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a b s t r a c t

Scatter matrices generalize the covariance matrix and are useful in many multivari-
ate data analysis methods, including well-known principal component analysis (PCA),
which is based on the diagonalization of the covariance matrix. The simultaneous
diagonalization of two or more scatter matrices goes beyond PCA and is used more
and more often. In this paper, we offer an overview of many methods that are based
on a joint diagonalization. These methods range from the unsupervised context with
invariant coordinate selection and blind source separation, which includes independent
component analysis, to the supervised context with discriminant analysis and sliced
inverse regression. They also encompass methods that handle dependent data such as
time series or spatial data.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Classical multivariate analysis, such as that presented in Anderson [3] assumes that the data at hand follow a
multivariate normal model. This is very convenient as the multivariate normal distribution is fully specified by its mean
vector and covariance matrix and these two statistics suffice to develop tractable and optimal inference tools for this
model. Early on, it was known that statistical methods based on the mean vector and covariance matrix are very sensitive
to atypical observations in the data and are not very efficient for observations coming from a heavy-tailed distribution.
To alleviate these problems, the normal model is commonly broadened to the elliptical model, which keeps the shape of
the probability contours but allows for one additional kurtosis parameter, thus allowing heavier and lighter tails than the
normal model. For robustness and optimality reasons, alternative location measures for the mean vector and alternative
dispersion measures for the covariance matrix were developed in the elliptical framework. These measures are often
expected to have certain properties under affine transformations of the data, in which case they are called location
functionals T and scatter functionals S . It can then be shown that in an elliptical model, all location functionals, including
the mean vector, correspond to the symmetry centre and that all scatter functionals are proportional to the covariance
matrix, if they exist [85,87]. Thus, scatter functionals measure the same population quantity in the elliptical model, and it
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is sufficient to use one location functional and one scatter functional for inference purposes (A slightly larger model where
location and scatter functionals measure the same population quantities is also discussed in [85,87].) Since approximately
the turn of the last century, interest in the simultaneous use of two or more scatter matrices, which is of course most
interesting when these functionals do not measure the same population quantities, has increased.

In the present paper we will show how two or more scatter functionals are jointly used in multivariate statistics and
in which models this is of interest. For this purpose we recall first in Section 2 the concept of scatter functionals in detail
and discuss some of their properties. Section 3 gives details on the simultaneous and joint diagonalization of scatter
functionals which is the main tool used in our context. Invariant coordinate selection (ICS) is discussed in Section 4,
blind source separation (BSS) is discussed in Section 5 and the use of joint diagonalization in the context of supervised
dimension reduction (SDR) methods is discussed in Section 6. Finally, the paper is concluded in Section 7.

2. Scatter matrices

Joint diagonalization has been used in unsupervised and supervised contexts and for independent and dependent data.
In the unsupervised case with independent data, the definition of a scatter matrix, sometimes also called pseudo-

covariance, is a generalization of the covariance matrix definition (see [26,35,54,85,102] among others).
Following [85], let us first define the functional version of a scatter estimator. For a p-dimensional vector X with

distribution function FX , a functional S(FX ) also denoted by S(X) is called a scatter functional if it is a p × p symmetric
positive semidefinite and affine equivariant matrix. Note that in [102], the definition is more stringent than that in [85],
and assumes that a scatter matrix is positive definite. We recall that an affine equivariant matrix S(X) is such that

S(AX + b) = AS(X)A⊤,

where ⊤ denotes the transpose operator, A is a full rank p × p matrix and b a p-vector.
For distributions FX with finite second moments, the covariance functional is defined by:

Cov(X) = E
[

(X − E(X))(X − E(X))⊤
]

and is affine equivariant.
Let us now consider the empirical version of a scatter functional. This means that we have a p-variate dataset

Xn = (x1, . . . , xn)
⊤ and the scatter functional S(Fn) for the empirical distribution Fn. A scatter matrix statistic or estimator

is thus a p × p symmetric positive semidefinite and affine equivariant matrix. In this framework, an affine equivariant
matrix S(Xn) is such that

S(XnA + 1nb
⊤) = A⊤S(Xn)A,

where A is a full rank p × p matrix, b a p-vector and 1n an n-vector full of ones.
The empirical covariance matrix is defined by:

Cov(Xn) =
1

n

n
∑

i=1

(xi − x̄n)(xi − x̄n)
⊤

where x̄n = 1/n
∑n

i=1 xi is the empirical mean. The mean is an affine equivariant location estimator T such that:

T (AX + b) = AT (X) + b,

for the functional version and

T (XnA
⊤ + 1nb

⊤) = AT (Xn) + b,

for the empirical version where A is a full rank p × p matrix and b a p-vector.
For elliptical distributions with second moments, scatter functionals are proportional to the covariance matrix (see,

e.g., [9]).
Many scatter matrices have been defined with the objective of making the covariance matrix estimator more

robust (see, e.g., [35,53]). Tyler et al. [102] divide the scatter matrices in three classes depending on their robustness
properties. The first class includes scatter estimators with a zero breakdown point such as the usual covariance matrix
but also the one-step M-estimators with a functional defined by:

Covw(X) = E
[

w(D2(X))(X − E(X))(X − E(X))⊤
]

,

where w is a non-negative and continuous weight function and D2(X) = (X−E(X))⊤Cov(X)−1(X−E(X)) is the Mahalanobis
distance. The sample version of the one-step M-estimator is:

Covw(Xn) =
1

n

n
∑

i=1

w(D2(xi))(xi − x̄n)(xi − x̄n)
⊤,

where D2(xi) = (xi − x̄n)
⊤Cov(Xn)

−1(xi − x̄n).
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The covariance matrix is obtained with w(d) = 1 while we get the Cov−1 matrix defined by [25] when w(d) = 1/d.
As noticed by [70], when w(d) = dα with α < 0, such estimators down-weight values with large Mahalanobis distance
and so have a robust flavour even if they have a zero breakdown point. From the same class, the fourth-moment based
estimator Cov4 obtained with w(d) = d is widely used in the blind source separation literature (see, e.g., [86,100]). It
is highly nonrobust since it up-weights values with large Mahalanobis distances but it proves to be useful in particular
situations.

The second class of estimators contains scatter matrices with a moderate breakdown point such as the class (T , S) of
M-estimators that are defined (see, e.g., [52]) as solutions of systems of equations of the following form:

E
[

u1

[

(X − T (X))⊤S(X)−1(X − T (X))
]

(X − T (X))
]

= 0 (1)

E
[

u2

[

(X − T (X))⊤S(X)−1(X − T (X))
]

(X − T (X))(X − T (X))⊤
]

= S(X) (2)

where u1 and u2 are appropriate weight functions. The sampling version of M-estimators is easily derived from the
previous equations.

The third class contains high breakdown point estimators such as S-estimators or minimum covariance determinant
estimators (see [53] for details and other scatter estimators from the same class).

In some statistical methods, such as independent component analysis, a scatter matrix is also expected to verify the
joint independence property or the block independence property. A scatter functional S(X) has the joint independence
property if for a vector with mutually independent components S(X) is diagonal. In the class of one-step M-estimators
with nonnegative and continuous weight function, [103] proves that the only scatter functionals with the independence
property are the Cov and Cov4 estimators and their nonnegative linear combinations. In the case where all components
of X are not necessarily independent but consist of independent blocks of components, the block dependence property
states that the mutually independent subvectors of X correspond to diagonal submatrices leading to a block diagonal
scatter matrix (see [85,102] for more details).

Note that it is also possible to define some symmetrized version of the previous scatter matrices by considering
S(U − V ), where U and V are independent copies of X (see [85,102]). In other words, the symmetrization is obtained
by applying the scatter functional to pairwise differences. The symmetrized scatter matrices possess the joint and block
independence property (see [85,88]).

In [46], the definition of a scatter matrix is extended to the context of supervised methods. In this context, in addition
to the p-vector X , a response variable Y is available. Following [46], a supervised scatter functional S is a function of the
joint distribution FX,Y of (X, Y ) which is affine equivariant in the sense that

S(FAX+b,Y ) = AS(FX,Y )A
⊤,

for all full rank matrices A and all p-vectors b. One example of such a supervised scatter functional is:

SSIR(FX,Y ) = Cov(E(X |Y )).

Note that in the case of a discrete response variable, SSIR corresponds to the between covariance matrix CovB.
Thus far, we have focused on samples of independent data but as will be detailed below, joint diagonalization is also

widely used in the context of time series and spatial data. In such contexts, affine equivariant estimators that are not
necessarily positive semidefinite are considered and go beyond the scatter matrix definition above.

In the context of p-variate time series, let us consider a stochastic process X T = (x1, . . . , xT ) measured at time
t ∈ {1, . . . , T }. For a given lag τ ∈ {0, 1, . . .}, the sample version of the cross-autocovariance matrix ACovτ (X T ) is given
by

ACovτ (X T ) =
1

T − τ

T−τ
∑

t=1

(xt − x̄T )(xt+τ − x̄T )
⊤

where x̄T = 1/T
∑T

t=1 xt . Note that ACov0(X T ) = Cov(X T ).
The ACovτ matrix is not necessarily symmetric and is sometimes symmetrized when it is expected to be symmetric

for the model under consideration (see [61,101]). A symmetrized version of ACovτ is defined by

ACovSτ =
1

2
(ACovτ + ACov⊤

τ ).

Let us now consider multivariate data measured at spatial locations s1, . . . , sn in a domain S ⊆ R
d, Xn =

(x(s1), . . . , x(sn)). [7] define local covariance, or scatter, matrices, by:

LCovf (Xn) =
1

n

n
∑

i=1

n
∑

j=1

f (si − sj)(x(si) − x̄n)(x(sj) − x̄n)
⊤, (3)

where x̄n = 1/n
∑n

i=1 x(si) and f : R
d → R is called the kernel function. Examples of kernels f are the ball and ring

kernels B(h)(s) = I(∥s∥ ≤ h) with fixed h ≥ 0 and R(h1, h2)(s) = I(h1 ≤ ∥s∥ ≤ h2) with fixed h2 ≥ h1 ≥ 0 where ∥.∥
denotes the euclidian norm and I(·) denotes the indicator function.

Note that the ACov and LCov are considered as scatter matrices but may not be semipositive definite.
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3. Simultaneous and joint diagonalization

In PCA (see, e.g., [40]), the covariance Cov(Xn) (or correlation) matrix, which is a symmetric real valued matrix, is
diagonalized. It means that the following transformation is calculated:

U (Xn)Cov(Xn)U (Xn)
⊤ = Λ(Xn)

where Λ(Xn) = diag(λ1 ≥ · · · ≥ λp) is the diagonal matrix containing the ordered eigenvalues of Cov(Xn) and
U (Xn) = (u1, . . . , up)

⊤ contains its corresponding orthonormal eigenvectors as rows. Because the matrix Cov(Xn)
is symmetric, the matrix U (Xn) is orthogonal with respect to the usual inner-product and can be chosen such that
U (Xn)U (Xn)

⊤ = U (Xn)
⊤U (Xn) = Ip. This procedure is also called the spectral or the eigenvalue–eigenvector decom-

position or eigendecomposition of Cov(Xn).
When considering two scatter matrices S1(Xn) and S2(Xn), it is possible to find a matrix W (Xn) such that both matrices

are transformed into diagonal matrices:

W (Xn)S1(Xn)W (Xn)
⊤ = Λ1(Xn) and W (Xn)S2(Xn)W (Xn)

⊤ = Λ2(Xn) (4)

where Λ1(Xn) and Λ2(Xn) are diagonal matrices (see e.g., [102]).
This procedure is called simultaneous diagonalization (see, e.g., [95]). It leads to the diagonalization of S1(Xn)

−1S2(Xn)
which is not necessarily symmetric:

S1(Xn)
−1S2(Xn) = W (Xn)

⊤
Λ(Xn)W (Xn)

−1

with Λ(Xn) = Λ
−1
1 (Xn)Λ2(Xn).

Generally, Λ1(Xn) is taken as the identity matrix and we focus on this particular case from now on. In this case, Problem
(4) is equivalent to the diagonalization of S2(Xn) with a matrix of eigenvectors W (Xn) that is orthogonal with respect to
the inner product induced by S1(Xn) instead of the canonical inner product.

It is easy to see that Problem (4) is equivalent to the usual diagonalization of S1(Xn)
−1/2S2(Xn)S1(Xn)

−1/2 which is a
symmetric matrix with ordered eigenvalues given by Λ2(Xn) and orthonormal eigenvectors given by S1(Xn)

1/2W (Xn).
Finally, Problem (4) is also equivalent to the problem of finding values λi(X) and vectors wi(X), i ∈ {1, . . . , p}, such

that

S2(Xn)wi(X) = λi(X)S1(Xn)wi(X)

which is called the generalized eigendecomposition problem.
This simultaneous diagonalization procedure is used in different contexts and takes different names depending on the

context. For instance, when using the scatter matrices Cov and Cov4, the method is called FOBI in the signal processing
literature (see e.g., [86] and Section 5.1). When considering the usual covariance matrix and one autocovariance matrix
ACov, it is called AMUSE in the time series context (see e.g., [89] and Section 5.2).

Going beyond two scatter matrices is more challenging but has also been studied in the literature. We will call
the procedure ‘‘joint diagonalization’’ as soon as the number of scatter matrices is larger than two. Let us consider
S0(X), S1(X), . . . , SK (X), i.e., K + 1 scatter matrices associated with a random vector X . It is known that, for such a
collection of symmetric matrices, there exists a matrix P(X), such that P(X)Sk(X)P(X)⊤ is diagonal, for each k ∈ {0, . . . , K },
if and only if all pairs of scatter matrices commute (see [95]).

In the blind source separation model (see Section 5), the assumption that the scatter matrices commute is true, and the
joint diagonalization is possible. However, when considering the sampling versions of the scatter matrices, the property
is lost. In such a situation, we can try to make the matrices jointly ‘‘as diagonal as possible’’ (see, e.g., [21,32,58]).

One idea is to take one of the scatter matrices, let us say S0(Xn), as a reference and to find a transformation W (Xn)
such that S0(Xn) is diagonalized while the other scatter matrices, S1(Xn), . . . , SK (Xn) are only approximately diagonalized.
A popular criterion is based on a least squares approach. More precisely, the criterion consists in looking for W (Xn) which
minimizes the sum of squares of the off-diagonal elements of all possible scatter matrices after transformation, and under
the constraint that W (Xn)S0(Xn)W (Xn)

⊤ is the identity

min

K
∑

k=1

∥off(W (Xn)Sk(Xn)W (Xn)
⊤)∥2, subject to W (Xn)S0(Xn)W (Xn)

⊤ = Ip

where off(A) = A − diag(A), for a square matrix A, and ∥ · ∥ denotes the matrix Frobenius norm.
This criterion is equivalent to maximizing the following sum

K
∑

k=1

∥diag(W (Xn)Sk(Xn)W (Xn)
⊤)∥2, subject to W (Xn)S0(Xn)W (Xn)

⊤ = Ip. (5)

Popular algorithms for this approximate joint diagonalization are based on Jacobi rotations (see, e.g., [13,21,58]). In
the multivariate time series context, with S0(Xn) = Cov(Xn) and, for S1(Xn), . . . , SK (Xn), autocovariance matrices with
different lags, this algorithm is called SOBI [59]. Other possible algorithms are also discussed in [36]. In particular, [62]
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introduced a deflation-based algorithm such that the single rows of the matrix W (Xn) are calculated one after the other
by looking at a maximization problem similar to (5) but for each row of W (Xn). The existence and the uniqueness of the
solution are discussed.

There exist also several other proposals (see, e.g., [36,58]). If there is no reason that S0(Xn) plays a special role, it
is possible to replace the constraint W (Xn)S0(Xn)W (Xn)

⊤ = Ip by other constraints (see, e.g., [107,108]). Moreover, the
square in the maximization criterion can be replaced by other functions allowing to weight differently the involved scatter
matrices (see [58,62] for details).

In the rest of this article, we present many existing multivariate data analysis methods that use a simultaneous or
approximate joint diagonalization of scatter matrices.

4. Invariant coordinate selection

There are two popular data transformations based on a single scatter matrix. The first one is principal component
analysis, which uses the transformation matrix as the orthogonal matrix U obtained via the eigenvalue–eigenvector
decomposition of S(Xn) = U (Xn)

⊤D(Xn)U (Xn) where the ith row of U (Xn) contains the ith eigenvector of S(Xn) and the
diagonal matrix D(Xn) contains on its diagonal the corresponding eigenvalues for which we assume that they are ordered
in descending order. The principal components are the observations projected along the principal vectors, i.e. z i = U (Xn)xi,
i ∈ {1, . . . , n}, where it is often assumed that the observations are centred. The principal components then have the
property that they are uncorrelated with respect to S(Xn), i.e., S(Zn) = D(Xn). Traditional PCA is based on the regular
covariance matrix (see, e.g., [40] for details); however, within an elliptical distribution framework any scatter matrix can
be used for the same purpose.

Another transformation is the so-called whitening transformation which, besides the scatter S(Xn), needs a location
T (Xn). Whitened observations are obtained as

xsti = S(Xn)
−1/2(xi − T (Xn)),

i ∈ {1, . . . , n}. These observations have the properties that T (X st
n ) = 0 and S(X st

n ) = Ip which means that compared to PCA,
whitened transformations not only uncorrelate the components but also give them equal scales. Note however, that the
whitened components are not necessarily just the scaled principle components but might have undergone an additional
rotation. Actually, Ilmonen et al. [39] mention five alternative ways to compute S(Xn)

−1/2 which might all differ by an
orthogonal rotation. If not specified otherwise, we consider the symmetric variant S(Xn)

−1/2 = U (Xn)D(Xn)
−1/2U (Xn)

⊤

with U (Xn) and D(Xn) as above. Again, this transformation usually uses the regular mean vector and the covariance matrix
but other locations and scatter functionals can also be used, in which case an elliptical model is tacitly assumed.

One of the first ideas regarding the use of two scatter matrices was then based on performing these two transformations
one after the other, but using a different scatter matrix for each one. The idea is then, ignoring the location for a moment,
that the data are first whitened with respect to a scatter S1 and then PCA is performed on the whitened data using
another scatter S2. This can be formulated as the simultaneous diagonalization problem of finding the transformation
matrix W (Xn) such that

W (Xn)S1(Xn)W (Xn)
⊤ = Ip, W (Xn)S2(Xn)W (Xn)

⊤ = D(Xn),

where D(Xn) is a diagonal matrix with decreasing elements. Note that in the following, when the context is clear, we drop
the dependence on Xn for W ,D, S1 and S2. Based on Section 3, it is clear that this is a generalized eigenvalue–eigenvector
problem and W and D can be computed accordingly.

Thus, in a model-free context, this transformation can be considered as an investigation if, after removing the second
order information as measured by S1, S2 can still find any structure in the data, which is, for example, not the case when
the observations follow an elliptical distribution.

This transformation was first denoted generalized PCA in [14–16] but the more commonly acknowledged name at
present is invariant coordinate selection (ICS) as established in [102]. Note that some special scatter combinations are
considered under specific names. For example the combination S1 = Cov and S2 = Cov−1 is known as principal axis
analysis [25] and the combination S1 = Cov and S2 = Cov4 is known as fourth order blind identification (FOBI) [12]
which may be one of the most popular combinations.

The name ICS is motivated based on the following equivariance property which holds when the elements of D are all
distinct:

W (Xn)A
−1 = JW (XnA

⊤ + 1nb
⊤),

where A is a p×p matrix and b a p-vector. J denotes a sign change matrix, i.e., a diagonal matrix with ±1 on its diagonal.
Thus, in connection with a location functional T ,

W (Xn) (xi − T (Xn)) = JW (XnA
⊤ + 1nb

⊤)
(

(Axi + b) − T (XnA
⊤ + 1nb

⊤)
)

,

which means that the so called ICS-components z i = W (Xn) (xi − T (Xn)) are affine invariant under linear transformations
up to their signs. Therefore one can argue that the ICS components show the intrinsic structure of the data independent of
the coordinate system in which the data were originally presented. This is quite different from the principal components

5
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Fig. 1. Comparison of different data transformations. Panel A shows a matrix scatterplot with density estimators on the diagonal and correlations

for the original data with p = 4, Panel B the corresponding principal components, Panel C the whitened components and Panel D the invariant

coordinates where S1 = Cov and S2 = Cov4 . Therefore all four panels give different views of the same dataset where in the ICS representation the

two groups are best visible.

and the whitened observations which do not have this type of invariance property. The differences between the

transformations are illustrated in Fig. 1 where the observable 4-variate data are shown together with the corresponding

principal components, whitened components and invariant coordinates, which are in this case based on FOBI. In this

artificial example, the two latent clusters are best visible in the invariant coordinates (see the two modes of the density

estimator on the 4th plot of the diagonal of panel D).

In their seminal paper Tyler et al. [102] also provide an interpretation of the eigenvalues contained in the diagonal of

D. Let w be a p-vector. Then, one can consider w
⊤S1(X)w as a squared measure of the scale of X in the direction of w. As

the ratio of two squared scale measures can be seen as a kurtosis measure [94],

κ(w⊤X) =
w

⊤S1(X)w

w⊤S2(X)w

6
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is therefore the kurtosis measured in the S1 − S2-sense of w
⊤X . Hence, the diagonal elements in D are the (ordered)

kurtosis values of the invariant coordinates. Tyler et al. [102] show that the maximal/minimal kurtosis in the S1 − S2-
sense that can be obtained for X , corresponds to the first/last eigenvalue. Thus Tyler et al. [102] state ICS can be ‘‘viewed
as a projection pursuit without the pursuit effort’’. If S1 and S2 are normalized for the Gaussian distribution, then an
eigenvalue dj = 1, j ∈ {1, . . . , p}, can be taken as an indicator that the component zj follows a Gaussian distribution.

Based on the invariance property of ICS and the properties of the eigenvalues ICS has been used for many purposes,
mainly in an exploratory data analysis way.

4.1. ICS for descriptive statistics

As the ICS components show the intrinsic nature of the data, they are a natural start to describe the basic data
features. Nordhausen et al. [78] actually suggest using an additional second location T 2 and fixing the sign of the jth
component of z i so that (T 2(Zn))j ≥ 0, which means that the difference in the locations is a measure of skewness of
the components. Thus, if T 2(Zn) ≈ 0 the data are symmetric and if all eigenvalues of D are the same, it is an indication
of ellipticity. Similarly the eigenvalues can give indications, together with the skewness measure, for other multivariate
models such as skew-elliptical models as discussed, for example, in [47,78]. A more formal inference framework is given
in Ilmonen et al. [37] where the limiting distributions of W , D and T 1 − T 2 are derived, based on the location and scatter
functionals, especially when they are moment based. Kankainen et al. [41] developed tests for multivariate normality
based on these ideas when using the pair of scatter matrices Cov and Cov4 (FOBI).

4.2. ICS for dimension reduction and outlier detection

Recently, datasets have been increasing in dimension and in sample size. Standard assumptions in modern multivariate
statistics are such that datasets containing considerable noise and relevant features can be concentrated in a much smaller
signal subspace. The goal of dimension reduction is then to estimate the signal subspace whose dimension is usually
unknown. The question is how to define what makes a signal. For example, PCA says that the signal subspace is the
one that contains most variation in the data, and there are many rules how to choose the subspace dimension (see for
example [40]). PCA is likely the most commonly used dimension reduction method and seems to be quite successful in
practice. It is from a theoretical point, however difficult, to argue why the directions in which, for example, groups are to
be separated or outliers are to be identified, should be those with large variation. The construction of counterexamples is
quite easy. Kurtosis, on the other hand, is a natural indicator of non-Gaussianity and, is one of the most popular projection
pursuit indices [34]. In a mixture model framework, the classical kurtosis measure depends on the mixing proportion. If
the group sizes are approximately equal, the kurtosis is small, while for unbalanced groups, with the extreme case of
outliers, the kurtosis will be large. Thus, the eigenvalues contained in the matrix D give an indicator of interestingness
of the components and allow, for example, the search for groups. In the above example, as shown in Fig. 1, the last
invariant coordinate is most interesting as the groups in this example are of equal size. This makes component selection
slightly more challenging, as first and last components might be of interest. This is different from PCA where usually only
the first few components are of interest. Tyler et al. [102] show that in a general framework with a mixture of elliptical
distributions, ICS will find Fisher’s linear discriminant without knowing the class labels, and ICS was considered a method
for dimension reduction prior to group identification, for example, in [2,27,28,90,102].

Similarly, the reduction of the dimension to make outlier detection easier via ICS was considered in [5,6,80], especially
in the context of reliability when it is known that the proportion of outliers is small. [5] show that it is easier to identify
the outliers when they can be captured in a few invariant coordinates. If all invariant coordinates need to be selected for
outlier detection, then the method corresponds to Mahalanobis-type outlier detection approach where the Mahalanobis
distances are computed with respect to S1.

The determination of which and how many components to retain is still often done visually or based on heuristics.
However, when assuming a non-Gaussian component analysis framework where it is assumed that the data can be
decomposed into a non-Gaussian (signal) subspace that is independent of the remaining (noise) Gaussian subspace, formal
inference about the subspace dimensions was discussed in the context of FOBI in [48,49,81,82], and for general scatter
combinations, it was discussed in [93].

4.3. ICS as a transformation–retransformation method

As discussed above, in multivariate statistics, it is of key interest that the results of the analysis do not depend on the co-
ordinate system used. Thus, estimates should have an appropriate equivariance property under affine transformations, and
tests, for example, should be invariant. However, there are multivariate methods that are not affine equivariant/invariant,
which is considered a major flaw. For example, multivariate methods based on marginal signs and ranks [see, for example,
91] suffer from this disadvantage. ICS can help in this context as a transformation–retransformation approach. This means
that multivariate methods are applied to the invariant coordinates and, if required, retransformed to the original scale.
This was discussed, for example, in [79,80].
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As ICS is used with very different purposes in mind, Tyler et al. [102] argued that there is no general best scatter
combination for S1 and S2. Depending on the problem and data at hand, the scatter matrices might require different
properties. In general, however, Tyler et al. [102] argued that it would be advisable not to use two highly robust scatter
matrices, as interesting features will not be detected when both scatter matrices focus too much on the same ‘‘inner’’ part
of the data. Alashwali and Kent [2] argued that it might be advisable that both scatter matrices are computed with respect
to the same location functional, especially when subsequent clustering is the goal. Which scatter functional is used first
and which second is also of minor consequence. The effect of changing the order is to invert the eigenvalues and reversing
the order of the components, which then also have different scales. A common convention is, for example, to choose the
order so that S1 is more robust than S2 and that the ICS components are centred with respect to the location functional
which goes most naturally with S1. For further discussions regarding invariant transformations, we refer to [39,96,97].

To apply ICS and related methods in R [92], packages ICS[80], ICSOutlier [6], ICSShiny [4] and ICtest [83] are
available.

5. Blind source separation

ICS is often seen as a mainly exploratory tool for multivariate analysis. A more model based approach where joint
diagonalization plays a major role is blind source separation (BSS). The basic BSS model is

X = AZ + µ,

where X is a p-variate observable phenomenon that is seen as a linear mixture of a somewhat standardized latent p-
variate source Z , where the mixing is represented by the full rank p × p matrix A and the location of X is specified by
the p-vector µ. Standard assumptions are that E(Z) = 0 and Cov(Z) = Ip which indicates that the components of Z are
at least uncorrelated. The goal in BSS is to estimate Z based on a realized sample x1, . . . , xn of X alone. The location µ in
this case is mainly considered as a nuisance parameter and, in the following, we assume for simplicity µ = 0.

Clearly, without further assumptions, it is not possible to solve the BSS problem, and there must be at least one further
structural component given for Z that can be exploited. Different BSS models have been suggested in the literature, with
different additional assumptions. The ones we will consider here are: (i) The observations are independent and identically
distributed (iid), and the components of Z are independent and non-Gaussian. This case is known as independent
component analysis (ICA). (ii) The observed data are a p-variate time series, and the components of the latent time series
are uncorrelated or independent. Then, additional information that can be exploited is serial dependence. (iii) The observed
data come from a p-variate spatial random field where the p latent fields are again uncorrelated and independent, and
the additional structure to be exploited is the spatial dependence.

Before going into detail, we point out that general overviews for BSS are, for example, [1,20,22,75] and that BSS
approaches that are based on joint diagonalization are often called algebraic BSS methods.

All approaches make use of the following key result [64]. Let X st = Cov(X)−1/2(X − E(X)) be the standardized version
of X , then

X st = U⊤Z,

where U is some orthogonal p×p matrix. Thus, after whitening, the BSS problem can be reduced to the problem of finding
an orthogonal matrix.

The strategy of all algebraic BSS methods described below makes use of the generalized concept of a scatter functional
which only requires affine equivariance but relaxes the positive definiteness requirement. Then, the approach is to select
K ≥ 1 scatter functionals S1, . . . , SK for which

S i(Z) = Di, i ∈ i, . . . , K ,

holds with Di being diagonal matrices. Thus, all the scatter matrices used are diagonal when computed for the sources.
Then, the approach is to find the orthogonal matrix U such that:

US i(X
st )U⊤ = Di, i ∈ i, . . . , K ,

which yields the unmixing matrix W = UCov(X)−1/2. Thus, algebraic BSS methods consists of a joint diagonalization
problem, where the unmixing matrix W diagonalizes the K + 1 scatter matrices Cov(X), S1(X), . . . , SK (X) under the
constraint that WCov(X)W⊤ = Ip.

In the following, we will discuss the different additional structural requirements made on the latent components and
which scatter functionals are suitable.

Before this, let us discuss why we should perform BSS:

1. Often, it is assumed that the latent components have either physical meanings (BSS was suggested first in the signal
processing literature) or that they are easier to interpret than the original components.

2. Another motivation is that often only a few components are considered interesting and the remainder noise, thus,
it can be used for dimension reduction.

3. As the latent components are assumed uncorrelated or even independent, each component can be modelled in a
univariate way, and instead of fitting a p-variate model, one could fit p univariate models, which is often considered
much simpler. For spatial data, such a benefit is demonstrated in [69] in the context of prediction.
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5.1. Independent component analysis

ICA is the best known BSS approach. ICA methods are designed for iid data but are also often applied for dependent
observations in which case, however, not all available information is exploited. In the ICA, it is assumed that:

(IC1): E(Z) = 0 and Cov(Z) = Ip

(IC2): The components of Z=(Z1, . . . , Zp), are mutually independent.

(IC3): At most one component of Z is Gaussian.

The first algebraic ICA approach is FOBI [12], as described above, which means that K = 1 and S1 = Cov4 in the BSS
framework. FOBI yields an unmixing matrix if all independent components have distinct kurtosis values. The statistical
properties of FOBI, in the ICA model, were derived in Miettinen et al. [64]. [88] generalized then FOBI by showing that
Cov and S1 in FOBI can be replaced by any scatter functionals that have the independence property, which is also further
investigated in [77]. Therefore, one can say, given a suitable choice of scatter functionals, that ICS can also solve the ICA
problem when kurtosis values of Z , in the sense of the two scatter functionals involved, are distinct.

In ICA, however, assuming that the components have distinct kurtosis (in the sense of the involved scatter matrices) is
considered as a strong constraint. Therefore, [72] suggested using K +1 scatter functionals that have all the independence
property, and then using joint diagonalization as described in Section 3 to obtain the unmixing matrix. This is more
flexible in the sense that this solves the ICA problem, where for each component there is at least one scatter combination
S0, S j, j ∈ {1, . . . , K } with a distinct kurtosis compared with other components. Thus, the K-Scatter (K > 1) approach is
more flexible than the 2-scatter approach. However, this approach still cannot separate components that have the same
distribution. An ICA approach that also works for identical distributed components and is based on joint diagonalization
is JADE (joint diagonalization of eigenmatrices), which uses cumulant matrices. Therefore, the method does not fully fit
in the framework presented here, as no scatter functionals are diagonalized but certain cumulant matrices. We refer the
reader to [13,64] for further details. The 2-scatter ICA approach is often not optimal and FOBI is, for example, always less
efficient than JADE [64]. The 2-scatter ICA approach, compared to the K -scatter approach or JADE, is usually much easier
to compute, especially FOBI which is often the start of an ICA analysis.

An extension of ICA is independent subspace analysis (ISA), which is also known as multivariate ICA. In this framework
Z does not have p ‘‘univariate’’ independent components but only c components which may be multivariate. Thus,
Z = (Z⊤

1 , . . . , Z⊤
c )

⊤ where Z i has dimension pi, i ∈ {1, . . . , c} with p1 + · · · + pc = p. In ISA, the individual components
cannot be recovered but only their subspaces. An approach based on joint diagonalization is first to perform 2-scatter
ICA, then compute a third scatter that has the block independence property for the obtained components, and finally
blockdiagonalize this third scatter. For details, see for example [74].

5.2. BSS for time series

In ICA, the extra feature exploited was non-Gaussianity for BSS. In time series, serial dependence can be exploited,
which in turn allows multiple Gaussian components. Different BSS approaches imply different assumptions regarding the
time series. For simplicity, we continue using X for the stochastic process X t .

1. Second order source separation (SOS) makes the following model assumptions:

(SOS:) E(Z) = 0 and Cov(Z) = Ip.

(SOS2:) ACovτ (Z) = Dτ for all τ ≥ 1 where Dτ are all diagonal matrices.

Therefore, in the SOS model, the latent components are uncorrelated throughout time and it is usually assumed
that the latent components are linear processes.
The first SOS method is known as AMUSE (algorithm for multiple unknown signals extraction) [101], which chooses
K = 1 and S1 = ACovSτ for some lag τ , which is very often 1. AMUSE can solve the SOS problem if all autocorrelations
at the used lag are distinct. AMUSE is very sensitive to the chosen lag and was extended to SOBI (second order blind
identification) in [8]. The method consists in choosing K symmetrized autocovariance matrices with different lags
τ1, . . . , τK , which are then jointly diagonalized. This is again more flexible, and different autocovariance matrices
can contribute to the separation of different lags. The statistical properties of AMUSE are discussed in [61] and those
of SOBI in [36,59,62]. Note, however, that SOBI is not always better than AMUSE but it is in most cases. The choice
of lags is, however, an open question that has a large impact in practice, where the default is often to use simply
the first 12 lags. For more sophisticated considerations for lag selection, see, for example, [98,99]. Replacing Cov
and ACov’s in AMUSE or SOBI with robust alternatives is discussed, for example, in [38] but requires that the time
series be symmetric.

2. Independent component time series (IC time series) model. In this model, one makes the assumptions:

(IC time series 1): E(Z) = 0 and Cov(Z) = Ip
(IC time series 2): The latent time series contained in Z are all independent.
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Note that (IC time series 1) implies stationarity which is assumed in the methods presented in the following. It could,
however, be relaxed and there is some overlap with the BSS approach considering nonstationary data described
subsequently.
The main difference when assuming the IC time series model compared with the SOS model is that independence
between components is required, and one usually has components with stochastic volatility, such as GARCH
components. Statistics measuring second order information do not necessarily carry information, and higher order
information is therefore commonly used. The main method, in our context, is the generalized FOBI (gFOBI) [57]
which extends FOBI by defining the scatter functional for the mean zero process

Cov4,τ (X) = E(X t+τX
⊤
t Cov(X t )

−1X tX
⊤
t+τ ),

which therefore can be seen as a lagged fourth moment matrix. For gFOBI, one selects a set of lags τ1, . . . , τK used
in the joint diagonalization approach for S j = Cov4,τj , j ∈ {1, . . . , j}. If the set consists only of τ1 = 0 the method
reduces to FOBI. gFOBI therefore can solve the BSS problem if all fourth moments are finite and the set of lags
contains a lag τ for which the ith and jth diagonal elements of Cov4,τ (X) are distinct, for all pairs i ̸= j. Note that
JADE was similarly extended for this setting to gJADE in [57].

3. Nonstationary source separation (NSS). Thus far, stationary data are considered. In the NSS models this is relaxed
slightly and the assumptions are:

(NSS 1): E(Z) = 0 and Cov(Z t ) = Dt , where Dt is a diagonal matrix depending on t .

(NSS 2): ACovτ (Z t ) = Dτ ,t for all τ ≥ 1 where Dτ ,t are all diagonal matrices.

In this model, the mean is stationary, but not the second moment. To make the model formulation easier, it is often
assumed that, for the observed time series X T , the latent components are scaled such that Cov(ZT ) = Ip. The main
idea for NSS is to divide the observed time span T into K non-overlapping intervals T1, . . . , TK , and then compute
the scatter matrices separately for each interval, and jointly diagonalize them.
The NSS method.SD [19] uses K = 2 and the unmixing matrix W corresponds to the matrix that simultaneously
diagonalizes Cov(X T1 ) and Cov(X T2 ). Similar to 2-scatter ICA and AMUSE, the performance of this approach is
sensitive to the division, and requires that each component has a distinct variance in the intervals. A straightforward
extension is NSS.JD [19] that chooses K > 2 and jointly diagonalizes Cov(X st

T1
), . . . , Cov(X st

TK
), where X st =

Cov(X T )
−1/2(X T − 1T X̄

⊤

T ). NSS.SD and NSS.JD only require a temporal ordering of the observations but do not
otherwise exploit the serial dependence. The approach NSS.TD.JD [18] therefore chooses K intervals and a set of L
lags τ1, . . . , τL and jointly diagonalizes the K × L autocovariance matrices ACovSτi (X

st
Tj
), i ∈ {1, . . . , L} j ∈ {1, . . . , K }.

Thus, for K = 1, this approach reduces to SOBI, and the general idea is that the data follow a block stationary
model. NSS was first considered in the context of audio signals, and K was chosen such that there are sufficient
observations within an interval, so that the scatter matrices can be computed with sufficient precision. Another
framework is that, on K subjects, the same experiment was performed and produces for each subject a p-variate
time series. Then, assuming that for all subjects the same ‘‘mixing’’ occurred, one can concatenate the K time series
and apply an NSS approach, where the intervals correspond to the concatenation points. Such an approach is often
referred to as groupICA. NSS with robust scatter functionals, was, for example considered in [70].

As it is not always clear which of the three time series BSS models is suitable, there exist generalizations combining
different approaches. In general, approaches such as gSOBI [60], cannot be expressed in a joint diagonalization frame-
work. Nordhausen et al. [71] used almost all scatter matrices, as described above, including the subdivision into intervals,
for joint diagonalization to cover all three models. This is, however, very challenging as the different scatter functionals
are of different magnitudes, and it is not very clear how to weight them. This is still an area for further research. More
details about general BSS approaches for time series are reviewed in [22,89].

5.3. BSS for spatial data

Most areas where BSS was applied to date produced time series data. Therefore, the focus of BSS was mainly on time
series methods. However, recently, BSS was also considered in the context of spatial data. In that case, X = X(s) is a
p-variate random field specified on the domain S , where the domain can be 1, 2 or 3 dimensional. To estimate the latent
components, one has a sample of n points X(si), sampled at the distinct locations si ∈ S , i ∈ {1, . . . , n}. X S denotes then
the data matrix with the sampled observations.

Two spatial settings that have been considered so far in a BSS framework, can be seen as spatial counterpart to the SOS
and NSS time series models where the role of the autocovariance matrices will be taken on by local covariance matrices
(see the definition in Section 2).

1. Spatial blind source separation model (SBSS) makes the following model assumptions:

(SBSS1): E(Z) = 0 and Cov(Z) = Ip.

(SBSS2): E(Z(s), Z(s′)⊤) = Dh, where h = ∥s−s′∥ for all s and s′ ∈ S with s ̸= s′ and the diagonal matrix Dh contains
the univariate covariance functions corresponding to the latent fields.
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Fig. 2. Schematic overview of the different BSS models and ICS. For the definition of the models see Section 5.

Thus, in SBSS, the latent fields are assumed to be uncorrelated/independent stationary random fields.
Nordhausen et al. [76] suggested a 2-scatter approach that jointly diagonalizes Cov and one LCovf for SBSS. The
performance of this approach depends again heavily on the chosen kernel f . Bachoc et al. [7] then suggested a joint
diagonalization approach with Cov and S1 = LCovf1 , . . . , SK = LCovfK , for K ≥ 2, where the so-called ring kernels,
with different radii, are the most natural kernels considered so far. The statistical properties of the two approaches
are given in [7] in the case of latent Gaussian random fields and show again that the joint diagonalization approach
seems preferable.

2. Spatial nonstationary source separation (SNSS). This model assumes

(SNSS 1): E(Z) = 0 and Cov(Z(s)) = Ds, where Ds is a diagonal matrix depending on s ∈ S .

(SNSS 2): E(Z(s), Z(s′)⊤) = Ds,s′ or all s and s′ ∈ S with s ̸= s′ and the diagonal matrix Ds,s′ depends on the locations.

Thus, the location is stationary and all latent fields are uncorrelated or independent. However, for all latent fields,
the spatial covariance is non-stationary.

The idea for algebraic BSS in this model is quite similar to NSS in the time series case. The domain is divided into K
non-overlapping subdomains S1, . . . , SK such that S1 ∪ · · · ∪ SK = S . Then, analogously to the time series setting, [65]
suggested the methods SNSS.SD, SNSS.JD and SNSS.SJD.

For SNSS.SD, K = 2 and the covariance matrices of the two domains are simultaneously diagonalized, which is again
very sensitive to division into subdomains. SNSS.JD, which whitens the data using Cov(X S) and then jointly diagonalizes
the K > 2 covariance matrices obtained for the subdomains, i.e., Cov(X st

S1
), . . . , Cov(X st

SK
), is less sensitive to division into

subdomains. Both, SNSS.SD and SNSS.JD, are based only on the spatial ordering of the points. If it is assumed that there
would be some kind of block-stationary model underlying, SNSS.SJD suggests to compute L local covariance matrices
LCovfj (X

st
Si
), i ∈ {1, . . . , K }, j ∈ {1, . . . , L}, for all subdomains, and then jointly diagonalizes these K × L matrices.

All the above BSS methods, either simultaneously diagonalize two scatter functionals or jointly diagonalize K+1 scatter
matrices with one scatter playing a special role. There exist many other BSS models or methods where joint diagonalization
plays a role. Some are for example summarized in [17,100]. BSS is still an active research area, and spatial BSS is currently
actively developed. A schematic overview of the BSS models covered in the present review and of ICS is given in Fig. 2.

Note that, as mentioned earlier, the goal of BSS is to estimate the latent components, and for that purpose, we used
simultaneous and joint diagonalization (see Section 3) to obtain an unmixing matrix W such that

z i = W (xi − T (Xn)), i ∈ {i, . . . , n}.

This is however rather imprecise, as none of the models described above are identifiable in a strict sense. In all the BSS
models described above, one can write

X = AZ = (AJP)(P⊤JZ) = A∗Z∗,

where J is p × p sign-change matrix and P a p × p permutation matrix. Thus, the signs and order of the components
cannot be fixed. Consequently, for any unmixing matrix W , the matrix JPW is also an unmixing matrix for all permutation
matrices P and all sign-change matrices J . However, these identifiability issues are usually not considered to be a problem
and the order of the components is, for example, usually fixed based on the diagonal elements of D in the case of

simultaneous diagonalization, and based on diag(
∑K

i=1 WS i(Xn)W
⊤) in the case of joint diagonalization.

In performance studies, these indeterminacies have naturally to be taken into account and an overview of BSS
performance measures is given for example in [84].
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Most algebraic BSS methods described above are implemented in R via the R packages ICS, BSSasymp, JADE [63] ,
tsBSS [73] and SpatialBSS [68] where JADE contains also some performance measures.

6. Joint diagonalization in the context of supervised multivariate methods

PCA, ICS and BSS are often used as dimension reduction methods, which means that some components are selected and
used in further modelling. However, if there is a response Y to be modelled, no direct information is used when computing
the new directions in an unsupervised manner. Such dimension reduction methods are therefore called unsupervised
dimension reduction methods. When information about the target is used in the dimension reduction process, one refers
to it as supervised dimension reduction (SDR). Surprisingly, many SDR methods can be seen within a joint diagonalization
framework.

For example, linear discriminant analysis (LDA) [30] can be seen as a supervised method in a classification context. Let
us consider a dataset X = (x1, . . . , xn), with n observations and p variables, which is partitioned into K subpopulations
or groups. Fisher’s idea was to look for the best linear function of the p variables which maximized the ratio of the
between-groups covariance to the within-groups covariance. The intuition is that groups are more easily visible when the
between-groups variability is large in comparison with the within-groups variability. We use the index i for the group
and j for the observation in each group, so that xij denotes the jth observation in group i, for i ∈ {1, . . . , K }, j ∈ {1, . . . , ni},
where ni denotes the number of observations in group i. Using the analysis of variance equation, we can decompose the
total covariance matrix Cov, which does not take into account the groups, into the between scatter matrix CovB and the
within scatter matrix CovW defined by:

CovB =
1

n

K
∑

i=1

ni(x̄i − x̄)(x̄i − x̄)⊤ (6)

CovW =
1

n

K
∑

i=1

ni
∑

j=1

(xij − x̄i)(xij − x̄i)
⊤ (7)

where x̄i denotes the mean of the ith group and x̄ the overall mean. The Fisher’s linear discriminant vectors are the
eigenvectors of CovW

−1CovB (see [51] for more details). Both CovB and CovW are scatter matrices in the sense that they
are affine equivariant and semipositive definite. Note however that the between-matrix is of rank K − 1 and thus is
generally singular. As a consequence, in general, there are K − 1 nontrivial linear discriminant vectors. As detailed in
Section 3, the Fisher’s discriminant vectors are obtained as the solution of a generalized eigendecomposition.

Also canonical correlation analysis (CCA) [33] can be formulated as the simultaneous diagonalization of two scatter
functionals when using

S1(X) = Cov(X) and S2(X) = CovCCA = Cov(X,Y )Cov(Y )−1/2Cov(Y ,X).

Most SDR methods are developed in a regression context where, for simplicity, we assume from now on that the
response Y is univariate. In the spirit of a BSS model, we assume that:

X = AZ + µ,

where A is the p×p full rank mixing matrix and µ the p-variate location vector. For the latent p-vector, we assume there

exists a partition Z =

(

Z (1)⊤, Z (2)⊤
)⊤

with respective dimensions k and p − k. The assumptions are:

(SDR 1): E(Z) = 0 and Cov(Z) = Ip.

(SDR 2): (Y , Z (1)⊤)⊤ and Z (2) are independent.

Thus all information on Y is contained in Z (1). Note that there are naturally many partitions of Z fulfilling these
assumptions. But the partition of interest is the one with the smallest value k that needs to be estimated together with
the unmixing matrix W . Note also that Z (1) is only identifiable up to an orthogonal transformation, which means that the
‘‘unmixing’’ matrix can only recover the subspace of interest, which is however sufficient.

Liski et al. [46] defined supervised invariant coordinate selection (SICS) as the joint diagonalization of one unsupervised
scatter functional (S1) and one supervised scatter functional (S2). Many well established supervised dimension reduction
methods, like sliced inverse regression (SIR) [42], sliced average variance estimation (SAVE) [23], principal Hessian
directions (pHd) [43], or directional regression (DR) [45], can be seen as special cases of SICS. All these methods use
S1 = Cov and differ regarding S2. SIR, for example, uses SSIR as defined in Section 2. For the exact forms of SSAVE , SpHd and
SDR we refer to [46], where many other possibilities for supervised scatter functionals are listed. The advantage of an SDR
approach over unsupervised methods is demonstrated in Fig. 3, where there is a response Y which is to be explained by
four possible predictors. Panel A gives the original data where no clear relationship between any of the predictors and Y
is visible. The PCs based on X given in panel B are not more informative regarding their relationship with Y . The invariant
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Fig. 3. Comparison of different data transformations. Panel A shows a matrix scatterplot with density estimators on the diagonal and correlations

for the original data and where Y is the response to be modelled by the 4 predictors, Panel B the principal components based on Xn , Panel C the

invariant coordinates (FOBI) based on Xn and Panel D the supervised invariant coordinates based on Xn and Y . Clearly the supervised components

make it easiest to see a relationship between response and predictors.

coordinates in panel C give some idea about the relationship when looking at IC.3. But the relationship is very clearly
visible in panel D where SICS is displayed.

The performance of the SDR methods depends a lot on the true relationship between response and predictors, and
different methods are more suitable to recognize certain types of dependencies than others. For detailed discussions about
SDR methods, we refer, for example, to [44,50]. Note that many of these methods also can make weaker assumptions than
(SDR2).

In the example in Fig. 3, the true k is 1. In practice this needs to be estimated. In SDR, depending on the scatter used,
the theoretical value of eigenvalues which correspond to Z (2), i.e., the values in D, are known, and therefore tests and
estimators can be based on these eigenvalues, as for example discussed in [10,11,48,49,81].

Supervised dimension reduction methods are of course also of interest in the context of time series and spatial data. The
effect of the predictors on the response might, for example, be delayed in the time series case, or depend on neighbouring
values in the spatial setting. However, it is straightforward to adjust the SDR assumptions from above, and to formulate
an appropriate BSS-SDR framework for dependent data. To take the temporal delay and spatial proximity into account,
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Table 1

Multivariate methods which are based on the joint diagonalization of two or more scatter matrices.

Name Family Primary data type Scatters used

ICS [102] ICS non-elliptical iid data two different scatter matrices

PAA [25] ICS non-elliptical iid data S1 = Cov, S2 = Cov-1

LDA [30] SDR multigroup iid data S1 = CovW , S2 = CovB

CCA [33] SDR two group data S1 =Cov, S2 = CovCCA .

FOBI [12,86] ICS, ICA non-elliptical/ICA iid data S1 = Cov, S2 = Cov4

2-Scatter-ICA [88] ICA ICA iid data Two scatters with

independence property

k-Scatter-ICA [72] ICA ICA iid data k scatters with independence

property

3-scatter-ISA [74] ISA ISA iid data Three different scatter matrices

with (block) independence

property

SICS [46] SDR regression data an unsupervised and a

supervised scatter matrix

SIR [42] SDR regression data S1 = Cov, S2 = SSIR

SAVE [23] SDR regression data S1 = Cov, S2 = SSAVE

pHd [43] SDR regression data S1 = Cov, S2 = SpHd

DR [45] SDR regression data S1 = Cov, S2 = SDR

TSIR [55] SDR time series regression data S1 = Cov, and K STSIR,τ s

TSAVE [56] SDR time series regression data S1 = Cov, and K STSAVE,τ s

SSIR [67] SDR spatial regression data S1 = Cov, and K SSIR,τs

AMUSE [61,101] SOS stationary time series S1 = Cov, S2 = ACovSτ

SOBI [8,59,64] SOS stationary time series S1 = Cov, K ≥ 2 ACovSτ s

gFOBI [57] IC-time series time series with for example

stochastic volatility

S1 = Cov, K lagged 4th

moment matrices

NSS.SD [19] NSS non-stationary time series 2 Cov s

NSS.JD [19] NSS non-stationary time series K + 1 Cov s

NSS.TD.JD [18] NSS block stationary time series K × L ACovSτ s

SBSS [7,76] SBSS stationary spatial data Cov and K LCovf s

SNSS.SD [65] SNSS non-stationary spatial data 2 Cov s

SNSS.JD [65] SNSS non-stationary spatial data K + 1 Cov s

SNSS.TD.JD [65] SNSS block stationary spatial data K × L LCovf s

supervised temporal and spatial scatter functionals should be used, and more than two scatter matrices might be used.
Matilainen et al. [55] define time series SIR (TSIR), which is based on STSIR,τ (X) = Cov(E(X t |Yt+τ )), where τ is some
lag. Then, TSIR whitens the data using Cov and jointly diagonalizes STSIR,τi (X

st ) with τi ∈ {τ1, . . . , τK }. Time series SAVE
(TSAVE) is suggested in [56], and jointly diagonalizes Cov, and K so-called time series SAVE matrices STSAVE,τi , using K
different lags. Spatial SIR (SSIR) was so far only considered for lattice data in [67], and jointly diagonalizes Cov and
SSSIR,τ(X) = Cov(E(X s|Ys+τ)), where τ is now a d-dimensional lag. These approaches are all fairly new and inference
tools are still missing.

Various SDR approaches discussed here are, for example, implemented in R in the packages dr [106], ICS and tsBSS.

7. Conclusions

Many multivariate statistical methods make use of the joint diagonalization of several scatter matrices as illustrated
in the previous sections. Table 1 summarizes the different models, methods and scatter functionals that are jointly
diagonalized. However, the overview we propose in this paper is far from exhaustive. For example, Chabriel et al. [17],Theis
and Inouye [100] give an overview of algebraic BSS methods that contains models and approaches not mentioned here.
Then, there are also completely different multivariate statistical methods that use joint diagonalization, but that were not
considered here, such as for example common principal component analysis [31]. Additionally, the methods have been
extended in several directions to tackle more complex data, such as tensors, functional data or composition data [see
for example 66,104,105], and similarities and different approaches are discussed in [24,29,81]. Finally, let us mention the
problem of high-dimensional data and the sparsity question that needs further development.
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