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Abstract

We study a Mirrleesian economy with labor income, consumption, and retirement savings or
bequests. We derive a novel representation of optimal non-linear income and savings distortions
that highlights the role of consumption inequality and consumption responses to tax changes.
Our representation establishes a close connection between the formula for top income taxes of
Saez (2001) and the uniform commodity taxation theorem of Atkinson and Stiglitz (1976): One
cannot be valid without the other, and departures from this joint benchmark lead to a clear
trade-off between income and savings taxes. Consumption data in turn discipline the optimal
departure from this benchmark. Because consumption is much less concentrated than income, it
is optimal to shift a substantial fraction of the top earners’ tax burden from income to savings.

∗This paper supersedes our earlier paper, “A Fair Day’s Pay for a Fair Day’s Work: Optimal Tax Design as
Redistributional Arbitrage.” We thank Gadi Barlevy, Marco Bassetto, Charlie Brendon, Ashley Craig, Antoine Ferey,
Lucie Gadenne, Alexandre Gaillard, Aart Gerritsen, Mike Golosov, Martin Hellwig, Luca Micheletto, Serdar Ozkan,
Yena Park, Florian Scheuer, Karl Schulz, Emmanuel Saez, Stefanie Stantcheva, Aleh Tsyvinski, and Philipp Wangner
for useful comments. Opinions expressed in this article are those of the authors and do not necessarily reflect the
views of the Federal Reserve Bank of Chicago or the Federal Reserve System. Christian Hellwig acknowledges funding
from the French National Research Agency (ANR) under the Investments for the Future program (Investissements
d’Avenir, grant ANR-17-EURE-0010).



1 Introduction

Optimal Top Income Tax Rate: A Puzzle. Consider a static economy in which workers
differ in productivity and choose consumption C and labor income Y given a non-linear income tax
schedule. In a milestone contribution to the modern theory of income taxation, Saez (2001) shows
that the revenue-maximizing income tax rate on top earners is given by

τSaez
Y = 1

1 − ζ̄I
Y + ρ̄Y ζ̄H

Y,τY

, (1)

where ρ̄Y > 1 is the Pareto coefficient of the upper tail of the distribution of taxable income,
ζ̄H

Y,τY
> 0 is the Hicksian or compensated elasticity of taxable income with respect to (one minus)

the marginal tax rate, and ζ̄I
Y > 0 is the income effect of a lump-sum tax levy for the highest

earners.1 The appeal of this formula is that it readily lends itself to quantitative evaluations. For
example, using empirical estimates of the elasticities ζ̄H

Y,τY
= 0.33 and ζ̄I

Y = 0.25 and the Pareto
coefficient of yearly income ρ̄Y = 1.8, we obtain τSaez

Y = 74%.
The optimal income tax formula (1) completely abstracts from consumption to focus exclusively

on income inequality and labor supply responses to taxes. While this result follows from the
objective of maximizing income tax revenue, we find it striking that the marginal costs and benefits
of higher income taxes seemingly do not depend on how much redistribution the existing tax
system already achieves, that is, on the distribution of consumption rather than pre-tax income.
More generally, focusing exclusively on measures of income inequality may paint an incomplete
picture of the tradeoff between redistribution and incentives, since in practice agents may insure
against labor market risks through other means than the government, such as private insurance,
precautionary savings, or intra-family transfers.2

The static model studied by Saez (2001) in fact admits an alternative, consumption-based,

1Formally, let Y and Y H denote respectively the uncompensated and compensated labor supplies, expressed
in terms of earnings rather than hours. Let also FY (·) be the CDF of the income distribution, TY (·) the in-
come tax schedule, τY ≡ T ′

Y (Y ) the marginal income tax rate, and T Y ≡ TY (Y ) / ((1 − τY ) Y ) the (normal-
ized) average tax rate. We then define ρ̄Y ≡ − lim ∂ ln (1 − FY (Y )) /∂ ln Y , ζ̄H

Y,τY
≡ lim ∂ ln Y H/∂ ln (1 − τY ), and

ζ̄I
Y ≡ lim ∂ ln Y/∂T Y , where the limits are taken as Y → ∞.

2Echoing this observation, equation (1) contrasts with a vast literature that uses consumption data to assess the
optimality of risk-sharing arrangements or social insurance design, going back (at least) to Townsend (1994), see,
e.g., Ligon (1998) and Kocherlakota and Pistaferri (2009) for applications with asymmetric information or incentive-
redistribution tradeoffs of the kind studied in Saez (2001), or the literature on unemployment insurance design
following Baily (1978), Gruber (1997), and Chetty (2006a).
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representation of revenue-maximizing top income taxes:

τCons
Y = 1

ζ̄I
C + ρ̄C ζ̄H

C,τY

, (2)

where ρ̄C > 1 is the Pareto coefficient of the consumption distribution, ζ̄H
C,τY

> 0 is the highest
earners’ compensated elasticity of consumption with respect to the retention rate, and ζ̄I

C > 0 is
(minus) the income effect of a lump-sum tax levy on their consumption.3 We obtain equation (2)
from equation (1) and three model-implied identities, ρ̄C = ρ̄Y , ζ̄H

C,τY
= ζ̄H

Y,τY
, and ζ̄I

C = 1 − ζ̄I
Y ,

which all follow from the static budget constraint that equates consumption to after-tax income. In
other words, we have two independent data sources—income and consumption—to estimate a single
optimal tax relationship. Hence, the role of consumption inequality and consumption responses to
taxes is not separately identified from the role of income inequality and labor supply responses. The
literature following Saez (2001) has systematically focused on equation (1), but one could equally
well use the consumption-based formula (2), or any combination of the two, to determine optimal
income taxes, given reliable estimates of the corresponding sufficient statistics.

Using consumption rather than income inequality measures radically changes the inferred op-
timal top tax rate. Consumption appears to be significantly more evenly distributed than income
among top earners, with a Pareto coefficient for consumption of ρ̄C ≈ 3 (Toda and Walsh 2015;
Buda et al. 2022; Gaillard et al. 2023). For the same taxable income elasticities as in the opening
paragraph, the optimal top income tax rate falls to 57% if we use consumption inequality rather
than income inequality in formula (1), increasing the after-tax income of top earners by 66%.

Unfortunately, the static model provides no guidance about which is the most appropriate
measure for estimating income taxes. Moreover, it is inconsistent with the empirical discrepancy
between consumption and income inequality. Interpreting the model-implied identities instead as
testable over-identifying restrictions, their violation suggests that the static model of Saez (2001)
is not well suited to address how consumption or income inequality matter for optimal taxes, or to
offer sound, empirically grounded policy prescriptions.

Our Contribution. Motivated by these observations, in this paper we study to what extent
consumption inequality and consumption responses to income shocks influence optimal tax design,
independently of income inequality and labor supply responses. We consider a Mirrleesian economy
in which agents with heterogeneous labor productivities work, consume and save for retirement.4

3Formally, ρ̄C ≡ − lim ∂ log (1 − FC (C)) /∂ log C, ζ̄H
C,τY

≡ lim ∂ ln CH/∂ ln (1 − τY ), and ζ̄I
C ≡ − lim ∂ ln C/∂T Y .

4Our baseline model is kept deliberately as simple as possible. In Section 3, we show that our results carry over
to much more general settings.
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The additional consumption-savings margin allows us to separate consumption from after-tax in-
come, and also introduces capital taxes as a second margin for redistributive taxation. This connects
our analysis with another milestone result, the “zero capital taxation” (also known as “uniform com-

modity taxation”, henceforth UCT) theorem of Atkinson and Stiglitz (1976), which states that it
is optimal to leave consumption choices undistorted—and, hence, not to tax savings—if prefer-
ences for savings are independent of labor productivity. Savings taxes must thus be rationalized
by departures from this benchmark, for example if agents with higher earnings capacity also have
a stronger preference for savings relative to consumption (see, e.g., Saez 2002).

We show in Theorem 1 that τSaez
Y and UCT are two sides of the same coin: the revenue-

maximizing top income tax is equal to τSaez
Y if and only if UCT applies and the optimal savings

tax is 0, except in the trivial case where savings vanish at the top of the income distribution.
Conversely, departures from this joint benchmark identify a trade-off between income and savings
taxes: Either it is optimal to tax savings and reduce the income tax below τSaez

Y , or it is optimal
to subsidize savings and raise the income tax above τSaez

Y .
Theorem 2 and Corollary 2 then provide novel representations of optimal income and savings

taxes in terms of the moments that define the static wedge τSaez
Y and three consumption-based

sufficient statistics: (i) the ratio of Pareto coefficients of earnings and consumption ρ̄Y /ρ̄C , (ii)
the ratio of compensated elasticities ζ̄H

C,τY
/ζ̄H

Y,τY
that captures non-homotheticity of preferences

and maps into consumption responses to permanent income changes, and (iii) a scaling parameter
that is identified by the elasticity of intertemporal substitution (EIS) or consumption responses to
wealth tax changes. A simple calibration based on available empirical estimates for these three
moments suggests that the optimal policy shifts a significant fraction of the top income earners’
tax burden from income to savings taxes, with an optimal savings tax between 12% and 30% and
correspondingly a top marginal income tax that drops from τSaez

Y = 74% to between 63% and 70%.5

What connects the income tax formula (1) to UCT? Saez (2001)’s characterization applies to
a static economy with a single labor supply margin. In a dynamic setting, the optimal income
tax continues to be equal to τSaez

Y , if and only if the design of income taxes can be reduced to
a static trade-off between labor supply and after-tax earnings, with no information needed about
how the latter is allocated between consumption and savings. But this condition holds if and only
if preferences for savings are independent of incentives to work and the conditions for the UCT
theorem are satisfied, i.e., iff it is optimal not to tax savings separately from consumption.

5These numbers should be interpreted in a life-cycle context: over a 25-year horizon, with annualized returns on
savings of 4%, a savings tax of 30% corresponds to a 1.4% annual tax on accumulated wealth, or a 37% capital income
tax. If we interpret savings as retirement income or pensions, a wedge of 30% means that top income earners receive
a present value of $0.77 in additional pension payments for each additional dollar in social security contributions.
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Why is it optimal to shift part of the tax burden from income to savings? If consumption is
less concentrated than income, as suggested by estimates of ρ̄Y /ρ̄C , top earners have a vanishing
marginal propensity to consume. This could arise either because savings have a higher income
elasticity than consumption for given preferences, i.e., agents have non-homothetic preferences and
view savings as a luxury good relative to consumption, or because preferences for savings (relative
to current consumption) correlate positively with labor productivity, or a combination of the two.
Empirical studies that estimate consumption responses to permanent income changes find pass-
through coefficients that are too high to rationalize the gap between consumption and income
concentration entirely through non-homothetic preferences. Hence we reject UCT in favor of a
shift towards positive savings taxes and lower income taxes.

Consumption data are essential for reaching these conclusions and identifying optimal income
and savings taxes. In the scenario where consumption has a thinner tail than income, the highest
income earners’ labor supply decision is again based on a static tradeoff, but this time between
labor supply and savings rather than consumption as in the static model of Saez (2001). Therefore,
the static wedge τSaez

Y , and hence income data, continue to matter for optimal policy, but they now
determine the optimal combined wedge between income and savings. What is more, as the saving
share of income converges to one, savings data becomes redundant—and therefore uninformative—
relative to income data. As a result, formulas based on the distribution and behavioral responses
of savings, in the tradition of Saez (2002), are only able to identify the combined wedge and not
the two top tax rates separately. Instead, consumption is essential to determine how this combined
wedge should be decomposed into an income tax and a savings tax, i.e., how much one should
depart from the joint benchmark of Saez (2001) and Atkinson and Stiglitz (1976).

We derive these results from two conditions that optimal income and savings taxes must satisfy.
The first is a no-arbitrage condition which states that a marginal shift from income to savings taxes
(or vice versa) that leaves all agents’ utilities unchanged should not raise or lower tax revenues,
since it would otherwise lead to a strict Pareto improvement. The no-arbitrage condition shows
that the departure from UCT depends on the comparison between the ratio of Pareto coefficients
ρ̄Y /ρ̄C and the ratio of compensated elasticities ζ̄H

C,τY
/ζ̄H

Y,τY
. The second optimality condition,

called revenue-spillover condition, augments the static income tax tradeoff with a fiscal spillover
from income taxes to savings tax revenues. This condition implies that the optimal income tax is
strictly lower than (resp., equal to or higher than) the static wedge τSaez

Y if and only if the savings
tax is positive (resp., zero or negative). Theorem 1 connects these two optimality conditions and
provides a simple test for the departure from Saez (2001) and UCT.
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Solving the two optimality conditions, we then derive novel representations of optimal top
income and savings taxes in terms of consumption-based sufficient statistics (Theorem 2). These
representations generalize the income tax formula (1) to economies with consumption and savings
and provide an analogous formula for optimal top savings taxes. Our representation highlights that
when agents work, consume, and save, inequality and behavioral elasticities of all three variables
matter for optimal tax design, even if they are jointly determined by the optimal allocation and
must satisfy over-identifying restrictions analogous to those of the static model.

Finally, we explore several extensions of our baseline model. We generalize the no-arbitrage and
revenue spillover conditions, as well as our representation of optimal income and savings taxes and
the tradeoff between the two, to multi-good economies with arbitrary planner preferences, a life-
cycle economy in which tax perturbations have additional inter-temporal spill-over effects through
labor supply to income and savings taxes in other periods, and models with multi-dimensional
heterogeneity, in which the optimal tax structure is analogous to that in our baseline setting, except
that it is now determined by the co-variation of average consumption and savings with income. We
finally discuss how our model can accommodate heterogeneous asset returns and dynamic income
risks.

Policy Implications. The income tax formula (1) of Saez (2001) and the UCT theorem of
Atkinson and Stiglitz (1976) have both been highly influential in shaping tax policies, but they are
typically invoked independently from each other: The former features prominently in discussions
about income tax design, while debate about savings taxes focuses on the policy relevance of UCT.
For example, a highly cited review article by Diamond and Saez (2011) simultaneously makes a
case for high top income taxes based on the formula for τSaez

Y and for positive capital taxes by
questioning the assumptions underlying UCT. Theorem 1 shows that policy discussion of income
and savings taxes cannot be separated: Both are part of a policy mix that optimally trades off
between multiple tax instruments. Hence, the two policy recommendations by Diamond and Saez
(2011) are mutually inconsistent. Our characterization of optimal income and savings taxes in
Theorem 2 in turn provides empirical guidance on how the policy maker should resolve this tradeoff:
Government revenue is maximized by shifting part of the tax burden from income to savings, and
consumption data allow us to identify the magnitude of this shift. Hence, we provide empirical
support for the second recommendation by Diamond and Saez (2011), while at the same time
invalidating their first recommendation.
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Related Literature. Our paper contributes to the optimal taxation literature originating with
Mirrlees (1971), as well as the sufficient statistics approach towards estimating optimal tax rates
that was pioneered by Saez (2001). Our model is based on Atkinson and Stiglitz (1976). Because
we allow for arbitrary preferences, their uniform commodity taxation theorem only applies as a
special case of our framework.6 Mirrlees (1976), Saez (2002), and Golosov, Troshkin, Tsyvinski,
and Weinzierl (2013) study a similar problem to ours but do not characterize the optimal top tax
rates analytically nor express the formulas in terms of empirically observable sufficient statistics.7

Scheuer and Slemrod (2021), Gerritsen et al. (2020), Schulz (2021), Ferey, Lockwood, and
Taubinsky (2024), and Lefebvre, Lehmann, and Sicsic (2025) characterize or estimate optimal
savings taxes using savings-based sufficient statistics.8 Our contribution here is twofold. First, by
combining the revenue-spillover and no-arbitrage conditions for the design of income and savings
taxes, we identify the joint benchmark that consists of Saez (2001) for the former and Atkinson
and Stiglitz (1976) for the latter, highlight a tradeoff between these instruments away from this
benchmark, and most importantly, offer a unified representation of optimal top income and savings
tax rates, in a model encompassing these previous studies.9 Second, and most importantly, we
emphasize the role of consumption—rather than savings—data to characterize optimal income and
capital taxes. Consumption data are essential for identifying optimal taxes on top income earners,
who are the main focus of our analysis. In the empirically relevant scenario where consumption is
less concentrated than income, the highest income earners’ savings co-move one-for-one with their
savings, which renders their savings data redundant given the information already contained in their
income—thus making savings-based formulae uninformative about the optimal tax rates on top

6Christiansen (1984), Jacobs and Boadway (2014), and Gauthier and Henriet (2018) generalize Atkinson and
Stiglitz (1976) to non-homothetic preferences, but typically constrain commodity or savings taxes to being linear.

7Our work also relates to the literature that uses consumption data to assess optimality of risk-sharing or social
insurance design. The first generation of papers (see footnote 2) tended to use consumption to estimate marginal
social welfare weights or costs of consumption fluctuations. In this context, Fadlon and Nielsen (2019) and Landais
and Spinnewijn (2021) also offer original attempts to infer consumption-smoothing benefits of social insurance from
consumption and labor market data. We instead rely on consumption data to minimize the incentive costs of tax
distortions, as shown by our no-arbitrage condition. In this regard, we are conceptually closer to Chetty (2008)
who uses consumption to isolate incentive costs of UI from liquidity effects, or Hendren (2017), who infers private
information about unemployment risks from consumption.

8The observation that revenue spillovers affect optimal income tax formulas goes back at least to Golosov, Tsyvin-
ski, and Werquin (2014) and Badel and Huggett (2017), and versions of this condition are used to characterize either
income or savings taxes in Ferey, Lockwood, and Taubinsky (2024), Gerritsen et al. (2020), Schulz (2021), and Lefeb-
vre, Lehmann, and Sicsic (2025). The no-arbitrage condition appears as a Pareto-efficiency condition in Scheuer and
Slemrod (2021) and Gerritsen et al. (2020), and are discussed also by Ferey, Lockwood, and Taubinsky (2024).

9Our model is formally equivalent to Ferey, Lockwood, and Taubinsky (2024), and our characterization com-
plements theirs by focusing specifically on top income earners. Gerritsen et al. (2020) and Schulz (2021) consider
models with heterogeneous returns, assuming that preferences satisfy the Atkinson-Stiglitz restrictions. We nest this
framework as a special case, but without exploring various micro-foundations of return heterogeneity that are beyond
the scope of our analysis. Scheuer and Slemrod (2021) consider a model with heterogeneous initial endowments which
is nested by an extension of our baseline model.
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earners. Moreover, perturbing one top tax rate at a time no longer suffices to fully determine both
optimal top tax rates, since labor supply decisions only respond to the combined wedge between
earnings and savings at the top—in other words, both perturbations become colinear at the top and
cannot separately identify the two wedges. The no-arbitrage condition, which perturbs both taxes
simultaneously holding fixed the combined wedge, is therefore essential in fully characterizing the
optimal tax system. We discuss these issues in Section 3.5 when we compare our characterization
with Ferey, Lockwood, and Taubinsky (2024) and Scheuer and Slemrod (2021), who are the most
closely related to our analysis.

Finally, our calibration builds on the vast empirical literature that estimates consumption re-
sponses to income and rate of return changes; we review key contributions in Section 4. In this
context, we argue that the important econometric challenge of separately identifying the hetero-
geneity vs. non-homotheticity of preferences is precisely what underlies the economic rationale to
tax savings—namely, the hidden correlation of preferences for savings with permanent income.
Many of the existing empirical studies lack the flexibility to identify both mechanisms separately,
and hence lead to a biased estimate the pass-through elasticity that is relevant for optimal taxation.

Outline of the Paper. In Section 2, we set up our baseline model and derive our main theoretical
results on optimal income and savings taxes (Theorem 2) and the relationship between Saez (2001)
and Atkinson and Stiglitz (1976) (Theorem 1). Section 3 discusses several extensions. In Section
4, we present results from a simple calibration. All proofs are collected in an Appendix.

2 Optimal Taxation of Top Earners

In this section, we set up the simplest environment that allows us to decouple consumption from
after-tax income and derive our optimal labor and savings tax formulas. In Section 3, we generalize
our analysis to much richer environments.

2.1 Environment

There is a continuum of measure 1 of heterogeneous agents indexed by a rank r ∈ [0, 1] uni-
formly distributed over the unit interval. The preferences of agents of rank r are defined over
“labor income” Y , “consumption” C, “savings” S. They are represented by the utility function
U (Y,C, S; r).10 We assume that U is twice continuously differentiable in (Y,C, S) with UY < 0,

10While it is convenient to define preferences in terms of the observables Y , C, and S, it is straightforward to
map the preference over labor income Y into a preference over labor effort N = Y/A (r), where A (r) denotes labor
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UY Y < 0, UC > 0, UCC < 0, US > 0, USS < 0 and satisfies the usual Inada conditions as Y , C, or
S approach 0 or ∞, for any r. We further assume that U (Y,C, S; r) is non-decreasing in r, for any
(Y,C, S). This specification nests the standard case of an intertemporally separable utility func-
tion U1 (Y,C; r)+βU2 (S; r), where the second-period utility U2 represents (possibly heterogeneous)
preferences over future consumption or bequests; more generally, it also allows for non-separability
between current and future consumption, for instance as in models of habit formation.

Assumption 1 (Single-Crossing Conditions). (i) The marginal rates of substitution (MRS)

between consumption and income, −UY /UC , and between saving and income, −UY /US, are strictly

decreasing in r for all (Y,C, S), i.e.,

∂ ln (−UY /UC)
∂r

≡ UY r

UY
− UCr

UC
< 0 and ∂ ln (−UY /US)

∂r
≡ UY r

UY
− USr

US
< 0. (3)

Furthermore, the marginal disutility of effort is decreasing in r, UY r/UY < 0.

(ii) The MRS between consumption and savings, US/UC , is monotonic in r for all (Y,C, S),
i.e.,

∂ ln (US/UC)
∂r

≡ USr

US
− UCr

UC
(4)

is either non-positive or non-negative everywhere.

The first equality in (3) is the standard single-crossing condition (Mirrlees 1971); the second
condition introduces its analogue with regards to savings. These conditions rank agents according
to their preferences over leisure, on the one hand, and consumption or savings, on the other hand.
On the margin, higher-ranked agents are more willing to work for a given consumption or savings
increase. The additional restriction UY r/UY < 0 implies that higher ranks r find it less costly to
attain a given income level Y ; that is, we can associate agents’ ranks with their labor productivity.

The second part of Assumption 1 imposes that the inter-temporal MRS is monotonic. If it is
increasing and (4) is positive, then higher ranks have a stronger taste for saving (relative to current
consumption) than lower ranks. In other words, given the same allocation, those who are the most
inclined to work—the higher ranks—are also the most inclined to save. If instead (4) is negative,
then those who are the most inclined to work are also those who are the most inclined to spend
their incomes on current consumption. Under the restrictions on preferences imposed by Atkinson
and Stiglitz (1976), the intertemporal MRS is constant and (4) is uniformly equal to zero.

productivity, and N and A (r) are not directly observable to the planner. The dependence of the utility function on
r also allows for heterogeneity of preferences across ranks.
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Social planner’s problem. Consumption, income, and savings are assumed to be observable,
but an individual’s productivity rank r is their private information. For now, we assume that the
social planner is Rawlsian and maximizes the utility of the lowest-ranked agent; this assumption
is without loss of generality for our results on optimal top taxes.11 The Rawlsian social planner’s
problem amounts to choosing a tax function T (Y, S) that maximizes government revenue

� 1

0
T (Y (r) , S (r)) dr (5)

subject to the constraint that all agents maximize their utility given their budget constraint C ≤

Y − S − T (Y, S), that is:

{Y (r) , S (r)} ∈ arg max
Y,S

U (Y, Y − S − T (Y, S) , S; r) , (6)

and a lower bound constraint on the lowest rank’s utility

U (Y (0) , C (0) , S (0) ; 0) ≥ W0. (7)

Following Saez (2001), this formulation allows us to characterize optimal income and savings taxes
using simple perturbations of the tax function T (Y, S). With one-dimensional heterogeneity, it is
without loss of generality to consider separable tax functions of the form T (Y, S) ≡ TY (Y )+TS (S).

This problem can be transformed into a standard mechanism design problem of choosing an allo-
cation {Y (·) , C (·) , S (·)} that maximizes the government’s surplus

� 1
0
{
Y (r)−C (r)−S (r)

}
dr sub-

ject to incentive compatibility and the lower bound constraint (7). Incentive compatibility implies
the envelope condition V ′ (r) = Ur (Y (r) , C (r) , S (r) ; r), where V (r) ≡ U (Y (r) , C (r) , S (r) ; r).
In the Appendix, we show that this envelope condition is also sufficient for global incentive com-
patibility, if Y (·), C (·), and S (·) are monotone in r. We then go on to characterize its solution
using standard results from optimal control theory.12

Marginal income and savings tax rates. Let τY (r) ≡ T ′
Y (Y (r)) and τS (r) ≡ T ′

S (S (r))
denote the marginal income and savings tax rates at rank r. From the first-order conditions implied
by equation (6), the marginal income tax rate satisfies τY = UY /UC + 1 and therefore corresponds

11We generalize our results to arbitrary planner preferences in Section 3.1. Our top income tax results remain
unaffected so long as the marginal utility converges to 0 at infinity, so that top-ranked agents receive vanishing weight
in the planner’s objective function.

12To ease notation, throughout the paper we write X (r) ≡ X (Y (r) , C (r) , S (r) ; r) for any function X of both the
rank r and the allocation {Y (r) , C (r) , S (r)} assigned to this rank. We further drop the dependence on r whenever
this is unambiguous from the context.
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to the labor wedge at rank r, i.e., the intra-temporal distortion between the marginal product and
the marginal rate of substitution between consumption and income. Likewise the marginal savings
tax rate satisfies τS = US/UC − 1 and therefore corresponds to the savings wedge at rank r, i.e.,
the inter-temporal distortion in the agent’s first-order condition for savings. We focus on the top
of the income distribution, for which we make the following assumption:

Assumption 2 (Top Tax Rates). The optimal allocation {Y (·) , C (·) , S (·)} is increasing in r,

for r sufficiently close to 1. Moreover, optimal labor and savings wedges converge to constants

τ̄Y < 1 and τ̄S > −1 as r → 1.

We can interpret our optimal tax system as a combination of income taxes, social security
contributions and pension payments (“savings”) that are indexed to labor income, without any
additional private savings. The savings wedge then represents the marginal shortfall or excess
of social security contributions relative to pension payments. Alternatively, we interpret S as
“bequests”, let C and Y stand for life-time earnings and consumption, and reinterpret the savings
wedge as a tax on bequests.

2.2 Sufficient Statistics

Our characterizations of optimal income and savings taxes are based on two sets of sufficient
statistics: (i) distributional parameters, such as the Pareto coefficients and the consumption and
saving shares of income; and (ii) behavioral elasticities (income and substitution effects) of earnings,
consumption, and savings with respect to tax changes.

Distributional parameters. We denote the local Pareto coefficients of the distributions of labor
income, consumption, and savings, respectively, by

ρX (r) ≡ d ln (1 − FX (X (r)))
d lnX (r)

for X ∈ {Y,C, S}, where FX denotes the CDF of the distribution of X. We further denote by

sC (r) ≡ C (r)
(1 − τY (r))Y (r) and sS (r) ≡ (1 + τS (r))S (r)

(1 − τY (r))Y (r)

the shares of consumption and savings in retained income at rank r.

Behavioral elasticities. Next, we introduce the substitution and income effects of tax changes
on taxable income (ζH

Y,τY
, ζH

Y,τS
, ζI

Y ), consumption (ζH
C,τY

, ζH
C,τS

, ζI
C), and savings (ζH

S,τY
, ζH

S,τS
, ζI

S).
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Fixing a linear tax function T (Y, S) = T0 + τY Y + τSS, the substitution effects are defined as
the compensated (Hicksian) elasticities with respect to the after-tax wage or asset return, and the
income effects are defined as the (weighted) semi-elasticities with respect to lump-sum tax changes:

ζH
X,τY

≡ ∂ lnX
∂ ln (1 − τY )

∣∣∣∣
∂U=0

, ζH
X,τS

≡ ∂ lnX
∂ ln (1 + τS)

∣∣∣∣
∂U=0

, and ζI
X ≡ (1 − τY )Y

∣∣∣∣∂ lnX
∂T0

∣∣∣∣
for X ∈ {Y,C, S}. These substitution and income effects identify structural properties of the
underlying utility function which are fully summarized by the following six preference elasticities:13

EC ≡ −UCCC

UC
, ES ≡ −USSS

US
, EY ≡ UY Y Y

UY
, ECY ≡ UCY Y

UC
, ESY ≡ USY Y

US
, ECS ≡ UCSS

UC
.

We assume that all of these variables converge to constants for top earners:

Assumption 3 (Convergence). The Pareto coefficients (ρY , ρC , ρS), consumption and savings

shares (sC , sS), substitution and income effects (ζH
Y,τY

, ζH
Y,τS

, ζI
Y ), (ζH

C,τY
, ζH

C,τS
, ζI

C), (ζH
S,τY

, ζH
S,τS

, ζI
S),

and preference elasticities (EC , ES , EY , ECY , ESY , ECS) all converge to finite limits as r → 1. For

any of these variables, we write X̄ ≡ limr→1X (r).

Model-implied restrictions: a tale of three tails. The Pareto coefficients, spending shares
and behavioral elasticities are not independent of each other: They are linked through the agents’
budget constraints and first-order conditions. As discussed in the introduction, this additional
structure imposes over-identifying restrictions that enter the representation of optimal taxes.

First, differentiating the agents’ budget constraint with respect to r yields the following condi-
tion linking local Pareto coefficients and spending shares: 1/ρY = sC/ρC + sS/ρS . This equation
relates the concentration in earnings to the concentration in consumption and savings above any
rank r. Now, as r → 1, the spending on consumption or savings of top-ranked agents cannot grow
faster than their after-tax income, so that ρ̄C ≥ ρ̄Y and ρ̄S ≥ ρ̄Y . But total spending must grow at
the same rate as after-tax income, which in turn implies that ρ̄Y = min{ρ̄C , ρ̄S} and s̄C + s̄S = 1.
In other words, the cross-sectional distribution of labor income must have a weakly thicker upper
tail than those of both consumption and savings, but it cannot have a strictly thicker upper tail
than more than one of these variables. This relationship is the analogue of the condition ρ̄Y = ρ̄C

in the static setting. Moreover, if consumption has a strictly thinner tail than income, then the
share of consumption in retained earnings must be vanishing, so that s̄C = 0 whenever ρ̄C > ρ̄Y .
Symmetrically, s̄S = 0 if ρ̄S > ρ̄Y . On the other hand, the shares of consumption and saving can

13For future reference, we also define ESC ≡ USCC/US = (sC/sS) ECS .
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converge to any value in [0, 1] when the three upper tails have the same Pareto coefficient.
In addition, income and substitution effects satisfy standard demand-theoretic properties, ob-

tained by differentiating the agents’ first order conditions with respect to changes in marginal tax
rates and lump-sum income transfers: ζH

Y,τX
= sCζ

H
C,τX

+ sSζ
H
S,τX

for X ∈ {Y, S} and 1 − ζI
Y =

sCζ
I
C + sSζ

I
S . These equations generalize the conditions ζH

Y,τY
= ζH

C,τY
and 1 − ζI

Y = ζI
C from

the static model and add the analogue condition for substitution effects w.r.t. savings taxes.
Moreover, the Slutzky symmetry condition for substitution between earnings and savings imposes
ζH

Y,τS
= −sSζ

H
S,τY

. Hence, income and substitution effects provide five distinct moments to identify
six preference elasticities. The remaining degree of freedom captures the fact that demand func-
tions identify ordinal preferences, not cardinal utilities—but these are sufficient for analyzing the
Rawlsian social planner’s problem.14

Finally, as with the Pareto coefficients, taking the limit as r → 1 imposes additional restrictions
on the identification power of these income and substitution effects. If s̄C = 1 − s̄S = 1, so that
savings vanish at the top as a proportion of income, then the substitution and income effects on
consumption mirror those on taxable income, i.e. (ζ̄H

C,τY
, ζ̄H

C,τS
, ζ̄I

C) = (ζ̄H
Y,τY

, ζ̄H
Y,τS

, ζ̄I
Y ). Therefore,

identification requires using the response of top earners’ savings to tax changes, (ζ̄H
S,τY

, ζ̄H
S,τS

, ζ̄I
S).

If s̄C = 1 − s̄S = 0, so that consumption vanishes at the top, then the income and substitution
effects on savings mirror those of income, i.e. (ζ̄H

S,τY
, ζ̄H

S,τS
, ζ̄I

S) = (ζ̄H
Y,τY

, ζ̄H
Y,τS

, ζ̄I
Y ), and therefore

identification requires using the response of consumption to tax changes (ζ̄H
C,τY

, ζ̄H
C,τS

, ζ̄I
C). Finally,

if s̄C , s̄S ∈ (0, 1), any two sets of substitution and income effects identify the third, along with the
preference elasticities.

In sum, our model admits three possible scenarios that we summarize as follows:

1. If ρ̄Y = ρ̄C < ρ̄S , then s̄C = 1 and s̄S = 0, so that savings are strictly less concentrated
at the top than income and consumption, and top earners consume most of their income
in the current period. The Pareto coefficients and behavioral responses of consumption and
labor supply then coincide, thus making information from consumption redundant, relative
to income data. Preference elasticities and optimal taxes are then identified from Pareto
coefficients and behavioral responses of income and savings.

2. If ρ̄Y = ρ̄C = ρ̄S , then s̄C = 1 − s̄C ∈ [0, 1], so that income, consumption, and savings
are equally concentrated at the top, and top earners both consume and save non-vanishing
fractions of their income. The substitution and income effects of any two of the three variables

14Going beyond the Rawlsian tax design problem, the extra degree of freedom summarizes the transformation of
ordinal to cardinal preferences, or equivalently, the welfare weights assigned to different agent types.
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can then be used to identify the preference elasticities and determine optimal income and
savings taxes.

3. If ρ̄Y = ρ̄S < ρ̄C , then s̄C = 0 and s̄S = 1, so that consumption is strictly less concentrated
at the top than income and savings, and top earners save most of their income. The Pareto
coefficients and behavioral elasticities of savings and labor supply coincide, making savings
information redundant relative to income data. Preference elasticities and optimal taxes are
then identified from Pareto coefficients and behavioral responses of income and consumption.

In the sequel, we refer to these cases as Case 1, Case 2, and Case 3, respectively. The evidence
cited in the introduction points to Case 3 with ρ̄C > ρ̄Y and s̄C = 0 as the empirically relevant
scenario.

2.3 Linking Departures from Seminal Taxation Results

When should income and savings be taxed? It is well-known since Mirrlees (1976) that the optimal
labor and savings wedges inherit the signs of UCr/UC −UY r/UY and USr/US −UCr/UC , respectively.
Assumption 1 implies that the former is positive, and hence that it is optimal to tax labor income.
Analogously, it is optimal to tax (respectively, subsidize) savings whenever the latter is positive
(resp., negative), that is, if higher ranks have a higher (resp., lower) intertemporal MRS US/UC and
are thus more inclined to save (resp., consume) their current income than lower ranks. Intuitively,
if the more productive ranks have a stronger taste for savings, the planner can screen them—i.e.,
deter them from mimicking lower ranks—by taxing the savings of lower ranks. This general result
nests the uniform commodity taxation setting of Atkinson and Stiglitz (1976) as a special case.
When all ranks r have the same intertemporal MRS US/UC , savings taxes are unable to affect
the low-productivity workers differently from the more productive ones who mimick them. It is
then optimal to set τS = 0 for all r, so that redistribution is achieved only through the income tax
without further distorting the consumption-savings margin.

This discussion, however, does not shed any light on connections between optimal income and
savings taxes. We show that these two tax instruments interact through two distinct channels,
and must therefore be jointly determined. First, optimal tax distortions obey a simple arbitrage

principle: A Pareto efficient tax system must smooth tax distortions across different margins in such
a way that a marginal shift from income to savings distortions—or vice versa—that leaves agents’
utilities unchanged should also not increase or lower tax revenue. This no-arbitrage condition relates
the level of optimal savings taxes or subsidies to the level of optimal income taxes. Second, there
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are tax revenue spillovers: Raising marginal income taxes reduces savings, and thus the revenues or
costs from savings taxes or subsidies. Accounting for these revenue spillovers implies that optimal
income taxes are a decreasing function of savings taxes, and vice versa. The no-arbitrage and
revenue spillover conditions jointly determine the optimal tax system.

By combining these two conditions, we uncover a deep connection between the seminal results
of Saez (2001) and Atkinson and Stiglitz (1976), which to our knowledge has not been recognized
before: One cannot hold without the other—outside of the “trivial” Case 1 where savings vanish
(as a fraction of earnings) at the top of the income distribution. In other words, the static optimal
income tax rate and the uniform commodity taxation theorem are two sides of the same coin. Hence,
an expert calling for high income taxes based on τSaez

Y must also support the recommendation of
zero capital taxation, and support for positive savings taxes must be accompanied by less extreme
recommendations for the income tax. This connection between optimal income and savings taxation
is summarized in the following Theorem:

Theorem 1. Suppose that s̄S > 0 (Cases 2 and 3). Then,

τY ⪋ τSaez
Y ⇐⇒ τS ⪌ 0 ⇐⇒ ρ̄C/ρ̄S ⪌ ζ̄H

S,τY
/ζ̄H

C,τY
.

The revenue-spillover condition implies the first equivalence in Theorem 1, which highlights
that the tax authority faces a trade-off between income and savings taxes: Positive taxes (resp.,
subsidies) on savings must go hand-in-hand with a reduction (resp., increase) of income taxes below
(resp., above) the level prescribed by τ̄Saez

Y . These revenue spillovers become negligible only if s̄S = 0
(Case 1 ), in which case the optimal top income tax equals the static optimum. The no-arbitrage
principle implies the second equivalence in Theorem 1. It provides a simple empirical test of the joint
benchmark of τSaez

Y and uniform commodity taxation by comparing the ratio of Pareto coefficients
of consumption and savings, ρ̄C/ρ̄S , to the ratio of their inverse substitution effects w.r.t. income
tax changes, ζ̄H

S,τY
/ζ̄H

C,τY
. Moreover, the difference between these two ratios determines in which

direction optimal income and savings taxes must depart from this joint benchmark. The next two
subsections derive these two optimality conditions in turn, and Theorem 2 combines them to solve
for the optimal tax rates τY , τS .

2.4 The No-Arbitrage Condition

Our first proposition articulates the no-arbitrage condition, according to which the planner cannot
increase revenue by locally shifting tax distortions between income and savings taxes. This result

14



is based on a Pareto efficiency criterion and therefore holds under much weaker conditions than
those implied by the optimal planner’s solution.

Proposition 1. Optimal top income and savings taxes satisfy

τ̄S

1 + τ̄S
= τ̄Y

1 − τ̄Y
· Σ, where Σ ≡

ρ̄C ζ̄
H
C,τY

− ρ̄S ζ̄
H
S,τY

ρ̄C ζ̄H
C,τS

− ρ̄S ζ̄H
S,τS

. (8)

We now sketch the proof of Proposition 1 and discuss its economic interpretation, first as the
solution to the mechanism design problem as in Mirrlees (1971), and second by means of a well-
designed tax perturbation in the tradition of Saez (2001).

Proof of Proposition 1 using mechanism design. The first-order conditions to the mecha-
nism design problem imply that at any rank r, the following arbitrage relation must hold between
income and savings tax distortions:

τS/ (1 + τS)
τY / (1 − τY ) = USr/US − UCr/UC

UCr/UC − UY r/UY
. (9)

Equation (9) equates the ratio of the resource gains from reducing the savings tax vs. the income tax
at rank r, in the left-hand side, to the ratio of changes in marginal information rents V ′ (r) that such
lower tax rates induce, in the right-hand side. The latter capture the respective changes in utility
that must be granted to ranks r′ > r to deter them from mimicking rank r after the corresponding
tax cuts. This arbitrage relation is based on a Pareto efficiency principle that applies regardless of
the planner’s tastes for redistribution: At the optimum, the planner should not be able to increase
tax revenue by perturbing income and savings taxes in such a way that agents’ marginal information
rents (and hence their utilities) remain unchanged.15 The following identification lemma relates
the changes in marginal information rents to the sufficient statistics in equation (8):

Lemma 1. For any given system of tax distortions {τY (r) , τS (r)}, we have

(1 − r)
(
UCr

UC
− UY r

UY

)
= ÊC

ρC
+ ÊY

ρY
+ d ln (1 − τY )

d ln (1 − r) (10)

(1 − r)
(
USr

US
− UCr

UC

)
= ÊS

ρS
− ÊC

ρC
− d ln (1 + τS)

d ln (1 − r) , (11)

where ÊY ≡ EY − ECY − ESY − ECS/sS, ÊC ≡ EC + ESC − sC (ECY − ESY ), and ÊS ≡ ES +

15The Uniform Commodity Taxation Theorem of Atkinson and Stiglitz (1976) is a direct corollary of this condition,
since equation (9) implies τS = 0 whenever USr/US − UCr/UC = 0.
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ECS + sS (ECY − ESY ). Moreover, the ratios of preference elasticities are identified by the ratios of

behavioral elasticities as follows:

ÊY

ÊC

= −
ζH

C,τS

ζH
Y,τS

and ÊS

ÊC

=
ζH

C,τY

ζH
S,τY

. (12)

Equations (10) and (11) are obtained by totally differentiating the agents’ first-order conditions
1 − τY = −UY /UC and 1 + τS = US/UC with respect to r and noting that in each case the differ-
entiation can be decomposed into a component that captures the rank-dependence of preferences
for a given allocation (i.e., the heterogeneity of preferences across agents), and a component that
captures how the allocations vary with income at a given rank (i.e., the non-homotheticity of pref-
erences for a given agent). The latter is fully identified from preference elasticities and local Pareto
tail coefficients, and can thus be used to identify the former. To understand the economics un-
derlying this key identification result, suppose that savings are more concentrated at the top than
consumption (ρC > ρS). This could occur either because top-ranked earners face more strongly
diminishing marginal utilities of consumption than of savings (ÊC > ÊS), which would constitute a
departure from the homotheticity of preferences, or because agents’ intrinsic preferences for savings
are heterogeneous (i.e., rank-dependent). The ratio ρC/ρS identifies the concentration of savings
relative to consumption observed in the data, while ÊC/ÊS identifies the concentration of savings
relative to consumption that is consistent with rank-independent preferences. Rank-independence
is rejected when the former differs from the latter. By comparing ρC/ρS to ÊC/ÊS , we thus identify
how much preference heterogeneity is required to rationalize the gap between consumption and
savings inequality, and thus to what extent savings taxes or subsidies are useful to screen and
redistribute from higher- to lower-ranked agents, on top of income taxes.16

Furthermore, equation (12) identifies the ratios of preference elasticities from the ratios of sub-
stitution effects. It shows that ÊS/ÊC = ζH

C,τY
/ζH

S,τY
, i.e., the substitution effects for consumption

and savings with respect to retained earnings are inversely proportional to the preference elasticities.
Intuitively, agents pass through earned income changes to consumption and savings with elasticities
that are inversely proportional to the respective preference elasticities ÊC and ÊS . Thus, the ratio of

16A more formal intuition goes as follows. With constant top savings taxes, agents’ consumption and savings must
grow with after-tax income at rates that keep the inter-temporal MRS constant, hence 1/US and 1/UC must have
identical upper Pareto tails. With rank-independent intertemporal MRS, this in turn implies that ÊS/ρS = ÊC/ρC .
Conversely, if preferences are rank-dependent (USr/US ̸= UCr/UC), the upper Pareto coefficients of 1/US and 1/UC

augment the terms ÊS/ρS and ÊC/ρC , which capture the role of diminishing marginal utilities at a given rank, with
additional terms (1 − r) USr/US and (1 − r) UCr/UC that capture the rank-dependence of 1/US and 1/UC at a given
allocation. Equating the two Pareto coefficients then implies that the rank-dependence of the intertemporal MRS is
equal to the difference between ÊS/ρS and ÊC/ρC and is thus fully identified from the latter.

16



substitution effects from income tax changes identifies the ratio of preference elasticities, and hence
the amount of consumption vs. savings concentration at the top that can be rationalized without
preference heterogeneity. Combining the two conditions (11) and (12), it follows that the infor-
mation rent term USr/US − UCr/UC , and therefore departures from uniform commodity taxation,
depend on the difference between ρC/ρS and ζH

S,τY
/ζH

C,τY
, or equivalently on ρCζ

H
C,τY

−ρSζ
H
S,τY

. The
reasoning is similar for the term UCr/UC −UY r/UY , using the over-identifying restrictions derived
in Section 2.1. Proposition 1 then follows from taking limits as r → 1. The ratios of preference elas-
ticities, substitution effects, and Pareto coefficients are therefore natural and transparent sufficient
statistics for intrinsic rank-dependence of preferences and hence optimal taxes.

Lemma 1 highlights the importance of non-homothetic preferences for optimal tax design. If
preferences are homothetic in consumption and savings, i.e. ÊS = ÊC , consumption and savings
of top earners both move one-for-one with after-tax income, implying that ζH

C,τY
= ζH

S,τY
= ζH

Y,τY
,

and the response of consumption and savings to income tax changes becomes uninformative about
optimal savings taxes. Any difference between the concentrations of consumption and savings in
the data is then fully attributed to preference heterogeneity, which directly translates into a motive
for savings taxes. It is only with non-homothetic preferences that there is a meaningful problem
of identifying preference heterogeneity separately from income effects, and only in this latter case
that these additional behavioral elasticities are informative about optimal income tax design.

Proof of Proposition 1 using tax perturbation methods. Consider a small perturbation
(∂τY , ∂τS) that shifts taxes from income to savings for a small interval of types r′ ∈ [r, r + ∂r).
Following Saez (2001), these perturbations mechanically change tax payments at rank r′ ≥ r + ∂r

by ∂τY (Y (r + ∂r) − Y (r))+∂τS (S (r + ∂r) − S (r)) ≈ (∂τY Y/ρY + ∂τSS/ρS) ∂r/ (1 − r).17 They
further affect overall tax revenue through the behavioral responses of earnings and savings. These
behavioral responses can be decomposed into a substitution effect for types r′ ∈ [r, r + ∂r) and an
income effect for types r′ ≥ r+∂r. We scale the income and savings tax perturbations so that their
mechanical effects exactly offset each other: ∂τY Y/ρY + ∂τSS/ρS = 0. With this scaling condition,
the two tax perturbations also have exactly offsetting income effects for all types r′ > r + ∂r,
leaving their earnings, consumption, and savings (and hence tax payments) unchanged. Therefore,
substitution effects for ranks r′ ∈ [r, r + ∂r) are the only possible source of variation in tax revenues.
At the optimum, the changes in income and savings tax revenue due to substitution effects must
exactly offset each other. The behavioral response of earnings at rank r to the combined change

17Throughout the paper, we use the symbol “≈” to denote first-order approximations when ∂r > 0 is small. This
approximation becomes exact in the limit as ∂r → 0.
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of income and savings taxes is ∂Y = −(ζH
Y,τY

∂τY
1−τY

− ζH
Y,τS

∂τS
1+τS

)Y = −(ζH
Y,τY

ρY − ζH
S,τY

ρS) Y
ρY

∂τY
1−τY

,
where we have first substituted the scaling condition −∂τY Y/ρY = ∂τSS/ρS and then the Slutzky
symmetry condition. Likewise, the behavioral response of savings to the combined tax perturbation
is ∂S = (ζH

S,τS
ρS − ζH

Y,τS
ρY ) S

ρS

∂τS
1+τS

. The perturbation must leave total tax revenue unchanged, or
τY ∂Y + τS∂S = 0. Since −∂τY Y/ρY = ∂τSS/ρS , it follows that

τS

1 + τS
= τY

1 − τY

ζH
Y,τY

ρY − ζH
S,τY

ρS

ζH
Y,τS

ρY − ζH
S,τS

ρS
= τY

1 − τY

ζH
C,τY

ρC − ζH
S,τY

ρS

ζH
C,τS

ρC − ζH
S,τS

ρS
(13)

where the second equality follows from a few steps of algebra that use the over-identifying restric-
tions to express the ratio in terms of (ρC , ζ

H
C,τY

, ζH
C,τS

) instead of (ρY , ζ
H
Y,τY

, ζH
Y,τS

). This last step
matters for Case 3, where consumption moments are necessary for identification purposes—notice
that the first equality in equation (13) would be equal to “0/0” in this case since savings and earn-
ings are asymptotically indistinguishable. We return to this important point in Section 3.5 below
when we discuss the relationship between our paper and Ferey, Lockwood, and Taubinsky (2024).

The tax perturbation proof offers a complementary intuition for the no-arbitrage condition:
Shifting tax distortions from earnings to savings increases earnings (∂Y > 0) if and only if ζH

Y,τY
ρY >

ζH
S,τY

ρS , or the positive substitution effect of lower income taxes outweighs the negative substitution
effect of higher savings taxes. If this inequality holds and τS = 0, such a compensated shift from
income to savings taxes thus raises overall tax revenue, in which case it is optimal to shift part of
the tax burden from income to savings. If instead ζH

Y,τY
ρY < ζH

S,τY
ρS , subsidizing savings to increase

income taxes raises overall tax revenue. Finally, the Uniform Commodity Taxation Theorem applies
if and only if the two substitution effects just offset each other and the compensated tax perturbation
leaves income and overall tax revenue unchanged. This observation connects the revenue trade-off
between income and savings taxes back to the preference conditions that govern the departure from
uniform commodity taxation.

2.5 The Revenue Spillover Condition

The second source of interaction between income and savings taxes results from the spillovers that
one tax has on the revenue collected from the other. The following proposition derives the optimal
top income tax τ̄Y for a given savings distortion τ̄S on top income earners.

Proposition 2. For a given top savings distortion τ̄S, the optimal top income tax τ̄Y satisfies

τ̄Y

1 − τ̄Y
= τ̄Saez

Y

1 − τ̄Saez
Y

(
1 − τ̄S

1 + τ̄S
s̄SΦS

)
, where ΦS ≡ ρ̄Y ζ̄

H
S,τY

+ ζ̄I
S . (14)
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where τ̄Saez
Y is given by (1). In particular, in Case 1 (s̄S = 0), the optimal top income tax rate τY

is equal to the static optimum τSaez
Y . In Case 3 (s̄S = 1), the static optimum τSaez

Y is equal to the

combined wedge on income and savings:

1 − τSaez
Y = 1 − τY

1 + τS
. (15)

Proposition 2 summarizes how the revenue spillover from income taxes to savings changes the
optimal design of income taxes for top income earners. When savings taxes are zero for all types, the
optimal income tax is derived from the same trade-off between mechanical increases in tax revenue
and labor supply responses as in the static model. Hence, when τ̄S = 0 the optimal income tax on
top earners is equal to τ̄Saez

Y . However, when τS ̸= 0, an extra term enters the optimal tax trade-off,
given by the behavioral response of savings to the income tax change. This tax revenue spillover
implies that the optimal income tax is lower than at the static benchmark if savings are taxed,
or higher than at the static benchmark if savings are subsidized. The magnitude of this spillover
depends on the income and substitution effects of savings in response to income tax changes, as
well as the savings share among top earners.

The two polar cases are particularly informative. In Case 1 (s̄S = 0), top income earners save
a vanishing fraction of their income, and the spillover effect to savings taxes or subsidies becomes
negligible. Intuitively, savings simply do not matter at the top, and the model converges to the
standard static trade-off between income and consumption, so that the optimal income tax is the
same as in the static model. On the other hand, in Case 3 (s̄S = 1), top income earners consume a
vanishing fraction of their income, and savings mirror earnings at the top of the distribution, so that
ΦS = 1/τ̄Saez

Y and hence 1 − τ̄Saez
Y = (1 − τ̄Y )/(1 + τ̄S) (equation (15)). That is, the spillover effect

from income to savings tax revenue is so strong that higher savings taxes translate one-for-one into
lower income taxes, leaving the overall wedge constant at τ̄Saez

Y . Intuitively, if consumption becomes
negligible at the top, then the optimal top income tax is again governed by a static trade-off—but
it is now between income and savings, rather than between income and consumption. The static
wedge therefore still matters, but it identifies the combination of the labor earnings and savings
wedges—the latter being non-zero whenever the Atkinson-Stiglitz theorem fails to hold.

Proof of Proposition 2 using mechanism design. We decompose the mechanism design
problem into two stages. In the first stage, the social planner designs the income tax sched-
ule TY (Y ) and agents trade off between labor supply and after-tax earnings M ≡ Y − TY (Y ),
as in Saez (2001). In the second stage, the planner designs the savings tax schedule TS (S)

19



and agents allocate after-tax earnings to consumption and savings. Here, we take the outcome
of the second stage as given and focus on the design of income taxes for a given savings tax
schedule. Define U (Y,M ; r) = maxC,S U (Y,C, S; r) s.t. C + S + TS (S) ≤ M as the indirect
utility function that characterizes the solution to the second-stage problem, and S (Y,M ; r) =
arg maxS U (Y,M − S − TS (S) , S; r) as the optimal savings decision, given earnings Y and after-
tax income M = Y − TY (Y ). The optimal first-stage allocation {Y (·) ,M (·)} maximizes the
aggregate tax revenue

� 1
0 (TY (Y (r)) + TS (S (Y (r) ,M (r) ; r))) dr subject to the promise-keeping

V (0) ≥ W0 and the local incentive compatibility constraint V ′ (r) = Ur (Y (r) ,M (r) ; r), with
V (r) = U (Y (r) ,M (r) ; r). This mechanism design problem departs from the static optimal in-
come tax design problem of Mirrlees (1971) and Saez (2001) only by including a spillover to savings
tax revenue in the planner’s objective function. We express the resulting optimality condition in
terms of observable sufficient statistics to obtain equation (14).

The economic insight of this proof is that the optimal income tax equals τSaez
Y if and only if

the optimal income tax design can be reduced to the first-stage problem, that is, a static problem
with preferences directly defined over earnings Y and after-tax income M , with no information
needed about how the latter is allocated between consumption and savings. But this condition
is met precisely when preferences satisfy the necessary and sufficient condition for the Uniform
Commodity Taxation theorem of Atkinson and Stiglitz (1976) and it is optimal to leave savings
undistorted; that is, if the MRS between consumption and savings is independent of rank r. By
contrast, the reduction to a single decision margin and single tax distortion characterized by Saez
(2001) no longer applies when the preference restrictions of Atkinson and Stiglitz (1976) fail to
hold. The design of optimal income taxes can no longer ignore how after-tax income is allocated
to consumption and savings, since preferences for savings and incentives to work are no longer
independent. If higher-ranked agents are more inclined to save, the taxation of savings facilitates
redistribution towards lower-ranked agents and allows the social planner to reduce labor supply
distortions. Hence, the optimal income tax is strictly lower than the static benchmark τSaez

Y .
Conversely, it becomes optimal to subsidize savings and raise the income tax above τSaez

Y if higher-
ranked agents are less inclined to save.

Proof of Proposition 2 using income tax perturbation. Consider a local perturbation of
the marginal income tax similar to Saez (2001). Fix a rank r ∈ (0, 1) and income Y = Y (r),
and for small ∂r > 0, consider a small increase of the marginal income tax by ∂τY > 0, for
ranks r′ ∈ [r, r + ∂r). For ranks r′ ≥ r + ∂r, the marginal income tax is unchanged, but the
level of the tax schedule is shifted up by ∂τY (Y (r + ∂r) − Y (r)). Hence, this tax perturbation
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mechanically raises tax revenues by ∂τY (Y (r + ∂r) − Y (r)) (1 − r) ≈ ∂τY ∂r Y/ρY , which at the
optimum must be exactly offset by the behavioral responses of earnings and savings in response
to the tax change. The behavioral response of earnings can be decomposed into a substitution
effect ∂Y (r′) = −Y ζH

Y,τY
∂τY / (1 − τY ) for ranks r′ ∈ [r, r + ∂r), and an income effect ∂Y (r′) =

ζI
Y (r′) (Y (r + δr) − Y (r)) ∂τY / (1 − τY (r′)) for ranks r′ ≥ r + ∂r. Similarly, we decompose the

behavioral response of savings into a substitution effect ∂S (r′) = −sSY ζ
H
S,τY

∂τY / (1 + τS) for ranks
r′ ∈ [r, r + ∂r), and an income effect ∂S (r′) = sS (r′) ζI

S (r′) (Y (r + ∂r) − Y (r)) ∂τY / (1 + τS (r′))
for ranks r′ ≥ r+∂r. Integrating over r′ > r and letting ∂r go to zero yields the following optimality
condition for income taxes at rank r:

1 = τY

1 − τY
ρY ζ

H
Y,τY

− E
[
ζI

Y

(
r′) τY (r′)

1 − τY (r′)

∣∣∣∣ r′ > r

]
(16)

+sS

(
τS

1 + τS
ρY ζ

H
S,τY

+ E
[

τS (r′)
1 + τS (r′)ζ

I
S

(
r′) sS (r′)

sS (r)

∣∣∣∣ r′ > r

])
.

Equation (16) augments the usual tax perturbation trade-off by a spill-over term from the income
tax to savings that includes both a substitution effect for ranks r′ ∈ [r, r + ∂r) and an income effect
for ranks r′ ≥ r + ∂r. Proposition 2 then follows from taking limits as r → 1.

2.6 General Representation of Optimal Taxes

We can now solve the system consisting of the revenue spillover and no-arbitrage conditions for τY

and τS . We obtain the following representation of optimal income and savings taxes in terms of
sufficient statistics:

Theorem 2. Optimal top income and savings taxes satisfy

τY = τSaez
Y

1 + s̄S ΦS τSaez
Y Σ

and τS = Σ τSaez
Y

1 + s̄S ΦS τSaez
Y Σ − (1 + Σ) τSaez

Y

, (17)

where τSaez
Y is given by (1), Σ is defined in Proposition 1, and ΦS is defined in Proposition 2.

Theorem 2 gives our complete characterization of the optimal top income and savings tax
rates in terms of Pareto coefficients, income and substitution effects. The first equation in (17)
generalizes the top income tax rate formula of Saez (2001), while the second one provides an
analogous representation for savings taxes. Our characterization boils down to three (composite)
sufficient statistics: the optimal static wedge τSaez

Y , the revenue-spillover coefficient ΦS , and the
tax-arbitrage coefficient Σ whose sign governs both the departure of τY from τSaez

Y and the sign of
the savings wedge τS . They derive from five behavioral elasticities (two income effects and three
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substitution effects with respect to changes in income or savings taxes) and the Pareto coefficients
of earnings and either consumption or savings.

Without additional structure, all five of these behavioral responses are necessary since they
play different roles in the optimal tax formulas: The behavioral responses of earnings (ζ̄I

Y ,ζ̄
H
Y,τY

)
determine the trade-off between labor supply and after-tax income in the first stage of the tax design
problem, and hence the value of τSaez

Y . The behavioral responses of savings (ζ̄I
S ,ζ̄

H
S,τY

) determine
the spill-over from income taxes to savings, ΦS . Finally one additional substitution effect with
respect to the savings tax is required to fully identify the tax-arbitrage coefficient Σ.

In Cases 1 and 3, optimal taxes only depend on the static wedge τSaez
Y and the tax-arbitrage

coefficient Σ. A similar result obtains for Case 2 if preferences are weakly separable w.r.t. Y :

Corollary 1. In Case 1 (s̄S = 0), optimal income and savings taxes satisfy

τY = τSaez
Y and τS = Σ τSaez

Y

1 − (1 + Σ) τSaez
Y

. (18)

In Case 3 (s̄C = 0), optimal income and savings taxes satisfy

τY = 1
1 + Σ · τSaez

Y and τS = Σ
1 + Σ · τSaez

Y

1 − τSaez
Y

. (19)

In Case 2, suppose that ECY = ESY . Then optimal income and savings taxes satisfy

τY = τSaez
Y

1 + s̄S (ζ̄H
S,τY

/ζ̄H
Y,τY

) Σ
and τS = Σ τSaez

Y

1 + s̄S (ζ̄H
S,τY

/ζ̄H
Y,τY

) Σ − (1 + Σ) τSaez
Y

. (20)

In Case 1, the tax revenue spillover vanishes while in Case 3 it becomes so large as to equal
1/τSaez

Y . In both cases, it does not need to be separately identified from τSaez
Y , and therefore the

identification problem is summarized by the value of τSaez
Y and the tax-arbitrage coefficient Σ. In

Case 2, the revenue-spillover coefficient ΦS needs to be separately identified, but ΦSτ
Saez
Y equals

ζ̄H
S,τY

/ζ̄H
Y,τY

or ζ̄I
S/(1 − ζ̄I

Y ) whenever preferences are weakly separable with respect to earnings.
When ECY > ESY , we obtain ΦSτ

Saez
Y ∈

[
ζ̄H

S,τY
/ζ̄H

Y,τY
, ζ̄I

S/(1 − ζ̄I
Y )
]

and equation (20) provides an
upper bound for both τY and τS . When ECY < ESY , equation (20) provides a lower bound for τY

and τS .18

18The opposite bounds for τY and τS are obtained by replacing ζ̄H
S,τY

/ζ̄H
Y,τY

with ζ̄I
S/(1 − ζ̄I

Y ) in Equation (20).
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2.7 Simplifying the Representation

Flynn, Schmidt, and Toda (2023) show that for a wide range of consumption-savings problems,
comparative statics w.r.t. changes in rates of return and other primitives depend on the elasticity
of intertemporal substitution and an index of non-homotheticity of preferences. In this section, we
show that the same insight applies here, and use it to further simplify the optimal tax formulas of
Theorem 2 and Corollary 1 by expressing the consumption and savings responses that appear in Σ
in terms of these two statistics, for which we have readily available empirical estimates. We discuss
Case 3 here, and Cases 1 and 2 in the Appendix.

Identifying Preference Elasticities. The two-stage representation of the tax design problem
in section 2.5 implies

1
ζ̄H

Y,τY

= ÊY + R̂A, where R̂A ≡ 1
s̄S/ÊS + s̄C/ÊC

. (21)

Therefore, the three preference elasticities (ÊY , ÊC , ÊS) are fully identified from (ζ̄H
Y,τY

, ζ̄H
C,τY

, ζ̄H
C,τS

)
via equations (12) and (21) and the symmetry condition ζ̄H

Y,τS
= −s̄S ζ̄

H
S,τY

. Following Chetty
(2006b), when preferences are completely separable between earnings, consumption, and savings
(i.e., ECY = ESY = ECS = ESC = 0), then R̂A equals ζ̄I

Y /ζ̄
H
Y,τY

and represents the agents’ relative

risk aversion coefficient over after-tax income M = Y − TY (Y ), defined as RA ≡ −UMMM/UM ,
where U is the indirect utility function for the second-stage problem introduced in Section 2.5. For
general preferences, R̂A differs from RA and satisfies ζ̄I

Y /ζ̄
H
Y,τY

= R̂A− K = RA− K′, where K and
K′ are composite parameters that summarize the strength of preference complementarities between
consumption, savings and earnings. In the empirically relevant Case 3, we have K = ECS + ECY

and K′ = ESY .19

In addition, define the elasticity of intertemporal substitution (EIS)

EIS ≡ − ∂ ln (S/C)
∂ ln (1 + τS)

∣∣∣∣
Y,U

= 1
s̄C ÊS + s̄S ÊC

.

The EIS governs how agents’ consumption and savings decisions respond to marginal changes in the
income tax, holding earnings constant. Since EIS , R̂A, and ζ̄H

C,τY
/ζ̄H

S,τY
= ÊS/ÊC only depend on

(ÊC , ÊS), any two of these statistics fully identify (ÊC , ÊS) along with the third, with ÊY identified by

19More generally, we have K ≥ K′ ≥ 0 if ECS ≥ 0 (intertemporal preference complementarity, such as habit
formation) and ECY ≥ ESY ≥ 0 (preference complementarity between earnings and consumption).
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equation (21).20 This allows us to restate our optimal tax formulae in terms of (i) the compensated
labor supply elasticity ζ̄H

Y,τY
; (ii) the non-homotheticity ζ̄H

C,τY
/ζ̄H

Y,τY
; and (iii) a scaling factor Λ

that can be expressed as a function of either EIS, R̂A, ÊY , or K.21 The non-homotheticity and
the scaling factor are identified from the consumption elasticities (ζ̄H

C,τY
, ζ̄H

C,τS
).

Optimal Taxes in Case 3. In this case, the top earners face a static trade-off between earnings
and savings, with consumption responses to tax changes determined by intertemporal substitution.
We obtain the following characterization of optimal income and savings taxes:

Corollary 2. In Case 3 (s̄C = 0), the optimal income and savings taxes satisfy

τY = τSaez
Y

[
1 − Λ

(
1 −

ρ̄Y ζ̄
H
Y,τY

ρ̄C ζ̄H
C,τY

)]
and τS = τSaez

Y

1 − τSaez
Y

Λ
(

1 −
ρ̄Y ζ̄

H
Y,τY

ρ̄C ζ̄H
C,τY

)
, (22)

where the scaling factor Λ satisfies22

Λ = ζ̄I
Y + K ζ̄H

Y,τY
=

ζ̄H
C,τY

EIS
=

ζ̄H
C,τY

ζ̄H
C,τY

+ ζ̄H
C,τS

.

Moreover, Λ = ζ̄I
Y if preferences are fully separable, and ζ̄H

C,τY
= ζ̄H

Y,τY
if preferences are homothetic.

Corollary 2 clearly identifies the role of consumption moments for optimal taxes. They enter
optimal income and savings taxes in three places: (i) the ratio of Pareto coefficients ρ̄Y /ρ̄C that
describes concentration of consumption vs. earnings and savings; (ii) the ratio of compensated
elasticities ζ̄H

C,τY
/ζ̄H

Y,τY
that identifies the non-homotheticity of preferences over consumption and

savings; and (iii) the scaling factor Λ that captures the curvature of preferences w.r.t. consumption
and savings and scales the optimal savings tax and the departure of τY from τSaez

Y . While the
former is identified from ζ̄H

C,τY
, the latter requires one additional moment which can be obtained

by direct estimates of the EIS or the consumption response to savings tax changes, ζ̄H
C,τS

.23

20Since (R̂A · EIS)−1/2 = s̄C(ÊS/ÊC)1/2 + s̄S(ÊC/ÊS)1/2, we can infer the degree of non-homotheticity ÊC/ÊS

from R̂A · EIS. Equivalently, we can infer R̂A using estimates of EIS and the ratio of the compensated elasticities
ζ̄H

C,τY
/ζ̄H

S,τY
. In Case 3, s̄C = 0 implies EIS = 1/ÊC and RA = ÊS .

21Notice that R̂A, ÊY and K are linked through equation (21) and R̂A = ζ̄I
Y /ζ̄H

Y,τY
+ K.

22As described above, we can also express Λ in terms of R̂A or ÊY as follows: Λ = R̂A · ζ̄H
Y,τY

= 1 − ÊY ζ̄H
Y,τY

.
23Moreover, combining an estimate of EIS with estimates of R̂A, ÊY or K also identifies the non-homotheticity,

since ζ̄H
C,τY

/ζ̄H
Y,τY

= R̂A · EIS. Corollary 2 thus provides comparative statics of optimal taxes w.r.t. the underlying
primitives: For given ζ̄H

Y,τY
, ζ̄I

Y and ζ̄H
C,τY

, the scaling factor Λ is increasing in R̂A and K and decreasing in ÊY and
EIS. In turn, ζ̄H

C,τY
/ζ̄H

Y,τY
is increasing in EIS, R̂A, and K, and decreasing in ÊY . Therefore, if ζ̄H

C,τY
/ζ̄H

Y,τY
≥ ρ̄C/ρ̄Y ,

higher values of R̂A or K, or lower values of ÊY unambiguously increase the gap between τY and τSaez
Y and the absolute

magnitude of τS . For EIS, the comparative statics are ambiguous and depend on whether EIS is used to identify

24



The Cases of Complete Separability and Homotheticity. Moreover, with complete sepa-
rability (K = 0), we get Λ = ζ̄I

Y , and we only need one additional moment to identify ζ̄H
C,τY

/ζ̄H
Y,τY

and therefore determine optimal taxes. Likewise, if preferences are homothetic, ζ̄H
C,τY

/ζ̄H
Y,τY

= 1,
and only one additional moment is required to determine the scaling factor Λ. If preferences are
both homothetic and completely separable—a common assumption in the literature—then equation
(22) simplifies even further as Λ = ζ̄I

Y and ζ̄H
C,τY

/ζ̄H
Y,τY

= 1. That is, the ratio of Pareto coefficients
ρ̄Y /ρ̄C is sufficient to fully identify optimal income and savings taxes, which mechanically revert
to τSaez

Y and 0, respectively, if ρ̄Y = ρ̄C .

The Role of Preference Complementarities. The role of preference complementarities K is
embedded in the scaling factor Λ = ζ̄I

Y + K ζ̄H
Y,τY

. In Case 3, we have K = ECS + ECY , which
thus summarizes the impact of savings and earnings on the marginal utility of consumption. Given
our identification of Λ from compensated elasticities, K is then identified from income effects on
labor supply: ζ̄I

Y + K ζ̄H
Y,τY

= ζ̄H
C,τY

/(ζ̄H
C,τY

+ ζ̄H
C,τS

). For a given income effect on labor supply ζ̄I
Y , a

positive value of K increases Λ, resulting in higher savings taxes and lower income taxes, relative to
the baseline case with completely separable preferences (K = 0). These comparative statics follow
the logic of Corlett and Hague (1953), according to which it is optimal to tax less heavily the good
that is more complementary to earnings.

Moreover, if K ≥ 0 the scaling factor Λ satisfies 1 ≥ Λ ≥ ζ̄I
Y . These two inequalities imply the

following inequality restriction on ζ̄H
C,τY

/ζ̄H
Y,τY

and EIS:

1
ζ̄H

Y,τY

· EIS ≥
ζ̄H

C,τY

ζ̄H
Y,τY

≥ ζ̄I
Y

ζ̄H
Y,τY

· EIS or
ζ̄H

C,τY

ζ̄I
Y

≥ EIS ≥ ζ̄H
C,τY

. (23)

In other words, if K ≥ 0, each estimate of EIS identifies an interval of admissible values for the non-
homotheticity of preferences ζ̄H

C,τY
/ζ̄H

Y,τY
, and each estimate of ζ̄H

C,τY
/ζ̄H

Y,τY
identifies an admissible

range of values for EIS. In combination, these ranges define upper and lower bounds for the
departure of optimal taxes from τSaez

Y and 0. The higher is ζ̄I
Y , the tighter are the bounds on Λ

and therefore on the admissible range of values for EIS and ζ̄H
C,τY

/ζ̄H
Y,τY

. We use these observations
in Section 4 to present three different calibrations of our optimal taxes: one with homothetic
and separable preferences which does not require any additional consumption moments other than

ζ̄H
C,τY

/ζ̄H
Y,τY

, in which case it amplifies the departure of optimal taxes from τSaez
Y and 0, or Λ, in which case it dampens

it. Notice that risk aversion and intertemporal substitution play conceptually different roles for determining optimal
income and savings taxes. The former governs the variation in marginal utilities of after-tax income and thus the
strength of the redistribution motive. The latter governs the responses of consumption and savings to savings taxes.
Both together identify the non-homotheticity in preferences that drives the magnitude of optimal savings distortions.
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Pareto tails; one that matches the pass-through elasticity from permanent income to consumption;
and one that matches empirical estimates of EIS obtained from the response of wealth accumulation
to wealth tax changes.

3 Extensions

We now generalize our baseline results along several important dimensions, allowing for mul-
tiple commodities, multi-period life-cycle economies, heterogeneous initial endowments, multi-
dimensional heterogeneity, heterogeneous rates of return, and dynamic stochastic economies. In all
of our extensions, we assume suitable generalizations of Assumptions 1, 2, and 3, and we then show
how to apply the logic of the no-arbitrage and revenue-spillover conditions, even if their exact form
may change. Here, we describe the main results and leave detailed derivations to the Appendix.

3.1 General Preferences over Multiple Commodities

We first extend Theorem 2 to preferences U (Y,C; r) over efficiency units of labor Y , an arbitrary
N -dimensional vector C = (C1, ..., CN ) of consumption goods, and r ∈ [0, 1]. To generalize As-
sumption 1, we define Un ≡ ∂U/∂Cn and Unr ≡ ∂Ur/∂Cn and assume that UY r/UY < Unr/Un

for all n and Unr/Un is increasing in n. Hence, −UY /Un and Un/Um are decreasing in r whenever
m > n. Each good n is produced at a constant marginal cost of pn efficiency units of labor.

We consider a general social welfare objective with both rank-dependent Pareto weights ω (·)
such that

� 1
0 ω (r) dr = 1 and an increasing and concave Bergson-Samuelson function G (·) that

captures the planner’s attitude towards inequality. The planner chooses a tax function T (Y,C)
that maximizes government revenue

� 1
0 T (Y (r) ,C (r)) dr, subject to (i) the promise-keeping con-

straint
� 1

0 ω (r)G (U (Y (r) ,C (r) ; r)) dr ≥ W0 for some weighted utility promise W0 (with as-
sociated Lagrange multiplier λ), and (ii) the incentive compatibility constraint {Y (r) ,C (r)} ∈

arg maxY,C U (Y,C; r) s.t. ∑N
n=1 pncn + T (Y,C) ≤ Y . We identify good 1 as the numéraire, and

we let τY ≡ 1 +UY /U1 and tn ≡ Un/U1 − 1 for n ≥ 2 denote the marginal income and consumption
tax rates.

As in Section 2, we define the Pareto coefficients {ρY , ρn}, spending shares sn = −CnUn/(UY Y ),
and preference elasticities {EY , En, EnY , Enm}. The preference elasticities are identified, up to one
degree of freedom, from the income and substitution effects of earnings Y and the N different con-
sumption goods with respect to N different tax changes. The latter can—in principle—be estimated
as behavioral responses to income, price, or tax changes.24 We let ẼY = EY −

∑N
n=1 snEnY ρY /ρn

24Specifically with N + 1 different commodities (including efficiency units of labor in the count), there are
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and Ẽn = En − EnY ρn/ρY −
∑

k ̸=n Enkρn/ρk for n = 1, ..., N .
We derive the generalized no-arbitrage and revenue-spillover conditions that link consumption

taxes to income taxes in the Appendix. Solving these conditions yields the following characterization
of top income and consumption taxes generalizing Theorem 2 to an arbitrary number of goods and
arbitrary planner preferences:

Proposition 3. The optimal income and consumption taxes are given by:

τ̄Y = 1 − Γ̄
1/τ̄Saez

Y − Γ̄ +∑N
n=2 s̄nΦnΣn

and t̄n
1 + t̄n

= (1 − Γ̄)Σn

1/τ̄Saez
Y − 1 +∑N

n=2 s̄nΦnΣn

where Σn = Ẽn/ρn−Ẽ1/ρ1
Ẽ1/ρ1+ẼY /ρY

and Φn = ρ̄Y ζ̄
H
n,τY

+ ζ̄I
n, and Γ̄ ≡ λ limr→1 ω (r)G′ (U (r))U1 (r).

These expressions have the same structure and interpretation as in the baseline model. Un-
fortunately, the representation of Σn in terms of compensated elasticities is less transparent with
N > 2 than in the baseline model. Nevertheless, if preferences are separable in earnings (EnY = 0
for all n), we obtain that Φnτ̄

Saez
Y = ζ̄H

n,τY
/ζ̄H

Y,τY
, generalizing Corollary 1. In addition, if preferences

are completely separable (EnY = Enm = 0 for all n and m ̸= n), we recover the same identifying
relations Ẽnζ

H
n,τY

= Ẽ1ζH
1,τY

= 1 − ẼY ζ
H
Y,τY

and ẼY ζ
H
Y,tn

= −Ẽ1ζH
1,tn

as in the baseline model, which
allows us to express τ̄Y and t̄n only in terms of substitution and income effects and generalize the
characterization of optimal income and savings taxes with completely separable preferences to the
case with N commodities and arbitrary planner preferences.

3.2 Income and Savings Taxes over the Life Cycle

We now extend our baseline model to multiple periods to explore how income and savings taxes
should vary with age. Suppose that households work and consume over a fixed number of pe-
riods indexed by t = 0, . . . , T , before enjoying consumption during a final “retirement” period
or equivalently leaving a bequest CT +1. Their preferences are given by ∑T

t=0 β
tUt (Yt, Ct; r) +

βT +1UT +1 (CT +1; r), where the within-period utility function may vary deterministically with age
(for example to capture age-dependence of labor productivity or preferences over consumption),
but otherwise satisfies the same restrictions as in our baseline economy. Their initial rank is drawn
prior to date t = 0 and is their private information. To simplify the analysis, we assume that Ut is
separable between consumption and earnings, UCY,t = 0 for t = 0, . . . , T .

(N + 1) (N + 2) /2 independent preference elasticities, since the off-diagonal elements must satisfy snEnm = smEmn.
They are identified from N independent income effects ζI

n and N (N + 1) /2 independent substitution effects ζH
n,k,

accounting for symmetry of the Slutzky matrix and the usual adding-up constraints. The remaining degree of freedom
accounts for the fact that income and substitution effects are invariant to monotone transformations of U .
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Households and the planner can save at a fixed rate of return R > 0, and savings are assumed to
be observable and taxable. The households’ period-t budget constraint is RSt−1 +Yt −Tt (Yt, St) ≥

Ct + St, where Tt (Yt, St) denotes the total tax payments collected in period t, with S−1 (r) given
and CT +1 = RST .25 The planner chooses the sequence of tax functions {Tt (·, ·)}T

t=0 to maximize
the present discounted value of tax revenue subject to incentive compatibility and a lower bound
on the lowest rank’s lifetime utility. As in Section 2, we define the age-dependent Pareto coeffi-
cients {ρY,t, ρC,t}, within-period spending shares {sC,t, sS,t}, and the behavioral elasticities ζH

Xs,τY,t
,

ζH
Xs,τS,t

, ζI
X,t for X ∈ {Y,C, S}, where the income effects are in response to transfers within the

same period. In addition, let sY,t ≡ R−t (1 − τY,t)Yt/
∑T −1

s=0 R
−s (1 − τY,s)Ys denote the share of

period-t earnings in net life-time income.
Optimal (revenue-maximizing) income and savings taxes τY,t = limr→1 ∂Tt/∂Yt and τS,t =

limr→1 ∂Tt/∂St on top income earners are linked through the no-arbitrage conditions

τS,t

1 + τS,t
= ΣS,t · τY,t

1 − τY,t
and τY,t+1

1 − τY,t+1
= ΣY,t · (1 + τS,t)

τY,t

1 − τY,t
,

where ΣS,t =

ρ̄C,t

ρ̄C,t+1

ζH
Ct,τY,t

ζH
Ct+1,τY,t

− 1

1 −
ρ̄C,tζH

Ct,τS,t

ρ̄Y,tζH
Yt,τS,t

and ΣY,t =

ρ̄C,t

ρ̄C,t+1

ζH
Ct,τY,t

ζH
Ct+1,τY,t

− ρ̄C,t

ρ̄Y,t+1

ζH
Ct,τY,t

ζH
Yt+1,τY,t

1 − ρ̄C,t

ρ̄Y,t

ζH
Ct,τS,t

ζH
Yt,τS,t

.

These conditions fully characterize optimal top income and savings taxes at all ages for a given value
of τY,0. As a direct consequence, we obtain the following result showing how optimal income and
savings taxes should account for age-dependent preferences, income and consumption concentration:

Proposition 4. Optimal savings taxes are positive (resp., zero, negative), i.e. τS,t ⋛ 0, and income

taxes are increasing (resp., constant, decreasing) in age, i.e. τY,t+1 ⋛ τY,t, whenever ρ̄C,tζ
H
Ct,τY,t

⋛

ρ̄C,t+1ζ
H
Ct+1,τY,t

and ρ̄Y,tζ
H
Yt,τS,t

/ζH
Ct,τS,t

⋛ ρ̄Y,t+1ζ
H
Yt+1,τY,t

/ζH
Ct,τY,t

.

Everything else equal, it is optimal to defer tax distortions to periods with higher levels of income
and consumption concentration, or periods with lower elasticity of labor supply and higher risk
aversion over consumption, where the gains from redistribution are higher and the costs of incentive
distortions lower. Therefore, increasing age-dependent income and consumption concentration
provide a rationale for savings taxes and age-dependent income taxes that increase with age. At
the same time, if labor supply elasticities are U-shaped, and highest early and late in life, the above
result suggests that optimal income taxes may be inverse U-shaped.26

25Letting S−1 depend on rank r allows us to incorporate initial heterogeneity in endowments or wealth.
26In contrast to the baseline model, the tax-arbitrage coefficient ΣS,t is based on a trade-off between current and
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Next, we generalize the revenue-spillover condition using a perturbation of the income tax at
any age t holding all other taxes constant:

τY,t

1 − τY,t
=

τSaez
Y,t

1 − τSaez
Y,t

1 − τS,t

1 + τS,t
s̄S,tΦSt,τY,t

−
∑
s̸=t

s̄Y,s

s̄Y,t

(
τS,s

1 + τS,s
s̄S,sΦSs,τY,t

+ τY,s

1 − τY,s
ΦYs,τY,t

)
where ΦXs,τY,t

≡ ζ̄H
Xs,τY,t

ρ̄Y,t + ζ̄I
X,s for X ∈ {Y, S} denote the spillover coefficient from period-t

income taxes to period-s savings and earnings, and τSaez
Y,t = (1 + ζ̄H

Yt,τY,t
ρ̄Y,t − ζ̄I

Y,t)−1 the tax that
maximizes income tax revenue in period t without internalizing revenue spillovers. The dynamic
model admits spillovers within and across periods to both income and savings tax revenue. With
separable preferences, we have ΦSs,τY,t

/ΦYs,τY,t
= −ζ̄I

S,s/ζ̄
I
Y,s, and therefore ΦYs,τY,t

≤ 0 ≤ ΦSs,τY,t

for all s: When τY,t increases, households substitute labor supply and earnings intertemporally from
age t towards other ages, which increases income tax revenue in all other periods; this is reinforced
by income effects of the tax increase. On the other hand, if preferences are separable, raising τY,t

reduces savings in all periods. Hence, intertemporal substitution of labor supply generates negative
spillovers towards savings but positive spillovers towards income in all other periods.

Because of this additional intertemporal substitution channel, the static tax formula τSaez
Y,t

no longer represents the appropriate optimal income tax benchmark in the absence of savings
taxation. Define therefore {τAS

Y,t } as the sequence of optimal income taxes when τS,t = 0 for all t in
the revenue-spillover equation. These are the income taxes that internalize intertemporal revenue
spillovers for income taxes; they are the relevant benchmark, rather than the static optimum τSaez

Y,t ,
to characterize the departure of optimal taxes from uniform commodity taxation in a dynamic
context. We have τAS

Y,t ≥ τSaez
Y,t for all t if ΦYs,τY,t

≤ 0 for all s, t, i.e., the intertemporal substitution
of labor supply unambiguously raises optimal income taxes above the static optimum.

Proposition 5. If preferences are separable, then τY,t ⋛ τAS
Y,t and τS,t ⋚ 0 for all t if and only if

ρ̄C,t+1ζ
H
Ct+1,τY,t

⋛ ρ̄C,tζ
H
Ct,τY,t

for all t.

Proposition 5 extends the equivalence between uniform commodity taxation and optimal income
taxation to a dynamic economy. The main difference with the baseline model is that the income
tax benchmark for uniform commodity taxation changes to {τAS

Y,t } to account for intertemporal

future consumption, not consumption and savings. The change in information rents that is relevant for the one-
period savings distortion is UCr,t+1/UC,t+1 − UCr,t/UC,t, which is different from the one that captures the change
in marginal information rents over all future periods, unless Ct+1 (St, r) is independent of r, i.e. the cross-sectional
variation in savings combined with the causal impact of savings on future consumption fully account for the cross-
sectional variation in future consumption. This knife-edge condition is equivalent to requiring that ρ̄C,t+1ζH

Ct+1,τY,t
=

ρ̄S,tζ
H
St,τY,t

.
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substitution in labor supply. It follows as a direct consequence of Proposition 5 that income taxes
exceed {τAS

Y,t } and a fortiori {τSaez
Y,t } whenever savings are subsidized, but revenue spillovers towards

savings and earnings have opposite effects on optimal income taxes, and hence the comparison
between {τY,t} and {τSaez

Y,t } remains ambiguous whenever it is optimal to tax savings. In addition,
departures from uniform commodity taxation must be uniform, i.e., either it is optimal to tax
savings in all periods and lower the income tax, or it is optimal to subsidize savings in all periods
and increase the income tax above τAS

Y,t .27 In sum, the dynamic economy continues to admit a
direct correspondence between the departure from uniform commodity taxation and the level of
optimal income taxes, highlighting that positive taxation of savings should go hand in hand with
a reduction in income taxes in all periods.

3.3 Multi-Dimensional Heterogeneity

In our baseline model we assumed that agents’ intertemporal marginal rates of substitution co-
move perfectly with their labor productivity. We now extend our two key optimality conditions to
a model with multi-dimensional heterogeneity. We adapt the perturbation-based proofs to allow
for a non-degenerate joint distribution of income, consumption, and savings. For convenience,
we consider tax functions that are asymptotically separable and linear in savings at the top, i.e.,
T (Y, S) = TY (Y ) + τSS for income ranks r sufficiently close to 1. For now this is an ad hoc

restriction on the set of admissible tax policies; below we provide conditions for the optimality of
such an asymptotically affine tax structure.

Formally, let r ∈ (0, 1) denote an agent’s rank in the income distribution, with Y (r) denoting
earnings at rank r. Let α ∈ (0, 1) denote the rank of savings conditional on income, and let S (r, α)
denote the savings at rank α, conditional on income rank r. By construction, r and α are mutu-
ally independent and uniformly distributed on (0, 1). For X ∈ {C, S}, let X (r) ≡

�
X (r, α) dα

denote the average savings and consumption at income rank r. We define the local Pareto co-
efficient of average savings and average consumption as ρX (r) ≡ − (d logX (r) /d log (1 − r))−1.
Importantly, ρS and ρC do not represent the Pareto coefficients of savings and consumption, but
those of the part of savings and consumption that correlates with income, as ρX (r) /ρY (r) =
d logX (r) /d log Y (r) are the elasticities of average savings and average consumption w.r.t. in-
come. We also define the spending shares sS (r, α) ≡ (1 + τS)S (r, α) / ((1 − τY (r))Y (r)) and
sC (r, α) ≡ C (r, α) / ((1 − τY (r))Y (r)), and the average spending shares sX (r) ≡

�
sX (r, α) dα.

Finally, we define substitution and income effects as in Section 2. While (ζH
Y,τY

, ζH
Y,τS

, ζI
Y ) are func-

27Our characterization still applies when it is optimal to tax savings in some periods and subsidize them in others,
but then the sign of revenue spillovers from income to savings taxes is no longer unambiguous.
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tions of r only, (ζH
C,τY

, ζH
C,τS

, ζI
C) and (ζH

S,τY
, ζH

S,τS
, ζI

S) may depend on both r and α. We thus let
ζI

X (r) ≡
�
ζI

X (r, α) (sX (r, α) /sX (r)) dα denote the average income effects conditional on rank r

and weighted by spending shares; the average substitution effects (ζH
X,τY

, ζH
X,τS

) are defined analo-
gously. We assume that all these average elasticities converge to finite constants as r → 1.

With these definitions in place, we extend the no-arbitrage and revenue-spillover conditions to
the multi-dimensional case as follows:

Proposition 6. The optimal tax system with multi-dimensional heterogeneity must satisfy the no-

arbitrage and revenue-spillover conditions (8) and (14), with tax-arbitrage and revenue-spillover

coefficients Σ and ΦS given by

Σ =
ζ̄H

C,τY
ρ̄C − ζ̄H

S,τY
ρ̄S

ζ̄H
C,τS

ρ̄C − ζ̄H
S,τS

ρ̄S + ρ̄C
ρ̄Y

Υ
and ΦS = lim

r→1

�
sS (r, α)
sS (r)

[
ζH

S,τY
(r, α) ρY (r) + ζ̂I

S (r, α)
]

dα,

(24)
where Υ ≡ limr→1Cov{ζ̂I

S (r, α) sS(r,α)
sC(r) ,

Sr(r,α)
S′(r) |r} and ζ̂I

S (r, α) ≡ E[ζI
S (r′, α) sS(r′,α)

sS(r,α) |r′ > r]. In

Case 1 and Case 3, the (unrestricted) optimal tax policy is asymptotically affine, Υ = 0, and Corol-

lary 1 holds exactly given our adjusted definitions of behavioral elasticities and Pareto coefficients.28

The main differences with the analysis of Section 2 are in the adjusted definitions of elastic-
ities and Pareto coefficients, which clarify that optimal income and savings taxes depend on the
co-movement of consumption and savings with income, not on unconditional measures of consump-
tion or savings inequality. The tax-arbitrage coefficient Σ includes an additional Υ term in the
denominator, which appears if income effects on savings vary with α. But the sign of Σ, and
hence of τS , is still determined by that of ζ̄H

C,τY
ρ̄C − ζ̄H

S,τY
ρ̄S , as in our baseline model. More-

over, in the empirically relevant Case 3, the formulas of Section 2 continue to hold exactly in the
multi-dimensional setting.

Return Heterogeneity. Recent empirical evidence suggests that heterogeneous rates of return,
whereby wealthier agents earn higher returns on their savings, are an important component of
the observed concentration of wealth; see, e.g., Bach, Calvet, and Sodini (2020), Fagereng et al.
(2020), and Gaillard et al. (2023). There are two potential sources of such heterogeneity: type
dependence (returns depend on individual types, such as whether they are entrepreneurs or salaried
workers), and scale dependence (returns increase with wealth, regardless of an individual’s type).

28More generally, the optimal tax policy is indeed asymptotically affine only if income and substitution ef-
fects of savings for top earners are constant across α, i.e., limr→1

∂
∂α

(sS (r, α) ζH
S,τY

(r, α)) = limr→1
∂

∂α
ζ̂I

S (r, α) =
limr→1

∂
∂α

ζH
S,τS

(r, α) = 0. If this condition fails the tax authority could gain by tailoring the revenue spillover or
tax-arbitrage perturbation to the strength of income and substitution effects of tax changes on savings.
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Our baseline framework of Section 2 nests these cases assuming that returns depend on savings
(scale dependence) or that they correlate perfectly with labor productivity (type dependence),
while the extension to multi-dimensional heterogeneity naturally allows for ex-ante heterogeneity
in returns and savings that does not perfectly correlate with labor income.

To see this, suppose that agents’ preferences u (Y,C,C2; θ) are defined over earnings Y , first
period consumption C and second-period consumption or final wealth C2, for some primitive type
θ ∈ Θ ⊆ RL, with L ≥ 1. Moreover let C2 be defined by the agents’ private returns on savings,
C2 = R (S; θ, ε)S, where R (S; θ, ε) can depend on savings S to capture scale-dependence, on types
θ, and a shock ε that captures ex post heterogeneity or idiosyncratic return risk that is uncorrelated
with types and savings decisions (S, θ). Substituting for C2 and taking expectations over ε defines
an indirect utility function U (Y,C, S; θ) ≡ E [u (Y,C,R (S; θ, ε)S; θ)] as a function of earnings,
consumption, and initial savings, given type θ, as in our baseline model. This formulation maps
directly into our baseline model if L = 1, or the multi-dimensional extension if L > 1 and preferences
are continuous in θ ∈ Θ with a smooth full-support distribution. It embeds two dimensions of
heterogeneity—in labor productivity and in ex-ante returns—through the dependence on θ of the
functions u and R. If labor productivity is correlated with expected returns to savings, R will
appear to be increasing in the income rank r.

Our optimal tax formulas therefore continue to apply, except that ρ̄S is defined with regards
to initial savings, not final consumption.29 In particular, in Case 3, the budget constraint implies
ρ̄S = ρ̄Y . Since 1/ρ̄C2 = 1/ρ̄S + 1/ρ̄R, where ρ̄C2 and ρ̄R denote respectively the Pareto coefficients
of second-period consumption and rates of return, final wealth can have a thicker tail than labor
income—as in the data. Moreover, since our optimal tax formulas are derived from behavioral re-
sponses of income, consumption, and savings to tax changes, they apply regardless of the underlying
primitives that shape consumption-savings and labor supply decisions. Return heterogeneity (type-
or scale-dependence) and co-variation of income and returns thus influence the relevant behavioral
elasticities, but conditional on the latter they do not separately affect optimal tax design.30

29Similar arguments apply if we allow for type-dependent initial endowments E (θ). Assuming that income and
savings are observable while consumption is treated as a residual, the model with endowments is nested by setting
U (Y, C, S; θ) ≡ E [u (Y, E (θ) + C, R (S; θ, ε) S; θ)], where E (θ) + C is total consumption, and C represents the net
expenditure on first-period consumption. In this case our formulas apply with ρ̄C representing the Pareto coefficient
on net consumption expenditure in the first period, although s̄C may be negative if the top income earners consume
less than their initial endowments. If endowments and labor productivity are perfectly correlated, this extension
reduces to the model of Scheuer and Slemrod (2021), see Section 3.5 below for further discussion.

30Optimal tax formulas expressed in terms of ex-post wealth ρ̄C2 rather than savings ρ̄S , such as Schulz (2021),
must account for whether heterogeneity of returns is driven by scale- or type-dependence.
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3.4 Inverse Euler Equation

We can finally link our results to the “Inverse Euler Equation” that emerges in dynamic Mirrleesian
economies with stochastically evolving types (Golosov, Kocherlakota, and Tsyvinski 2003; Farhi and
Werning 2013; Golosov, Troshkin, and Tsyvinski 2016). Except for Hellwig (2021), this literature
abstracts from heterogeneity in preferences for savings and complementarities between consumption
and labor, which rationalize savings taxes in our setting.

Suppose that there are two periods, in which the agent works and consumes, and preferences are
additively separable across time. Second-period preferences over consumption C2 and earnings Y2

are given by βu2 (C2, Y2; r2, r), where the second period rank r2 ∈ [0, 1] is uniform and i.i.d. across
agents and independent of the first period rank r. By making second-period preferences depend on
the first-period rank, we are allowing for labor productivity to be persistent. First-period savings
S generate a return R > 0. The social planner then sets second-period allocations {C2 (·) , Y2 (·)}
to maximize U2 (S, r) ≡ β

� 1
0 u2 (C2 (r2, r) , Y2 (r2, r) ; r2, r) dr2 subject to incentive compatibility

constraints u2 (C2 (r2, r) , Y2 (r2, r) ; r2, r) ≥ u2 (C2 (r′
2, r) , Y2 (r′

2, r) ; r2, r) for all r2, r′
2 ∈ [0, 1] and

the break-even constraint RS ≥
�

(C2 (r2, r) − Y2 (r2, r)) dr2. That is, our indirect utility function
over savings U2 (S, r) stands for the expected second period utility at given savings S. We can
then characterize the optimal labor distortions in both periods (τY,1, τY,2) and the wedge between
first-period consumption and savings, τS , exactly as in our baseline model, using preferences over
first-period earnings, consumption and savings defined by U1 (Y1, C1; r) + U2 (S, r). In addition, a
simple perturbation argument shows that

1
(1 + τS)U1,C

= 1
U2,S

= E
[

1
βRu2,C (r2, r)

·m (r2, r)
]
, (25)

where we let m (r2, r) ≡ exp
{� r2

1/2(u2,Cr2/u2,C)dr′
2
}
/E
[
exp

{� r2
1/2(u2,Cr2/u2,C)dr′

2
}]

. Thus, the inverse
marginal utility of first-period savings 1/U2,S is equal to an expected inverse marginal utility of
second-period consumption, weighted by an adjustment factor m (r2, r) that accounts for the non-
separability of preferences between consumption and productivity; this adjustment factor is equal
to 1 if u2,Cr2/u2,C = 0. In that case, it is well known (see e.g. Golosov, Kocherlakota, and Tsyvinski
2003; Farhi and Werning 2013; Golosov, Troshkin, and Tsyvinski 2016) that the returns to savings
must be distributed in proportion to inverse marginal utility so as to raise utilities from savings
uniformly, leaving second period incentives to work unaffected by a marginal increase in savings.
When instead u2,Cr2 ̸= 0, returns to savings instead require a further adjustment that takes into
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account the need to preserve second-period incentive compatibility.31

In other words, our characterization of optimal savings wedges naturally extends to a dynamic
Mirrleesian economy, which now combines two separate rationales for taxing savings: the het-
erogeneity in intertemporal marginal rates of substitution or departure from uniform commodity
taxation that is captured by τS , and the adverse incentive effect of savings that the Inverse Euler
equation emphasizes by characterizing the marginal value of savings as a harmonic expectation of
second-period marginal utilities. That being said, our identification for separable preferences di-
rectly identifies optimal income and savings taxes from Pareto coefficients and behavioral responses
of earning, consumption and savings in period 1 without taking a stand on period 2 preferences.
Just like the discussion of return heterogeneity, the 2-period model merely offers a structural in-
terpretation of the reduced-form preferences over consumption and savings in period 1, without
altering their identification or optimal tax design in the initial period.

We kept the present discussion deliberately simple by assuming that ranks were i.i.d. across
time and agents and introducing persistence of types directly in preferences. Hellwig (2021) ana-
lyzes a dynamic Mirrleesian economy with arbitrary Markovian shock processes and non-separable
preferences, generalizing the characterization of optimal savings wedges in equation (25). The main
difference between the fully dynamic characterization and the representation of Theorem 2 is that
the sufficient statistics required to compute optimal taxes are now based on the Pareto coefficients
of earnings, consumption and savings conditional on the entire type sequence or earnings history.32

3.5 Relationship with the Previous Literature

Our results contribute to a recent literature that characterizes optimal savings taxes in terms of
observable sufficient statistics. Closest to our work are Ferey, Lockwood, and Taubinsky (2024),
henceforth FLT, and Scheuer and Slemrod (2021), henceforth SS. We discuss each paper in turn.

Relationship with Ferey, Lockwood, and Taubinsky (2024). Our paper and FLT’s start
from a similar two-period model of earnings, consumption and savings. The core intuition for
savings distortions in both papers relies on moments that identify preference heterogeneity over
savings by separating the cross-sectional variation of savings or consumption with income from
the causal impact of income or tax changes on consumption and savings. FLT’s analysis follows

31See Hellwig (2021) for a general derivation of this incentive adjustment to the Inverse Euler Equation.
32Brendon, Hellwig, and Maideu Morera (2024) further show that this characterization offers a rationale for savings

subsidies if agents have precautionary savings motives and if productivity shocks are persistent. While inconsistent
with our calibration of savings taxes for top income earners, this result may well be more intuitive for low income
earners where precautionary savings motives tend to be the strongest.
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Saez (2002) to express tax rates in terms of the comparison between the cross-sectional variation
of savings with income and the causal effect of earnings on savings. In our case, this separation
occurs instead through the comparison of Pareto coefficients and compensated elasticities.

There are, however, important differences, due to the fact that they use different tax pertur-
bations, resulting in a different set of sufficient statistics.33 While such choices should in principle
be equivalent and matter only for interpretation purposes, they turn out to be critical for optimal
income and savings taxes on top earners in the empirically relevant Case 3 , for the following two
reasons.

First, as we discussed earlier, if the saving share of income converges to 1, savings data—
which include the sufficient statistics used in FLT—become redundant at the top and lose their
informational content. The representation of optimal savings taxes in FLT is then no longer well
identified for top earners; we show that it converges to a ratio of “0 over 0”. Let S (Y, r) ∈

arg maxS U (Y, Y − S − T (Y, S) , S; r) denote the optimal savings of a household of rank r given
income Y . The optimal savings tax in FLT (equation (19)) at rank r can be expressed as:

τS

1 + τS
=

−∂ ln S(Y,r)
∂ ln(1−r)

− ∂ ln S(Y,r)
∂ ln(1+τS)

∣∣∣
Y,T (Y,S)

· Ψ =
1

ρS
− ζH

S,τY
/ζH

Y,τY
· 1

ρY

sC · EIS
· Ψ,

where the denominator represents a compensated elasticity of savings to savings taxes, holding
constant the household’s income Y and total tax burden T (Y, S), and Ψ ∈ (0, 1) is a constant
that depends on the marginal social welfare weights adjusted for income effects. The elasticity
∂ lnS (Y, r) /∂ ln (1 − r) in the first equality captures the effect of preference heterogeneity on sav-
ings for a given income and corresponds to s′

het · (1 − r) /S in FLT. The second equality follows
after taking derivatives and expressing ∂ lnS (Y, r) /∂ ln (1 − r) as the difference between the cross-
sectional heterogeneity in savings, 1/ρS , and the product of the cross-sectional heterogeneity in
earnings, 1/ρY and the causal effect of income on savings, ∂ lnS (Y, r) /∂ lnY , which corresponds
to s′

inc · Y/S in FLT. The latter in turn is equal to ζH
S,τY

/ζH
Y,τY

.34 In Case 3, the causal effect of
earnings on savings, ∂ lnS (Y, r) /∂ lnY = ζH

S,τY
/ζH

Y,τY
, mechanically converges to 1, and the Pareto

coefficients on savings and earnings also have identical limits. Since sC also converges to 0, the
numerator and the denominator in the above expression both converge to 0, even though their ratio

33Other differences include the fact that FLT focus on savings taxes, with income taxes only playing a secondary
role in deriving optimal savings tax formulas. We instead emphasize the interaction between both taxes, and show
how these interactions shape their joint design.

34Perturbing the households’ FOC for savings (1 + τS) UC = US and the budget constraint as in Lemma 1
yields ∂ ln S (Y, r) /∂ ln Y = ÊC/(sS ÊC + sC ÊS) = ζH

S,τY
/ζH

Y,τY
. The perturbation we used to define EIS leads to

−∂ ln S (Y, r) /∂ ln (1 + τS)|Y,T (Y,S) = sC EIS.
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converges to a finite constant. Therefore, FLT’s formula for savings taxes is not identified at the
top. Instead, using the over-identifying restrictions to restate ∂ lnS (Y, r) /∂ ln (1 − r) in terms of
consumption data shows that the optimal savings tax is identified even in Case 3.35

Second, the tax perturbation FLT use to derive optimal savings taxes becomes perfectly co-
linear with their income tax perturbation at the top. Hence their tax perturbations only identify the
combined wedge between earnings and savings, but cannot separately identify optimal top income
and savings taxes. Consider a perturbation that raises the marginal savings tax for a small interval
[r, r + ∂r], holding τY constant.36 This perturbation results in an optimality condition for τS (r)
that trades off the mechanical effect of the tax increase against the income and substitution effects
on savings and the revenue spillovers to income taxes. In Case 3, savings mirror earnings at the
top of the distribution, and therefore the optimality condition for top savings taxes thus reduces
to 1 − τ̄Saez

Y = (1 − τ̄Y )/(1 + τ̄S), which is the same as the revenue spill-over condition (14) for
optimal top income taxes.37 To a first order, top earners only care about the combined tax wedge,
not its decomposition into income and savings taxes. Therefore, a higher income tax leads to a
one-for-one reduction in the optimal savings tax, and vice versa. By contrast, our no-arbitrage
condition considers a shift from income to savings taxes or vice versa, while holding the combined
wedge fixed at the top, thus allowing us to separately identify the optimal top income and saving
taxes, even when consumption has a strictly thinner upper tail than savings.38

In sum, FLT’s optimal tax formulas do not identify tax rates on top earners when s̄C = 0 and
consumption has a thinner tail than income (Case 3 ); outside this case, their representation co-
incides with ours, although the papers emphasize different sufficient statistics. Our model-implied
over-identifying restrictions allow us to shift between representations based on earnings, consump-
tion and savings data, depending on which data sources are informative of optimal top tax rates.

Relationship with Scheuer and Slemrod (2021). SS consider a two period economy with
type-dependent initial endowments E (r) and derive a version of our no-arbitrage condition. We
map the model of SS into our baseline model by defining U (Y,C, S; r) ≡ u (Y,E (r) + C, S; r),

35The tax-arbitrage coefficient Σ in our formulas also converges to a ratio of “0 over 0” if it is estimated using
income and savings data; see the first equality in equation (13). The over-identifying restrictions allow us to identify
the tax-arbitrage coefficient using consumption moments, thus leading to the well-identified expression (8).

36The savings tax perturbation in FLT is slightly more complicated (see their equation (89)) and amounts to
a linear combination of income and savings tax perturbations. This technical complication allows them to handle
situations where income and savings are not co-monotonic; see footnote 47 in their Online Appendix. Imposing a
co-monotonicity assumption allows us to focus on the simpler “Saezian” perturbation of the savings tax schedule.

37Formally, this optimality condition writes 1 = τ̄S
1+τ̄S

(−ρ̄S ζ̄H
S,τS

+ s̄S ζ̄I
S) + τ̄Y

1−τ̄Y
(−ρ̄S ζ̄H

Y,τS
/s̄S − ζ̄I

Y ). In Case 3,
ρ̄S = ρ̄Y , −ζ̄H

Y,τS
= −ζ̄H

S,τS
= ζ̄H

Y,τY
, and s̄S ζ̄I

S = 1 − ζ̄I
Y , and this condition reduces to 1 − τ̄Saez

Y = (1 − τ̄Y )/(1 + τ̄S).
38The colinearity problem in Case 3 arises with any linear combination of income and savings tax perturbations

unless the combined wedge (1 − τ̄Y )/(1 + τ̄S) is kept constant in the limit.
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where E (r) +C is total first-period consumption, C represents the net expenditure on first-period
consumption, and u (Y,C1, C2; r) denote the agents’ preferences over earnings and consumption in
the two periods, for given rank r. The no-arbitrage condition (9)—expressed in terms of preference
elasticities—then becomes

τ̄S

1 + τ̄S
= τ̄Y

1 − τ̄Y
· lim

r→1

USr/US − UCr/UC

UCr/UC − UY r/UY
= τ̄Y

1 − τ̄Y
·

ÊS
ρ̄S

−
(

1
ρ̄C

− E
C1

1
ρ̄E

)
ÊC(

1
ρ̄C

− E
C1

1
ρ̄E

)
ÊC + ÊY

ρ̄Y

where the preference elasticities ÊC , ÊS , and ÊY are defined as in the baseline model, and ρ̄C , ρ̄S ,
ρ̄Y and ρ̄E refer to the Pareto coefficients of first-period consumption, savings, earnings, and en-
dowments. In addition, the budget constraint yields the over-identifying restriction min{ρ̄E , ρ̄Y } =
min{ρ̄C , ρ̄S}. SS further assume that preferences u (Y,C1, C2; r) are separable and homothetic.
These restrictions imply that ÊC = ÊS = 1/EIS = σ, ρ̄C = ρ̄S = ρ̄E , and 1/ÊY equals the Frisch
elasticity of labor supply. We thus obtain Corollary 1 of SS, which states that

τ̄S

1 + τ̄S
= τ̄Y

1 − τ̄Y
·

σ
ρ̄E

E
C1

ÊY
ρ̄Y

+
(
1 − E

C1

)
σ

ρ̄E

,

Using standard values of σ = 1, 1/ÊY = 0.3, ρ̄E = 1.4, ρ̄Y = 1.6, and approximating E/C1

by 1 + β ≈ 1.4, SS provide an estimate of the tax-arbitrage coefficient of 0.56. By assuming
homotheticity and separability, the only rationale for taxing savings stems from the information
rents associated with type-dependent endowments.

This calibration matches the observation that wealth is more concentrated than income, but
it also implies—counterfactually—that first-period consumption is as concentrated as wealth and
that the ratio of endowments to earnings E/Y grows arbitrarily large as r → 1 (see footnote 43
for evidence on the latter). However, if first-period consumption is strictly less concentrated than
endowments and earnings (ρ̄E < ρ̄Y < ρ̄C), then limr→1E/C1 = ∞. But then we obtain that
limr→1 (1 − r) (USr/US − UCr/UC) = ∞ and limr→1 (1 − r) (UCr/UC − UY r/UY ) = −∞ whenever
ÊC > 0, so that the single-crossing condition for labor supply is no longer satisfied. Hence it becomes
optimal in the limit to have arbitrarily large savings taxes, along with large income subsidies. The
reason behind this surprising result is that the richest agents obtain most of their wealth from
endowments, hence savings taxes become the main instrument for taxation, and wealth effects on
labor supply become so strong that the richest agents also have the lowest inclination to work, even
though they are the most productive—implying that labor supply should be subsidized.

Moreover the optimal tax formula is written in terms of preference (rather than behavioral)
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elasticities. When E/Y and sC or sS (or both, if preferences are homothetic) grow arbitrarily large
as r → 1, ζH

Y,τY
and ζH

C,τY
or ζH

S,τY
(or both) converge to zero. In other words, the compensated

elasticities w.r.t. income tax changes lose their power to identify the preference elasticities for
consumption and savings and determine whether preferences are indeed homothetic, as assumed by
SS. This is intuitive: If endowments are more concentrated than earnings, the richest agents receive
virtually all of their wealth through endowments, and their consumption or savings decisions no
longer respond to income tax changes.

4 Calibration

4.1 Parameter Choices

Pareto coefficients (ρ̄Y , ρ̄C). In Gaillard et al. (2023), we apply a statistical procedure to for-
mally estimate these Pareto coefficients and evaluate the estimated Pareto fit against alternatives.
We document that income and consumption both have Pareto tails and estimate their respective
coefficients in the U.S. using the 2005 to 2021 waves of the PSID. Evidence of stable Pareto coef-
ficients already appear around the top 10%, and is therefore not restricted to the very top of the
distribution. Our model features a unique labor income source and is not designed to fully account
for income and wealth concentration at the very top (such as business income, entrepreneurship,
capital gains, etc.). As such, it may thus be best interpreted as applying to the “rich”, i.e., high-
income working professionals in the top 10% of the population, but not the “super-rich” (the top
1% or 0.1%). Our characterization of optimal income and savings taxes remains valid within the
top 5-10% if the relevant sufficient statistics are stable within that range.

We find an estimate of the Pareto coefficient for total income equal to ρ̄Y = 1.8 on average across
years. The average estimate of the Pareto coefficient on consumption is much larger, ρ̄C = 3.1.
Gaillard et al. (2023) show that this result is remarkably robust.39 We further document that the
consumption tail has a similar Pareto coefficient when we restrict the sample to working-age and
retired households separately, while the Pareto coefficient for bequests is much lower and close to
that of wealth. In light of these findings, there is little doubt that the relevant empirical scenario

39In particular, we corrected for under-reporting, performed multiple robustness checks, and considered alternative
data sources that provide more direct information on spending patterns of the richest households. Under-sampling
of the richest households would result in an upwards bias of the estimated Pareto coefficients, but to the extent that
this affects income and consumption equally within a given sample of households, it would not affect the conclusions
about relative magnitudes of consumption vs. income concentration, or the ratio ρ̄Y /ρ̄C . This is consistent with our
finding in Gaillard et al. (2023) that ρ̄Y /ρ̄C is fairly stable across a range of diverse data sources. Moreover, estimates
of Pareto coefficients from income and wealth in the PSID are similar to their analogues from US administrative data,
which suggests that under-sampling is not a major concern within the PSID.
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is Case 3, in which consumption has a substantially thinner tail than labor income, ρ̄C > ρ̄Y , and
the consumption share of income sC converges to 0 as r → 1.40,41

Our baseline model imposes perfect co-monotonicity between earnings and consumption, but the
multidimensional generalization of Section 3.3 clarifies that the relevant Pareto coefficients are those
of average consumption and savings conditional on income. In Figure 1, we therefore compute the
mean consumption and net worth of workers within each income quantile. Such averaging removes
the variation of consumption and net worth conditional on income rank. The figure reports average
consumption and net worth within the 71st; 73rd; 75th; . . . ; 99th quantiles on income, and pools
together all the years of our data. If the distribution of total income has a Pareto tail, the log-
linear relationship between income, on the one hand, and average consumption or average net
worth, on the other hand, implies that the latter also admit Pareto tails. Moreover, the slope
of the relationship yields an estimate of the ratio of their Pareto coefficients. For consumption,
the estimated slope of ρ̄Y /ρ̄C = 0.626 corresponds to a Pareto coefficient for average consumption
equal to ρ̄C = 2.88 when ρ̄Y = 1.8, only slightly below the unconditional Pareto coefficient for
consumption of 3.1.

For net worth, the slope estimate of ρ̄Y /ρ̄W = 1.316 implies, for ρ̄Y = 1.8, a Pareto coefficient
of average net worth of ρ̄W = 1.37, which is close to the unconditional Pareto coefficient for wealth
of 1.4 reported in Gaillard et al. (2023), and well below the Pareto coefficient for total income (or
savings, by virtue of the model’s over-identifying restrictions) of 1.8. Expressing average wealth,
or second-period consumption, W (r) = S (r)R (r) as the product of average savings and gross
returns, the Pareto coefficients of wealth and savings can be reconciled by an elasticity of average
returns to income of ∂ lnR (r) /∂ lnY (r) = 0.316, or a Pareto coefficient on average gross returns
of 5.7. This elasticity implies that as household income is doubled, average compounded returns
must increase by 13% over a 25-year horizon, and average annual returns increase by roughly 50

40These results are consistent also with findings in Toda and Walsh (2015) and Buda et al. (2022).
41PSID consumption may not accurately measure the spending patterns of rich and super-rich households, given

that we have limited or no information on such items as collectibles or political contributions. The only spending
category we could find that is missing from PSID consumption and may be an important share of the richest
households’ budgets is bequests, which are as concentrated as wealth. Hence it may be reasonable to interpret
our non-homothetic preference structure over savings as capturing a warm-glow bequest motive, as in, e.g., De Nardi
(2004), Straub (2019), and Daminato and Pistaferri (2024). Alternatively, since “savings” enters as a residual category
in our budget constraint, one may also interpret our model as breaking household spending into two bundles, one that
is measured as “PSID consumption”, and a residual spending category that includes both savings and unmeasured
consumption. Our savings tax then represents a wedge between PSID consumption and the residual spending category.
This alternative interpretation is especially relevant if PSID consumption data are also used to estimate behavioral
responses. If, for instance, residual spending includes political contributions, a value of τ̄S > 0 suggests for example
that the latter should not be exempt from income taxes, but quite the contrary, taxed at a higher rate than regular
income. This observation follows directly from the principle that “luxury” goods that cater to the tastes of the richest
households should be taxed at a higher rate than regular consumption.
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Figure 1: Ratio of Pareto coefficients: consumption (left) and net worth (right) vs. total income

Note: Average (respectively, median) consumption and net worth for a given income level are represented by the
white triangles (resp., black diamonds).

basis points. While we are not aware of studies estimating the elasticity of average returns to
income, the variation of average returns that is required to close the gap between concentration
of income and wealth appears to be well within the range of return variation by wealth that has
been documented in the empirical literature (Bach, Calvet, and Sodini 2020; Fagereng et al. 2020;
Gaillard et al. 2023).42 Moreover, defining capital income as (R (r) − 1)S (r), the model-implied
Pareto coefficient for capital income is equal to (R− 1) ρ̄Y /(R − 1 + Rρ̄Y /ρ̄R). For a 4% average
annual return compounded over 25 years, we obtain a Pareto coefficient for capital income of 1.2
which is almost exactly the same as the value estimated by Gaillard et al. (2023). This back-
of-the-envelope calculation suggests that we don’t require implausible return heterogeneity and
wealth-dependent returns to close the gap between income and wealth inequality when wealth is
interpreted as second-period consumption. In other words, a stylized model that abstracts from
initial wealth heterogeneity (such as bequests received by age 30, say) still captures the first-order
mechanisms leading to the observed levels of wealth inequality in the overall population.43

We set ρ̄Y = ρ̄S = 1.8 and ρ̄C = 3 (ρ̄Y /ρ̄C = 0.6) in our baseline calibration, which falls

42Daminato and Pistaferri (2024) document a strongly positive rank correlation between earnings and returns,
and their estimates also suggest significant variation in returns by income within the top 20%.

43This will be the case if the share of financial wealth in total wealth (i.e., the sum of financial and human wealth,
where the latter is defined as the net present value of future labor income) is small at age 30. Recent empirical
evidence evidence suggests that over a long horizon (i.e., 25 to 30 years) heterogeneous labor income, savings rates
and asset returns are indeed the main source of wealth accumulation, not initial financial wealth or inheritance. For
example, Black et al. (2024) estimate that inheritances and gifts constitute a small fraction of lifetime resources using
administrative data from Norway and remains less important than labor income even for households with parents in
the top 0.1% of the wealth distribution. Halvorsen et al. (2023) estimate that inheritances and transfers account for
34% of the excess wealth of the top 0.1% at age 50 and significantly less even within the top 1 − 10%. Feiveson and
Sabelhaus (2019) and Bauluz and Meyer (2024) reach similar conclusions using the Survey of Consumer Finances.
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between the unconditional estimate of ρ̄C = 3.1, and the estimate of ρ̄C = 2.88 of the Pareto
coefficient for average consumption. For robustness, we also consider ρ̄Y /ρ̄C = 0.7 (ρ̄C = 2.57),
a very conservative lower bound to account for potential under-reporting of consumption, and
ρ̄Y /ρ̄C = 0.5 (ρ̄C = 3.6) to provide a range of possible estimates for income and savings taxes.

Taxable income elasticities (ζH
Y,τY

, ζI
Y ). In Case 3, the substitution and income effects on

labor supply (ζH
Y,τY

, ζI
Y ) identify the combined wedge between income and savings, τSaez

Y . A vast
literature estimates the elasticities of taxable income with respect to marginal tax rates and lump-
sum transfers. The meta-analysis of Chetty (2012) yields a preferred estimate of the Hicksian
elasticity of ζH

Y,τY
= 0.33, while Gruber and Saez (2002) estimate a value of ζH

Y,τY
= 0.5 for top

income earners. Empirical evidence about the size of the income effects ζI
Y is mixed (see, e.g.,

Keane 2011). Gruber and Saez (2002) find small income effects, while Golosov, Graber, et al.
(2021) estimate that $1 of additional unearned income reduces the pre-tax income by 67 cents in
the highest income quartile, which for a top marginal tax rate of 50% translates into an income effect
of 0.33. In a large-scale field experiment on universal basic income, Vivalt et al. (2024) estimate
an income elasticity of earnings of ζI

Y = 0.28 for low income households, which combines both
intensive and extensive margin responses.44 For our baseline calibration, we choose ζH

Y,τY
= 1/3 for

the Hicksian elasticity and ζI
Y = 1/4 for the income effect. With an income Pareto coefficient of

ρ̄Y = 1.8, these values yield τSaez
Y = 74.1%. We evaluate the robustness of our quantitative results

to the alternative parameter values ζH
Y,τY

= 1/2 (so that τSaez
Y = 60.6%) and ζI

Y = 1/3 (so that
τSaez

Y = 78.9%).
With completely separable preferences, these baseline values imply a scaling factor of Λ = ζI

Y =
0.25. If, moreover, preferences are homothetic, Corollary 2 then implies an optimal top income tax
rate of τY = 66.7% and an optimal savings tax rate of τS/(1 + τS) = 22.2%, increasing the top
earners’ after-tax income by 29 percent but shifting the corresponding tax burden onto savings.
These estimates however abstract from the role of non-homothetic or non-separable preferences.
We need to turn to the consumption responses to tax changes to determine how these additional
channels modify the optimal tax rates prescribed by our model.

Challenges of identifying consumption elasticities. A large literature estimates the con-
sumption responses to permanent income, wage, or rate of return changes net of taxes, in order
to assess available risk-sharing or intertemporal substitution channels. Three challenges arise in

44Reporting on a similar field experiment run in Germany, Bohmann et al. (2025) report negligible effects of
unconditional transfers on participation and hours worked, and small effects on labor earnings.
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translating these estimates to our context. First, they typically focus on uncompensated consump-
tion responses, while our optimal tax formulas are based on compensated elasticities. If preferences
display a stronger complementarity of earnings with consumption than savings (ECY ≥ ESY ), as
commonly assumed, then we can show that

ζH
C,τY

ζH
Y,τY

≥
ζH

C,τY
+ ζI

C

1 − ζI
Y + ζH

Y,τY

≥ ζI
C

1 − ζI
Y

.

Hence, the ratio of income effects ζI
C/(1−ζI

Y ) or the uncompensated pass-through elasticity (ζH
C,τY

+
ζI

C)/(1−ζI
Y +ζH

Y,τY
) provide lower bounds on ζH

C,τY
/ζH

Y,τY
. Moreover these bounds hold with equality

when preferences are weakly separable in earnings (ECY = ESY ).
Second, ζH

C,τY
/ζH

Y,τY
and EIS cannot be chosen independently if preferences admit complemen-

tarities (K ≥ 0). Yet, while many studies estimate each of these statistics, few estimate them
jointly, and there is no guarantee that independent estimates of both statistics are consistent with
the additional restriction (23) implied by K ≥ 0. In the sequel, we therefore propose two differ-
ent calibrations based on estimates of ζH

C,τY
/ζH

Y,τY
and EIS, respectively, while picking the other

statistic to be consistent with complete separability for our baseline quantification.
Third, and most importantly, we need to identify the role of non-homotheticity independently

of preference heterogeneity, as this is the key to identifying the departure of optimal taxes from
Uniform Commodity Taxation. For example, structural estimates that impose homotheticity of
preferences as part of the model (such as Heathcote, Storesletten, and Violante 2014) impose
that the pass-through elasticity from uninsurable after-tax income shocks to consumption equals 1
regardless of the underlying risk preferences, and their estimates of insurable vs. uninsurable income
risk are then mechanically driven by the cross-sectional variation in consumption and earnings that
is captured by our ratio of Pareto tail coefficients. In other words, their overall pass-through of
permanent income shocks to consumption leads to estimates close to the ratio of Pareto coefficients,
while their conditional pass-through of uninsurable permanent income shocks is biased towards
homotheticity. Similarly, unobserved preference heterogeneity and correlation between permanent
income and preferences for savings biases cross-sectional or panel estimates towards the ratio of
Pareto tail coefficients ρ̄Y /ρ̄C .45

45For the same reason, we also do not introduce specific functional form assumptions on preferences, but prefer
to calibrate the relevant elasticities directly from behavioral responses to income and tax changes. For example, the
preference structure that underlies the widely used estimates of French (2005) is incompatible with sC converging to
zero and the ratio between consumption and income Pareto coefficients unless labor supply is completely inelastic at
the very top, contradicting empirical evidence, or this gap is mechanically attributed to preference heterogeneity. But
in that case the calibration would again hard-wire conclusions about optimal savings taxes into the model assumption
rather than identifying how much of this gap is attributable to preference heterogeneity rather than income elasticities.
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We therefore favor estimates that exploit time-series variation of consumption in response to
exogenous income changes at the household level, or estimates from structural models that explicitly
allow for non-homothetic preferences and household-level heterogeneity in savings behavior.

Consumption responses to earnings shocks (ζH
C,τY

/ζH
Y,τY

). Unfortunately, direct evidence on
consumption responses of top earners is scarce and complicated by the fact that the top earners’
MPCs must converge to 0 if ρ̄Y /ρ̄C < 1.46 For low-to-medium income households, the estimates
of consumption responses to unconditional transfers in the universal basic income experiment of
Bartik et al. (2024) and Vivalt et al. (2024) suggest income effects on consumption ζI

C of at least
0.65. Coupled with their estimate of the income effect on earnings of ζI

Y = 0.28, we obtain a lower
bound for ζH

C,τY
/ζH

Y,τY
of 0.90. Bohmann et al. (2025) report consumption and savings responses to

income transfers for the German UBI experiment that imply a pass-through elasticity of permanent
income changes to consumption of 0.75.47 These pass-through elasticities are consistent with panel
estimates that explicitly try to control for preference heterogeneity and correlation between time
preferences and permanent income. Straub (2019) estimates a pass-through elasticity of 0.7 in-
strumenting for permanent income with quasi-differenced future income realizations (if the income
process is persistent but stationary) or the first available income observation (with non-stationary
processes). Lins (2025) estimates a pass-through elasticity of 0.8 when including education and
other proxies to control for heterogeneity in time preferences.48 Blundell, Pistaferri, and Saporta-
Eksten (2016) estimate Marshallian consumption and labor supply elasticities to permanent wage
changes in a two-earner unitary household model exploiting the within-household co-movement of
spousal labor supply decisions. Since a change in marginal income taxes simultaneously raises the
net wage of both household members, we can aggregate their individual elasticity estimates (Table
5) to the household level and find a pass-through elasticity of 0.79.

46Field experiments and panel studies that estimate MPCs do not focus specifically on the top of the distribution.
Applying these estimates requires a leap of faith that results can be extrapolated from average or below-average
income households to the top. Moreover, MPC estimates need to be translated into elasticities (of consumption to
permanent income changes). This is not a major concern for average households whose share of consumption spending
out of after-tax income is observed and likely to be close to 1, but our model implies that these shares, along with
the MPCs, must converge to 0 at the top. This in turn means that the corresponding parameters of interest for our
analysis may end up being very different from those implied by the average MPC or pass-through estimates found in
the literature.

47In comparison to Bartik et al. (2024) and Vivalt et al. (2024), Bohmann et al. (2025) find a much larger increase
in savings and correspondingly a smaller consumption response to income transfers.

48In both papers, the OLS estimates that do not control for unobserved preference heterogeneity are around
0.6, very close to our estimate of ρ̄Y /ρ̄C . Straub (2019) interprets the gap between OLS and IV estimates as a
“consumption-smoothing bias” that he explicitly attributes to correlation between permanent income and unobserved
preferences for savings. Blundell, Pistaferri, and Preston (2008) estimate a pass-through elasticity of 0.64, but they
do not control for the consumption-smoothing bias highlighted by Straub.
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All these estimates suggest that ζH
C,τY

/ζH
Y,τY

is less than 1 but higher than the ratio of Pareto
tail coefficients of 0.6. We set ζH

C,τY
/ζH

Y,τY
= 0.75 as our baseline value. With separable preferences

the EIS is then equal to 1.

Elasticity of intertemporal substitution (EIS). The empirical literature providing estimates
of the elasticity of intertemporal substitution is too large to adequately review here, and estimates
of EIS cover a rather wide range, from values very close to 0 (Hall 1988) to well above 1. The
empirical studies that are closest to our model estimate EIS from consumption responses to tax
changes. Jakobsen et al. (2020) focus specifically on the behavior of the wealthiest households.
Through the lens of a life-cycle model similar to ours, they show that an EIS as large as 2, and even
higher for the very wealthy, is necessary to replicate the quasi-experimental evidence on the effects
of a large wealth tax reform in Denmark on wealth accumulation. This value is consistent with
those of Gruber (2013) and Holm et al. (2024), who estimate EIS ≈ 2 and 1.6, respectively, by
evaluating the spending response to exogenous shifts in the capital income tax rate and a dividend
tax news shock, respectively.49

High values of EIS in turn also require that ζH
C,τY

/ζH
Y,τY

becomes large: With our baseline
calibration of labor supply elasticities, an EIS estimate of 2 requires ζH

C,τY
/ζH

Y,τY
to be at least

1.5, if preferences are separable or complementary. In this case, the utility function displays more
curvature in savings than in consumption and non-homotheticity reinforces the effects of preference
heterogeneity, rather than dampening them—that is, consumption is then the luxury good, i.e. an
individual saves a declining share of her income as she gets richer. The preference parameter
estimates of Jakobsen et al. (2020) are directly consistent with this observation. Their model
explicitly allows for non-homothetic end-of-life consumption or bequest motives and separately
identifies both from the short- and long-run responses of wealth accumulation to a wealth tax
reduction at different ages. For their baseline estimate of EIS between 1.8 and 2.2 for couples
within the top two wealth percentiles, the estimated bequest elasticity implies a non-homotheticity
estimate of ζH

C,τY
/ζH

Y,τY
≈ 1.4, consistent with slightly weaker income effects on labor supply than

our baseline value.50

49Mulligan (2002) also argues for a high value of EIS when estimating intertemporal substitution using tax-adjusted
returns to capital in aggregate data.

50Jakobsen et al. (2020) find even larger estimates of EIS and non-homotheticity by exploiting another source of
variation at the very top of the wealth distribution. Their results are consistent with our observation that estimates of
EIS and non-homotheticity are not independent of each other. Moreover, they report an elasticity of wealth to after
tax returns of around 0.4. Due to the high exemption thresholds, this elasticity primarily captures the substitution
effect −ζH

S,τS
. In Case 3, −ζH

S,τS
converges to ζH

Y,τY
at the top; a value of −ζH

S,τS
= 0.4 is only slightly higher than

our baseline calibration of ζH
Y,τY

= 1/3.
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These estimates are near the upper end of the existing range of estimates, possibly because of
confounding tax avoidance responses to the policy change. But values of EIS well above 1 are
common also in asset pricing, see e.g. Bansal and Yaron (2004) whose preferred calibration of
Epstein-Zin preferences uses an EIS of 1.5. These asset pricing estimates focus on preferences
of investors, who tend to be among the wealthiest households, just like the estimates based on
tax reforms. Moreover, they tend to require that risk aversion is higher than 1/EIS to reconcile
low and stable risk-free rates with high and variable risk premia. But the latter implies that
ζH

C,τY
/ζH

Y,τY
= R̂A ·EIS > 1, again providing support for non-homothetic investor preferences with

larger curvature over bequests or end-of-life wealth than over consumption.
In comparison, macroeconomic estimates used in the business cycle literature tend to be closer

to 1 and cross-sectional estimates focused on consumption responses to interest rates are often well
below 1 (see Best et al. 2020; Ring 2024 for recent examples). Cross-sectional estimates of the
average EIS well below 1 need not be inconsistent with far higher values at the top. Within our
model, the EIS of the richest agents is strictly higher than for the average of the population if and
only if ζH

C,τY
/ζH

Y,τY
> 1. Empirical evidence that the EIS is increasing in wealth (see for example

Jakobsen et al. 2020) thus provides further support for a calibration in which non-homotheticity of
preferences reinforces rather than dampens the case for positive savings taxes.

Consistent with Jakobsen et al. (2020), we use EIS = 2 and ζH
C,τY

/ζH
Y,τY

= 1.5 as our baseline
calibration of EIS and evaluate the robustness of our results to a wide range of other values.

Preference complementarity (K). Our baseline calibration focuses on completely separable
preferences to provide a lower bound on the magnitude of optimal savings taxes and the departure
of income taxes from τSaez

Y when K ≥ 0. For positive K, the optimal taxes are higher both because
K increases the scaling factor Λ and because our calibration strategy no longer provides an exact
value for ζH

C,τY
/ζH

Y,τY
but only a lower bound when ECY > ESY . To explore the role of preference

complementarities, we consider the alternative extreme in which K = (1 − ζI
Y )/ζH

Y,τY
and Λ = 1.

This case provides a theoretical upper bound on the departure from uniform commodity taxation.

Summary of the calibration. Figure 2 summarizes our calibration of consumption moments.
It represents EIS on the horizontal and ζH

C,τY
/ζH

Y,τY
on the vertical axis. The grey-shaded area

represents the combinations of moments that are consistent with the joint restriction (23); its bound
on the right corresponds to the completely separable model with K = 0 and Λ = ζI

Y . The horizontal
line at ζH

C,τY
/ζH

Y,τY
= 1 represents the case of homothetic preferences. The orange lines originating

from ζH
C,τY

/ζH
Y,τY

= ρ̄Y /ρ̄C and EIS = 0 represent “iso-tax lines”, i.e. preference parameters that
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Figure 2: Summary of the Calibration

result in identical values of (τY , τS). The horizontal line at ζH
C,τY

/ζH
Y,τY

= ρ̄Y /ρ̄C represents the set
of preferences under which the optimal taxes are characterized by τSaez

Y and uniform commodity
taxation; the increasing lines for higher values of ζH

C,τY
/ζH

Y,τY
summarize departures towards positive

savings and lower income taxes; and the decreasing lines for lower values of ζH
C,τY

/ζH
Y,τY

summarize
departures towards savings subsidies and higher income taxes.

Focusing on the line with separable preferences, we present optimal taxes for three cases: (i)
the case with homothetic preferences indicated by point A in the figure; (ii) the case with a pass-
through elasticity of ζH

C,τY
/ζH

Y,τY
= 0.75 and EIS = 1 that matches evidence on consumption

responses to permanent income changes, indicated by point B; and (iii) the case with EIS = 2
and ζH

C,τY
/ζH

Y,τY
= 1.5 which matches the evidence on behavioral responses to wealth tax changes,

indicated by point C. As we explained above, while point B may be more representative of the
overall population, the estimates for point C tend to focus more specifically on the top.

4.2 Results

Table 1 summarizes our quantitative results for the optimal top tax rates on income and savings.
While τY represents a marginal labor income tax on gross income, the marginal tax on gross savings
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Table 1: Optimal top labor income and savings taxes
B: ζ̄H

C,τY
/ζ̄H

Y,τY
= 0.75 A: ζ̄H

C,τY
/ζ̄H

Y,τY
= 1 C: EIS = 2

τSaez
Y τY

τS
1+τS

τY
τS

1+τS
τY

τS
1+τS

Baseline values∗ 74.1% 70.4% 12.5% 66.7% 22.2% 63.0% 30.0%
ρ̄Y
ρ̄C

= 0.5 74.1% 67.9% 19.2% 64.8% 26.3% 61.7% 32.2%
ρ̄Y
ρ̄C

= 0.7 74.1% 72.8% 4.5% 68.5% 17.6% 64.2% 27.6%
ρ̄Y = 2 ( ρ̄Y

ρ̄C
= 2

3 ) 70.6% 68.6% 6.3% 64.7% 16.7% 60.8% 25.0%

ζ̄H
Y,τY

= 1
2 ( 1

EIS

ζ̄H
C,τY

ζ̄H
Y,τY

= 1
2 ) 60.6% 57.6% 7.1% 54.5% 13.3% 54.5% 13.3%

ζ̄I
Y = 1

3 ( 1
EIS

ζ̄H
C,τY

ζ̄H
Y,τY

= 1) 78.9% 73.7% 20.0% 68.4% 33.3% 60.5% 46.7%

Λ = 1 ( 1
EIS

ζ̄H
C,τY

ζ̄H
Y,τY

= 3) 74.1% 59.3% 36.4% 44.4% 53.3% 29.6% 63.2%

∗Baseline values: ρ̄Y = 1.8, ρ̄Y /ρ̄C = 0.6, ζ̄H
Y,τY

= 1/3, ζ̄I
Y = 1/4, K = 0.

is equal to τS/(1+τS); this is the variable we report in the table. We set baseline parameter values
ρ̄Y = 1.8, ρ̄Y /ρ̄C = 0.6 (hence ρ̄C = 3), ζ̄I

Y = 1/4, ζ̄H
Y,τY

= 1/3, and K = 0 (hence Λ = ζ̄I
Y ) for the

first row, and we vary these parameters one by one in the subsequent rows. The second column
reports the static optimum τSaez

Y . The other six columns report top marginal tax rates for the
three points labeled B, A, and C in Figure 2, in ascending order of the corresponding EIS and
ζ̄H

C,τY
/ζ̄H

Y,τY
values. For each case we fix ζ̄H

C,τY
/ζ̄H

Y,τY
or EIS as indicated in the top row, and we set

the remaining preference parameter so that ζ̄H
C,τY

/ζ̄H
Y,τY

= (Λ/ζ̄H
Y,τY

) · EIS. In the first four rows,
these values correspond exactly to the ones indicated in Figure 2 where (ζ̄H

C,τY
/ζ̄H

Y,τY
)/EIS = 0.75

and EIS = 4/3 for calibration A, EIS = 1 for calibration B, and ζ̄H
C,τY

/ζ̄H
Y,τY

= 1.5 for calibration C.
In the fifth row, the line depicting separable preferences becomes flatter ((ζ̄H

C,τY
/ζ̄H

Y,τY
)/EIS = 0.5);

hence EIS increases to 2 and 1.5 for calibrations A and B, respectively, and ζ̄H
C,τY

/ζ̄H
Y,τY

= 1 for
calibration C (as a result, calibrations B and C coincide). In the sixth row, the line depicting
separable preferences becomes steeper ((ζ̄H

C,τY
/ζ̄H

Y,τY
)/EIS = 1); hence, the EIS for calibrations A

and B decreases to 1 and 0.75, respectively, while ζ̄H
C,τY

/ζ̄H
Y,τY

increases to 2 for calibration C. In the
last row, we set EIS and ζ̄H

C,τY
/ζ̄H

Y,τY
along the upper limit of the range of admissible preferences

at which Λ = 1. This corresponds to a case of very strong preference complementarities.
Our baseline calibration yields a combined wedge τSaez

Y of 74%. How it is split into income
and savings taxes depends on our calibration of inter-temporal substitution and non-homotheticity.
With homothetic preferences (Calibration A), the optimal top savings tax is 22%, while the op-
timal income tax is reduced to 67%. When we calibrate the pass-through elasticity of income to
consumption to 0.75 and set EIS to 1 (Calibration B), the savings tax drops to 12.5% while the
income tax is at 70.4%. When instead we calibrate the EIS to 2 (Calibration C), the optimal
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savings tax increases to 30% and the income tax drops to 63%. In this last case, the top earners’
after-tax income rises by 43 percent, with a corresponding shift in tax burden towards savings.

To interpret the values of the savings wedge, we translate them into a tax on annualized returns.
Considering an annual return of 4% over a 25-year period from working life to retirement, a savings
tax of τS/(1 + τS) = 30% corresponds to a 1.4% annual tax on accumulated wealth, or a 37%
capital income tax. Alternatively, if we interpret our model as one of retirement savings, a wedge
of 30% means that top income earners will receive a present value of $0.77 of additional pension
payments for each additional dollar in social security contributions.

The next three rows vary the Pareto coefficients. If the Pareto coefficient on consumption
changes (second and third rows), τSaez

Y remains the same, but the split between income and savings
taxes varies, corresponding to a vertical shift of the iso-tax lines in Figure 2. If the Pareto coefficient
on income changes (fourth row), τSaez

Y also changes, which affects the scaling of both income and
savings taxes. Comparing rows 2-4 with the baseline and Calibration A with Calibration B, we
observe the sensitivity of optimal taxes to the ratio of Pareto tail coefficients and pass-through
from income to consumption: As the former varies from 0.5 to 0.7 and the latter from 0.75 to 1,
the optimal savings tax goes from 4.5% to 26.3% – almost a six-fold increase. This observation
illustrates the critical importance of identifying the pass-through elasticity separately from the ratio
of Pareto tails, and of controlling for unobserved preference heterogeneity, since it is the latter that
determines the strength of the savings tax motive. On the other hand, non-homotheticity and
heterogeneity of preferences reinforce each other in Calibration C and therefore the variation in
optimal savings taxes across the four rows is much smaller in absolute or relative terms, from 25%
to 32.2%.

Rows 5 and 6 vary the earnings elasticities. Higher values of the compensated elasticity of
taxable income ζH

Y,τY
reduce the combined wedge on labor income and savings τSaez

Y (fifth row). In
calibrations A and B where ζ̄H

C,τY
/ζ̄H

Y,τY
and Λ are fixed, this simply scales down both the savings

and income tax distortion, while leaving the tradeoff between the two unchanged. In calibration
C, we adjust ζ̄H

C,τY
/ζ̄H

Y,τY
downwards to maintain EIS constant at 2, which reduces the role of

heterogeneity in preferences in accounting for the observed gap between the Pareto coefficients of
income and consumption, and thus reduces the scope for savings taxes.

Conversely, higher values of the income effect on labor supply ζI
Y raise the combined wedge

τSaez
Y , but also shift distortions from income towards savings (sixth row): A higher ζI

Y increases
both τSaez

Y and the scaling factor Λ that enters both taxes and determines the magnitude of the
shift from income to savings taxes. Both shifts contribute to raising the savings tax, which is
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unambiguously increasing in ζI
Y , but they have opposing effects for income taxes. In calibrations

A and B, the increase in τSaez
Y dominates relative to the shift from income to savings taxes. In

Calibration C, ζ̄H
C,τY

/ζ̄H
Y,τY

is increased relative to the baseline to keep EIS constant at 2. In this
case the shift towards savings taxes dominates, leading to a reduction of income taxes relative to
the baseline.

The last row sets the complementarity K to its theoretical upper bound so that Λ = 1. This
scenario corresponds to calibrating the model to the upper limit of the gray area in Figure 2.
In all three calibrations, the savings taxes are between two and three times as large as in the
baseline. Therefore, allowing for intertemporal preference complementarity or complementarity
between consumption and earnings further shifts the tax burden towards savings.

We draw three main conclusions from this calibration exercise. First, all our calibrations suggest
that it is optimal to shift a part of the overall tax burden from income to savings, for reasonable
estimates of the Pareto coefficients and behavioral elasticities of consumption and earnings. De-
pending on the preferred calibration strategy, it is optimal to tax savings of top earners anywhere
between 12.5% and 30%, and to reduce their income tax burden accordingly.

Second, the magnitude of this shift is sensitive to the calibration strategy. Calibrating our
formulas to match consumption responses to wealth taxes (Calibration C) leads to much larger
optimal savings taxes and lower income taxes than calibrating our formulas to match pass-through
of permanent income to consumption (Calibration B), with the homothetic case (Calibration A)
falling in between. The pass-through evidence, which is not specifically tailored to top earners,
suggests that the average household treats savings as a luxury relative to regular consumption,
with a correspondingly higher income elasticity. On the other hand, the estimates based on wealth
tax reforms suggest that the richest households treat their consumption as a luxury relative to
savings or bequests. In the former case, the non-homotheticity mutes the motive for savings taxes
suggested by the gap between consumption and income concentration, while in the latter case, the
non-homotheticity reinforces it. We leave it to future research to reconcile these stark differences
between the estimated pass-through for average households and the inferred pass-through for top
earners, to determine which of these approaches is more policy-relevant.

Third, optimal tax prescriptions are sensitive to precise estimates of the relevant sufficient
statistics, and in particular to being able to estimate the cross-sectional concentration of income
and consumption separately from the causal impact of income on consumption or savings. The
gap between these two measures captures the extent of preference heterogeneity that provides the
primitive rationale for savings taxation. As illustrated by the comparison between Calibration
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A and B, small errors or biases in the estimates of either the ratio of Pareto coefficients or the
pass-through from income to consumption can result in substantial errors in the resulting policy
conclusions. Moreover, estimates of the causal impact of income on consumption or savings that
do not control for preference heterogeneity are likely to be biased and under-estimate the scope of
preference heterogeneity. While unobserved preference heterogeneity has been recognized previously
as a source of estimation bias in pass-through elasticities, we believe the connection between this
bias and the economic rationale for commodity taxation has not been noted before. Exploiting this
connection for econometric tests of (departures from) Uniform Commodity Taxation would be a
promising avenue for future research.

Conclusion

This paper argues that income and savings taxes cannot be studied in isolation; they form instead
an optimal policy mix that must be characterized jointly. Doing so leads to a stark tradeoff
between raising one tax instrument versus the other. If the marginal rate of substitution between
consumption and saving is homogeneous across agents, it is optimal to leave savings undistorted,
as is well known since Atkinson and Stiglitz (1976), but also to set the level of the labor income tax
rate at the static optimum given by Saez (2001). Away from this joint benchmark, it is optimal
to raise (resp., lower) the savings tax rate above zero and simultaneously reduce (resp., increase)
the labor income tax rate below the static optimum, if and only if more productive agents have a
stronger (resp., weaker) taste for saving relative to current consumption. Our novel optimal tax
formulas, expressed in terms of the Pareto coefficients and elasticities of income and consumption,
suggest that it is optimal to shift a significant share of the burden of taxes from income to savings.
Empirical measures of consumption inequality and consumption responses to taxes play a key role
in identifying the direction and magnitude of this shift away from the Saez (2001) and Atkinson and
Stiglitz (1976) benchmark. Given such crucial importance of consumption measures for optimal
taxes, we believe empirical research should devote as much attention estimating them as has been
given to their income counterparts.
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Online Appendix for
“Using Consumption Data to Derive Optimal Income and Capital Tax Rates”

Christian Hellwig and Nicolas Werquin

A Proofs of Section 2 and 3.1

Here, we analyze the optimal tax design problem. To streamline the exposition, we focus on the
general model that we analyzed in Section 3.1, and only later specialize to the baseline model with
consumption and savings.

Agents’ preferences are given by U (Y,C; r) over efficiency units of labor Y and an arbitrary
N -dimensional vector C = (C1, . . . , CN ) of consumption goods, at rank r ∈ [0, 1]. Let Un ≡

∂U/∂Cn > 0 andUY ≡ ∂U/∂Y < 0. We further define Unr ≡ ∂Ur/∂Cn and UY r ≡ ∂Ur/∂Y and
assume that UY r/UY < 0, so that marginal disutility of effort is decreasing in r. For convenience
we index leisure −Y as good 0, and write U0 = −UY and U0r/U0 = UY r/UY < 0. Each good n is
produced at a constant marginal cost of pn efficiency units of labor.

Assumption 4 (Generalized Single-Crossing Condition). The marginal rates of substitution

(MRS) between any two goods m and n is non-decreasing in r, whenever m > n, i.e.

m ⋛ n ⇐⇒ ∂ ln (Um/Un)
∂r

≡ Umr

Um
− Unr

Un
⋛ 0. (26)

The baseline model of Section 2 is a special case of this model with N = 2, C ≡ (C1, C2) = (C, S)
if USr/US ≥ UCr/UC , and C ≡ (C1, C2) = (S,C), if USr/US ≤ UCr/UC .

The social planner chooses a tax function T (Y,C) that maximizes
� 1

0 T (Y (r) ,C (r)) dr, subject
to the incentive compatibility constraint {Y (r) ,C (r)} ∈ arg maxY,C U (Y,C; r) s.t. ∑N

n=1 pnCn +
T (Y,C) ≤ Y , and the promise-keeping constraint

� 1
0 ω (r)G (U (Y (r) ,C (r) ; r)) dr ≥ v0 for some

weighted utility promise v0, and where the social welfare objective allows for both rank-dependent
Pareto weights ω (·) such that E [ω] = 1 and an increasing and concave Bergson-Samuelson function
G (·) that captures the planner’s attitude towards inequality. The Rawlsian social welfare function
corresponds to a limiting case with Pareto weights ω (r) = 0 for all r > 0, i.e. all the weight is given
to the lowest rank, and the promise-keeping constraint reduces to a lower bound constraint on the
lowest rank’s utility, G (U (Y (0) ,C (0) ; 0)) ≥ v0.
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A.1 Mechanism Design Problem

Statement of the planner’s problem. The mechanism design problem consists in choosing an
allocation {Y (r) ,C (r)} that maximizes the net present value of tax revenue

K (v0) = max
Y (r),C(r)

� 1

0

(
Y (r) −

N∑
n=1

pnCn (r)
)
dr (27)

subject to the incentive compatibility constraint

U (Y (r) ,C (r) ; r) ≥ U
(
Y
(
r′) ,C (

r′) ; r
)

(28)

for all types r and announcements r′, and a lower bound on social welfare

� 1

0
ω (r)G (W (r)) dr ≥ v0 (29)

where W (r) is given by the promise-keeping constraint

W (r) = U (Y (r) ,C (r) ; r) . (30)

Relaxed problem and sufficient conditions. An allocation{Y (r) ,C (r)} is locally incentive
compatible if W (r) is continuous and satisfies the envelope condition

W ′ (r) = Ur (Y (r) ,C (r) ; r) (31)

almost everywhere. We focus on allocations that are continuously differentiable w.r.t. r. The
following lemma shows that local incentive compatibility, coupled with a monotonicity condition
on allocations, is sufficient for global incentive compatibility.

Lemma 2 (Sufficient conditions for incentive compatibility). An allocation {Y (r) ,C (r)}
satisfies incentive compatibility (6) whenever it satisfies (i) local incentive compatibility (31), and

(ii)
∑N

k=n Uk (Y (r′′) ,C (r′′) ; r′′)C ′
k (r′′) dr′′ ≥ 0 for n = 1, ..., N . Conversely, suppose that there ex-

ists an open interval (r1, r2) ⊂ (0, 1) such that, for all r′′ ∈ (r1, r2) and for all n = 1, ..., N , we have∑N
k=n Uk (Y (r′′) ,C (r′′) ; r′′)C ′

k (r′′) dr′′ ≤ 0 with at least one strict inequality. Then {Y (r) ,C (r)}
is not incentive compatible.

Proof of Lemma 2. For ease of notation, write X (r) ≡ {Y (r) ,C (r)}. Consider an allocation
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X (r) that is locally incentive compatible and continuously differentiable at every r. We then have

U (X (r) ; r) − U
(
X
(
r′) ; r

)
=

� r

r′

N∑
n=0

Un
(
X
(
r′′) ; r

)
C ′

n

(
r′′) dr′′

=
� r

r′

N∑
n=0

Un (X (r′′) ; r)
Un (X (r′′) ; r′′)Un

(
X
(
r′′) ; r′′)C ′

n

(
r′′) dr′′.

This expression can be rewritten as

U (X (r) ; r) − U
(
X
(
r′) ; r

)
=

� r

r′

� 1

0

U0 (X (r′′) ; r)
U0 (X (r′′) ; r′′)

N∑
n=0

Un
(
X
(
r′′) ; r′′)C ′

n

(
r′′) dr′′

+
N∑

n=1

� r

r′

[
Un (X (r′′) ; r)
Un (X (r′′) ; r′′) − Un−1 (X (r′′) ; r)

Un−1 (X (r′′) ; r′′)

] N∑
k=n

Uk

(
X
(
r′′) ; r′′)C ′

k

(
r′′) dr′′.

Local incentive compatibility implies ∑N
n=0 Un (X (r′′) ; r′′)C ′

n (r′′) = 0, and therefore the first
line in this last expression equals 0. Moreover, due to single-crossing conditions the term in-
side the square brackets in the second line is positive (resp., negative), whenever r > r′′ (resp.,
r < r′′). Therefore, U (X (r) ; r) ≥ U (X (r′) ; r) whenever ∑N

k=n Uk (X (r′′) ; r′′)C ′
k (r′′) ≥ 0 for

all n = 1, ..., N . Conversely, suppose that ∑N
k=n Uk (X (r′′) ; r′′)C ′

k (r′′) dr′′ ≤ 0 for all n and
all r′′ ∈ (r1, r2), with at least one strict inequality. Then U (X (r1) ; r1) < U (X (r2) ; r1) and
U (X (r2) ; r2) < U (X (r1) ; r2), hence incentive compatibility is violated.

The monotonicity is satisfied if for each rank r, there exists a threshold n (r) so that X ′
n (r) ≥ 0

for all goods with index n ≥ n (r), and X ′
n (r) ≤ 0 for all goods with index n < n (r), i.e.,

if the allocation shifts the agents’ consumption bundle at higher ranks towards higher indexed
goods. However, the allocation doesn’t have to be perfectly co-monotonic, i.e., it may be the
case that higher-ranked agents start to consume less of the lower indexed goods. However, since∑N

k=1 Uk (Y (r′′) ,C (r′′) ; r′′)C ′
k (r′′) dr′′ = −UY (Y (r′′) ,C (r′′) ; r′′)Y ′ (r′′), the sufficient condi-

tions for incentive compatibility hold only if Y is increasing in r.
In our baseline economy, these monotonicity conditions hold if: (i) UY (r′′)Y ′ (r′′) ≤ 0, i.e.,

Y is non-decreasing; and (ii) if USr/US > UCr/UC , then UY (r′′)Y ′ (r′′) + UC (r′′)C ′ (r′′) ≤ 0,
or equivalently US (r′′)S′ (r′′) ≥ 0, i.e., S is non-increasing; or (ii′) if USr/US < UCr/UC , then
−UC (r′′)C ′ (r′′) ≤ 0, i.e., C is non-decreasing. Conversely, if S′ (r′′) ≤ 0 and C ′ (r′′) ≤ 0 with
one strict inequality, we must also have Y ′ (r′′) < 0, which implies a violation of the incentive
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compatibility constraint. Therefore, local incentive compatibility combined with co-monotonicity
of income and either consumption or savings is sufficient for global incentive compatibility (6).
Moreover, if USr/US = UCr/UC for all (Y,C, S, r), then the monotonicity of Y (·) and local incentive
compatibility are both necessary and sufficient for incentive compatibility—analogous to the well-
known necessary and sufficient conditions in mechanism design problems with a single decision
margin. If USr/US ̸= UCr/UC for some r, monotonicity of Y and either C or S together are
sufficient, but not necessary, for incentive compatibility. With two decision margins (labor supply
and consumption-savings), incentive compatibility (6) holds if, for any pair of types, the sum
of information rents across both margins is non-negative. Monotonicity of Y guarantees that
information rents along the labor supply margin are always non-negative, while monotonicity of
C or S guarantees that the same holds along the consumption-savings margin. However, (6) may
still hold if information rents are positive along only one of the two margins, i.e., if one of the two
conditions is violated. The partial converse then says that incentive compatibility must be violated
if both conditions are violated over some interval of types, that is, if information rents are negative
along both margins. Lemma 2 generalizes this logic to any number of goods, for one-dimensional
type spaces.

A.2 Solution to the Relaxed Planner’s Problem

Next, we analyze the relaxed planner’s problem of maximizing (27) subject to (29), (30), and (31)
and express its solution in terms of primitives—i.e., the agent’s preferences. Lemma 3 provides a
characterization of optimal income and consumption wedges akin to the well-known “ABC” formula
(Diamond 1998). We use good 1 as the numeraire and write τY ≡ 1+UY /U1 and tn ≡ Un/U1 −1.51

Lemma 3 (Optimal tax system). The optimal income and consumption wedges satisfy

τY (r)
1 − τY (r) = (1 − r)

(
U1r (r)
U1 (r) − UY r (r)

UY (r)

)
γ (r) (32)

and
tn (r)

1 + tn (r) = (1 − r)
(
Unr (r)
Un (r) − U1r (r)

U1 (r)

)
γ (r) (33)

where

γ (r) = E
[{

1 − λω
(
r′)G′ (W (

r′))U1
(
r′)} U1 (r)

U1 (r′) exp
(� r′

r

U1r (r′′)
U1 (r′′) dr

′′
)∣∣∣∣∣ r′ ≥ r

]
(34)

51Throughout, we write X (r) ≡ X (Y (r) , C (r) ; r) for any function X of both {Y (r) , C (r)} and the type r.
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with

λ =
E
[

p1
U1(r′) exp

(
−
� 1

r′
U1r(r′′)
U1(r′′) dr

′′
)]

E
[
ω (r′)G′ (W (r′)) exp

(
−
� 1

r′
U1r(r′′)
U1(r′′) dr

′′
)] .

Thus, Assumption 1 implies that τY (r) > 0, and tn (r) > 0 for all r.52

Proof of Lemma 3. Problem (27) subject to (29)-(30)-(31) is an optimal control problem with
W (·) as the state variable, and C (·), Y (·), and S (·) as controls. Defining λ, ψ (r), and ϕ (r) as
the multipliers on these respective constraints, the Hamiltonian is given by:

H =
N∑

n=1
pnCn (r) − Y (r) + ϕ (r)Ur (Y (r) ,C (r) ; r)

+λω (r) (W0 −G (W (r))) + ψ (r) {W (r) − U (Y (r) ,C (r) ; r)} .

The first-order conditions with respect to the allocations Y (·), and C (r) yield:

ψ (r) = 1
−UY (r) + ϕ (r) UY r (r)

UY (r) = pn

Un (r) + ϕ (r) Unr (r)
Un (r) .

The first-order conditions for Y (·), and C (r) define a shadow cost of utility of agents with rank
r, ψ (r), which consists of a direct shadow cost 1/Un (r) or 1/(−UY (r)) of increasing rank r utility
through higher consumption of good n or lower income, and a second term that measures how
such a consumption or income increase affects Ur (r) and thereby tightens or relaxes the local
incentive compatibility constraint at r by Unr (r) /Un (r) or UY r (r) /UY (r). The latter is weighted
by the multiplier ϕ (r) and added to the former. Combining the first two first-order conditions and
rearranging terms then yields the following static optimality conditions:

p1
U1 (r)

τY (r)
1 − τY (r) = 1

−UY (r) − p1
U1 (r) =

(
U1r (r)
U1 (r) − UY r (r)

UY (r)

)
ϕ (r)

and
p1

U1 (r)
tn (r)

1 + tn (r) = p1
U1 (r) − pn

Un (r) =
(
Unr (r)
Un (r) − U1r (r)

U1 (r)

)
ϕ (r) .

Hence, we obtain equations (32) and (33), with γ (r) = ϕ(r)
1−rU1 (r) /p1.

The multipliers ϕ (·) and λ are derived by solving the linear ODE ϕ′ (r) = −∂H/∂W , after

52We use Assumption 4 only to guarantee that local incentive compatibility and monotonicity are sufficient for
global incentive compatibility. The results that τY (r) > 0 for each r and tn (r) > 0 inherits the sign of Unr/Un −
U1r/U1 applies even without 4 provided that only local IC constraints are binding.
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substituting out ψ (r) using the first first-order condition:

ϕ′ (r) = − ∂H

∂W
= λω (r)G′ (W (r)) − ψ (r) = λω (r)G′ (W (r)) − p1

U1 (r) − ϕ (r) U1r (r)
U1 (r) ,

along with the boundary conditions ϕ (0) = ϕ (1) = 0. Define

mn (r) = exp
(

−
� 1

r

Unr (r′)
Un (r′) dr

′
)

and mY (r) = exp
(

−
� 1

r

UY r (r′)
UY (r′) dr

′
)

so that Unr (r) /Un (r) = m′
n (r) /mn (r) and UY r (r) /UY (r) = m′

Y (r) /mY (r). Substituting m1 (r)
into the previous ODE and integrating out yields

ϕ (r)m1 (r) =
� 1

r

(
1 − λω

(
r′)G′ (W (

r′))) p1
U1 (r′)m1

(
r′) dr′,

or
ϕ (r)
1 − r

= E
[(

1 − Γ
(
r′)) p1

U1 (r′)
m1 (r′)
m1 (r)

∣∣∣∣ r′ ≥ r

]
,

where Γ (r) = λω (r)G′ (W (r))U1 (r) /p1. The boundary condition ϕ (0) = 0 then gives λ =
p1E[m1U

−1
1 ]/E[Γm1U

−1
1 ]. Therefore,

γ (r) = E
[
U1 (r)
U1 (r′)

m1 (r′)
m1 (r)

∣∣∣∣ r′ ≥ r

]{
1 − E [Γ (r′) ·m1 (r′) /U1 (r′)| r′ ≥ r]

E [m1 (r′) /U1 (r′)| r′ ≥ r]

}
.

Substituting this expression into the static optimality condition then yields equation (34). Applying
analogous steps using mn or mY , we obtain the alternative representations Γ (r) = λω (r)G′ (W (r))

ϕ (r)
1 − r

= E
[ 1

−UY (r′)
mY (r′)
mY (r)

∣∣∣∣ r′ ≥ r

]
− λE

[
ω
(
r′)G′ (W (

r′)) mY (r′)
mY (r)

∣∣∣∣ r′ ≥ r

]

and

ϕ (r)
1 − r

= E
[

pn

Un (r′)
mn (r′)
mn (r)

∣∣∣∣ r′ ≥ r

]
− λE

[
ω
(
r′)G′ (W (

r′)) mn (r′)
mn (r)

∣∣∣∣ r′ ≥ r

]

with

λ =
E
[

pn

Un(r′)mn (r′)
]

E [ω (r′)G′ (W (r′))mn (r′)] =
E
[

1
−UY (r′)mY (r′)

]
E [ω (r′)G′ (W (r′))mY (r′)] .

This concludes the proof.
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Atkinson and Stiglitz (1976) theorem. The theorem of Atkinson and Stiglitz (1976) and its
converse follow easily from the proof of Proposition 3.

Lemma 4 (Uniform commodity taxation). The optimal wedges satisfy tm (r) ⋛ tn (r) if and

only if Umr (r) /Um (r) ⋛ Unr (r) /Un (r), which holds if and only if m ⋛ n. In particular, in

our baseline economy, we obtain US (r) ⋛ UC (r), or τS (r) ⋛ 0, if and only if USr (r) /US (r) ⋛

UCr (r) /UC (r).

Proof of Lemma 4. For any two goods m ̸= n, the first-order conditions of the planner’s problem
read

pm

Um (r) = pn

Un (r) + ϕ (r)
(
Unr (r)
Un (r) − Umr (r)

Um (r)

)
,

We immediately obtain that Un (r) /Um (r) = pn/pm or tm = tn for all r if and only if Umr (r) /Um (r) =
Unr (r) /Un (r) for all r, or the MRS Um (r) /Un (r) is uniform across types. Conversely, we have
Um (r) /Un (r) ⋛ pm/pn and tm ⋛ tn iff Umr (r) /Um (r) ⋛ Unr (r) /Un (r). By our ordering of goods
according to the generalized single-crossing conditions, this is equivalent to m ⋛ n.

No Arbitrage conditions. By taking the ratios of equations (32) and (33) we immediately
obtain the no-arbitrage conditions

tn (r)
1 + tn (r) = Σn (r) τY (r)

1 − τY (r) , where Σn (r) ≡ Unr (r) /Un (r) − U1r (r) /U1 (r)
U1r (r) /U1 (r) − UY r (r) /UY (r) ,

for any n = 2, ..., N . In our baseline model this condition reduces to equation (9). It remains to
map Σn into preference parameters and behavioral elasticities.

A.3 Identification, Step 1: Optimal taxes in terms of preference elasticities

We finally map the model primitives that appear on the right-hand sides of equations (32) and
(33) to our empirically observable sufficient statistics. First, we express the optimal tax formulas
in terms of preference elasticities and Pareto coefficients. The following result generalizes Lemma
1 in Saez (2001) to our economy.

Lemma 5 (Identification: preference elasticities). For any given system of tax distortions

{τY (r) , tn (r)}, we have

(1 − r)
(
U1r

U1
− UY r

UY

)
= Ẽ1

ρ1
+ ẼY

ρY
+ d ln (1 − τY )

d ln (1 − r) (35)

(1 − r)
(
Unr

Un
− U1r

U1

)
= Ẽn

ρn
− Ẽ1
ρ1

− d ln (1 − tn)
d ln (1 − r) . (36)
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where Ẽn = En − EnY ρn/ρY −
∑

k ̸=n Enkρn/ρk for n = 1, ..., N , and ẼY = EY −
∑N

n=1 snEnY ρY /ρn.

Proof of Lemma 5. Totally differentiating Un (r) and −UY (r) yields

d
drUn (r)
Un (r) = Unn (r)Cn (r)

Un (r)
C ′

n (r)
Cn (r) +

∑
k ̸=n

Unk (r)Ck (r)
Un (r)

C ′
k (r)

Ck (r) + UnY (r)Y (r)
Un (r)

Y ′ (r)
Y (r) + Unr (r)

Un (r)

and

d
dr (−UY (r))

−UY (r) = UY Y (r)Y (r)
UY (r)

Y ′ (r)
Y (r) −

N∑
n=1

Un (r)Cn (r)
−UY (r)Y (r)

UnY (r)Y (r)
Un (r)

C ′
n (r)

Cn (r) + UY r (r)
UY (r) .

These equations can be rewritten as

− d lnUn (r)
d ln (1 − r) = (1 − r) Unr (r)

Un (r) − En (r)
ρn (r) + EnY (r)

ρY (r) +
∑
k ̸=n

Enk (r)
ρk (r) = (1 − r) Unr (r)

Un (r) − Ẽn (r)
ρn (r)

and

−d ln (−UY (r))
d ln (1 − r) = (1 − r) UY r (r)

UY (r) + EY (r)
ρY (r) −

N∑
n=1

sn (r) EnY (r)
ρn (r) = (1 − r) UY r (r)

UY (r) + ẼY (r)
ρY (r) .

Combining these equations and using the first-order conditions 1−τY = −UY /U1 and 1+tn = Un/U1

yields equations (35) and (36).

Next, combining equations (35) and (36) with equations (32) and (33), we can express the
optimal top tax rates in terms of the preference elasticities:

Lemma 6 (Optimal tax rates on top earners). Let Γ̄ ≡ limr→1 λω (r)G′ (W (r))U1 (r) /p1

denote the marginal social welfare weight of top income earners. Optimal income and consumption

taxes on top income earners satisfy

τY = 1 − Γ̄
1/τ̄∗

Y − Γ̄
where τ̄∗

Y = Ẽ1/ρ1 + ẼY /ρY

1 + ẼY /ρY

. (37)

and

t̄n = 1 − Γ̄
1/t̄∗n + Γ̄

where t̄∗n = Ẽn/ρn − Ẽ1/ρ1
1 − Ẽn/ρn

. (38)

Moreover, the tax arbitrage coefficient satisfies

Σn = Ẽn/ρn − Ẽ1/ρ1
Ẽ1/ρ1 + ẼY /ρY

. (39)
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Proof of Lemma 6. Ignoring the tax progressivity terms which converge to zero at the top,
equations (32) and (33) can be rewritten as

τY (r)
1 − τY (r) =

(
Ẽ1 (r)
ρ1 (r) + ẼY (r)

Y (r)

)
E
[(

1 − Γ
(
r′)) U1 (r)

U1 (r′)
m1 (r′)
m1 (r)

∣∣∣∣ r′ ≥ r

]

and
tn (r)

1 + tn (r) =
(

Ẽn (r)
ρn (r) − Ẽ1 (r)

ρ1 (r)

)
E
[(

1 − Γ
(
r′)) U1 (r)

U1 (r′)
m1 (r′)
m1 (r)

∣∣∣∣ r′ ≥ r

]
where

U1 (r)
U1 (r′)

m1 (r′)
m1 (r) = U1 (r)

U1 (r′) exp
(� r′

r

U1r (r′′)
U1 (r′′) dr

′′
)

= exp
[� r′

r

(
U1r (r′′)
U1 (r′′) −

d
drU1 (r′′)
U1 (r′′)

)
dr′′

]
= exp

(� r′

r
Ẽ1
(
r′′) C ′

1 (r′′)
C1 (r′′)dr

′′
)
.

Taking the limit as r → 1 and using the fact that C1 follows a Pareto distribution with tail coefficient
ρ1, we obtain

τ̄Y

1 − τ̄Y
= (1 − Γ̄) Ẽ1/ρ1 + ẼY /ρY

1 − Ẽ1/ρ1
and t̄n

1 + t̄n
= (1 − Γ̄) Ẽn/ρn − Ẽ1/ρ1

1 − Ẽ1/ρ1

Equations (37), (38) and (39) follow immediately.

A.4 Revenue Spillover Condition and Proof of Proposition 2

In this section, we break the mechanism design problem into two stages: a first stage in which
the social planner designs the income tax schedule TY (Y ) and the agent trades off between labor
supply and after tax earnings M ≡ Y − TY (Y ), and a second stage in which the social planner
sets the consumption tax schedule T̂ (C) and the agent allocates after-tax earnings to different
consumption goods. Here we take the outcome of the second stage as given and focus on the design
of the optimal income tax function for given consumption taxes T̂ (C (r)).

First-Stage Mechanism Design Problem. Define

U (Y,M ; r) ≡ max
C

U (Y,C; r) s.t. M ≥ T̂ (C) +
N∑

n=1
pncn
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and

C (Y,M ; r) = arg max
C

U (Y,C; r) s.t. M ≥ T̂ (C) +
N∑

n=1
pncn

as the indirect utility function and the optimal consumption vector that characterize the solution
to the second-stage problem, given earnings Y and after-tax income M = Y −TY (Y ). The optimal
first-stage allocation solves

max
{Y (·),M(·)}

� 1

0

(
TY (Y (r)) + T̂ (C (Y (r) ,M (r) ; r))

)
dr

subject to promise-keeping W (r) = U (Y (r) ,M (r) ; r), local incentive compatibility W ′ (r) =
Ur (Y (r) ,M (r) ; r), and the ex-ante promise-keeping condition

� 1
0 ω (r)G (W (r)) dr ≥ W0. The

Hamiltonian to this program reads

H = M (r) − Y (r) − T̂ (C (Y (r) ,M (r) ; r)) + ϕ (r) Ur (Y (r) ,M (r) ; r)

+λω (r) (W0 −G (W (r))) + ψ (r) {W (r) − U (Y (r) ,M (r) ; r)} .

The first-order conditions for M and Y imply

ψ (r) = 1
−UY (r)

[
1 +

N∑
n=2

tnpn
∂Cn

∂Y

]
+ ϕ (r) UY r (r)

UY (r) = 1
UM (r)

[
1 −

N∑
n=2

tnpn
∂Cn

∂M

]
+ ϕ (r) UMr (r)

UM (r) ,

which we solve to find

τY

1 − τY
+

N∑
n=2

tnpn

(
∂Cn

∂M
+ 1

1 − τY

∂Cn

∂Y

)
= (1 − r)

(UMr

UM
− UY r

UY

)
ϕ (r)
1 − r

UM (r)

Defining sn ≡ (1 + tn) pnCn/ ((1 − τY )Y ) and sM ≡ M/ ((1 − τY )Y ), this condition can be rewrit-
ten as

τY

1 − τY
+

N∑
n=2

tn
1 + tn

sn

(
∂ lnCn

∂ lnM
1
sM

+ ∂ lnCn

∂ lnY

)
= (1 − r)

(UMr

UM
− UY r

UY

)
ϕ (r)
1 − r

UM (r) .

The multiplier ϕ (r) solves

ϕ′ (r) = − ∂H

∂W
= λω (r)G′ (W (r))−ψ (r) = λω (r)G′ (W (r))− 1

UM

[
1 −

N∑
n=2

tnpn
∂Cn

∂M

]
−ϕ (r) UMr (r)

UM (r)

65



with the boundary conditions ϕ (0) = ϕ (1) = 0. Define m (r) = exp
(
−
� 1

r
UMr(r′)
UM (r′) dr

′
)
, so that

UMr (r) /UM (r) = m′ (r) /m (r). Substituting into the previous ODE and integrating out yields

ϕ (r)m (r) =
� 1

r

(
1 − λω

(
r′)G′ (W (

r′))UM

(
r′)−

N∑
n=2

tnpn
∂Cn

∂M

)
1

UM (r′)m
(
r′) dr′,

or
ϕ (r)
1 − r

UM (r) = E
[(

1 − Γ
(
r′)−

N∑
n=2

tn
1 + tn

sn
∂ lnCn

∂ lnM
1
sM

)
UM (r)
UM (r′)

m (r′)
m (r)

∣∣∣∣∣ r′ ≥ r

]

with Γ (r) = λω (r)G′ (W (r)) UM (r) and λ such that ϕ (0) = 0.53 The marginal consumption taxes
tn enter in two places: First, the efficiency cost of tax distortions on the left-hand side includes both
the direct efficiency cost of the income tax distortion, τY / (1 − τY ), and the additional spill-over
effect to consumption tax revenue at rank r, which is given by ∑N

n=2
tn

1+tn
sn

(
∂ ln Cn
∂ ln M

1
sM

+ ∂ ln Cn
∂ ln Y

)
.

Second, the shadow price of redistribution γ (r) ≡ ϕ (r) UM (r) / (1 − r) is reduced by the fact that
some redistribution takes place through consumption taxes.

First-Stage Identification. Define ĚM ≡ −UMMM/UM , ĚY ≡ UY Y Y/UY , ĚMY ≡ UMY Y/UM ,
sM ≡ M/ (1 − τY )Y and ρM (r) ≡ − (d lnM (r) /d ln (1 − r))−1. We obtain the following first-stage
analogue of Lemma 5, already linking the preference elasticities ĚM , ĚY , and ĚMY to behavioral
elasticities ζI

Y and ζH
Y,τY

:

Lemma 7 (Identification (first stage)). For any given income tax distortion {τY (r)}, we have

−d ln UM (r)
d ln (1 − r) = ĚM/sM − ĚMY

ρY
+ (1 − r) UMr

UM
= ζI

Y

ρY ζH
Y,τY

+ (1 − r) UMr

UM
(40)

and

−d ln (−UY (r))
d ln (1 − r) = ĚY − ĚMY

ρY
+ (1 − r) UY r

UY
= 1 − ζI

Y

ρY ζH
Y,τY

+ (1 − r) UY r

UY
(41)

and

(1 − r)
(UMr

UM
− UY r

UY

)
= ĚY − 2ĚMY + ĚM/sM

ρY
+ d ln (1 − τY )

d ln (1 − r) = 1
ρY ζH

Y,τY

− d ln (1 − τY )
d ln (1 − r) . (42)

Proof. Since M = Y − TY (Y ), it follows that (M ′ (r) /M (r)) sM = Y ′ (r) /Y (r) and sM/ρM =

53By the envelope condition UM (r) = U1 (r) /p1, this definition of Γ (r) is the same as in Lemma 6.
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1/ρY . Differentiating UM and −UY w.r.t. r yields

d ln UM

dr
= UMr

UM
− ĚM

M ′ (r)
M (r) + ĚMY

Y ′ (r)
Y (r) = UMr

UM
−
(
ĚM/sM − ĚMY

) Y ′ (r)
Y (r)

and
d ln (−UY )

dr
= UY r

UY
+ ĚY

Y ′ (r)
Y (r) − ĚMY sM

M ′ (r)
M (r) = UY r

UY
+
(
ĚY − ĚMY

) Y ′ (r)
Y (r)

and
UMr

UM
− UY r

UY
=
(
ĚY − 2ĚMY + ĚM/sM

) Y ′ (r)
Y (r) − d ln (1 − τY )

dr
.

Perturbing the first-order condition 1−τY = −UY /UM with respect to compensated changes income
tax changes ∂τY yields

∂τY

1 − τY
=
(
ĚY − ĚMY

) ∂Y
Y

+
(
ĚM − sM ĚMY

) ∂M
M

with sM∂M/M = ∂Y/Y , and therefore ζH
Y,τY

= (ĚY − 2ĚMY + ĚM/sM )−1. Substituting this
expression into the one for UMr/UM − UY r/UY then yields equation (42).

Similarly, perturbing the budget constraint along with the perturbation of the FOC by a lump
sum transfer ∂T yields sMζI

M = 1 − ζI
Y and

0 =
(
ĚY − ĚMY

)
ζI

Y +
(
ĚM − sM ĚMY

)
ζI

M

from which it follows that

ĚY − ĚMY = 1 − ζI
Y

ζH
Y,τY

and ĚM/sM − ĚMY = ζI
Y

ζH
Y,τY

.

Substituting these expressions into d ln UM/dr and d ln (−UY ) /dr yields equations (40) and (41).

The Revenue Spillover Condition on Top Income Earners. Therefore, taking limits as
r → 1, we obtain

lim
r→1

(UMr

UM
− UY r

UY

)
UMϕ =

(
1 − Γ̄ −

N∑
n=2

tn
1 + tn

s̄n
∂ lnCn

∂ lnM
1
sM

)
1

ζ̄H
Y,τY

ρ̄Y − ζ̄I
Y

,
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and the optimality condition for τ̄Y can be re-stated as:

τ̄Y

1 − τ̄Y
= τ̄Saez

Y

1 − τ̄Saez
Y

(
1 − Γ̄ −

N∑
n=2

t̄n
1 + t̄n

s̄nΦn

)

where τ̄Saez
Y = (1 + ζ̄H

Y,τY
ρ̄Y − ζ̄I

Y )−1 and

Φn = ∂ lnCn

∂ lnM
1
sM

+
(
∂ lnCn

∂ lnM
1
sM

+ ∂ lnCn

∂ lnY

)(
ζ̄H

Y,τY
ρ̄Y − ζ̄I

Y

)
.

Finally, since ζH
n,τY

= ∂ ln Cn
∂ ln M ζH

M,τY
+ ∂ ln Cn

∂ ln Y ζH
Y,τY

and ζH
Y,τY

= sMζH
M,τY

, we have ∂ ln Cn
∂ ln M

1
sM

+ ∂ ln Cn
∂ ln Y =

ζH
n,τY

/ζH
Y,τY

. In addition, ζI
n = ∂ ln Cn

∂ ln M ζI
M − ∂ ln Cn

∂ ln Y ζI
Y and 1 − ζI

Y = sMζI
M , so that

ζI
n = ∂ lnCn

∂ lnM
1
sM

(
1 − ζI

Y

)
− ∂ lnCn

∂ lnY ζI
Y = ∂ lnCn

∂ lnM
1
sM

−
ζH

n,τY

ζH
Y,τY

ζ̄I
Y

and therefore, we obtain

Φn = ∂ lnCn

∂ lnM
1
sM

−
ζH

n,τY

ζH
Y,τY

ζ̄I
Y + ζH

n,τY
ρ̄Y = ζ̄I

n + ζH
n,τY

ρ̄Y .

The revenue spill-over condition nests the one for the baseline model with N = 2 and the spill-over
term ∑N

n=2
t̄n

1+t̄n
s̄nΦn on the right-hand side equal to τ̄S

1+τ̄S
s̄S(ζH

S,τY
ρ̄Y + ζ̄I

S). Hence, Proposition 2
follows as a special case.

A.5 Identification, Step 2: from Preference to Behavioral Elasticities

At this stage, it remains to express the preference elasticities (ẼY , Ẽn) and the tax-arbitrage coeffi-
cient Σn in terms of behavioral elasticities.

Completely separable preferences. If preferences are completely separable, i.e. EnY = Enk =
0 for all n and k ̸= n, we obtain Ẽn = En and ẼY = EY . Perturbing the FOC 1 + tn = Un/U1 w.r.t.
a change in τY or a lump sum transfer ∂T yields Enζ

H
n,τY

= E1ζH
1,τY

and Enζ
I
n = E1ζI

1 , and perturbing
the FOC 1−τY = −UY /U1 w.r.t. a change in tn or lump sum transfer ∂T yields −EY ζ

H
Y,tn

= E1ζH
1,tn

and EY ζ
I
Y = E1ζI

1 . It then follows that

Σn =
En/ρn

E1/ρ1
− 1

1 + EY /ρY

E1/ρ1

=
−ζH

Y,tn
ρY

ζH
n,τY

ρn

ζH
1,τY

ρ1 − ζH
n,τY

ρn

ζH
1,tn

ρ1 − ζH
Y,tn

ρY
= sn

ρY

ρn

ζH
1,τY

ρ1 − ζH
n,τY

ρn

ζH
1,tn

ρ1 − ζH
Y,tn

ρY
.
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Consumption and Savings (N = 2) with unrestricted preferences. When N = 2 and
preferences are defined over consumption and savings as in our baseline model, we have that

Σ = ẼS/ρS − ẼC/ρC

ẼC/ρC + ẼY /ρY

with
ẼC/ρC = EC/ρC − ECS/ρS − ECY /ρY , ẼS/ρS = ES/ρS − ESC/ρC − ESY /ρY

and ẼY /ρY = EY /ρY − sCECY /ρC − sSESY /ρS .

Moreover the budget constraint implies that 1/ρY = sC/ρC + sS/ρS , so that we obtain

ẼC/ρC = ÊC/ρC − ∆ , ẼS/ρS = ÊS/ρS − ∆ and ẼY /ρY = ÊY /ρY + ∆,

where ÊY , ÊC , ÊS are defined in Lemma 1 and ∆ ≡ sC/ρC (ESY + ESC/sC)+sS/ρS (ECY + ECS/sS).
It follows that Σ = ÊS/ρS−ÊC/ρC

ÊC/ρC+ÊY /ρY
. We finally express ÊY , ÊC , ÊS in terms of the behavioral elastici-

ties.

Lemma 8 (Identification: behavioral elasticities). The preference elasticities ÊY , ÊC , ÊS de-

fined in Lemma 1 are jointly identified by the substitution effects ζH
Y,τY

, ζH
C,τY

, ζH
S,τY

, ζH
Y,τS

, ζH
C,τS

, ζH
S,τS

via any three of the four conditions

ÊY ζ
H
Y,τY

+ ÊCζ
H
C,τY

= 1, ÊCζ
H
C,τY

− ÊSζ
H
S,τY

= 0,

ÊY ζ
H
Y,τS

+ ÊCζ
H
C,τS

= 0, ÊCζ
H
C,τS

− ÊSζ
H
S,τS

= 1.

The preference complementarities ESY −ECY , ESY +ECS/sS and ECY +ESC/sC are jointly identified

by the income effects ζI
Y , ζ

I
C , ζ

I
S:

ÊCζ
I
C = ÊSζ

I
S + ESY − ECY = ÊY ζ

I
Y + ESY + ECS/sS ,

and therefore ∆ = sCζ
I
C ÊC/ρC + sSζ

I
S ÊS/ρS − ζI

Y ÊY /ρY . Moreover, the preference elasticities

ÊY , ÊC , ÊS and complementarities ESY − ECY , ESY + ECS/sS and ECY + ESC/sC are invariant to

monotone transformations of U .

Proof of Lemma 8. Consider a labor income tax schedule TY (Y ) and a savings tax schedule
TS (S). For ease of notation, assume that the tax schedules are locally linear in the top bracket,
T ′′

Y (Y ) = T ′′
S (S) = 0. A perturbation of the total tax payment by ∂T and the marginal tax rates
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by ∂τY and ∂τS lead to behavioral responses (∂Y, ∂C, ∂S) that satisfy the perturbed first-order
conditions

−UY [Y + ∂Y,C + ∂C, S + ∂S; r]
UC [Y + ∂Y,C + ∂C, S + ∂S; r] = 1 − T ′

Y (Y ) − ∂τY

and
US [Y + ∂Y,C + ∂C, S + ∂S; r]
UC [Y + ∂Y,C + ∂C, S + ∂S; r] = 1 + T ′

S (S) + ∂τS

with
∂C +

(
1 + T ′

S (S)
)
∂S =

(
1 − T ′

Y (Y )
)
∂Y − ∂T.

Taking first-order Taylor expansions of the two perturbed FOCs around 0 yields:

(EY − ECY ) ∂Y
Y

+ (EC − sCECY ) ∂C
C

− (sSESY + ECS) ∂S
S

= − ∂τY

1 − τY

(ESY − ECY ) ∂Y
Y

+
(

EC + sC

sS
ECS

)
∂C

C
− (ES + ECS) ∂S

S
= ∂τS

1 + τS

sC
∂C

C
+ sS

∂S

S
= ∂Y

Y
− ∂T

(1 − τY )Y .

Using the third equation to substitute respectively ∂S/S and ∂Y/Y into the first two, and using
the definitions of ÊY , ÊC , ÊS leads to:

ÊY
∂Y

Y
+ ÊC

∂C

C
= − ∂τY

1 − τY
− (ESY + ECS/sS) ∂T

(1 − τY )Y

ÊC
∂C

C
− ÊS

∂S

S
= ∂τS

1 + τS
− (ESY − ECY ) ∂T

(1 − τY )Y

The solution to this system can be expressed as

∂Y

Y
= −ζH

Y,τY

∂τY

1 − τY
+ ζI

Y

∂T

(1 − τY )Y = ζH
Y,τS

∂τS

1 + τS
+ ζI

Y

∂T

(1 − τY )Y
∂C

C
= −ζH

C,τY

∂τY

1 − τY
− ζI

C

∂T

(1 − τY )Y = ζH
C,τS

∂τS

1 + τS
− ζI

C

∂T

(1 − τY )Y
∂S

S
= −ζH

S,τY

∂τY

1 − τY
− ζI

S

∂T

(1 − τY )Y = ζH
S,τS

∂τS

1 + τS
− ζI

S

∂T

(1 − τY )Y .

Substituting these equations into the previous system easily leads to the expressions given in the
Lemma 8.
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Derivation of Tax-Arbitrage Coefficient (Proof of Proposition 1). Using Lemmas 5 and
8, we obtain

Σ = lim
r→1

ÊC
ρC

(
ρC
ρS

ζH
C,τY

ζH
S,τY

− 1
)

ÊC
ρC

(
1 − ρC

ρY

ζH
C,τS

ζH
Y,τS

) =
1

ρ̄S ζ̄H
S,τY

(
ρ̄C ζ̄

H
C,τY

− ρ̄S ζ̄
H
S,τY

)
1

ζ̄H
Y,τS

(
ζ̄H

Y,τS
− ρ̄C

ρ̄Y
ζ̄H

C,τS

) .

Using the Slutzky relationship ζ̄H
Y,τS

= −s̄S ζ̄
H
S,τY

and the over-identifying restrictions ζ̄H
Y,τS

=
s̄C ζ̄

H
C,τS

+ s̄S ζ̄
H
S,τS

and 1/ρ̄Y = s̄C/ρ̄C + s̄S/ρ̄S , the denominator is equal to

1
s̄S ζ̄H

S,τY

((
s̄C

ρ̄C
+ s̄S

ρ̄S

)
ρ̄C ζ̄

H
C,τS

−
(
s̄C ζ̄

H
C,τS

+ s̄S ζ̄
H
S,τS

))
= 1
ρ̄S ζ̄H

S,τY

(
ρ̄C ζ̄

H
C,τS

− ρ̄S ζ̄
H
S,τS

)

and therefore
Σ =

ρ̄C ζ̄
H
C,τY

− ρ̄S ζ̄
H
S,τY

ρ̄C ζ̄H
C,τS

− ρ̄S ζ̄H
S,τS

.

Similarly, using s̄S ζ̄
H
S,τY

= ζ̄H
Y,τY

− s̄C ζ̄
H
C,τY

and s̄S/ρ̄S = 1/ρ̄Y − s̄C/ρ̄C , the numerator is equal to

1
s̄S ζ̄H

S,τY

(( 1
ρ̄Y

− s̄C

ρ̄C

)
ρ̄C ζ̄

H
C,τY

− ζ̄H
Y,τY

+ s̄C ζ̄
H
C,τY

)
= 1
ρ̄Y ζ̄H

Y,τS

(
ρ̄Y ζ̄

H
Y,τY

− ρ̄C ζ̄
H
C,τY

)

and therefore
Σ =

ρ̄C ζ̄
H
C,τY

− ρ̄Y ζ̄
H
Y,τY

ρ̄C ζ̄H
C,τS

− ρ̄Y ζ̄H
Y,τS

.

This concludes the proof.

Proof of Theorem 2. Equations (17) follow easily from equations (8) and (14).

Proof of Corollary 1. For Case 1 and Case 3, the expressions follow immediately from Theorem
2 and the fact that ΦS = 1/τSaez

Y in Case 3. For Case 2, we write

ΦS =
ζ̄H

S,τY

ζ̄H
Y,τY

1
τSaez

Y

+
(
1 − ζ̄I

Y

)( ζ̄I
S

1 − ζ̄I
Y

−
ζ̄H

S,τY

ζ̄H
Y,τY

)
= ζ̄I

S

1 − ζ̄I
Y

1
τSaez

Y

− ρ̄Y ζ̄
H
Y,τY

(
ζ̄I

S

1 − ζ̄I
Y

−
ζ̄H

S,τY

ζ̄H
Y,τY

)
,

and therefore ζ̄I
S/
(
1 − ζ̄I

Y

)
⋛ ΦS ⋛ ζ̄H

S,τY
/ζ̄H

Y,τY
· 1/τSaez

Y if and only if ζ̄I
S/ζ̄

H
S,τY

⋛
(
1 − ζ̄I

Y

)
/ζ̄H

Y,τY
,

and the expressions and bounds for Case 2 are satisfied if ζ̄I
S/ζ̄

H
S,τY

⋛
(
1 − ζ̄I

Y

)
/ζ̄H

Y,τY
is equivalent

to ECY ⋛ ESY . But the identifying restrictions in Lemma 8 imply that

ECY − ESY = ÊSζ
I
S − ÊCζ

I
C = ÊC/s̄C

(
s̄C ζ̄

H
C,τY

ζI
S/ζ̄

H
S,τY

− s̄Cζ
I
C

)
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= ÊC/s̄C

((
ζ̄H

Y,τY
− s̄S ζ̄

H
S,τY

)
ζI

S/ζ̄
H
S,τY

−
(
1 − ζ̄I

Y − s̄S ζ̄
I
S

))
= ÊC/s̄C · ζ̄H

Y,τY

(
ζ̄I

S

ζ̄H
S,τY

− 1 − ζ̄I
Y

ζ̄H
Y,τY

)

from which the result follows immediately.

A.6 Proofs for results in Section 2.7

Recall the identification from the first-stage problem where ĚM ≡ −UMMM/UM , ĚY ≡ UY Y Y/UY , ĚMY ≡

UMY Y/UM and sM ≡ M/ ((1 − τY )Y ) satisfy

ĚY − ĚMY = 1 − ζI
Y

ζH
Y,τY

and ĚM/sM − ĚMY = ζI
Y

ζH
Y,τY

.

We first re-state these identifying relationships in terms of the preference elasticities ÊY , ÊS , ÊC

and one additional preference parameter K that summarizes preference complementarities.

Lemma 9 (Identification: labor supply elasticities). The income and substitution effects on

labor supply ζH
Y,τY

and ζI
Y identify ÊY and R̂A ≡ ÊS ÊC/(sS ÊC + sC ÊS) via the relationships:

ÊY = 1 − ζ̄I
Y

ζ̄H
Y,τY

− K and R̂A = ζ̄I
Y

ζ̄H
Y,τY

+ K

where

K = ESC + ECS + sS ÊCECY + sC ÊSESY

sS ÊC + sC ÊS

.

Proof of Lemma 9. Recall that U (Y,M ; r) = U (Y, C (Y,M, r) ,S (Y,M, r) ; r), where S (Y,M, r)
and C (Y,M, r) are the solution to

(1 + τS)UC (Y, C,S; r) = US (Y, C,S; r) and M = C + S + TS (S).

In addition, by the envelope theorem, we have

UM (Y,M ; r) = UC (Y, C (Y,M, r) ,S (Y,M, r) ; r) and UY (Y,M ; r) = UY (Y, C (Y,M, r) ,S (Y,M, r) ; r) .

Differentiating the envelope condition leads to

ĚY = EY − sCECY
∂ ln C
∂ lnY − sSESY

∂ ln S
∂ lnY

ĚMY = ECY − EC
∂ ln C
∂ lnY + ECS

∂ ln S
∂ lnY

ĚM = EC
∂ ln C
∂ lnM − ECS

∂ ln S
∂ lnM .
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Differentiating the second-stage budget constraint and FOC w.r.t. Y yields sC∂ ln C/∂ lnY =
−sS∂ ln S/∂ lnY and ÊC∂ ln C/∂ lnY − ECY = ÊS∂ ln S/∂ lnY − ESY , which we solve to find

∂ ln C
∂ lnY = sS (ECY − ESY )

sS ÊC + sC ÊS

and ∂ ln S
∂ lnY = sC (ESY − ECY )

sS ÊC + sC ÊS

.

Differentiating the second-stage budget constraint and FOC w.r.t. M yields sC∂ ln C/∂ lnM =
sM − sS∂ ln S/∂ lnM and (EC + ESC) ∂ ln C/∂ lnM = (ES + ECS) ∂ ln S/∂ lnM , which we solve to
find

∂ ln C
∂ lnM

1
sM

= ÊS − sS (ECY − ESY )
sS ÊC + sC ÊS

and ∂ ln S
∂ lnM

1
sM

= ÊC + sC (ECY − ESY )
sS ÊC + sC ÊS

.

Hence ĚY , ĚMY , and ĚM satisfy

ĚY = EY − sSsC (ECY − ESY )2

sS ÊC + sC ÊS

and
ĚMY = ECY − (EC + ESC) sS (ECY − ESY )

sS ÊC + sC ÊS

and

ĚM/sM = EC
ÊS − sS (ECY − ESY )

sS ÊC + sC ÊS

− ECS

sS

sS ÊC + sSsC (ECY − ESY )
sS ÊC + sC ÊS

= (EC + ESC) ÊS − sS (ECY − ESY )
sS ÊC + sC ÊS

− ESC

sC

sC ÊS − sCsS (ECY − ESY )
sS ÊC + sC ÊS

− ECS

sS

sS ÊC + sSsC (ECY − ESY )
sS ÊC + sC ÊS

= (EC + ESC) ÊS − sS (ECY − ESY )
sS ÊC + sC ÊS

− ESC − ECS

where we have used the fact that ECS/sS = ESC/sC = ESC + ECS . It then follows that

ĚY − ĚMY = EY − ECY + sS ÊC

sS ÊC + sC ÊS

(ECY − ESY )

= ÊY + ESC + ECS + sS ÊCECY + sC ÊSESY

sS ÊC + sC ÊS

= ÊY + K

and

ĚM/sM − ĚMY = (EC + ESC) ÊS

sS ÊC + sC ÊS

− ESC − ECS − ECY

= R̂A− ESC − ECS − ECY − sS ÊCECY + sC ÊSESY

sS ÊC + sC ÊS

= R̂A− K.
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This concludes the proof.

Elasticity of intertemporal substitution. The EIS is defined by

EIS ≡ − ∂ ln (S/C)
∂ ln (1 + τS)

∣∣∣∣
Y,U constant

.

The expenditure minimization problem minC,S (C + (1 + τS)S) s.t. U (Y,C, S) ≥ Ū yields the
optimality conditions 1+τS = US/UC and U (Y,C, S) = Ū . Differentiating this optimality condition
keeping Y constant leads to

ÊC
∂C

C
− ÊS

∂S

S
= ∂τS

1 + τS
.

Differentiating U (Y,C, S) = Ū yields UC∂C = −US∂S, and therefore ∂C/C = − (sS/sC) ∂S/S.
Substituting the latter equation into the former and using s̄S + s̄C = 1 yields

EIS =
∂C
C − ∂S

S
∂(1+τS)

1+τS

∣∣∣∣∣∣
Y,U constant

= 1
s̄S ÊC + s̄C ÊS

,

which is the expression given in the text.

Optimal Tax Formulas for N = 2 and Corollary 2. From Corollary 1 , the expression for Σ
in Proposition 1, and s̄S ζ̄

H
S,τY

= −ζ̄H
Y,τS

, we write τ̄Y as

τ̄Y = τSaez
Y

1 − ζ̄H
Y,τS

/ζ̄H
Y,τY

Σ
= τSaez

Y

(
1 − Λ

(
1 −

ρ̄Y ζ̄
H
Y,τY

ρ̄C ζ̄H
C,τY

))

where

Λ =
−ζ̄H

Y,τS
ρ̄C ζ̄

H
C,τY

ζ̄H
Y,τY

(
ρ̄C ζ̄H

C,τS
− ρ̄Y ζ̄H

Y,τS

)
− ζ̄H

Y,τS

(
ρ̄C ζ̄H

C,τY
− ρ̄Y ζ̄H

Y,τY

) =
ζ̄H

C,τY

ζ̄H
C,τY

− ζ̄H
C,τS

ζ̄H
Y,τY

/ζ̄H
Y,τS

.

Although this expression focuses on Case 2, it also subsumes Case 1 (in which s̄S = −ζ̄H
Y,τS

= 0)
and Case 3 (in which s̄S ζ̄

H
S,τY

= −ζ̄H
Y,τS

= ζ̄H
Y,τY

).
Next we restate Λ in terms of the other sufficient statistics. Solving the identifying restrictions

ÊY +R̂A = 1/ζ̄H
Y,τY

, ÊC ζ̄
H
C,τY

= ÊS ζ̄
H
S,τY

, and ÊC ζ̄
H
C,τS

= −ÊY ζ̄
H
Y,τS

for ÊC , ÊS , ÊY yields ÊC = Λ/ζ̄H
C,τY

,
ÊS = Λ/ζ̄H

S,τY
, R̂A = Λ/ζ̄H

Y,τY
, and ÊY = (1 − Λ) /ζ̄H

Y,τY
. Combining with R̂A = ζ̄I

Y /ζ̄
H
Y,τY

+ K, we
also obtain Λ = ζ̄I

Y + Kζ̄H
Y,τY

. Finally, 1/EIS = s̄S ÊC + s̄C ÊS = Λζ̄H
Y,τY

/
(
ζ̄H

C,τY
ζ̄H

S,τY

)
, and therefore

Λ = ζ̄H
C,τY

ζ̄H
S,τY

/ζ̄H
Y,τY

· (EIS)−1.
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Finally, we need to solve for τ̄S . We use Lemma 6 and the subsequent identification results to
write τ̄S as

τ̄S = ÊS/ρ̄S − ÊC/ρ̄C

1 − ÊS/ρ̄S + ∆
= ÊS

ρ̄S (1 + ∆) − ÊS

(
1 − ρ̄S/ÊS

ρ̄C/ÊC

)
= Λ
ρ̄S ζ̄H

S,τY
(1 + ∆) − Λ

(
1 −

ρ̄S ζ̄
H
S,τY

ρ̄C ζ̄H
C,τY

)
.

For Case 3 we have ρ̄S = ρ̄Y < ρ̄C and s̄C = 0, and therefore ∆ = (ECY + ECS) /ρY = K/ρY .
Substituting this expression along with ρ̄S ζ̄

H
S,τY

= ρ̄Y ζ̄
H
Y,τY

the yields

τ̄S = 1
ρ̄Y ζ̄H

Y,τY
− Λ + ζ̄H

Y,τY
K

Λ
(

1 −
ρ̄Y ζ̄

H
Y,τY

ρ̄C ζ̄H
C,τY

)
= τ̄Saez

Y

1 − τ̄Saez
Y

Λ
(

1 −
ρ̄Y ζ̄

H
Y,τY

ρ̄C ζ̄H
C,τY

)
.

Corollary 2 then follows immediately.
For Case 1 we have ρ̄C = ρ̄Y < ρ̄S and s̄S = 0, and therefore ∆ = (ESY + ESC) /ρY = K/ρY .

For Case 2 we have ρ̄C = ρ̄S = ρ̄Y , and therefore

ρ̄Y ∆ = s̄Cζ
I
C ÊC + s̄Sζ

I
S ÊS − ζI

Y ÊY = s̄C (ESY + ESC/s̄C) + s̄S (ECY + ECS/s̄S)

= ESC + ECS + s̄CESY + s̄SECY = K + s̄S (ECY − ESY )
(
1 − ζ̄H

S,τY
/ζ̄H

Y,τY

)
.

If preferences are completely separable, ∆ = 0 and Λ = ζ̄I
Y , and we obtain τ̄S = ζ̄I

Y

ρ̄S ζ̄H
S,τY

−ζ̄I
Y

(
1 −

ρ̄S ζ̄H
S,τY

ρ̄C ζ̄H
C,τY

)
.

This concludes the proof.
With N > 2 and completely separable preferences, Lemma 6 implies that

τ̄∗
Y

1 − τ̄∗
Y

= EY /ρY + E1/ρ1
1 − E1/ρ1

and t̄∗n
1 + t̄∗n

= En/ρn − E1/ρ1
1 − E1/ρ1

Consider first t̄∗n. Rearranging terms and using Lemma 8 we obtain

t̄∗n
1 + t̄∗n

= E1/ρ1
1 − E1/ρ1

(En/ρn

E1/ρ1
− 1

)
= ζ̄I

Y

ρ̄1ζ̄I
Y /E1 − ζ̄I

Y

(
ρ̄1ζ̄H

1,τY

ρ̄nζ̄H
n,τY

− 1
)
.

This expression can be further simplified by noting that ζ̄I
Y /E1 = ζ̄H

1,τY
, which follows from

ζ̄I
Y

E1
= ζ̄I

Y ζ̄
H
1,τY

+ EY ζ̄
I
Y

E1
ζ̄H

Y,τY
= ζ̄H

1,τY
ζ̄I

Y + ζ̄I
1

N∑
k=1

s̄kζ̄
H
k,τY

= ζ̄H
1,τY

(
ζ̄I

Y +
N∑

k=1
s̄kζ̄

I
k

)
= ζ̄H

1,τY
,

where we have used the identities 1 − ζ̄I
Y = ∑N

k=1 s̄kζ̄
I
k and ζ̄H

Y,τY
= ∑N

k=1 s̄kζ̄
H
k,τY

. We therefore
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obtain

t̄n
1 + t̄n

= (1 − Γ̄)ζ̄I
Y

ρ̄1ζ̄H
1,τY

− ζ̄I
Y

(
ρ̄1ζ̄H

1,τY

ρ̄nζ̄H
n,τY

− 1
)
.

If N = 2, solving for τ̄S = t̄∗n then yields the expression for the separable case in Corollary 2.
Consider next τ̄∗

Y , which we rewrite, using E1 = 1/ζ̄H
1,τY

− EY ζ̄
H
Y,τY

/ζ̄H
1,τY

, as

τ̄∗
Y =

1
ρ̄Y ζ̄H

Y,τY

+
(

EY
ρ̄Y

− 1
ρ̄Y ζ̄H

Y,τY

)(
1 −

ρ̄Y ζ̄H
Y,τY

ρ̄1ζ̄H
1,τY

)
1 + EY

ρ̄Y

=
1 −

(
1 − EY ζ̄

H
Y,τY

)(
1 −

ρ̄Y ζ̄H
Y,τY

ρ̄1ζ̄H
1,τY

)
ρ̄Y ζ̄H

Y,τY
+ EY ζ̄H

Y,τY

.

Now under complete separability, C (Y,M ; r) and UM are independent of Y , and therefore

1 − ζ̄I
Y

ζ̄H
Y,τY

= ĚY − ĚMY = UY Y Y

UY
− UMY Y

UM
= UY Y Y

UY
− 0 = EY .

Substituting EY ζ̄
H
Y,τY

= 1 − ζ̄I
Y then yields

τ̄∗
Y = τ̄Saez

Y

(
1 − ζ̄I

Y

(
1 −

ρ̄Y ζ̄
H
Y,τY

ρ̄1ζ̄H
1,τY

))

and solving τ̄Y /(1 − τ̄Y ) = (1 − Γ̄)τ̄∗
Y /(1 − τ̄∗

Y ) for τ̄Y implies

τ̄Y =
(1 − Γ̄)τ̄Saez

Y

(
1 − ζ̄I

Y

(
1 −

ρ̄Y ζ̄H
Y,τY

ρ̄1ζ̄H
1,τY

))
1 − Γ̄τ̄Saez

Y

(
1 − ζ̄I

Y

(
1 −

ρ̄Y ζ̄H
Y,τY

ρ̄1ζ̄H
1,τY

)) .

These equations generalize the characterization of optimal income and savings taxes with completely
separable preferences to the case with N commodities and arbitrary planner preferences.

B Proofs of Section 3.2

The mechanism design problem consists in choosing an allocation {Yt (r) , Ct (r)}T
t=0 that maximizes

the net present value of tax revenue

K (v0) = max
{Yt(r),Ct(r)}T

t=0;ST (r)

� 1

0

{
T∑

t=0
R−t (Yt (r) − Ct (r)) −R−TST (r)

}
dr (43)
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subject to the incentive compatibility constraint

T∑
t=0

βtUt (Yt (r) , Ct (r) ; r)+βT +1UT +1 (RST (r) ; r) ≥
T∑

t=0
βtUt

(
Yt
(
r′) , Ct

(
r′) ; r

)
+βT +1UT +1

(
RST

(
r′) ; r

)
(44)

for all types r and announcements r′, and a lower bound constraint

T∑
t=0

βtUt (Yt (0) , Ct (0) ; 0) + βT +1UT +1 (RST (0) ; 0) ≥ W0. (45)

Defining W (r) as

W (r) =
T∑

t=0
βtUt (Yt (r) , Ct (r) ; r) + βT +1UT +1 (RST (r) ; r) (46)

an allocation{Yt (r) , Ct (r)}T
t=0 ;ST (r) is locally incentive compatible if W (r) is continuous and

satisfies the envelope condition

W ′ (r) =
T∑

t=0
βtUr,t (Yt (r) , Ct (r) ; r) + βT +1Ur,T +1 (RST (r) ; r) (47)

The corresponding optimal control problem consists in maximizing (43) s.t. (45)-(46)-(47) is
an optimal control problem with W (·) as the state variable, and {Yt (r) , Ct (r)}T

t=0 and ST (·) as
controls. Defining ψ (r) and ϕ (r) as the multipliers on (46)-(47), the Hamiltonian is given by:

H =
T∑

t=0
R−t (Ct (r) − Yt (r)) +R−TST (r)

+ψ (r)
{
W (r) −

T∑
t=0

βtUt (Yt (r) , Ct (r) ; r) − βT +1UT +1 (RST (r) ; r)
}

+ϕ (r)
{

T∑
t=0

βtUr,t (Yt (r) , Ct (r) ; r) + βT +1Ur,T +1 (RST (r) ; r)
}

The first-order conditions with respect to the allocations Yt (·) and Ct (·) yield:

ψ (r) = (βR)−t 1
−UY,t (r) + ϕ (r) UY r,t (r)

UY,t (r) = (βR)−t 1
UC,t (r) + ϕ (r) UCr,t (r)

UC,t (r) .
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Hence, the optimal labor and savings wedges in period t satisfy

τY,t (r)
1 − τY,t (r) = (βR)t UC,t (r)ϕ (r)

(
UCr,t (r)
UC,t (r) − UY r,t (r)

UY,t (r)

)

τS,t (r)
1 + τS,t (r) = (βR)t UC,t (r)ϕ (r)

(
UCr,t+1 (r)
UC,t+1 (r) − UCr,t (r)

UC,t (r)

)

Combining the two conditions yields the static no-arbitrage condition

τS,t (r)
1 + τS,t (r) = ΣS,t · τY,t (r)

1 − τY,t (r) , where ΣS,t =
UCr,t+1(r)
UC,t+1(r) − UCr,t(r)

UC,t(r)
UCr,t(r)
UC,t(r) − UY r,t(r)

UY,t(r)

.

Combining the condition for the optimal labor wedge at t+ 1 and t yields

τY,t+1 (r)
1 − τY,t+1 (r) = ΣY,t · (1 + τS,t)

τY,t (r)
1 − τY,t (r) , where ΣY,t =

UCr,t+1(r)
UC,t+1(r) − UY r,t+1(r)

UY,t+1(r)
UCr,t(r)
UC,t(r) − UY r,t(r)

UY,t(r)

.

It now remains to express ΣS,t and ΣY,t in terms of preference parameters and compensated
elasticities. But these steps are identical to the identification results for the static model with
completely separable preferences, implying that

UCr,t

UC,t
− UY r,t

UY,t
= EC,t

ρC,t
+ EY,t

ρY,t
+ d ln (1 − τY,t)

d ln (1 − r)

UCr,t+1
UC,t+1

− UCr,t

UC,t
= EC,t+1
ρC,t+1

− EC,t

ρC,t
− d ln (1 + τS,t)

d ln (1 − r)

where the identifying relations EC,tζ
H
Ct,τS,t

= −EY,tζ
H
Yt,τS,t

, EC,tζ
H
Ct,τY,t

= ES,tζ
H
St,τY,t

= EC,t+1ζ
H
Ct+1,τY,t

=
−EY,t+1ζ

H
Yt+1,τY,t

, and ES,tζ
I
S,t = EC,tζ

I
C,t = EY,tζ

I
Y,t link these preference elasticities to income and

substitution effects within and across periods. If Assumption 2 and 3 are satisfied and all these
sufficient statistics and optimal taxes converge to finite limits as r → 1, we can then restate the
age-dependent tax-arbitrage coefficients as

ΣS,t = ĒC,t+1/ρ̄C,t+1 − ĒC,t/ρ̄C,t

ĒY,t/ρ̄Y,t + ĒC,t/ρ̄C,t

=
ζH

Ct,τY,t

ζH
Ct,τS,t

(
ρ̄C,t+1ζ

H
Ct+1,τY,t

)−1
−
(
ρ̄C,tζ

H
Ct,τY,t

)−1

(
ρ̄C,tζH

Ct,τS,t

)−1
−
(
ρ̄Y,tζH

Yt,τS,t

)−1
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and

ΣY,t = ĒY,t+1/ρ̄Y,t+1 + ĒC,t+1/ρ̄C,t+1
ĒY,t/ρ̄Y,t + ĒC,t/ρ̄C,t

=
ζH

Ct,τY,t

ζH
Ct,τS,t

(
ρ̄C,t+1ζ

H
Ct+1,τY,t

)−1
−
(
ρ̄Y,t+1ζ

H
Yt+1,τY,t

)−1

(
ρ̄C,tζH

Ct,τS,t

)−1
−
(
ρ̄Y,tζH

Yt,τS,t

)−1 .

These conditions fully characterize optimal top income and savings taxes at all ages for a given
value of τY,0. Proposition 4 then follows immediately from the comparative statics of ΣS,t and ΣY,t

w.r.t. the respective sufficient statistics.

Revenue Spill-Over Conditions. Consider a perturbation ∂τY,t > 0 of the marginal income
tax in period t for ranks r′ ∈ (r, r + ∂r). The mechanical effect of this perturbation on government
revenue is this tax perturbation mechanically raises the NPV of tax revenues by

R−t∂τY,t (Yt (r + ∂r) − Yt (r)) (1 − r) ≈ R−t∂τY,t∂r Yt/ρY,t.

The behavioral response of earnings in period s to the income tax perturbation in period t can
be decomposed into a substitution effect ∂Ys (r′) = − ∂τY,t

1−τY,t
Ysζ

H
Ys,τY,t

for ranks r′ ∈ [r, r + ∂r), and
an income effect ∂Ys (r′) = ζI

Ys
(r′) Ys(r′)

(1−τY,t)Yt(r′)∂τY,t∂rY
′

t (r) for ranks r′ ≥ r + ∂r. The combined
effect on the NPV of income tax revenues is

∑T
s=0R

−s
� 1

r τY,s (r) ∂Ys (r′) dr′

R−t∂τY,t∂r Yt/ρY,t
≈ −

T∑
s=0

τY,s

1 − τY,s

sY,s

sY,t

{
ζH

Ys,τY,t
ρY,t − ζ̂I

Ys
(r)
}

where sY,t ≡ R−t (1 − τY,t)Yt/
∑T

s=0R
−s (1 − τY,s)Ys represent shares of period t in total life-time

earnings, and ζ̂I
Ys

(r) ≡ E[ζI
Ys

(r′)
∣∣∣ r′ > r]. Taking the limit as r → 1, we obtain

lim
r→1

∑T
s=0R

−s
� 1

r τY,s (r) ∂Ys (r′) dr′

R−t∂τY,t∂r Yt/ρY,t
= −

T∑
s=0

τY,s

1 − τY,s

s̄Y,s

s̄Y,t
ΦYs,τY,t

where ΦYs,τY,t
≡ ζ̄H

Ys,τY,t
ρ̄Y,t − ζ̄I

Y,s denotes the spill-over coefficient from period-t income taxes to
period s labor supply and earnings.

Similarly, the behavioral response of savings in period s to the income tax perturbation in period
t can be decomposed into a substitution effect ∂Ss (r′) = −ζH

Ss,τY,t
Ss

∂τY,t

1−τY,t
= −ζH

Ss,τY,t
ss

(1−τY,s)Ys

(1−τY,t)Yt

∂τY,t

1+τS,s
Yt

for ranks r′ ∈ [r, r + ∂r), and an income effect ∂S (r′) = −ζI
Ss

(r′) Ss(r′)
(1−τY,t)Yt(r′)∂τY,t∂rY

′
t (r) for ranks

r′ ≥ r + ∂r. The latter can be re-stated as ∂S (r′) = −ζI
Ss

(r′) sS,s (r′) (1−τY,s)Ys(r′)
(1−τY,t)Yt(r′)

∂τY,t

1+τS,s
∂rY ′

t (r).
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The combined effect on the NPV of income tax revenues (as r → 1) is

lim
r→1

∑T
s=0R

−s
� 1

r τS,s (r) ∂Ss (r′) dr′

R−t∂τY,t∂r Yt/ρY,t
= −

T∑
s=0

τS,t

1 + τS,t

s̄Y,s

s̄Y,t
s̄S,tΦSs,τY,t

where ΦSs,τY,t
≡ ζ̄H

Ss,τY,t
ρ̄Y,t + ζ̄I

S,s denotes the spill-over coefficient from period-t income taxes to
period-s savings. Combining the terms, the optimal income taxes on top income earners, for a
given sequence of savings taxes, must satisfy

1 =
T∑

s=0

s̄Y,s

s̄Y,t

{
τS,t

1 + τS,t
s̄S,tΦSs,τY,t

+ τY,s

1 − τY,s
ΦYs,τY,t

}
,

or

τY,t

1 − τY,t
=

τSaez
Y,t

1 − τSaez
Y,t

1 − τS,t

1 + τS,t
s̄S,tΦSt,τY,t

−
∑
s̸=t

(
τS,s

1 + τS,s
s̄S,sΦSs,τY,t

+ τY,s

1 − τY,s
ΦYs,τY,t

) ,
where τSaez

Y,t = (1 + ΦYt,τY,t
)−1 = (1 + ζ̄H

Yt,τY,t
ρ̄Y,t − ζ̄I

Y,t)−1. The dynamic model admits revenue
spill-overs within and across periods to both income and savings taxes. In particular, if agents
substitute labor supply inter-temporally, i.e. ζ̄H

Ys,τY,t
≤ 0 for s ̸= t, then raising τY,t shifts labor

supply from age t towards other ages, thus raising earnings and income tax revenue in all other
periods. This effect is reinforced by income effects of the tax increase.

At the same time, if preferences are separable, then ΦSs,τY,t
/ζ̄I

S,s = ζ̄H
Ss,τY,t

/ζ̄I
S,sρ̄Y,t + 1 =

−ζ̄H
Ys,τY,t

/ζ̄I
Y,sρ̄Y,t + 1 = −ΦYs,τY,t

/ζ̄I
Y,s, i.e. we generically have that ΦSs,τY,t

≥ 0 ≥ ΦYs,τY,t
for

all s, so that raising τY,t unambiguously lowers savings in all periods. Hence, inter-temporal substi-
tution of labor supply generates negative spillovers towards savings but positive spillovers towards
income in all other periods, with an ambiguous net effect on optimal income taxes.

Proof of Proposition 5. We re-state the no-arbitrage and revenue spillover conditions in matrix
form as

T S = Σ̂S · T Y and T Y = T̂Saez
[
1 − Φ̂ST S − Φ̂Y T Y

]
,

where T Y , T S and 1 are T -dimensional vectors with τY,t/(1 − τY,t), τS,t/(1 + τS,t), and 1 as their
t-th entry, T̂Saez a diagonal T ×T matrix with τSaez

Y,t /(1 − τSaez
Y,t ) as its t-th diagonal element, Σ̂S a

diagonal T × T matrix with ΣS,t as its t-th diagonal element, and Φ̂S and Φ̂Y are T × T matrices
with s̄Y,s

s̄Y,t
s̄S,sΦSs,τY,t

and s̄Y,s

s̄Y,t
ΦYs,τY,t

in their t, s-entry, and the diagonal elements of Φ̂Y equal to 0.
Generalizing Theorem 2, we represent T Y and T S in terms of the static optimum T Saez ≡ T̂Saez ·1,
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the revenue spillovers Φ̂S and Φ̂Y and the tax-arbitrage coefficients Σ̂S :

T Y =
[
I + T̂Saez

(
Φ̂Y + Φ̂SΣ̂S

)]−1
T Saez and T S = Σ̂S ·

[
I + T̂Saez

(
Φ̂Y + Φ̂SΣ̂S

)]−1
T Saez,

where I denotes the T -dimensional identity matrix.
The static optimum T Saez no longer characterizes optimal income taxes even if savings are

untaxed. Define T AS
Y ≡ [I+T̂SaezΦ̂Y ]−1T Saez as the optimal income tax sequence when τS,t = 0 for

all t; these are the income taxes that internalize inter-temporal revenue spillovers for income taxes.
Straight-forward matrix algebra implies that T AS

Y −T Saez = −T̂SaezΦ̂Y T AS
Y , and therefore T AS

Y ≫

T Saez if ΦYs,τY,t
≤ 0 for all s, t, i.e. the inter-temporal substitution of labor supply unambiguously

raises optimal income taxes above the static optimum. In addition, T Y − T Saez = −T̂Saez(Φ̂Y +
Φ̂SΣ̂S)T Y . Hence T Y may be larger or smaller than T Saez, depending on the comparison of
spill-over effects to income and savings taxes, given by Φ̂Y + Φ̂SΣ̂S .

The difference between T Y and T AS
Y directly depends on T S or equivalently, on Σ̂S :

T AS
Y − T Y = T̂SaezΦ̂ST S = T̂SaezΦ̂SΣ̂S · T Y .

All entries of T̂Saez and T Y are positive, and all entries of Φ̂S are non-positive. it follows that
entries of Φ̂SΣ̂S (and hence T AS

Y − T Y and T S) are all non-negative (non-positive), whenever all
entries of Σ̂S are non-positive (non-negative). Proposition 5 follows immediately.

C Proofs of Section 3.3

Notation and Preliminary Results. Suppose that r ∈ [0, 1] is uniform and denotes income
rank, with Y (r) denoting earnings at rank r, and α ∈ [0, 1] is uniform and denotes the rank of
savings, conditional on income. Let S (r, α) and C (r, α) denote the savings and consumption at
rank α, conditional on income rank r. The budget constraint implies

Y (r) − T (Y (r) , S (r, α)) = pCC (r, α) + S (r, α)

where we introduce pC (set equal to 1) to derive certain relationships between price elasticities.
We consider tax functions that are asymptotically separable and linear in savings at the top, i.e.
T (Y, S) = TY (Y )+τSS for income ranks r sufficiently close to 1. The triplet (Y (r) , C (r, α) , S (r, α))
of earnings, consumption and savings satisfies the first-order conditions 1−τY = −UY

UC
, 1+τS = US

UC
,

where the marginal rates of substitution may depend on individual types that map into income
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and savings ranks r and α, and τY = T ′
Y (Y ), along with the budget constraint. Differentiating the

budget constraint w.r.t. α implies that pCCα + (1 + τS)Sα = 0.
Now, define sC (r, α) ≡ pcC(r,α)

(1−τY (r))Y (r) and sS (r, α) ≡ (1+τS)S(r,α)
(1−τY (r))Y (r) , income effects

ζI
Y ≡ −∂Y

∂T
(1 − τY ) , ζI

C ≡ ∂C

∂T
· (1 − τY )Y

C
and ζI

S ≡ ∂S

∂T

(1 − τY )Y
S

where ∂T represents an increment in unearned income, or a lump-sum reduction in the income tax,
as well as uncompensated and compensated elasticities:

ζU
Z,τY

≡ ∂ lnZ
∂ ln (1 − τY ) , ζU

Z,pC
≡ ∂ lnZ
∂ ln pC

and ζU
T,τS

≡ ∂ lnZ
∂ ln (1 + τS) , for Z ∈ {Y,C, S}

ζH
Z,τY

≡ ∂ lnZC

∂ ln (1 − τY ) , ζH
Z,pC

≡ ∂ lnZC

∂ ln pC
and ζH

T,τS
≡ ∂ lnZC

∂ ln (1 + τS) , for Z ∈ {Y,C, S}

where Z ∈ {Y,C, S} and ZC ∈
{
Y C , CC , SC

}
stand for the uncompensated and compensated

earnings, income and savings functions, respectively. All these income and substitution effects can
in principle be functions of both r and α. For further reference, income and substitution effects
satisfy the following well-known relationships:

ζU
Y,τY

= ζH
Y,τY

− ζI
Y , ζU

C,τY
= ζH

C,τY
+ ζI

C , and ζU
S,τY

= ζH
S,τY

+ ζI
S

ζU
Y,pC

= ζH
Y,pC

+ sCζ
I
Y , ζU

C,pC
= ζH

C,pC
− sCζ

I
C , and ζU

S,pC
= ζH

S,pC
− sCζ

I
S

ζU
Y,τS

= ζH
Y,τS

+ sSζ
I
Y , ζU

C,τS
= ζH

C,τS
− sSζ

I
C , and ζU

S,τS
= ζH

S,τS
− sSζ

I
S

ζH
Y,τS

= −sSζ
H
S,τY

, ζH
Y,pC

= −sCζ
H
C,τY

, and sSζ
H
S,pC

= sCζ
H
C,τS

1 − ζI
Y = sCζ

I
C + sSζ

I
S

ζH
Y,τY

= sCζ
H
C,τY

+ sSζ
H
S,τY

, ζH
Y,pC

= sCζ
H
C,pC

+ sSζ
H
S,pC

, and ζH
Y,τS

= sCζ
H
C,τS

+ sSζ
H
S,τS

.

The first three lines are the Slutzky equations for income and savings tax changes, the fourth
line holds because of symmetry of substitution effects, the fifth and sixth line follow from marginal
perturbations to lump sum taxes, marginal tax rates or pC . In addition, we show:

∂ζI
Y

∂α
=
∂ζH

Y,τY

∂α
= 0 and

∂ζH
Y,τS

∂α
= −

∂ζH
Y,pC

∂α
= sS

Sα

S

(
1 − ζI

Y

)
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∂ζH
C,τY

∂α
= −Cα

C

(
1 − ζI

Y + ζH
C,τY

)
and

∂ζH
S,τY

∂α
= −Sα

S

(
1 − ζI

Y + ζH
S,τY

)
sC

∂

∂α
ζI

C + sS
∂

∂α
ζI

S = sS
Sα

S

(
ζI

C − ζI
S

)
sC

∂

∂α
ζH

C,τS
+ sS

∂

∂α
ζH

S,τS
= sS

Sα

S

(
1 − ζI

Y − ζH
S,τS

+ ζH
C,τS

)
Proof. Consider the approximate budget constraint (ABC) Y (1 − τY ) − T0 = pCC + (1 + τS)S,
where τY = τY (r) and T0 is chosen so that T0 + τY (r)Y (r) = TY (Y (r)), i.e., we use a linear
approximation of the tax function around rank r.

Differentiating the ABC w.r.t. T0 yields (1 − τY ) ∂Y
∂T0

− 1 = pC
∂C
∂T0

+ (1 + τS) ∂S
∂T0

, or 1 − ζI
Y =

sCζ
I
C + sSζ

I
S = − ∂

∂T0
[pCC + (1 + τS)S]. Differentiating both sides w.r.t. α implies that ∂

∂αζ
I
Y =

− ∂
∂T0

[pCCα + (1 + τS)Sα] = 0.
Differentiating the ABC w.r.t. 1−τY yields Y

(
1 + ζU

Y,τY

)
= ∂

∂(1−τY ) [pCC + (1 + τS)S]. Differ-
entiating both sides w.r.t. α implies that ∂

∂αζ
U
Y,τY

= 0, and therefore ∂
∂αζ

H
Y,τY

= ∂
∂α

(
ζU

Y,τY
+ ζI

Y

)
= 0.

Differentiating the ABC w.r.t. 1+τS yields ζU
Y,τS

= sS + 1+τS
(1−τY )Y

∂
∂(1+τS) [pCC + (1 + τS)S], and

therefore ∂
∂αζ

U
Y,τS

= sS
Sα
S and ∂

∂αζ
H
Y,τS

= sS
Sα
S

(
1 − ζI

Y

)
.

Differentiating the ABC w.r.t. pC yields ζU
Y,pC

= sC + pC
(1−τY )Y

∂
∂pC

[pCC + (1 + τS)S]. Dif-
ferentiating both sides w.r.t. α yields ∂

∂αζ
U
Y,pC

= sC
Cα
C and ∂

∂αζ
H
Y,pC

= sC
Cα
C

(
1 − ζI

Y

)
, and from

differentiating the budget constraint w.r.t. α, sC
Cα
C = −sS

Sα
S .

Differentiating sSζ
H
S,τY

= −ζH
Y,τS

w.r.t. α yields sS

(
Sα
S ζ

H
S,τY

+ ∂
∂αζ

H
S,τY

)
= −sS

Sα
S

(
1 − ζI

Y

)
,

or ∂
∂αζ

H
S,τY

= −Sα
S

(
1 − ζI

Y + ζH
S,τY

)
. Differentiating sCζ

H
C,τY

= −ζH
Y,pC

w.r.t. α yields ∂
∂αζ

H
C,τY

=
−sC

Cα
C

(
1 − ζI

Y + ζH
C,τY

)
.

Differentiating 1 − ζI
Y = sCζ

I
C + sSζ

I
S w.r.t. α yields sC

(
Cα
C ζI

C + ∂
∂αζ

I
C

)
= −sS

(
Sα
S ζ

I
S + ∂

∂αζ
I
S

)
and differentiating ζH

Y,τS
= sCζ

H
C,τS

+sSζ
H
S,τS

yields sC

(
Cα
C ζH

C,τS
+ ∂

∂αζ
H
C,τS

)
+sS

(
Sα
S ζ

H
S,τS

+ ∂
∂αζ

H
S,τS

)
=

sS
Sα
S

(
1 − ζI

Y

)
, which we rearrange to find the expressions above.

As an immediate corollary of these expressions, we obtain that in Case 3 (s̄C = 0),

lim
r→1

∂

∂α
ζI

S = lim
r→1

∂

∂α
ζH

S,τY
= lim

r→1

∂

∂α
ζH

S,τS
= 0,

which is consistent with the fact that ζI
S , ζH

S,τY
, and ζH

S,τS
converge to 1−ζI

Y , ζH
Y,τY

, and ζH
Y,τS

, respec-
tively. Likewise, in Case 1 (s̄S = 0), we have limr→1

∂
∂αζ

I
C = limr→1

∂
∂αζ

H
C,τY

= limr→1
∂

∂αζ
H
C,τS

= 0.
Finally, differentiating the budget constraint w.r.t. r for given α yields

Y ′ (r)
Y (r) = Cr (r, α)

(1 − τY )Y (r) + (1 + τS)Sr (r, α)
(1 − τY )Y (r) ,
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or, after integrating over α:

1
ρY (r) = sC (r) (1 − r)C ′ (r)

C (r) + sS (r) (1 − r)S′ (r)
S (r) = sC (r) 1

ρC (r) + sS (r) 1
ρS (r) ,

where sC (r) =
�
sC (r, α) dα and sS (r) =

�
sS (r, α) dα are the average consumption and savings

shares at income rank r, C (r) =
�
C (r, α) dα and S (r) =

�
S (r, α) dα average consumption

and savings at income rank r, C ′ (r) =
�
Cr (r, α) dα and S′ (r) =

�
Sr (r, α) dα, and 1/ρC (r) =

(1 − r)C ′ (r) /C (r) and 1/ρS (r) = (1 − r)S′ (r) /S (r) represent the Pareto coefficient of average
consumption and average savings conditional on earnings.

Revenue Spillover Condition. Consider now a tax perturbation that changes the marginal
income tax by ∂τY (α) > 0 for all r′ ∈ [r, r + ∂r). The mechanical effect of this tax perturbation is

�
∂τY (α) dα · (1 − r) (Y (r + ∂r) − Y (r)) ≈ ∂rY (r)

ρY (r)

�
∂τY (α) dα.

For any (r′, α), the behavioral effect of the tax perturbation on earnings is

∂Y
(
r′, α

)
≈


−Y (r)

ζH
Y,τY

(r)∂τY (α)
1−τY

if r′ ∈ [r, r + ∂r)

∂rY ′ (r) ζI
Y (r′)∂τY (α)

1−τY
if r′ ≥ r + ∂r

Integrating over r′ > r yields

τY

� 1
r E (∂Y (r′, α) ¦r) dr′

∂rY (r)
ρY (r)

�
∂τY (α) dα

≈ − τY

1 − τY

(
ζH

Y,τY
(r) ρY (r) − ζ̂I

Y (r)
)

= − τY

1 − τY

1 − τSaez
Y (r)

τSaez
Y (r)

where τSaez
Y (r) ≡

[
1 + ζH

Y,τY
(r) ρY (r) − ζ̂I

Y (r)
]−1

and ζ̂I
Y (r) ≡ E

(
ζI

Y (r′)
∣∣∣ r′ > r

)
; here we have

used the fact that ζH
Y,τY

and ζI
Y do not vary across α.

For any (r′, α), the behavioral effect of the tax perturbation on savings is

∂S
(
r′, α

)
≈


−Y (r) sS (r, α)

ζH
S,τY

(r,α)∂τY (α)
1+τS

if r′ ∈ [r, r + ∂r)

−∂rY ′ (r) sS (r′, α) ζI
S(r′,α)∂τY (α)

1+τS
if r′ ≥ r + ∂r

Integrating over r′ > r yields

τS

� 1
r E (∂S (r′, α) ¦r) dr′

∂rY (r)
ρY (r)

�
∂τY (α) dα

≈ − τS

1 + τS
sS (r) ΦS (r)

(
1 + Cov

(
sS (r, α) ΦS (r, α)
sS (r) ΦS (r) ,

∂τY (α)�
∂τY (α) dα

∣∣∣∣∣ r
))
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where ΦS (r, α) ≡ ζH
S,τY

(r, α) ρY (r)+ζ̂I
S (r, α), ζ̂I

S (r, α) ≡ E
(
ζI

S (r′, α) sS(r′,α)
sS(r,α)

∣∣∣ r′ > r
)
, and ΦS (r) ≡� sS(r,α)

sS(r) ΦS (r, α) dα.
Combining terms yields the following necessary condition for optimality of the asymptotically

affine tax function:

τY (r)
1 − τY (r) = τSaez

Y (r)
1 − τSaez

Y (r)

(
1 − τS

1 + τS
sS (r) ΦS (r)

(
1 + Cov

(
sS (r, α) ΦS (r, α)
sS (r) ΦS (r) ,

∂τY (α)�
∂τY (α) dα

∣∣∣∣∣ r
)))

.

This condition generalizes the revenue spill-over condition to the model with multi-dimensional
heterogeneity, with the additional co-variance term accounting for income tax perturbations that
vary across savings ranks. Within the class of income tax perturbations that ∂τY that are uniform
across α, i.e. within the restricted class of tax policies that are asymptotically separable and linear
in savings at the top, the optimal top marginal income tax must satisfy

τY (r)
1 − τY (r) = τSaez

Y (r)
1 − τSaez

Y (r)

(
1 − τS

1 + τS
sS (r) ΦS (r)

)

which is exactly the same as the revenue spillover condition in our baseline model, with the defini-
tions of the various income and substitution effects suitably adjusted to allow for heterogeneity in
savings at each income level.

The term Cov
(
sS (r, α) ΦS (r, α) , ∂τY (α)�

∂τY (α)dα

∣∣∣ r) adjusts this condition for perturbations that
vary across α. A necessary condition for the separable affine tax system to be optimal at the top is
that this covariance term is zero for any such perturbation, or equivalently that sS (r, α) ΦS (r, α) is
constant across α. This must hold for r → 1 in Case 1 (where limr→1 sS (r) = limr→1 sS (r, α) = 0
for all α, i.e. the top earners consume almost all their income), as well as in the empirically
relevant Case 3 where limr→1 sS (r) = limr→1 sS (r, α) = 1, limr→1 sS (r, α) ζH

S,τY
(r, α) = ζ̄H

Y,τY
and

limr→1 sS (r, α) ζI
S (r, α) = 1 − ζ̄I

Y , for all α.54

In Case 2, where sS and sC both converge to positive, finite limits, sS (r, α) ΦS (r, α) represents
the spill-over from income to savings at a given savings rank α, i.e. by how much a marginal increase
in the income tax at earnings rank r lowers savings for a given savings rank α. The condition that
this term is constant amounts to requiring that this fiscal spill-over of income taxes to savings is
uniform across different savings ranks; otherwise the fiscal authority could gain additional revenue
with a targeted perturbation that raises the income tax by more for savings ranks with lower fiscal
spill-overs, so that the above covariance is negative.

54Substituting sSζH
S,τY

= ζH
Y,τY

− sCζH
C,τY

and sS ζ̂I
S = 1 − ζ̂I

Y − sC ζ̂I
C and noting that ζ̂I

Y and ζH
Y,τY

are invariant
in α, we obtain that Cov

(
sSΦS , ∂τY (α)�

∂τY (α)dα
¦r
)

= −Cov
(

sC

[
ζH

C,τY
ρY + ζ̂Inc

C

]
, ∂τY (α)�

∂τY (α)dα
¦r
)

.
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The restriction to an affine tax system amounts to assuming that the fiscal authority is unable
to fine-tune how it internalizes spill-overs from one source of tax revenues to another, and it just
internalizes the average spill-overs across top income earners, and the uniform spill-over condition
which implies that sS (r, α) ΦS (r, α)is invariant in α (at least at the top as r → 1) implies that
such fine-tuning does not generate additional tax revenue.

No-arbitrage condition. Consider a joint perturbation of income and savings taxes (∂τY (α) , ∂τS (α))
with ∂τS (α) > 0 > ∂τY (α) for r′ ∈ [r, r + ∂r), such that Y ′ (r)

�
∂τY (α) dα+

�
Sr (r, α) ∂τS (α) dα =

0, or equivalently,

Y (r)
ρY (r)

�
∂τY (α) dα = − S (r)

ρS (r)

�
∂τS (α) dα

(
1 + Cov

(
Sr (r, α)
S′ (r) ; ∂τS (α)�

∂τS (α) dα

∣∣∣∣∣ r
))

.

Importantly, ρS (r) does not represent the Pareto tail on savings, but rather, since S (r) =
�
S (r, α) dα

represents the average savings at income rank r, ρS measures the Pareto coefficient of average sav-
ings conditional on income. Equivalently, the ratio ρY (r) /ρS (r) represents the elasticity of average
savings w.r.t. income Y :

ρY (r)
ρS (r) =

�
Sr (r, α) dα/

�
S (r, α) dα

Y ′ (r) /Y (r) = ∂ logE (S¦Y (r))
∂ log Y (r) .

Since aggregate tax revenue at the top is T0 + τY Y (r) + τS

�
S (r, α) dα, the mechanical effect

is given by
−∂r

� [
Y ′ (r) ∂τY (α) + Sr (r, α) ∂τS (α)

]
dα = 0.

For r′ ≥ r + ∂r, the behavioral effect of the tax perturbation on earnings is ∂Y (r′, α) ≈

∂rζI
Y (r′)

[
Y ′ (r) ∂τY (α)

1−τY
+ Sr (r, α) ∂τS(α)

1−τY

]
and therefore

�
∂Y (r′, α) dα = 0 for r′ ≥ r + ∂r. For

r′ ∈ [r, r + ∂r) we obtain

∂Y
(
r′, α

)
≈ −

[
ζH

Y,τY
(r) ∂τY (α)

1 − τY
− ζH

Y,τS
(r, α) ∂τS (α)

1 + τS

]
Y (r)

= −Y (r) /ρY (r)
1 − τY

�
∂τY (α) dα

ζH
Y,τY

(r) ρY (r) ∂τY (α)�
∂τY (α) dα − ρS (r)

ζH
S,τY

(r, α) S(r,α)
S(r)

∂τS(α)�
∂τS(α)dα

1 + Cov
(

Sr(r,α)
S′(r) ; ∂τS(α)�

∂τS(α)dα

∣∣∣ r)


where we have substituted ζH
Y,τS

= −ζH
S,τY

sS and used the above expression for Y (r)
ρY (r)

�
∂τY (α) dα.
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Integrating w.r.t. α and r′ ≥ r then yields

τY

� 1
r E (∂Y (r′, α) ¦r) dr′

∂rY (r)
ρY (r)

�
∂τY (α) dα

≈ − τY

1 − τY

{
ζH

Y,τY
(r) ρY (r) − ζH

S,τY
(r) ρS (r)K1 (r)

}
,

where ζH
S,τY

(r) ≡
� sS(r,α)

sS(r) ζ
H
S,τY

(r, α) dα and

K1 (r) ≡
1 + Cov

(
ζH

S,τY
(r,α)

ζH
S,τY

(r)
S(r,α)
S(r) ; ∂τS(α)�

∂τS(α)dα

∣∣∣∣ r)
1 + Cov

(
Sr(r,α)
S′(r) ; ∂τS(α)�

∂τS(α)dα

∣∣∣ r) .

For r′ ≥ r + ∂r, the behavioral effect of the tax perturbation on earnings is

∂S
(
r′, α

)
≈ −∂rζI

S

(
r′, α

) [S (r′, α)
Y (r′)

Y ′ (r) ∂τY (α)
1 − τY

+ sS

(
r′, α

) Sr (r, α) ∂τS (α)
1 + τS

]

= ∂r
1

1 + τS
Y ′ (r)

�
∂τY (α) dαζI

S

(
r′, α

)
sS

(
r′, α

) [ ∂τY (α)�
∂τY (α) dα − Sr (r, α) ∂τS (α)�

Sr (r, α) ∂τS (α) dα

]
.

Integrating over r′ ≥ r + ∂r and α yields

τS

� 1
r+ε E (∂S (r′, α) ¦r) dr′

∂rY (r)
ρY (r)

�
∂τY (α) dα

≈ − τS

1 + τS
Cov

(
ζ̂I

S (r, α) sS (r, α) ; ∂τY (α)�
∂τY (α) dα − Sr (r, α) ∂τS (α)�

Sr (r, α) ∂τS (α) dα

∣∣∣∣∣ r
)

where ζ̂I
S (r, α) ≡ E

(
ζI

S (r′, α) sS(r′,α)
sS(r,α) ¦r′ > r

)
. For r′ ∈ [r, r + ∂r) we obtain

∂S
(
r′, α

)
≈
[
ζH

S,τS
(r, α) ∂τS (α)

1 + τS
− ζH

S,τY
(r, α) ∂τY (α)

1 − τY

]
S (r, α)

= Y (r) /ρY (r)
1 + τS

�
∂τY (α) dα·

ρY (r) ζH
Y,τS

(r, α) ∂τY (α)�
∂τY (α) dα − ρS (r) ζH

S,τS
(r, α)

S(r,α)
S(r) ∂τS (α)� Sr(r,α)

S′(r) ∂τS (α) dα


where we have substituted the expression for

�
∂τY (α) dα and ζH

Y,τS
(r, α) = −ζH

S,τY
(r, α) sS (r, α).

Integrating over α and r′ ∈ [r, r + ∂r)then yields

τS

� r+ε
r E (∂S (r′, α) ¦r) dr′

∂rY (r)
ρY (r)

�
∂τY (α) dα

≈ τS

1 + τS

[
ρY (r) ζH

Y,τS
(r)K2 (r) − ρS (r) ζH

S,τS
(r)K3 (r)

]
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where ζH
Y,τS

(r) ≡
�
ζH

Y,τS
(r, α) dα, ζH

S,τS
(r) ≡

�
ζH

S,τS
(r, α)S (r, α) /S (r) dα, and

K2 (r) ≡ 1+Cov
(
ζH

Y,τS
(r, α)

ζH
Y,τS

(r)
; ∂τY (α)�

∂τY (α) dα

∣∣∣∣∣ r
)

and K3 (r) ≡
1 + Cov

(
ζH

S,τS
(r,α)

ζH
S,τS

(r)
S(r,α)
S(r) ; ∂τS(α)�

∂τS(α)dα

∣∣∣∣ r)
1 + Cov

(
Sr(r,α)
S′(r) ; ∂τS(α)�

∂τS(α)dα

∣∣∣ r) .

It follows that

τS

� 1
r E (∂S (r′, α) ¦r) dr′

∂rY (r)
ρY (r)

�
∂τY (α) dα

≈ τS

1 + τS

{
ρY (r) ζH

Y,τS
(r) − ρS (r) ζH

S,τS
(r) + Υ (r)

}
,

where

Υ (r) ≡ ρY (r)Cov
(
ζH

Y,τS
(r, α) ; ∂τY (α)�

∂τY (α) dα

∣∣∣∣∣ r
)

−ρS (r)
Cov

(
ζH

S,τS
(r, α) S(r,α)

S(r) − Sr(r,α)
S′(r) ζ

H
S,τS

(r) ; ∂τS(α)�
∂τS(α)dα

∣∣∣ r)
1 + Cov

(
Sr(r,α)
S′(r) ; ∂τS(α)�

∂τS(α)dα

∣∣∣ r)

+Cov
(
ζ̂I

S (r, α) sS (r, α) ; Sr (r, α) ∂τS (α)�
Sr (r, α) ∂τS (α) dα − ∂τY (α)�

∂τY (α) dα

∣∣∣∣∣ r
)
,

and the asymptotically affine taxes are optimal only if

τS (r)
1 + τS (r) = τY (r)

1 − τY (r)
ζH

Y,τY
(r) ρY (r) − ζH

S,τY
(r) ρS (r)K1 (r)

ζH
Y,τS

(r) ρY (r) − ζH
S,τS

(r) ρS (r) + Υ (r)

for any perturbation (∂τY (α) , ∂τS (α)). If the perturbation is uniform over α, we have K1 (r) =
K2 (r) = K3 (r) = 1 and Υ (r) = Cov

(
ζ̂I

S (r, α) sS (r, α) ; Sr(r,α)
S′(r)

∣∣∣ r), and therefore the no-arbitrage
condition reduces to

τS (r)
1 + τS (r) = τY (r)

1 − τY (r)
ζH

Y,τY
(r) ρY (r) − ζH

S,τY
(r) ρS (r)

ζH
Y,τS

(r) ρY (r) − ζH
S,τS

(r) ρS (r) + Υ (r)

which implies that τ̄S ⋛ 0 if and only if ζ̄H
Y,τY

ρ̄Y ⋛ ζ̄H
S,τY

ρ̄S , as in the model with uni-dimensional
heterogeneity. The only difference is that, as discussed above, ρS (r) doesn’t represent the Pareto
coefficient on savings, but ρY (r) /ρS (r) = ∂ logE(S(r,α)¦Y (r))

∂ log Y (r) represents the elasticity of average
savings to income.

The asymptotically affine tax system can then only be optimal if K1 (r) = K2 (r) = K3 (r) = 1
and Υ (r) = Cov

(
ζ̂I

S (r, α) sS (r, α) ; Sr(r,α)
S′(r)

∣∣∣ r) for any non-uniform perturbation (∂τY (α) , ∂τS (α)),
otherwise fine-tuning the tax perturbation by savings rank will generate additional revenue.But that
in turn holds only if ζH

Y,τS
(r, α), ζH

S,τS
(r, α), and ζ̂I

S (r, α) sS (r, α) are all invariant in α, in which
case we also have Υ (r) = 0. Given the above limiting results, this will hold as r → 1 whenever
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sS = 0 (Case 1) or sC = 0 (Case 3).
Finally, using 1/ρY (r) = sC (r) /ρC (r) + sS (r) /ρS (r), we rewrite the condition for optimal

savings taxes in terms of consumption and income or savings:

τS

1 + τS
= τY

1 − τY

ζH
C,τY

(r) ρC (r) − ζH
S,τY

(r) ρS (r)
ζH

C,τS
(r) ρC (r) − ζH

S,τS
(r) ρS (r) + 1

sC(r)
ρC(r)
ρY (r)Cov

(
ζ̂I

S (r, α) sS (r, α) , Sr(r,α)
S′(r)

∣∣∣ r)
Here, ρC represents a Pareto coefficient for average consumption at each income rank, hence ρY (r)

ρC(r) =
∂ logE(C¦Y (r))

∂ log Y (r) . Using ζ̂I
S (r, α) sS (r, α) = 1 − ζ̂I

Y (r) − ζ̂I
C (r, α) sC (r, α) and Sr (r, α) = constant −

(1 + τS)Cr (r, α), the covariance term in this last expression can also be written as

1
sC (r)

ρC (r)
ρY (r)Cov

(
ζ̂I

S (r, α) sS (r, α) , Sr (r, α)
S′ (r)

∣∣∣∣ r) = 1
sS (r)

ρS (r)
ρY (r)Cov

(
ζ̂I

C (r, α) sC (r, α) , Cr (r, α)
C ′ (r)

∣∣∣∣ r)

and therefore it follows that this covariance term converges to zero, both when sC (r) → 0 and
when sS (r) → 0 as r → 0, i.e. in Cases 1 and 3 of our analysis. To conclude in Cases 1 and 3, the
optimal top income and savings taxes satisfy exactly the same revenue spillover and no-arbitrage
conditions as the uni-dimensional baseline model, with elasticities and Pareto coefficients defined
on average savings and consumption conditional on income rank.
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