int C,

Df (x, y) �
1

⌘
Dh⇤(rh(x)� ⌘ (rf(x)�rf(y)) ,rh(x)) .

6.4 Bregman stochastic gradient descent

In this section, we study the (BSGD) scheme with fixed step size ⌘ > 0. Recall that, by
writing the first-order optimality conditions, and by strict convexity of h, the iterations can be
equivalently defined as

rh(xt+1) = rh(xt)� ⌘gt
with E [gt] = rf(xt). We denote by x? the minimizer of f , and we assume x? 2 int C so that
rf(x?) = 0; the case where the solution lies on the boundary of C poses additional technical
difficulties and is left for future work. We first establish a lemma satisfied by the updates of
Bregman stochastic gradient methods with unbiased gradient estimate.
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Lemma 6.5. Let x 2 int C and ⌘ > 0. If x+ satisfies rh(x+) = rh(x)�⌘g with E [g] = rf(x),
rf(x?) = 0, then:

E
⇥
Dh(x

?, x+)
⇤
= Dh(x

?, x)� ⌘Df (x
?, x)� ⌘Df (x, x

?) + E
⇥
Dh(x, x

+)
⇤
,

where the expectation is taken with respect to the choice of g.

Proof. By using the simple algebraic three-point identity which follows form the definition of
Bregman divergence [Bauschke et al., 2017, Lemma 3], we get

Dh(x
?, x)�Dh(x

?, x+)�Dh(x
+, x) = hrh(x+)�rh(x), x? � x+i

= �⌘hg, x? � x+i
= �⌘hg, x? � xi � ⌘hg, x� x+i

(6.4)

For the first term of the right-hand side, we use the fact that E [g] = rf(x) and rf(x?) = 0
to obtain

E [�⌘hg, x? � xi] = �⌘hrf(x)�rf(x?), x? � xi = ⌘Df (x
?, x) + ⌘Df (x, x

?). (6.5)

For the second term, we write

E
⇥
�⌘hg, x� x+i

⇤
= E

⇥
�hrh(x)�rh(x+), x� x+i

⇤
= E

⇥
�Dh(x, x

+)�Dh(x
+, x)

⇤
. (6.6)

By replacing Equations (6.5) and (6.6) back in the expectation of (6.4), we get

Dh(x
?, x)�E

⇥
Dh(x

?, x+) +Dh(x
+, x)

⇤
= ⌘Df (x

?, x)+⌘Df (x, x
?)�E

⇥
Dh(x, x

+) +Dh(x
+, x)

⇤
,

which yields the desired result after re-arranging terms.

Lemma 6.5 holds for any instance of BSGD that uses an unbiased gradient estimate. The
methods that we study in the sequel essentially differ in the way the variance of this estimate is
handled. In the case of vanilla Bregman SGD, we now specify a natural condition for bounding
this variance.

Assumption 6.2. The stochastic gradients gt are such that

gt = rf⇠t(xt),

with E⇠t [f⇠t ] = f and f⇠t is convex and Lf/h-relatively smooth with respect to h for all ⇠t.
Besides, there exists a constant �2 � 0 such that for every t � 0,

1

2⌘2
E⇠t

h

Dh⇤

�
rh(xt)� 2⌘rf⇠t(x?),rh(xt)

�i

 �2.

The assumption that the stochastic gradients are actual gradients of stochastic functions
which are themselves smooth with respect to h is rather natural, as already discussed in the
introduction. It is in particular verified when solving (empirical) risk minimization problems.

Assumption 6.2 is a Bregman adaptation of the usual variance at the optimum definition
used for instance in Bach and Moulines [2011], Gower et al. [2019]. Note that if h⇤ is µh-strongly
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convex with respect to the Euclidean norm, then the assumption is verified for instance when
the variance is bounded in `2 norm, that is if

E⇠t

⇥
krf⇠t(x⇤)k

⇤
 µh�

2,

since in that case we have

1

2⌘2
Dh⇤

�
rh(xt)� 2⌘rf⇠t(x?),rh(xt)

�
 1

µh
krf⇠t(x⇤)k2.

We used the fact that if h is µh-strongly convex, then h⇤ is 1/µh-smooth and its Bregman diver-
gence is upper bounded by the squared Euclidean distance, see, e.g., Bauschke and Combettes
[2010].

Remark 5. Hanzely and Richtárik [2018] also consider Bregman SGD for relatively-smooth
problems, but with a different assumption on the variance.

1

⌘t
E⇠t [hrf(xt)�rf⇠t(xt), xt+1 � x̄t+1i]�2, (6.7)

for t � 0, where gt is the stochastic gradient estimate and x̄t+1 is the output of the (theoretical)
Bregman gradient step taken with the true gradient, that is, rh(x̄t+1) = rh(xt) � ⌘trf(xt).
Thus, their condition can be written:

1

⌘2t
E⇠t [Dh(xt+1, x̄t+1) +Dh(x̄t+1, xt+1)]  �2,

so that �2 bounds at each step the distance (in the Bregman sense) between xt+1 and x̄t+1. To
illustrate why our assumption is weaker, let us consider the case where h is µh-strongly convex.
In this setting, a sufficient condition for (6.7) to hold is that

1

µh
E⇠t

⇥
krf(xt)�rf⇠t(xt)k2

⇤
 �2,

while a sufficient condition for our variance definition to hold is (using that rf(x?) = 0):

1

µh
E⇠t

⇥
krf(x?)�rf⇠t(x?)k2

⇤
 �2,

which only depends on the magnitude of the gradients at the optimum instead of the variance
along the full trajectory since xt is replaced by x?. In particular, in the interpolation setting
where rf⇠(x?) = 0 for every ⇠, �2 = 0 with our condition.

We now state our convergence result for Bregman SGD. To avoid notation clutter, we
generally omit with respect to which variable expectations are taken when clear from the
context.

Theorem 6.6. If f is Lf/h-smooth and µf/h-strongly convex relative to h with µf/h > 0, and
Assumptions 6.1 and 6.2 hold, then for a step size ⌘  1/(2Lf/h), the iterates produced by
Bregman stochastic gradient (BSGD) satisfy

E [Dh(x
?, xt)]  (1� ⌘µf/h)

tDh(x
?, x0) + ⌘

�2

µf/h
.
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Proof. By using Lemma 6.5 with x = xt, we obtain:

E⇠t [Dh(x
?, xt+1)] = Dh(x

?, xt)� ⌘Df (x
?, xt)� ⌘Df (xt, x

?) + E⇠t [Dh(xt, xt+1)]

 Dh(x
?, xt)� ⌘Df (x

?, xt) + E⇠t [Dh(xt, xt+1)] ,
(6.8)

since Df is nonnegative by convexity of f . Using Lemma 6.3 with

x = xt,

g1 = 2⌘ [rf⇠t(xt)�rf⇠t(x?)] ,
g2 = 2⌘rf⇠t(x?),

we have that rh(xt+1) = rh(xt)� (g1 + g2)/2 and hence the last term can be bounded as

Dh(xt, xt+1) 
1

2
Dh⇤(rh(xt)� g1,rh(xt)) +

1

2
Dh⇤(rh(xt)� g2,rh(xt))

We use Lemma 6.4 (Bregman co-coercivity) to bound the first term as :

Dh⇤(rh(xt)� g1,rh(xt)) = Dh⇤(rh(xt)� 2⌘ [rf⇠t(xt)�rf⇠t(x?)] ,rh(xt))
 2⌘Dfξt

(xt, x
?),

so that
1

2
E [Dh⇤(rh(xt)� g1,rh(xt))]  ⌘Df (xt, x

?),

by linearity of Df in f and the fact that E⇠t [f⇠t ] = f . To bound the second term, we use the
variance condition from Assumption 6.2:

1

2
E [Dh⇤ (rh(xt)� g2,rh(xt))] =

1

2
E [Dh⇤ (rh(xt)� 2⌘rf⇠t(x?),rh(xt))]  ⌘2�2.

By relative strong convexity of f we have �Df (x
?, xt)  �µf/hDh(x

?, xt) and thus inserting
these bounds in (6.8) yields

E⇠t

⇥
Dh(x

?, xt+1)
⇤
 (1� ⌘µf/h)Dh(x

?, xt) + ⌘2�2.

Remark 6 (Interpolation). In the interpolation setting (when rf⇠t(x?) = 0 for all ⇠t), we have
that �2 = 0. Theorem 6.6 thus proves linear convergence in this case. For instance, when solving
objectives of the form DKL(Ax, b) (which has applications in optimal transport [Mishchenko,
2019]) or DKL(b, Ax) (which has application in deblurring or tomographic reconstruction), then
the variance as defined in Hanzely and Richtárik [2018] may be unbounded, whereas the variance
as we define it is equal to 0 if there exists z such that Az = b.

When f is convex but not relatively-strongly convex (µf/h = 0), the analysis of Theorem 6.6
can be adapted to obtain a 1/T decrease of the error up to a noise region.

Theorem 6.7 (Convex case). Under the same assumptions as Theorem 6.6, if µf/h = 0, then

E

"

1

T

TX

t=0

Df (x
?, xt)

#

 Dh(x
?, x0)

⌘T
+ ⌘�2 (6.9)
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Proof. We follow the same analysis as the beginning of the proof of Theorem 6.6. Bounding
the terms of (6.8) in same way but by keeping Df (x

?, xt), we get

⌘Df (x
?, xt) = Dh(x

?, xt)� E⇠t [Dh(x
?, xt+1)] + ⌘2�2.

Averaging over t and dividing by ⌘ leads to (6.9).

Contrary to the Euclidean case, we do not obtain a guarantee on the average iterate in
general. This is because the bound is on the average of Df (x

?, xt) instead of Df (xt, x
?),

and Bregman divergences are not necessarily convex in their second argument (except for the
particular cases of the Euclidean distance and the Kullback-Leibler divergence).

6.5 Variance reduction

We have shown in the previous section that BSGD enjoys guarantees that are similar to that of
its Euclidean counterpart, although the notion of variance needs to be adapted. We show in this
section that it is also possible to apply variance reduction techniques to accelerate convergence,
in the case where the objective is a finite sum of the form

min
x2C

f(x) :=
1

n

nX

i=1

fi(x), (6.10)

As previously, we also assume that the minimizer x? belongs to int C, so that rf(x?) = 0. To
solve (6.10), we propose in Algorithm 7 a Bregman adaptation of the SAGA algorithm [Defazio
et al., 2014], which is one of the most standard variance-reduced stochastic methods. Following
its Euclidean counterpart, Bregman-SAGA uses previously computed gradients rfj(�tj) in
order to reduce the variance of the estimate gt at the current point xt. Note that one can check
that the gradient estimate is ubiased as Eit [gt] = rf(xt).

Algorithm 7 Bregman-SAGA((⌘t)t�0, x0)

1: �i = x0 for i = 1, ..., n

2: for t = 0, 1, 2, . . . do

3: Pick it 2 {1, ..., n} uniformly at random

4: gt = rfit(xt)�rfit(�tit) + 1
n

Pn
j=1rfj(�tj)

5: xt+1 = argminx

n

hgt, x� xti+ 1
⌘t
Dh(x, xt)

o

6: �t+1
it

= xt, and store rfit(�t+1
it

).

7: �t+1
j = �tj for j 6= it.

8: end for

We now introduce our standing assumptions for analyzing Bregman-SAGA. Compared to
the previous section, we need an additional crucial regularity condition on Dh.

Assumption 6.3. For all i 2 {1, · · · , n}, fi is Lf/h-smooth relative to h, and f is µf/h-strongly

convex relative to h. Moreover, there exists a gain function G such that for any x, y, v 2 R
d

and � 2 [�1, 1],
Dh⇤ (x+ �v, x)  G(x, y, v)�2Dh⇤ (y + v, y) .
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Such structural assumptions appear to be essential for analyzing Bregman-type methods
that use information provided by gradients of past iterates. The function G models the fact
that the function Dh⇤(x+v, x) is not generally homogeneous in v nor invariant to translation in
x (except for the Euclidean case where it is equal to kvk2/2). Note that such difficulties are also
encountered for obtaining accelerated rates with inertial variants of Bregman descent, where
similar assumptions are needed [Hanzely et al., 2021]. This seems unavoidable, as suggested by
the lower bound from Chapter 3.

Although the gain function G is relatively abstract at this point, it plays a key role in defining
the step-size, and convergence guarantees similar those of Euclidean SAGA can be obtained
provided G can be chosen small enough. We first state the general Theorem 6.8 (convergence
proof for Algorithm 7), and then detail how G can be bounded in several interesting cases.

For t � 0 and step-sizes ⌘t > 0, define

Ht =
1

n

nX

i=1

Dfi(�
t
i, x

?),

and the potential  t as follows:

 t =
1

⌘t
Dh(x

?, xt) +
n

2
Ht.

First note that by convexity of h and of the fi,  t � 0 for all t. Our goal in this section is to
show that { t}t�0 converges to 0 at a given speed. Indeed, since Dh(x

?, xt)   t, this implies
(as in Section 6.4) that xt converges to x? at the same rate. To ease notations, we define

↵̄t =
1

n

nX

j=1

rfj(�tj), and ↵̄t
i = rfi(�ti)� ↵̄t.

Expectations are taken either on the full past, or on the index it conditionally on the past, but
we generally omit this dependence to avoid notation clutter. Similarly, we write i instead of it
when clear from the context.

Theorem 6.8. Assume that Algorithm 7 is run with a step size sequence {⌘t}t�0 satisfying
⌘t = 1/(8Lf/hGt) for every t � 0, with Gt decreasing in t and such that for all j 2 {1, · · · , n}:

Gt �G

✓

rh(xt),rh(xt),
1

Lf/h
(rfj(xt)�rfj(x?))

◆

, (6.11)

Gt �G
⇣

rh(xt)� 2⌘t↵̄
t,rh(�tj),

1

Lf/h
(rfj(�tj)�rfj(x?))

⌘

. (6.12)

Then, under Assumptions 6.1 and 6.3, the potential  t satisfies

Eit [ t+1] 
✓

1�min

✓

⌘tµf/h,
1

2n

◆◆

 t,

In the convex case (µf/h = 0), we obtain that

E

"

1

4T

TX

t=1

Df (xt, x
?) +Ht

#

  0

T
. (6.13)
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Proof. Since Bregman-SAGA also uses an update with un unbiased gradient estimate, we apply
Lemma 6.5 which yields

Eit [Dh(x
?, xt+1)] = Dh(x

?, xt)� ⌘tDf (x
?, xt)� ⌘tDf (xt, x

?) + Eit [Dh(xt, xt+1)] . (6.14)

In the same way as before, 6.3 implies Dh(xt, xt+1)  (D1 +D2)/2, with

D1 = Dh⇤(rh(xt)� 2⌘t [rfi(xt)�rfi(x?)] ,rh(xt)),
D2 = Dh⇤(rh(xt)� 2⌘t(rfi(x?)� ↵̄t

i),rh(xt)).

Using the gain function with the fact that ⌘t  1/Lf/h, we have

Eit [D1] = Ei [Dh⇤ (rh(xt)� 2⌘t (rfi(xt)�rfi(x?)) ,rh(xt))]

 4L2
f/h⌘

2
t Ei

h

G

✓

xt, xt,
1

Lf/h
(rfi(xt)�rfi(x?))

◆

⇥

Dh⇤

�
rh(xt)�

1

Lf/h
(rfi(xt)�rfi(x?)) ,rh(xt)

�i

 4Lf/h⌘
2
tEi



G

✓

xt, xt,
1

Lf/h
(rfi(xt)�rfi(x?))

◆

Df (xt, x
?)

�

 4Lf/h⌘
2
tGtDf (xt, x

?).

where we used Lemma 6.4, and the last line is implied by the choice of Gt in Equation (6.11).
Note that we can pull the Gt term out of the expectation over the choice of i since Gt holds
for all i.

For bounding D2, we use a Bregman counterpart of the bias-variance inequality [Pfau, 2013],
which we prove in Appendix 6.A for completeness (Lemma 6.14). Let us denote with V the
(random) vector

V = �2⌘t(rfi(x?)�rfi(�ti)).
Then, notice that, the expectation of V with respect to the choice of i is

Ei [V ] = �2⌘t
n

nX

j=1

rfj(�tt) = �2⌘t↵t,

since rf(x?) = 0, and that

D2 = Dh⇤ (rh(xt) + V � Ei [V ] ,rh(xt)) .

Therefore, Lemma 6.14 leads to

Ei [D2] = Ei [Dh⇤ (rh(xt) + V � Ei [V ] ,rh(xt))]
 Ei [Dh⇤ (rh(xt) + V � Ei [V ] ,rh(xt)� Ei [V ])]

 4⌘2tL
2
f/hEi

"

G

✓

rh(xt)� 2⌘t↵
t,rh(�tj),

1

Lf/h

�
rfi(�tj)�rfi(x?)

�
◆

⇥

Dh⇤



rh(�ti)�
1

Lf/h

�
rfi(�ti)�rfi(x?)

�
,rh(�ti)

� #

 4Lf/h⌘
2
tGtEi

⇥
Dfi(�

t
i, x

?)
⇤
.
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Where we used the gain function for translating Dh⇤ , and the choice of Gt in Equation (6.12).
Recall that Ht = 1

n

Pn
j=1Dfj (�

t
j , x

?). Plugging the upper bounds of D1 and D2 into Equa-
tion (6.14), we obtain:

Eit [Dh(x
?, xt+1)]�Dh(x

?, xt)  �⌘tDf (x
?, xt)�⌘tDf (xt, x

?)+2Lf/h⌘
2
tGt [Df (xt, x

?) +Ht] .

Following Hofmann et al. [2015], we write:

Eit [Ht+1] =

✓

1� 1

n

◆

Ht +
1

n
Df (xt, x

?),

Indeed, �t+1
j = �tj with probability 1� 1/n, and �t+1

i = xt with probability 1/n. Therefore, we
can use the �Ht/n term to control the excess term from bounding Dh(xt, xt+1). In the end,
using that Gt is decreasing and so ⌘t is increasing, we obtain the following recursion:

Eit [ t+1]�  t =
1

⌘t+1
Dh(x

?, xt+1) +
n

2
Ht+1 �

1

⌘t
Dh(x

?, xt)�
n

2
Ht

 1

⌘t
(Dh(x

?, xt+1)�Dh(x
?, xt)) +

n

2
(Ht+1 �Ht)

 �Df (x
?, xt)�

1

2

�
1� 4⌘tLf/hGt

�
Ht �

✓

1� 2⌘tLf/hGt �
1

2

◆

Df (xt, x
?).

If we choose ⌘t  1/(8Lf/hGt) then the last term is positive and 1� 4⌘tLf/hGt � 1/2, so that
using the relative strong convexity of f leads to:

Eit [ t+1]  (⌘�1
t � µf/h)Dh(x

?, xt) +

✓

1� 1

2n

◆
n

2
Ht


✓

1�min

✓

⌘tµf/h,
1

2n

◆◆

 t.

The result can then be obtained by chaining this inequality. If µf/h = 0 then we start back
from Equation (6.5), use that Df (x

?, xt) � 0 and the same fact that 1 � 4⌘tLf/hGt � 1/2 to
obtain:

1

4
[Df (xt, x

?) +Ht]   t � Eit [ t+1] .

The result is obtained by averaging over T , since the right hand side yields a telescopic sum,
leading to the 1/T rate of Equation (6.13).

After proving the general convergence theorem, we show how the step size ⌘t can be chosen
in several settings. We start with the most favorable situation, the case where h is quadratic.

Corollary 6.9. If h is a quadratic function, Assumption 6.3 is satisfied with G = 1, so that

E [ t] 
✓

1�min

✓
1

8f/h
,
1

2n

◆◆t

 0,

where f/h = Lf/h/µf/h is the relative condition number.

Thus, we recover the result of Defazio et al. [2014] in the Euclidean setting. Another case
where a simple gain function G can be found is if h is smooth and strongly convex with respect
to some norm.
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Corollary 6.10. If h is Lh-smooth and µh-strongly convex with respect to the some norm k·kE,
then the stepsize can be chosen constant as ⌘t =

µh
8LhLf/h

, and

E [ t] 
✓

1�min

✓
1

8hf/h
,
1

2n

◆◆t

 0.

Proof. In this setting, the gain function can be chosen constant equal to G = Lh/µh, since we
have for x, y, v 2 R

d and � 2 [�1, 1]

Dh⇤(x+ �v, x)  1

2µh
k�vk2E  �2

Lh

µh
Dh⇤(y + v, y)

where we used the fact that h⇤ is 1/µh-smooth and 1/Lh-strongly convex [Bauschke and Com-
bettes, 2010]. Then, Theorem 6.8 yields the result.

This convergence result comes with an important drawback: the rate depends on the con-
dition number h = Lh/µh of h, which can be excessively large or even infinite in the context
of relatively-smooth problems.

Asymptotical rates. In the general case, bounding the gain function is a more tedious task.
As stated at the beginning of this section, one of the problems is that Bregman divergences lack
translation invariance and homogeneity. However, as the algorithm converges, one can expect
these conditions to hold locally, as Dh⇤(x + v, x) is approximated by 1

2kvk2r2h⇤(x⇤) for small

enough v, and x close enough to x⇤. This is indeed what happens under enough regularity
assumptions on h. Here, we consider the restricted setting where h is globally smooth and its
conjugate h⇤ has Lipschitz Hessian.

Proposition 6.11. If h is Lh-smooth and the Hessian r2h⇤ is M -smooth, then the gain func-
tion can be chosen as:

G(x, y, v) = 1 + 2MLh (ky � xk+ kvk) .

Proof. Writing the divergence in integral form, we have for x, y, v 2 R
d and � 2 [�1, 1]

Dh⇤(x+ �v, x) = �2
Z 1

0

Z t

0
v>r2h⇤(x+ s�v)v ds dt

 �2
Z 1

0

Z t

0

⇣

v>r2h⇤(y + sv)v +Mky + sv � x� �svkkvk2
⌘

ds dt

 �2
Z 1

0

Z t

0

⇣

v>r2h⇤(y + sv)v +M (ky � xk+ 2skvk) kvk2
⌘

ds dt

= �2
�
Dh⇤(y + v, y) +M(ky � xk+ kvk)kvk2

�
.

Using the fact that is h is Lh-smooth, h⇤ is 1/Lh-strongly convex and hence

kvk2  2LhDh⇤(y + v, y),

leading to

Dh⇤(x+ �v, x)  �2 [1 + 2MLh (ky � xk+ kvk)]Dh⇤(y + v, y).
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Note that, even if the regularity conditions of Proposition 6.11 do not hold globally (such
as for problems with unbounded curvature), they are at least valid on every bounded subset
of intC, as soon as h is C3 on intC, and we show in the sequel that the dependence on these
constants at least disappears asymptotically. We now explicit a possible explicit choice for Gt

in this setting.

Corollary 6.12. Assume that h is Lh-smooth, µh-strongly convex and that the Hessian r2h⇤

is M -smooth. Then, there exists an explicit constant C such that if Algorithm 7 is run with a
step size ⌘t = 1/(8Lf/hGt) with Gt decreasing and satisfying

Gt � min

 

Lf/hLh

µh
, 1 + C

⇣ nX

j=1

kxt � �tjk+ k
nX

j=1

rfj(�tj)k
⌘
!

, (6.15)

then we have the convergence rate

E [ t+1] 
✓

1�min

✓
1

8Gtf/h
,
1

2n

◆◆

 t,

where limt!1Gt = 1, or, more precisely,

E [Gt]  1 +O

✓

1�min

✓
1

8hf/h
,
1

2n

◆◆t

. (6.16)

The explicit expression for the constant C is provided in Appendix 6.A.2 along with the
proof. Although the result involves smoothness constants of h which can be large in the
relatively-smooth setting, this dependence vanishes asymptotically. Hence, after some time t,
which we can roughly estimate using Equation (6.16), we obtain that Gt = O(1). Thus, we
reach the same kind of convergence rate as in the ideal quadratic case, which depends only on
the relative condition number f/h, but with more general functions h, and thus possibly much
better conditioning.

We note however that the choice of Gt in (6.15) is rather conservative and has a more
theoretical value for now; in our experiments, we will simply choose a constant Gt and show
that the algorithm behaves well.

6.6 Application to Poisson inverse problems

We consider the minimization problem

min
x2Rd

+

f(x) =
1

n
DKL(b, Ax) (6.17)

where DKL(u, v) =
Pn

i=1 ui log(ui/vi)�ui+vi is the Kullback-Leibler divergence, and A 2 R
n⇥d

is a typically sparse matrix that models the measurement process. Problem (6.17) models the
maximum likelihood estimation problem when assuming the statistical model

b ⇠ Poisson(Ax⇤)

where x⇤ is the true unknown signal. Inverse problems with Poisson noise arise in various signal
processing applications such as astronomy or computerized tomography, see Bertero et al. [2009]
and references therein.
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As a motivating application of relative smoothness, Bauschke et al. [2017] prove that the
Poisson objective f is relatively smooth with respect to the log-barrier reference function

h(x) = �
dX

i=1

log xi

with constant
Pn

j=1 bj/n. This constant can be quite conservative when A is a sparse matrix,
and so we prove a better estimate by leveraging this structure. For j 2 {1 . . . n}, we denote Sj

the support of the j-th column of A, that is

Sj := {i 2 {1 . . . n} : Aij 6= 0}.

Proposition 6.13. The Poisson objective function defined in (6.17) is L-smooth relative to the
log-barrier for

L � 1

n
max

j2{1...d}

X

i2Sj

bi.

Proof. Let us denote A1, . . . An the row vectors of A. We refine the analysis from Bauschke
et al. [2017, Lemma 7] and start by writing for x 2 R

d
++, u 2 R

d

hu,r2f(x)ui = 1

n

nX

i=1

bi
(A>

i u)
2

(A>
i x)

2
.

Applying the Jensen inequality to the function t 7! t2 and weights wij = Aijxj/(A
>
i x) yields

hd,r2f(x)di = 1

n

nX

i=1

bi

0

@

dX

j=1

wij
uj
xj

1

A

2

 1

n

nX

i=1

dX

j=1

biwij ·
u2j
x2j

 1

n

dX

j=1

nX

i2Sj

bi
u2j
x2j

 L

dX

j=1

u2j
x2j

= L hu,r2h(x)ui,

where we used the fact that wij 2 [0, 1] if i 2 Sj , and wij = 0 otherwise.

The relative Lipschitz constant provided by Proposition 6.13 can be considerably smaller
than

Pn
j=1 bj/n when A is sparse, which is the case in practical applications.

For our numerical experiments, we compare full-batch Bregman gradient descent (BGD),
Bregman stochastic gradient descent (BSGD), and the Bregman SAGA scheme described in Al-
gorithm 7. We also implement the Multiplicative Update (MU), also known as Lucy-Richardson
or Expectation-Maximization [Shepp and Vardi, 1982], which is the standard baseline for Pois-
son inverse problems.
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(a) Toy problem (interpolation setting).
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(b) Tomographic reconstruction.

Figure 6.1: Experiments on Poisson inverse problems. SAGA designates Bregman-SAGA (Algo-
rithm 7).

(a) Original image (b) Sinogram

Figure 6.2: Illustration of the Radon transform on the Shepp-Logan phantom. On the sinogram,
each column corresponds to the line integral of the image under different projection angles.

Synthetic problem in the interpolation setting. In Figure 6.1(a), we simulate a synthetic
problem the gradients at optimum are zero, by choosing b = Ax? for some random A 2 R

n⇥d

and x⇤ 2 R
d (indices sampled uniformly between 0 and 1), with n = 10000 and d = 1000.

This corresponds to the interpolation setting, for which Theorem 6.7 predicts fast convergence
towards the optimum of Bregman SGD. We observe that BGD is by far the slowest algorithm,
but that BSGD is faster than MU thanks to the stochastic speedup. We also observe that
BSGD does not plateau in a noise region and converges to the true solution, which is consistent
with Theorem 6.7. The step-size for BGD and BSGD is chosen as 1/Lf/h, whereas MU is
parameter-free.

Tomographic reconstruction problem. Computerized tomography [Kak and Slaney, 2001]
is the task of reconstructing an object from cross-sectional projections, with fundamental ap-
plications to medical imaging. We study a classical synthetic toy problem for this task: the
Shepp-Logan phantom (Figure 6.2(a)). In this setting, the observation matrix A corresponds
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to the discrete Radon transform, which is the cross-sectional projection of the original image x
along different projection angles ✓1, . . . , ✓n (Figure 6.2(b)). That is, the objective writes

f(x) =
1

n
DKL(b, Ax) =

1

n

nX

i=1

DKL(b✓i , A✓ix) (6.18)

where b✓i , A✓i correspond to the observation and projection matrix along the angle ✓i. For
stochastic algorithms, the formulation (6.18) naturally yields a finite-sum structure: we thus
take fi(x) = DKL(b✓i , A✓ix) for i = 1 . . . n.

We corrupt the sinogram with Poisson noise, and apply our algorithms. We use n = 360
projection angles, and the image dimension is d = 1002. As the matrix A has a sparse structure,
we use the relative smoothness constant provided by Proposition 6.13 for a better estimate.
The step-size given by theory was rather conservative in this case, so we increased it by a factor
of 5 for all Bregman algorithms (and even 10 for BGD).

Figure 6.1(b) shows again that stochastic algorithms drastically outperform BGD. Yet,
BSGD quickly reaches a plateau because of the noise. On the other hand, BSAGA enjoys
variance reduction and fast convergence to the optimum. In this case, BSAGA is on par with
MU, the state-of-the-art algorithm for this problem. One possible explanation is that the log
barrier allows relative smoothness to hold, but heavily slows down Bregman algorithms when
coordinates are close to 0. Yet, these results are encouraging and one may hope for even faster
convergence of BSAGA for tomographic reconstruction with a tighter reference function.

6.7 Conclusion

In this work, we have (i) given tight convergence guarantees for Bregman SGD that allow to
accurately describe its behaviour in the interpolation setting, and (ii) introduced and analyzed
Bregman analogs to the standard variance-reduced algorithm SAGA.

The convergence results on variance reduction require stronger assumptions on the objective
than relative smoothness and strong convexity. We show that fast rates can be obtained
asymptotically when h is nicely behaved, provided that the step sizes are well chosen. However,
in practical experiments, the step size does not need to be taken as conservatively as the
theory predicts, and there does not seem to be a slow transient regime. Therefore, a promising
extension of our work is to bridge the gap between theory and practice by analyzing this regime
and providing more accurate worst-case guarantees.
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Appendices

6.A Missing proofs for variance reduction

6.A.1 Bregman variance decomposition

First, we use the following Bregman counterpart of a standard variance identity [Pfau, 2013],
which we prove for completeness.

Lemma 6.14 (Bregman variance decomposition). Let X be a random variable on R
d. Then

for any u 2 R
d,

E [Dh⇤(X,u)] = Dh⇤(E [X] , u) + E [Dh⇤(X,E [X])] (6.19)

As a consequence, for any random variable V on R
d and point y 2 R

d we have

E [Dh⇤(y + V � E [V ] , y � E [V ])] � E [Dh⇤(y + V � E [V ] , y)] . (6.20)

Proof. Denoting x := E [X], We have for u 2 R
d

Dh⇤(x, u) + E [Dh⇤(X,x)] = h⇤(x)� h⇤(u)� hrh⇤(u), (x� u)i
+ E

h

h⇤(X)� h⇤(x)�rh⇤(x)>(X � x)
i

= �h⇤(u)�rh⇤(u)>(x� u) + E [h⇤(X)]

= E

h

h⇤(X)� h⇤(u)�rh⇤(u)>(X � u)
i

= E [Dh⇤(X,u)]

which proves (6.19). Then, (6.20) follows from applying it to the point u = y � E [V ] and
the random variable X = y + V � E [V ], along with using the nonnegativity of the Bregman
divergence Dh⇤(E [X] , u).

6.A.2 Lipschitz-Hessian setting: proof of Corollary 6.12

Corollary 6.15 (Recall of Corollary 6.12). Assume that h is Lh-smooth, µh-strongly convex
and the Hessian r2h⇤ is M -smooth. Then, there exists an explicit constant C such that if
Algorithm 7 is run with a step size ⌘t = 1/(8Lf/hGt) with Gt decreasing in t and satisfying

Gt � min

 

Lf/hLh

µh
, 1 + C

⇣ nX

j=1

kxt � �tjk+ k
nX

j=1

rfj(�tj)k
⌘
!

,

then we have the convergence rate

Eit [ t+1] 
✓

1�min

✓
1

8Gtf/h
,
1

2n

◆◆

 t, (6.21)

where limt!1Gt = 1, or, more precisely,

E [Gt]  1 +O

✓

1�min

✓
1

8hf/h
,
1

2n

◆◆t

.
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Proof. Using the gain function from Proposition 6.11, to satisfy the assumptions of Theorem
6.8 it is sufficient to choose Gt such that

Gt � 1 + 2MLh

⇣ 1

Lf/h
krfit(xt)�rfit(x?)k+

1

Lf/h
krfit(�tit)�rfit(x?)k

+ krh(xt)�rh(�tit)�
1

4nLf/h

nX

j=1

rfj(�tj)k
⌘

.
(6.22)

As the quantities involving rfit(x?) are unknown, we provide an upper estimate. We can
proceed in the following way, using the fact that, due to relative regularity, fi is also smooth
with constant LhLf/h, and f is strongly convex with constant µhµf/h:

krfit(xt)�rfit(x?)k2  2LhLf/hDfit
(xt, x

?)

 2LhLf/h nDf (xt, x
?)


LhLf/h

µhµf/h
n k 1

n

nX

j=1

rfj(xt)k2


ff/h

n

0

@

nX

j=1

krfj(xt)�rfj(�tj)k+ k
nX

j=1

rfj(�tj)k

1

A

2


ff/h

n

0

@

nX

j=1

LhLf/hkxt � �tjk+ k
nX

j=1

rfj(�tj)k

1

A

2

.

And similarly, we can estimate the second term from

krfit(�tit)�rfit(x?)k  krfit(xt)�rfit(x?)k+ LhLf/hk�tit � xtk,

which leads to the following upper estimate of the RHS of Condition (6.22):

1+2MLh

⇣ 1

Lf/h
krfit(xt)�rfit(x?)k+

1

Lf/h
krfi(�tit)�rfi(x?)k
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1
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nX

j=1

rfj(�tj)k
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 1 + 2MLh

 

2
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 1 + C

0

@
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where C is defined as

C = 2MLhmax

 

4Lh

 

1 +
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n

!!
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Now, with such choice of Gt, Theorem 6.8 applies and the convergence rate (6.21) holds. It
remains to prove the estimate for the convergence rate of Gt towards 1. To this end, we show

that it is upper bounded by O(1 +  
1/2
t ) since

1 + C
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(6.23)

Since we imposed a safeguard such that Gt � Lf/hLh

µh
, the convergence rate of  t is bounded by

E [ t] = O

✓

1�min

✓
1

8hf/h
,
1

2n

◆◆t

as stated by Corollary 6.10. Indeed, the assumptions are verified as h is Lh-smooth and µh-
strongly convex. This worst-case estimate for  t, along with the majorization (6.23), gives the
resulting rate for Gt.
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Conclusion and Perspectives

In this thesis, we studied several aspects of Bregman methods for relatively-smooth optimiza-
tion. We focused on practical applications to low-rank problems, extensions to stochastic vari-
ants for large-scale problems from machine learning and signal processing, as well as questions
of theoretical complexity and acceleration. Yet, there are many open problems and research
directions left to explore.

Homogeneity and additional regularity assumptions. As mentioned throughout this
thesis, a central issue in the analyses and extensions of Bregman methods is the lack of homo-
geneity and translational invariance of the Bregman divergence Dh. This problem appears for
acceleration [Hanzely et al., 2021], as well as for variance reduced stochastic methods (Chap-
ter 6). In fact, it seems to be an obstacle for every algorithm that has memory and combines
gradients taken at different points.

The lower bound from Chapter 3 demonstrates that that, in the worst case, it is indeed
hopeless to prove accelerated rates for Bregman methods. The corresponding worst-case in-
stance involves pathological functions that a nearly nonsmooth (for which the Bregman diver-
gence is highly non-homogeneous) and that are not quite representative of usual applications.
This shows that, in order to study methods with memory, additional regularity assumptions
are needed. Several possibilities are available, such as Lipschitz regularity of r2h⇤, or self-
concordance ideas [Sun and Tran-Dinh, 2018]. The study on the specific setting of entropy
(Chapter 5) can also be pursued.

Despite these theoretical difficulties, numerical experiments show good performance of both
accelerated variants [Hendrikx et al., 2020] and variance reduction (Chapter 6). While the
current analyses predict that these methods only work in a neighborhood of the optimum, or
with asymptotical learning rates, a slow transient regime is not observed in experiments. These
results should encourage future work towards bridging the gap between theory and practice.

Convergence on the boundary. A less known problem is that the behavior of Bregman
methods is not well understood when the optimum x⇤ lies on the boundary of the set C.
In this setting, the O(1/k) complexity bound does not hold if h is infinite on the boundary
(such as for the log kernel). Additionally, the iterate sequence {xk}k�0 is not guaranteed to
converge, as demonstrated by the counter-example in Bolte and Pauwels [2020]. This is a key
theoretical problem and is relevant in many applications, such as Poisson inverse problems on
the nonnegative orthant.

Adaptive variants for improving numerical performance. In this thesis, we mostly
focused on theoretical analyses of complexity and studied the convergence rate of the algorithms
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in the worst-case. This approach is fruitful, as it has lead to many important advances in first-
order optimization [Nemirovski and Yudin, 1983, Nesterov, 1983].

A complementary approach is to improve practical performance of these methods through
adaptiveness. Indeed, in some situations, the relative smoothness inequality is too conservative
and Bregman methods exhibit slow convergence speed (see the comparison between BGD and
Lucy-Richardson in Chapter 6). In the future, it should be interesting to study methods for
automatically adapting the Bregman geometry to the objective, in the spirit of adaptive steps
sizes [Duchi et al., 2011] or Quasi-Newton methods [Dennis and Moré, 1974].
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